
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1993

An integration of case-based and model-based reasoning and its An integration of case-based and model-based reasoning and its

application to physical system faults application to physical system faults

Stamos T. Karamouzis
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Karamouzis, Stamos T., "An integration of case-based and model-based reasoning and its application to
physical system faults" (1993). Dissertations, Theses, and Masters Projects. Paper 1539623838.
https://dx.doi.org/doi:10.21220/s2-z71y-tc95

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-z71y-tc95
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om pany

300 North Z ee b Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Num ber 9414200

A n integration o f case-based and m odel-based reasoning and its
application to physical system faults

Karam ouzis, Stam os T ., Ph .D .

The College of William and Mary, 1993

Copyright © 1993 by Karamouzis, Stamos T. All rights reserved.

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

An Integration of Case-Based and Model-Based Reasoning

and

its Application to Physical System Faults

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the degree of

Doctor of Philosophy

by

Stamos T. Karamouzis

1993

Copyright © 1993 by Stamos T. Karamouzis, All Rights Reserved

APPROVAL SHEET

This Dissertation is submitted in partial fulfillment of the

requirements for the degree of

Doctor o f Philosophy

a
Stamos T. Karamouzis

Approved, July 1993

Dr. William L. Bynum

Dr. W, Robert Collins

Dr. Stefan Feyock
(Chair)

Dr. Alan Pope
NASA^angley Research Center^

| D t Richard H. Prosl '

/ Z .s r7 c
Paul C. Schutte

NASA Langley Research center

Dedication

This thesis is dedicated to my parents, Triantafillos and Vassiliki Karamouzi, and to my sister

Yiota Karamouzi for their love, support, and sacrifices.

- iii -

Table of Contents

Dedication iii
Table or C o n te n ts ... iv
Acknowledgments..vii
List of F ig u re s ..
A b strac t.. ix

1. CBR and Physical S y s te m s ... 3

1.1 Tile Problem... 4
1.2 Approach... 6
1.3 M e th o d o lo g y .. 8
1.4 R e s u l t s .. 10
1.5 Comparison to Other W o rk ... 12

2. Case-Based Reasoning... 19

2.1 Case-Based Reasoning P a ra d ig m ..20
2.1.1 Memory O rganization ... 21
2.1.2 I n d e x in g ...24
2.1.3 R e t r ie v a l ...25
2.1.4 Adaptation...28
2.1.5 T esting .. 31
2.1.6 Failure Explanation... 32
2.1.7 R e p a i r ...32

2.2 CBR versus Rule-Based S y s te m s ..33
2.3 Prototypical CBR S y s te m s ...35

2.3.1 CYRUS.. 35
2.3.2 M ED IA TO R .. 36
2.3.3 S W A L E ...37
2.3.4 P L E X U S ...37
2.3.5 JUD G E.. 38
2.3.6 M B R ta lk ...38
2.3.7 C I 1 E F .. 39

- i v -

Table o f Contents

3. Formal Specifications40

3.1 Rationale...41
3.2 M o d e l s ...41
3.3 Case-Based Diagnosis..44
3.4 Use o f Models in Case Based D iagnosis... 49

4. A P r o to ty p e ..52

4.1 Introduction... 53
4.2 The d o m a in ... 54
4.3 Knowledge S o u r c e s ... 56

4.3.1 Case L ib ra ry ..56
4.3.2 Causality M o d e l.. 58
4.3.3 Functional Dependency M o d e l ..59
4.3.4 Physical Dependency M o d e l... 61
4.3.5 The Abstraction Hierarchy.. 62

4.4 Reasoning C y c l e ...63
4.4.1 Case Matching and Retrieval P r o c e s s ... 63
4.4.2 The Case Adaptation Process... 64

5. Evaluation... 69

5.1 Introduction..70
5.2 Examples...71

5.2.1 First Scenario..71
5.2.2 Second Scenario.. 73

5.3 Analytical Evaluation of the M ethodo logy 76
5.3.1 The Functional Dependencies S u b m o d e l..78
5.3.2 The Physical Dependencies Submodel 80
5.3.3 The Causal Dependencies S u b m o d e l ... 81
5.3.4 The Abstraction Hierarchy...82

5.4 Empirical Evaluation of the Prototype...83
5.4.1 R esults... 85
5.4.2 Discussion... 90

6. D iscussion... 93

6.1 C o n tr ib u tio n s .. 94
6.2 L im ita tio n s ... 96
6.3 Future W o r k ... 97

6.3.1 Representing MOPs in L IM A P ..97
6.3.2 Prognostication ... 98
6.3.3 Multiple Independent F a u l t s ... 99
6.3.4 Simulation and the Physical M o d e l...100

6.4 C o n c lu sio n ..101

- v -

Table o f Contents

A. LIM AP: A modeling to o l ..102

A .l Introduction...103
A.2 Matrices and Semantic N e ts ..104
A.3 Implementation... 106

A.3.1 DDL Operations..106
A.3.2 Path Operations: TCLOSE and PATHS...117
A.3.3 Control S tru c tu re s ...122

A.4 Conclusion ... 124

B. Case L ib ra ry ..125

B .l Fuel Metering U nit..126
B.2 Fuel Boost P u m p ..128
B.3 Ice Ingestion...130
B.4 Ice Ingestion...132
B.5 Ice Ingestion...134
B.6 Volcanic Ash In g e s tio n ... 136
B.7 Foreign Object Ingestion... 138
B.8 Fan Blade Damage..140
B.9 Fan Blade Damage..142
B.10 Fan Blade Damage..144
B .ll Turbine Blade Separation...146
B.12 Turbine Blade Separation...148
B.13 Engine Separation..150
B.14 Bad Fuel C o n tro l le r ...152
B.15 Volcanic Ash In g e s tio n ... 154
B.16 Volcanic Ash In g e s tio n ...156
B.17 Massive Water Ingestion... 158
B.18 Ice Ingestion.. 160
B .l9 Ice Ingestion...162

B ib liog raphy ... 164

- vi -

Acknowledgments

The task of acknowledging all the people who contributed in this research is a very difficult one,

since there so many people who contributed, influenced, encouraged, and supported this effort.

I particularly want to thank the following people:

My advisor, Stefan Feyock, for teaching me about artificial intelligence. Without his scientific

knowledge, collegial advice, and unique sense o f humor this thesis would not have been possible.

My committee members: Bill Bynum, Bob Collins, Alan Pope, Richard Prosl, and Paul Schutte.

My friends at William and Mary: Antonis, Ashok, Chris, Malt, Raja, Tracy, and others.

I want to especially thank Courtney, Cheavn, and Cameron Frantz for their support, concern and

their cookies-and-crcam ice-cream.

This work was supported by NASA grant NCC-I-159 and conducted at NASA/Langley Research

Center in Virginia. I ’m grateful to all members of the Human Automation Branch for providing me

the resources and support necessary to carry on this research. Special thanks to Kathy Abbott, for

giving the green light to every request; Paul Schulte, for carefully keeping an eye on the research;

Steve Smith, for keeping the systems running; and John Barry for saving me every time the Lisp

code became the monster in my bedtime nightmares.

List of Figures

Figure 1.1: Models of the reasoning system and their in teractions...11

Figure 2.1: Snapshot of Case-Based Reasoner’s memory orgainzation..................................... - . 2 6

Figure 3.1: Classification of d ep en d e n c ie s ..43

Figure 4.1: Schematic of a lurbofan jet e n g in e ...56

Figure 4.2: Functional dependency graph of an engine.. 60

Figure 4.3: Adjacency matrix for jet engine depicted in figure 4 . 1 ...61

Figure 4.4: A causal s c e n a r i o ..66

Figure 4.5: Relation <t>t causes <J>2 ...67

Figure 4.6: A causal s c e n a r i o .. 67

Figure 4.7: A causal s c e n a r i o ..68

Figure 5.1: Causal explanations of retrieved and current c a s e ..75

Figure 6.1: LIMAP’s data definition procedures, and their associated syntax.............................. 106

Figure 6.2: Contents of the Definition Table 108

Figure 6.3: LIMAPs DML operations ..110

Figure 6.4: Code for transitive closure... 118

Figure 6.5: Example n e t w o r k ..119

Figure 6.6: Warshall’s A lg o rith m ...120

Figure 6.7: Contents of the definition t a b l e .. 122

- viii -

Abstract

Case-Based Reasoning (CBR) systems solve new problems by finding stored instances of prob
lems similar to the current one, and by adapting previous solutions to fit the current problem, tak
ing into consideration any differences between the current and previous situations. CBR has been
proposed as a more robust and plausible model of expert reasoning than the better-known rule-
based systems. Current CBR systems have been used in planning, engineering design, and mem
ory organization. There has been minimal work, however, in the area of reasoning about physical
systems. This type o f reasoning is a difficult task, and every attempt to automate the process must
overcome the problems o f modeling normal behavior, diagnosing faults, and predicting future
behavior.

CBR systems are quite difficult to compare and evaluate, because until now there has been no
common mathematical framework in which the systems can be described. The only avenue avail
able at present for comparison and evaluation of CBR systems requires an intellectual synthesis of
the semantics of the implementations. Important constraints on the operation o f a CBR system are
often hidden in obscure programming tricks in the system’s source code.

This thesis presents a hybrid methodology for reasoning about physical systems in operation. Our
methodology is based on retrieval and adaptation of previously experienced problems similar to
the problem at hand. In this methodology the ability o f a CBR to reason about a physical system is
significantly enhanced by the addition to the case-based reasoner of a model o f the physical sys
tem. The model describes the physical system's structural, functional, and causal behavior.

Additionally, this thesis presents a mathematical formalization of the case-based reasoning para
digm and a formal specification of the interaction of the CBR component with the model-based
component of a case-based system. Tb prove the feasibility and the merit o f such methodology, a
prototypical system for dealing with the faults of a physical system has being designed and imple
mented. Testing has shown that this hybrid methodology allows the generation of diagnoses and
prognoses that arc beyond the capabilities of current reasoning systems.

" o u t © navi xi epoooiv ot noXXoi ruiaq,

c t X X oxi (ertei) o enaicov.”

— Socrates

An Integration of Case-Based and Model-Based Reasoning

and

its Application to Physical System Faults

Chapter 1

CBR and Physical Systems

1 CBR and Physical Systems

1.1 The Problem

1.1 The Problem

We consider a physical syslcm as a set of components connected together in a manner to achieve a

certain function. Components are the parts that the system consists of, and may themselves be

composed of other components. For example, an engine is a component in an airplane and it is

composed of other components such as a compressor, a combustor, a fan etc. Components which

are composed of other components are called subsystems.

Reasoning about physical systems is a difficult process, and every attempt to automate this process

must overcome many challenges. Among these are the tasks of generating explanations of normal

behavior, fault diagnoses, explanations of the various manifestations of faults, prediction of future

behavior, etc. The reasoning process becomes even more difficult when physical systems must

remain in operation. During operation, a physical system is changing dynamically by modifying its

set of components, the components’ pattern of interconnections, and the system’s behavior. See

Figure 1.1 on page 11.

Explaining normal behavior is the process of elaborating the function o f each subsystem and how

tills function contributes to die overall operation of the system. Explaining the operation of an

automobile, for example, would require knowledge of the function of the carburetor, operation of

the fuel pump, movement of the wheels, etc., and how all these affect each other and contribute to

the final operation of moving the automobile. There are several approaches to explaining the nor

mal behavior of physical systems by means of a model o f the system. These approaches include

naive physics (Hayes 1979], qualitative physics fdeKlcer 1985; Forbus 1985; Kuipers 1985], bond

graphs [Rosenberg & Kamopp 1983, Feyock 1991], causality models, and others, each of them

achieving various degrees of success and various advantages over the others.

- 4 -

1 CBR and Physical Systems I d The Problem

Fault diagnosis is the process o f explaining why the behavior of a system deviates from the

expected behavior. Such diagnoses are the answers to the questions “Why has my watch stopped?”

and "Why were the lights llickering after yesterday’s storm?” Fault examples include a broken

spring, a dead battery, a leak in a fuel line, etc. The task of diagnosis presents particular challenges

such as identifying the faulty component, taking into consideration fault propagation, and account

ing for multiple faults.

A number of systems have been developed to deal with these problems. Such systems fall into two

categories. Associational or shallow-reasoning systems are systems that do diagnosis based on

predefined links between sets o f symptoms and pre-existing explanations [Buchanan & Shortliffe

1984]. These systems arc fast but inflexible, since their lack of deep domain knowledge makes

them incapable of dealing with problems outside their preset rule bases. First-principle or deep-

reasoning systems use causal reasoning to produce explanations for the set of symptoms [Davis

1984]. These systems are more flexible, but are slower, since they must derive each new diagnosis

from the underlying model.

In maintenance diagnosis, i.e. diagnosis of physical systems not in operation, it is sufficient to

identify the source of the problem (faulty component) in order to determine which component(s)

need to be repaired. In domains where the system is in continuous operation, however, it is desir

able that the system operators be aware of fault consequences in order to facilitate corrective

actions. A pilot who observes abnormal behavior in the plane’s sensor values needs to know not

only what the fault is, but also how the fault will propagate and what its subsequent effects will be.

Automating the process of predicting the future behavior of physical systems is a difficult task

because physical faults manifest themselves in various ways and it is difficult to enumerate all pos

sible consequences. Current efforts to incorporate prognostication features in diagnostic systems

that reason from physical system models succeed in predicting the expected course of events but

- 5 -

I CBR and Physical Systems 1-2 Approach

are limited by the level of detail of their models [Feyock & Karamouzis 1991]. For example, a

model-based reasoning system that has a model o f an airplane’s functional and physical connec

tions among components may, after establishing that the fan in the left engine is the faulty compo

nent, predict that the fault will affect the operation of the compressor since there is a functional

link between the two components. Such a system is incapable, however, o f deducing that flying

fragments from the faulty fan may penetrate the fuselage and damage the right engine. Humans, on

the other hand, are good at making such predictions, since their reasoning is based not only on pre

existing models o f the world, but also on previous directly or vicariously experienced events

which remind them of die current situation.

1.2 Approach

This thesis presents a novel approach to dealing with physical systems while operating. The meth

odology presented here involves the use of case-based techniques in conjunction with models that

describe the physical system. Case-Based Reasoning (CBR) systems solve new problems by find

ing solved problems similar to the current problem, and by adapting solutions to the current prob

lem, taking into consideration any differences between the current and previously solved

situations. Because CBR systems associate features of a problem with a previously-derived solu

tion to that problem, they arc classified as associalional-reasoning systems.

We show a case-based reasoning methodology for fault diagnosis and prognosis of physical sys

tems in operation. This methodology employs a hybrid reasoning process based on a library o f pre

vious cases and a model of the physical system that is used as basis for the reasoning process. This

arrangement provides the methodology with the flexibility and power of first-principle reasoners,

- 6 -

1 CBR and Physical Systems 12 Approach

coupled with the speed of associations systems. Although domain independent, this work is tested

in the aircraft domain.

In contrast to other CBR research efforts, each case in this methodology is not only a set of previ

ously observed symptoms, but also represents sequences of events over a certain time interval.

Such temporal information is necessary when reasoning about operating physical systems, since

the set of symptoms observed at a particular time may represent improvement or deterioration

from a previous observation, or may reveal valuable fault propagation information. In a jet engine,

for example, the fact that the fan rotational speed was observed to be abnormal prior to an abnor

mal observation of the compressor rotational speed is indicative that the faulty component is the

fan and that the fault propagated to the compressor, rather than the reverse.

The model represents the rcasoner’s knowledge of causal relationships between states and observ

able symptoms, as well as deep domain knowledge such as functional and physical connections

among the components of the physical system about which the reasoner must reason. This

research alleviates die knowledge acquisition problem to which current model-based systems are

subject by letting each case of the CBR reasoning mechanism contribute its causal explanation,

gained from adapting previous incidents, to the formation and maintenance of the causality model.

The model can therefore be considered as a general depository o f knowledge accumulated through

time. In return the model aids the matching and adaptation processes of the CBR reasoning mech

anism.

- 7 -

1 CBR and Physical Systems 1 3 Methodology

1.3 Methodology

The described research integrates case-based and model-based reasoning techniques for dealing

with physical system faults. In order to demonstrate the challenges and benefits of such work a

prototypical system is being designed and implemented in the aircraft domain. The system con

tains a self-oiganizing memory, as defined by [Shank 1982], for storing previously encountered

problems. Each case lias been represented in a memory organization packet (MOP) as imple

mented in [Riesbcck & Schank 1989].

Each case represents an actual aircraft accident case and consists of a set of features that identify

the particular accident, a set of observable symptoms, and a causal explanation that describes the

relationship between various states and observable features. The set of identifying features

includes information such as aircraft type, airline, flight number, date of the accident, etc. The set

of symptoms includes information about abnormal observations from mechanical sensors or

“human sensors” such as the value o f the exhaust gas temperature, the value of engine pressure

ratio, the sound of an explosion, or the smell of smoke in the passenger cabin. These symptoms are

presented in groups, each group representing a particular time interval. These time intervals are of

unknown and uneven length; it is their ordering that it is o f importance.

Additionally, the system incorporates a model, called the world knowledge model, that consists of

deep domain information such as the physical and functional dependencies between the compo

nents o f the physical system, and causal information describing the transitions between various

states of the physical system. Along with the causal information between two states, e.g. “ineffi

cient air flow” and “slowing do ton of the engine,” the model maintains a frequency count of the

number o f times that the system witnessed that inefficient air flow caused the engine to slow down.

The physical and functional connections arc represented using LIMAP, a matrix-based knowledge

- 8 -

1 CBR and Physical Systems Methodology

representation tool [Feyock & Karamouzis 1992], and include information of the type "the Fan is

connected to sensor N1 via a functional link,” “the Fan is physically connected to die compressor.”

LIM AP provides an excellent tool for queries such as:

• “Is there a connection between the combustor and the turbine?"

“If there is a connection, what kind of connection is it?”

"Give me all the paths by which the turbine can be reached form the compressor.”

The causality knowledge of the world model includes information such as “fan-blade separation

causes the rotational speed of the fan to fluctuate” and “the rotational speed of the fan causes the

engine pressure ratio to fluctuate.”

When the system experiences a new set of symptoms it searches its case library for the most simi

lar case. Based on Hie observation that similar faults manifest themselves in similar ways only dur

ing the first moments of the fault occurrence [AAIB-AAR-4/90], the system developed takes

advantage o f the available temporal information in each case, and tries to establish similarity

based on the observable symptoms during the first moments of the fault occurrence. The input

cases do not have to match exactly any previous cases in memory.

If the system finds and retrieves a similar case, the causal explanation of the retrieved case is

adapted to fit the current case, and is stored in the case library for future usage. The system is pro

vided with a set of adaptation rules which, in addition to adapting the retrieved causal explanation

to fit the current case, find possible gaps in the causal explanation and fill in the missing causali

ties. This causal explanation connects the symptoms to a justifying cause, and thus the system’s

causal reasoning ability produces a causal analysis of the new case, rather than simply a reference

to a previous solution. The new causal analysis is not only be stored in the case library as part of

the input case, but is used to augment and modify the causality knowledge of the world model.

The causal analysis will consist of a sequence of pairs of the type “event A causes event B,” “event

B causes event C" and so on. Each of these pairs is stored in the causality section of the model. In

- 9 -

1 CBR and Physical Systems 1 3 Methodology

the case that the model already knows about the causal relation between two events from a previ

ously seen case, the system updates the frequency count between the two events. The world model

is therefore created based on the previous behavior o f the physical system, and is constantly

updated based on the current behavior, either by augmenting its previous causa! knowledge or

“becoming more sure” about causal relations.

Constant consultation o f the model gives the system its prognostication ability. For example, hav

ing achieved a match of the current situation with a previous case where the faulty component was

a bad fuel controller, the system hypothesizes that the same fault is occurring. By referencing the

world model it is able to predict that an engine flameout may occur, although that did not happen

in the retrieved case, because the model may have recorded at least one previous instance where

this happened. The operator is provided with a list of possible consequences o f the fault along with

a frequency count of each one. Figure 1.1 is a diagram o f the various modules involved in the rea

soning system along with their interactions.

1.4 Results

Empirical testing of the methodology has lead to the following conclusions:

• Combining a memory of past cases with models combines the efficiency of associational

reasoning with the flexibility o f model-based reasoning.

• The integration of CBR and models enhances the ability of the model-based component

by the CBR component’s capacity to contribute new links into the causality model. The

adaptation rules o f the CBR component not only adapt the retrieved causal explanation to

- 1 0 -

1 CBR and Physical Systems 1 3 Methodology

LIBRARY CASE LIBRARY CASE

Id Features Id Features

Symptoms Symptoms

Causal Explanations Causal Explanations

INPUT CASE

Id Features

Symptoms

• •

LIBRARY CASE

Id Features

Symptoms

Causal Explanations

WORLD KNOWLEDGE MODEL

C a u s a l i t y K n o w l e d g e

F u n c t i o n a l K n o w l e d g e

P h y s i c a l C o n n e c t i o n s K n o w l e d g e

Figure 1.1: Models of the reasoning system and their interactions

fit the current case, but they find possible gaps in the causal explanation and fill in the

missing causalities. These additional causalities serve in the causal explanation of the cur

rent case and to expand the available knowledge to the model.

The integration of CBR and models enhances the ability o f the CBR component by using

- 1 1 -

1 CBR and Physical Systems 1-S Comparison to Other Work

the model to aid the processes of matching, and adaptation. The model aids matching and

adaptation in dealing with features which appear different on a superficial level, but are

accounted for by the same initial cause.

• The use of the causality model provides enhanced fault-propagation forecast capabilities

to the reasoner. The nature of the causality model (viewed as central depository) enables

the reasoner to predict beyond the experiences of the retrieved case to the experiences

accumulated by all previous cases.

1.5 Comparison to Other Work

Combined CBR and model-based reasoning (MBR) has been used primarily in engineering

design. In the design domain a case consists of a design goal, a set of specifications for that goal, a

set o f constraints that must be met, and a plan for achieving the goal. CBR systems in this domain

are faced with the challenge of using previous design plans in order to come up with a new design

plan.

Recognizing the advantages of combining CBR and MBR, [Sycara & Navichandra 1989; Goel

1989; Goel & Cliandrasckaran 1989] use device models in order to adapt old design cases. The

fact that two design problems with different features might represent the same object if the fea

tures are studied based on their structural, functional, and causal behavior inspired them to use

models to define the similarity between the two design problems.

- 1 2 -

1 CBR and Physical Systems 1 5 Comparison to Other Work

Goel and Chandrasckaran [Gocl and Chandrasekaran 1989] represent devices by a high-level

model, called afunctional representation, that describes the expected and unexpected behavior of

the system. In contrast to our work their models are case specific and they don’t use a causality

model. Sycara and Navinchandra [Sycara and Navinchandra 1989] have proposed the use of

causal models for adapting design cases in engineering domain. Apart from the differences in the

task and the domain, their method differs from our work in that they use only causal models that

contain no domain information on either the function nor the structure of the system. More impor

tantly, Goel and Chandrasckaran along with Sycara and Navinchandra demonstrated how models

may be used to aid case-based reasoning when dealing with devices that are not in operation.

Dealing with devices that are in operation, as is done in our work, provides additional challenges

since temporal information must be taken in to account. Our work explicitly represents and rea

sons about time when dealing with physical systems.

Although current CBR systems are goal-oriented and used mainly in planning, design, and mem

ory organization, there is some work in the diagnostic domain. [Kolodner & Kolodner 1987J

developed a diagnostic CBR system which reasons in the domain of medicine. Their system is

more an application of dynamic memory as defined by [Schank 1982] than a diagnostic system. It

organizes memory using Diagnostic MOP’s and Process MOPs. Diagnostic MOPs are dynamic

structures, updated from experience, that represent disease categories; Process MOPs are special

ized structures that offer a predefined way to organize memory.

[Koton 1988] has combined model-based reasoning and CBR in medical diagnosis in a system

called CASEY, which is based on a self-organizing memory for storing previously seen cases.

Each case is comprised o f a patient description and solution data. The patient description includes

signs and symptoms, test results, history, and current therapy information. The solution data

includes a causal explanation of the symptoms, together with therapy recommendations. When the

- 1 3 -

1 CBR and Physical Systems J 5 Comparison to Other Work

system is presented with a new patient description it attempts to retrieve a similar case and adapt

the solution data of the retrieved case to fit the current patient description. If no acceptable previ

ous case is found the system gives control to a model-based reasoning system called the Heart

Failure Program. This program utilizes a network of causalities between various physiological

states, and produces a causal explanation which describes the relationship between physiological

states and observable features. Even when the CBR portion of CASEY is successful in producing

a causal explanation of the observable features the user has the option of running the Heart Failure

program. Although CASEY’s CBR portion handles learning by storing newly created causal

explanations in the case library, it has no provision of updating the causality model kept in the

Heart Failure program. The model is therefore static, since it depends solely on a predefined cau

sality network. In contrast to CASEY our work includes the provision o f dynamically creating and

maintaining the model from the set of previous behaviors of the physical system.

CASEY’s algorithm includes the following stages [Koton 1989]:

• The phase of retrieval where CASEY retrieves from its case library a case similar to the

new patient

• The phase of justification where CASEY evaluates the significance of any differences

between the new case and the retrieved case using a set of principles for reasoning about

evidence in causal explanations. These principles are used to: determine whether a feature

in the retrieved case is ruled out by evidence in the input case; show that feature differ

ences are insignificant or repairable; disregard differences in features that describe normal

states, states from which no information is available or states that describe behavior with

in the same qualitative region. If all differences between the new case and the retrieved

- 1 4 -

1 CBR and Physical Systems I -5 Comparison to Other Work

• case are judged insignificant or if Uie solution can be repaired to account for them, the

match is said to be justified.

• The phase of adaptation. If none of the differences rule out the retrieved case, causal

repair strategies arc used to adapt the previous case’s causal explanation to the new case.

These causal repair strategies add or remove nodes and links to the transferred causal

explanation. If all matches arc ruled out, or if no similar previous case is found, CASEY

uses the Heart Failure program to produce a solution.

* The storage phase where the new case and its solution are stored in the case library for use

in future problem solving. Indexing is done using every feature that describes the case and

does not discriminate significant or predictive features. In contrast, our work utilizes an

indexing scheme which is based on assigning various weights on features that reflect the

diagnostic importance of each feature.

[Hammond & Hurwitz 1988] report research in the domain o f reasoning about physical systems.

When given a case describing a fault together with its explanation, their system uses this explana

tion and a predefined causality structure of the domain to decide which features o f the fault should

be indexed. Their work docs not include deep domain models that describe the structural and func

tional connections of the physical system, and targets the extraction of diagnostic features for stor

ing cases, rather than pcrfonning complete reasoning about physical system faults. The importance

of their contribution in the area of reasoning about physical systems lies in the development and

use o f a simple but powerful set o f heuristics concerning causal relatedness in physical systems.

These heuristics arc used to evaluate the likelihood that two features are causally related in the

event that the system’s causal model is unaware of a causal chain between them. For example, dirt

and grass covering a lawn mower may be predictive of a plugged air filter while a bent handlebar

probably is not - although in neither case does there exist a direct causal chain from the failure to

- 1 5 -

1 CBR and Physical Systems 1 5 Comparison to Other Work

the feature. Their diagnostic algorithm is a variation o f the one used for case-based planning

[Hammond 86] and includes the following steps:

• The phase of selection where given an input case the observable features of the case are

used to find similar cases in the case library. One of these cases is selected as the one that

matches the best with the input case.

• The phase of matching where portions of the retrieved causal explanation are matched

against features of the input case. By examining the status of the physical system further

matches arc done.

• The phase of modification where any deviations from the retrieved causal explanation are

repaired using backward chaining and the causal relatedness heurisdes.

• The phase of connection categorizes features into those that are explained by the normal

use o f the physical system, those that are explained by the causal chain leading to the fail

ure, and those that remain unexplained. Features in the first category are connected into a

model that describes the actions that are performed on and with the system, and features in

the second category are connected in the causal explanation of the failure.

• Extraction is the phase where the features that are causally related to the failure form the

list o f candidate features for indexing. The unexplained features and the features that are

explained by the normal use of the system are ignored.

• During the phase o f indexing the input case is stored in the memory, indexed by the fea

tures that predict its applicability. These index features are comprised by those features

- 16 -

] CBR and Physical Systems 1 5 Comparison to Other Work

• that must be present in any instance of the diagnosed problem and those features that

might be causally related, as determined by the relatedness heuristics.

[Turner 1988] reports research which presents an approach to diagnostic reasoning called schema-

based reasoning (SBR), which allows a reasoner to access and use the most specific procedural

information available for the problem at hand. By using schema-like information, the reasoner can

bring specialized problem-solving procedures to bear on diagnostic problems. His ideas are dem

onstrated in MEDIC, an SBR diagnostic reasoner whose domain is pulmonology. MEDIC’s mem

ory is an interconnected set of discrimination nets, or hierarchies, in which the leaf nodes are cases

and scenes, and the interior nodes are MOPs or schemata. T im er's work is more an application of

memory organization than a diagnostic system. Because MEDIC does not allow cases of problem

solving to be added to its memory in a manner implemented in every traditional CBR system, it is

incapable o f learning.

In contrast with our research, all of the CBR work mentioned in this section is reflected on specific

applications with no foundations on any theoretical base. Formalizing the case-based reasoning

paradigm is the major contribution of this work to the future CBR research efforts. Additionally,

unlike other work, our research demonstrates the challenges of explicitly representing and reason

ing about time. This is an important attribute in the diagnostic task since observed symptoms at a

particular time may represent improvement or worsening due to the system's behavior at a previ

ous time.

- 1 7 -

“Those who cannot remember the past

are condemned to repeat it."

— Santayana

“I have but one lamp by which my feet are guided,

and that is the lamp of experience.

I know no way of judging of the future but by the past.”

— Patrick Henry

Chapter 2

Case-Based Reasoning

2.1 Case-Based Reasoning Paradigm

The basic cycle of a CBR system is “input a problem, find a relevant old solution, adapt it." When

a problem is input to a CBR system, an analysis, performed by the system, determines the features

relevant to finding similar cases. These features are called indices. Relevance is usually deter

mined not by the obvious features of the input problem, but by abstract relations between features,

absence of features, and so on. The problem of determining what extra, non-obvious features are

needed for a particular domain is called the indexing problem.

Usually the indexes retrieve a set o f potentially relevant old cases. The next step is to match the

previous cases against the input and reject cases that are dilferent from the input and determine

which of the retrieved cases is the most similar. This similarity of cases is determined by how well

they match on each feature, and how important each feature is. For example, when the visitor in

Athens is confronted with die situation of using a bus, a previous experience of using the subway

in Athens, and an experience of using the bus in London may be retrieved as relevant cases. Fol

lowing a careful evaluation of the important features in each case the visitor may consider that his

bus experience in London is more closely related to the current situation. In the current situation, a

location match is considered of lesser importance than the type o f the desired means of transporta

tion, therefore the London experience forms the best match.

After a best match is determined it must be adapted to fit the current situation. During the adapta

tion process it must be determined what is different between the input and the retrinved best

- 2 0 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

match, and then the solution associated with the retrieved case must be modified to take into

account those differences. The modified solution becomes the solution of the input situation. How

much adaptation needs to be done depends on the nature of the differences. In our example, very

little adaptation must be done in the process o f recognizing an Athenian bus since its differences

with a bus in London arc minor, but more adaptation has to be done in the process of getting a

ticket if the experience of using the subway in Athens was the best match in the situation o f using

a bus in Athens. The following sections investigate with more detail the various phases of the CBR

paradigm along with the structures used for organizing the memory.

2.1.1 Memory Organization

In the early 80’s [Schank 1982] developed knowledge structures for organizing memory called

Memory Organization Packages (MOPs). These structures involve standard AI concepts, such as

frames, abstraction, inheritance, and so on. MOPs are used to represent knowledge about classes

o f complicated events and contain a set of norms which represent the basic features of a MOP,

such as: what events occur, what goals are accomplished, what actors are involved, and so on. For

example, the following two MOPs describe an event between Tim and David, and the outcome o f

the event:

fight-event-mop fight-outcome-mop

ACTION stab-mop STATE dead-mop

ACTOR tim-mop ACTOR david-mop

OBJECT david-mop

FREQ scvcral-times-mop

Similar knowledge structures for organizing memory, called scripts, were developed by [Schank

& Abelson 1977]. Scripts differ from MOPs because they are not organized into interlinked net

- 2 1 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

works as MOPs. Additionally, scripts are static knowledge structures, but MOPs are used to form

dynamically changing knowledge bases, i.e., systems that learn new knowledge in the process of

understanding and problem solving. During the same time that scripts were proposed, [Minsky 75]

proposed frames, which are analogous structures and at that time were used in the domain of

visual processing.

A MOP that refers to an instance rather than a category is called an instance MOP. MOPs are

joined together with links. [Riesbeck & Schank 1989] classify links into the following categories:

a. A MOP may be joined to a more specific version of itself. The specific version is called a

specialization and the more general MOP is called an abstraction. The link that joins a

specification and an abstraction is called an abstraction link. A network of MOPs, going

from very specific instances at the bottom to very abstract general knowledge at the top, is

called an abstraction hierarchy. In an abstraction hierarchy the features of each MOP are

inherited by the MOPs below it. For example, if we represent the process o f “getting a

Ph.D. in computer science” in a MOP, then this MOP can be linked via an abstraction link

to a MOP that represents the process of “getting a doctoral degree.”

b. MOPs that represent events have scene links to various sub-events. The network of MOPs

linked together by scene links is called the packaging hierarchy. In our example, passing

an oral examination could be a scene in the “getting a doctoral degree" MOP.

c. In some systems a MOP may be linked to those instances from which the MOP was origi

nally derived, or to prototypical examples of the MOP. These links are called exemplar

links.

- 2 2 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

d. A MOP may be linked to instances of the MOP that involved an expectation failure via

failure links. In our example, the “getting a doctoral degree" MOP may be linked to a par

ticular instance MOP that describes the unsuccessful effort of a certain student to get a

doctoral degree because he performed poorly in the required course-work.

e. Links that join a MOP with its specializations are called index links. Each index link is

labeled with an allribule-value pair. These pairs of attributes and values are not features

for the MOP. When a MOP is indexed by such a pair, then the pair automatically becomes

a feature of the MOP and every other MOP under this MOP inherits this feature. In our

example, "area of study” is an attribute and "Computer Science” a possible value. The

index link “area of study = computer science” would link the “getting a doctoral degree”

MOP with the “getting a Ph.D. in computer science” MOP. The network of MOPs that is

formed by the index links is called the discrimination net.

Not every Case-Based Reasoner makes use o f all of these kinds of links. For example, a,Case-

Based Reasoner that needs to classify hardware based on their CPU type may use abstractions

instead of index links. This can be done by creating a set o f abstraction MOPs under the hardware-

type MOP, where each abstraction has only one slot, namely the slot for CPU type. Then the rea

soner can put each particular hardware piece under the appropriate abstraction. The use of abstrac

tions in this manner would subdivide the memory in the same way that it would be subdivided if

the reasoner was to use index links such as “CPU type = <some_type>."

Organizing memory in abstraction hierarchies is a key characteristic of CBR systems that leads to

efficient retrieval of previous cases. Case-based Reasoning systems that use MOPs to hierarchi

cally organize their memory constantly add new instances, new abstractions, or new indexes. New

instances are added during normal use of MOP memory for solving problems. These instances

record experiences in terms of MOPs.

- 2 3 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

Additional knowledge may be recorded by creating abstractions. A simple approach for creating

abstractions is a method called similarity-based generalization, where the formation of abstrac

tions is done when a number of cases are discovered to share a common set of features. These

common features are used to create the features of the new abstracted MOPs, and the unshared

features are used as indexes to the original MOPs. A potential problem with similarity-based gen

eralization is that it may fonn spurious generalizations until the case library is sufficiently large.

An approach that avoids this problem is Explanation-based Generalization (EBG) [Mitchell 1986;

DeJong and Mooney, 1986]. In this method abstractions are made only when a plausible reason for

their existence can be inferred, based on prior causal knowledge. The problem with systems that

employ EBG is that they can end up doing a lot of w ork to create an abstraction for one-time only

event [Simpson 1985; Sycara 1987; Hammond 1988] employ a form of EBG called failure-driven

learning, where in addition to the solutions the reasoner saves general explanations o f why some

solutions don’t work.

2.1.2 Indexing

Retrieving relevant cases from memory can be a massive search problem. In order to make the

retrieval process more selective and reduce the effect o f memory size cases must be indexed by

appropriate features. Throughout the literature there are several approaches involving the selection

of an appropriate set of indices. The easiest approach is to use as indices all the features that form

the description of a case. [Lcbowitz 1987] uses inductive learning to determine relevant features

which in return become indices. [Mark & Barletta 1988] use explanation-based techniques to iden

tify predictive features for each case so they can serve as indices.

- 2 4 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

Although there are several context-dependent methods for selecting indices, there is a need for

more study of this process, especially on methods for generating new indices dynamically.

2.1.3 Retrieval

Retrieval of relevant cases is one of the most crucial issues in CBR. Because most of the complex,

real-world domains involve thousands o f cases, the process of retrieving cases from memory

becomes a massive search problem. The situation is complicated by the fact that we must perform

some type of partial matching because an input case is unlikely to match exactly a previously

stored case. Retrieval techniques depend on the structure o f case memory, the information stored

in each case, the features used as indices, the notions of similarity and relevance, and the available

general knowledge about the domain.

To avoid exhaustive search, CBR search methods depend on a memory being organized in abstrac

tion hierarchies. The search starts at the most general MOP in the abstraction hierarchy and pro

ceeds downward only when a match is achieved at an abstraction MOP. Instance cases are

therefore retrieved only when their abstractions match. Tb illustrate how this search works we

present the following example in the domain of computer hardware. Let us assume that each com

puter system can be described in terms of three components: llie type of the CPU, the type o f the

CRT, and the type of the keyboard.

Figure 2.1 on page 26 presents a snapshot o f the reasoner’s memory organization and we assume

that the reasoner contains domain specific knowledge such as the fact that a 286 CPU is a CPU in

the Intel family, a CPU in the Intel family is a CISC CPU, a CISC CPU is a single CPU, a CGA

CRT is a color CRT, a color CRT is a CRT, a standard keyboard is a keyboard etc. We assume that

an new computer comes and the task of the reasoner is to find the computers that are similar. The

- 2 5 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

first component in the new computer is a 286 CPU, the second component a CGA CRT, and the

third a standard keyboard. Note that the new computer is been represented in a MOP that contains

three features, one for each component. Then the search proceeds in the following way:

COMPUTERS

SP COMPUTERS PARALLEL COMPUTERS
Compl Single_CPU C om pl Mtilt_CPU

Com pl CPU

Comp2 CPU

Comp3 Kbrd

WORKSTATIONS PERSONAL COMPUTERS

C om pl RJSC_CPU
Com p2 ColorjCPU

Com p3 Extd_Kbrd

C om pl CISC CPU

MACs DOS COMPUTERS

C om pl Motorola Com pl Intel Family

COMPUTER #33 COMPUTER #34
Compl 486sx Com pl 386D X
Comp2 Super_VGA Comp2 CGA

Figure 2.1: Snapshot of Case-Based Reasoner's memory orgainzation

Step 1: First level (lop level) comparison. Each component that describes the new computer is

been compared with the corresponding component that describes computers in general. Since a

- 2 6 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

286 CPU is a kind of CPU then we say that the value of the feature componentl in the MOP that

describes the new computer satisfies the constrain imposed by the feature componentl in the MOP

that describe computers in general. This constrain is the fact that componentl must be a CPU.

Similarly because a CGA CRT is a CRT, and a standard keyboard is a keyboard then we say that

the MOP New_Computcr satisfies the MOP Computer and we move to the second step.

Step 2: Second level comparison. Each component that describes the new computer is been com

pared with the corresponding component that describes single processing computers (SP_Comput-

ers MOP). A 286 CPU is a single CPU thus the feature componentl in the New_Computer MOP

satisfies the feature componentl in the SP_Computers MOP. The latter contains no componentl,

and component2 features thus these feature are inherited from the Computers MOP Both of these

feature are also satisfied by the corresponding features in the New_Computer MOP thus we move

to the lower level under the SP_Computers MOP.

Step 3: Third level comparison. A CGA CRT is a Color CRT but a 286 CPU is not a RISC CPU

thus the New_Computcr MOP does not satisfy the constraints imposed by the Workstations MOP.

Nest the New_Computcr MOP is been compared with the Personal_Computers MOP. The latter

inherits the values for componentl, and component2 features from the SP_Computers MOP. A

286 CPU is a CISC CPU thus the Personal_Computers MOP is satisfied and the search continues

with its children.

Step 4: Fourth level comparison. The New_Computers MOP can not satisfy the constraints of the

MACs MOP but it does satisfy the DOS_Computers MOP thus the search continues with the chil

dren of that MOP.

- 2 7 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

Step 5: Retrieval. Since ihc children of the DOS_Computers MOP are instances o f particular

computers then these are retrieved as the computers that are similar to the new computer.

Earlier retrieval implementations [Kolodner 1983; Lebowitz 1983] use of redundant discrimina

tion networks in order to guide the search, but later implementations [Kolodner 1988] used memo

ries with distributed representations where cases were stored in pieces.

Along with the issue o f reaching relevant cases the reasoner must face the problem o f choosing

one o f the retrieved cases, the one that matches “best” the input case. The chosen case, called

most-on-point, should be the one that addresses the reasoner’s current problem in the best way.

There are several approaches to this problem. The simplest tactic would be to accumulate a

(weighted) count of the number o f matching features between each retrieved case and the input

case. While this may work in some domains, it is inappropriate for most domains since the impor

tance o f each feature is context dependent. [Kolodner 88] employs a method based on preference

heuristics. [Rissland & Ashley 88] use the method o f dimensional analysis. In the domain of legal

reasoning they have developed special knowledge structures called dimensions which identify a

factual feature that links operative facts to known legal approaches to those facts, specify which

are the most important for this approach, and specify how a legal positions strength or weakness

can be compared to other cases. [Stanfill 87] uses dynamically changing weighted evaluation func

tions. In all of these methods the common aspect is that all of the retrieved relevant cases are taken

in consideration in choosing what is important for choosing the most-on-point case.

2.1.4 Adaptation

After the retriever finds the best match that it can in memory, the system proceeds to adapt the

solution stored in the retrieved case to the need o f the current situation. The adaptation process

- 2 8 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

looks for salient differences between the retrieved case and the input and then applies rules that

take those differences into account. Those adaptation rules can be much simpler than those

required by a purely rule-based system. In a planning domain the adaptation rules note precondi

tions to steps that need to be met and suggest plans to achieve these preconditions. In a diagnostic

task, the adaptation rules And gaps in an causal explanation and fill in the missing causalities.

A CBR system can get by with a much weaker set of adaptation rules, if the case library is broad

enough. The process by which most people learned to find logarithms in high school demonstrates

how a bigger case library can allow the use of significantly weaker adaptation rules and still get

strong results. In the process of finding logarithms, the table of logarithms is analogous to the case

libraiy. Looking up the closest numbers is case retrieval and interpolating the answers using ratios

is the adaptation rule. This simple rule yields reasonable answers only if the table has two numbers

close to our number.

Types of Adaptation

[Riesbeck & Schank 89] describe two types of adaptation. Structural adaptation is the process of

applying the adaptation rules directly to the solution stored in the retrieved case. [Hammond 88]

uses it in the domain of cooking to modify previous recipes in order to come up with a new recipe,

and [Bain 86] in the domain of legal reasoning in order to modify prior criminal cases.

The second type is derivational adaptation, where the rules that generated the solution in the

retrieved case are re-run to generate the solution in the input case. Systems that use derivational

adaptation store not only a solution with each case, but the planning sequence that constructed that

solution [Simpson 1985]. An advantage of derivational adaptation is that requires fewer ad hoc

- 2 9 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

rules [Hammond 1989]. Additionally, it can be used to adapt problem solving knowledge from

other domains, rather than being restricted to within-domain solutions [Simpson 1985].

Using a particular type o f adaptation does not imply exclusion of the other type. In reality CBR

systems should have both structural adaptation rules to fix the “non-analyzed” solution, and deri

vational mechanisms to fix cases that are well understood by the systems. For example, solutions

generated by the system itself are ideal for derivational adaptation.

Adaptation Techniques

The simplest adaptation technique is to do nothing and simply apply the solution o f the retrieved

case to the new situation. This is called null adaptation and comes up in tasks where, even though

the reasoning to a solution may be complex, the solution itself is very simple. For example, when

evaluating loan applications many factors must be considered, but the final answer is either accept

or reject. Considering the fact that the real solution stored in each case is the chain o f reasoning

leading to a particular answer, the disadvantage of null adaptation is that does not provide to the

user information such as how a particular answer was derived, what other answers are possible,

and so on.

Parameterized solutions is another technique where given an input situation and the retrieved

case, the retrieved and new problem descriptions are compared along the specified parameters.

The solutions are then used to modify the solution parameters in the appropriate directions [Riss-

Iand and Ashley 1986; Bain 1986; Sycara 1987; Hammond 1989]. This technique is of value in

modifying an existing solution, not creating a solution from scratch. It is a simple and powerful

way to augment a case library, but is not a replacement for a good set o f cases.

- 3 0 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

Abstraction and respecialization is a structural adaptation technique where, if a piece of the

retrieved solution does not apply to the problem at hand, the system looks for abstractions of that

piece of the solution that do not have the same difficulty. Then it tries to apply other specializa

tions of the abstraction to the current situation [Alterman 1986; Kass 1986; Sycara 1987].

[Sussman 1975] proposed the notion of critics as a debugging tool for nearly correct solutions. His

proposal was implemented in [Simmons 1988]. A critic looks for some combination o f features

that can cause a problem in a plan. Associated with different problems are strategies for repair. The

feature combinations that arc worth checking depends on how the plans are derived. In Sussman’s

work, a plan for achieving several goals simultaneously is derived by putting together plans that

could achieve each goal independently. The critics then check if any plans interfered with each

other, or if any plans are redundant. Critics as used in CBR systems can make only local changes

to solutions, rather than globally reorganizing everything [Sycara 1987; Hammond 1989].

Reinstantiation is a derivational adaptational technique which operates not on the solution of the

retrieved case, but on the method that was used to generate that solution [Simpson 1985; Ham

mond 1989]. Reinstantiation means replacing a step in a solution by taking the plan that generated

that step and rerunning it in the context of the current situation. Since reinstantiating a plan is plan

ning, the power of this technique is limited by the planning power of the reasoner.

2.1.5 Testing

As soon as the adapted solution becomes the solution of the input case, most CBR systems pass

the solution through a tester. Tills phase is important in domains such as planning or legal reason

ing where there is no unique '‘right” answer. One way to test the new solutions is by proposing

hypothetical and counterexamples to test the robustness of the solution. Another way is to use the

- 3 1 -

2 Case-Based Reasoning 2.1 Case-Based Reasoning Paradigm

new solution as a probe into memory and try to find similar instances in the case library that lead

to failure. Both methods are case-based, since they have to go into the case library and try to

retrieve some other case. [Hammond 88] in the domain of planning employs simulation for test

ing. The idea is to pass the solution through a simulator and check the results of the simulation

against the results from die CBR system.

2.1.6 Failure Explanation

Reasoning systems may fail at the testing phase when generating plans or do diagnoses, either

because goals specified in the input are not achieved, or because implicit goals, not specified in the

input, are violated. When a CBR reasoner fails, it has to explain its failure and repair it. In plan

ning explanation comes before repair, and the repair is based on the explanation. In diagnosis, the

repair has to come first.

The task of explanation is to generate a domain specific explanation o f why the proposed solution

failed. In a planning domain the explanation is a causal chain leading from the steps in the plan to

the violation of the goal [Hammond 1988]. In a fault diagnosis domain, the explanation is a causal

chain leading from the failure of some component, other than the one diagnosed as faulty, to the

observed fault symptoms.

2.1.7 Repair

Given a solution, a failure report, and possibly an explanation, the task o f repair is modification of

the solution to remove the failure. In domains where explanation precedes repair, the explanation

o f the failure will usually provide clues to the repairs needed. In other domains, such as fault diag

- 3 2 -

2 Case-Based Reasoning 2.2 CBR versus Rule-Based Systems

nosis, the only information available to the repair process is the diagnostic failure, i.e., “the com

ponent selected as cause of failure is functional." In these domains one repair strategy is to add

whatever new information is available in the failure report and then search the case library for

another best match. If the additional information causes a different case to be retrieved, then it

should be adapted. If the same case is retrieved as before, then an alternative repair strategy is to

try adapting the second-best match.

Whenever solutions fail and are repaired it is important to link the solution that didn’t work with

the one that finally did. This link will be useful when the same case fails to apply again, in some

other situation. When this happens, the system can look at any other failures associated with this

case and try to generalize what is common using either similarity-based or explanation-based gen

eralization techniques. The goal is to find some characterization of the failing situations in order to

avoid that class of failures in the future. For example, [Hammond 86] in the cooking domain

employs a problem anticipation mechanism where the system (recipe planner), by noticing fea

tures in the input case thal have previously contributed in past planning problems, anticipates

planning problems in the current case. The fact that cooking beef and broccoli together makes the

broccoli soggy, i.e., fails to achieve the goal of having a crisp vegetable, is worth remembering.

Generalizing the failure into "cooking meat with a crisp vegetable makes the vegetable soggy”

avoids subsequent failure when the system is asked to produce a recipe with chicken and snow-

peas.

2.2 CBR versus Rule-Based Systems

CBR systems are an alternative to traditional Rule-Based (RB) systems. RB systems consist of a

rule base of domain-specific knowledge, and a domain-independent rule interpreter that combines

- 3 3 -

2 Case-Based Reasoning 2 2 CBR versus Rule-Based Systems

the rules to construct answers to problems [Buchanan & Shortliffe 1984], RB systems are divided

into production systems which contain rules o f the form “IF some conditions are met THEN take

some action”, and deductive systems which contain rules o f the form “IF some predicates are true,

THEN conclude some other predicates are also true.”

RB systems are flexible and can produce nearly optimal solutions, but are slow and prone to

errors. Ease o f adding a new rule or modifying an existing one is the major advantage of RB sys

tems. RB systems are intuitive and better represent some kinds of knowledge that people seem to

have. Rules capture “what to do knowledge" but not deep domain knowledge such as “why it

works” o r “what it means” [Chandrasekaran & Mittal 1982], Another problem with RB systems is

that the knowledge o f the system is scattered among individual pieces. Therefore the more facts

the system knows the slower it becomes. A third problem is that rules are not good structures for

representing events.

In contrast to RB systems, CBR systems are restricted to variations on known situations, and pro

duce approximate solutions. In realistically complex domains are quick and their solutions are

grounded in actual experience. Most importantly cases support knowledge transfer of expertise

and explanation better than rules do. Because human expertise is more like a libraiy of past expe

riences than like a set o f rules, using CBR systems makes the tasks of communicating expertise

from domain experts to the system and justifying a solution from the system to domain experts

much easier. Additionally, many real-world domains are so complex that it is impossible or

impractical to always specify the rules that involved. By means o f cases we can always extract

solutions, albeit approximate, to problems by retrieving a case that demonstrates some degree of

similarity with the current problem.

- 3 4 -

2 Case-Based Reasoning 2.3 Prototypical CBR Systems

2.3 Prototypical CBR Systems

Since the early 80’s several reasoning systems have been constructed that can be considered to fol

low the CBR paradigm. The following sections give a brief overview of exemplar CBR systems

that demonstrate much of the work in the area, and have influenced the development of future sys

tems.

2.3.1 IPP

IPP’s (Integrated Partial Parser) [Lebowitz 1980] domain is international terrorism, where it is

able to read texts about terrorist activities, store its interpretations in memory, and make generali

zations. IPP’s interesting characteristics include its memory structure, its rules for forming

abstractions, and its use of memory to guide parsing. IPP is the first attempt at a computer system

that uses dynamic memory structures (MOPs). Generalizations are made based on the assumption

that similarities between the story being read and stories previously stored in memory represent

generalizations that describe the world. These generalizations are used as a basis for organizing

events and to guide future story understanding.

2.3.2 CYRUS

Along with IPP, CYRUS [Kolodner 1984] is another MOP-based story understanding system that

focuses on how memory is used to answer questions after understanding. CYRUS’ domain is

international politics. The system uses two databases, one for former Secretary of State Cyrus

Vance and one for former Secretary of State Edmund Muskie. Following the basic cycle o f reading

- 3 5 -

2 Case-Based Reasoning 2 3 Prototypical CBR Systems

a story, storing its interpretations, and making generalizations, CYRUS is capable of answering

questions such as "When did Vance meet Begin last?”, “Has Vance talked to Gromyko recently?”.

CYRUS’ power is demonstrated in the process of answering questions such as “Did Vance met

Mrs. Begin?”. Instead of performing the impossible tasks of exhaustive memory search or index

ing every episode in advance under every possible question it answers the question by answering

subsequent questions such as “When would Vance meet tire spouse of a diplomat?: At a state din

ner”, “When would he go to a state dinner with Begin?”, and so on.

2.3.3 MEDIATOR

MEDIATOR [Simpson 1985] is the first CBR system in the domain o f dispute resolution. Given a

conflict of goals between several parties and a MOP-based case library, it creates a new instance of

a MOP to obtain some plan for resolving a dispute. Employing derivational adaptation, the system

modifies previously stored plans in order to satisfy the current dispute. For example, when called

to resolve the dispute between Egypt and Israel, it retrieved from memory a plan to settle a dispute

between two children over the use of an orange. The retrieved case comprised o f a plan to give

each child the part of the orange that she wanted: one wanted the peel while the other wanted the

fruit. Adapting the retrieved solution MEDIATOR came up with a solution to give Israel military

control, but to give Egypt political and economic control. In cases where the proposed dispute res

olution fails to satisfy the involved parties, it employs a failure-driven learning mechanism by

storing a record of the failure in order to predict and avoid such failures in the future.

2 Case-Based Reasoning

2.3.4 SWALE

2.3 Prototypical CBR Systems

The SWALE [Schank 86; Kass 86] system is a MOP-based explainer with a library of patterns for

explaining why animals and people die. This library includes patterns such as old age, being run

over by a car, and so on. When SWALE is given a death case which can not be explained by any of

the normal explanation patterns, it searches its library for situations where the death pattern was

abnormal. It then uses abstraction and respecialization to adapt (lie abnormal pattern to the current

situation. For example, when SWALE was asked to explain the death of a healthy race horse, it

found in its memory a case o f spouse killing spouse for life insurance, and reasoned that the

healthy horse was killed by the owner for property insurance.

2.3.5 PLEXUS

Although PLEXUS’ [Altennan 1986] memory organization is not based on MOPs and its case

library is trivial, its adaptation mechanism is of interest. PLEXUS uses abstraction and respecial

ization to adapt previous plans for riding San Francisco’s subway into a plan for riding New

York’s subway system. Initially PLEXUS uses null adaptation to adapt San Francisco’s plan but

when pieces of the plan fail then the system employs abstraction and respecialization. For exam

ple, San Francisco’s plan calls for getting a ticket from a machine but in New York there no ticket

machines. The system abstracts from the concept of “get ticket from machine’’ to “get ticket”, then

specializes to “get ticket from ticket booth,” as in the plan for going to a theater.

- 3 7 -

2 Case-Based Reasoning

2.3.6 JUDGE

2 3 Prototypical CBR Systems

JUDGE [Bain 1986] is a CBR system in the domain of “common-sense ethical reasoning” for

criminal sentencing. The input is a description o f a criminal case, along with the chaige, the events

that occurred, and the legal status regarding crimes of this nature. The case library contains previ

ous crimes and the sentences determined for each. During its first stage of operation, JUDGE

interprets the input case by inferring the seriousness of the crime, the motives of the actors in the

current case, and determining the extent to which each offender was justified in acting violently,

with the help o f interpretations assigned to previous cases. It follows a retrieval phase along with

structural adaptation of previous sentences in order to ensure that diiferences in sentence severity

between crimes corresponds to differences in heinousness of the crimes. At the end a generaliza

tion phase forms sentencing rules when it finds it has several similar cases with similar sentences.

2.3.7 MBRtalk

MBRtalk [Stanfill & Waltz 1986] performs a word pronunciation task. By using a case library of

several thousand words along with their pronunciations, it achieves 88% predictive accuracy in its

task of mapping letters to phonemes. MBRtalk is a memory based system rather than a traditional

CBR system. In contrast with CBR systems which employ search methods which depend on a

memory being organized in abstraction hierarchies, MBRtalk deals with the entire memory. It

relies on parallel architectures with enough processors to facilitate simultaneous search for a par

tial match between the input word and every case in the memory. Selection is done by retrieving

only the words that achieve some degree of partial match after the application o f an evaluation

function to each word in the case library. A crucial issue in this reasoning scheme is the choice of

the appropriate evaluation function that reflects the case selection.

- 3 8 -

2 Case-Based Reasoning

2.3.8 CHEF

2.3 Prototypical CBR Systems

CHEF [Hammond 1988] is a case-based planner that builds new recipes out of its memory of old

recipes. CHEF’s input is a set of goals for different tastes, textures, ingredients and types of dishes

and its output is a plan, a single recipe, that satisfies all of the users goals. Much of CHEF’s plan

ning power lies in its ability to predict and avoid failures it has encountered before. The following

are the basic stages of a case-based planner such as CHEF. Problem anticipation is the stage in

which the planner, by noticing features in the input case that have previously contributed in past

planning problems, anticipates planning problems in the current case. During the stage of plan

retrieval the most similar case with the input case is retrieved from memory. Plan modification is

the stage where the plans of the retrieved case are adapted to satisfy the goals of the new case.

Plan repair is the stage where in case of a plan failure the planner finds different strategies for

repair by building a causal explanation of the failure. During the stage of credit assignment the

planner uses a causal explanation of why a failure occurred in order to identify the features of the

input case that led to the failure, and mark them as predictive features. At the final stage of plan

storage plans are placed in the case memory, indexed by the goals that they satisfy and the prob

lems that they avoid.

- 3 9 -

Chapter 3

Formal Specifications

3.1 Rationale

In order to obtain a precise picture o f the memory organization and various phases of the reasoning

paradigm presented in this thesis we have developed a formal specification of the memory organi

zation and various phases of this reasoning paradigm.

3.2 Models

The methodology presented in this thesis requires the availability and use of the following models:

a functional dependency model, a physical dependency model, a causality model, and a manifesta

tion model.

Let K , U, E, Y be finite sets of abstract symbols where E c U and Y c U. We give the following

interpretation to these sets.

• K as the set of components that comprise a physical system.

• U as a set of phenomena, events, occurrences, or symptoms that can occur during the

operation of a physical system.

• £ as a set of various events

• Y as a the set of symptoms

- 4 1 -

3 Formal Specifications 3.2 Models

Components of a physical system may operate in two states: normal, and abnormal. Intuitively, a

component k is said to be in an abnormal state if the operational behavior of the component devi

ates from the expected one. [We do not describe how component states are classified as normal or

abnormal. We merely require that they be labelled one or the other.]

Definition 3.1: A dependency model (d-model) D is a relation on K, that is, K).

Given a d-model D on K and components k\, k2 g K, we say k2 depends on or is dependent on k\ if

(Jfcj, k2) g D. [Note the reversal of indices.]

We view a d-model as a directed graph with nodes connected by arrows. Each node is a member of

K and each edge represents a dependency (physical or functional) between the members of K. Intu

itively a component k2 is physically dependent on component fcj if damage to k\ can propagate

through space to k2. A component k2 is functionally dependent on component k\ if the operation of

k2 depends on the operation of k\. [We do not describe how dependencies are classified as physical

or functional. We merely require that they be labelled one or the other.]

Given a dependency, if the damage propagates instantaneously then the dependency is called an

immediate dependence. If the damage requires an arbitrarily long time period to propagate, then

the dependency is called a non-immediate dependence. [Again, we do not describe how dependen

cies are classified as immediate or non-immediate. We merely require that they be labelled one or

the other.]

Definition 3.2: A functional dependency model F is a d-model containing only functional depen

dencies.

3 Formal Specifications 3.2 Models

F can be partitioned into two subsets F; and Fn i.e. F = F (- u Fn and F,- D F n = 0 . F; and Fn repre

sent functional dependencies that are immediate and non-immediate respectively.

Definition 3.3: A physical dependency model P is a d-model containing only physical dependen

cies.

P can be partitioned into two subsets P; and P„ i.e. P = Pj u Pn and P-t D P n = 0 . Pi and Pn repre

sent physical dependencies that are immediate and non-immediate respectively.

Figure 3.1 shows the classification of dependency models:

dependencies

functionalphysical

non-immediatenon-immediate immediateimmediate

Figure 3.1: Gassification of dependencies

Definition 3.4: A causal model Z is a relation on E, that is, Z g (£ x £) ,

Given a causal model Z and events et , e2 e E, we say that e\ causes e2 if (ej, ef) eZ,

Definition 3 5 : A manifestation model 0 is a relation from K to U, that is, (KxU) .

Given a manifestation model <h, a component k <=K, and a phenomenon, event, occurrence, or

symptom u <= U, we say that the component k has been observed to manifest itself as u if (k, u) e O.

- 4 3 -

3 Format Specifications 3 3 Case Based Diagnosis

This thesis presents a hybrid methodology for reasoning about physical systems in operation. This

methodology is based on retrieval and adaptation o f previously experienced problems similar to

the problem at hand. In this methodology the ability of the reasoner to reason about a physical sys

tem is significantly enhanced by the addition and utilization of the four models defined in this sec

tion. Section 3.3 presents a formalization of the Case-Based Reasoning paradigm and Section 3.4

shows how the models are utilized in Case-Based Diagnosis.

3.3 Case-Based Diagnosis

The structures used by the majority o f CBR researchers are Memory Oiganization Packets (MOPs)

as defined in [Schank 1982]. MOPs are frame-like structures that consist of attribute/value tuples

called slots. The value o f a particular slot may be another MOP, etc. With MOPs the memory is

partitioned in a hierarchical way so that MOPs are abstractions or specializations of other MOPs.

Definition 3.6: A case memory CM is a system (M, R, A, £2, ?, a , jLroot) satisfying:

• M is a finite set of memory organi2ation packets (MOPs),

where K , U , E , Y ^ M

• R is a finite set o f slot roles, satisfying M n i ! = 0 ,

• A is a transitive, reflexive, antisymmetric relation on M, that is, A c (M x M). Further

more, A must satisfy the abstraction constraint for certain of the MOPs in M. [See

Definition 3.12.J

• £2, the null element, is an element where Q & M

• ?, the unsolved clement, is an element where ? <tM

• c is a function o: M -» 2<ff x M ' >, where M ' = M u {£2 , ?}, that satisfies the con-

- 4 4 -

3 Formal Specifications 3 3 Case-Based Diagnosis

straint: V p e Af, if (p, p j), (p, \1q) e o(p), then p! = p2.

• p ^ , € M satisfies: V p e Af, (p, p riW,) e A.

Note A is a partial order on M, and the partially ordered set (Af, A) has \iroot as its maximal ele

ment. A is called the abstraction relation, and the interpretation of (v, p) e A is that p is more

abstract than v.

Definition 3.7: Given a case memory CM = (Af, R, A, £2, ?, a , pr00t) we define the function

a: M —» 2m

by a(v) = {p [(v, p) e A, and if (v, k), (n, p) s A then v = k or iz = p}

Given the MOP p e Af, we call members of a(p) the abstraction MOPs of p. The elements of a(p)

are the minimal MOPs among all MOPs that are more abstract than p.

Definition 3.8: Given a case memory CM = (Af, /?, A, £2, ?, o , proof) we define the function

a: Af -> 2W

by p e s(v) » v e fl(p)

Given the MOP p e Af, wc call the members of s(p) the specialization MOPs of p.

If we view a as a multi-valued function a: Af -» Af where a(\i) is the set o f values a assigns to p,

then s can be viewed as the (multi-valued) inverse o f a.

Definition 3.9: Given a case memory CM = (Af, R, A, £2, ?, o , pr0£>/), a slot is an element o f R x M ’

= /? x (Af u {£2,.?}).

- 4 5 -

3 Formal Specifications 3 3 Case-Based Diagnosis

Given a slot A. = (p, |X), p is called the role of X, and p. is called the filler of X. If X e a(v), then we

denote p. as v.p. The constraint on o makes the notation v.p well-defined. If p = ? then p is.called

a goal. Given v e M .w c denote the set o f roles associated with v

{p e R 13 p e Af' so that (p, p) e o(v)J

as v.R.

Definition 3.10: p e Af is a slotless MOP if o(p) = 0 .

Definition 3.11: A MOP p(- is an input case if

a(p,-) contains at least one goal,

• a(p,) = 0 , and

• s(P;) = 0 .

All other MOPs arc called library cases.

For notational convenience, we partition Af into two disjoint sets Af,- and Ma. Mi is the set

{p e Af I .r(p) = 0}

of instance MOPs and Ma = M — M,- is the set of abstraction MOPs. Instance MOPs have no fur

ther specialization MOPs. Abstraction MOPs are the abstractions of other MOPs.

We are now in a position to define the abstraction constraint on A (or, equivalently, on a). There

are limitations concerning which MOPs may be members of the abstraction set o(p) of an abstrac

tion MOP p. Abstraction constraints may be specified in various ways. A particularly simple one

would be to require that every member of n(p) contain the same set p./? = {p e R I (p,/) e a(p)] of

slot roles as p, and that the fillers o f corresponding roles be identical. That would be a strict con-

- 4 6 -

3 Formal Specifications 3.3 Case-Based Diagnosis

straint since it requires an exact match. We use a more relaxed abstraction constraint by requiring

that the fillers of some members of o(p) be abstractions of the corresponding fillers in p.

We found that the abstraction constraint used in CBR system implementations reported by [Schank

1982; Riesbeck & Schank 1989] works for our purposes.

Definition 3.12: The abstraction constraint specifies that a MOP p can be an abstraction of a MOP

p ', i.e. (p', p) e A, if and only if

1. p is not an instance MOP, and

2. p is not a slotless MOP, and

3. V p g p.R, if p g p t h e n p'.p must satisfy p.p.

A f il le r / ' g M ' is said to satisfy the conditions specified by another f i l le r /g M ', when one or

more of the following conditions is true;

• / i s £1

• / i s an abstraction o f / ' , that is, (f ' , f) e A.

• / i s an instance MOP and/ ' is £2

• / i s not s lo tless,/' is not £2,f.R £ / '. /? , and V p e / . R, an d /'.p satisfies/.p.

We define the following operations on a CM:

Insertion of an instance MOP p,- g Mi into a case memory is the process of determining the set

fl(Pi). (IFor abstraction MOPs p g Ma, a(p) is already specified by the user and the abstraction

constraint.) The set a(p,-) is determined in the following way:

a(P;) = { p e Mfl | (p,-, p) g A in accordance with the abstraction constraint and

- i 3 p ' 3: p ' g s(p) and p (- satisfies p ' }

- 4 7 -

3 Format Specifications 3 3 Case-Based Diagnosis

In other words the MOP p t- becomes a specialization of the most specialized MOPs in the CM

whose abstraction constraint it satisfies.

Given the set a(p,) o f an input case p.,-, matching is a mapping jt: M —»2M where the range of rc(p,)

is a set S is defined as follows:

5 = { p e M | p e .^(p,*)), P * P ;}

S is called the set o f siblings of p,-, and consists of the MOPs having a parent in common with p,\

The input case is mapped into the member of S that best matches the input case based on some

metric. Recall that a metric is a distance measure A satisfying the following four properties:

A(a, p) 5: 0

• A(a, P) = A(P, a)

A(a, a) = 0

• A(a, p) + A(p, y) ^ A(a, y)

Finding a generally suitable definition o f A is one o f the major current research problems in CBR.

The simplest measure o f dissimilarity between two cases is the number of slots for which they

have different fillers. It is defined as follows:

P„

A(pr P2) = £ 5 (P j.p , p2.p)
P = Pi

where (pj, p* p„ } G Pi R and

8(p j.p , p 2.p) =
if p r p = p2.p then 0

otherwise 1

- 4 8 -

3 Formal Specifications 3.4 Use o f Models in Case Based Diagnosis

3.4 Use of Models in Case Based Diagnosis

Diagnosis is the process of replacing the filler ? of unsolved slots by an appropriate member of M,

in particular replacing the ? fillers o f the slots fault and causal explanation (abbreviated ce). This

replacement is taking place during the adaptation phase. The filler of fault in some library case p.,

i.e. p.fault, is a MOP, whereas p.ce is a MOP designating a set of tuples X c (£ x £) such that for

every (elt e-j) e X e\ causes e2 .

The utilization of models in case-based diagnosis takes place in the adaptation phase. It is done as

follows:

Let be an input case

«(P») = M-

d= A (p ,,p)

■d £ 0, is some threshold value

p.ce is the causal explanation of p

p,-.ce is the causal explanation of p,% Initially p;.ce = ?

Step 1:

p,-.ce := p.ce

p.faull„ i f r f> f t
p..fault := d

1 p.fault i f d c f l

where p.faulta is non-detcrminislically chosen member of a(p. fault)

- 4 9 -

3 Formal Specifications 3.4 Use o f Models in Case Based Diagnosis

Step 2:

Case 1: { p,- and p have identical symptoms }

If, every (p, f,) e a (p) where p e f, the set of symptoms

pf.p = p.p

then; { i.e. adopt p.ce unchanged }

Case 2: { p; has symptoms that do not appear in p }

If there is at least one (p, f;) e c (p,-)

where p e Y,

Pj.p 'normal’

and p.p = ‘normal’

then P/.ce := p.ce

Subcase 1:

if (e, p) e Z, then pf.ce := u p,-.ce (e, p)

Subcase 2:

if Cki. k2) e F,

(k2, p) g <t>,

(kj, e) g <I>,

and p/.e ^ ‘normal’

then p,-.ce := p,-.ce u (e, p)

- 5 0 -

3 Formal Specifications 3.4 Use o f Models in Case Based Diagnosis

Case 3: { has symptoms that do not appear in p (- }

If there is at least one (p, 1) e a (p.)

where p g Y,

pj-.p = ‘normal’,

p.p * ‘normal’,

and (<t>, p) e <I>, { <I> is the manifestation m odel)

then,

Subcase 1:

if (k; , k2) e F„,

(k7,<t>)e<h,
and (k2, p) e O,

then for every (4», p) g p,-.ce := p,-.ce - (<j>, p)

Subcase 2:

if (k/t k2) g Fj,

(k l t <|>) g <h,

and (k2, p) g

then p is rejected as the most similar case for p,-.

In practice we retrieve the next closest (in terms of A) case from the set S.

- 5 1 -

Chapter 4

A Prototype

4.1 Introduction

The described research in this thesis integrates case-based and model-based reasoning techniques

for dealing with physical system faults. In order to demonstrate the challenges and benefits of such

work a prototypical system called Epaion has been designed and implemented in the aircraft

domain.

Epaion contains a self-organizing memory structured as a frame-based abstraction hierarchy, as

defined by [Schank 1982], for storing previously encountered problems. Currently each case has

been represented in a memory organization packet (MOP) as implemented in [Riesbeck and

Schank 1989].

Each case represents an actual aircraft accident report and consists of a set of features that identify

the particular accident, a set o f observable symptoms, and a causal explanation that describes the

relationship between various system states and observable features. The set o f identifying features

includes information such as aircraft type, airline, flight number, date of the accident, etc. The set

o f symptoms includes infonnation about abnormal observations from mechanical sensors such as

the value o f the exhaust gas temperature, the value of engine pressure ratio, or from "human sen

sors,” such as the sound of an explosion or the smell of smoke in the passenger cabin.

In contrast to other CBR rescarcli efforts, each case in our methodology consists not only o f a set

o f previously observed symptoms, but also represents sequences of events over certain time inter

- 5 3 -

4 A Prototype 4.2 The domain

vals. The time intervals are of unknown and uneven length; it is their ordering that it is o f impor

tance. Such temporal information is necessary when reasoning about operating physical systems,

since the set of symptoms observed at a particular time may represent improvement or deteriora

tion from a previous reading, or may reveal valuable fault propagation information. In a je t engine,

for example, the fact that die fan rotational speed was observed to be abnormal prior to an abnor

mal observation o f the compressor rotational speed is indicative that the faulty component is the

fan and that the fault propagated to the compressor, rather than the reverse.

In addition, the system incorporates a model, called the world knowledge model, that represents

the reasoner’s knowledge of causal relationships between states and observable symptoms, as well

as deep domain knowledge such as functional connections among the components of the physical

system about which the reasoncr must reason.

4.2 The domain

Epaion is being designed and implemented in the aircraft domain. Several aspects of the aircraft

domain make automation of in-flight diagnosis challenging. In contrast with non-operative diag

nosis (i.e., diagnosis of systems that can be shut down), symptoms in aircraft subsystems may

change with time because of failure propagation. Information about the operational status of many

aircraft components may be unavailable or incomplete due to limited instrumentation, and safety

and comfort considerations place further constraints on in-flight testing.

Automation of in-flight fault diagnosis and prognosis can be used as an aid to the flight crew for

early detection o f a problem or failure. This provides the crew with more time to respond more

effectively and reduce potential damage due to the failure.

- 5 4 -

4 A Prototype 4.2 The domain

The aircraft model used in this research is the same one used by [Abbott 1990] in her work on fault

diagnosis. It is a simplified model of the propulsion system of a two-engine civil transport. This

system consists of two turbofan engines and a fuel subsystem. A total of nine components are

included. Four of them arc sensors.

A turbofan engine was chosen since it is commonly used on civil transport aircraft. [Abbott 1990]

describes the function of the engine as follows: The air enters the fan, a low-pressure compressor.

The fan compresses the air, which flows to the high-pressure compressor. There the air is com

pressed further. It passes to the combustion section, which sprays fuel to mix with the highly com

pressed air, and ignites tlicm. Ignition increases the velocity and temperature of the air, turning the

turbines as the air flows to the exhaust section. The turbine section is divided into two stages.

These two stages are connected to the fan and compressor with concentric shafts. The first turbine

stage drives the compressor and the second stage drives the fan.

The engine has five sensors whose reading provide the following parameter values: N l, N2, Fuel

flow (FF), exhaust gas temperature (EGT), and engine pressure ratio (EPR). The N l and N2 sen

sors measure the rotational speeds o f the fan and high-pressure compressor, respectively. The fan

and compressor generally rotate at different speeds because they are connected to different turbine

stages. Fuel flow measures the rate at which the fuel is entering the engine. EGT is the exhaust gas

temperature. EPR is a ratio of the air pressure at the engine inlet Figure 4.1 shows the schematic

o f a turbo-fan je t engine.

- 5 5 -

4 A Prototype 4 3 Knowledge Sources

0 =

(x
1

II

u

Fan
Compressor Fwd-Turbine

Combustor Aft-Turbine

Figure 4.1: Schematic of a turbofan jet engine

4.3 Knowledge Sources

Epaion draws its power from several knowledge sources, including a library o f aircraft accident/

incidents; a functional dependency model with deep domain information about the functional

dependencies between the components of the aircraft; and a model representing causal informa

tion concerning transitions between various states of the aircraft.

4.3.1 Case Library

Epaion maintains a library of actual aircraft accident/incident scenarios called cases. Each case

consists of a set of features that identify the particular scenario, a list o f the relevant context vari

ables and their particular status, a set of observable symptoms, the fault, and a causal explanation

that connects the observable symptoms to a justifying cause. The set of identifying features

includes information such as aircraft type, airline, flight number, date o f the accident, and similar

data. The list o f context variables includes information such as the phase of flight, the weather, etc.

The set of symptoms includes information about abnormal observations from mechanical sensors

- 5 6 -

4 A Prototype 4 3 Knowledge Sources

such as the value of the exhaust gas temperature, the value of engine pressure ratio, or from

“human sensors,” such as the sound of an explosion, or the smell of smoke in the passenger cabin.

Cases containing all o f tills information are called library cases, whereas cases where the fault and

the causal explanation arc not available are called input cases.

In contrast to most other CBR research efforts, each case in our methodology consists not only of

a set o f previously observed symptoms, but also represents sequences o f events over certain time

intervals. The time intervals may have unknown and unequal lengths; it is the event ordering that it

is of importance. Such temporal information is necessary when reasoning about operating physical

systems, since the set o f symptoms observed at a particular time may represent improvement or

deterioration from a previous reading, or may reveal valuable fault propagation information. In a

jet engine, for example, the fact that the fan rotational speed was observed to be abnormal prior to

an abnormal observation of the compressor rotational speed is indicative that the faulty component

is the fan and that the fault propagated to the compressor, rather than the reverse.

The following is an example of an actual case:

Identification Features:

Id: NTSB-AAR-76-19

Date: November 12,1975

Airline: Overseas National Airways

Flight: Flight 32

Aircraft: DC-10-30

- 5 7 -

4 A Prototype

Context Variables

Phase of Flight: Take off

4 3 Knowledge Sources

Symptoms

Fuel Flow: Initially normal, then fluctuating, then low

N l: Started fluctuating, then became high, then low

N2: Initially normal, then fluctuating, then low

EGT: Initially normal, then became high

EPR: Initially normal, then became high, then low

Fault

Bird ingestion

Causal Explanation

Bird ingestion caused fan blade damage,

which in return caused fan rotor imbalance,

which in return caused abnormal rotational speed of the fan.

Also the fan rotor imbalance caused abnormal rotational speed of the compressor.

The abnormal rotational speed of the compressor caused abnormal fuel flow,

it also cause abnormal exhaust gas temperature.

The abnormal fuel flow caused abnormal exhaust pressure ratio.

4.3.2 Causality Model

Epaion’s causality model contains information such as ‘’fan-bladc separation causes the rotational

speed o f the fan to fluctuate” and ‘’the rotational speed of the fan causes the engine pressure ratio

- 5 8 -

4 A Prototype 4 3 Knowledge Sources

to fluctuate.” Along with the causal information between two states, e.g. ‘’inefficient air flow” and

‘ 'slowing down o f the engine” , the model maintains a frequency count of the number of times that

the system witnessed that inefficient air flow caused the engine to slow down.

Our research alleviates the knowledge acquisition problem to which current model-based systems

are subject by letting each case of the CBR reasoning mechanism contribute its causal explana

tion, gained from adapting previous incidents, to the formation and maintenance of the causality

model. This model can therefore be considered as a general depository of knowledge accumulated

through time. In return the model aids the matching and adaptation processes of the CBR reason

ing mechanism and enables Epaion to make prognoses that are beyond the knowledge of each

individual library case.

4.3.3 Functional Dependency Model

The functional dependency submodel is a digraph model of an aircraft system, with nodes repre

senting primitive components, and arrows connecting (linking) nodes representing functional

dependencies. Component B is said to be functionally dependent on component A if the proper

functioning of B depends on the proper functioning of A. For example, the control surfaces of an

aircraft are functionally dependent on the hydraulic system, since they will cease operating if the

latter fails. The functional dependency submodel contains two kind o f arrows, representing imme

diate and non-immediate links between components. Two components Cj and C2 are connected

via an immediate link (I-link) when abnormal function of C | at time t(results in abnormal func

tion of C2 at time t2 and tj= I2 . If t2 ^ tj then Cj is connected to C2 via an non-immediate link (N-

link). For example, the engine driven pump (EDP) bypass valve is connected via an N-link to the

EDP filter, but the EDP filter is connected to EDP bypass valve via an I-link.

- 5 9 -

4 A Prototype 4 3 Knowledge Sources

In order to efficiently represent the Functional and Physical Dependency Models a modeling tool

named L1MAP was developed. This tool is oriented toward efficient information representation/

manipulation over fixed finite domains, and quantification over paths and predicates. The initial

motivation for the creation of such a system was the fact that the need for such operations arose

frequently in the domain of diagnosis/prognosis generation problem domain. Since then it has

become apparent that the facilities provided are applicable to problems both within and outside of

AI. The motivation about LIMAP, its implementation, and its capabilities are presented in appen

dix A.

Using LIMAP the functional dependencies are represented in a symbolic matrix. Figure 4.2 shows

the functional dependency graph for the engine depicted in figure 4.1. Figure 4.3 depicts the adja-

EPR

EGT

N l

N2

Fan

Combustor

Compressor

Aft-Turbine

Figure 4.2: Functional dependency graph of an engine

- 6 0 -

4 A Prototype 4 3 Knowledge Sources

cency matrix representing the je t engine functional dependency predicate Engine(x,y) o f Figure

4.2 over the domain Comps=(fan, compressor, combustor, fwd-turbine, aft-turbine, Nl-sensor,

N2-sensor, EGT-sensor, EPR-sensor). A value of 1 in location i j represents the fact that compo

nent i is connected to component j.

COMPONENT (0) (1) (2) (3) (4) (5) (6) (7) (8)

Fan (0) 1 1 1 . . .

Compressor (1) 1 1 1

Combustor (2) . 1 ..

Fwd-turbine (3) 1 1

Aft-turbine (4) 1 1 1

Nl Sensor (5) . •

N2 Sensor (6) . .

EGT Sensor (7) . 4

EPR Sensor (8) 4 * * • • 4 » »

Figure 4.3: Adjacency matrix for je t engine depicted in figure 4.1

4.3.4 Physical Dependency Model

The physical dependency model is a digraph of an aircraft system, similar to the functional depen

dencies digraph, in which the links in the graph represent potential paths o f fault propagation due

to physical proximity. This sort o f propagation occurs when uncontrolled dischaiges of energy

attendant on component malfunctions propagate to neighboring systems. The severing o f nearby

hydraulic lines by blade fragments from a disintegrating turbine provides a typical example. As

with the Functional Dependency Model, this model is also implemented using LIMAP.

- 6 1 -

4 A Prototype

4,3.5 The Abstraction Hierarchy

4 3 Knowledge Sources

The case-based reasoning component of Epaion consists o f a self-organizing memory structured

as a frame-based abstraction hierarchy, as defined by [Schank 1982]. This memory forms an upper

bounded semi-lattice that contains domain specific information at dilferent levels o f abstraction.

The information contained in the lattice includes:

a. The names of all the components in an aircraft engine.

b. The components that are sensors. The exhaust gas temperature, the rotational speed of the

fan, and the fuel How indicator are some of the mechanical sensors in an aircraft’s engine.

Vision, sight, and smell are the "human sensors" used in the diagnostic process.

c. The possible values for each sensor. For a mechanical sensor the allowable values are:

lower than expected; normal; higher than expected. If a sensor initially indicates values

that are normal, then at the following time interval indicates values that are lower than

expected, and at the third time interval still indicates values which are lower than

expected, then the status of the sensor during these three time intervals is normal, lower,

lower which is a kind of (i.e., a subcategoiy of) overall lower than expected status which

in turn is a kind of abnormal status.

d. The various faults that may be observed in an engine subsystem. For example it is repre

sented that seagull ingestion is a kind of bird ingestion fault which is a kind of foreign

object ingestion fault and so on.

e. Information on how faults manifest themselves. For example, the fan vibration and abnor-

- 6 2 -

4 A Prototype 4.4 Reasoning Cycle

mality in the rotational speed of the fan are manifestations o f a problem in the fan.

f. The accident/incidents that the system already knows. For example the system knows that

the incident of a China Airlines Boeing 747 that suffered a mishap over the Pacific Ocean

on February 19,1985 [NTSB-AAR-86-03] is an instance o f an accident/incident since it is

a kind of rotor related scenario which is a kind of engine related scenario which is a kind

of accidcnt/incidcnt scenario.

4.4 Reasoning Cycle

Epaion's reasoning cycle consists of the following three phases: input a new problem; retrieve the

most similar case; adapt the retrieved case to fit the current scenario.

4.4.6 Case Matching and Retrieval Process

When the system experiences a new set o f symptoms, i.e., when faced with an input (new) case, it

searches its case library for the most similar case. This is done by placing the input case in self

organizing MOP memory under the most appropriate parents, determined as described in Chapter

2. The siblings may therefore be assumed to be closely related. The nearest sibling is retrieved as

the case that is most on-point with respect to the input case.

A weighted count of corresponding symptoms between the input case and its siblings in the case

library is used as a metric of similarity between the input case and each sibling. Based on the

observation that in most cases similar faults manifest themselves in similar ways only during the

- 6 3 -

4 A Prototype 4.4 Reasoning Cycle

first moments o f the fault occurrence [1], the system takes advantage of the available temporal

information in each case, and gives higher degree of similarity to symptoms that manifest itself in

similar ways during the first moments of the fault occurrence. For example, if in the input case the

rotational speed o f the fan was initially abnormally high, then normal, and at the end was abnor

mally low, then a library case where the rotational speed of the fan was initially abnormally high

and continued to be high through out the entire scenario will get a higher degree o f similarity com

paring to another library case where rotational speed of the fan was initially abnormally low and

continued to be low through out the entire scenario.

In addition to the set of symptoms, Epaion takes into consideration the context variables of each

case. For example, if the input case represents a scenario where an aircraft was flying at a high alti

tude then this is taken into consideration to give smaller degrees of similarity to library cases

where the cause of the fault was bird ingestion. This is in accordance with the fact that birds do not

fly at high altitude.

4.4.7 The Case Adaptation Process

When the system finds and retrieves a similar case, Epaion assumes that the current fault is the

same as the fault in the retrieved case and adapts the causal explanation of the retrieved case to fit

the current case. Then both the fault and the causal explanation are stored in the case library for

future usage. The system is provided with a set of adaptation rules which, in addition to adapting

the retrieved causal explanation to fit the current case, find possible gaps in the causal explanation

and fill in the missing causalities by using the model. This causal explanation connects the symp

toms to a justifying cause, and thus the system’s causal reasoning ability produces a causal analy

sis o f the new case, rather than simply a reference to a previous solution. The new causal analysis

is not only stored in the case library as part of the input case, but is used to augment and modify

- 6 4 -

4 A Prototype 4.4 Reasoning Cycle

the causality knowledge of the world model. The causal analysis consists of a sequence of pairs of

the type "event A causes event B '\ "event B causes event C” and so on. Each of these pairs is

stored in the database of the causal submodel. In the case that the model already knows about the

causal relation between two events from a previously encountered case, the system updates the

frequency count between the two events. The world model is therefore created based on the previ

ous behavior of the physical system, and is constantly updated based on the current behavior,

either by augmenting its previous causal knowledge or "becoming more sure” about causal rela

tions.

Epaion’s adaptation algorithm is summarized in the following two steps:

The first step involves the transfer of the fault from the library case in the input case and consists

o f two possibilities.

Case 1: If the match between the input case and the library case exceeds a threshold value then the

fault is transferred intact, thus if in the library case the fault was a malfunctioning fuel controller

then it is assumed to be the same in the input case.

Case 2: If the match is below the threshold value then an abstraction of the library case fault is

transferred to the input case. For example, if in the library case the fault was bird ingestion, then it

is assumed that in the input case the fault is foreign object ingestion.

The second step involves the adaptation of the causal explanation of the library case so it can

explain every, or as many as possible, of the symptoms of the input scenario by connecting them to

a justifying cause. This consists of the following possibilities:

- 6 5 -

4 A Prototype 4.4 Reasoning Cycle

Case 1: If the library case and the input case have identical symptoms then the causal explanation

of the library case is transferred intact to the input case.

Case 2: If the input case contains symptoms that do not appear in the library case then the causal

explanation of the library case is transferred in the input case and the following additional process

ing takes place. Let <J>2 be an unexplained input case symptom.

Subcase 1: If the causal submodel contains the relation <J>j causes $2 . and <J>j is a symptom or

manifestation in the input case, then the link <)>] causes $ 2 is added in the causal explanation of

the input case.

Subcase 2: The causal portion of the model does not contain the relation causes <J)2i but the

functional dependency submodel knows that component C2 is functionally dependent on com

ponent C l, and 4>i is a manifestation of abnormal behavior of component C l, and similarly

is a manifestation of C2. This knowledge is depicted by the graph

to *2
i i j i

D
 ►

Ci C2

Figure 4.4: A causal scenario

where <j) denotes a phenomenon that is a symptom or manifestation (p) o f abnormal behavior of a

component. Additionally, if 4>i is a symptom in the input case and time((j>i) < time((t>2), i.e., Symp

- 6 6 -

4 A Prototype 4.4 Reasoning Cycle

tom fj appeared before 4*2 then the link <j>i causes <J>2 is added in the causal explanation of the input

case.

Case 3: If the library case has symptoms that do not appear in the input case then the causal expla

nation of the library case is transferred in the input case and the following additional processing

takes place. Let (J>2 be sucli a symptom in the library case. Then the causal explanation of the

library case will contain the relation <J>i causes 4>2 -

Figure 4.5: Relation <j)j causes <|>2

Subcase 1: Suppose that this configuration occurs in the functional portion of the model.

4>1

Figure 4.6: A causal scenario

Then this library case is rejected as explanation of the input case since if C l were in fact abnormal

in the input case, then the immediate link between C l and C2 indicates that this malfunction must

- 6 7 -

4 A Prototype 4.4 Reasoning Cycle

propagate immediately to C2, and therefore a manifestation of C2’s abnormality would be present.

But the input case shows no such manifestation, so C l is normal.

Subcase 2: Suppose that this configuration occurs in the functional portion of the model.

* 1 * 2
a A

D
 ►

ci C2

Figure 4.7: A causal scenario

where 4>2's the unmatched library case symptom and D is a non immediate link between compo

nent C l and C2. Then the library symptom $ 2 is ignored, since it is possible that <t>2 will occur later

in the library case. Therefore every relation of the form X causes is discarded from the trans

ferred causal explanation.

At this point Epaion has used knowledge of how faults manifest themselves, knowledge of causal

links between fault manifestations, and knowledge about links between components to explain as

many of the symptoms that are present in the input case. Any additional symptoms will remain

unexplained.

- 6 8 -

Chapter 5

Evaluation

5.1 Introduction

The diagnostic methodology presented in this thesis was evaluated by means of an analytical anal

ysis of the methodology and by an empirical analysis of the prototype developed to support the

merit of the methodology. In the analytical evaluation we describe the characteristics from which

the methodology draws its power, and discuss the consequences of incompleteness or elimination

of the four knowledge sources that are involved in this methodology. The empirical analysis eval

uates the prototype that was build in order to support the merit of the methodology. This evalua

tion was done by running Epaion on actual accident cases and comparing the results with the

conclusions of the official investigations on these accidents.

Before the evaluations we present two examples in order to demonstrate how Epaion works. The

first example involves two realistic scenarios. EPAION was given the symptoms observed on Jan

uary 8,1989 by the flight crew of British Midland Airways and retrieved as the most on-point case

scenario the Overseas National Airways flight 32 crash that occurred on November 12, 1975. For

the second example Epaion was given a complex hypothetical scenario. This example demon

strates Epaion using all o f its knowledge sources, the library case, the functional dependency sub

model, the causality submodel, and its abstraction hierarchy in order to connect all o f the observed

symptoms in the hypothetical scenario to a justifying cause.

- 7 0 -

5 Evaluation 5.2 Examples

5.2 Examples

The ideas presented in this thesis are demonstrated by the following examples.

5.2.1 First Scenario

EPAION is given the symptoms observed on January 8,1989 by the flight crew o f British Midland

Airways. The senario is summaried as follows:

The plane, a Boeing 737-400, was climbing out east of East Midlands Airport and the crew

operated at a high workload. On this flight, the crew experienced severe vibration and smoke

in the cockpit. The vibration monitor on the left engine .was at the high value, while the rota

tional speed of the fan (N l) was fluctuating. Subsequently, the exhaust gas temperature

(EGT), N l, and rotational speed of the compressor (N2) reached high levels. The fuel flow

was low. The vibration continued to be severe and the fuel flow low, but N l and N2 dimin

ished to low levels.

Epaion's first task is to use the features of the current situation for finding the most similar sce

nario from its case library. In this example the retrieved scenario is the Overseas National Airways

flight 32 crash that occurred on November 12,1975. The scenario is summarized as follows:

The plane, a DC-10-30, was taking off from John F. Kennedy International Airport, in New

York. The crew observed that the rotational speed of the fan (N l) was fluctuating, along with

the rotational speed of the compressor (N2) and exhaust pressure ratio (EPR). Later on Nl and

N2 were increasing to high while the exhaust gas temperature (EGT) and the EPR were

- 7 1 -

5 Evaluation 5 2 Examples

increasing to high also. The Fuel-Flow began fluctuating. Finally N l, N2, and Fuel-Flow

started decreasing and reached low levels. The EGT continued to increase.

The Overseas National Airways crash was retrieved as the most-on-point case for the British Mid

land Airways scenario because of high degree of similarity in the behavior of the fuel flow, the

rotational speed of the fan, the rotational speed of compressor and the exhaust gas temperature.

The behavior of the exhaust pressure ratio (EPR) was not taken into consideration since the

engines on the Midland aircraft were General Electric CFM56s, which have no EPR sensor. Other

cases in the library that demonstrated similarities in features such as the type of the airplane, the

type o f the engines, the airline, the phase of the flight, the altitude, etc., were not retrieved since

similarity in these features is considered less significant.

Following the retrieval, EPAION assumes that the cause o f the symptoms in the current situation

is the same as the one in the retrieved case. In the Overseas National crash the cause was fan blade

damage and the system tries to explain as many as possible o f the Midland symptoms based on

that cause. This is done by adapting the causal explanation of the Overseas National case to fit the

current situation.

In the Overseas National case a large number of sea gulls were ingested into the engine causing

the engine to disintegrate. The disintegration resulted in abnormalities in the rotational speed of

the fan (N l) and the rotational speed of the compressor (N2). Abnormality in N2 caused the abnor

mal behavior of fuel flow and the high levels of EGT. In turn the fuel flow abnormality caused die

EPR abnormality. This chain of events explains the behavior of N l, N2, EGT and fuel flow in the

Midland scenario but does not explain the fan vibration experienced by the Midland flight crew.

- 7 2 -

5 Evaluation 5.2 Examples

In order to explain the fan vibration EPAION utilizes its models. The causal model informs the

system that based on previous cases the system has learned that the leading (most often observed)

cause of fan vibration is fan blade damage. Based on that knowledge the system explains Mid

lands fan vibration as a result of the fan blade damage. Since all of the Midland symptoms have

been explained, EPAION creates the causal explanation for Midland by connecting each symptom

to its cause. This causal explanation is associated with the Midland accident scenario and is stored

in the case library.

5.2.2 Second Scenario

We assume that EPAION is given the following data:

The plane is climbing out, with the crew operating at moderate workload. The engine com

manded status is at climb power. The weather is icing. The crew observes a small thrust short

fall and vibration in the compressor and fan rotors. The compressor rotor speed (N2) shows a

5% shortfall. The exhaust gas temperature (EGT) and fuel flow are slightly lower than

expected.

Oi Epaion’s first task is to use the features of the current situation for finding the most similar sce

nario from its case library. In this example, the selection process results in retrieval of the follow

ing case:

The plane was climbing out, with the crew operating at a moderate workload. The engine

commanded status was at climb power. The meteorological conditions were icing. Fan blade

damage, caused by ice ingestion, produced an abrupt change of vibration in the fan rotor and

abnormality in the rotational speed of the fan (Nl).

- 7 3 -

5 Evaluation 5.2 Examples

Following the retrieval, EPAION assumes that the cause of the symptoms in the current situation

is the same as the one in the retrieved case. In this example the cause is ice ingestion and the sys

tem tries to explain all or most of the current symptoms based on that cause. This is done by adapt

ing the causal explanation of the retrieved case to fit the current situation.

In the retrieved case ice ingestion caused imbalance o f the fan rotor, which in turn caused the fan

to vibrate and rotate at abnormal speed. This chain of events explains the fan vibration in the cur

rent situation, but docs not explain the abnormalities in the speed o f the compressor rotor, the

EGT, the fuel flow and the compressor vibration.

In order to give explanations for these symptoms EPAION utilizes its models. The causal model

informs the system that based on previous cases the system has learned that the leading cause of

abnormal speed o f the compressor rotor is abnormal vibration of the fan and the leading cause for

abnormal EGT and fuel (low is abnormality in the speed of the compressor rotor. In addition, the

causal submodel informs the system that the leading cause of abnormal thrust output is vibration

of the compressor. Based on that knowledge the system explains the current abnormality in the

compressor rotor speed as a result of the abnormal fan vibration and the low levels of EGT and

fuel flow as a result of the compressor rotor speed shortfall. The thrust shortfall is explained as a

product o f the compressor vibration.

At this point all of the current symptoms are explained except for the compressor vibration. The

system from its knowledge contained in the abstraction hierarchy knows that vibration of the com

pressor is a manifestation of abnormal behavior of the engine’s compressor. The functional model

knows that the compressor is functionally dependent on the fan and therefore tries to find if any of
i

the manifestations of abnormal fan operation are being experienced by the crew. Fan vibration is

one of the current symptoms and is a manifestation o f abnormal fan operation, therefore the sys

tem explains the compressor vibration as a product o f the fan vibration. The set of symptoms of

- 7 4 -

5 Evaluation 5 2 Examples

the retrieved scenario contains an abnormality in the rotational speed of the fan. This is not experi

enced during the current situation, therefore no further explanations are needed.

As soon as all symptoms are explained, EPAION creates the causal explanation of the current case

by connecting each symptom to its cause. This causal explanation is associated with the current

situation, and is also stored in the case library for future reference. Figure 1 displays the chain of

causal events in tire retrieved and die current case.

CURRENT SITUATION RETRIEVED CASE

FOREIGN OB JECT INGESTION ICE INGESTION

FAN ROTOR IMBALANCE FAN ROTOR IMBALANCE

Abnormal
Fuel Flow Fan Blade Damage Fan Blade Damage

Fan Vibration Abnormal
N lFan Vibration

Abnormal
EGT

Compressor Vibration

Abnormal Thrust

^ Links due to the transfer from the retrieved case
I,,,,. Links due to the causal model

Links due to the dependency models

Figure 5.1: Causal explanations of retrieved and current case

- 7 5 -

5 Evaluation 5 3 Analytical Evaluation o f the Methodology

5.3 Analytical Evaluation of the Methodology

The analytical analysis of the diagnostic methodology presented in this thesis involves a descrip

tion of the characteristics from which the methodology draws its power, and a discussion of the

consequences of incompleteness or elimination of the necessary knowledge that this methodology

requires. This analysis is domain independent and applies to any rcasoner that will attempt to rea

son about physical systems within the framework of the diagnostic methodology presented in this

thesis.

Epaion’s diagnostic methodology draws its power from the following four knowledge sources: the

library case, the functional dependency submodel, the causality submodel, and the abstraction

hierarchy. In tills section we describe the important characteristics o f each knowledge source,

together with the consequences of not possessing these characteristics.

5.3.1 The Case Libraiy

The methodology presented in this thesis requires that the reasoner maintain a library of previ

ously solved problems. Each problem is a description of a physical system malfunction and the

manifestation of the malfunction. For example, Epaion’s case library consists of actual aircraft

accident/incident scenarios. Information provided in the individual accident/incident reports from

the National Transportation Board (NTSB), the British Air Accidents Investigation Branch

(AAIB), and data collected from test accidents staged at Boeing Inc. [Shontz et. at. 1992] was used

to derive the appropriate information constituting each case.

- 7 6 -

5 Evaluation 5 3 Analytical Evaluation o f the Methodology

Case Description

Each malfunction is described as a set features. Each feature has an associated set o f possible val

ues. The features are clustered into the following five categories: Identification Features, Context

Variables, Symptoms, Fault, Causal Explanation. The choice of the features is done by taking in to

consideration:

a. If a particular feature is unique in the sense that the value of that feature identifies one and

only one case, then this feature should be included as an identification feature.

b. If a particular feature does not have a unique value but the value of the feature may help

the human operators of the physical system to be reminded o f an actual case that they hap

pen to have directly or indirectly witnessed, then this feature may be included as an identi

fication feature. For example, Epaion includes as identification features the features

airline and date. These features do not have unique values for each case but collectively

may remind pilots about a particular accident or incident.

c. If the physical system includes a mechanical sensor that monitors the behavior of a partic

ular component, then each case must include a feature that describes the behavior of the

sensor.

d. If there are is an event that may be witnessed by the human operators o f the physical sys

tem, then each case must include a feature that describes the presence or absence of this

event.

- 7 7 -

5 Evaluation 5.3 Analytical Evaluation o f the Methodology

Whenever one of the above conditions holds, the corresponding feature must be be included in a

particular case. Exceptions are the fault and causal explanation features that every case must

include. Each case must include a feature that reveals the fault in the particular case. In addition a

feature should be included that describes the chain of events that connects each observable symp

tom to a justifying cause. When the fault and causal explanation features are missing the reason-

er’s task is to find a value for those two features.

5.3.2 The Functional Dependencies Submodel

The functional dependencies submodel possesses two kinds of constituents: components, and

interconnections between components.

Interconnections

Functional dependency links represent all the potential paths of normal interaction between com

ponents in the physical system. When a fault occurs, the effect o f the fault is expected to propagate

along one of the paths in the functional dependencies model. Whether or not a normal interaction

occurs along a particular path may depend on specific parameters that are unavailable in the

model. By representing all potential of normal interaction we can represent even those fault cases

where the interaction is not anticipated under the current scenario but happens unexpectally

[Abbott 1990].

Definition and Choice o f Components

A component is a physical part or set of parts o f the particular physical system that the reasoner is

called to reason about. A component may consist o f other components which in turn may have

- 7 8 -

5 Evaluation 5 3 Analytical Evaluation of the Methodology

subcomponents, etc. A physical system may have a varying number of components, depending on

the level of detail at which we view the system. Choosing the appropriate level of detail means

choosing which components we need to include in the model of the physical system so we can

have appropriate diagnoses of abnormal behavior. The choice of components is done by taking in

to consideration [Abbott 90]:

a. Whether a particular component must be identified as faulty when it breaks. If it is impor

tant to identify when a component fails, say because the manifestation of the failure may

be apparent to the operators of the physical system, then this component should be

included in the model.

b. Whether a component can be disambiguated with the available sensors.

c. Whether a particular component is needed in the propagation path to determine the propa

gation of abnormal behavior. If a particular component is a branching point in the propa

gation path that enables identification o f the propagation to other components then it must

be included in the model.

If none of the above factors holds, then a component either should not be included in the func

tional dependencies submodel, or aggregating it to the next higher level o f detail should be consid

ered. For example, in Epaion's functional dependencies submodel individual fan blades are not

included in the model of an aircraft’s engine because it makes no difference if blade 8 or blade 9

fails. An additional reason the submodel does not include fan blades is that there is no sensor

information to identify individual fan blades. On the other had, by aggregating the fan blades to

the next higher level of detail the engine’s fan is included in the submodel.

- 7 9 -

5 Evaluation 5 3 Analytical Evaluation o f the Methodology

When a component fails, the reasoning system will be aware of the manifestation of this failure. If

one of the above factors holds but the component is not modeled in the functional dependencies

submodel then the reasoning system will not have the ability to link this manifestation to a justify

ing cause since it will have no knowledge of functional dependency between the component that is

not modeled and other components in the submodel.

5.3.3 The Physical Dependencies Submodel

Similarly to the functional dependencies submodel, the physical dependencies submodel possesses

two characteristics: components, and the interconnections between components.

Interconnections

Physical dependency links represent potential paths of fault propagation that are due to physical

proximity. This knowledge is contained in a graph representation similar to the representation of

functional dependencies. The edges of the graph represent the physical proximity links and the

nodes represent components.

Definition and Choice of Components

Components in this submodel are defined as in the functional dependency submodel and the crite

ria for choosing which components we need to include in the physical submodel are the same with

the criteria presented above.

- 8 0 -

5 Evaluation 5 3 Analytical Evaluation o f the Methodology

5.3.4 The Causal Dependencies Submodel

The characteristics of the causal dependencies submodel are: the events, and the relationship

between the events.

Causal Relationship

A link between two events e t and e2, indicates that one did cause the other (say ej caused e2). The

causality relationship between ej and e2 implies a temporal constituent: If ej occurred at time tt

and e2 at time t2 then tt < t2.

Definition and Choice of Events

An event is a qualitative state transition to an abnormal state in the behavior of a physical system.

Events may be witnessed cither by observing the behavior o f mechanical sensors or by stimulating

"human sensors" such as sight, smell, and hearing. The choice of the events is done by taking in to

consideration:

a. If the physical system has a mechanical sensor that monitors the function of a component

or a process, then an event signaling the abnormal behavior of the function or the process

must be included in lire set of events.

b. If there is occurrence that may be witnessed by the human operators of the physical sys

tem, then an event signaling the occurrence must be included in the set of events. Such

occurrences include the smell of smoke, visibility o f fire, hearing an explosion, etc.

- 8 1 -

5 Evaluation 5.3 Analytical Evaluation o f the Methodology

If one of the above factors holds but an event is not included in the list of events, then the reasoner

loses its power of justifying the observable symptoms in a new situation precisely and in detail.

Additionally, when the new situation is stored in the case library it becomes a "weak” most-on-

point case for a potentially similar future input case.

5.3.5 The Abstraction Hierarchy

The information contained in the abstraction hierarchy must include:

a. The names of all the components in the physical system

b. The components dial are sensors.

c. The possible values for each sensor.

d. The types o f faults that may effect the physical system.

e. Information on how faults manifest.

f. The cases that the reasoner experienced.

All this information should be represented at different levels of abstraction. The levels of abstrac

tion chosen must be dctennined by examining the domain itself, and what information the human

operators o f the physical system might use to make decisions.

- 8 2 -

5 Evaluation 5.4 Empirical Evaluation o f the Prototype

The choice o f components and sensors is made based on the criteria followed for the choice of

components in the dependency models. Experimental observation has proved that the most effec

tive allowable values for each sensor are qualitative descriptions of the sensor readings. The range

o f these values is the following enumerated set: normal, lower than expected, higher than

expected, fluctuating. The types of faults that may effect the physical system along with informa

tion on how faults manifest is domain dependent and may be elicited from domain experts.

An incomplete abstraction hierarchy may affect the reasoner’s capability to explain the presence

o f the symptoms experienced in the current situation. The empirical evaluation of Epaion, as it is

presented in the following section, serves as an example of the effects of incomplete knowledge in

the reasoner’s abstraction hierarchy.

5.4 Empirical Evaluation of the Prototype

This section describes an empirical evaluation o f the diagnostic concepts implemented in Epaion.

The evaluation uses actual aircraft accidents and incident cases, which were simulated to assess

the effectiveness Epaion in diagnosing failures.

5.4.1 Approach

Epaion was developed using a software engineering strategy known as incremental code revision

o r rapid prototyping. Rapid prototyping requires the incremental development of tire software

design to be guided by preliminary evaluations o f the software. Our evaluation approach consisted

- 8 3 -

5 Evaluation 5.4 Empirical Evaluation o f the Prototype

of comparing Epaion’s output to the "correct answer” in order to determine how well the program

has performed.

Information provided in the individual accident/incident reports from the National TYansportation

Board (NTSB), the British Air Accidents Investigation Branch (AAIB), and data collected from

test accidents staged at Boeing Inc. [Shontz et. al. 1992] was used to derive the appropriate infor

mation constituting each case, a process called accident reconstruction. We reconstructed a total of

eighteen cases, of which twelve were used as library cases, and six as input cases.

Accident reconstruction is not a straightforward process and has its limitations. In the reconstruc

tion process the symptoms from all accidents had to be identified from the sources that described

the accidents. Unfortunately numerical sensor data from the engine parameters was not available,

so the symptoms were used as reported in [Shontz et. al„ 1992], or derived based on the descrip

tions in the NTSB or AAIB analysis of each accident. NTSB and AAIB reports did not always

explicitly describe the symptoms in each case; even in those cases where symptoms were men

tioned explicitly they were usually only those described by the flight crew. The sequence of symp

toms could therefore not always be determined completely.

In addition a chain o f causalities had to be constructed for each of the accidents used as library

cases. This chain explains each observed symptom by connecting the symptom to a justifying

cause. Determining the causal explanation of the symptoms for each case was a difficult task

because o f a paucity of definitive experts who could provide this information. While pilots, main

tenance personnel, and aircraft system designers are all knowledgeable about some aspects of air

craft diagnosis, each has deficiencies in one area or another. The causal explanations used in each

library case were constructed after interviewing personnel with expertise in the above fields, and

consulting NTSB and AAIB reports.

- 8 4 -

5 Evaluation 5.4 Empirical Evaluation of the Prototype

The evaluation process required that each input case be presented to Epaion separately, and that

the system produce a diagnosis along with a causal explanation. The diagnosis produced by

Epaion was then compared with the correct diagnosis for the particular scenario. In addition, the

reasoner was evaluated based on the number o f symptoms for which the reasoner was able to find

a justification. A "correct diagnosis” is the diagnosis determined by NTSB, AAIB, or by [Shontz

et. al. 1992]. Epaion is said to have produced a complete explanation if the system was able to

explain each observed symptom by connecting the symptom to a justifying cause.

5.4.2 Results

In this section the resulting diagnosis for each input case is presented and discussed.

Case 1:

We presented to Epaion the incident of a British Midland Boeing 737-400 (G-OBMG) that took

place on June 11, 1989 [AAIB-AAR-4/90]. In this incident the aircraft was climbing when the

crew reported an onset of "thumping” and severe vibration. Reference to engine instruments

revealed high indicated vibration with low and fluctuating rotational speed of the fan on the N2

engine. The crew also reported that there was considerable smoke in the aft cabin, and that flames

and sparks had been seen to come from the right engine. The aircraft landed without further inci

dent, Examination of the engine after landing showed that the fan had been massively damaged.

Epaion correctly classified the incident as a case involving a rotor damage. Epaion already had in

its library two other scenarios in this catcgoiy: an incident involving a Dan Air Boeing 737-400

that took place on June 9,1989 [AAIB-AAR-4/90], and the accident of a British Midland Boeing

737-400 that took place on January 8,1989 [AAIB-AAR-4/90]. Both library cases achieved a high

- 8 5 -

5 Evaluation 5.4 Empirical Evaluation o f the Prototype

degree of similarity with the current scenario, but the latter case achieved the highest degree of

similarity, and therefore was retrieved as the most-on-point case for G-OBMG. The fault o f the

retrieved case was assumed to be the fault in the current case, thus Epaion correctly diagnosed that

the problem in the current scenario was fan blade damage. The causal explanation of the retrieved

case was transferred to the current case, and since in both cases the fault manifested itself in a very

similar way (similar symptoms though time), the transferred causal explanation was able to suc

cessfully explain every symptom experienced in the G-OBMG.

Case 2:

Epaion was presented with the incident of an American Airlines Boeing 727 (Flight 566) that

experienced a engine failure in its number one engine just after rotation on take-off from Greater

Cincinnati Airport, Cincinnati, Ohio [NTSB-78-F-A067]. The captain performed emergency shut

down procedures on the engine and returned to the airport. The NTSB determined that the engine

failure was caused by several turbine blade separations.

Epaion correctly classified the incident as a scenario involving a rotor failure. Among four other

cases under this category it retrieved as the most on-point case the above-mentioned incident of

June 9, 1989, involving a Dan Air Boeing 747-400. The fault o f the retrieved case was assumed to

be the fault in the current case, thus Epaion incorrectly diagnosed that the problem with the current

scenario was fan blade damage instead of turbine blade damage. The transfer o f the causal links

from the retrieved causal explanation was sufficient to explain all the symptoms in the American

Airlines case except the abnormal exhaust pressure ratio. After consulting the causal model the

system produced explanations for all the symptoms.

- 8 6 -

5 Evaluation 5.4 Empirical Evaluation of the Prototype

Case 3:

The incident o f a China Airlines Boeing 747 (Flight 006) that suffered a mishap over the Pacific

Ocean on February 19,1985 [NTSB-AAR-86-03] was presented to Epaion. The aircraft was cruis

ing on autopilot when the crew misdiagnosed a flame-out in the number one engine. In reality

another engine had a bad fuel controller and suffered a condition known as bleed-air hogging. The

bad fuel controller caused a flame-out and due to a series of misdiagnoses and inappropriate cor

rective actions by the crew the aircraft was put into a vertical dive. Finally the captain regained

control of the aircraft and made a safe landing in San Francisco.

Epaion correctly classified the incident as a scenario involving a fuel subsystem failure. The

library contained two other scenarios in this category. A Boeing test case involving a bad fuel

metering unit was retrieved as the most on- point case. Because the degree of similarity between

the China Airlines scenario and the retrieved case was not very high, Epaion correctly assumed

that the current fault was an abstraction of the fault in the retrieved case, and determined that the

fault was in the fuel subsystem. The transfer o f the causal links from the retrieved causal explana

tion was sufficient to explain all the symptoms in the current scenario except the abnormal behav

ior o f the Exhaust Pressure Ratio (EPR). By consulting its world model Epaion found that the

abnormal EPR was due to the abnormality in the fuel flow, thus successfully explaining every

observed symptom.

Case 4;

In June 1982 the Galunggung Volcano on the island of Java erupted. A Boeing 747 encountered

the volcanic debris and experienced flame-outs on three engines while the aircraft was at 33,000

- 8 7 -

5 Evaluation 5.4 Empirical Evaluation of the Prototype

feet. One engine was successfully restarted and an uneventful two-engine landing was accom

plished [Lloyd 1990],

By relying on observations from “human sensors”, when Epaion was presented with this scenario

it successfully classified Hie incident as a volcanic ingestion scenario. The systems case library

contained two scenarios under this category. An incident of volcanic ingestion experienced by a

Boeing 747-400 near Anchorage, Alaska on December 14,1989 [Lloyd 1990] was retrieved as the

most on-point case. In both the input and the retrieved case the set of symptoms over time was

almost identical, and therefore Epaion correctly determined the fault and produced a causal expla

nation that covered all of the symptoms experienced in the Galunggung incident.

Case 5:

The accident of a Southern Airways DC-9 (Flight 242) that crashed in New Hope, Geoigia on

April 4, 1977 [NTSB-AAR-78-3] was presented to Epaion. The aircraft had flown through heavy

thunderstorms and had lost both engines. The NTSB determined that massive water ingestion into

the engines accompanied by thrust lever movement induced severe stalling in, and major damage

to, the engine compressor.

Epaion’s case library had no previous case of massive water ingestion. The system classified the

accident in the category of “miscellaneous scenarios”, and retrieved as the most on-point case the

accident of an Overseas National Airways DC-10-30 that took place on November 12, 1975

[NTSB-AAR-76-19]. The fault in the retrieved case was bird ingestion. Because the retrieved case

did not achieve a high degree o f similarity with the Southern Airways case the system correctly

assumed that the current fault was an abstraction o f the fault in the retrieved case. Epaion deter

mined that the current fault was foreign object ingestion. The transfer of the causal links from the

- 8 8 -

5 Evaluation 5.4 Empirical Evaluation o f the Prototype

retrieved causal explanation was sufficient to explain completely all the symptoms in the Southern

Airways case.

Case 6:

The symptoms observed during Boeing’s test flight F5 [Shontz 1992] were presented to Epaion.

This was a case of heavy damage due to ice ingestion. Epaion correctly classified the case as an

icing scenario. Under this category the case library had two other scenarios, A scenario of moder

ate ice ingestion was retrieved as the most on-point case, and based on that scenario the system

correctly assumed that the fault in the input case was ice-ingestion.

The transfer o f the causal explanation from the retrieved case to the input case was sufficient to

explain all the symptoms in the input case except for the abnormal behavior of the rotational speed

of the fan and the presence o f broad-band vibration. Both of these symptoms were absent from the

retrieved case, since the retrieved case was an instance of moderate ice ingestion, whereas the

input case was an instance of heavy ice-ingestion. By utilizing the causal dependencies portion of

its model, Epaion was able to explain that the abnormal behavior of the rotational speed of the fan

was attributed to the abnormality of the fuel flow. Lack o f relevant knowledge in the systems’

causal submodel and abstraction hierarchy made Epaion unable to explain the presence of the

broad-band vibration.

Table 1 presents a summary o f the results. The first two columns identify each scenario that was

presented to Epaion as an input case. The following two columns identify the appropriate classifi

cation of the accident/incident along with the actual fault as determined by either the NTSB, the

British Air Investigations Branch, or Boeing’s test data. The fifth and sixth columns present the

classification o f each accident/incident done by Epaion along with the fault assumed by Epaion.

J Evaluation 5.4 Empirical Evaluation of the Prototype

The last column tabulates the result of Epaion’s adaptation phase. Epaion’s explanatory perfor

mance was characterized as complete in the cases where the system was able to causally justify

every symptom experienced in the input case.

Case
Identification

Correct
Classification

Correct
Fault

Epaion’s
Classification

Epaion’s
Fault

Epaion’s
Explanation

1 G-OBMG Rotor
Scenario

Fan Blade Rotor
Scenario

Fan Blade Complete

2 American
Airlines 566

Rotor
Scenario

Turbine
Blade

Rotor Sce
nario

Fan Blade Complete

3 China Air 006 Fuel
Scenario

Fuel
Controller

Fuel
Scenario

Fuel Sub
system

Complete

4 Galunggung Volcanic
Scenario

Volcanic
Ingestion

Volcanic
Scenario

Volcanic
Ingestion

Complete

5 Southern
Airways 242

Water
Scenario

Water
Ingestion

Miscellaneous
Scenario

Foreign
Object
Ingerstion

Complete

6 Boeing Test
Flight F5

Icing
Scenario

Ice
Ingestion

Icing
Scenario

Ice
Ingestion

Incomplete

5.4.3 D iscussion

Automation of inflight dia- and prognosis as an aid to the flight crew has great potential for

improving the general safety of civil transport operations. The Epaion case-based reasoning sys

tem we have developed for the puipose of performing fault diagnosis and prognosis of aircraft in

operation uses a hybrid reasoning process based on a library o f previous cases and several models

o f the aircraft as basis for the reasoning process. This arrangement provides the methodology with

the flexibility and power of first-principle reasoners, coupled with the speed of asscciational sys

tems.

- 9 0 -

5 Evaluation 5.4 Empirical Evaluation of the Prototype

We have evaluated the system’s performance empirically on six actual accidents/incidents. The

results achieved are very promising for the future success of the system. Based on the results we

make the following observations.

* Classification

Five of the six cases in this evaluation were correctly classified. Case No. 5, involving water

ingestion, was classified under the category of miscellaneous scenarios due to the lack of previ

ously encountered water ingestion scenarios. This actually can not be considered misclassification

since it is expected that scenario types that were not encountered by the system will classified as

miscellaneous scenarios. This suggests that an expanded case library will enhance the systems

classification capability and therefore offer better matches for each additional input case.

* Diagnosis

Epaion was able to correctly diagnose five of the six scenarios. The American Airlines Flight 566

scenario (case 2) was properly classified as a rotor scenario but misdiagnosed as fan problem

rather than turbine problem. This is a result of the fact that problems in the fan and problems in the

turbine manifest themselves similarly, and therefore both kinds of faults are classified under the

category of rotor scenarios. When case 2 was used as input case the system retrieved as the most

on-point case the Dan Air incident, which is a fan blade scenario. With almost negligible differ

ence in the degree of match between the input case and the relevant library cases, the second best

match was the accident of a United Airlines Flight 611 that took place on July 19, 1970 [NTSB-

AAR-72-9]. This is a turbine fault scenario and would have achieved a higher degree of similarity

with the input case if the time order of the symptoms in both cases had been represented more pre

cisely. All symptoms used in reconstructing the case of the United Airlines Flight 611 were based

- 9 1 -

J Evaluation 5.4 Empirical Evaluation of the Prototype

on expert opinion, but none was explicitly stated in the NTSB report. With the exception of the

behavior of the EGT, the same holds for the symptoms used to reconstruct the American Airlines

Flight 566 scenario. This suggests that presenting the system with cases which are reconstructed

based on an accurate set of symptoms is vital for correct matching and therefore correct diagnoses.

* Symptom explanation

In five of the cases presented as input Epaion was able to explain all of the symptoms experienced.

Failure to explain the presence of broad-band vibration in the last case (case 6) is attributed to lim

ited information in the abstraction hierarchy. If the fact that broad-band vibration is a manifesta

tion of fan abnormality had been included in the abstraction hierarchy, the system’s functional

dependencies model would have explained the broad-band vibration symptom as a result of fan

blade damage. The same result would have been achieved if the system had previously experi

enced other cases with broad-band vibration, thus enabling the causal submodel to explain the

vibration. It is evident that the more knowledge that the system contains in its abstraction hierar

chy, the better its explanation capability will be. Current efforts are accordingly focused on

expanding this knowledge to have a substantial size.

- 9 2 -

Chapter 6

Discussion

6.1 Contributions

[Michie 1971] presents the following criteria that constitute necessary conditions for a program to

be characterized as intelligent.

• The program should utilize a model of its task environment.

• The program should use its model to form plans of action to be executed in the task

environment.

• These plans should include directed sampling of the task environment so as to guide

execution along conditional branches o f the plan.

• The program should re-formulate a plan when execution leads to states o f the environ

ment which were not predicted in the model.

The program should utilize the record of failures and successes o f past plans to revise

and extent the model inductively.

The dominant characteristic of these criteria is the presence and use of a model in the program’s

task environment. The CBR paradigm demonstrates promising results in areas such as planning,

design and memory organization, but its success is limited due to the lack of deep domain knowl

edge. In the few cases where CBR is used in conjunction with deep domain knowledge the tech

niques employed are specific to the particular application and domain.

This thesis investigates the use o f models in conjunction with a CBR methodology for physical

system faults, and provide useful insights into the challenges and benefits of such a hybrid reason

- 9 4 -

6 Discussion 6.1 Contributions

ing methodology. Tb demonstrate the methodology a prototypical system has being designed and

developed in the domain of aircraft faults. Actual aircraft accident cases were used and analytical

and empirical results have been presented. In summary the following has been achieved :

• A mathematical formalization of the case-based reasoning paradigm has been developed.

This formalization provides a precise definition and description o f the CBR paradigm, in

contrast to present specifications, which consist o f either lengthy and imprecise verbal

descriptions, or of impenetrable LISP code. In addition, the existence of a formal model

opens the possibility o f a theoretical treatment of the subject Tb gain precision and

expressiveness we developed a formal specification of the memory organization and vari

ous phases o f the CBR reasoning paradigm.

• For similar reasons the model-based reasoning paradigm was formalized. The initial for

malization focuses on causal models.

• A formal mathematical definition of the functions required for interfacing the CBR com

ponent with the model-based component of this reasoning methodology was nrovited.

Such interface functions are required during the phases of matching, and adaptation.

• The methodology was tested by designing and implementing a prototypical system for

dealing with physical system faults. The system entails the use o f case-based methodology

in conjunction with device models that describe the physical system’s structural, func

tional, and causal behavior.

- 9 5 -

6 Discussion 6.2 Limitations

6.2 Limitations

The research presented in this thesis has a number limitations. Our methodology suffers from the

fact that the set of abnormalities that the physical system may experience along with the various

ways that each abnormality manifests itself must be enumerated. If the input case demonstrates an

abnormality that is not predefined in the abstraction hierarchy, or if the abnormality takes a value

that is not predefined, then the system is unable to reason. For example, in order for the system to

proceed with its the normal reasoning cycle when the input includes the information that the rota

tional speed of the fan is high in the abstraction hierarchy it must be defined rotational speed o f the

fan is one of the things that can be abnormal and that high is one of the ways that an abnormality

manifests itself. Currently the only way to compensate for this deficiency is to carefully and

clearly define all the relevant characteristics of a particular domain before this methodology is

applied to this domain.

An objection to our methodology might be raised in that the behavior of the physical system that

the reasoner is called to reason upon is required to be represented in terms o f time episodes

divided into four subphascs. This restriction stems from the fact that the monitoring of most phys

ical systems is incomplete and available library cases do not contain continuous information of the

behavior of the physical system. In the aircraft domain, dividing the abnormal behavior of the

engine into four episodes has produced satisfactory results. Further research must investigate the

issues associated with reasoning with cases of uneven duration divided into various episodes, each

of which has uneven duration as well.

Another handicap o f our methodology is its current inability to recognize and deal with multiple

faults. Multiple independent faults in a physical system, although uncommon, are always a possi

- 9 6 -

6 Discussion 6 3 Future Work

bility. In the section on future work we describe a possible extension of our methodology that

would recognize and deal with situations where multiple faults occur.

As with other systems which reason based on previous cases, Epaion reasons even in the event

that the case library contains only one case. This becomes a problem if the only case in the library

case is unrelated to the input case. A simple solution to this is to require that no case may be

retrieved from the case library unless it exhibits a a level of similarity which is higher than a given

threshold value. An even better approach to the problem is to never allow the system to reason

unless it has been trained with several cases.

6.3 Future Work

The work presented in this thesis may be improved and extended in various ways.

6.3.1 Representing MOPs in U M A P

Currently each case in Epaion is represented in a memory organization packet (MOP) as imple

mented in [Riesbcck & Schank 1989]. This implementation uses a set of tables that maintain links

between MOPs such as specialization links, abstraction links, slots etc.

MOPs may be represented using the abstract data structures of LIMAP [Feyock and Karamouzis

1992], This can be done by defining a sparse N x N symbolic matrix, where N is the number of

MOPs. An entry in location i j denotes that MOP i is the specialization of MOP j and vice verse

(j is the abstraction of i). Finding the set of all abstraction MOPs for i is as easy as scanning

- 9 7 -

6 Discussion 6 3 Future Work

through row i, and scanning through column j gives all the specialization MOPs of j. All other

basic operations on MOPs may be based on this matrix. This representation would result in effi

cient operations on MOPs and efficient memoiy utilization. Additionally it would provide to the

developers o f the system with a better way to visualize the links between the MOPs and compre

hend the reasoner’s memory structure.

6.3.2 Prognostication

Automating the process o f predicting the future behavior o f physical systems is a difficult task

because physical faults manifest themselves in various ways and it is difficult to enumerate all

possible consequences. Current efforts to incorporate prognostication features in diagnostic sys

tems that reason from physical system models succeed in predicting the expected course events,

but are limited by the level o f detail of their models [Feyock & Karamouzis 1991]. For example, a

model-based reasoning system that has a model of an aiiplane’s functional and physical connec

tions among components may, after establishing that the fan in the left engine is the faulty compo

nent, predict that the fault will affect the operation of the compressor since there is a functional

link between the two components. Such a system is incapable, however, o f deducing that flying

fragments from the faulty fan may penetrate the fuselage and damage the right engine. Humans,

on the other hand, are good at making such predictions, since their reasoning is based not only on

pre-existing models of the world, but also on previous directly or vicariously experienced events

which remind them of the current situation.

The nature o f reasoning that takes place in CBR systems resembles the human ability of being

reminded; CBR systems therefore offer a prognostication capability similar to the one that humans

demonstrate. This capability, however, is limited to the knowledge contained in the retrieved case.

- 9 8 -

6 Discussion 6 3 Future Work

The methodology presented in this thesis offers a prognostication ability that is beyond the capa

bilities o f conventional CBR systems. This ability stems from the existence and utilization of the

models. For example, having achieved a match of the current situation with a previous case where

the faulty component was a malfunctioning fuel controller, the system will hypothesize that the

same fault is occurring. By referencing the world model it is able to predict that an engine flame-

out may occur, although that did not happen in the retrieved case, because the model may have

recorded at least one previous instance where this happened. The operator is provided with a list o f

possible consequences o f the fault along with a frequency count of each one.

6.3.3 Multiple Independent Faults

This thesis offers a reasoning methodology for dealing with abnormal behavior of physical sys

tems in operation, but always assumes that the observed symptoms derive from a single fault. Our

work can be extended to recognize multiple independent faults in the following way: When the

retrieved case fails to explain some o f the observed symptoms the system may stand by for addi

tional symptoms, or search the case library again for an additional match that will explain the

remaining symptoms. If a new case is found, its causal explanation will be used as if these symp

toms were the result o f another fault. Using the model the system will try to establish a relation

between the two faults by searching for a causal, structural, or functional link between them. If no

link is found it may be assumed that the system is experiencing multiple faults. In this situation the

rcasoner may retrieve an additional case from the library, one that would explain the additional

symptoms.

- 9 9 -

6 Discussion

6.3.4 Simulation and the Physical M odel

6 3 Future Work

We have indicated that our methodology uses a physical dependency digraph as one of its models.

This is a makeshift measure, however, due to the fact that physical fault propagation, being the

result of catastrophic component failures, is highly unpredictable. One expedient for dealing with

this unpredicatability is to refer to previous cases, as Epaion does; another is to utilize spatial sim

ulation models (SSMs) to determine the effect of uncontrolled energy releases. [Feyock & Li,

1990, 1992] describe the use of SSMs to predict both fluidic and energy leaks. These models,

which are easily interfaced with host systems, require only the identity of the faulty component,

which can be supplied by Epaion. The SSM then looks in the component database to determine the

location and type o f the component. If the component is of a type that can cause a fluid or energy

leak, the system uses this information to set the initial conditions for the simulation. The simula

tion is then run, and the physical propagation paths predicted by the SSM are extracted from the

run data.

In addition to addressing Hie chaotic nature of physical propagation, the use of simulation models

in conjunction with more traditional reasoning systems is prompted by a belief that deriving

answers to real-world questions by setting up the initial conditions of simulation models, running

the simulations, and extracting information from the results of the run, constitutes a powerful but

underutilized mode o f operation for AI systems.

- 1 0 0 -

6 Discussion 6.4 Conclusion

6.4 Conclusion

We have described a case-based reasoning methodology for fault diagnosis and prognosis o f phys

ical systems in operation. A hybrid reasoning process based on a library of previous cases and a

model of the physical system is used as basis for the reasoning process. This arrangement provides

the methodology with the flexibility and power of first-principle reasoners, coupled with the speed

of associational systems. Although domain independent, this work is being tested in the domain of

aircraft systems fault dia- and prognosis with very promising initial results.

A major concern of this project has been to create a system capable of achieving a practically use

ful level o f performance on a case base of significant size, thereby avoiding the "toy problem" trap

besetting many AI systems. The extensive use o f a classification hierarchy allows the system to

achieve 0(log n) search times, while the information abstraction attendant on accident reconstruc

tion produces space-efficient representations. The system is currently hosted on a desktop personal

computer, and is estimated to be capable of storing the full set of propulsion-related aircraft acci

dent for the last 20 years. These considerations, together with the encouraging level of success

achieved by Epaion, support the expectation that this system will prove to be an effective contrib

utor to aircraft safety.

- 1 0 1 -

Appendix A

LIMAP: A modeling tool

A.l Introduction

A representation is a set of syntactic and semantic conventions that make it possible to describe

things. Experience has shown that designing a good representation is often the key to turning hard

problems into simple ones. According to [Winston 1984] good representations:

Make important things explicit

• Expose natural constraints, facilitating some class of computations

• Are complete and concise

Facilitate computation. We can store and retrieve information rapidly.

• Suppress detail.

• Are computable by an existing procedure.

All representations must provide some way to denote objects and to describe the relations that

hold among them. Consequently, many representations are built around some form of semantic

net, since semantic nets denote objects and describe relations among them.

Most AI search/representation techniques are oriented toward a potentially infinite domain of

objects and arbitrary relations among them. Experience has shown that in reality much of what

needs to be represented in AI can be expressed using a finite domain and unary or binary predi

cates. Unary predicates can describe object attributes and binary predicates describe relations

among two objects.

- 1 0 3 -

A LIMAP: A modeling tool A.2 Matrices and Semantic Nets

Well-known vector- and matrix-based representations are appropriate for finite domains and

unary/binary predicates, since they satisfy the above-mentioned properties of a "good” representa

tion, and allow the extraction of path information by generalized transitive closurc/path matrix

computations. In this scheme vectors are used for unary relations and matrices for binary relations.

Unfortunately as the number of objects increases the size of matrices rapidly surpasses the amount

of available memory in most machines.

Overcoming memory limitations raises the need for abstract data types to represent sparse matri

ces. These are well suited for most applications, since semantic nets usually represent a limited

number of connections among objects, even when working in laige domains.

A.2 Matrices and Semantic Nets

A directed graph (digraph) is a 2-tuple <N, E>, where N is a finite set o f nodes, and E a finite set of

edges. An edge is a member <a, b> of N x N. A labeled digraph is a 3-tuple <N, E, L>, where N is

as before, L is a finite set of labels, and E is a finite set o f labeled edges, with labels in L. A labeled

edge (with label in L) <a, 1, b> is a member of N x L x N.

It is easy to see that digraphs arc a graphic representation of binary predicates over finite domains.

If P(x, y) is a predicate over domain D x D, then digraph G = <N, E> represents P if P(a, b) iff

<a, b> e E.

Whereas an unlabcled digraph can represent a single predicate, labeled digraphs whose label set is

a set of predicate names can represent multiple binary predicates over the same domain D x D

simply by letting edge <a, p, b> denote the fact that predicate p(a, b) is true; the absence o f such an

- 1 0 4 -

A LIMAP: A modeling tool A.2 Matrices and Semantic Nets

edge denotes that p(a, b) is false. Extending the notation, we allow edges to be labeled with sets o f

predicate names; an edge <a, {pt , ..., pn), b> is an abbreviation for the set of edges

<a, pi, b > ,..., <a, pn, b>. Labeled digraphs thus correspond to the familiar semantic net construct

of AI.

Given the problem of representing a unary predicate P(x) over a finite domain D o f fixed size n, an

obvious and familiar solution is to use boolean vectors, a.k.a. bit strips: for any di in D, P(dj) is

true (false) iff the i'th component of the vector representing P is a 1 (0). Boolean operations such

as AND, OR, and NOT on predicates over D are then representable by the corresponding opera

tions over bit strips, which are efficient on most computers. Similarly, binary predicates Q(x, y)

over D x D can be efficiently represented by N x N matrices whose ij element is 1 if Q(dj, dj) is

true, else 0.

Boolean matrices can in principle represent labeled digraphs: a separate matrix is assigned to each

label, and represents the subgraph of nodes connected by edges bearing that label. In practice this

representation can become unwieldy. The number of different labels may be large, resulting in

proliferation of adjacency matrices. Moreover, queries such as " is there any path (regardless o f

labels) from node a to node b?” require that the matrices for all labels be ORed together. An

answer to the follow-up query "w hat are these paths?” is even more difficult to generate from this

representation. Such considerations motivate the adoption of symbolic matrices as representation

for labeled digraphs. Element ij o f a symbolic matrix is P iff the arrow from d; to dj in the semantic

net has label P, else NIL.

- 1 0 5 -

A LIMAP: A modeling tool A.3 Implementation

A.3 Implementation

LIMAP (Lisp-based MAtrix Processor) is a set of Common LISP [Steele 1984] procedures that

define and manipulate a veclor/matrix-based knowledge representation. The user may represent

relations among objects using boolean or symbolic matrices/vectors. These matrices/vectors are

abstract data types that can represent data (boolean values or symbols) stored in arrays. The

semantic interpretation of this data is left to the user.

As is the case for a traditional database system, LIMAP’s capabilities are invoked via a language

interface that consists o f two parts. One is the data definition language (DDL) for specifying both

the data the system is to contain as well as "metadata;" i.e. information about the structure and

constraints that govern the data contained in the system. The other is the data manipulation lan

guage (DML), the subset of the language concerned with the specification o f queries and updates

on the data. We will categorize the LIMAP functions accordingly. As in Common LISP, LIMAP’s

functions and arguments arc not case sensitive.

A.3.1 DD L Operations

Figure A .l shows LIMAP’s data definition procedures, and their associated syntax.

DEFREL <relname> <specs> <type> <rep>
DELREL <relname>
<relname> ::= <symbolic atom>
<lypc> ::= Bmatnx I Smatrix I Bvector ISvector
<spccs> ::= (<length> <length>) I (<length>)
<lcngth> ::= <symbolic atom> 1 <integer>
<rep> ::= vector-rep I array-rep I sparse-rep

Figure 6.1: LIMAP's data definition procedures, and their associated syntax

- 1 0 6 -

A LIMAP: A modeling tool A.3 Implementation

DEFREL

The function defrel defines a relationship with name relname of type type and having particular

specifications. The actual data of the relation is stored in a system-generated variable and is repre

sented according to the rep field. Valid representations are array, vector, and sparse representa

tions. The representation is transparent to the user since s/he views all relationships according to

their type attribute. Valid type attributes are boolean matrices/vectors (Bmatrix/Bvector) and sym

bolic matrices/vectors (Smatrix/Svector). The specs field specifies the dimensions of the matrices/

vectors. Matrices are two-dimensional and vectors one-dimensional. When assigning the dimen

sions of a relation the system expects a list with one or two numbers or symbols. For a matrix def

inition the first number specifies the number o f rows and the second the number of columns. If a

symbol is specified the system expects that the symbol is the name of a set of values and substi

tutes the size of the set for the symbol. Following the definition a change in the size of the set does

not affect the dimensionality of the matrix/vector. Change of dimensionality is achieved via the

RESIZE function, as is explained later. The following example defines a matrix named “exam-

ple_mtrx" to be o f boolean type, have 4x4 elements represented as a list, a vector named "is_sen-

sor” to be of type boolean and have size of nine elements, and a matrix named “engine” to be a

symbolic matrix or size 9x9 and be represented as an array.

(setvar **comps* ‘(fan compressor combustor turbl turb2 N1 N2 EGT EPR))

(defrel ‘example_mtrx ‘(4 4) 'Bmalrix ‘sparse-rcp)

(defrel *is_sensor *(*comps*) ‘Bvector ‘vector-rep)

(defrel ‘engine ‘(9 *comps*) ‘Smatrix ‘array-rep)

Matrices/vectors o f boolean type are matrices/vectors where each of the elements is either a "0” or

“1”, representing false or true respectively. The elements of matrices/vectors which are declared as

symbolic can contain arbitrary s-cxpressions such as numbers, symbols, or lists. When a matrix is

declared as having array-rep representation the matrix is associated with a Common LISP two

- 1 0 7 -

A LIMAP: A modeling tool A.3 Implementation

dimensional array, and every operation on the matrix (such as a retrieval, multiplication etc) is per

formed on the two-dimensional array. A vector with a vector-rep representation is represented as a

one-dimensional array. Matrices/vectors having a sparse-rep representation are represented as

LISP lists. For example, if cxam plejntrx has only two elements, say a value 1 in row 10, column

30 and in row 33 column 90, then it is represented by the list ((10 30 I) (33 90 1)).

When a relation is defined using defrel it is placed in a system-maintained definition table which

maintains information about all the defined relations. Additionally, a system-generated variable is

bound to the data structure that will actually hold the data. This data structure is a list initialized to

nil if the representation is sparse-rep. When the representation is array-rep the data structure is an

array initialized with zeros or nil, depending on the type field. Matrices/vectors of boolean type are

initialized to all zeros, and symbolic matrices/vectors to all nils. Figure A.2 shows the contents of

the definition table after the above definitions. The path and flag fields are explained in a later sec

tion during the description of thepaf/is operation.

NAME SPECS TYPE REP PATH FLAG

example__mtrx (4 4) Bmatrix sparse-rep PO T

is_sensor (*comps*) Bvector vector-rep None None

engine (9 ’•'comps*) Smatrix array-rep PI T

Figure 6.2: Contents of the Definition Table

DELREL

The operation Delrel deletes a relation by extracting it from the definition table and disassociating

all data variables with the relation.

- 1 0 8 -

A LIMAP: A modeling tool

DML Operations

A.3 Implementation

Using the data manipulation language (DML) procedures the user may query a relation’s type,

specifications, representation, or the actual data stored. S/he may store/retrieve values to particular

locations, multiply two matrices, copy one matrix to another, invert, transpose, resize, clear, or

take the transitive closure o f a matrix. Figure A.3 tabulates the DML operations.

STORE and RETRIEVE

The function STORE allows the user to store a specific value to a particular location in some

matrix/vector. The user must specify the matrix/vector name, the value to be stored and the coordi

nates of the location in row-major order. The function returns the stored value. An error is returned

when there is a type mismatch between the value to be stored and the type of the matrix/vector.

RETRIEVE retrieves the contents of a particular location in a matrix/vector. In the event that that

the specified matrix/vector in not defined, both functions display an appropriate message and

return nil.

Example: (STORE ‘engine ‘N 0 5) stores the symbol “N” in location (0 5) of the symbolic matrix

“engine”, and returns “N”.

TYPE and REP

The functions TYPE and REP notify the user about the type and representation scheme o f a partic

ular matrix. The possible return values o f Type are Bmatrix, Bvector, Smatrix and Svector. REP

returns either array-rep, vector-rep or sparse-rep depending on the specified matrix/vector.

- 1 0 9 -

A LIMAP: A modeling tool A 3 Implementation

Predicate Argl Arg2 Arg3 Arg4 Arg5 Description

DEFTABLE [:ALL] [T] Display definition table

DISPLAY relname Display a relation

TYPE relnamc Relation’s type

DIMS relname Relation’s dimensions

REP relname Relation’s representation

DATA relnamc Relation’s data

DATA-NAME relname Relation’s data variable

STORE relnamc value [row] column Store value

RETRIEVE relname [row] column Retrieve contents

TCLOSE relname Transitive closure

PATHS relname row column [:NAME] [T] All paths

MULT relnamel rclname2 relname3 Multiply

FRANSPOSE relname 1 relname2 Transpose

CLEAR relname Initializes a relation

COMPLEMENT relnamel relname2 Relation’s complement

RESIZE relnamc specs Changes the dimensions

COPYREL relnamel relname2 Copy rcll into reI2

COLUMN column relname veclname Copy a column into a vector

ROW row relname vectname Copy a row into a vector

RELAND relnamel relname2 relname3 Logical AND

RELOR relnamel relname2 relname3 Logical OR

Figure 6.3: LIMAPs DML operations
Example: (TYPE ‘engine) and (REP ‘engine) return Smatrix and array-rep respectively.

- 1 1 0 -

A LIMAP: A modeling tool

DIMS, DATA and DATA-NAME

A.3 Implementation

The function DIMS returns a list o f the dimensions of a specified matrix/vector. This list contains

one number, the number of elements, for a vector and two numbers, the number of rows and the

number o f columns, when the specified structure is a matrix. Functions DATA and DATA-NAME,

respectively, return the data structure and the symbolic name o f the data structure that holds the

actual data of the specified abstracted matrix/vector. All of the above functions terminate grace

fully with an appropriate message when the specified matrix/vector is not defined.

Example: (DIMS ‘engine) returns (9 9) and (DIMS ‘engin) returns nil and displays the message

“*** From LIMAP, engin is not defined”.

(DATA-NAME ‘engine) returns “engine", while (DATA ‘engine) returns

nil N nil nil N N nil nil nil

nil nil N N nil nil N nil nil

nil nil nil N nil nil nil nil nil

nil N nil nil N nil nil nil nil

N nil nil nil nil nil nil N N

nil nil nil nil nil nil nil nil nil

nil nil nil nil nil nil nil nil nil

nil nil nil nil nil nil nil nil nil

nil nil nil nil nil nil nil nil nil

MULT

MULT is a function that allows the user to multiply two matrices,, a matrix and a vector or two

vectors o f the same type. The resulting matrix/vector is placed in a user-specified matrix/vector,

- I I I -

A LIMAP: A modeling tool A 3 Implementation

which constitutes the third argument in the function. If the specified matrices/vectors are not

defined, have incompatible types, or incompatible dimensions the function terminates gracefully

by displaying appropriate error messages. MULT operates on the following principle.

For boolean matrices/vectors such as b l an m x n, and b2 an n x r (MULT *b1 ‘b2 *b3):

b3[ij] = Y '/ChiN.b]. W J)

h=l

where f(x,y) = 1 if both x,y are 1, else 0

For symbolic matrices/vectors such as si an m x n, and s2 an n x r (MULT *sl ‘s2 ‘s3):

s3[ij] = y /(s ltilh]’s2th,i])
h = l

where f(x,y) = t if both x,y are non-nil, else nil

Examples: The following shows the contents of exam plejntrx before and after the operation

(MULT ‘example_mtrx ‘example_mtrx ‘example_mtrx).

n

n

Before: After:

1 1 1 1 1 1 1 1
1 1 1 1

1 1 1 11

- 1 1 2 -

A LIMAP: A modeling tool A 3 Implementation

Assuming that S 1, S2, and S3 are 4 x 4 symbolic matrices, the following shows the contents of S 1,

S2, and S3 after the operation (MULT ‘SI ‘S2 'S3).

SI: S2:

a nil nil nil b b

a nil nil nil nil nil

a nil nil nil nil nil

a nil nil nil nil nil

S3:

b b t t t t

nil nil t t t t

nil nil t t t t

nil nil t t t t

TRANSPOSE and COMPLEMENT

The functions TRANSPOSE and COMPLEMENT respectively transpose and complement a spec

ified matrixArector. TRANSPOSE works only on matrices, and COMPLEMENT inverts zeroes to

ones and vice-versa on boolean matrices/vectors. The resulting complemented matrix/vector

replaces the specified matrix/vector, but the result o f the transposition is placed in a new matrix

specified by the user. Successful termination of the above functions returns true.

Examples: The following shows the contents of examplejntrx before and after the operation

(TRANSPOSE 'example_mtrx ‘example_mtrx).

Before: After:

1 . 1 1 1 .

1

The contents of exam plejntrx before and after the operation (COMPLEMENT ‘example_mtrx

‘example_mtnc) is as follows:

- 1 1 3 -

A LIMAP: A modeling tool A.3 Implementation

Before: After:

1 . 1 1 1

1 . 1 1 1
1 . 1 1 1

1 1 1 1

CLEAR and COPYREL

CLEAR initializes the contents of a specified abstracted matrix/vector. Matrices/vectors of a bool

ean type are initialized to all zeroes and matrices/vectors of symbolic type to all nils. COPYREL

copies one matrix/vector to another. Both arguments must be of the same type and have the same

representation. The first argument is the source and the second the destination.

RESIZE

The function RESIZE changes the dimensions o f a specified matrix/vector. The first argument is

the specified matrix/vector and the second a list containing the new dimensions. After a RESIZE

operation that increases the size of the matrix/vector the matrix/vector retains its elements and the

newly created locations are initialized with the default values. The newly created locations are

appended at the ends of vectors, and the right and bottom margins o f matrices. A RESIZE opera

tion that decreases dimension sizes drops higher indexed elements. Thus following a RESIZE

operation where the new dimensions are smaller than the previous if the users tries to access loca

tions that don’t exist the operation returns nil and prints an out of range error message. Example: If

the contents of vector is_senxor (defined previously as a boolean vector of size 9) is:

Location: 0 1 2 3 4 5 6 7 8

Contents: 0 0 0 0 0 1 1 1 1

- 1 1 4 -

A LIMAP: A modeling toot A 3 Implementation

then after the operation (RESIZE *is_sensor '(11)) the contents o f the same vector will be:

Location: 0 1 2 3 4 5 6 7 8 9 10

Contents: 0 0 0 0 0 1 1 1 1 0 0

RELAND and RELOR

The logical functions RELAND and RELOR perform the logical AND and OR among two vec

tors/matrices. These vectors/matrices must be of a boolean type and have the same size. The result

of either function becomes the contents of the third aigument.

Example: The following shows the result of (RELAND ‘example_mtrx *other_mtrx ‘result_mtrx),

where the contens o f examplejntrx and otherjntrx is:

example other result
mtrx: mtrx: mtrx:

When examplejntrx and other jn tr x have the same contents as above, then following the opera

tion (RELOR ‘example_mtrx 'olher_mtrx ‘rcsultjntrx) the contents o f result jn tr x is:

1

1

1

1

1

1

1

1

example
mtrx:

other
mtrx:

result
mtrx:

1

1

1

1

1

1

1

11

- 1 1 5 -

A LIMAP: A modeling tool A 3 Implementation

DISPLAY, SHOW-ARRAY, and DEFTABLE

LIMAP provides the user with functions that allow him/her to view the contents of matrices/vec

tors. DISPLAY produces a formatted display of a matrix or a vector. In case the abstracted data

types are of symbolic type an "S” is displayed at the location that a symbol exists. In order to see

the actual symbols SHOW-ARRAY should be used. The function DEFTABLE displays the con

tents of the definition tabic, which contains all the defined matrices/vectors and their associated

attributes.

Example: The outputs of (DISPLAY ‘enginea) and (SHOW-ARRAY ‘enginea) are as follows:

(DISPLAY ‘enginea)(SHOW-ARRAY ‘enginea).

(DISPLAY ‘enginea) (SHOW-ARRAY ‘enginea)

0: . S . • s s . . . nil 1 nil nil 1 1 nil nil nil

1: . . S s . . s . . nil nil 1 1 nil nil 1 nil nil

2: * ♦ ♦ s nil nil nil 1 nil nil nil nil nil

3: . S . s nil 1 nil nil 1 nil nil nil nil

4: s . . . s s 1 nil nil nil nil nil nil 1 1

5: nil nil nil nil nil nil nil nil nil

6: nil nil nil nil nil nil nil nil nil

7: nil nil nil nil nil nil nil nil nil

8: nil nil nil nil nil nil nil nil nil

- 1 1 6 -

A LIMAP: A modeling tool

A.3.2 Path Operations: TCLOSE and PATHS

A.3 Implementation

The TCLOSE and PATHS operations form the core of LIMAP’s path manipulation capability. The

function TCLOSE calculates the transitive closure of a specific matrix. The transitive closure of a

matrix M is a matrix M* that contains an entry in location <a, b> iff the directed graph represented

by M contains a path (of length 0 or greater) from a to b. In LIMAP M* inherits M ’s type and rep

resentation attributes. Warshall’s Algorithm is an efficient method for computing M*t given a

matrix M. Intuitively, the algorithm scans the matrix top to bottom, left to right. If an entry is

encountered, say in row i, column j, then row i is replaced by row i OR row j, and the scan contin

ues from position ij. Figure 4 shows the code that performs the transitive closure for boolean and

symbolic matrices using Warshall’s Algorithm.

(DEFUN BTclose (rel); Function to compute transitive

(LET ((max (FIRST (dims rel))); closure of a boolean matrix

(DO ((k 0 (+ k 1))) ((= k max) nil); Scan top to bottom

(DO ((i 0 (+ i 1))) ((= i max) nil); Scan left to right

(COND ((= (retrieve rel i k) 1); If there is an entry

(DO ((j 0 (+ j 1))) ((= j max) nil)

(store rel (LOGIOR (retrieve rel i j); Swap i and j

(retrieve rel k j)) i j))

) ; Close DO

) ; Close COND

) ; Close DO

) ; Close DO

) ; Close LET

) ; Close BTclose

A LIMAP: A modeling loot A 3 Implementation

(DEFUN STclose (rel); Function to compute transitive

(LET ((max (FIRST (dims rel))); closure of a symbolic matrix

(DO ((k 0 (+ k 1))) ((= k max) nil); Scan top to bottom

(DO ((i 0 (+ i 1))) ((= i max) nil); Scan left to right

(COND ((NOT (NULL (retrieve rel i k))); If there is an entry

(DO ((j 0 (+j 1») ((= j max) nil)

(COND ((NOT (NULL (OR

(retrieve rel i j); If there is a symbol in (i, j)

(retrieve rel k j)))); OR in (k, j)

(store rel t i j))); Then flag that (i,j) are connected

) ; Close DO

) ; Close COND

) ; Close DO

) ; Close DO

) ; Close LET

) ; Close STclose

Figure 6.4: Code for transitive closure

- 1 1 8 -

A LIMAP: A modeling tool A.3 Implementation

Example: Let us assume that we have a network of four nodes labeled as 0, 1, 2, and 3. Assume

Figure 6.5: Example network

that there are direct connections from 0 to 1, 0 to 2, 1 to 2, 2 to 3, and 1 to 3 as indicated in

Figure A.5. The following displays how the network may be represented in a boolean matrix along

with the contents o f the same matrix after the transitive closure has been computed.

Exampte mtrx: A fter (TC LO SE
‘exam plejntrx):

1 1 1
1 1

1

A value o f 1 in locations (0 ,1), (0,2), (1,2), (1,3), and (2, 3) means that there is a direct connec

tion between the corresponding nodes. Following the operation o f transitive closure a value of 1 in

location (i, j) means that there is a connection from node i to node j . This connection may be direct

or indirect. An example of indirect connection is the connection between node 0 and 3. Such a

connection is achieved via node 1 or node 2 (Figure A.5).

1 1
1 1

1

- 1 1 9 -

A LIMAP: A modeling tool A.3 Implementation

Assuming that LIMAP’s matrices (boolean or symbolic) represent directed graphs, the function

PATHS returns all the paths between two specific nodes in a network. Besides the user-defined

attributes that characterize each matrix in LIMAP, every matrix is associated with an internal sys

tem matrix called the path matrix, and a flag field. When PATHS is invoked for the first time on a

particular matrix it does the following. First, using an extension of Warshall’s Algorithm, all possi

ble paths among every node in the matrix are calculated. A path is a list of node numbers. Tne

resulting lists of paths become the entries of the associated path matrix and the flag is set to nil. At

the end only the paths among the two specific nodes specified by the user are returned. A subse

quent request for paths need not recalculate all the paths, but merely retrieve the appropriate entry

from the path matrix. In case that there is a change in the contents of the user defined matrix (i.e. a

change in the graph) the flag field is set to “t" and a subsequent user request for paths triggers a

recalculation of the path matrix.

In order to operate on a symbolic matrix and produce a path matrix whose ij entry contains the set

of all paths from node i to node j, WarshaH’s algorithm was extended as Figure 6 indicates.

Let M be an NxN square matrix

for k=l to N ; Scan from top down

for i=l to N ; Scan from left to right

i f (i * k AND M[i,k] * ni l) then

for j= l to N

M [ijJ := UNION (M[i,j], LINK(M[i,k], M [k.j]))

Figure 6.6: Warshall’s Algorithm

In the algorithm of Figure 6, UNION is the normal union operation on sets and LINK operates on

lists o f paths. If p, q are paths where p = (vj vk) and q = (vk, . .. , vr) then LINK (p,q) returns

(V |, . . . ,v k, ... ,v T).

- 1 2 0 -

A LIMAP; A modeling tool A 3 Implementation

More precisely: let E(k) denote the set of all paths going through nodes numbered < k only (not

including the endpoints, which can be arbitrary). Then the original adjacency matrix represents

E(0). More precisely, the original matrix has the list ((i j)) in element ij if there is an arrow from i

to j, otherwise nil. (This discussion assumes vertices numbered from 1, although Common Lisp

dimensions are actually indexed from 0; in that case, the original matrix would represent E(-l).)

Warshall’s Algorithm scans the matrix from top to bottom, left to right. The scan of the k ’th col

umn computes E(k), as follows. When a non-nil element is encountered in an off-diagonal position

in column k, say at ik, that clement will be a list of E(k-l)-paths from node i to node k. Consider

arbitrary element ij of row i; it contains all E(k-l)-paths (if any) from i to j. Now that we also know

the E(k-l)-paths from i to k, we can reach j from i either by the E(k-1) paths in ij, or by going from

node i to node k, and then from node k to node j by any path (if any) in element kj. Such paths will,

o f course, be E(k) paths. Thus we add to the paths already at ij the link of all paths from i to k and

all paths from k to j.

Example: Assume that symbolic jn tr x is a 4 x 4 symbolic matrix that represents the network of

Figure 5. If the contents of symbolic jn tr x is as follows, then (PATHS 'example_mtrx 0 1) returns

"(0 1)’’, and (PATHS *symbolic_mtrx 0 3) returns “((01 3) (0 2 3) (0 1 2 3))”. The contents o f sym

bolic jn tr x and the internally maintained path matrix are:

symbolic_mlrx: corresponding path matrix:

0 1 2 3 0 1 2 3

0: nil 1 1 nil 0: nil ((0 1)) ((0 2)) ((0 1 3) (0 2 3) (0 1 2 3))

1: nil nil 1 1 1: nil « 1 2)) (d 3))

2: nil nil nil 1 2: nil nil nil ((2 3))

3: nil nil nil nil 3: nil nil nil nil

- 1 2 1 -

A LIMAP: A modeling tool A 3 Implementation

Following our exemplar definitions, Figure 7 displays the contents of the definition table including

the attributes of each path matrix (compare with figure 2). This is achieved by using the optional

all flag of the DEFTABLE function, i.e by calling (DEFTABLE rail t). In the path field o f the table

is stored the name of the associated path matrix. The associated path matrices have no value in the

flag field.

NAME TYPE SPECS REP PATH FLAC

0: example_mtrx (4 4) B matrix sparse-rep P0 T

1: P0 (4 4) Bmatrix sparse-rep None None

2: is_sensor (*comps*) Bvector vector-rep None None

3: engine (9 * comps*) Smatrix array-rep PI T

4: PI (9 *comps*) Smatrix array-rcp None None

Figure 6.7: Contents of the definition table

A.3.3 Control Structures

Queries of the form “is there a relation R such that nodes a and b are in relation R? “is there a path

from x to y? a path fulfilling constraint C? where can I go from x? how can I get to x?” arise fre

quently both in AI and elsewhere. Such queries, which involve quantification over relations, corre

spond to statements in the second-order predicate calcultis. This section describes the control

structures that make LIMAP an efficient second-order predicate calculus programming system.

The distinction between procedural and non-procedural predicate calculus specifications blurs if

the underlying domain is finite, since the FORALL and EXISTS quantifiers map in an obvious

way to loops ranging over the domain elements. It has been our goal to give the LIMAP data

manipulation language as non-procedural a character as possible. In particular, LIMAP notation is

an adaptation of the (function-less) predicate calculus, with extensions to allow data retrieval in

- 1 2 2 -

A LIMAP: A modeling tool A.3 Implementation

addition to data specification. For example, a “yes” answer to (EXISTS X) (FORALL Y) P(X,Y)

is insufficient; the actual X-value must be retrieved. We have found that minimal modifications of

the control macros described in [Chamiaket al., 1987] were suitable for the task of expressing the

required quantifications. Following is a summary of the general form of the control structure

implemented by these macros:

(FOR (<variable\> :IN <set\>)

(<variable^> :IN <jetn>)

[:WHEN <when-expression>]

<FOR-keyword> <expressioit\> . . . <expressionn>)

The expression\ following FOR-keyword are called the body o f the FOR. The construct (<vari-

able\> :IN <setf>) causes the variable to iterate over the elements of the set, which may be speci

fied as a list, a vector, or a matrix row or column. When there are several sets the FOR interates

over the elements of each set in the following way. Initially the first element o f each set is assigned

to the corresponding variablej and the body of the FOR is evaluated. Then the second element of

each set is assigned to the corresponding variable\ and the body is evaluated again. This is

repeated until some set runs out o f elements or the final value of the FOR is determined as gov

erned by the FOR-keyword.

FOR-keywords

: ALWAYSretum true if all the values of body are true

:FILTERproduce a list of the non-nil values of body

:FIRSTproduce the first non-nil value of body

:SAVEproduce a list of all values of body

While the description of these constructs is procedural in form, the effect when programming in

this notation is that o f writing FORALLs and EXISTS, with the proviso that any variable values

- 1 2 3 -

A LIMAP: A modeling toot A.4 Conclusion

that are found to "EXIST” are collected in accordance with the FOR-keyword and returned as

value. The following section contains an example application of LIMAP.

A.4 Conclusion

We have described a programming system oriented toward efficient information representation/

manipulation over fixed finite domains, and quantification over paths and predicates. The initial

motivation for the creation o f such a system was the fact that the need for such operations arose

frequently in the domain o f diagnosis/prognosis generation problem domain. Since then it has

become apparent that the facilities provided are applicable to problems both within and outside of

AI.

Our experience to date has shown that LIMAP is applicable to a wide range o f problems. While

LIMAP, if abused, is as capable of inefficient operation as any other misused programming sys

tem, we have found that for every problem yet attempted there has existed a LIMAP formulation

that was concise, comprehensible, and for which LIMAP’s facilities constituted an efficient prob

lem representation.

- 1 2 4 -

Appendix B

Case Library

B. 1 Fuel Metering Unit

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992].

The failure is a malfunctioning valve in the fuel metering system.

- 1 2 6 -

D Case Library B .l Fuel Metering Unit

Fault scenario FI
; Flight Deck Engine Advisor, Boeing document D6-55880, May 1991
»
{sctf +easel*
*(

; — Fault
(fault i-m-fucl-metering-unit)
(events m-group

(1 m-causal-event
(ante i-m-fuel-mctcring-unit)
(ensq i-m-fuel-flow))

(2 m-causal-cveni
(ante i-m-fucl-flow)
(ensq i-m-nl))

(3 m-causal-cvcnt
(ante i-m-nl)
(ensq i-m-n2))

(4 m-causal-cvcnt
(ante i-m-n2)
(ensq i-m-egl)))

(id “Boeing Test Flight F-l”)
(date“ l")
(airline “flight test data")
(flight “flight test data”)
(aircraft "flight test data")

; -- Context Variables
(phase-of-flight i-m-ground-start)
(weather i-m-clear)

(workload i-m-modcratc)
(enginc-commandcd-status i-m-start)

; — Symptoms
(egt m-group

(1 m-sensor-Tcading (status i-m-normal) (trend i-m-incTenscs))
(2 m-sensor-reading (status i-m-normal) (trend i-m-increases))
(3 m-sensor-reading (status i-m-high) (trend i-m-incTeascs))
(4 m-sensor-reading (status i-m-high) (trend i-m-inCTeases)))

(nl m-group
(1 m-sensor-reading (status i-m-normal) (trend i-m-increases))
(2 m-sensor-reading (status i-m-low) (trend i-m-increases))
(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-scnsor-rcading (status i-m-low) (trend i-m-stable)))

(n2 m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-increases))
(2 m-sensor-reading (status i-m-low) (trend i-m-incrcoscs))
(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))

(fucl-flow m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-incrcascs))
(2 m-scnsor-rcading (status i-m-low) (trend i-m-incrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))

)
)

- 1 2 7 -

B Case Library B.2 Fuel Boost Pump

B.2 Fuel Boost Pump

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992]. An

engine flameout occurred due to a fuel boost pump failure.

- 1 2 8 -

B Case Library B.2 Fuel Boost Pump

(self *case2*
*(

; — Solution Data
(fault i*m-fuel-boost-pump)
(events m-group
(1 m-causal-cvcnt

(ante i-m-fuel-boost-pump)
(ensq i-m-fucl-pressure))

(2 m-causal-evcnt
(ante i-m-fuel-pressure)

(ensq i-m-fuel-flow))
(3 m-causal-event

(ante i-m-fucl-flow)
(ensq i-m-nl))

(4 m-causal-cvcnt
(ante i-m-nl)
(ensq i-m-n2)))

; — Id features
(id "Boeing Test Flight F-2")
(date "2”)
(airline "flight test data")
(flight “flight test data")
(aircraft "flight test data")

; — Context Variables
(phasc-of-flight i-m-cruisc)
(workload i-m-light)

(cngine-commandcd-status i-m-stcady)

; — Symptoms
(nl m-group

(1 m-sensor-reading (status i-m-normal})
(2 m-sensor-reading (status i-m-normal))
(3 m-scnsor-Tcading (status i-m-low) (trend i-m-dccrcascs))
(4 m-sensor-reading (status i-m-low) (trend i-m-dccreases)))

(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-low) (trend i-m-decrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-decreascs)))

(fuel-flow m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-zcro))
(4 m-scnsor-rcading (status i-m-zero)))

(fuel-prcssure m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-decreascs))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreascs))
(3 m-scnsor-rcading (status i-m-zcro))
(4 m-sensor-rcading (status i-m-zcro)))

)
)

- 1 2 9 -

B Case Library B 3 Ice Ingestion

B.3 Ice Ingestion

This Is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992].

The failure was a foreign object damage due to light ice ingestion.

- 1 3 0 -

B Case Library B 3 Ice Ingestion

; Flight Deck Engine Advisor, Boeing document D6-55880, May 1991
(sett *case3*
’(
; — Solution Data
(fault i-m-ice-ingestion)
(events m-group
(1 m-causal-cvcnt
(ante i-m-ice-ingcstion)
(ensq i-m-fan-blade-damagc))
(2 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fon-rotor-imbalnncc))
(3 m-causal-event
(ante i-m-fan-rotor-imbalancc)
(ensq i-m-fan-vib))
(4 m-causal-event
(ante i-m-fan-vib)
(ensq i-m-compressor-vib))
(5 m-causal-event
(ante i-m-compTessor-vib)
(ensq i-m-thrust)))

(id "Boeing Test Right F-3")
(date “3’')
(airline “flight test data")
(flight “flight test data")
(aircraft “flight test data")
; — Context Variables
(phase-of-flight i-m-climb-out)
(weather i-m-icing)
(workload i-m-moderalc)
(cngine-commandcd-status i-m-climb-powcr)

; — Symptoms
(fan-vib m-group
(1 m-sensor-rcading (status i-m-high) (trend i-m-increases)))
(compressor-vib m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-increases)))
(thrust m-group
(1 m-sensor-reading (status i-m-low)))

(fan-vib-behavior-mop i-m-Iihhh)
(thrust-behavior-mop i-m-hhhh)
(compressor-vib-behavior-mop i-m-1111)
»

-1 3 1 -

B Case Library B.4 Ice Ingestion

B.4 Ice Ingestion

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992],

The failure was a foreign object damage due to moderate ice ingestion

- 1 3 2 -

B Case Library B.4 Ice Ingestion

; Fault scenario F4
; Right Deck Engine Advisor, Boeing document D6-55880, May 1991
i
(self *case4*
‘(
(fault i-m-ice-ingestion)
(events m-group

S I m-causal-event
ante i-m-ice-ingestion)

(ensq i-m-fan-blade-damnge))
(2 m-causal-event
(ante i-m-fan-blade-damage)
(ensq i-m-fan-rotor-imbalance))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-fan-vib))
(4 m-causal-event
(ante i-m-fan-vib)
(ensq i-m-comprcssor-vib))
(5 m-causal-event
(ante i-m-compressor-vib)
(ensq i-m-n2))
(6 m-causal-event
(ante i-m-n2)
(ensq i-m-luel-flow))
(7 m-causal-event
(ante i-m-n2)
(ensq i-m-egt))
(8 m-causal-event
(ante i-m-fuel-flow)
(ensq i-m-thrust)))

; — id features
(id "Boeing Test Right F-4")

; — Context Variables
(phase-of-flighti-m-climb-out)
(weather i-m-icing)
(workload i-m-moderate)
(engme-commanded-status i-m-climb-powcr)

; — Symptoms
(compTessor-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high)))
(thrust m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low) (trend i-m-increases)))
(fan-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high)))
(fuel-llow m-group
(1 m-scnsor-rcading (status i-m-low))
(2 m-sensor-reading (status i-m-low)))
(n2 m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-normal)))
(egt m-group
(1 m-scnsor-rcading (status i-m-low))
(2 m-scnsor-reading (status i-m-low)))

- 1 3 3 -

B Case Library 0 5 Ice Ingestion

B.5 Ice Ingestion

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992],

The failure was a foreign object damage due to heavy ice ingestion.

- 1 3 4 -

B Case Library B 5 Ice Ingestion

; ~ Solution Data
; (fault i-m-ice-ingestion)
; (events m-group
; (1 m-causal-event
; (ante i-m-icc-ingestion)
; (ensq i-m-fan-blade-damagc))
; (2 m-causal-event
; (ante i-m-fan-blade-damagc)
; (ensq i-m-fan-rotor-imbalance))
; (3 m-causal-event
; (ante i-m-fan-iotor-imbalance)
; (ensq i-m-broad-band-vib))
; (4 m-causal-event
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-nl))
; (5 m-causal-event
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-n2))
; (6 m-causal-event
; (ante i-m-n2)
; (ensq i-m-fuel-flow))
; (7 m-causal-event
; (ante i-m-fuel-flow)
; (ensq i-m-thnist))
; (8 m-causal-event
; (ante i-m-n2)
; (ensq i-m-egt)))

(id "Boeing Test Flight F-5”)
(date "5”)
(airline "flight test data")
(flight "flight test data”)
(aircraft "flight test data”)
; — Context Variables
(phase-of-flight i-m-cruise)

i weather i-m-icing)
workload i-m-moderate)

(engine-commanded-status i-m-climb-power)

; — Symptoms
(nl m-group
(1 m-sensor-reading (status i-m-norma])))
(n2 m-group
(1 m-sensor-reading (status i-m-low)))
(egt m-group
(1 m-sensor-rcading (status i-m-low)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-low)))
(thrust m-group
(1 m-sensor-reading (status i-m-low)))
(broad-band-vib m-group
(1 m-sensor-reading (status i-m-high)))

)

- 1 3 5 -

B Case Library B.6 Volcanic Ash Ingestion

B.6 Volcanic Ash Ingestion

This is a propulsion failure scenario staged at Boeing Inc. and reported in [Shontz et. al. 1992]. An

engine flameout occurred due to volcanic ash ingestion producing fuel nozzle clogging.

- 1 3 6 -

B Case Library B.6 Volcanic Ash Ingestion

; Fault scenario F6
; Flight Deck Engine Advisor, Boeing document D6-55880, May 1991
(setf*casc6',,
‘(
; — Solution Data
(fault i-m-volcanic-ash-ingcstion)
(events m-group
(1 m-causal-cvcnt
(ante i-m-volcanic-ash-ingestion)
(ensq i-m-fan-blade-dnmnge))
(2 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalancc))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-nl))
(4 m-causal-cvent
(ante i-m-fan-rotor-imbalance)
(ensq i-m-n2))
(5 m-causal-event
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event
(ante i-m*n2)
(ensq i-m-egt)))

(id "Boeing Test Flight F-6")
(date "6’’)
(airline "flight test data")
(flight “flight test data")
(aircraft "flight test data")
; — Contest Variables
(phase-of-flight i-m-dcsccnt)
(weather i-m-cloudy)
(workload i-m-moderate)
(cngine-commanded-status i-m-max-powcr)

; — Symptoms

(ash-cloud i-m-visible)
(fuel-flow m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-increases))
(2 m-sensor-reading (status i-m-high) (trend i-m-increases))
(3 m-scnsor-rcading (status i-m-high) (trend i-m-increases))
(4 m-sensor-reading (status i-m-high) (trend i-m-increases)))
(nl m-group
(l m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-sensor-Teading (status i-m-low) (trend i-m-decreases)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccreases))
(4 m-sensor-reading (status i-m-low) (trend i-m-dccreases)))
(egt m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-Teading (status i-m-high) (trend i-m-increases))
(4 m-sensor-reading (status i-m-high) (trend i-m-increases)))

)
)

- 1 3 7 -

B Case Library

B.7 Foreign Object Ingestion

B.7 Foreign Object Ingestion

On November 12, 1975, an Overseas National Airways DC-10-30 (Flight 32) crashed while

attempting to take off from John F. Kennedy International Airport, Jamaica, New York [NTSB-

AAR-76-19J. During the m takeoff roll a large number o f sea gulls rose from the runway and were

ingested into the engine. The number 3 engine disintegrated. The takeoff was rejected and the air

craft crashed off the end o f the runway. The NTSB determined that the probable cause of the acci

dent was the disintegration and subsequent fire in the number 3 engine when it ingested a latge

number of sea gulls.

- 1 3 8 -

B Case Library B.7 Foreign Object Ingestion

; Overseas National Airways
; NTSB-AAR-76-19
(self *casell*
*<
; - Solution Data
(fault i-m-bird-ingestion)
(events m-group
(1 m-causal-event
(ante i-m-bird-ingestion)
(ensq i-m-fan-blade-damoge))
(2 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalancc))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-nl))
(4 m-causal-cvent
(ante i-m-fan-rotor-imbalance)
(ensq i-m-n2))
(5 m-causal-event
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event
(ante i-m-n2)
(ensq i-m-egt))
(7 m-causal-event
(ante i-m-fuel-flow)
(ensq i-m-epr)))
; — id features
(id "Overseas National Airways F-32")
(date "November 12,1975”)
(airline "Overseas National Airways")
(flight "Flight 32")
(aircraft "DC-10-30”)
; — Context Variables
(phase-of-flight i-m-takc-off)
; — Symptoms
(fuel-flow m-group
(1 m-sensor-reading (status i
(2 m-sensor-reading (status
(3 m-sensor-reading (status
(4 m-sensor-reading (status
(nl m-group
(1 m-sensor-reading (status
(2 m-sensor-reading (status
(3 m-sensor-reading (status
(4 m-sensor-reading (status
(n2 m-group
(1 m-sensor-reading (status
(2 m-scnsor-Tcading (status
(3 m-sensor-reading (status
(4 m-sensor-reading (status
(egt m-group
(1 m-sensor-reading (status
(2 m-sensoT-rcading (status
(3 m-sensor-reading (status
(4 m-sensor-reading (status
(epr m-group
(1 m-sensor-reading (status
(2 m-sensor-reading (status
(3 m-sensor-reading (status
(4 m-sensor-reading (status

-m-normal))
-m-fluctuates))
-m-fluctuales))
-m-low)))

-m-fluctuates))
-m-high) (trend i-m-fluctuales))
m-high) (trend i-m-decreascs))
m-low) (trend i-m-stable)))

-m-normal))
-m-high) (trend i-m-fluctuates))
-m-high) (trend i-m-decreases))
m-low) (trend i-m-stable)))

m-normal))
m-high) (trend i-m-fluctuates))
•m-high) (trend i-m-fluctuates))
m-high) (trend i-m-stable)))

m-normal))
m-high) (trend i-m-fluctuates))
m-high) (trend i-m-decreases))
m-low) (trend i-m-stable)))

- 1 3 9 -

B Case Library

B.8 Fan Blade Damage

B .8 Fan Blade Damage

On January 8,1989, a British Midland Airways Boeing 737-400 (G-OBME) was climbing through

28,300 feet when the outer panel of one blade in the fan of the No 1 Cleft) engine detached. This

gave rise to a series of compressor stalls in the No 1 engine, which resulted in airframe shudder

ing. Believing that the No 2 engine had suffered damage, the crew shut that engine down. The

shuddering caused by the surging of the No 1 engine ceased as soon as the No 2 engine was throt

tled back, which persuaded the crew that they had dealt correctly with the emergency. The aircraft

struck a field.

- 1 4 0 -

B Case Library B,8 Fan Blade Damage

; Midlands Accident G-OBME
; Air Accident Report 4/90, Department of TVansport
(self *casel2lt'
'{
; — Solution Data
(fault i-m-fan-blade-damagc)
(events m-group
(1 m-causal-event
(ante i-m-fan-blade-damage)
(ensq i-m-fan-rotor-imbalance))
(2 m-causal-event
(ante i-m-fan-rotor-imbaloncc)
(ensq i-m-fan-vib))
(3 m-causal-event
(ante i-m-fan-vib)

Scnsq i-m-nl))
4 m-causal-event

(ante i-m-fan-vib)
(ensq i-m-n2»
(5 m-causal-event
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event
(ante i-m-n2)
(ensq i-m-egt)))
; — id features
(id "Midlands Airways 1989 G-OBME”)
(date "January 1989")
(airline "Midlands Airways”)
(aircraft "Boeing 737-400”)
(engine "General Electric CFM56")
; — Context Variables
(phase-of-flight i-m-climb-out)
; — Symptoms
(fan-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-Iow))
(4 m-sensor-reading (status i-m*low)))
(nl m-group
(1 m-sensor-reading (status i-m-fluctuates))
(2 m-sensor-reading (status i-m-high) (trend i-m-fluctuates))
(3 m-sensor-reading (status i-m-high) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-!ow) (trend i-m-stable)))
(n2 m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-scnsor-rcading (status i-m-high) (trend i-m-fluctuates))
(3 m-sensor-reading (status i-m-high) (trend i-m-decreases))
(4 m-sensor-reading (status i-m-Iow) (trend i-m-stable)))
(egt m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))

)
)

- 1 4 1 -

B Case Library

B.9 Fan Blade Damage

B.9 Fan Blade Damage

On June 9, 1989, a Dan Air Boeing 737-400 (G-BNNL) suffered a failure in the number 1 engine

[AAIB-AAR-4/90]. The crew identified the failed engine correctly and completed a full shut

down drill. Examination of the engine after landing showed that the fan had been massively dam

aged, with severe damage to the leading edges of all blades. One blade had fractured close to the

root and another just below the midspan shroud, both entirely by overload rupture. There was a

third blade fracture, however, just above the mid-span shroud which appeared to be very similar to

a blade from number 1 engine of ME.

- 1 4 2 -

B Case Library B.9 Fan Blade Damage

; Dan Air G-BNNL
; Air Accident Report 4/90, Deportment of Transport
(setf *casel3*
'(
; — Solution Data
(fault i-m-fan-bladc-domagc)
(events m-group
(1 m-causal-event
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalance))
(2 m-causal-event
(ante i-m-fan-rotor-imbalancc)
(ensq i-m-fan-vib))
(3 m-causal-event
(ante i-m-fan-vib)
(ensq i-m-nl))
(4 m-causal-event
(ante i-m-fan-vib)
(ensq i-m-n2))

(5 m-causal-event
(ante i-m-n2)
(ensq i-m-fuel-flow))
(6 m-causal-event
(ante i-m-n2)
(ensq i-m-egt)))
; — id features
(id "Dan Air 1989 G-BNNL")
(date “June 9.1989")
(airline "Dan Air")
(aircraft "Boeing 737-400")
(engine "General Electric CFM56”)
; — Context Variables
(phase-of-flight i-m-climb-out)
(engine-commanded-status i-m-climb-power)
; — Symptoms
(fan-vib m-group
(1 m-sensor-reading (status i-m-high))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))
(nl m-group; n
(1 m-sensor-reading (status i-m-fluctuates))
(2 m-sensor-reading (status i-m-Iow) (trend i-m-fluctuatcs))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group; n
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-Iow) (trend i-m-fluctuatcs))
(3 m-sensor-reading (status i-m-low) (trend i-m-decrcascsj)
(4 m-sensoT-reading (status i-m-low) (trend i-m-stable)))
(egt m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))

)
)

- 1 4 3 -

B Case Library

B.10 Fan Blade Damage

B.JO Fan Blade Damage

On June 11,1989, a British Midland Airways Boeing 737-400 (G-OBMG) suffered a failure in the

number 2 engine [AAIB-AAR-4/90], The aircraft landed successfully. Examination of the number

2 engine revealed that the outer panel of one fan blade had detached outboard of the mid-span

shroud and become lodged in the space between the fan and fan outlet guide vanes. Some damage

had occurred to the fan abradable liner and the forward acoustic panels, but apart from this there

appeared to have been very little damage to the engine. It was also found that there had been loos

ening of several pipe unions and of the MEC to fuel pump attachment nuts.

- 1 4 4 -

B Case Library B.10 Fan Blade Damage

; Midland Airways O-OBMO
; Air Accident Report 4/90, Department of Transport
(setf *casel4*
‘(
; — Solution Data
; (fault i-m-fan-blade-damagc)
; (events m-group
; (1 m-causal-event
; (ante i-m-fan-blade-damage)
; (ensq i-m-fan-rotor-imbalnncc))
; (2 m-causal-event
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-fan-vib))
; (3 m-causal-event
; (ante i-m-fan-vib)
; (ensq i-m-nl))
; (4 m-causal-event
; (ante i-m-fan-vib)
; (ensq i-m-n2))
; (5 m-causal-cvent
; (ante i-m-n2)
; (ensq i-m-fuel-flow))
; (6 m-causal-event
; (ante i-m-n2)
; (ensq i-m-egt)))
; — id features
(id "Midland Airways 1989 G-OBMG")
(date "June 11, 1989")
(airline “Midland Airways")
(aircraft “Boeing 737-400")
(engine “General Electric CFM56")
; — Context Variables
(phase-of-flight i-m-climb-out)
(engine-commandcd-status i-m-climb-powcr)
; — Symptoms
(fan-vib m-group
(1 m-sensor-reaaing (status i-m-high))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-sensor-reading (status i-m-high)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-norma]))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))
(nl m-group
(1 m-sensor-reading (status i-m-fluctuatcs))
(2 m-sensor-reading (status i-m-high) (trend i-m-fluctuates))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-high) (trend i-m-fluctuatcs))
(3 m-sensor-reading (status i-m-high) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(cgt m-group
(1 m-sensor-reading (status i-m-normol))
(2 m-sensor-reading (status i-m-high))
(3 m-sensor-reading (status i-m-high))
(4 m-scnsor-rcading (status i-m-high)))

)
)

- 1 4 5 -

B Case Library B J1 Turbine Blade Separation

B. 11 Turbine Blade Separation

On July 19, 1970, a United Airlines’ Boeing 737-222 (Flight 611) crashed shortly after taking off

from the Philadelphia International Airport [NTSB-AAR-72-9]. During takeoff, the number 1

engine failed. The captain thought that both engines were spooling down and reasoned that they

both had failed. Therefore, he decided to reject the takeoff and land the aircraft on the existing run

way. The aircraft came to a stop past the end of the runway. The NTSB determined that a first stage

turbine blade had failed in the number 1 engine which caused the engine to cease rotation. The

number 2 engine was operable throughout the flight.

- 1 4 6 -

B Case Library B.IJ Turbine Blade Separation

; United Airlines 1970
; Air Accident Report 4/90, Department of Transport
j (self *cascI5*

^; — Solution Data
(fault i-m-turbine-blade-scparntion)
(events m-group
(1 m-causal-event
(ante i-m-turbine-blade-separation)
(ensq i-m-turbine-rotor-imbalance))
(2 m-causal-event
(ante i-m-turbine-rotor-imbalance)
(ensq i-m-nl))
(3 m-causal-event
(ante i-m-turbine-rolor-imbalancc)
(ensq i-m-n2))
(4 m-causal-event
(ante i-m-n2)
(ensq i-m-fuel-flow))
(5 m-causal-event
(ante i-m-fuel-flow)
(ensq i-m-epr))
(6 m-causal-event
(ante i-m-n2)
(ensq i-m-cgt)))
; — id features
(id "United Airlines F-611")
(date "July 19,1970")
(airline "United Airlines”)
(aircraft "Boeing 737-222")
(flight “611”)
; — Context Variables
(phase-of-flight i-m-climb-oul)
(engine-commanded-status i-m-climb-power)
; — Symptoms
(epr m-group
(1 m-scnsor-rcading (status i-m-low) (trend i-m-dccrcases))
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))
(fuel-flow m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-TCading (status i-m-low) (trend i-m-decreases)))
(nl m-group
(1 m-sensor-reading (status i-m-low) (trend i-m-decrcases)))
(n2 m-group
(1 m-sensor-reading (status i-m-Iow) (trend i-m-decreases))
(2 m-sensor-reading (status i-m-zero))
(3 m-sensor-reading (status i-m-zero))
(4 m-sensor-reading (status i-m-zero)))
(egt m-group
(1 m-sensor-Teading (status i-m-normal))
(2 m-sensor-reading (status i-m-high) (trend i-m-increascs))
(3 m-sensor-reading (status i-m-high) (trend i-m-stablc))
(4 m-sensor-reading (status i-m-high) (trend i-m-decTeases)))

)
)

- 1 4 7 -

B Case Library B.12 Turbine Blade Separation

B. 12 Turbine Blade Separation

On May 21, 1978 an American Airlines’ Boeing 727 (Flight 566) experienced a engine failure in

its number one engine just after rotation on take-off from Greater Cincinnati airport, Cincinnati,

Ohio [SchutteJ. The captain performed emergency shut-down procedures on the engine and

returned to the airport. The National Transportation Safety Board determined that the engine fail

ure was caused by several turbine blade separations. Just after rotation the captain noted that EGT

was increasing and then started decreasing.

- 1 4 8 -

B Case Library B.12 Turbine Blade Separation

; American Airlines 1978
>
(sctf *casel6*
'(
; — Solution Data

; (fault i-m-turbine-bladc-separation)
; (events m-group
; (1 m-causal-cvcnt
; (ante i-m-turbine-bladc-scparation)
; (ensq i-m-turbine-rotor-imbalancc))
; (2 m-causal-event
; (ante i-m-turbine-rotor-imbalancc)
; (ensq i-m-nl))
; (3 m-causal-evcnt
; (ante i-m-turbine-rotor-imbalance)
; (ensq i-m-n2))
; (4 m-causal-evcnt
; (ante i-m-n2)
; (ensq i-m-fuel-llow))
; (5 m-causal-event
; (ante i-m-fuel-flow)
; (ensq i-m-epr))
; (6 m-causal-evcnt
; (ante i-m-n2)
; (ensq i-m-egt)))

; — id features
(id "American Airlines F-566”)
(date "May 21,1978")
(airline “American Airlines")
(aircraft "Boeing 727")
(flight "566")
; — Context Variables
(phase-of-flight i-m-takc-off)
(engine-commanded-status i-m-take-ofi)
; -- Symptoms
(epr m-group
(1 m-sensor-rcading (status i-m-normal))
(2 m-sensor-reading (status i-m-high) (trend i-m-increases))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-scnsor-rcading (status i-m-low)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-sensor-reading (status i-m-low)))
(nl m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-dccreascs))
(3 m-sensor-reading (status i-m-Iow) (trend i-m-decreases))
(4 m-scnsor-rcading (status i-m-low) (trend i-m-decrcascs)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-scnsor-rcading (status i-m-low) (trend i-m-dccrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccreascs))
(4 m-scnsor-rcading (status i-m-Iow) (trend i-m-decreases)))
(cgt m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-incrcoscs))
(2 m-scnsor-rcading (status i-m-high) (trend i-m-increases))
(3 m-scnsor-rcading (status i-m-high) (trend i-m-dccrcascs))
(4 m-scnsor-rcading (status i-m-Iow) (trend i-m-dccrcascs)))

)
)

- 1 4 9 -

B Case Library

B. 13 Engine S eparation

B.13 Engine Separation

On May 25, 1979 an American Airlines DC-10-10 (Flight 191) crashed into an open field north

west of Chicago-O’Hare International Airport [NTSB-AAR-79-17]. During takeoff rotation, the

left engine and pylon assembly, and about 3 feet of the leading edge o f the left wing separated

from the aircraft. The aircraft began to roll to the left until the wings were past the vertical posi

tion. During the roll, the aircraft’s nose pitched down below the horizon and crashed. The NTSB

determined that the probable cause of this accident was the asymmetrical stall and the ensuing roll

o f the the aircraft at a critical point during takeoff. This was caused by the uncommanded retrac

tion of the left wing outboard leading edge slats and the loss of the stall warning and slat disagree

ment indication systems resulting from separation of the number 1 engine and pylon assembly.

The NTSB determined that the accident would have been survivable had the flight crew known

that the stall warning and the slat disagreement indication systems were inoperative.

- 1 5 0 -

B Case Library B.13 Engine Separation

; American Airlines 1979
; Engine Separation
(setf*casel7*
‘<
; — Solution Data
(fault i-m-engine-scparation)
(events m-group
(1 m-causal-event
(ante i-m-engine-scparation)
(ensq i-m-egt))
(2 m-causal-evcnt
(ante i-m-engine-scparation)
(ensq i-m-nl))
(3 m-causal-evcnt
(ante i-m-cngine-separntion)
(ensq i-m-n2))
(4 m-causal-evcnt
(ante i-m-engine-separation)
(ensq i-m-fuel-flow))
(5 m-causal-event
(ante i-m-engine-separation)
(ensq i-m-epr)))

; — id features
(id “American Airlines F-191”)
(date “May 25,1979")
(airline “American Airlines")
(aircraft "DC-10-10")
(flighf'191")
; — Context Variables
(phase-of-flight i-m-takc-off)
(engine-commanded-status i-m-toke-ofl)
; — Symptoms
(cpr m-group
(1 m-sensor-reading (status i-m-zero)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-zcro)))
(n l m-group
(1 m-sensor-reading (status i-m-zero)))
(n2 m-group
(1 m-sensor-reading (status i-m-zero)))
(cgt m-group
(1 m-sensor-reading (status i-m-zcro)))

)
)

- 1 5 1 -

B Case Library

B.14 Bad Fuel Controller

B.14 Bad Fuel Controller

On February 19, 1985 a China Airlines’ Boeing 747 (Flight 006) was cruising on autopilot when

the crew diagnosed a flame-out in the number four engine [NTSB-AAR-86-03]. The engine, had a

bad fuel controller and had not flamed out but was suffering from a condition known as “bleed-air

hogging.” The crew became preoccupied with the failure and did not notice that the controls on the

autopilot had reached their maximum allowable correction and that the aircraft was engaged in a

right bank. When the captain tried to correct for the problem, he reasoned that all of the attitude

indicators had failed (they had not). The ensuing actions put the aircraft into a vertical dive. Dur

ing the dive the crew made a third mis-diagnosis that all of the engines were flamed-out (in fact,

only one engine had flamed out and it is this engine that is used in this case). Finally the captain

regained control of the aircraft and all engines were “restarted." The aircraft suffered severe stress

damage and made a safe landing in San Francisco. The NTSB determined that the accident was

caused by a faulty fuel controller and the flight crew’s poor monitoring of systems.

- 1 5 2 -

B Case Library B.14 Bad Fuel Controller

; China Airlines 006
; NTSB-AAR-86-03
(self *cascl8*
‘<

; — Fault
; (fault i-m-fuel-controllcr)
; (events m-group
; (I m-causal-event
; (ante i-m-fuel-controller)
; (ensq i-m-fuel-flow))
; (2 m-causal-event
; (ante i-m-fuel-flow)
; (ensq i-m-nl))
; (3 m-eausal-event
; (ante i-m-nl)
; (ensq i-m-n2))
; (4 m-causal-cvent
; (ante i-m-n2)
; (ensq i-m-egt))
; (5 m-causal-event
; (ante i-m-fuel-flow)
; (ensq i-m-epr)))

(id “China Air F-006")
(date "February 19")
(airline "China Air”)
(flight “006")
(aircraft "Boeing 747")

; — Context Variables
(phase-of-flight i-m-cruisc)
(workload 1-m-high)
(engine-commanded-status i-m-mid-powcr)
; — Symptoms
(egt m-group
(1 m-sensor-reading (status i-m-normal) (trend i-m-dccreascs))
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-scnsor-rcading (status i-m-Iow) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(nl m-group
(1 m-scnsor-rcading (status i-m-normal) (trend i-m-dccreascs))
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group
(1 m-scnsor-rcading (status i-m-normal) (trend i-m-decreases))
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-sensor-reading (status i-m-Iow) (trend i-m-dccrcases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(epr m-group
(1 m-scnsor-rcading (status i-m-normal) (trend i-m-decreases))
(2 m-sensor-reading (status i-m-low) (trend i-m-dccrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(fuel-flow m-group
(1 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(2 m-sensor-reading (status i-m-low) (trend i-m-stable))
(3 m-sensor-rcading (status i-m-low) (trend i-m-decreases))
(4 m-scnsor-rcading (status i-m-low) (trend i-m-stable)))

- 1 5 3 -

B Case Library

B. 15 Volcanic Ash Ingestion

B.15 Volcanic Ash Ingestion

On December 15, 1989 a Boeing 747-400 was flying at 25,000 feet near Anchorage, Alaska when

it experienced flameouts on all four engines [Lloyd 1990]. The flameouts were due to volcanic ash

ingestion from a cloud produced by an eruption of Mt. Redoubt during the previous day. The flight

crew restarted engines No 1 and 2 at 13,000 feet and were able to maintain altitude as they

restarted the remaining engines. The airplane made an uneventful landing at Anchorage.

- 1 5 4 -

B Case Library B.15 Volcanic Ash Ingestion

; Mount Redoubt, 1989
(sctf *casel9*
'(
; — Solution Data
(Fault i-m-volcanic-ash-ingcstion)
(events m-group
(1 m-causal-event
(ante i-m-volcanic-ash-ingcstion)
(ensq i-m-fan-blade-damage))
(2 m-causal-event

(ante i-m-fan-bladc-damagc)
(ensq i-m-fan-rotor-imbalance))

(3 m-causal-event
(ante i-m-fan-rotor-imbalancc)
(ensq i-m-nl))

(4 m-causal-cvent
(ante i-m-fan-rotor-imbalancc)
(ensq i-m-n2))

(5 m-causal-event
(ante i-m-n2)
(ensq i-m-egt)))

(id “Mount Redoubt”)
(date "December 15,1989”)
(aircraft “Boeing 747-400”)
(engine “General Electric CF6-80-C2”)
; — Context Variables
(phnse-of-flight i-m-dcscent)
(weather i-m-cloudy)
; — Symptoms

(glow-in-engines i-m-visible)
(smoke i-m-visible)
(nl m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-Iow)))
(n2 m-group
(1 m-sensor-reading (status i-m-Iow))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-Iow))
(4 m-sensor-reading (status i-m-Iow)))
(egt m-group
(1 m-scnsor-rcading (status i-m-Iow))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-reading (status i-m-Iow))
(4 m-sensor-reading (status i-m-Iow)))
(epr m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-Iow))
(3 m-sensor-rcading (status i-m-Iow))
(4 m-sensor-reading (status i-m-low)))

)
)

- 1 5 5 -

B Case Library

B. 16 Volcanic Ash Ingestion

B.16 Volcanic Aslt Ingestion

In June 1982, the Galunggung Volcano on the island of Java erupted. A Boeing 747 encountered

the volcanic debris and experienced fiame-outs on three engines while the aircraft was at 33,000

feet. One engine was successfully restarted and an uneventful two-engine landing was accom

plished [Lloyd 1990].

- 1 5 6 -

B Case Library B.16 Volcanic Ash Ingestion

; Galunggung, 1982
(sctf *case20*
*<
; — Solution Data
; (fault i-m-volcanic-ash-ingcstion)
; (events m-group
; (1 m-causal-event
; (ante i-m-volcanic-ash-ingcstion)
; (ensq i-m-fan-blade-damage))
; (2 m-causal-event
; (ante i-m-fan-blade-damagc)
; (ensq i-m-fan-rotor-imbalancc))
; (3 m-causal-event
; (ante i-m-fan-iolor-imbalance)
; (ensq i-m-nl))
; (4 m-causal-event.
; (ante i-m-fan-ro tor-imbalance)
; (ensq i-m-n2))
; (5 m-causal-event
; (ante i-m-n2)
; (ensq i-m-egt)))

(id "Galunggung")
(date “June 1982")
(aircraft “Boeing 747”)
(engine “P&W JT9D-7As”)
; — Context Variables
; — Symptoms

(glow-in-engines i-m-visible)
(nl m-group
(1 m-sensor-reading (status i-m-Iow))
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-Iow)))
(n2 m-group
(1 m-scnsor-rcading (status i-m-Iow))
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-Iow))
(4 m-sensor-reading (status i-m-!ow)j)
(egt m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low))
(3 m-scnsor-rcading (status i-m-Iow))
(4 m-scnsor-rcading (status i-m-Iow)))
(epr m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low))
(3 m-sensor-reading (status i-m-low))
(4 m-sensor-reading (status i-m-low)))

)
)

- 1 5 7 -

B Case Library

B. 17 Massive Water Ingestion

B.17 Massive Water Ingestion

On April 4, 1977 a Southern Airways DC-9 (Flight 242) crashed in New Hope, Georgia [NTSB-

AAR-78-3]. The aircraft had flown through heavy thunderstorms and had lost both engines. The

crew attempted an emergency landing on a highway and crashed. The NTSB determined that mas

sive water ingestion into the engines accompanied by thrust level movement induced severe stall

ing in and major damage to the engine compressors. The NTSB determined that the aircraft might

have been able to survive the weather had the flight crew not made significant movements in the

thrust level.

- 1 5 8 -

B Case Library B.17 Massive Water Ingestion

; Southern Airways F-242
; NTSB-AAR-78-3
(setf *case21*
*(
; — Solution Data
; (fault i-m-water-ingestion)
; (events m-group
i (1 m-causal-evcnt
; (ante i-m-water-ingcstion)
; (ensq i-m-fan-blade-damage))
; (2 m-causal-event
j (ante i-m-fan-blade-damagc)
; (ensq i-m-fan-rotor-imbalance))
; (3 m-causal-event
; (ante i-m-fan-rotor-imbalance)
; (ensq i-m-nl))
; (4 m-causal-event
; (ante i-m-fan-rotor-imbalancc)
; (ensq i-m-n2))
; (5 m-causal-evcnt
; (ante i-m-n2)
; (ensq i-m-egt))
; (6 m-causal-event
; (ante i-m-n2)
; (ensq i-m-fuel-flow)))
; (7 m-causal-evcnt
; (ante i-m-77)
; (ensq i-m-epr)))

(id ‘‘Southern Airways F-242")
(date‘‘April 4,1977")
(aircraft “DC-9")
; — Context Variables
(temp i-m-frcczing)
; - Symptoms

(nl m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(3 m-sensor-Teading (status i-m-Iow) (trend i-m-decreases))
(4 m-sensor-reading (status i-m-Iow)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-low) (trend i-m-decTeascs))
(3 m-scnsor-Teading (status i-m-low) (trend i-m-decTcases))
(4 m-sensor-reading (status i-m-Iow)))
(egt m-group
(1 m-sensor-reading (status i-m-low) (trend i-m-decrcascs))
(2 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(3 m-sensor-reading (status i-m-low) (trend i-m-decreases))
(4 m-scnsor-rcading (status i-m-low)))
(epr m-group
(1 m-sensor-reading (status i-m-normal))
(2 m-sensor-reading (status i-m-normal))
(3 m-sensor-reading (status i-m-low) (trend i-m-dccrcascs))
(4 m-sensor-reading (status i-m-low)))
(fuel-flow m-group
(1 m-scnsor-rcading (status i-m-normal))
(2 m-sensor-Tcading (status i-m-normal))
(3 m-scnsor-rcading (status i-m-normal))
(4 m-sensor-reading (status i-m-low) (trend i-m-decrcascs)))

)
)

- 1 5 9 -

B Case Library

B.18 Ice Ingestion

B.18 Ice Ingestion

- 1 6 0 -

B Case Library B.18 Ice Ingestion

; Hypothetical scenario
>
(sctf *case51*
*(

; — Fault
(fault i-m-ice-ingestion)
(events m-group
(1 m-causal-event
(ante i-m-ice-ingcstion)
(ensq i-m-fan-blade-damagc))
(2 m-causal-evcnt
(ante i-m-fan-blade-damagc)
(ensq i-m-fan-rotor-imbalance))
(3 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-fan-vib))
(4 m-causal-event
(ante i-m-fan-rotor-imbalance)
(ensq i-m-nl))
(5 m-causal-event
(ante i-m-fan-vib)
(ensq i-m-n2)))

(id "Hypothetical sccnnrio 51")
(date “Hypothetical scenario 51”)
(airline "Hypothetical scenario 51”)
(flight "Hypothetical scenario 51")
(aircraft "Hypothetical scenario 51”)

; — Context Variables
(phase-of-flight i-m-ground-start)
(weather i-m-clear)
(workload i-m-moderatc)
(cngine-commanded-sfatus i-m-start)
; — Symptoms
(nl m-group

SI m-sensor-reading (status i-m-normal) (trend i-m-increases))
2 m-sensor-reading (status i-m-low) (trend i-m-increases))

(3 m-sensor-reading (status i-m-low) (trend i-m-increases))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(n2 m-group
(1 m-sensor-reading (status i-m-normal) (trend i-m-incrcascs))
(2 m-sensor-reading (status i-m-low) (trend i-m-incrcascs))
(3 m-sensor-reading (status i-m-low) (trend i-m-incrcascs))
(4 m-sensor-reading (status i-m-low) (trend i-m-stable)))
(fan-vib m-group
(1 m-sensor-reading (status i-m-high) (trend i-m-incrcascs))
(2 m-sensor-reading (status i-m-high) (trend i-m-increases))
(3 m-sensor-reading (status i-m-high) (trend i-m-increascs))
(4 m-sensor-Teading (status i-m-high) (trend i-m-stable)))

)
)

- 1 6 1 -

B Case Library

B.19 Ice Ingestion

*

B.19 Ice Ingestion

-1 6 2 -

B Case Library B.19 Ice Ingestion

; Hypothetical scenario
(sctf *case52+
*(

(id “Hypothetical scenario 52")
(date “Hypothetical scenario 52")
(airline' Hypothetical scenario 52")
(flight “Hypothetical scenario 52")
(aircraft "Hypothetical scenario 52”)

; — Context Variables
(phase-of-flight i-m-ground-start)
(weather i-m-clear)
(workload i-m-moderatc)
(engine-conunanded-status i-m-start)

; — Symptoms

(compressor-vib m-group
(1 m-scnsor-rcading (status i-m-high))
(2 m-scnsor-rcading (status i-m-high)))

(thrust m-group
(1 m-scnsor-rcading (status i-m-low))

(2 m-sensor-reading (status i-m-low) (trend i-m-increascs)))
(fan-vib m-group

(1 m-scnsor-rcading (status i-m-high))
(2 m-sensor-reading (status i-m-high)))

(fuel-flow m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low)))

(n2 m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m*normal)))

(egt m-group
(1 m-sensor-reading (status i-m-low))
(2 m-sensor-reading (status i-m-low)))

)
)

- 1 6 3 -

Bibliography

Bibliography

[1] AAIB-AAR-4/90, Air Accidents Investigation Branch. (1990). Report on the accident to

Boeing 737-400 G-OBME near Kegworth, Leicestershire on 8 January 1989. AAIB-AAR-

4/90.

[2] Abbott, K. (1990), Robust Fault Diagnosis o f Physical Systems in Operation, PhD Thesis,

Rutgers University.

[3] Alexander, P., Minden, G., Tfcatsoulis, C., and Holtzman, J. (1989). Storing Design Knowl

edge in Cases. In Proceedings o f the DARPA Workshop on Case-Based Reasoning.

[4] Alterman, R. (1986). An adaptive planner. In Proceedings o f AAAI-86, pages 65-69, Ameri

can Association for Artificial Intelligence, Moigan Kaufmann Publishers, Inc., Los Altos,

California.

[5] Bain, W. M. (1986). Case-Based Reasoning: A Computer Model o f Subjective Assessment.

PhD thesis, Yale University.

[6] Bain, W. M. (1986b). Assignment o f Responsibility in Ethical Judgments. In Experience,

Memory, and Reasoning. Kolodner J. L., and Riesbeck, C. K., editors. Lawrence Erlbaum

Associates, Hillsdale, New Jersey.

[7] Buchanan, B. G., and Shortlifle, E. H., editors (1984). Rule-Based Expert Systems. Addison-

Wesley Publishing Co., Readings, MA.

[8] Chandrasekaran, B., and Mittal, S. (1982). Deep Versus Compiled Knowledge Approaches

to Diagnostic Problem-Solving. In Proceedings o f AAAI-82, pages 349-354, American

- 1 6 5 -

Bibliography

Association for Artificial Intelligence, Morgan Kaufman Publishers, Inc., Los Altos, Cali

fornia.

[9] Chamiak, E., and McDermott, D., (1985). Introduction to Artificial Intelligence. Addison-

Wesley Publishing Co., Readings, MA.

[10] Chamiak, E.t Riesbeck, C. K., McDermott, D., and Meehan, J. R. (1987). Artificial Intelli

gence Programming Techniques, Lawrence Erlbaum Associates, Hillsdale, N.J., second edi

tion.

[11] Davis, R. (1984).Diagnostic Reasoning Based on Structure and Behavior. Artificial Intelli

gence, vol. 24, pages 347-410.

[12] De Kleer, J. and Brown, S. J. (1985). A Qualitative Physics Based on Confluences. In Qual

itative Reasoning about Physical Systems. Bobrow, D. G., editor. MIT Press, Cambridge,

Massachusetts

[13] Feyock, S., and Li, D. (1990). Simulation-Based Reasoning about the Physical Propagation

of Fault Effects. In Proceedings o f1990 Goddard Conference on Space Applications o f Arti

ficial Intelligence.

[14] Feyock, S. (1991). Automatic Determination o f Fault Effects on Aircraft Functionality.

Midgrant Report 1990, NASA grant NCC-1-122, February 1991.

[15] Feyock, S., and Karamouzis, S. (1991). Design of an Intelligent Information System for In-

Flight Emergency Assistance. In Proceedings o f 1991 Goddard Conference on Space Appli

-1 6 6 -

Bibliography

cations o f Artificial Intelligence.

[16] Feyock, S., and Karamouzis, S. (1991). LIMAP. Technical Report, College o f William &

Mary, Computer Science Department, in preparation.

[17] Stefan Feyock and Stamos Karamouzis, S. (1992) A Path-oriented Matrix-Based Knowl

edge Representation System, in Proceedings o f the 1992 IEEE International Conference on

Tools with Artificial Intelligence, Arlington, Virginia, November 1992.

[18] Forbus, K. D. (1985). Qualitative Process Theory. In Qualitative Reasoning about Physical

Systems. Bobrow, D. G., editor. MIT Press, Cambridge, Massachusetts

[19] Goel, A. (1989). Integration o f Case-Based Reasoning and Model-Based Reasoning for

Adaptive Design Problem-Solving. PH.D. Thesis, Ohio State University.

[20] Goel, A., and Chandrasekaran, B., (1989). Use o f Device Models in Adaptation o f Design

Cases. Technical Research Report 89-AG-DESIGNCASE, The Ohio State University, Labo

ratory for Artificial Intelligence Research.

[21] Goel, A., (1991). KRITIK: An Integrated Design System; Combining Model-Based and

Case-Based Reasoning Technical Report GIT-CC-91/15, Georgia Institute of Technology,

School of Information and Computer Science, Atlanta, Georgia.

[22] Goel, A., and Stroulia! E., (1991). KR1TIK2: Model-Based Reasoning in the Context o f

Experience-Based Design Technical Report GIT-CC-91/16, Georgia Institute of Technology,

School o f Information and Computer Science, Atlanta, Georgia.

- 1 6 7 -

Bibliography

[23] Goel, A., Kolodner, J., Pearce, M., Billington, R., and Zimring, C., (1991). ARCHIE: A

Case-Based Architectural Design System. Technical Report GIT-CC-91/18, Georgia Insti

tute of Technology, School o f Information and Computer Science, Atlanta, Georgia.

[24] Hammond, K. (1988). CHEF: A model o f case-based planning. AAAI-86,267-271.

[25] Hammond, K. (1989). Case-based Planning: Viewing Planning as a Memory Task. Perspec

tives in Artificial Intelligence. Academic Press, Boston, MA

[26] Hayes, P. J. (1979). The naive Physics Manifesto. In Expert Systems in the Microelectronics

Age. Michie, D., editor. Edinburgh University Press, Edinburgh.

[27] Hammond, K. and Hurwitz, N. (1988). Extracting Diagnostic Features from Explanations.

In Proceedings o f the DARPA Workshop on Case-Based Reasoning.

[28] Kass, A. (1986). Modifying explanations to understand stories. In Proceedings o f the Eighth

Annual Conference o f the Cognitive Science Society, pages 691-696, Cognitive Science

Society, Lawrence Earlbaum Associates, Hillsdale, New Jersey.

[29] Kokinov, B. (1988). Associative Memory-Based Reasoning: How to represent and retrieve

Cases. In Artificial Intelligence III: Methodology, Systems, Applications. North-Holland,

Netherlands.

[30] Kolodner, J. L. (1983). Towards an Understanding of the Role o f Experience in the Evolu

tion from Novel to Expert. In International Journal o f Man-Machine Studies, Vol. 19.

- 1 6 8 -

Bibliography

[31] Kolodner, J., Simpson, R. and Sycara-Cyranski, K. (1985). A process model of case-based

reasoning in problem solving. In The Ninth International Conference on Artificial Intelli

gence.

[32] Kolodner, J. L. and Kolodner, R. M. (1987). Using Experience in Clinical Problem Solving.

IEEE Conference on Systems, man, and Cybernetics.

[33] Kolodner, J. L. (1988). Retrieving Events from a Case Memory: A Parallel Implementation.

In Proceedings o f the DARPA Workshop on Case-Based Reasoning.

[34] Kolodner, J. L. and Simpson, R. L. (1988). The MEDIATOR: A Case Study o f a Case-Based

Problem Solver. Technical Report GIT-ICS-88/11, Georgia Institute of Technology, School

of Information and Computer Science, Atlanta, Georgia.

[35] Kolodner, J. L. (1990). An Introduction to Case-Based Reasoning Technical Report GIT-

ICS-90/19, Georgia Institute of Technology, School of Information and Computer Science,

Atlanta, Georgia.

[36] Koton, P. (1988). Reasoning about Evidence in Causal Explanations. In Proceedings o f the

DARPA Workshop on Case-Based Reasoning,

[37] Koton, P. (1989). Using Experience in Learning and Problem Solving. Ph.D. Thesis MIT/

LCS/TR-441. MIT Press, Cambridge, Massachusetts

;

[38] Kuipers, B. (1985). Commonscnse Reasoning about Causality: Deriving Behavior from

Structure. In Qualitative Reasoning about Physical Systems. Bobrow, D. G., editor, MIT

- 1 6 9 -

Bibliography

Press, Cambridge, Massachusetts

[39] Lebowitz, M. (1980). Generalization and Memory in an Integrated Understanding System.

Research Report 186, Yale University.

[40] Lebowitz, M. (1983). Generalization from Natural Language Text. Cognitive Science, Vol. 7

No. 1.

[41] Lloyd, A. T. (1990). Vulcan’s Blast. Airliner, April-June 1990.

[42] Michie, D. (1971). Formation and Execution of Plans in Matching. In Artificial Intelligence

and Heuristic Programming. Finoler & Meltzer, editors, American Elsevier.

[43] Minsky, K. (1975). A framework for representing knowledge. In The Psychology o f Com

puter Vision. Winston, P. H., editor, McGraw-Hill, New York.

[44] NTSB-AAR-72-9,National Transportation Safety Board. (1972). Aircraft Accident Report:

United Airlines, Inc., Boeing 737-222, N9005U, Philadelphia International Airport, Phila

delphia, Pennsylvania, July 19,1970. NTSB-AAR-72-9.

[45] NTSB-AAR-75-2,National Transportation Safety Board. (1975). Aircraft Accident Report:

National Airlines, Inc., DC-10-10, N60NA, Near Albuquerque, New Mexico, November 3,

1973. NTSB-AAR-75-2.

[46] NTSB-AAR-76-19,National Transportation Safety Board. (1976). Aircraft Accident Report:

Overseas National Airways, Inc., Douglas DC-10-30, N1032F, John F. Kennedy Interna

- 1 7 0 -

Bibliography

tional Airport, Jamaica, New York, November 12,1975. NTSB-AAR-76-19.

[47] NTSB-AAR-78-3,National Transportation Safety Board. (1978). Aircraft Accident Report:

Southern Airways Inc., DC-9-31, N1335U, New Hope, Georgia April 4,1977. NTSB-AAR-

78-3.

[48] NTSB-AAR-79-17,National Transportation Safety Board. (1979). Aircraft Accident Report:

American Airlines Inc., DC-10-10, N110AA, Chicago-0'Hare International Airport, Chi

cago, Illinois, May 25,1979. NTSB-AAR-79-17.

[49] NTSB-AAR-81-10,National Transportation Safety Board. (1981). Aircraft Accident Report:

Northwest Airlines 79, McDonnell Douglas DC-10-40, N143US, Leesburg, Virginia, Janu

ary 31, 1981. NTSB-AAR-81-10.

[50] NTSB-AAR-82-3,National Transportation Safety Board. (1982). Aircraft Accident Report:

Air Florida Airlines Inc., McDonnell Douglas DC-10-30CF, N101TV, Miami, Florida, Sep

tember 22, 1981. NTSB-AAR-82-3.

[51] NTSB-AAR-82-5,National Transportation Safety Board. (1982). Aircraft Accident Report:

Eastern Airlines Flight 935, Lockheed L-1011-384, N309EA, Near Colts Neck, New Jersey,

September 22,1981. NTSB-AAR-82-5.

[52] NTSB-AAR-82-08,National Transportation Safety Board. (1982). Aircraft Accident Report:

Air Florida Airlines Inc., Boeing 737-222, N62AF, Collision with 14th Street Bridge, Near

Washington National Airport, Washington, D.C. January 13,1982. NTSB-AAR82-08.

- 1 7 1 -

Bibliography

[53] NTSB-AAR-86-03,National Transportation Safety Board. (1986). Aircraft Accident Report:

China Airlines, Boeing 74SP, N4522V, 300 Nautical Miles Northwest o f San Francisco, Cal

ifornia, February 19,1985. NTSB-AAR-86-03.

[54] Rissland, E. L. and Ashley, K. D. (1988). Credit Assignment and the Problem of Competing

Factors in Case-Based Reasoning. In Proceedings o f the DARPA Workshop on Case-Based

Reasoning, pages 327-344, Morgan Kaufman Publishers, Inc., Los Altos, California.

[55] Riesbeck, C. K. (1988). An Interface for Case-Based Knowledge Acquisition. In Proceed

ings o f the DARPA Workshop on Case-Based Reasoning, pages 312-326, Morgan Kaufman

Publishers, Inc., Los Altos, California.

[56] Riesbeck, C. K., and Schank, R. C. (1989). Inside Case-Based Reasoning. Lawrence

Erlbaum Associates, Hillsdale, New Jersey.

[57] Rosenberg, R. C., and Kamopp, D.C. (1983). Introduction to Physical System Dynamics.

McGraw-Hill, New York.

[58] Schank, R. C., Abelson, R. (1977). Scripts, Plans, Goals, and Understanding. Lawrence

Erlbaum Associates, Hillsdale, New Jersey.

[59] Schank, R. C., (1982). Dynamic Memory: A Theory o f Learning in Computers and People.

Cambridge University Press.

[60] Schank, R. C., (1986). Explaining Patterns: Understanding Mechanically and Creatively.

Lawrence Erlbaum Associates, Hillsdale, New Jersey.

- 1 7 2 -

Bibliography

[61] Schutte, C. P., Abbott, H. K., and Ricks R. W. A Performance Assessment o f a Real-time

Diagnostic System fo r Aircraft Applications. NASA Langley internal document, NASA

Langley, Hampton, Virginia.

[62] Shinn, H. S., (1989). A Unified Approach to Analogical Reasoning. Technical Report GIT-

ICS-90/11, Georgia Institute of Technology, School of Information and Computer Science,

Atlanta, Georgia.

[63] Shontz, W. D., Records, R. M., and Antonelli, D. R. (1992). Flight Deck Engine Advisor

Final Report, NASA Contractor Report 189562, Langley Research Center, Hampton, Vir

ginia.

[64] Simmons, R. G. (1988). A theory of debugging. In Proceedings o f the First Case-Based

Reasoning Workshop, pages 388-401, Morgan Kaufman Publishers, Inc., Los Altos, Califor

nia.

[65] Simpson, R. L. (1985). A Computer Model o f Case-Based Reasoning in Problem Solving:

An Investigation in the Domain o f Dispute Mediation. Technical Report GIT-ICS-85/18,

Georgia Institute of Technology, School of Information and Computer Science, Atlanta,

Georgia.

[66] Stanfill, C. (1987). Memory-Based Reasoning Applied to English Pronunciation. In Pro

ceedings o f the Sixth National Conference on Artificial Intelligence, Seattle, Washington.

[67] Stanfill, C., and Waltz, D. (1986). Tbward Memory-Based Reasoning. Communications o f

the ACM. Vol. 29, No. 12, pages 1213-28.

- 1 7 3 -

Bibliography

[68] Sussman, G. (1985). A Computer Model of Skill Acquisition. Artificial Intelligence Series,

Volume 1, American Elsevier, New York.

[69] Sycara, E. P. (1987). Resolving Adversarial Conflicts: An Approach to integrating Case-

Based and Analytic Methods. Technical Report GIT-ICS-87/26, Georgia Institute of Tech

nology, School of Information and Computer Science, Atlanta, Georgia.

[70] Sycara, K. and Navichandra, D. (1989). Integrating Case-Based Reasoning and Qualitative

Reasoning in Design. In AI in Design. Gero J. editor.

[71] Turner, E. H, (1989). Integrating Intention and Convention to Organize Problem Solving

Dialogues. Technical Report GIT-ICS-90/02, Georgia Institute o f Technology, School of

Information and Computer Science, Atlanta, Georgia.

[72] Turner, R. (1988). Organizing and Using Schematic Knowledge for Medical Diagnosis. In

Proceedings o f the DARPA Workshop on Case-Based Reasoning.

[73] Turner, R. (1989). A Schema-Based M odel o f Adaptive Problem Solving. Technical Report

GIT-ICS-89/42, Georgia Institute of Technology, School of Information and Computer Sci

ence, Atlanta, Georgia.

[74] Whitaker, L., Wiggins, S., Klein, G. (1989). Using Qualitative or Multi- Attribute Similarity

to Retrieve Useful Cases from a Case Base. In Proceedings o f the DARPA Workshop on

Case-Based Reasoning.

[75] Wilensky, R. (1986). Common LISPcraft. W.W. Norton & Company, Inc. New York.

- 1 7 4 -

Bibliography

[76] Winston, P. H. (1984). Artificial Intelligence Addison-Wesley Publishing Co., Readings,

MA, second edition.

[77] Winston, P. H., and Horn, B. K. (1984). Lisp. Addison-Wesley Publishing Co., Readings,

MA, second edition.

[78] Yuasa, T., and Hagiya, M. (1986). Introduction to Common Lisp. Translated by Weyhrauch,

R„ and Kitajima, Y. Academic Press, Inc. Orlando, FL.

- 1 7 5 -

V ITA

Stam os T. K aram ouzis

Bom in Kozani, Greece, March 31, 1963. Graduated from the 1st Lyceum in Lamia, Greece,

June 1980, B.A., Pedagogic Academy o f Thessaloniki, Greece, September 1982, B.S. Christopher

Newport College, Virginia, January 1986, M.S. The College of William & Mary, Virginia, Decem

ber 1988. Ph.D.Candidate in Computer Science, The College of William & Mary, Virginia. The

acceptance of this dissertation, An Integration of case-Based and Model-Based Reasoning and its

Application to Physical System Faults, will complete the requirements for this degree.

The author was a graduate research assistant for the College of William & Mary in Virginia

from January 1989 until August 1993.

- 1 7 6 -

	An integration of case-based and model-based reasoning and its application to physical system faults
	Recommended Citation

	00001.tif

