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ABSTRACT

Many applications such as path integral evaluation in Lattice Quantum
Chromodynamics (LQCD), variance estimation of least square solutions and spline
fits, and centrality measures in network analysis, require computing the diagonal
of a function of a matrix, Diag(f(A)) where A is sparse matrix, and f is some
function. Unfortunately, when A is large, this can be computationally prohibitive.
Because of this, many applications resort to Monte Carlo methods. However,
Monte Carlo methods tend to converge slowly.

One method for dealing with this shortcoming is probing. Probing assumes that
nodes that have a large distance between them in the graph of A, have only a
small weight connection in f(A). To determine the distances between nodes,
probing forms Ak. Coloring the graph of this matrix will group nodes that have a
high distance between them together, and thus a small connection in f(A). This
enables the construction of certain vectors, called probing vectors, that can
capture the diagonals of f(A). One drawback of probing is in many cases it is too
expensive to compute and store Ak for the k that adequately determines which
nodes have a strong connection in f(A). Additionally, it is unlikely that the set of
probing vectors required for Ak is a subset of the probing vectors needed for Ak+1.
This means that if more accuracy in the estimation is required, all previously
computed work must be discarded.

In the case where the underlying problem arises from a discretization of a partial
differential equation (PDE) onto a lattice, we can make use of our knowledge of
the geometry of the lattice to quickly create hierarchical colorings for the graph of
Ak. A hierarchical coloring is one in which colors for Ak+1 are created by splitting
groups of nodes sharing a color in Ak. The hierarchical property ensures that the
probing vectors used to estimate Diag(f(A)) are nested subsets, so if the results
are inaccurate the estimate can be improved without discarding the previous work.

If we do not have knowledge of the intrinsic geometry of the matrix, we propose
two new classes of methods that improve on the results of probing. One method
seeks to determine structural properties of the matrix f(A) by obtaining random
samples of the columns of f(A). The other method leverages ideas arising from
similar problems in graph partitioning, and makes use of the eigenvectors of f(A)
to form effective hierarchical colorings.

Our methods have thus far seen successful use in computational physics, where
they have been applied to compute observables arising in LQCD. We hope that
the refinements presented in this work will enable interesting applications in many
other fields.
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Methods for Estimating the Diagonal of Matrix Functions



Chapter 1

Introduction

1.1 Motivation

In this work we study the problem of computing Diag(f(A)), and
∑N

i=1 Diag(f(A))i =

Tr(f(A)), where A is a sparse matrix of size N and f is some function. Some useful

examples are f(A) = A−1, or f(A) = exp(A). When A is small, this can be computed

directly, which is an O(N3) approach. When A is of intermediate size and is properly

structured, recursive factorization methods allow for an O(N2) solution [70]. However,

in many problems of interest, the size of A can be such that even O(N2) solutions are

impractical. Because of this we abandon exact computation, and attempt to approximate

the desired diagonals. There are two main methods for approximating the desired results.

The first of these is based on Monte Carlo methods [45, 22]. The second is based on matrix

sparsification [62], where we hope to ignore unimportant parts of the matrix in order to

speed up the computation. Our work takes advantage of the features of both types of

approximations in order to produce better algorithms.

The need to apply efficient solutions to this problem is a result of ever increasing matrix

sizes in many diverse areas. Several examples are Statistics [45, 67], Lattice Quantum

Chromodynamics (LQCD) [31], Material Science [28], and Network Analysis [68]. For

example, in LQCD increasing the size of the lattice improves the physical accuracy of the
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simulation. Thus, there is significant interest in increasing the size of the lattices beyond

what is currently computationally feasible. The same is true in the field of social network

analysis. As social networks expand and represent ever more interconnected networks,

performing analysis requires the use of increasingly large matrices. Finally, as large data

sets become ever more prevalent, many statistical processes require matrices that continue

to increase in size, necessitating faster methods.

1.1.1 Prior Work and New Approach

This problem of computing Diag(f(A)) differs from common numerical analysis prob-

lems in a key way. Frequently, when similar problems are encountered, the problem is

rewritten to be an optimization problem on a convex function. The problem can then

be approached using optimization methods such as Newton’s method, Gradient Descent,

Conjugate Gradient and Non-Linear Conjugate Gradient, to converge to the value we are

seeking. With this problem, no such optimization process can be undertaken. Because of

this, statistical methods must be used.

Since this problem was first studied by Hutchinson [45], several statistical methods for

the problem have been proposed. While these methods have the attractive feature that

they provide statistical error estimates, they converge slowly and do not take advantage

of information that the user may have about the matrix. The main goal of this work is

to take advantage of anything that is known about a matrix in order to obtain a better

estimate of Diag(f(A)) in less time. Although the matrix f(A) is normally dense, if

the smallest elements of f(A) are dropped, structure in this sparsified version of f(A)

will emerge. Since exactly obtaining this structure is no easier than solving the original

problem, alternative information is used to approximate it. Once this structure is known,

an estimate for Diag(f(A)) can be obtained. This was the idea behind the method of

[60] known as probing. Probing uses the powers of a matrix A to obtain an estimate of

the structure of f(A). For A−1 in particular this is based on the assumption that the

Neumann series of A converges to f(A). For different functions of A, other polynomials
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could be considered. Once an estimate for the structure of f(A) is obtained, the authors

of [62] show how to create probing vectors that allow for the recovery of the diagonal.

However, this requires taking high powers of the matrix A, which is expensive to compute

and may be impractical to store. Ideally, knowledge of the matrix A that is less expensive

to obtain should be used. Further, the method in [60] provides no way to tell how accurate

the error estimate is. Since this is important for many applications, this is a significant

drawback.

Our proposed methods take advantage of several major areas of knowledge in order to

obtain the structure of f(A), in ways that are cheaper than finding powers of A. The first

is geometric information. Many of our target applications arise from partial differential

equations (PDE) that are discretized onto lattices. For a PDE given by g(u) = y, the

solution at point u is often given in terms of the Green’s function G(u,u’), where u is

the point we are obtaining a solution for, and u’ is some other point not equal to u.

For many PDEs, as ‖u − u’‖ increases, G(u,u’) decays quickly since the physical forces

the Green’s function is attempting to model fall off rapidly with distance. Because of

this, only connections between nodes that have short distances in the graph will have a

large connection, or to put this another way, only elements in f(A) corresponding to links

between close nodes will be large. If we can determine which points have short distances

between them in the graph, we can use this distance information to obtain an estimate for

which are the large elements of f(A). This is the previously mentioned approach of [60],

where they use successively higher powers of A to compute the distance between nodes. In

lattices, because of the known geometry, we can cheaply compute the distances between

nodes without computing the powers of A.

For more general matrices where geometric information is lacking, we would prefer

to bypass polynomial approximations which are expensive to compute, and work more

directly with the structure of f(A). This approach allows us to deal with matrices that

do not exhibit the decay in interaction between distant nodes seen in many PDEs. We

term this family of algorithms inverse probing. Inverse probing works by computing a

3



subset of the columns v of the matrix f(A). These columns can then be used by several

algorithms to build an approximation to f(A). The two main approaches we take are to

form an approximation vvT ≈ f(A), and to examine the values of v at different lags to

try to predict the location of major off-diagonals of f(A). This allows for the estimation

of the magnitude of the connection between nodes directly.

A final method for obtaining information on the structure of f(A) is based on examin-

ing the spectrum of f(A). If probing were used to determine all the distance k connections

of the i-th node, the algorithm would take the matrix vector product Akei. However, this

is similar to the process of obtaining a single iterate of the power iteration method, which

would take the product Akr
‖Akr‖ , where r is an appropriately chosen random vector. The

power method is known to converge to the eigenvector of largest modulus of A. This sug-

gests there could be a connection between probing and the largest eigenvector of A. The

eigenvector holds the distance information that would be obtained by probing if it were

taken an infinite number of steps. To state this slightly differently, the largest eigenvector

holds similar structural information about f(A) to that which probing could obtain. We

present a heuristic that explores the connection between these two ideas and lays the basis

for future research in this area.

The geometric, structural, and spectral information that our new algorithms make use

of are all more computationally and storage efficient than the high powers of A required

for probing. Additionally, in many cases we observe that they provide more accurate

results then probing, because they obtain a more accurate representation of the structure

of f(A).

The final contribution of our work is to combine the idea of exploiting known but

deterministic information about a matrix with statistical methods in order to provide the

user with an improved as well as unbiased estimator. We provide a framework to analyze

when the information obtained by our methods will provide meaningful improvements

in the error estimates of our methods. By merging the strengths of the statistical and

deterministic approaches we provide algorithms that are more robust.
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1.2 Overview

The rest of this dissertation is structured as follows.

Chapter 2 We discuss in more detail the applications where Diag(f(A)) is needed. We

also examine the prior approaches, and determine the areas in which they are insuf-

ficient.

Chapter 3 We introduce a method for computing Diag(f(A)) when A is a matrix arising

from a toroidal lattice, that is, a lattice where the boundary conditions are periodic.

Our method works by exploiting the geometry of the lattice. We show how the

problem can be solved in the special case when the lattice has dimensions that are

powers of 2, and in the more general case where the dimensions are arbitrarily sized.

Finally we show how these methods can be combined with statistical approaches to

provide unbiased estimators.

Chapter 4 We discuss the more general class of matrices, where the matrix is not a

lattice but still has some structure that can be exploited. We examine structural

and spectral types of information, and provide a framework for analyzing when

enough structure exists for our algorithms to outperform previous approaches.

Conclusion We summarize our discussion.
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Chapter 2

Prior Work and Applications

In this chapter we discuss related applications and prior work. Most prior applications are

related to either computing Tr(A−1) or Diag(exp(A)). Given an N ×N matrix A, with

an eigendecomposition A = V EV −1, the Tr(A−1) =
∑N

i=1 Diag(A−1)i =
∑N

i=1
1
Eii

. If the

matrix is small, one could solve the problem directly by performing an LU decomposition

[19], and then solving N linear equations for the diagonals of A−1. Alternatively, one could

obtain the eigenvalues of A, for example, by using the QR method [19], and summing

them. Unfortunately, these approaches require O(N3) work, and so are impractical for

the matrices that occur in the applications we are interested in.

The exponent of a matrix is given by exp(A) = V exp(E)V −1 =
∑∞

k=0
Ak

k! . If the

matrix is small enough, the eigendecomposition of the matrix can be computed, but in

most cases of interest this is not practical. There are many methods proposed for forming

exp(A) explicitly [69], but all of them require raising A to a high power. This can be

computationally difficulty as well as requiring impractical amounts of storage, since in

many cases Ak will become dense quickly.
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2.1 Applications

2.1.1 Statistical Applications

We briefly consider applications of Diag(f(A)) and Tr(f(A)), to motivate our research.

Such applications appear in physics, social network analysis, and statistics among others.

Computing Diag(f(A)) shows up in several statistical problems. The simplest of these

is computing the variance of a least squares problem [67]. In the case of a least squares

problem, one would like to solve minx‖Bx− y‖, where B is some arbitrarily sized matrix

representing the observations we are trying to fit, that is likely singular. A solution can

be found by computing the normal equation x = A−1z, where A = BTB and z = BT y.

While x can be solved using an iterative method, one would like to know what the variance

of the solution is. It can be shown that given B, the covariance matrix of x is (BTB)−1σ2,

where σ2 is the variance of the error of our fit. We do not have this variance available, but

we can estimate it. Define Xn,p, as our n observations of p variables we are attempting to

fit. Then as an estimator for σ2 we have σ2 = 1
n−p‖y−Bx‖

2 = 1
n−p

∑n
i=1 e

2
i , where ei are

the residuals ei = yi−Xi,1z1− ...−Xi,pzp. The variance of the individual components zi is

then computed as Diag((BTB))−1
iσ

2
i . Where B is large, representing many observations,

inverting BTB to obtain Diag(BTB) is difficult.

Another area of statistics that this problem arises in, and which originally motivated

Hutchinson [45] to develop his method, is fitting a spline to set of multidimensional noisy

data z at irregularly spaced points x. This is done by defining the function f ,
∑n

i=1(zi −

f(xi))
2 + ρJ(f), where n is the number of data points, and J(f) is a rotation invariant

measure of the roughness of f . This roughness is defined in terms of the partial derivates

of f . The value ρ is a positive value controlling the degree of smoothing of the data, and

is chosen to minimize the generalized cross validation function [71], which is defined as

GCV =
1
n
‖I−Az‖2

( 1
n
Tr(I−A))2

, where A is the n × n symmetric influence matrix which takes the

data values to their fitted values [72]. Forming this influence matrix requires inverting the

spline matrix B. Because of this, the main expense of the validation is obtaining Tr(I−A).
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2.1.2 Lattice Quantum Chromodynamics

Similar statistical issues arise in many areas of physics, and in paticular in Lattice Quan-

tum Chromodynamics (LQCD) [31]. QCD is the theory of the behavior of the fundamental

force known as the strong interaction, which describes the interactions among quarks, the

building blocks of Hadrons. LQCD is a method for simulating these interactions. Since

it is a non-perturbative method, it can be used to compute physical properties such as

the masses of the various quarks, as well as the observables governing the coupling of the

particles [31].

Unfortunately QCD gives rise to path integrals that are difficult to compute directly.

If the system is discretized onto a 4D lattice, they can be approximated using Monte Carlo

Integration. Normally this is done in two stages, by generating gauge fields according to a

paticular probability distribution, then evaluating a correlation function that depends on

these fields. The physical properties of interest are determined by a Monte Carlo average

of the correleation functions generated by the ensemble of gauge fields [54].

This approach requires the computation of the trace of A−1. Since the systems arising

in this simulation are normally very large, most approaches in this area are based on

iterative methods. Aside from the size of the matrix, they are also poorly conditioned,

making their solution difficult. In particular, as the simulation parameters are tuned so

that they more accurately represent the physical system of interest, the matrix starts to

be become singular. Therefore, it is important to minimize the number of systems of

equations that have to be solved to obtain an estimate for the trace, since each solution

may take many iterations to converge. Despite these difficulties, LQCD has been a very

successful approach, and our methods have wide applicability to it.

2.1.3 Network Centrality

Finally, we consider an application where the required f(A) is not A−1, but is instead

exp(A),as in [68]. The authors are interested in computing the node centrality in a network,
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a metric of how important a particular node is in a given network. This question arises in

social network analysis, as well as network design. In [68], the authors begin by defining a

path as a list of distinct vertices connecting two nodes, and define a path that starts and

stops at the same node as a closed path. They assume that nodes that have more closed

paths are more important. Further, they give closed paths of differing lengths different

weights, assigning to shorter paths a higher weight. If we let k(i)j be the number of paths

of distance i for node j, and weight the paths with the inverse of their factorial distance,

then we obtain the centrality metric
∑∞

i=0
k(i)j
i! . If one recalls that Aijj , which is the j-th

diagonal element of the i-power of A, gives the number of round trip paths of length i for

node j, then the desired equation is Diag(
∑∞

i=0
Ai

i! ) = Diag(exp(A)).

2.2 Prior Work

2.2.1 Statistical Methods

Many of the applications shown in the prior section require extremely large matrices.

Further, as computational resources expand, the applications will want to increase the

size of the matrices in order to achieve more accurate results. This means that it is

unlikely that attempts to solve this problem directly though matrix decomposition or

eigensolvers, will ever be the best choice for most applications. Instead methods that

attempt to statistically estimate it are needed.

The first attempt at such a statistical solution was made by Hutchinson [45], who was

interested in calculating Tr(A−1) in order to compute splines. He showed that for a set of

random vectors zi, where each vector element is drawn independently from a Rademacher

distribution, where each element has a 1
2 chance to be 1 or −1,

Tr(f(A)) = E[zT f(A)z] =

∑i=n
i=0 z

T
i f(A)zi
n

. (2.1)

In his case, f(A) = A−1. Taking advantage of the fact that A−1z = y can be solved by

rewriting in the form Ay = z and using an iterative solver, it is then possible to estimate
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the trace of A−1 even for very large matrices.

Following Hutchinson’s work, the authors of [22] investigated several variations on

Hutchinson’s method, and proved bounds on their statistical variance, as well as on the

number of samples needed to achieve a given accuracy, which can be seen in Table 2.1.

Instead of taking zi from (2.1) to be random vectors with elements from the Rademacher

distribution, they examined the cases where the elements of zi are Gaussian, where they

are selected so that zHi zi = N which they term the Rayleigh-quotient estimator, and the

case where the zis are random unit vectors, ei = [0 . . . 010 . . . 0] where the 1 is in the i-th

location. Additionally, they consider a variation on the scheme of taking zi as unit vectors.

Using these unit vectors directly computes a particular set of diagonal elements, and then

attempts to extrapolate the missing diagonal elements from them. However, in cases where

the values of the diagonal elements vary widely, this will work poorly. To counteract this,

they instead compute
∑n

i=0 z
T
i D

TADzi
n , where D is either the Discrete Fourier Transform

(DFT) matrix, or the Hadamard matrix. The DFT matrix is generated by D = FFT (I),

and the Hadamard matrix [73] is formed recurisvely, as

H1 = [1], H2 =

[
1,+1
1,−1

]
, H2k =

[
H2k−2 ,+H2k−1

H2k−2 ,−H2k−1

]
= H2 ⊗H2k−1 . (2.2)

The Hadamard matrices have the disadvantage of only having sizes that are powers of

two, but avoid the use of complex arithmetic, which is a requirement of using the DFT

matrix. Since normally we will not need all N columns, we instead generate each matrix

column by column as process which can be done efficiently [66].

Because these matrices are unitary, DTD = I, Tr(DTAD) = Tr(DTDA) = Tr(IA) =

Tr(A), but has the effect of smoothing out the elements of the matrix A, thus making it

less likely that an important diagonal element will be missed out by the estimator.

While [22] derives upper bounds for the number of vectors needed to achieve the

probability of obtaining the desired amount of accuracy, these bounds are not tight. In

practice the authors observe that the various methods perform almost identically. These
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Table 2.1: Convergence rates of different methods.

Estimator Variance of the Sample Bound on number of samples for an (ε,δ)-approx Random bits per sample

Gaussian 2‖A‖F 20ε−2ln(2/δ) infinite;Θ(n) in floating point
Normalized Rayleigh-quotient - 1

2ε
−2n−2rank2(A)ln(2/δ)k2

f (A) -
Hutchinson’s 2(‖A‖2F −

∑n
i=1A

2
ii) 6ε−2ln(2rank(A)/δ) θ(n)

Unit Vector n
∑n

i=1A
2
ii −Tr2(A) 1

2ε
−2ln(2/δ)r2

D(A), rD(A) = nmaxiAii
Tr(A) θ(logn)

Mixed Unit Vector(DFT/Hadamard) - 8ε−2ln(4n2/δ)ln(4/δ) θ(logn)

methods converge slowly and cannot be improved without additional information about

the matrix. However, it is seldom the case that no useful knowledge of the matrix is

available or that cannot be extracted by approximation techniques.

2.2.2 Non-Statistical Methods

Several deterministic methods have been proposed that solve this problem exactly, in the

case where f(A) = A−1, by preforming some form of matrix factorization, and avoid

the problem of slow convergence that the statistical methods have. These approaches

have serious drawbacks however. In [49], the authors introduce a method which works by

finding a hierarchy of Schur complements of matrices arising from grids, but the run time

of this method is of order O(N3/2) and O(N2) for the 2D and 3D case respectively. Thus

for sufficiently large N , or for higher dimensional problems, this approach is not practical.

Further it does not address the case of matrices that do not arise from PDEs.

The method introduced in [70] performs an LU factorization and computes the last

diagonal entry of the inverse directly from this factorization. It then reorders the nodes so

that each diagonal is in turn the last element of the LU matrix. In order to avoid computing

a unique LU factorization for every reordering, they decompose each LU factorization into

partial LU factorizations. This method has similar drawbacks to those in [49], requiring

that the matrix arise from a PDE and has a run time of O(N2) for a 2D matrix.

Proposed in [67] is a method based on Takahashi’s equations, which allow a subset

of the elements of A−1 to be recursively computed, using only the elements of an LDU

decomposition of A, and the previously generated elements of A−1, with the first step of

the recursive process requiring only the elements of the LDU decomposition to compute.
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The subset of elements which can be computed in this manner are those elements that

are non-zero in the LDU decomposition. Given a sparse LDU decomposition, it follows

that the number of elements needed to compute Diag(A−1) is small. However, while the

subset of elements A−1 needed to compute Diag(A−1) may be smaller than that needed

to compute the entire matrix A−1, it can still be quite large.

Alternative approaches have been developed that avoid computing the result directly,

which is infeasible for large problems, while still making use of any information that is

known about the problem. The main idea behind them is to create the vectors in (2.1) in

such a way that any available structure is exploited. This method was first introduced in

[28] . The main insight is that many matrices in practice have an inverse with a periodic

and decaying structure where the magnitude of the elements falls off away from the main

diagonal of the matrix. Therefore we can set the zis to be such that they zero out as many

diagonals of the matrix as possible. If the contribution to the error from the diagonals

that have not been zeroed out is small, the results will be very accurate. As more zis are

used, more diagonals are zeroed out, and the solution becomes more accurate. Further,

we show later how, if this is paired with statistical methods, this will reduce the variance,

because there will be fewer elements contributing to the sums in Table 2.1. To achieve

this zeroing out effect, the vectors of the Hadamard matrix are used in their natural order,

since they zero all contributions to the error except those elements from an increasingly

small subset of diagonals, as can be seen in Figure 2.1.

Another useful method supplied in [28] is how to calculate the diagonal of A instead

of simply the trace. They show that the following estimator will converge to the diagonal

Diag(A) ≈ (
n∑
i=1

zi �Azi)� (
n∑
i=1

zi � zi) (2.3)

where � is componentwise multiplication and � is componentwise division, and the zis

are random vectors. This has the same drawback as (2.1), in that while in expectation

this will yield the correct answer, in practice convergence can be very slow. Therefore the
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Figure 2.1: The area zeroed out by using Hadamard vectors. As the number of vectors
increases, the number of diagonals that contribute to the error decease, and become further
from the main diagonal.

question of picking the zis to exploit the structure of A is the same as for estimating the

trace.

While the Hadamard based method of [28] works well for a specific class of matrices

which are generally those arising from a PDE with a Green’s function describing a force

that decays with distance, matrices without this diagonal structure do not benefit as

much. An attempt to exploit less regularly ordered structure is behind the idea of probing.

Probing has been a useful technique with a long history in the context of approximating

the Jacobian matrix [17, 38], or other matrices [18]. Its use for approximating the diagonal

of A−1 was proposed in [60] because it finds the most important areas of A−1 rather than

the fixed structure removed by the Hadamard approach. Probing recovers the diagonals of

a sparse matrix by finding the coloring of its associated graph. Coloring a graph involves

assigning a color to each vertex in such a way that no two connected vertices share a color.

Unfortunately, finding the optimal coloring in the sense of using the least number of colors

is an NP-Complete problem. However, for many graphs a greedy algorithm performs well

[61], and is the approach used in probing. When the rows and columns of a matrix are

arranged so that all nodes that share the same color are adjacent, a zero block diagonal
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structure will result, as can be seen in Figure 2.2. This structure is due to the fact that

since these nodes share a color, they must have no connection (otherwise this would be

an invalid coloring).

This block-diagonal zero structure can be exploited to recover the diagonal of the

matrix by creating probing vectors. Given a coloring C for A, with c total colors, we will

need only c vectors to recover the diagonal. We generate a probing vector for each color

m, and set the i-th element of that vector to be 1 if the i-th node of the graph of A was

assigned the m-th color and zero elsewhere as seen in (2.4). These vectors can then be

used with (2.1) or (2.3).

pmi =


1, if i ∈ Cm

0, otherwise

(2.4)
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Figure 2.2: Probing a four colorable graph. The diagonal elements of the graph can be
recovered using the probing vectors shown.

Unfortunately, f(A) is normally dense. Because of this the associated graph of f(A)

is fully connected, and every node will be assigned a unique color. To avoid this probing,

structure for f(A) must be induced by sparsification. If the smallest magnitude elements

of f(A) are dropped, then f(A) will appear, which can be exploited by probing. Of course,

computing f(A) and then sparsifying it, is not easier than the original problem of obtaining

Diag(f(A)). To counteract this issue, [62] introduced the idea of probing using a matrix
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polynomial qn(A). They find a polynomial of matrix A, such that qn(A) ≈ A−1, as the

order n of the polynomial increases. In their paper they use the Neumann approximation

to A−1, which is A−1 ≈ (
∑n

j=0M
−1Q

j
)M−1, where A = M − Q, and M = Diag(A).

However, they are interested only in the structure, and not the values of qn(A). Since in

the case of the Neumann approximation the nonzero structure of qn(A) is a subset of the

nonzero structure of qn+1(A), they need only color An to obtain an approximation to the

structure of A−1 after sparsification. This method has the drawback that qn(A) quickly

becomes denser and thus expensive to compute for even small n, when A is large.

An additional drawback with probing is that once the coloring for a particular qn(A)

is obtained, and probing vectors are created, it is possible that the estimate it produces

will not be sufficiently accurate. However, it is unlikely that the probing vectors of qn(A)

will be a subset of those created for qm(A), m < n. In this case, all the previous work

computing f(A)z will have to be discarded. Since these results are produced by solving

large linear systems iteratively, this is a serious shortcoming. An example illustrating this

may be seen in Figure 2.3. In the first case, the associated graph of q1(A), the associated

graph was colored with three colors, but required four colors to color the graph of q2(A).

Unfortunately the resultant probing vectors do not span the original probing vectors. If

on the other hand the colors had split as seen in the second example, the initial probing

vectors would have been spanned by the new ones, meaning the work of computing f(A)z

need not have gone to waste.

Figure 2.3: An example of wasted vectors in probing, versus an example where the
vectors can be reused.
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Chapter 3

Estimation of Diag(f (A)) on

torodial lattices

In this chapter, we discuss how to compute Diag(f(A)) in the case where A represents a

toroidal lattice. In this case the geometric information can be leveraged to provide high

quality probing vectors very quickly. In addition, these vectors can be constructed in

such a way that if the accuracy of the result is insufficient, the process can continue by

reusing our previously computed results, a process we term Hierarchical Probing. While

our solution works for lattices of arbitrary dimensions, we also present an even faster

method for lattices which have dimensions of powers of two.

3.1 Lattices with dimensions consisting only of powers of 2

3.1.1 Introduction

Two methods that have previously attempted to address this problem by exploiting the

structure of the matrix A are the approach of using Hadamard vectors [28], and the method

of probing [62]. We combine ideas from both of these methods in order to overcome their

respective shortcomings.

The approach based on the use of Hadamard vectors discussed in Section 2.2.2 bor-
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rows ideas from coding theory and selects deterministic vectors for the Monte Carlo( MC)

estimate given in 2.1 as columns of a Hadamard matrix [28]. These vectors are orthogonal

and, although they produce the exact answer in N steps, their benefit stems from sys-

tematically capturing certain diagonals of the matrix, as in figure 2.1. For example, if we

use the first 2m Hadamard vectors, the error in the trace approximation comes only from

non-zero elements on the (k2m)th matrix diagonal, k = 1, . . . , N/2m. Thus, the MC itera-

tion continues annihilating more diagonals with more Hadamard vectors, until it achieves

the required accuracy. However, in most practical problems the matrix bandwidth is too

large, the non-zero diagonals do not fall on the required positions, or the matrix is not

even sparse (which is typically the case for A−1).

Probing [62] attempts to select vectors that annihilate the error contribution from

the heaviest elements of A−1. For a large class of sparse matrices, elements of A−1 decay

exponentially away from the non-zero structure of A. By this we mean that the magnitude

of the A−1
i,j element relates to the distance of the shortest path between nodes i and j in

the graph of A. Assume that the graph of A has a distance-k coloring (or distance-1

coloring of the graph of Ak) with m colors. Then, if we define the vectors zj , j = 1, . . . ,m,

with zj(i) = 1 if color(i)=j, and zj(i) = 0 otherwise, we obtain Tr(A) =
∑m

j=1 z
T
j Azj .

For Tr(A−1) the equation is not exact, but it does not include errors from all elements of

A−1 that correspond to paths between vertices that are distance-k neighbors in A. The

probing technique has been used for decades in the context of approximating the Jacobian

matrix [35, 38] or other matrices [57]. Its use for approximating the diagonal of A−1 in

[62] (see also [28]) is promising as it selects the important areas of A−1 rather than the

predetermined structure dictated by Hadamard vectors. However, the accuracy of the

trace estimate obtained through a specific distance-k probing can only be improved by

applying Monte Carlo, using random vectors that follow the structure of each probing

vector. To take advantage of a higher distance probing, all previous work has to be

discarded, and the method rerun for a larger k. We discuss this in Sections 3.1.5 and

3.1.7.
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We introduce hierarchical probing which avoids the problems of the previous two meth-

ods. It annihilates error stemming from the heaviest parts of A−1, and it does so incre-

mentally, until the required accuracy is met. To achieve this, we relax the requirement of

distance-k coloring of the entire graph. The idea is to obtain recursively a (suboptimal)

distance-2i+1 coloring by independently computing distance-1 colorings of the subgraphs

corresponding to each color from the distance-2i coloring. The recursion stops when all

the color-subgraphs are dense, i.e., we have covered all distances up to the diameter of the

graph. We call this method, “hierarchical coloring”. For regular, toroidal lattices each

subgroup has the same number of colors, which enables an elegant, hierarchical basis for

probing based on an appropriate ordering of the Hadamard and/or Fourier vectors: the

first m such vectors constitute a basis for the corresponding m probing vectors. We call

this method, “hierarchical probing”. It can be implemented using only bit arithmetic,

independently on each lattice site. We also address the issue of statistical bias by viewing

hierarchical probing as a method to create a hierarchical basis starting from any vector,

including random.

SubSection 3.2.2 presents some background for these methods and describes the limita-

tions of classical probing. In subSection 3.2.3, we introduce the idea of hierarchical coloring

and, for the case of uniform grids and tori, we develop a hierarchical coloring method that

uses only local coordinate information and bit operations. In subSection 3.2.4, we use

this coloring to produce a sequence of hierarchical probing vectors. In subSection 3.2.5,

we provide several experiments for typical lattices and problems from LQCD that show

that MC with hierarchical probing has much smaller variance than random vectors and

performs equally well or better than the expensive, classical probing method.

3.1.2 Preliminaries

We use vector subscripts to denote the order of a sequence of vectors, and parentheses to

denote the index of the entries of a vector. We use MATLAB notation to refer to row or

column numbers and ranges. The matrix A, of size N×N , is assumed to have a symmetric
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structure (undirected graph).

3.1.3 Lattice QCD problems

Lattice Quantum ChromoDynamics (LQCD) is a formulation of Quantum Chromo-Dynamics

(QCD) that allows for numerical calculations of properties of strongly interacting matter

(Hadron Physics) [64]. These calculations are performed through Monte Carlo computa-

tions of the discretized theory on a finite 4 dimensional Euclidean lattice. Physical results

are obtained after extrapolation of the lattice spacing to zero. Hence calculations on mul-

tiple lattice sizes are required for taking the continuum and infinite volume limits. In this

formulation, a large sparse matrix D called the Dirac matrix plays a central role. This

matrix depends explicitly on the gauge fields U . The physical observables in a LQCD

calculation are computed as averages over the ensemble of gauge field configurations. In

various stages of the computation one needs, among other things, to estimate the determi-

nant as well as the trace of the inverse of this matrix. The dimensionality of the matrix is

3×4×L3
s×Lt, where Ls and Lt are the dimensions of the spatial and temporal directions

of the space-time lattice, 3 is the dimension of an internal space named “color”, and 4 is

the dimension of the space associated with the spin and particle/antiparticle degrees of

freedom. Typical lattice sizes in todays calculations have Ls = 32 and Lt = 64 and the

largest calculations performed on leadership class machines at DOE or NSF supercomput-

ing centers have Ls = 64 and Lt = 128. As computational resources increase and precision

requirements grow, lattices will become even bigger.

3.1.4 The Monte Carlo method for Tr(A−1)

Hutchinson introduced the standard MC method for estimating the trace of A and proved

the following [45].

Lemma 3.1 Let A be a matrix of size N ×N and denote by Ã = A−Diag(A). Let z be

a Z2 random vector (i.e., whose entries are i.i.d Rademacher random variables Pr(z(i) =
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±1) = 1/2). Then, zTAz is an unbiased estimator of Tr(A), i.e.,

E(zTAz) = Tr(A),

and

var(zTAz) = ‖Ã‖2F = 2

(
‖A‖2F −

N∑
i=1

A(i, i)2

)
.

The MC method converges with rate
√
var(zTAz)/s, where s is the sample size of the

estimator (number of random vectors). Thus, the MC converges in one step for diagonal

matrices, and very fast for strongly diagonal dominant matrices. More relevant to our

Tr(A−1) problem is that large off-diagonal elements of A−1 contribute more to the variance

‖Ã−1‖2F and thus to slower convergence.

Computationally, zTA−1z (often regarded as a Gaussian quadrature) can be computed

using the Lanczos method [24, 39, 58]. This method also produces upper and lower bounds

on the quadrature, which are useful for terminating the process. The alternative of solving

the linear system A−1z, is not recommended for non-Hermitian systems because of worse

floating point behavior [59], but for Hermitian systems it can be as effective if we stop

the system earlier. Specifically, the quadrature error in Lanczos converges as the square

of the system residual norm [39], and therefore we need only let the residual converge to

the square root of the required tolerance. A potential advantage of solving A−1z is that

the result can be reused when computing multiple correlation functions involving bilinear

forms yTA−1z (e.g., in LQCD).

3.1.5 Probing

Probing has been used extensively for the estimation of sparse Jacobians [35, 38], for

preconditioning [57], and in Density Functional Theory for approximating the diagonal of

a dense projector whose elements decay away from the main diagonal [28, 62]. The idea

is to expose the structure and recover the non-zero entries of a matrix by multiplying it

with a small, specially chosen set of vectors. For example, we can recover the elements
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of a diagonal matrix through a matrix-vector multiplication with the vector of N 1’s,

1N = [1, . . . , 1]T . Similarly, a banded matrix of bandwidth b can be found by matrix-

vector multiplications with vectors zk, k = 1, . . . , b, where

zk(i) =

{
1, for i = k : b : N
0, otherwise .

To find the trace (or more generally the main diagonal) of a matrix, the methods are

based on the following proposition [28].

Proposition 3.1 Let Z ∈ <N×s be the matrix of the s vectors used in the MC trace

estimator. If the i-th row of Z is orthogonal to all those rows j of Z for which A(i, j) 6= 0,

then the trace estimator yields the exact Tr(A).

In the above example of a banded matrix, we choose the vectors zk such that their

rows only overlap for structurally orthogonal rows of A (i.e., for rows farther than b apart).

Thus, by proposition 3.1, the trace computed with these zk is exact.

If A is not banded but its sparsity pattern is known, graph coloring can be used to

identify the structurally orthogonal segments of rows, and derive the appropriate probing

vectors [62]. Assume the graph of A is colorable with m colors, each color having n(k)

number of vertices, k = 1, . . . ,m. The coloring is best visualized by letting q be the

permutation vector which reorders identically colored vertices together. Then A(q, q) has

m blocks along the diagonal, the k-th block is of dimension n(k), and each block is a

diagonal matrix. Figure 3.1 shows an example of the sparsity structure of a permuted

4-colorable matrix. Computationally, permuting A is not needed. If we define the vectors:

zk(i) =

{
1 if color(i) = k
0 otherwise , k = 1, . . . ,m (3.1)

we see that Proposition 3.1 applies, and therefore Tr(A) =
∑m

k=1 z
T
k Azk.

When the matrix is dense and all its elements are of similar magnitude, there is no

structure to be exploited by probing. The inverse of a sparse matrix is typically dense,
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Figure 3.1: Visualizing a 4-colorable matrix permuted such that all rows corresponding
to color 1 appear first, for color 2 appear second, and so on. Each diagonal block is a
diagonal matrix. The four probing vectors with 1s in the corresponding blocks are shown
on the right.

but, for many applications, its elements decay on locations that are farther from the

locations of the non-zero elements of A. Such small elements of A−1 can be dropped, and

the remaining A−1 is sparse and thus colorable. Diagonal dominance of the matrix is a

sufficient (but not necessary) condition for the decay to occur [35, 62]. This property is

exploited by approximate inverse preconditioners and can be explained from various points

of view, including Green’s function for differential operators, the power series expansion

of A−1, or a purely graph theoretical view [29, 30, 34, 44]. In the context of probing, we

drop elements A−1(i, j) where the vertices i and j are farther than k links apart in the

graph of A. Because this graph corresponds to the matrix Ak, our required distance-k

coloring is simply the distance-1 coloring of the matrix Ak [38, 62]. Computing Ak for

large k, however, is time and/or memory intensive.

The effectiveness of probing depends on the decay properties of the elements of A−1,

and the choice of k in the distance-k coloring. The problem is that k depends both on

the structure and the numerical properties of the matrix. If elements of A−1 exhibit slow

decay, choosing k too small does not produce sufficiently accurate estimates because large

elements of A−1 (linking vertices that are farther than k apart) contribute to the variance

in Lemma 3.1. Choosing k too large increases the number of quadratures unnecessarily,

and more importantly, makes the coloring of Ak prohibitive. This problem has also been

identified in [62] but no solution proposed.
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A conservative approach is to use probing for a small distance (typically 1 or 2) to

remove the variance associated only with the largest, off-diagonal parts of the matrix.

Then, for each of the resulting m probing vectors, we generate s random vectors that

follow the non-zero structure of the corresponding probing vector, and perform s MC

steps (requiring ms quadratures). In LQCD this method is called dilution. In its most

common form it performs a 2-color (red-black) ordering on the uniform lattice and uses

the MC estimator to compute two partial traces: one restricted on the red sites, the

other on the black sites of the lattice [25, 37, 51]. Therefore, all variance caused by the

direct red-black connections of A−1 is removed. The improvement is modest, however, so

additional “dilution” is required [23, 51].

3.1.6 Hadamard vectors

An N ×N matrix H is a Hadamard matrix of order N if it has entries H(i, j) = ±1 and

HHT = NI, where I is the identity matrix of order N [28, 43]. N must be 1, 2, or a

multiple of 4. We restrict our attention to Hadamard matrices whose order is a power of

2, and can be recursively obtained as:

H2 =

[
1 1
1 −1

]
, H2n =

[
Hn Hn
Hn −Hn

]
= H2 ⊗Hn.

For powers of two, Hn is also symmetric, and its elements can be obtained directly as

Hn(i, j) = (−1)
∑logN

k=1 ikjk , (3.2)

where (ilogN , . . . , i1)2 and (jlogN , . . . , j1)2 are the binary representations of of i−1 and j−1

respectively. We also use the following notation to denote Hadamard columns (vectors):

hj = Hn(:, j+ 1), j = 0, . . . , n− 1. Hadamard matrices are often called the integer version

of the discrete Fourier matrices,

Fn(j, k) = e2π(j−1)(k−1)
√
−1/n. (3.3)
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For n = 2, H2 = F2, but for n > 2, Fn are complex. These matrices have been studied

extensively in coding theory where the problem is to design a code (a set of s < N vectors

Z) for which ZZT is as close to identity as possible [28]. Hn and Fn vectors satisfy the

well known Welch bounds but Hn vectors do not achieve equality [63]. Moreover, Fn are

not restricted to powers of two. Still, Hadamard matrices involve only real arithmetic,

which is important for efficiency and interoperability with real codes, and it is easy to

identify the non-zero pattern they generate. Later, we will view the Hadamard matrix as

a methodical way to build an orthogonal basis.

Consider the first 2k columns of a Hadamard matrix Z = H(:, 1 : 2k). The non-zero

pattern of the matrix ZZT consists of the i2k upper and lower diagonals, i = 0, 1, . . . [28].

Because Tr(ZTA−1Z) = Tr(A−1ZZT ) and because of Lemma 3.1 and Proposition 3.1,

the error in the MC estimation of the trace is induced only by the off-diagonal elements

of A−1 that appear on the same locations as the non-zero diagonals of ZZT . If the matrix

is banded or its diagonals do not coincide with the ones of ZZT , the trace estimation is

exact. When the off-diagonal elements of A−1 decay exponentially away from the main

diagonal, increasing the number of Hadamard vectors achieves a consistent (if not mono-

tonic) reduction of the error. We note that this special structure of ZZT is achieved only

when the number of vectors, s, is a power of two. For 2k < s < 2k+1, the structure of

ZZT is dense in general, but the weight of ZZT elements is largest on the main diagonal

(equal to s) and decreases between diagonals i2k and (i+1)2k. Thus, estimation accuracy

improves with s, even for dense matrices. However, to annihilate a certain sparsity struc-

ture of a matrix, the estimates at only s = 2k should be considered. Similar properties

apply for the Fn matrices.

3.1.7 Overcoming probing limitations

We seek to construct special vectors for the MC estimator that perform at least as well

as Z2 noise vectors, but can also exploit the structure of the matrix, when such structure

exists. Although Hadamard vectors seem natural for banded matrices, they cannot handle
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Red−black order

vs

Hadamard natural order

Figure 3.2: Crossed out nodes have their contribution to the error canceled by the
Hadamard vectors used. Left: the first two, natural order Hadamard vectors do not
cancel errors in some distance-1 neighbors in the lexicographic ordering of a 2-D uniform
lattice. Right: if the grid is permuted with the red nodes first, the first and the middle
Hadamard vectors completely cancel variance from nearest neighbors and correspond to
the distance-1 probing vectors.

deviations from this structure. For example, the first two Hadamard vectors compute the

exact trace of a tridiagonal matrix. For the matrix that corresponds to a 2-D uniform

lattice of size 2n × 2n with periodic boundary conditions and lexicographic ordering, pro-

ducing the exact trace requires the first 2n+1 Hadamard vectors. However, if we consider

the red-black ordering of the same matrix, only two Hadamard vectors, h0 and h2n−1 , are

sufficient, as shown in Figure 3.2.

The previous example shows that although Hadamard vectors are a useful tool, probing

is the method that discovers matrix structure. Therefore, we turn to the problem of how

to perform probing efficiently on Ak and for large k. Ideally, a method should start with

a small k and increase it until it achieves sufficient accuracy. However, the colorings,

and thus the probing vectors, for two different k’s are not related in general. Thus, in

addition to the expense of the new coloring, all previously performed quadratures must

be discarded.

First let us persuade the reader that work from a previous distance-k probing cannot

be reused in general. Assume the distance-1 coloring of a matrix of size 6 produced three

colors: color 1 has rows 1 and 2, color 2 has rows 3 and 4, color 3 has rows 5 and 6. Next

we perform a distance-2 coloring of A, and assume there are four colors: color 1 has row 1,

color 2 has rows 2 and 3, color 3 has rows 4 and 5, color 4 has row 6. As in Figure 3.1, the
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distance-1 and distance-2 probing vectors, Z(1) and Z(2) respectively, are the following:

Z(1) =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , Z(2) =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 .

Unfortunately, the three computed quadratures Z(1)TA−1Z(1) (or solutions to A−1Z(1))

cannot be used to avoid recomputation of the four quadratures Z(2)TA−1Z(2).

Consider now a matrix of size 8 with two colors in its distance-1 coloring. Assume

that its distance-2 coloring produces four colors, and that all rows with the same color

belong also to the same color group for distance-1. Then the subspace of the corresponding

probing vectors is spanned by certain Hadamard vectors:

Z(1) = Z(2) =

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1


∈ span(



1 1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1


),



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


∈ span(



1 1 1 1
1 1 1 1
1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1


).

The four Hadamard vectors are h0, h4, h2, h6. More interesting than the equality of the

spans is that the two bases are an orthogonal transformation of each other. Specifically,

Z(1) = 1/2[h0, h4]H2 and Z(2) = 1/2[h0, h4, h2, h6]H4. Because the trace is invariant under

orthogonal transformations, we can use the Hadamard vectors instead (as we implicitly

did in Figure 3.2 for the lattice). Clearly, for this case, the quadratures of the first two

vectors can be reused so that the distance-2 probing will need computations for only two

additional vectors.

A key difference between the two examples is the nesting of colors between successive

colorings. In general, such nesting cannot be expected and thus an incremental approach

to probing will necessarily discard prior work. A second difference is that all color groups

are split into the same number of colors in the successive coloring. To achieve these desired
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characteristics, we develop first a hierarchical, all-distance coloring, and then represent its

probing basis through a convenient set of vectors. We explain the general hierarchical

coloring idea next.

3.1.8 Hierarchical coloring

The key idea is to enforce nesting of colors in successive distance colorings by looking at

each color group independently and coloring its nodes for the next higher distance using

only local information from that color group. We apply this recursively until every node

of the graph is colored uniquely.

We begin this recursive approach by finding a distance-1 coloring of the graph, thus

partitioning its nodes into separate color groups. In subsequent levels of the hierarchy, the

nodes in each group will never share a color with the nodes in another group. To move to

the next level, we use the graph at the current level to produce a distance-2 connectivity

among the nodes within each color group. Then we apply the algorithm recursively to the

induced subgraphs for each color group independently. It is a straightforward inductive

observation that at every level we generate a distance-2i coloring, but for all i = 0, 1, . . .,

until the distance covers the diameter of the graph.

Hierarchical coloring produces more colors at distance-2i than classical coloring of the

graph of A2i . If the task were to approximate the trace of the matrix A2i , the extra colors

would be redundant and the additional probing vectors would represent unnecessary work.

However, we approximate the trace of A−1, which is dense. Thus, the larger number

of hierarchical probing vectors at distance-2i will also approximate some elements that

represent node distances larger than 2i, yielding a larger variance reduction than the

corresponding A2i classical probing method.

3.1.9 Hierarchical coloring on lattices

Uniform d-D lattices allow for an extremely efficient implementation of the hierarchical

coloring approach, based entirely on bit-arithmetic.
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Consider first the 1-D case, where the lattice has N = 2k points, where k = log2N ,

which guarantees the 2-colorability of the 1-D torus. Any point has a coordinate 0 ≤ x ≤

N − 1 with a binary representation: [bk, bk−1, . . . , b1] = dec2bin(x). At the first level, the

distance-1 coloring is simply red-black (we associate red with 0 and black with 1), and x

gets the color of its least significant bit (LSB), b1. In the coloring permutation, we order

first the N/2 red nodes. At the second level, we consider red and black points separately

and split each color again, but now based on the second bit b2. Thus, points [∗ ∗ . . . ∗ ∗00]

and [∗∗. . .∗∗10] take different colors, and by construction all colors are given hierarchically.

The second level permutation will not mix nodes between the first two halves of the first

level, but will permute nodes within the respective halves, i.e., points with 0 in the LSB

always appear in the first half of the permutation. The process is repeated recursively for

each color, until all points have a different color.

The binary tree built by the recursive algorithm splits the points of a subtree in half

at the i-th level based on bi. Thus, to find the final permutation we trace the path from

the root to a leaf, producing the binary string: [b1b2 . . . bk], which is the bit reversed string

for x. Denote by P the final permutation array such that node x = 0, . . . , N − 1 in the

original ordering is found in location P (x) of the final permutation. Then,

P (x) = bin2dec(bitreverse(dec2bin(x))) (3.4)

and the computation is completely independent for any coordinate.

Extending to torus lattices of d dimensions, where N =
∏d
j=1 2kj , has three compli-

cations: First, the subgraph of the same color nodes is not a conformal uniform lattice.

Second, the geometry does not allow a simple bit reversal algorithm. Third, not all di-

mensions have the same size (kj 6= ki). The following sections address these.
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3.1.10 Splitting color blocks into conformal d-D lattices

Consider a point with d coordinates (x1, x2, . . . , xd). Let [bjkj , . . . , b
j
2, b

j
1] be the binary

representation of coordinate xj with 0 ≤ xj < 2kj . We know that uniform lattices are

2-colorable, so at the first level, red black ordering involves the least significant bit of

all coordinates. The color assigned to the point is mod(
∑d

j=1 b
j
1, 2). However, the red

partition, which is half of the lattice points, is not a regular d-dimensional torus. Every

red point is distance-2 away from any red neighbor, and therefore it has more neighbors

(e.g., in case of 2-D it is connected with 8 neighbors, in 3-D with 18, and so on). To facil-

itate a recursive approach, we observe that the reds can be split into 2d−1 d-dimensional

sublattices, if we consider them in groups of every other row in each dimension. Similarly

for the blacks. For the 2-D case this is shown in Figure 3.3.

k=2

2 3 2 30 1 0 1
0 1 4 52 3 7 8

k=2
k=1

k=4

k=1

Figure 3.3: When doubling the probing distance (here from 1 to 2) we first split the 2-D
grid to four conformal 2-D subgrids. Red nodes split to two 2 × 2 grids (red and green),
and similarly black nodes split to blues and black. Smaller 2-D grids can then be red-black
ordered.

This partitioning is obtained based on the value of the binary string: [b11, b
2
1, . . . , b

d
1].

For each value, the resulting sublattice contains all points with the given least significant

bits in its d coordinates. Because each coordinate loses one bit, the size of each sublattice is∏d
j=1 2kj−1. At this second level, each of the 2d sublattices can be 2-colored independently.

Each sublattice will receive a distinct coloring, which which will be hierarchical, as long

as we track the original color of the nodes.
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3.1.11 Facilitating bit reversal in higher dimensions

The above splitting based on the LSBs from the d coordinates does not order the adjacent

colors together. For example, the partitioning at the first level of d = 2 gives four sub-

lattices (00,01,10,11) of which the 00 and 11 are reds while 01 and 10 are blacks. We can

recursively continue partitioning and coloring the sublattices. However, if we concatenate

at every level the new 2 bits from the 2 coordinates, as in the bit reversed pattern in the

1-D case, the resulting ordering is not hierarchical. In our example, all red points in the

first level are ordered in the first half, but at the second level, the colors associated with

the 00 reds will be in the first quarter of the ordering, while the colors associated with

the 11 reds will be in the fourth quarter of the ordering. Since the hierarchical ordering

is critical for reusing previous work, we order the four sublattices not in the natural order

(00,01,10,11) but in a red black order: (00 11 01 10). Algorithm 1 produces this Red-Black

reordering in d dimensions.

A more computationally convenient way to obtain the RB permutation is based on

the fact that every point on the stencil has neighbors of opposite color. In other words,

color([x1, . . . , xd]) = ¬color([x1, . . . , xd] ± ej), where ej is the unit row-vector in the j

dimension, j = 1, . . . , d, and ¬ is the logical not. With two points per dimension, in

one dimension the colors are c1 = [0, 1]. Inductively, if the colors in dimension d − 1

are cd−1, the second d − 1 plane in dimension d will have the opposite colors, and thus:

cd = [cd−1,¬cd−1]. Therefore, we can create the RB with only a check per point instead

of counting coordinate bits. This is shown in Algorithm 2.
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Algorithm 1 Red-Black order of the 2d

torus (slow)

RB = bitarray(2d, d)

reds = 0, blacks = 2d−1

for i = 0 : 2d − 1

if dec2bin(i) has even number of bits

newbits = dec2bin(reds, d)

reds = reds+ 1

else

newbits = dec2bin(blacks, d)

blacks = blacks+ 1

RB(i, :) = newbits

Algorithm 2 Red-Black order of the 2d

torus (fast)

c0 = 0

for j = 1 : d

cj = [cj−1,¬cj−1]

RB = bitarray(2d, d)

reds = 0, blacks = 2d−1

for i = 0 : 2d − 1

if cd(i) == 0

newbits = dec2bin(reds, d)

reds = reds+ 1

else

newbits = dec2bin(blacks, d)

blacks = blacks+ 1

RB(i, :) = newbits

We are now ready to combine the Red-Black reordering with the bit-reversing scheme

to address the d-dimensional case. First, assume that the lattice has the same size in each

dimension, i.e., kj = k, ∀j = 1, . . . , d. Then the needed permutation is given by Algorithm

3.

3.1.12 Lattices with different sizes per dimension

At every recursive level, our algorithm splits the size of each dimension in half (removing

one bit), until there is only 1 node per dimension. When the dimensions do not all have

the same size, some of the dimensions reach 1 node first and beyond that point they are
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Algorithm 3 Hierarchical permutation of the lattice – case kj = k

% Input:
% the coordinates of a point x = (x1, x2, . . . , xd)
% the global RB array produced by Algorithm 2
% Output:
% The location in which x is found in the hierarchical permutation
function loc = LatticeHierPermutation0((x1, x2, . . . , xd))

% Make a d× k table of all the coordinate bits
for j = 1 : d

(bjk, . . . , b
j
2, b

j
1) = dec2bin(xj)

% Accumulate bit-reversed order. Start from LSB
loc = [ ]
for i = 1 : k

% A vertical section of bits. Take the i-th bit of all coordinates
% and permute it to the corresponding red-black order
(s1, . . . , sd) = RB(bin2dec(b1i , b

2
i , . . . , b

d
i ))

% Append this string to create the reverse order string
loc = [loc, (s1, . . . , sd)]

return bin2dec(loc)

not subdivided. If m out of d dimensions have reached size 1, the above algorithm should

continue as in a d−m dimension lattice, at every level concatenating only the active d−m

bits in loc. In this case, however, the red-black permutation RB should correspond to that

of a d−m dimensional lattice. The following three lemmas and the theorem, whose proofs

are in the Appendix, allow us to avoid computing and storing RBj for each j = 1, . . . , d.

As before, we consider cd the array of 0/1 colors of the 2-point, d-dimensional torus.

Lemma 3.2 For any d > 0, cd(2i) = cd−1(i), i = 0, . . . , 2d−1 − 1.

Lemma 3.3 For any d > 0, cd(2i) = ¬cd(2i+ 1), i = 0, . . . , 2d−1 − 1.

Lemma 3.4 For any d > 0 the values of RBd(i), i = 0, . . . , 2d − 1 are given by:

RBd(i) =

{
bi/2c, if cd(i) = 0
bi/2c+ 2d−1, if cd(i) = 1

.

We can now show how RBm,m < d, can be obtained from RBd.
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Theorem 3.2 Let RBd be the permutation array that groups together the same colors in

a red-black ordering of the two-point, d dimensional lattice, as produced by Algorithm 2.

For any 0 < m < d,

RBm(i) = bRBd(i2d−m)/2d−mc, i = 0, . . . , 2m − 1.

The theorem says that given RBd in bit format, RBm is obtained as the left (most

significant) m bits of every 2d−m number in RBd. We now have all the pieces needed to

modify Algorithm 3 to produce the permutation of the hierarchical coloring of d dimen-

sional lattice torus of size N =
∏d
j=1 2kj .

For d > 1, Algorithm 4 differs from the general approach discussed in the beginning of

Section 3.1.8 because it pre-splits groups of colors into conformal lattices before it induces

the new connectivity. The difference in the actual number of colors, however, is small. At

level i = 0, 1, . . ., Algorithm 4 performs a distance-2i+1 − 1 coloring and produces 2di+1

colors.

For classical probing, the minimum number of colors required for distance-2i+1 − 1

coloring of lattices is not known for d > 2 [32]. An obvious lower bound is the number

of lattice sites in the “unit sphere” of graph diameter 2i. If

 d

i

 denotes the binomial

coefficient, with a 0 value if d < i, the lower bound is given by [26, Theorem 2.7]:

d∑
i=0

(
d
i

)(
d− i+ 2i−1

d

)
.

For sufficiently large distances, this is O(23i−1/3) for d = 3, and O(24i−3/3) for d = 4.

Thus, we can bound asymptotically how many more colors our method gives:

Number of colors in hierarchical probing

Number of colors in classical probing

{
< 12, if d=3
< 48, if d=4.
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Algorithm 4 Hierarchical permutation of the lattice – case 2ki 6= 2kj

% Input:
% the coordinates of a point x = (x1, x2, . . . , xd)
% the global RB array produced by Algorithm 2
% Output:
% The location in which x is found in the hierarchical permutation
function loc = LatticeHierPermutation((x1, x2, . . . , xd))

% Make a d×max(kj) table of all the coordinate bits
% Dimensions with smaller sizes only have up to kj bits set
for j = 1 : d

(bjkj , . . . , b
j
2, b

j
1) = dec2bin(xj)

% Accumulate bit-reversed order. Start from LSB
loc = [ ]
for i = 1 : max(kj)

% A vertical section of bits. Take the i-th bit of all coordinates
% in dimensions that can still be subdivided (i ≤ kj).
% Record number of such dimensions
activeDims = 0
bits = [ ]
for j = 1 : d

if (i ≤ kj)
bits = [bits, bji ]
activeDims = activeDims+ 1

% permute it to the corresponding red-black order using RBi
index = bin2dec(bits)2d−activeDims

(s1, . . . , sactiveDims) = bRB(index)/2d−activeDimsc
% Append this string to create the reverse order string
loc = [loc, (s1, . . . , sactiveDims)]

return bin2dec(loc)
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In practice, we have observed ratios of 2–3. On the other hand, because hierarchical

probing uses more vectors, the variance reduction it achieves when a certain distance

coloring completes, i.e., after 2di+1 quadratures in the MC estimator, is typically better

than classical probing for the same distance.

In terms of computational cost, this algorithm is very efficient, especially when com-

pared with classical probing. As an example, producing the hierarchical permutation of

a 644 lattice takes about 6 seconds on a Macbook Pro with 2.8 GHz Intel Core 2 Duo.

More importantly, the permutation of each coordinate is obtained independently which

facilitates parallel computing.

3.1.13 Coloring lattices with non-power of two sizes

Consider a lattice of size N =
∏d
j=1 nj . Sometimes, LQCD may generate lattices where

one or more nj are not powers of two. In this case, it is typical that nj = 2mp, where

p 6= 2 is a small prime number. Our hierarchical coloring method works up to m levels,

but then the remaining subgrids are of odd size in the j-th dimension, causing coloring

conflicts because of wrap-around. In the next theorem, whose proof is in Appendix, we

show that such a lattice is three colorable.

Theorem 3.3 A toroidal, uniform lattice of size N =
∏d
j=1 nj, where one or more nj are

odd, admits a three-coloring with point x = (x1, . . . , xd) receiving color:

C(x) =

 d∑
j=1

xj +
d∑
j=1

δ(xj)

mod 3, where δ(xj) =

{
1, if (xj = nj − 1) and

(nj − 1 mod 3 = 0)
0, everywhere else.

After the three-coloring is produced, further hierarchical colorings are not practical,

since the coloring yields blocks of nodes that are not conformal lattices, and are of irreg-

ular shapes. This prevents the use of a method similar to the one described in section 3.

Because of this, for lattices which have dimensions with factors other than two, we can

proceed only one level further after the factors of two have been exhausted by the hier-
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archical coloring algorithm. This is not a shortcoming in LQCD, since, by construction,

lattices have dimensions with at most one odd factor. Finally, note that the number of hi-

erarchical probing vectors produced before exhausting the powers of two in each dimension

is typically large, obviating the need for a last three-coloring step.

3.1.14 Generating the probing basis

Assume for the moment each color group at any level of the hierarchical method is colored

with exactly two colors. Consider also the permuted matrix A(perm, perm) so that colors

appear in the block diagonal. In Section 3.1.7, we saw the Hadamard vectors required for

probing the first two levels of this recursion for a 8×8 matrix: [h0, h4] and [h0, h4, h2, h6, ].

If ⊗ denotes the Kronecker product and 1k = [1, . . . , 1]T the vector of k ones, these can

be written as:

[h0, h4] = H2 ⊗ 14,

[h0, h4, h2, h6] = [H2 ⊗H2(:, 1), H2 ⊗H2(:, 2)]⊗ 12.

This pattern extends to any recursion level i = 1, 2, . . . , log2N . If we denote by Z(i)

the Hadamard vectors that span the i-th level probing vectors, these are obtained by the

following recursion:

Z̃(1) = H2,

Z̃(i) =
[
Z̃(i−1) ⊗H2(:, 1), Z̃(i−1) ⊗H2(:, 2)

]
,

Z(i) = Z̃(i) ⊗ 1N/2i . (3.5)

Intuitively, this says that at every level, we should repeat the pattern devised in the

previous level to double the domains for the first 2i−1 vectors (Kronecker product with

[1, 1]T ), and then should split each basic subdomain in two opposites (Kronecker product

with [1,−1]T ).
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The hierarchy Z(i−1) = Z(i)(:, 1 : 2i−1) implies that quadratures performed with Z(i−1)

can be reused if we need to increase the probing level. To obtain the m-th probing vector,

therefore, we can consider the m-th vector of Z(log2N). Its rows can be constructed piece

by piece recursively through (3.5) and without constructing all Z(log2N). In fact, we can

even avoid the recursive construction and compute any arbitrary element of Z(log2N)(j,m)

directly. This is useful in parallel computing where each processor generates only the local

rows of this vector. The reason is that recursion (3.5) produces a known permutation of

the natural order of the Hadamard matrix, specifically the column indices are:

0, N/2, N/4, 3N/4, N/8, 5N/8, 3N/8, 7N/8, . . . . (3.6)

We can compute a-priori this column permutation array, Hperm, for all N , or for as many

vectors as we plan to use in the MC estimator. Then by using the inverse permutation

(iperm) associated with the given hierarchical coloring, the j-th element of the m-th

probing vector can be computed directly through (3.2) as:

zm(j) = HN (iperm(j), Hperm(m)). (3.7)

We observe now that the assumption that each subgroup is colored with exactly two

colors is not necessary. The ordering given in (3.6) is the same if each subgroup is colored

by any power of two colors, which could be different at different levels. The sequence (3.6)

is built on the smallest increment of powers of two and thus subsumes any higher powers.

We can extend the above ideas to generate the probing basis for arbitrary N , when

at every level each color block is split into exactly the same (possibly non-power of two)

colors. For example, at the first level we split the graph into 3 colors, at level two, each of

the 3 color blocks is colored with exactly 5 colors, at level three, each of the 5 color blocks

is colored with exactly 2 colors, and so on. The problem is that Hadamard matrices do not

exist for arbitrary dimensions. For example, for 3 probing vectors, there is no orthogonal
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basis Z of ±1 elements, such that ZZT = I. In this general case, we must resort to the

N -th roots of unity, i.e., the Fourier matrices Fn.

Assume that the number of colors at level i is c(i) for all blocks at that level, then the

probing basis is constructed recursively as:

Z̃(1) = Fc(1),

Z̃(i) =
[
Z̃(i−1) ⊗ Fc(i)(:, 1), . . . , Z̃(i−1) ⊗ Fc(i)(:, c(i))

]
,

Z(i) = Z̃(i) ⊗ 1N/γi , where γi =
i∏

j=1

c(j). (3.8)

By construction, the vectors of Z(i−1) are contained in Z(i), and any arbitrary vector can

be generated with a simple recursive algorithm. However, we have introduced complex

arithmetic which doubles the computational cost for real matrices. On the other hand,

if a c(i) is a power of two, its Fc(i) can be replaced by Hc(i). This can be useful when

the non-power of two colors appear only at later recursion levels for which the number of

probing vectors is large and may not be used, or when only one or two Fc(i) will suffice.

To summarize, we have provided an inexpensive way to generate, for any matrix size,

an arbitrary vector of the hierarchical probing sequence through (3.8), as long as the

number of colors is the same within the same level for each subgraph. If, in addition, the

matrix size and the color numbers are powers of two, (3.6–3.7) provide an even simpler

way to generate the probing sequence. In LQCD, many of the lattices fall in this last

category.

3.1.15 Removing the deterministic bias

The probing vectors produced in Section 3.1.14 are deterministic and, even though they

give better approximations than random vectors, they introduce a bias. To avoid this,

we can view formula (3.5) not as a sequence of vectors but as a process of generating an

orthogonal basis starting from any vector and following a particular pattern. Therefore,
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consider a random vector z0 ∈ ZN2 , and [z1, z2, . . . , zm] the sequence of vectors produced

by (3.5). If � is the element-wise Hadamard product, the vectors built as

V = [z0 � z1, z0 � z2, . . . , z0 � zm] (3.9)

have the same properties as Z, i.e., V TV = ZTZ and V V T has same non-zero pattern

as ZZT (V V T = (z0z
T
0 )� ZZT ), but one can easily show that the expected value of the

trace estimate over all z0 is the matrix trace, yielding an unbiased estimator.

3.1.16 Numerical experiments

We present a set of numerical examples on control test problems and on a large QCD

calculation in order to show the effectiveness of hierarchical probing over classical probing,

and over standard noise Monte Carlo estimators for Tr(A−1). We also study the effect of

the unbiased estimator.

Our standard control problem is the discretization of the Laplacian on a uniform lattice

with periodic boundary conditions. We control the dimensions (3-D or 4-D), the size per

dimension, and the conditioning (and thus the decay of the elements of the inverse) by

applying a shift to the matrix. Most importantly, for these matrices we know the trace

of the inverse analytically. We will refer to such problems as Laplacian, with their size

implying their dimensionality.

3.1.17 Comparison with classical probing

For this set of experiments we consider a 643 Laplacian, shifted so that its condition

number is on the order of 102. Therefore, its A−1 exhibits dominant features on and close

to (in a graph theoretical sense) the non-zero structure of A, with decay away from it.

The decay rate depends on the conditioning of A. Our methods should be able to pick

this structure effectively.
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Figure 3.4 shows the performance of classical probing, which is a natural benchmark

for our methods. The left graph shows that for larger distance colorings, probing performs

extremely well. For example, with 317 probing vectors, which correspond to a 8-distance

coloring, we achieve more than two orders reduction in the error. Of course, if the ap-

proximation is not good enough, this work must be discarded, and the algorithm must be

repeated for higher distances. Hadamard vectors, in their natural order, do not capture

well the nonzero structure of this A.

The right graph in Figure 3.4 shows one way to improve accuracy beyond a certain

probing distance. After using [0, . . . , 0,1Tr(m), 0, . . . 0]T as the probing vector for colorm, we

continue building a Hadamard matrix in its natural order only for the r(m) coordinates of

that color. If probing has captured the most important parts of the matrix, the remaining

parts could be sufficiently approximated by natural order Hadamard vectors. This is

confirmed by the results in the graph, if one knows what initial probing distance to pick.

On the other hand, hierarchical probing, which considers all possible levels, achieves better

performance than all other combinations.

In Figure 3.5, left graph, we stop our recursive algorithm at various levels and use

the resulting permutation to generate the vectors for the trace computation. It is clearly

beneficial to allow the recursion to run for all levels. We also point out that stopping at

intermediate levels behaves similarly to classical probing with the corresponding distance.

On the right graph of Figure 3.5, we observe no difference between methods for high

conditioned matrices. The reason is that the eigenvector of the smallest eigenvalue of A

is the vector of all ones, 1N . The more ill conditioned A is, the more A−1 is dominated

by 1N1
T
N , which has absolutely no variation or pattern.

We point out that the experiments in this subsection did not use the unbiased estimator

of Section 3.1.15. This has a severe effect for the Laplacian matrix because the first

vector of our Hadamard sequences is h0 = 1N , the lowest eigenvector. Even for a well

conditioned Laplacian, starting with h0 guarantees that the first trace estimate will have

no contribution from other eigenvectors, and thus will have a large error. From a statistical
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Figure 3.4: Error in the Tr(A−1) approximation using the MC method with various
deterministic vectors. Classic probing requires 2,16,62, and 317 colors for probing dis-
tances 1,2,4, and 8, respectively. Left: Classic probing approximates the trace better
than the same number of Hadamard vectors taken in their natural order. Going to higher
distance-k requires discarding previous work. Right: Perform distance-k probing, then ap-
ply Hadamard in natural order within each color. Performs well, but hierarchical performs
even better.

point of view, h0 is the worst starting vector for Laplacians, but it better exposes the rate

at which various methods reduce error.

3.1.18 Comparison with random-noise Monte Carlo

Having established that hierarchical probing discovers matrix structure as well as classical

probing, we turn to gauge its improvements over the standard Z2 noise MC estimator.

First, we show three sets of graphs for increasing condition numbers of the Laplacian. We

use the 643, 324, and 64×1282 lattices, and plot the convergence of the trace estimates for

hierarchical probing, natural order Hadamard, and for the standard Z2 random estimator.

Both Hadamard sequences employ the bias removing technique (3.9). As it is typical, the

random estimator includes error bars designating the two standard deviation confidence

intervals, ±2(V ar/s)1/2, where V ar is the variance estimator.

Figure 3.6 shows the convergence history of the three estimators for well conditioned

shifted Laplacians, which therefore have prominent structure in A−1. Hierarchical probing
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Figure 3.5: Left: The hierarchical coloring algorithm is stopped after 1, 2, 3, 4, 5 levels
corresponding to distances 2, 4, 8, 16, 32. The ticks on the x-axis show the number of colors
for each distance. Trace estimation is effective up to the stopped level; beyond that the
vectors do not capture the remaining areas of large elements in A−1. Compare the results
with classical probing in Figure 3.4, which requires only a few less colors for the same
distance. Right: When the matrix is shifted to have high condition number, the lack of
structure in A−1 causes all methods to produce similar results.

exploits this structure, and thus performs much better than the other methods. Note that

the problem on the left graph is identical to the one used in the previous section. The

far better performance of the Hadamard sequences in this case is due to avoiding the

eigenvector h0 as the starting vector.

Figures 3.7 and 3.8 show results as the condition number of the problems increase. As

expected, the advantage of hierarchical probing wanes as the structure of A−1 disappears,

but there is still no reason not to use it as diminishing improvement remain evident. We

have included 4-D lattices in our experiments, first because of their use in LQCD, and

second because their structure is more difficult to exploit than lower dimensional lattices.

For 1-D or 2-D lattices which we do not show, hierarchical probing was significantly more

efficient.

Once we use a random vector z0 to modify our sequence as in (3.9), hierarchical

probing becomes a stochastic process, whose statistical properties must be studied. Thus,

we generate z
(i)
0 , i = 1 : 100, Z2 random vectors, and for each one we produce a modified
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Figure 3.6: Convergence history of Z2 random estimator, Hadamard vectors in natural
order, and hierarchical probing, the latter two with bias removed as in (3.9). Because of
small condition number, A−1 has a lot of structure, making hierarchical probing clearly
superior to the standard estimator. As expected, Hadamard vectors in natural order are
not competitive. The markers on the plot of the hierarchical probing method designate
the number of vectors required for a particular distance coloring to complete. It is on
these markers that structure is captured and error minimized.

sequence of the hierarchical probing vectors. Then, we use the 100 values xTmA
−1xm, where

xm = z
(i)
0 � zm, at every step of the 100 MC estimators to calculate confidence intervals.

These are shown in Figure 3.9. We emphasize that the confidence intervals for the Z2

random estimator are computed differently, based on the V ar estimator of the preceding

MC steps, so they may not be accurate initially. Even on a 4-D problem, hierarchical

probing provides a clear variance improvement.

3.1.19 A large QCD problem

The methodology presented in this paper has the potential of improving a multitude of

LQCD calculations. In this section, we focus on the calculation of C = Tr(D−1), where

the Dirac matrix D is a non-symmetric complex sparse matrix. This is representative of

a larger class of calculations usually called “disconnected diagrams”. The physical observ-

able C is related to an important property of QCD called spontaneous chiral symmetry

breaking.
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Figure 3.7: Convergence history of the three estimators as in Figure 3.6 for a larger
condition number O(104). As the structure of A−1 becomes less prominent, the differences
between methods reduce. Still, hierarchical probing has a clear advantage.

Our goal is to compare the standard MC approach of computing the trace with our

hierarchical probing method. Our test was performed on a single gauge field configuration

using the Dirac matrix that corresponds to the “strange” quark Dirac matrix resulting

from the Clover-Wilson fermion discretization [56]. The strange quark is the third heaviest

quark flavor in nature. The gauge configuration had dimensions of 323× 64 with a lattice

spacing of a = 0.11fm, for a problem size of 24 million.

First, we used an ensemble of n = 253 noise vectors to estimate the variance of the

standard MC method, with complete probing (dilution) of the internal color-spin space of

dimension 12 to completely eliminate the variance due to connections in this space. Then,

for each of these noise vectors, we modified as in (3.9) a sequence of hierarchical probing

vectors which were generated based on space-time connections. As with the standard

MC estimator, full dilution of the color-spin space was performed. This procedure was

performed in order to statistically estimate the variance of hierarchical probing, similarly to

the test in Figure 3.9. In Figure 3.10(a), we present the variance of the hierarchical probing

estimator as a function of the number of space-time probing vectors in the sequence. The

main feature in this plot is that the variance drops as more vectors are used. Local

minima occur at numbers of vectors that are powers of 2, where all connections of a given
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Figure 3.8: Convergence history of the three estimators as in Figure 3.6 for a high con-
dition number O(106). Even with no prominent structure in A−1 to discover, hierarchical
probing is as effective as the standard method.

Manhattan distance are eliminated from the variance. The uncertainty of the variance,

represented by the errorbars in the plot, is estimated using the Jackknife resampling

procedure of our noise vector ensemble.

In addition to the variance, we estimate the speed-up ratio of the hierarchical probing

estimator over the standard MC estimator. We define speed-up ratio as:

Rs =
Vstoc

Vhp(s) × s
,

where Vhp(s) is the variance over the n different runs when the s-th hierarchical probing

vector is used, and Vstoch is the variance of the standard MC estimator as estimated from

n = 253 samples. The rescaling factor of s is there to account for the fact that if one had

been using a pure stochastic noise with n× s vectors, the variance would be smaller by a

factor of s. Thus, the variance comparison is performed on equal amount of computation

for both methods. In Figure 3.10(b) we present the speed-up ratio Rs as a function s. The

errorbars on Rs are estimated using Jackknife resampling from our ensemble of starting

noise vectors. The peaks in this plot occur at the points where s is a power of 2, as in

the variance case. A maximum overall speed-up factor of about 10 is observed at s = 512.
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Figure 3.9: Providing statistics over 100 random vectors z0, used to modify the sequence
of 2048 hierarchical probing vectors as in (3.9). At every step, the variance of quadratures
from the 100 different runs is computed, and confidence intervals reported around the hi-
erarchical probing convergence. Note that for the standard noise MC estimator confidence
intervals are computed differently and thus they are not directly comparable.

Note that the color completion points for this experiment are at s = 2, s = 32 and s = 512

vectors.

Finally, we report on a comparison with classical probing for this large QCD problem.

There is a variety of approaches for efficient distance-2 coloring in the literature [38, 33],

but we have not found any standard approaches for distance-k coloring. On lattices,

however, the distance-k neighborhood of a node is explicitly known geometrically. We

implemented a coloring algorithm that visits only this neighborhood for each node, thus

achieving the minimum possible complexity for this problem [33]. Specifically, for each

node, we make a list of colors previously assigned to its distance-k neighbors, and pick

the smallest color number not appearing in the list. The distance-4 coloring of our LQCD

lattice produced 123 colors and took 457 seconds on an Intel Xeon X5672, 3.2GHz server.

Using four random vectors with the structure of each of these colors (so that the total

number of quadratures is similar to our hierarchical probing), we ran 50 sets of experi-

ments, and measured the variance of classical probing. We found that its variance was

2.16 times larger than our hierarchical probing, or in other words, our method was 2.16
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Figure 3.10: (a) Left: The variance of the hierarchical probing trace estimator as a
function of the number of vectors (s) used. The minima appear when s is a power of two.
The places where the colors complete are marked with the cyan circle. These minima
become successively deeper as we progress from 2 to 32 to 512 vectors. (b) Right: Speed-
up of the LQCD trace calculation over the standard Z2 MC estimator. The cyan circles
mark where colors complete. The maximal speed up is observed at s = 512. In both cases
the uncertainties are estimated using the Jackknife procedure on a sample of 253 noise
vectors, except for s = 256 and 512 where 37 vectors were used.

times faster. This is expected as we explained earlier. Finally, note that computing the

quadratures took 4 hours on four GPUs, on a dedicated machine for LQCD calculations.

Even though classic probing with distance-4 is feasible for this problem, computing the

distance-8 coloring requires 5377 seconds, which becomes comparable to the time for com-

puting the quadratures. Contrast that to the 2 seconds needed to compute the hierarchical

probing.

3.1.20 Conclusions

The motivation for this work comes from our need to compute Tr(A−1) for very large

sparse matrices and LQCD lattices. Current methods are based on Monte Carlo and do

not sufficiently exploit the structure of the matrix. Probing is an attractive technique but

cannot be used incrementally, and becomes expensive for ill conditioned problems. Our

research has addressed these issues.
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We have introduced the idea of hierarchical probing that produces suboptimal but

nested distance-2i colorings recursively, for all distances up to the diameter of the graph.

We have adapted this idea to uniform lattices of any dimension in a very efficient and

parallelizable way.

To generate probing vectors that follow the hierarchical permutation and can be used

incrementally to improve accuracy, we have developed an algorithm that produces a spe-

cific permutation of the Hadamard vectors. This algorithm is limited to cases where the

number of colors produced at every level is a power of two. We have also provided a re-

cursive algorithm based on Fourier matrices that provides the appropriate sequence under

the weaker assumption of having the same number of colors per block within a single level.

These conditions are satisfied on toroidal lattices. Finally, we proposed an inexpensive

technique to avoid deterministic bias while using the above sequences of vectors.

We have performed a set of experiments in the context of computing Tr(A−1), and have

shown that providing a hierarchical coloring for all possible distances is to be preferred

over classical probing for a specific distance. We also showed that our methods provide

significant speed-ups over the standard Monte Carlo approach.

Currently we are working to extend the idea of hierarchical coloring to general sparse

matrices, and to combine it with other variance reduction techniques, in particular defla-

tion type methods.

APPENDIX

Lemma 3.2. Proof: We use induction on d. For d = 2, c2 = [0, 1, 1, 0] and the result

holds. Assume the result holds for any dimension d− 1 or lower. Then for d dimensions,

since the first half of cd is the same as cd−1, for i = 0, . . . 2d−1 − 1, we have

cd(2i) = ¬cd(2i− 2d−1) = ¬cd−1(2i− 2d−1) (recursive definition of cd)
= ¬cd−2(i− 2d−2) = ¬cd(i− 2d−2) (inductive hypothesis)
= ¬cd−2(i− 2d−2) = ¬(¬cd−1(i)) = cd−1(i) (recursive definition of cd).
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Lemma 3.8. Proof: Because cd are the colors of the two-point, d dimensional torus, every

even point 2i is the beginning of a new 1-D line and thus has a different color from its

neighbor 2i + 1. It can also be proved inductively, since by construction 2i and 2i + 1

cannot be split across cd−1 and cd. �

Lemma 3.4. Proof: Because of Lemma 3.8, after every pair of indices (2i, 2i + 1) is

considered, the number of reds or blacks increases only by 1. Algorithm 3 sends all red

(cd(i) = 0) points i to the first half of the permutation in the order they are considered,

which increases by 1 every two steps. Hence the first part of the equation. Black colors

are sent to the second half, which completes the proof. �

Theorem 3.2. Proof: We show first for m = d − 1. Because of Lemma 3.2, we consider

the even points in RBd. Assume first cd(2i) = cd−1(i) = 0. From Lemma 3.4 we have,

RBd(2i) = b2i/2c = i. Then, RBd−1(i) = bi/2c = bRBd(2i)/2c. Now assume cd(2i) =

cd−1(i) = 1. From Lemma 3.4 we have, RBd(2i) = 2d−1 + b2i/2c = 2d−1 + i, and

therefore RBd−1(i) = 2d−2 + bi/2c = 2d−2 + b(RBd(2i)− 2d−1)/2c = bRBd(2i)/2c, which

proves the formula for both colors. A simple inductive argument proves the result for any

m = 1, . . . , d− 2. �

Theorem 3.3. Proof: We show that C(x) 6= C(x′) for any two points, x, x′ with ||x −

x′||1 = 1. These two points differ by one coordinate, j, since otherwise they are no longer

unit length apart. So, C(x) − C(x′) =
(∑N

i=1(xi − x′i) +
∑N

i=1(δ(xi)− δ(x′i))
)
mod 3 =(

xj − x′j + δ(xj)− δ(x′j)
)
mod 3. We consider the following cases.

If neither x and x′ lie on the boundary of the j-th dimension, xj 6= nj − 1, then

δ(xj) = δ(x′j) = 0, and C(x)− C(x′) = (xj − x′j) mod 3 = ±1 mod 3 6= 0.

Since xj , x
′
j both vary along the j-th dimension, only one of these points can lie on the

boundary point of that dimension, consequently, only one of the two delta can be equal

to one. Without loss of generality, we assume that xj is on the boundary of the j-th

dimension, so C(x)−C(x′) = (xj − x′j + δ(xj)) mod 3. In this case xj − x′j = 1, or in the

warp around case, where x′j = 0, xj − x′j = nj − 1. There are two subcases:
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1. δ(xj) = 0, then xj = nj − 1 with nj − 1 mod 3 6= 0, so C(x) − C(x′) = 1, or

C(x)− C(x′) = (nj − 1 mod 3) and thus is non-zero.

2. δ(xj) = 1, then xj = nj − 1 and nj − 1 mod 3 = 0, so C(x) − C(x′) is equal to

(1+ δ(xj)) mod 3 = (1+1) mod 3 6= 0, or C(x)−C(x′) is equal to (nj−1+ δ(xj)) =

(0 + δ(xj)) mod 3 = 1 mod 3 6= 0.

�

3.2 Lattices of arbitrary dimensions

3.2.1 Introduction and Preliminaries

In the previous section, we introduced an algorithm which produced hierarchical probing

vectors, for lattices with dimension lengths that are powers of two. The main idea behind

the algorithm was to find a way to split a lattice quickly into a collection of sublattices

recursively, as long as the length of the lattice was a 4power of two. This was achieved

by splitting each lattice into 2d sublattices, where d is the dimensionality of the lattice.

Since points which share a sublattice are all distance 2 away from each other, if they are

assigned the same color, a valid distance 1 coloring of that sublattice will result. Further,

if the lattice dimensions are a power of two, the lattice will split evenly, so each color will

be divided into the same number of colors, and thus will be hierarchical. This process can

then be continued recursively, until the desired number of colors is reached, or until the

every node has a unique coloring. Unfortunately, if the lattices dimensions are not powers

of two, then the sublattice cannot be split evenly into 2d sublattices. At each level the

dimensions of the sublattice being split will be reduced by a factor of two. At the level at

which the dimensions of the sublattice are no longer divisible by two, the algorithm will

be unable to continue, since it cannot then split further into even sublattices.

In this section we extend the hierarchical probing algorithm and the associated theory

to sublattices of arbitrary dimensions, as long as those dimensions share some common
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factors. Our algorithm bases the number of splits of the original lattice on the prime

factors of the lengths of its dimensions. By using these factors the lattice can be divided

up into sublattices of equal sizes, allowing the process to be continued recursively. When

the factors of the lattice dimensions contain factors of 2, the original method using fast

binary arithmetic can still be used. It should be noted that the number of colors produced

at each hierarchical level m by our method is larger than the minimum number needed to

produce a distance-m coloring of the lattice. In most cases this is an acceptable trade off

in order to ensure that the hierarchical property of the generated colorings is maintained.

Moreover, these additional vectors reduce the error further than the optimal coloring for

the same distance.

3.3 Lattices as spans of sublattices

Formally, a lattice is a discrete additive subgroup of Rn. Intuitively, it is a collection

of points, such that adding the location of any points together, gives the coordinates of

another valid point, and there is a minimum distance between the closest two points. A

good example of a d-dimensional lattice would be the Cartesian product of the integers,

which is the canonical d-dimensional regular grid. One can contrast this with a vector

space such as the d-dimensional Cartesian product of the reals. A lattice need not be

infinite, it can be formed on any finite group that has the required properties. In this

paper we are mainly interested in finite lattices that have a periodic boundary condition.

Similarly to vector spaces, one can write down the basis for a lattice. We then say the

lattice is generated by B, a set of d vectors of Rd, as

L(B) =

{
d∑
i=1

xi ∗ bi, bi ∈ B, xi ∈ Z

}
=
{
Bx, x ∈ Zd

}
. (3.10)

Note how the requirement that the coefficients of the basis vectors be integer enforces a

minimum distance between two points, in contrast to a vector space. Returning to the
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example of the regular grid, we write the generating function for this lattice as

L(I) =

{
d∑
i=1

xi ∗ ei, ei ∈ I, xi ∈ Z

}
=
{
Ix, x ∈ Zd

}
, (3.11)

where I is the d-dimensional identity matrix and ei is the i-th column of I.

Just as vector spaces may contain closed sub-spaces, lattices may contain closed sub-

lattices. In this paper we are interested in the sublattices of L(I). In particular, we want

to determine which sublattices of L(I) a point lies in. For example, the sublattice L(bI)

can describe only 1
b of the points of L(I), with spacing b. Consider also the concept of an

affine lattice, which we define as

L(B)c =

{
d∑
i=1

xi ∗ bi + c, bi ∈ B, xi ∈ Z, c ∈ Zd
}

=
{
Bx+c, x, c ∈ Zd

}
. (3.12)

We can use these to decompose L(I) into a union of affine sublattices, since non-affine

sublattices represent only sublattices centered at zero. For a given sublattice spacing b,

any point in L(I) lies in one of bd affine sublattices L(bI)c. These sublattices can be said

to span L(I). An example of this can can be seen in Figure 3.11, where the 6x6 lattice is

spanned by 32 affine sublattices of spacing 3.
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Figure 3.11: The decomposition of a 6x6 lattice into 32 sublattices L(3I)c0 .

More formally, given b ∈ Z, the sublattices that span the entire lattice L(I) are:

52



L(bI)ci = L(bI) + ci, with c0 =


0
0
...
0

 , c1 =


1
0
...
0

 , . . . , cbd−1 =


b− 1
b− 1

...
b− 1

 . (3.13)

As there are b distinct options for each of the d elements of an offset c, there are bd distinct

lattice bases that span L(I). Based on the b-radix representation of integers, we can find a

one to one function that maps the integers 0 ≤ i ≤ bd− 1 to each offset vector c, allowing

each c to be associated with a unique sublattice number. The function that maps c to i is

i =

d∑
j=1

cjb
j−1. (3.14)

Its inverse function that maps i to a particular offset c is computed by Algorithm 5. This

gives the following general equation for the i-th affine sublattice basis

L(bI)ci = L(bI) +


b rd−1

b0
c

...
b r1
bd−2 c
b i
bd−1 c

 . (3.15)

Algorithm 5 c = ConvertIndexToOffset(i, b, d)
% Find the affine offset c, given its integer reference number i
% Input: i: integer lattice reference
% Output: The offset vector c

1: for m = d→ 1 do
2: c(m)← b i

bm−1 c
3: rm ← i(mod bm−1)
4: i← rm
5: end for

return c

Because the sublattices span the lattice, the coordinates of any lattice point x can be

represented as xi ∗ b+ ci, xi, ci ∈ Z, 0 ≤ ci ≤ (b− 1), or bx + c for some offset vector c in

(3.13). Therefore, taking each coordinate mod b yields the offsets c = (ci), which determine
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through (3.14) which sublattice the point lies in. Consider the example in Figure 3.12. The

top left sublattice, consists of the points (0, 0), (0, 3),(3, 0),(3, 3) ≡ (0, 0) (mod 3). From

(3.14), i = 0∗b1+0∗b0 = 0, indicating these points are in the 0-th sublattice. Alternatively,

the points (2, 1),(5, 1),(2, 4),(5, 4) ≡ (2, 1) (mod 3). Since i = 1 ∗ 3 + 2 = 5, these points

are in the 5-th sublattice. Finally, points (1, 2),(1, 5),(4, 5),(4, 2) ≡ (1, 2) (mod 3), which

means these points are in the 7-th sublattice (i = 2 ∗ 3 + 1 = 7).
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Figure 3.12: Affine sublattices with x,y coordinates.

Consider now a finite lattice with d dimensions of length di, i = 1, . . . , d. Let Fi =

factor(di) be the sorted list of the integers resulting from the prime factorization of di.

Then define the list of common factors as F = sort(
⋂d
i=1 Fi). In the example of Figure

3.11, F1 = F2 = {2, 3}, and so F = {2, 3}. More interestingly, consider a lattice of

dimensions 60× 140. Then F1 = {2, 2, 3, 5}, F2 = {2, 2, 5, 7}, and F = {2, 2, 5}.

We can use the list of common factors F to split the lattice L(I) into a hierarchy of

spanning sublattices. We start with the smallest b = F(1) and obtain the sublattices in

(3.13). Then we split every sublattice into its own set of spanning sublattices based on

the next common factor F(2). The process continues recursively until all common factors

have been exhausted. Using the fact that for any point p in a lattice, its sublattice offset

after a split is (p mod b), Algorithm 6 computes the sublattice offset vectors of p for all

levels. Because of the equivalence between offsets and indices, Algorithm 6 returns only

the index of the offsets through (3.14). Note that after splitting L(I) with b = F(1), the
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L(bI)ci have common factors F(2 : end), and all have the same size with dimensions di/b.

The coordinates of p in its sublattice are bpb c.

Algorithm 6 [i(1), . . . , i(f)] = SublatticeIndicesOfPoint(p,F)
% Determine which sublattice a point lies in at each splitting level
% Input: p lattice point coordinates
% Input: F the common prime factors F(1) ≤ · · · ≤ F(f)
% Output: i(m) the index corresponding to offset cm,m = 1, . . . , f of the m-th split

1: for m = 1→ size(F) do % At each level use splitting spacing b = F(m)
2: cm ← p(mod F(m)) % determine p’s affine offset (i.e., sublattice) at level m
3: i(m) ← Convert cm to index through (3.14)
4: p← bp/F(m)c % point coordinates in this sublattice
5: end for

return i(m) for all m

3.4 Coloring sublattices

The distance between any two points p1,p2 ∈ L(bI)c is ‖p1 − p2‖1. The minimum

distance of these points is b, the spacing of the sublattice. More formally, from (3.12),

there exist x1,x2 ∈ Zd, such that p1 = bx1 + c,p2 = bx2 + c, and, if p1,p2 are unique,

‖p1−p2‖1 = b‖x1−x2‖1 ≥ b. Thus, we may assign the same color in all points in L(bI)c

and still have a valid distance b− 1 coloring of the points within L(bI)c.

However, the minimum distance between points in two different sublattices is deter-

mined by the distance of their offsets. Using (3.12) again, if p1 ∈ L(bI)ci and p2 ∈ L(bI)cj ,

‖p1−p2‖1 = ‖b(x1−x2)+ci−cj‖1 ≥ ‖ci−cj‖1, since we can pick x1 = x2. For example,

points [0, . . . , 0]T ∈ L(bI)c0 and [1, 0, . . . , 0]T ∈ L(bI)c1 are distance 1 apart. Therefore, if

the nodes in L(bI)c0 and in L(bI)c1 are all assigned the same color, we cannot achieve a

valid distance 1 coloring on the entire L(I).

The problem is equivalent to coloring the finite toroidal lattice

C = {p mod b, p ∈ L(I)} , (3.16)
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whose points are the bd offset vectors ci in (3.13). Note that C can be used to tile the

original lattice as seen in Figure 3.13. Different coloring strategies of C achieve different dis-

tances between ci, cj with the same color, and hence between the points of L(bI)ci ,L(bI)cj .

More formally we have the following.

Lemma 3.5 Assume that each p ∈ L(I) is assigned a color, color(p), and that all points

in each L(bI)c are assigned the same color, i.e., ∀pi,pj ∈ L(bI)c, color(pi) = color(pj).

Then color(p mod b) = color(p).

Proof: Since ∪cL(bI)c = L(I), p = bx + c. Then color(bx + c mod b) = color(c), and

since p, c ∈ L(bI)c, both have the same color. �

To take advantage of the b spacing of the points within each L(bI)c, one obvious

strategy is to assign every ci in C (equivalently each sublattice) a unique color. This

guarantees a distance b − 1 coloring for the entire lattice L(I). In the context of our

recursive splitting algorithm, the first split with b1 ∈ F uses bd1 colors, and achieves b1− 1

distance coloring. At the second recursive level with b2 ∈ F, each L(b1I)c is split into bd2

sublattices, each with a unique color, for a total of (b1b2)d colors. Points in L(b2I)c are at

least b2 hops apart, but these hops are edges in the L(b1I)c lattice. Thus the minimum

distance achieved by this coloring at the second level is b1b2 − 1. A simple inductive

argument shows the following.

Lemma 3.6 If at every level of the recursive splitting algorithm each sublattice is assigned

a unique color, then at level m we have used (b1 · · · bm)d colors and have achieved a distance

b1 · · · bm − 1 coloring.

The algorithm increases the effective distance exponentially with each level, and prob-

ing with the corresponding vectors should be very effective. However, the number of colors

(and of probing vectors) used increases rapidly too. This is not an efficiency problem but

rather an evaluation problem. After level m−1, probing cannot fully annihilate elements of

distance b1 · · · bm−1 until all (b1 · · · bm)d colors have been used. Thus, we cannot properly
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evaluate its progress for intermediate numbers of colors. Moreover, the number of probing

vectors in the next level may not be affordable computationally. For example, if bi = 2

and d = 4, we can only guarantee meaningful results at color numbers, 16, 256, 4096, . . ..

Therefore, it would be desirable to maintain the effectiveness of the method when each

node in C is uniquely colored, but also have one or more intermediate evaluation points

where smaller distance colorings complete.

A problem with more than one intermediate points is that the colorings of C at two

different distances must be hierarchical, i.e., two lattice nodes that have different colors

at distance j can not have the same color at larger distance colorings. Also, to facilitate

the generation of probing vectors on-demand, each color should have the same number of

nodes (see later discussion). Since b is prime, we can only consider colorings with b, or

b2, . . . , or bd colors. For example, a red-black coloring of C is not a valid distance 1 coloring

for any odd b. The periodic connection links two nodes (and thus sublattices) with the

same color. We will see experimentally that the errors from ignoring these connections

can be significant. Instead, three colors can provide a valid distance 1 coloring of any

toroidal lattice [66]. However, for b 6= 3, the three color subsets would not have the same

number of nodes.

We are not aware of a method that produces optimal distance colorings of C for any

b and d. For small values of b, d we have identified heuristics that using b colors produce

a valid distance O(b1/d) coloring of C. For practical problems as in LQCD, d ≤ 4 and

b ≤ 7, so the effective distance achieved is not better than distance 1. Besides, an optimal

coloring is not necessary as the nodes in the same colors will be hierarchically colored

too so that nearby permuted nodes eventually have large distances. Therefore, we focus

our attention on the following simpler method as our only intermediate point between

two recursive levels. This coloring strategy produces a valid distance 1 coloring with b

colors, and ensures that each color appears the same number of times. If p ∈ L(I), with
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p mod b = c, define its color:

color(p) =

d∑
i=1

p(i) mod b. (3.17)

Because of Lemma 3.5, we also have color(p) = color(c) =
∑d

i=1 c(i) mod b. Note that

when we reorder the nodes of C based on this coloring, we also consider the sublattices

L(bI)c in the same order.
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Figure 3.13: The circled nodes constitute the C lattice of offsets. Note how C tiles the
entire lattice, and that its coloring reflects the coloring of each sublatice L(bI)c. Since
b = 3, each line of colors is the same as the previous line, shifted by 1 mod 3.

Lemma 3.7 The strategy (3.17) is a valid distance-1 coloring of L(I). Proof: Let

p1,p2 ∈ L(I), with ‖p1 − p2‖1 = 1. This means they share all but one coordinate, say

the i-th. If their connection is not due to the periodic boundary, their i-th coordinate will

differ by one. Thus, |p1(i) − p2(i)| mod b = 1, implying that color(p1) 6= color(p2). If

both points lie on a boundary and connect via the toroidal property, then |p1(i)− p2(i)| =

(b−1)−0 mod b 6≡ 0 mod b, and therefore color(p1) 6= color(p2). Since these are no other

cases possible, the result holds. �

The coloring strategy (3.17) has an efficient recursive implementation. Note that the

colors in the i-th (d − 1)-dimensional slice of C are the colors of the (i − 1)-th (d − 1)-

dimensional slice shifted by 1 mod b. This can be seen in Figure 3.13 for d = 2. Since the
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0-th slice is the same as the coloring of C in d− 1 dimensions, we can build the colorings

for all dimensions in the following recursive manner.

Let cd,b be the array1 of all bd colors of the corresponding d-dimensional C in natural

ordering. This C has b (d − 1)-dimensional slices each corresponding to the (d − 1)-

dimensional lattice of offsets. Let cd−1,b be the array of the bd−1 colors of these (d − 1)-

dimensional lattices. Then, cd,b is a concatenation of b shifted cd−1,b arrays,

cd,b = {cd−1,b, cd−1,b + 1 mod p, . . . , cd−1,b + (b− 1) mod p} . (3.18)

Each shift applies to all the elements of the array cd−1,b. In Figure 3.13, for example,

c1,3 = {0, 1, 2} are the colors of a one dimensional lattice, but also the first row of the two

dimensional C. The colors of C are then c2,3 = {{0, 1, 2}, {0, 1, 2} + 1 mod 3, {0, 1, 2} +

2 mod 3} = {0, 1, 2, 1, 2, 0, 2, 0, 1}.

Algorithm 7 implements this recursive coloring of C starting with c0,b = 0, and then

generates the permutation, Perm, that reorders sublattices of the same color together.

Since there is the same number of sublattices for each of the b colors, the first sublattice

of color i is assigned to the ibd−1 location, and the index to the next available free spot for

this color stored in ColorIndex is incremented by one. We note that this coloring occurs

negligible computational cost, even for very large lattices, while it enables an additional

intermediate step between splits where the trace estimation may be monitored. This low

cost is an advantage over other colorings that could be used to define different intermediate

steps.

We now have a method that at each level m = 1, . . . , f recursively splits a sublattice

into F(m)d sublattices, giving each a different color. But before each sublattice is assigned

its own color at level m, we have an intermediate coloring that groups together F(m)d−1

sublattices in the same color. According to Lemma 3.6, after the intermediate step before

level m we have (b1 · · · bm−1)dbm colors ensuring a distance b1 · · · bm−1 coloring, and after

1The notation of this array is not to be confused with the notation of offsets c which are in bold.
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Algorithm 7 Perm(0, . . . , bd − 1) = GenOffsetPermutation(b, d)
% Generate the b-coloring permutation of C which reorders the sublattices (offsets)
% Input: prime factor b, lattice dimension d
% Output: Perm, the b-color permutation of the bd sublattices

1: % Generate the coloring using (3.18)
2: c0,b ← {0}
3: for j = 1→ d do
4: cj,b ← {cj−1,b, cj−1,b + 1 mod b, ..., cj−1,b + b− 1 mod b}
5: end for
6: % Initialize index showing where the next sublattice of color i should go
7: for i = 0→ b− 1 do
8: ColorIndex(i) ← i ∗ bd−1

9: end for
10: for i = 0→ bd − 1 do
11: Color ← cd,b(i) % Lookup the color of sublattice i in array cd,b
12: Perm(i)← ColorIndex(Color) % The new location of sublattice i
13: ColorIndex(Color) ← ColorIndex(Color) +1
14: end for

return Perm

the m level we have (b1 · · · bm)d colors for a distance b1 · · · bm − 1 coloring. Next, we

describe the global hierarchical permutation and in particular how to find the location

in this permutation of an arbitrary node. This will be used to efficiently generate the

hierarchical probing vectors.

3.4.1 Hierarchical Permutations of Lattices with Equal Sides

The final permutation can be obtained recursively by applying the coloring permutation

from level m on the permuted index from level m−1. This ordering ensures that the closer

the nodes are geometrically, the farther they are ordered in the permutation. Orderings

of lower levels provide no additional information, since nodes never move closer together

in subsequent levels, so need not be stored. Moreover, we can avoid the above recursion

by determining directly where in the final permutation a node will lie.

Consider the example in Figure 3.11. At level 0, the 3-coloring of the lattice permutes

the colors in three groups as shown below on the left.
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Level 0, after 3-coloring

color 0: 0 3 8 11 13 16 18 21 26 29 31 34

color 1: 1 4 6 9 14 17 19 22 24 27 32 35

color 2: 2 5 7 10 12 15 20 23 25 28 30 33

Level 1, after splitting to 32 sublattices

offsets 0,5,7: 0 3 18 21 8 11 26 29 13 16 31 34

offsets 1,3,8: 1 4 19 22 6 9 24 27 14 17 32 35

offsets 2,4,6: 2 5 20 23 7 10 25 28 12 15 30 33

At level 1, since b = 3, we split the top level lattice to 9 sublattices. Three of those lattices

(offsets 0, 5, 7) contain only the red nodes from the intermediate coloring and need to be

ordered first. Notice how the actual permutation of the red nodes at level 0 is not needed

as it is present in the ordering of the sublattices by Algorithm 7. An exception would

be after the last level, if we decide to 3-color the remaining sublattices that do not share

common prime factors (as in our previous work [66]).

Algorithm 8 shows we can construct the final hierarchical permutation. Given the coor-

dinates of a node, p, Algorithm 6 generates the indices [i(1), . . . , i(f)] of the sublattices the

p lies in at each level. Algorithm 7 permutes these to [̂i(1), . . . , î(f)] = Perm([i(1), . . . , i(f)]).

Because the permutation preserves the hierarchy, the location of the node p would be de-

termined by all the nodes that belong to sublattices that appear prior to its own sublattices

in the final permutation. For example, there are exactly î(1) sublattices preceding it at

the first level, î(2) sublattices preceding it at the second level, and so on. At every level

m the size of each sublattice reduces by a factor of F (m)d. Thus, given the lattice size

L =
∏d
i=1 di, we have

Location(p) =

f∑
m=1

î(m) L∏m
l=1 F(l)d

. (3.19)

3.4.2 Hierarchical Permutations of Lattices with Unequal Sides

Algorithm 8 relies on having each lattice split into an equal number of sublattices of the

same dimensionality. However, it is possible that one dimension of the lattice may be

smaller than the others, leading to that dimension being exhausted before the others.

If the rest of the dimensions share factors, the algorithm can continue but in a lower

dimensionality lattice that removes exhausted dimensions. Let d̄(m) be the number of

active dimensions at level m. For example, the lattice 6×6×2, has factors (2, 3), (2, 3), (2),
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Algorithm 8 Location = HPpermutation(p, d,F)
% Compute the Hierarchical Probing permutation of a node p when d1 = · · · = dd
% Input: point coordinates p, lattice dimension d, common prime factors F
% Output: the location of p in the HP permutation

1: [i(1), . . . , i(f)] = SublatticeIndicesOfPoint(p,F) (Algorithm 6)
2: subLatticeSize =

∏d
i=1 di

3: Location = 0
4: for m = 1→ f do
5: Perm = GenOffsetPermutation(F(m), d) (Algorithm 7)
6: subLatticeSize = subLatticeSize/F(m)d

7: Location = Location + Perm(i(m))*subLatticeSize
8: end for

return Location

so for the first level d̄(1) = 3, while for the second level d̄(2) = 2, since at the second level

all sublattices will be 2 dimensional. Thus, d̄(m) can be computed simply by counting the

number of common factors in each dimension that has not been exhausted. Then, the

new location of a node is given by (3.20), 2

Location(p) =

f∑
m=1

î(m) L∏m
l=1 F(l)d̂

(m)
. (3.20)

We can avoid computing and storing coloring permutations for lattices with reducing

dimensionalities by reusing the previously computed permutations for C of a higher di-

mensionality in (3.16), as long as the spacing b is the same. First, recall that for a given

C of dimensionality d and spacing b, the coloring cd,b in (3.18) is created recursively. This

means that the color of a particular node in C can be given in terms of either a higher or

a lower dimensional C plus a correctional offset as below,

cd,b(k) = cd−1,b(k mod bd−1) + b k

bd−1
c mod b, ∀k < bd, (3.21)

cd−1,b(k mod bd−1) = cd,b(k)− b k

bd−1
c mod b, ∀k < bd. (3.22)

2It is worth noting that just as [66] interpreted this process as representing the node number in binary
and then permuting the digits, we can represent each node in mixed radix, where the radix list is the color
numbers used to color the sublattices at each level, and then permute these digits.
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Additionally, we shall make use of the definition of mod for positive integers

k mod b = k − bbk
b
c. (3.23)

Lemma 3.8 For any prime b, cd,b(ib) = cd−1,b(i), ∀i = 0, . . . , bd−1 − 1.

Proof: We proceed by induction on d. For the base case, c1,b = {0 . . . b − 1}, and

c2,b = {c1,b, c1,b + 1 mod b, . . . , c1,b + b− 1 mod b}. Then by construction, every c2,b(ib) =

0 + i = c1,b(i). Assume that cd−1,b(ib) = cd−2,b(ib/b) = cd−2,b(i). Then,

cd,b(ib) = cd−1,b(ib mod bd−1) + b ib
bd−1 c mod b ( by 3.21)

= cd−2,b(
ib mod bd−1

b ) + b ib
bd−1 c mod b (by the I.H.)

= cd−2,b(
ib−b ib

bd−1 cb
d−1

b ) + b ib
bd−1 c mod b (by 3.23)

= cd−2,b(i mod bd−2) + b ib
bd−1 c mod b (by 3.23)

= cd−1,b(i) − b i
bd−2 c+ b ib

bd−1 c mod b (by 3.22)

= cd−1,b(i) − b i
bd−2 c+ b i

bd−2 c mod b
= cd−1,b(i).

�

Lemma 3.9 For any prime b, cd,b(ib) = cd,b(ib+ q)− q mod b, ∀i = 0, . . . , bd−1 − 1,∀q =

0, . . . , b− 1.

Proof: We proceed by induction on d. For the base case, by construction we have

c2,b(ib+ q) mod b = c1,b(i) + q mod b. Then, c2,b(ib+ q)− q mod b = (c1,b(i) + q mod b−

q) mod b = c1,b(i) mod b = c1,b(i) = c2,b(ib) (by Lemma 3.8). We now assume cd−1,b(ib) =

cd−1,b(ib+ q mod bd−1)− q mod b. Then,

cd,b(ib) = cd−1,b(ib mod bd−1) + b ib
bd−1 c mod b (by 3.21)

= cd−1,b(ib+ q mod bd−1)− q + b ib
bd−1 c mod b (by the I.H.)

= cd,b(ib+ q mod bd)− q mod b (by 3.22)
= cd,b(ib+ q)− q mod b. (since ib+ q < bd)

�
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Lemma 3.10 Let Permd be the permutation created by Algorithm 7 associated with di-

mension d. Then, for any prime b, i = 0, . . . , bd − 1, Permd(i) = bi/bc+ cd,b(i)b
d−1.

Proof: Because of Lemma 3.9 when any b-tuple of indices (bi, bi + 1, . . . , bi + b − 1), is

considered, the number of nodes in every color increases by 1. Since Algorithm 7 will send

the b-th color to the bd−1-th section, the equation holds. �

Theorem 3.4 For any 0 < m < d, Permm can be obtained directly as follows,

Permm(i) = bPermd(ib
d−m)/bd−mc, i = 0, . . . , bm − 1.

Proof: Since i ≤ bm, we can apply Lemma 3.8 recursively,

cd,b(ib
d−m) = cd−1,b(ib

d−m−1) = cd−2,b(ib
d−m−2) = . . . = cm,b(i).

Using this and Lemma 3.10 we have

⌊
Permd(ib

d−m)

bd−m

⌋
=

⌊
b ibd−m

b c+ cd,b(ib
d−m)bd−1

bd−m

⌋
=

⌊
i

b
+ cm,b(i)b

m−1

⌋
= b i

b
c+ cm,b(i)b

m−1 = Permm(i).

�

Based on Theorem 3.4, Algorithm 9 shows how to reuse previously generated cd,b to

compute permutations for lower dimensional lattices when the smaller lattice dimensions

are exhausted.
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Algorithm 9 Location = HPpermutation general(p, d, di,F)
% Compute the Hierarchical Probing permutation of a node p for general di
% Input: point coordinates p, lattice dimension d, common prime factors F
% Output: the location of p in the HP permutation

1: [i(1), . . . , i(f)] = SublatticeIndicesOfPoint(p,F) % Algorithm 6
2: subLatticeSize =

∏d
i=1 di

3: Location = 0
4: for m = 1→ f do
5: d̂(m) = setActiveDims()
6: maxBdim = 0
7: for i = d downto d̂ do % Search and retrieve highest dimensional
8: Perm = getHash(b, i); % stored permutation for a b split
9: if Perm != empty then % if found one, reuse it

10: maxBdim = i;
11: break
12: end if
13: end for
14: if maxBdim then
15: for i = 1→ bd̂

(m)
do

16: newperm(i) = Perm(ibmaxBdim−d̂
(m)
/bmaxBdim−d̂

(m)
) % Theorem 3.4

17: end for
18: Perm = newperm
19: else
20: Perm = GenOffsetPermutation(F(m), d) % Algorithm 7
21: end if
22: setHash(b, d) = Perm; % Store this permutation

23: subLatticeSize = subLatticeSize/F(m)d̂
(m)

% Equation (12)
24: Location = Location + Perm(i(m))*subLatticeSize
25: end forreturn Location
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3.4.3 Generating Probing Vectors Quickly

In [66], we introduce the following recursive method for generating probing vectors for a

colored lattice,

Z̃(1) = Fz(1), (3.24)

Z̃(i) =
[
Z̃(i−1) ⊗Fz(i)(:, 1), . . . , Z̃(i−1) ⊗Fz(i)(:, z(i))

]
, (3.25)

Z(i) = Z̃(i) ⊗ 1N/γi , where γi =

i∏
j=1

z(j). (3.26)

Here Fz(i) is the Fourier transform of the identity matrix Iz(i), z(i) is the number of

colors each sublattice is split into at level i, 1s is the vector of s ones, and ⊗ is the

Kronecker product. Essentially, these vectors recursively build a basis for the probing

vectors. At each level, we probe inside each color (i.e., sublattice) by smaller probing

vectors hierarchically, which are all assembled into a basis through the Kronecker products.

Instead of generating the whole matrix, however, we produce each probing vector one at

a time, hence requiring the same memory as the Hutchinson method.

To produce the k-th vector of the probing matrix, we first need to identify the maximum

level i needed such that γi−1 < k ≤ γi. Then at every lower recursive level of (3.25) we

only need two vectors; one vector from Z(i−1) and one from Fz(i). By (3.25), the matrix

Z(i) is divided into z(i) blocks, with each block forming a Kronecker product with a

different column of Fz(i). Since each block has z(i − 1) columns, the k-th vector is in

block = b k
z(i−1)c, and thus we can generate directly the desired column Fz(i)(:, block).

This should be paired with the (k mod z(i− 1)) vector of Z(i−1) which we find recursively

with the above procedure.3

When F(i) = 2, i = 1, . . . , k, the sublattices in the first k levels are red-black colorable,

and thus use only F2. Because F2 is equal to the Hadamard matrix H2, all vectors in the

3We note that this process can also be described in terms of radix conversion. Let the z(i)s be taken as
the radix list. If k is converted to this mixed radix form [? ], the vectors of the Fourier transforms Fz(i)

needed at each level will be the digits of this representation.
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first k levels can be created using real arithmetic, which yields substantial savings over

complex arithmetic. Moreover, we can use the fast bit-based method we introduced in

[66] for producing the required Hadamard vectors, leading to an additional performance

gain. This approach can be seen in Algorithm 10.

Algorithm 10 ProbingVector = GenerateProbingVector(k, z,N)
% Compute the k-th probing vector
% Input: k, the number of colors at each level z(i), the matrix size N
% Output: The probing vector

1: for j = size(z) downto 2 do % Compute indices of needed Fz(i) vectors
2: block(j) = bk/z(i− 1)c; k = k mod z(i− 1)
3: end for
4: block(1)← k;
5: % Find the initial 2-colorable sublattices, which can be probed quickly as in [66]
6: while z(j) == 2 do j ← j + 1; end while
7: fastLevels ← j − 1
8: ProbingVector ← [1]
9: ProbingVector ← FastHadamardMethod(1:fastLevels)

10: % The rest of the levels are built through Fourier vectors
11: for j = fastLevels+1 → size(z) do
12: % Create Fourier vectors F
13: f ← 2 ∗ π/z(i)
14: w ← [0 : f : (2 ∗ π − f/2)] ∗

√
−1

15: Fz(i)(:, block)← exp(−w ⊗ block(j))
16: ProbingVector ← ProbingVector ⊗Fz(i)(block, :)
17: end for

return ProbingVector

Since Algorithm 10 is based on coloring strategy (3.17), the first γi probing vectors in

(3.26) correspond to what we termed as the intermediate coloring between splitting levels

i− 1 and i. However, there are other numbers k, with γi−1 < k < γi, for which Z(:, 1 : k)

are the probing vectors for a different valid coloring, most importantly the one in Lemma

3.6 where each sublattice gets a unique color. This is because the coloring is hierarchical,

i.e., (3.17) is applied independently on each sublattice. Let us return to the example in

Figure 3.11, where we first consider the factor b = 3 and then b = 2. The results after

the 3-coloring and the first level sublattice split are shown in Section 3.4.1. Here we focus

only on color 0:
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Level 0, after 3-coloring

color 0: 0 3 8 11 13 16 18 21 26 29 31 34

Level 1, after splitting to 32 sublattices

offsets 0,5,7: 0 3 18 21 8 11 26 29 13 16 31 34

Level 1, after 2-coloring each sublattice we have a total of 2× 32 colors

original color 0 now contains 6 = 2× 3 colors 0 21 3 18 8 29 11 26 13 34 16 31

Notice therefore that by construction the first nine indices in our final permutation (which

is used to generate the probing vectors Z(:, 1 : 9)) correspond to the coloring at level 1

where each lattice has a different color.

3.5 Probing Vectors For Hierarchical Coloring on General

Graphs

The above method for generating probing vectors assumes each color splits into the same

number of colors at a given level. This is the case with our methods in Section 3.4.

With an arbitrary coloring method that does not assign the same number of sublattices

to each color (e.g., the 3-coloring method on a lattice not divisible by three), a different

way to generate the probing vectors is needed. A simple but not as efficient solution

is to create the required canonical probing vectors, and then orthogonalize them against

previous vectors in the sublatice as well as each other with Gram-Schmidt. We introduce a

more efficient and elegant method that works with uneven color splits and thus generalizes

probing to any graph with hierarchical coloring.

The method is described better through an example. Consider a graph with seven

nodes (each node could be generalized to be a subgraph). Suppose at the first level

the graph is assigned three colors. After the corresponding permutation, the first color

contains nodes 1–3, the second color nodes 4 and 5, and the third color nodes 6 and 7. To

probe at the first level we use the following probing vectors which is a variation of F3 in
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(3.24) and (3.26) to allow for different number of nodes per color,

Z(1,0) =

[F3(1, :)⊗ 13
F3(2, :)⊗ 12
F3(3, :)⊗ 12

]
∈ C7×3. (3.27)

Suppose now that at the second level, the first color splits into three colors and the others

into two. Clearly, the next level of probing vectors cannot be created by (3.25) because

of uneven splitting. Each color block of the first level has to be probed independently.

Thus, we could probe the first block using F3 for the elements inside the first block (with

zeros everywhere else in the probing vector). Similarly for the last two blocks, but using

F2. These seven probing vectors are shown in (3.28) —note that 0k = zeros(k, 1). The

problem is that using seven vectors would be wasting the solutions of linear systems with

the three probing vectors (3.27) in the first step.

[F3(:, 1)
02
02

][F3(:, 2)
02
02

][F3(:, 3)
02
02

]
,

[
03

F2(:, 1)
02

][
03

F2(:, 2)
02

]
,

[
03
02

F2(:, 1)

][
03
02

F2(:, 2)

]
. (3.28)

The key to remedying this problem is to note that the three first vectors of the new

color blocks,

I =

[F3(:, 1) 03 03
02 F2(:, 1) 02
02 02 F2(:, 1)

]
=

[
13 03 03
02 12 02
02 02 12

]
are spanned by the vectors of Z(1,0), since F3 is a basis of C3. More formally, if a ∈ C3×3,

from (3.27) and basic properties of the Kronecker product we have that the following

matrix equation

Z(1,0)a =

[F3(1, :)a⊗ 13
F3(2, :)a⊗ 12
F3(3, :)a⊗ 12

]
= I,

is equivalent to F3a = I3, which has a unique solution a = ifft(I3), i.e., the inverse Fourier

transform of the identity. Therefore, if we saved P = A−1Z(1,0), we can recover the

probing result for the vectors in I as A−1I = Pa. Thus, we only need to apply A−1 on

the remaining four probing vectors, exactly as in our hierarchical probing method on the

lattice. Finally, if each node represents a subgraph, each color block in (3.28) involves

Kronecker products of the rows of its Fourier matrix with columns of ones, each sized to
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the cardinality of the subgraph. Thus, each block has the same form as (3.27) and the

idea can be applied recursively.

To generalize we need the following definitions. First, assume a hierarchical coloring at

levels i = 0, 1, . . ., and let li−1 be the number of colors at level i− 1. The nodes belonging

to one of these colors are called a block at the next level i. There are li−1 blocks at the

i-th level. Let s(j, i) be the number of colors the j-th block splits into at level i. Thus,∑li−1

j=1 s(j, i) = li. For each color in block j, let n(j, i, k), k = 1, . . . , s(j, i) be the number

of nodes in that color. Thus,
∑s(j,i)

k=1 n(j, i, k) is the number of nodes in the j-th block.

For each j = 1, . . . , li−1 block, define the Fourier transform Fs(j,i) = fft(Is(j,i)), and Z(j,i)

the set of probing vectors as

Z(j,i) =


0

Fm(1, :)⊗ 1n(j,i,1)
...

Fm(m, :)⊗ 1n(j,i,m)
0

 , where m = s(j, i). (3.29)

The 0 zero matrices have m columns and rows that overlap with all other blocks. At level

0, there is only one block (with s(1, 0) colors), so the 0 matrices are empty. E.g., the first

three vectors in (3.28) are Z(1,1), and I = [Z(1,1)(:, 1),Z(2,1)(:, 1),Z(3,1)(:, 1)].

We assume that the results of the inversions have been saved P = A−1Z(j,i−1) for all

blocks j = 1, . . . , li−2 at level i−1. At the i-th level, probing with the first vectors of each

block can be determined as follows:

a = ifft(Ili−1
), (3.30)

A−1Z(j,i)(:, 1) = Pa(:, j), j = 1, . . . , li−1, (3.31)

or equivalently note that

Pa = ifft(PH)T . (3.32)
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Systems for the rest of the probing vectors in the blocks are solved explicitly. At the end

of level i, we have inversions for all the probing vectors Z(i) = [Z(1,i) . . .Z(li−1,i)]. If further

levels are needed, the process continues as described in Algorithm 11. We emphasize that

our new method fuses the generation of probing vectors and the solution of linear systems

needed for the trace computation. However, Algorithm 11 depicts only the generation of

the vectors.

We note that our method requires memory to store the vectors P at the previous

level. When generating the P for level i, Algorithm 11 carefully implements this by first

permuting the implicitly computed vectors Pa in their new positions and then solving the

linear systems for the new P vectors. Because of the tree structure, the total storage is

limax−1 which is always less than half than the final number of probing vectors at level

limax—more accurately it would be less than minj s(j, limax−1).

Computationally, at level i, we have avoided the solution of li−1 systems of equations

at the expense of li−1 inverse FFTs in (3.32), or a O(Nli−1 log li−1) cost. Moreover, this is

more elegant and less expensive than a brute-force Gram-Schmidt which costs O(Nl2i−1)

at level i. Finally we remind the reader that this method works for hierarchical colorings

on arbitrary graphs.

3.6 Performance Testing

We investigate the performance of our algorithm for lattices in two ways. First we show

that the increased cost of the algorithmic extensions is not excessive. Second, we show

that the probing vectors produced by our algorithm for lattices whose dimensions have

sizes that are not powers of 2 provide better trace estimation than the vectors from the

original algorithm in [66].

Our experimental results shown in Table 3.1 indicate that the increased computation

that our method requires over the original algorithm is reasonable, given the short run-

ning times involved even for very large lattices. At the same time, the algorithm is still
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Algorithm 11 GenerateAndPerformProbingVector general(s, l, n, imax)
% Input: s(j, i): number of colors the j-th block splits into at the i-th level,
% n(j,i,k): the number of nodes in the color k subgraph of block j
% li−1: the number of colors at level i− 1, also the number of blocks at level i
% imax: maximum desired level
% Output: The probing vectors Z at level imax.

1: Z ← [ ], P1 ← [ ]
2: Fs(1,0) ← fft(Is(1,0))
3: Build Z(1,0) using (3.29) and the coloring permutation
4: P ← [ A−1Z(1,0)]
5: for i = 1→ imax do % Level i
6: P ← ifft(PH)T

7: newpos(1) = 1
8: for j = 2→ li−1 do % block j
9: newpos(j) = newpos(j − 1) + s(j − 1, i) % new positions of Pa at level i

10: end for
11: P (:, newpos) = P (:, 1 : li−1) % Permute to new positions
12: for j = 1→ li−1 do % block j
13: Fs(j,i) ← fft(Is(j,i))
14: Build Z(j,i) using (3.29) and the coloring permutation
15: for k = 2→ s(j, i) do % color k in block j
16: P (:, k)← A−1Z(j,i)(:, k)]
17: end for
18: end for
19: end for
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Original Method Extended Method

Lattice Time(ms) Time(ms) Time ratio

84 12 39 3.3
164 187 673 3.5
324 3141 12156 3.8

40962 56228 277045 4.9
2563 55435 266676 4.8
644 54598 252687 4.6

Table 3.1: Table showing run times of the new algorithm compared to the original.
Results obtained on an Intel i7 860 clocked at 2.8 GHz.

embarrassingly parallel, since each point can be reordered independently. Given the low

runtimes we obtain compared to the cost of solving the linear systems during probing,

we have not investigated this option. Further, we observe that the dimensionality of the

lattice does not impact the performance of the algorithm.

Finally, we examine the trace estimate produced on a model lattice problem, and

compare it with the trace estimate produced by using a truncated permuted Hadamard

matrix produced by the original hierarchical algorithm. This is essentially the same as

applying an incorrect red-black coloring to the sublattices at each level, ignoring the links

which are miscolored at the borders of each sublattice. While this will cancel the error

from the most important parts of the structure of A−1, it would still be leaving out

important connections between sublattices. Therefore, we expect larger trace estimate

errors, especially as the algorithm goes further down the coloring hierarchy. As we can

see in Figure 3.14, the new algorithm does indeed perform significantly better, providing

a much better trace estimate than the original method.

3.7 Conclusion

We have provided several extensions to the algorithm for hierarchically coloring and prob-

ing lattices. By formalizing the use of sublattices in the algorithm, we have made the

algorithm easier to reason about. This allowed us to improve its flexibility, enabling the
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Figure 3.14: Comparison of the two methods on a 2D lattice with common factors
2 × 2 × 3 × 3 × 5. For the common factors of two, the methods are the same, but once
these are exhausted the improved method has much lower error.

algorithm to handle lattices with arbitrary dimensions, as long as the sizes of those dimen-

sions share common prime factors. These improvements come at minimal computational

cost and retain the ease of parallelization that was an attractive feature of the original

algorithm. Finally, we have introduced a method of creating probing vectors, both for

the case where the colorings split evenly into the same number of colors, and for the case

where the coloring does not split evenly. We note that these methods of creating probing

vectors can be applied to any matrix, not just those arising from lattices.
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Chapter 4

Estimation of diag(f(A)) in the

general case

In Chapter 3 we introduced methods to compute Diag(f(A)),in the case where the A in

question arises from PDEs with certain geometric properties. Unfortunately, there are

many interesting applications such as those discussed in 2.1.1 and 2.1.3, which give rise

to matrices that do not have these useful properties.

This forces us to return to the original probing approaches for discovering structure in

the matrix [62]. As discussed in 2.2.2 probing exploits the structure of f(A) to achieve an

accurate result more quickly than statistical methods, yet can be used on matrices with

an unkown structure. The basis of the method is to take some polynomial approximation

qn(A) ≈ f(A). If the convergence of this polynomial approximation is fast this yields

information about the most important elements of f(A). The original approach involved

using a Neumann series polynomial for A−1, which implies that, if the diagonal elements

of A are nonzero, the nonzero structure of qn(A) is the same as that of An. The graph

coloring of An can then be used as an approximate coloring for the graph of A−1, in the

sense that the coloring constraints will only be violated by edges of small weights. This

provides useful information about the structure of A−1, which can be used as in Figure

2.3. Unfortunately, probing requires raising A to high powers to achieve more accurate
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results. This is not feasible for many matrices, since it can require significant amount of

computation and perhaps even more importantly, a significant amount of storage.

In this chapter we propose methods based on the structural and spectral characteristics

of f(A) directly. These methods can be combined with the statistical methods of [22] to

achieve the attractive features of these statistical approaches, as well as the benefits of

probing.

4.1 Graph Coloring

Probing as introduced in Chapter 2.2.2 works by attempting to find the most important

elements of A−1, or equivalently, a sparsified version of A−1 matching the largest magni-

tude elements of A−1. It does this by taking a polynomial approximation qn(A) ≈ A−1.

In the original proposal of probing, the polynomial was chosen as the Neumann series.

If the polynomial converges, then its graph approximates a sparsified structure of A−1

where the most important (large in magnitude) elements are kept. The goal is to find a

degree for which the polynomial graph is sufficiently sparse to be colored with a reasonable

number of colors. This is because if the graph associated with a matrix has a k-coloring,

then the diagonal of A can be recovered with k matrix vector multiplications. To see how

this recovery is possible, consider the structure of the matrix if all the nodes that share a

color are reordered to be adjacent. Since sharing a color implies a lack of communication

between the nodes, the matrix can be permuted in a block diagonal form, as shown in

Figure 2.3. Then, if we create the pm probing vector as in (2.4) then Apm holds the

diagonal elements in the positions of the m-th block.

Since coloring algorithms only consider if two nodes are connected or not, the weights

of the edges are not used. Thus instead of the entire Neumann series qn(A), only An need

be computed since the structure of the two matrices are the same. Since An shows all

the connections between nodes after n hops, we can either find a distance 1 coloring of

An, or a distance n coloring of A. Both operations have similar complexity. Once the
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probing vectors pm have been obtained, we use an iterative method to solve Ax = pm.

Since iterative methods applied for large matrices may be expensive and slow to converge

to the desired accuracy, we need to minimize the number of colors used in order to keep

the number of probing vectors produced low.

Problems arise when raising An to a high enough power for ‖qn(A)−A−1‖ to be small.

Even if A is sparse, An can become dense quickly which increases both the computational

and the storage requirements of the method. Additionally, while probing is intended

to exploit the structure of A, it throws out interesting structural information by not

considering the strength of the connections. Finally, the colors produced by probing at

different levels are unlikely to be nested subsets of each other. Nodes which previously

were given separate colors may later on be assigned the same color, which means that

results with previously generated probing vectors cannot be reused if increased accuracy

is desired; the entire computation must be repeated from scratch.

In this chapter we investigate two types of methods for providing better colorings than

probing. The first set of methods are similar to probing in that they are structural; they

try to directly detect and exploit the structure of f(A).

The second type of method attempts to use computed spectral information of A to

find an appropriate coloring for f(A)—similar to the well known techniques of spectral

clustering. While the algorithm we have developed is not very efficient, it serves as an

interesting way to examine the issues involved with the design of spectral methods, and a

starting point for future research into these types of approaches. It also provides an upper

bound on how well such methods could work.

We combine both types of methods with the statistical methods of [22] discussed in

Chapter 2.2.1, observing in many experiments that we can obtain a more accurate error

bound for Diag(f(A)) than would be possible using only statistical methods.

77



4.2 Statistical Considerations

While both [62] and [27] consider probing and probing-like ideas from the standpoint

of a deterministic process, in practice our experiments show error from the statistical

methods in [22] being much smaller than the deterministic error reported by probing.

Additionally, many applications (such as QCD) require information about the error and

require the error to be unbiased. Fortunately it is possible to combine statistical methods

with probing as shown in [66]. By generating a random vector ζm for each color block

m and performing elementwise multiplication with each probing vector to form pm � ζm,

we make our estimator statistically unbiased. In addition, if probing correctly identifies

the smallest elements of A−1 and groups them into colors, then the variance and thus the

error estimate will be reduced, while providing the added benefit of a statistical confidence

interval for the results.

As noted in Table 2.1 the variance of Hutchinsons method is 2(‖A‖2F −
∑N

i=1A
2
ii). If a

set of s random vectors ζ is choosen according to [22], and ζkj refers to the j-th component

of the k-th sample, then the diagonal estimator is given in [27] as

TdiagAi = Aii +

N∑
j=1,j 6=i

aij

∑s
k=1 ζ

k
i ζ

k
j∑s

k=1(ζki )2
. (4.1)

If the ζ are i.i.d. drawn from the Rademacher distribution, then for j 6= i the expectation

E[
∑s

k=1 ζ
k
i ζ

k
j ] =

∑s
k=1E[ζki ζ

k
j ] = 0, implying that E(TdiagAi) = Aii. We are interested

in computing the variance E[TdiagA2
i ] − E[TdiagAi]

2 = E[TdiagA2
i ] − A2

ii. For this, we

notice that E[(
∑s

k=1 ζ
k
i ζ

k
j )(
∑s

l=1 ζ
l
iζ
l
m)] = s only when k = l and j = m 6= i. Since
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∑s
k=1(ζki )2 = s, we have

E[TdiagA2
i ] = a2

ii + 2aii

N∑
j=1,j 6=i

aijE

[∑s
k=1 ζ

k
i ζ

k
j∑s

k=1(ζki )2

]

+

N∑
m,j=1, m,j 6=i

aijaimE

[∑s
k=1 ζ

k
i ζ

k
j∑s

k=1(ζki )2

∑s
l=1 ζ

l
iζ
l
j∑s

l=1(ζ li)
2

]

= a2
ii +

N∑
j=1,j 6=i

a2
ij . (4.2)

Thus, Var(TdiagAi) =
∑N

j=1,j 6=i a
2
ij , which means the estimator of each element depends

on the off-diagonal elements of its row.

We can now bound how large the standard deviation is relative to the trace, which

provides information on the number of digits that can be achieved using these estimators.

For symmetric positive definite matrices and a given number of samples s, we have

√
2(‖A‖2F−

∑
A2

ii)√
s

Tr(A)
≤

√
2‖A‖2F√
s

Tr(A)
=

√
2Tr(A2)√

s

Tr(A)
=

√
2
∑
λ2i√

s∑
λi
≤

√
2(
∑
λi)2√
s∑
λi

=

√
2√
s
. (4.3)

Although the bound may be pessimistic, it indicates that we should not have problems

obtaining good relative estimates. On the other hand, for the diagonal estimator,

√∑N
j=1,j 6=i a

2
ij√

s|aii|
≤ ‖A(i, :)‖√

s|aii|
≤ ‖A‖√

s|aii|
, (4.4)

so the relative error can be quite large for some diagonal entries. One exception, which is

often useful in practice, is the case of diagonally dominant matrices. Then,

√∑N
j=1,j 6=i a

2
ij√

s|aii|
≤
∑N

j=1,j 6=i |aij |√
s|aii|

≤ 1√
s
, (4.5)

and the stochastic estimator can provide good relative estimates.

It is possible to investigate how well probing performs compared to statistical methods
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such as Hutchinson’s by modeling the magnitude of the elements removed by probing. As

noted in Table 2.1 the variance of Hutchinson’s method is 2(‖A‖2F −
∑n

i=1A
2
ii). Since in

the Hutchinson method the diagonals do not contribute to the variance, in our analysis

we need only consider what happens to the off-diagonal part of the matrix. Because we

will refer to this portion of the matrix frequently, we define Ã as the matrix A with the

diagonal removed.

When using Hutchinson’s method, the variance comes from the entire Ã matrix. In

contrast, when using probing with a statistical estimator as above, the variance comes

only from inside the block diagonals, such as those seen in Figure 2.3. This is because the

contributions from outside the block diagonals are zeroed out. Since the block diagonals

are the only parts of the matrix contributing to the variance estimation, we can simply

compute 2‖Ãi‖2F for each block, and then sum the results for all k blocks. This is equiv-

alent to considering k independent Hutchinson methods, one for each color with variance

2‖Ãi‖2F .

Suppose that the k color blocks are all of equal size. Then, if N is the dimension

of A, there are kN
2

k2
− N = N2

k − N elements of Ã contributing to the variance, i.e.,

only those in block diagonal. Equivalently, the k-coloring discards k−1
k N2 elements from

contributing to the variance. Assume in addition that we have sorted all the elements

of Ã in monotonically decreasing order and that increasing the number of colors discards

off-diagonal elements starting from the largest in the list. More specifically, G = sort(Ã2
ij)

would be an array of N2 elements with the zero diagonal elements at the end. We model

this array as a monotonically decreasing function g(x), where the input x = k−1
k ∈ [0, 1]

is the percentage of the discarded elements.

We can begin to model the variance that is removed given certain assumptions about

g(x). First, we assume that probing finds the largest elements of Ã in monotonically

decreasing manner and removes them. Then, with 2 probing vectors we have V ar2 =∫ 1
1
2
g(x)dx, since with two probing vectors half the elements will be discarded. In general,

with k probing vectors (i.e., with k colors), V ark =
∫ 1

1− 1
k
g(x)dx. If g(x) is constant, i.e.,
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all the elements of A are the same, then we have V ark/‖Ã‖2F ∼ O( 1
k ). On the other hand,

if g(x) ∼ (1− x), then we have that Vk/‖Ã‖2F ∼ O( 1
k2

).

This analysis implies that even if there is no structure to be exploited, as long as the

nodes are divided up into color blocks of equal size, probing will do at least as well as the

purely statistical methods of Hutchinson. Therefore algorithms should attempt to make

the color sizes as equal as possible. Moreover, as long as significant structure exists in the

matrix, probing should be able to outperform statistical methods.

4.3 Structural Methods

As previously discussed, the major problem with probing arises when the series qn(A)

converges slowly to f(A). To see this issue in action consider the example in Figure 4.1. In

this example, we consider a 4D Laplacian with periodic boundary conditions and compare

probing using polynomials of order ranging from 1–8 against computing the pseudo-inverse

A† directly, dropping the elements of the smallest magnitude (that is, sparsifying the

matrix), and then coloring the resultant matrix. We take the pseudo-inverse, because this

operator has one zero valued eigenvalue. This coloring of the sparsified version of A†,

while not practical provides information on how close to the optimal coloring the coloring

provided by probing is. As we can see, probing is close to the optimal when few colors are

considered, but as the number of colors increases the difference between the two methods

becomes significant.

To address this, we seek to capture the structure of f(A) more directly. We propose

here two methods to achieve this. The first method attempts to capture the off-diagonals

of f(A). Many matrices of interest have an inverse with a banded structure. This implies

that we should be able to find a coloring that captures most of the structure of f(A).

Indeed, this was behind the original idea of probing, where the authors note that if the

coloring distance is increased far enough, then the major off-diagonals of the matrix will be

captured. Similarly, the authors of [27] note that if a large enough number of columns of the
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Figure 4.1: Probing vs Coloring the structure of L† directly, where the percentage of
the weight of L† retained varies from .1 to .5. in .05 increments. As the number of colors
increases probing struggles to capture the structure of L†.

Hadamard matrix is used, the off-diagonals of interest will be removed from contributing

to the error estimate. However, these are both indirect methods of achieving the goal

of discovering which nodes of the underlying graph of f(A) are connected via an off-

diagonal with large values. To gain insight into how it might be possible to discover

such connections, consider the sparsity plot of the matrix containing several off-diagonals

below. If we take a sampling of the columns of the matrix, and we assume that the line

the off-diagonals follow has a slope of 1, if any two columns were sampled at a distance k

to each other, then if we shift the samples up by k, the non-zero structure of the samples

will be the same, as can be seen in Figure 4.2, where we sample four columns.

Of course, in the case of f(A), the output is likely to be dense, so matching up samples

of f(A) and seeing where the non-zeros match is not possible. However, if we obtain some

columns of f(A) using an iterative method, and then sparsify them by dropping some

percentage of the elements with the smallest absolute values, we can then compare the

structure of the samples, and check to see where the non-zero values line up. If a significant

number of the sparsified samples share the same non-zero structure, it is likely there is

an off-diagonal at that location. We can then use these off-diagonals to compute an

approximate coloring for f(A). This approach is shown in Algorithm 12.
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Figure 4.2: Sampling 4 columns from A and then shifting to detect if they share an
off-diagonal

The second method we consider is based on the matrix-matrix multiplication approx-

imation method proposed in [2]. They note that if some samples of a column of matrix

v = A(:, i) are obtained, then vvT ≈ A2. Since we have obtained the columns v of f(A)

to estimate the off-diagonals of f(A), we have vvT ≈ f(A)2. Since we want wwT = f(A),

we preform a QR factorization of v. Then v = QR and (vvT )1/2 = (QRRTQT )1/2 =

Q(RRT )1/2QT . We can obtain (RRT )1/2 using SVD, since R is a small dense matrix.

This procedure is shown in Algorithm 13.

The approximation wwT , however, is still dense. To ensure a sparse approximation

to f(A), we again sparsify w by dropping the smallest magnitude elements. While it is

likely that ‖wwT − f(A)‖ will be large, what is important for our application is not the

difference in the value of the elements of the two matrices, but how close the orderings of

the elements of the matrices are, since these are the elements that probing will discard.

To measure this, consider the two sets o1 and o2 that each contains the index pairs (i, j)

of the non-zero elements of the matrix f(A) and wwT , respectively. Define p1 to be

the permutation of the o1 that sorts the corresponding elements of f(A) from largest to

smallest magnitude. Define also p2 the permutation of o2 that sorts the elements of wwT

from largest to smallest magnitude. Since wwT is a sparse matrix, it has fewer elements,

z = size(o2) ≤ size(o1). We then want to check how closely the index pairs (not the matrix
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Algorithm 12 [D] =DetectOffdiags(v, ε)
% Input: v columns of f(A), L array containing column locations, a tolerance ε
% Output: D a matrix of important off-diagonals

1: v ← Sparsify(v)
2: newv ← []
3: for i = 1 → size(v,2) do

newv ← [newv shift(v(:,i),-L(i))]
4: end for
5: newvsums ← sum(abs(newv));
6: diaglocations ← [];
7: for i = 1 → size(v,1) do
8: if newsums(i) ≥ ε then

diaglocations(i) ← 1;
9: end if

10: end for
11: D ← diag(diaglocations)
12: return D

Algorithm 13 [w] =CreateW(v, ε)
% Input: v columns of f(A)
% Output: w for use in approximation wwT

1: v ← sparsify(v, ε)
2: [Q,R] ← QR(v)
3: [U ,S,V ] ← SVD(v)
4: w ← QUS1/2V T

5: return w
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elements) in o2(p2) match the first z index pairs in o1(p1) by computing o1(p1)∩o2(p2). If

the size of the intersection is equal to z, then we have the best possible approximation over

all matrices with that number of non-zero elements, in the sense that we have captured

the z most important elements of f(A).

It is interesting to contrast the parts of the structure of f(A) that the two methods

find. Algorithm 12 attempts to detect the global structure of the matrix, while Algorithm

13 detects more local structure. Figure 4.3 shows the effect of progressively increasing the

number of columns from f(A). As the number of columns increase, the local areas of the

matrix f(A) that are well approximated expand. Our experiments reveal that there is a

transition point with this method, where after a certain number of columns, the coloring

produced starts to be extremely effective, although for large matrices this point may come

too late to be practical. A similar transition point can be seen with the density, where

as the sparsity of v decreases, there is a point where the coloring becomes substantially

better, although again, this point can come too late to be practical.

Figure 4.3: Approximation of the pseudo-inverse of a Laplacian with periodic boundary
conditions with 10, 100, and 1000 vectors in the vvT approximation. Here the vectors v
are not sparsified, the figure shows how in the best case of an unsparsified v, vvT contains
mostly local structure, until a significant number of vectors v are supplied.
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A significant drawback of these two methods is that it is difficult to provide any bounds

on the error associated with using the colorings they produce. Matrices which have a

significant number of off-diagonals or other highly ordered structure will likely have this

structure captured by these methods. Less structured matrices may be more challenging,

and it may be hard to tell the difference a-priori. Another drawback is that it is difficult

to tell what level of sparsification should be applied to the vectors used by these methods.

One possible method is for the user to supply a maximum number of colors representing

the limit of the number systems f(A)z to be solved, and then preform bisection on the

densities of the two methods, doubling or halving the value until the required number of

colors are obtained. However, this still leaves open the question of the starting densities

to be used. While for some classes of matrices the user may have a good idea what will

work best, in the general case it is not possible to know the optimal value. A possible

heuristic is to examine the sampled columns v, and determine where the sharpest drop is

in the value of the sorted components. This point can then be used as a starting point

which can be refined by the previously described bisection method.

While we leave further investigation for future work, we note the similarities between

this method and the Nyström method [3]for approximating symmetric semi positive def-

inite matrices. In the classic Nyström method a certain number of columns C are ran-

domly selected from the matrix A for which an approximation is desired. The intersec-

tion matrix W is then formed by finding the intersection of the rows and columns of C,

or C = A(:, cols);W = C(cols, :); in matlab notation. The pseudo inverse W+ is then

formed. If many columns of C are selected, it may not be feasible to find the pseudoinverse

of W , in which case the best rank k approximation W †k is formed. Then A ≈ CW †CT .

There are several variations on this method which are possible, such as taking an en-

semble of such approximations or replacing the intersection matrix W with the matrix

C†A(C†)T . The question then is how to best select C. If additional columns of C could

be selected adaptively this method could allow the derivation of error bounds, in contrast

to our current method for which it is difficult to prove any bounds. If the bounds are tight
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enough, it might even make sense to directly compute Tr(CW †CT ) or Diag(CW †CT ),

and dispense with coloring entirely, relying on the theoretical error bounds instead of the

statistical error measurements for guarantees for the accuracy.

4.4 Spectral Methods

Spectral methods for finding communities in a graph have been well understood for some

time [6]. The general basis for these methods comes from the graph partitioning problem.

Given a graph G = (V,E) and associated graph Laplacian L,

Li,j :=


deg(vi) if i = j

−1 if i 6= j and vi is adjacent to vj

0 otherwise

, (4.6)

the nodes must be divided into groups of nearly equal size, S and its complement S̄, in

such a way that the weight of the edges between the groups is minimized. We can formalize

this problem as follows. Define φ(S) as

φ(S) =
|E(S, S̄)|

min(|S|, |S̄|)
=

∑
(i,j)∈E(xi − xj)2∑
i<j(xi − xj)2

. (4.7)

Then define the isoperimetric number of a graph as the value of the minimum cut

φopt = min
S⊆V

φ(S). (4.8)

Unfortunately, this problem is NP-Complete. However, if instead of requiring the elements

of the solution vector x to be in {−1, 1}, the problem is relaxed by allowing the solution

elements to take real values, then we can obtain a solution as follows

φopt ≈ min
x∈Rn

∑
(i,j)∈E(xi − xj)2∑
i<j(xi − xj)2

= min
x∈Rn

x⊥1

∑
(i,j)∈E(xi − xj)2

n
∑n

i=1(xi)2
= min

x∈Rn

x⊥1

xTAx

nxTx
. (4.9)
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By the Courant-Fischer Theorem, this is is minimized by v2, the eigenvector of the second

smallest eigenvalue l2 of L, known as the Fiedler vector.

While this relaxation is sufficent for regular graphs, frequently the normalized edge cut

is desired for irregular graphs. If we define vol(S) =
∑

vi∈S deg(vi), then the normalized

edge cut is defined as

φ̂ =
|E(S, S̄)|

min(vol(S), vol(S̄))
. (4.10)

In contrast to (4.7), (4.10) divides by the degree of the nodes in the volume instead of

simply the number of vertices. This generally turns out to be a more robust measure

[6]. In this case, the solution of the relaxed problem is related to the spectrum of the

normalized graph Lapalcian, L, defined as in (4.11), where D is the diagonal matrix of

the degrees of the nodes of the graph, and L is the graph Laplacian of (4.6),

L = D−
1
2LD−

1
2 . (4.11)

By performing the same relaxation as (4.9) we achieve the Cheeger bounds on φ̂opt, where

λ2 is the second smallest eigenvalue of L,

φ̂2
opt

2
≤ λ2 ≤ 2φ̂opt. (4.12)

It is possible to continue this process of finding an approximation to the best edge

cut recursively by computing the Fiedler vector of the induced subgraph of each partition.

This allows for an arbitrary number of partitions of the graph to be obtained. This process

is known as recursive spectral bisection [7].

While recursive bisection is the simplest method of spectral clustering, there are many

other proposals. In fact, [8] lists five distinct classes of algorithms for finding k-clusters,

based on the lower part of the spectrum of L. The first of these he describes as linear

ordering, where the nodes are reordered based on the smallest eigenvector recursively,

i.e., recursive spectral bisection. We investigate a heuristic based on this idea, and leave
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a more through investigation of ways to adapt algorithms for spectral clustering to our

problem of interest for future work.

In seeking to exploit the structure of a graph for trace estimation, probing tries to

solve the opposite problem to that of community detection. Instead of trying to find

communities with a large amount of intra-community interactions, probing seeks to find

groups of nodes that have no or few interactions between each other. In this case, [9] has

shown that the function we should seek to optimize is

φ̄(S) =
2|E(S, S̄)|

vol(S) ∪ vol(S̄)
, (4.13)

a measure analogous to the normalized cut in (4.10). As in the community detection

problem, we seek to optimize this function as

φ̄opt = max
S

2|E(S, S̄)|
vol(S) ∪ vol(S̄)

. (4.14)

While this is again an intractable problem, the relaxed version again admits a solution

which is related to the spectrum of L, with the solution vector being the largest eigenvector

of the graph Laplacian. It is possible to bound the error of the relaxed version of this

problem using an adjusted version of the Cheeger bounds [9]

1− φ̄2
opt

2
≤ 2− λN ≤ 2(1− φ̄opt). (4.15)

The relationship between (4.14) and the relaxed quadratic form is more difficult to see

in this case than it is for (4.10). The derivation of the upper and lower bounds in (4.15)

is rather involved and can be found in [9]. Here we present the derivation only of the

upper bound. In [9] the authors partition the graph nodes into three sets; V1, V2 are two

bipartite sets, and V3 = V1 ∩ V2 are the rest of the nodes that cannot be split in bipartite

sets. Then they note vol(Vi) =
∑3

j=1 |E(Vi, Vj)|. With this, (4.14) can be rewritten as
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φ̄opt = max
V1,V2

2|E(V1, V̄1)|∑3
j=1 |E(V1, Vj)|+

∑3
j=1 |E(V2, Vj)|

. (4.16)

Hence, the connection to a quadratic form based on the eigenvectors of L follows,

λN = max
x∈{R}n
x⊥1

xTAx

xTx

≥
( 1
vol(V1) + 1

vol(V2))2|(E(V1, V2)|+ ( 1
vol(V1))2|E(V1, V3)|+ ( 1

vol(V2))2|E(V2, V3)|
1

vol(V1) + 1
vol(V2)

≥ (vol(V1) + vol(V2))2

2vol(V1)vol(V2)

2|E(V1, V2)|
vol(V1) + vol(V2)

+
min(vol(V1), vol(V2))

max(vol(V1), vol(V2))

|E(V1 ∪ V2, V3)

(vol(V1) + vol(V2)

≥ 2φ̄opt +
min(vol(V1, vol(V2))

max(vol(V1), vol(V2))

|E(V1 ∪ V2, V3)|
(vol(V1) + vol(V2))

≥ 2φ̄opt.

4.4.1 Spectral k-partitioning for the matrix inverse

Since our goal is to find the structure of the matrix inverse, we turn our attention to

L†, instead of L. We need the pseudoinverse because the graph Laplacian is singular,

LD
1
21 = 0. Note that L†D

1
21 = 0, and L† has the same eigenvectors as L only ordered

in the opposite order. Let us consider L† as a weighted graph with adjacency matrix,

Γ = L†−Diag(L†), and ignore the fact that some weights may be negative. Then for the

(weighted) Laplacian of Γ,

LΓ = Diag(Γ1)− Γ = Diag(L†1−Diag(L†)1)− L† + Diag(L†)

= −Diag(L†)− L† + Diag(L†) = −L†. (4.17)

This implies that the graph Laplacian of the pseudoinverse shares the same eigenvectors

and in the same order as L. Thus, the same partition is a solution to the relaxed version

of (4.16) for both matrices.

This relation suggests a connection between spectral methods and probing. Probing

considers the powers of An in order to learn about the structure of f(A). Similarly, the
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power method takes matrix vector products with A on a starting vector v0, computing

Anv0 which is known to converge to the direction of the largest eigenvector. Thus, spectral

method short cut the intermediate steps of the low order polynomial representations, and

skip straight to the same information that the highest order polynomials provide.

The idea of finding communities with a low number of intra-community links using the

top eigenvectors suggests that many of the algorithmic ideas used for spectral clustering

might be adapted to the opposite problem. An obvious first algorithm is to obtain the

largest eigenvector of the graph, and use it to divide the graph into two groups that are

as close to bipartite as possible. Then we apply the method recursively on the induced

subgraph for each group. We continue until a maximum number of groups is reached, or

until the largest eigenvalue of the Laplacian of the partitioned matrices is too small to

allow for a good bipartitioning. This method has the obvious advantage that the colors

we produce will be nested subsets of each other, allowing us to continue probing without

discarding previous results.

Unfortunately, this method has limited practicality when applied to f(A) = L†. While

the eigenvectors needed at the first level are easily obtainable since they match those of

L, the required eigenvectors at the next level are more difficult to compute. The recursive

process requires the eigenvectors of submatrices of L†, but we do not explictly have these

submatrices available. We could use iterative methods to compute their eigenvectors, but

each iteration would need a matrix-vector product with the submatrix we do not have.

Therefore, for each matrix-vector product and for each submatrix, we must solve a linear

system with L. With even a few color blocks, this may cause the process to become

infeasible. Further, the diagonal elements of the submatrices do not quite correspond

to the elements of the graph Laplacians of the subgraphs of L†, meaning we will obtain

partitions which are not quite correct.

Nevertheless, we report this algorithm for the following reasons. First, if the discrep-

ancy between the diagonal elements of L† and the appropriate Laplacian is not large,

which is the case in our observations, then the algorithm has the same theoretical support

91



as recursive spectral bisection for partitioning. In fact, for a given number of colors, the

algorithm finds very good quality colorings, so it serves as a proxy for an upper bound

for what spectral methods can achieve. Second, while the approach is not practical for

f(A) = L†, it may be practical for other f(A), such as f(A) = An. We show our approach

in Algorithm 14.

Algorithm 14 c←SpectralBisection(L, k)
% Input: Laplacian matrix L, desired number of partitions k
% Output: a coloring c

1: [evecs, evals] ← eigs(L)
2: n ← size(L,1)
3: % Get a permutation for the sorted eigenvector v
4: [vs, p] = ← sort(evecs)
5: ip(p) ← [1:n] % Inverse permutation
6: m = floor(n/2)
7: if k == 0 then
8: c(p(1 : m)) ← 1
9: c(p(m+1 : n)) ← 2

10: else
11: L1 ← L(1:m, 1:m)
12: L2 ← L(m+1:n, m+1:n)
13: smallc1 ← SpectralBisection(L1, k − 1)
14: smallc2 ← SpectralBisection(L2, k − 1)
15: nextC ← [smallc1 , smallc2+max(smallc1) ]
16: % Return coloring to original ordering
17: c ← nextC(ip);
18: end if
19: return c

4.5 Experimental Results

In this section we present two sets of experimental results. The first set are Laplacian

matrices from various graphs, chosen to help test our spectral approach. For these these

matrices, we form the peusdoinverse L†, since the matrices are singular, and then use

this inverse to directly compute the variance and the error. The second set are various

matrices selected from the Matrix Market sparse matrix collection [12], chosen because
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they were used as tests cases for [27]. Since these matrices were all chosen to be invertible

we form A−1 directly, and then use this inverse to compute the variance and error.
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Figure 4.4: The variance and relative trace error of the trace estimator for the 84 Lapla-
cian with periodic boundary conditions.

While only the graph Laplacians have results for our spectral method, we show the

results of our structural approaches for all the graphs. For each matrix we take 50 random

columns v, and then apply the sparsity listed in the table below each graph. The number

of columns in v is held constant, but the density is varied. We select a starting percentage

of sparsification using the heuristics we described in Section 4.3. We then increase this

density every step. While we initially increase the density by increments of 10 percent, if

this proves to be either too little or too much change we use recursive bisection to adjust

the increment. This process continues until the maximum color budget is reached. This

maximum budget varies from matrix to matrix, because some of the examples are small,

but is always set to be less then one thousand, which is the maximum we expect users to

employ in real world scenarios. We also use our heuristics to pick the number of diagonals

the model uses, which is then held constant thoughout the process. For the first set of
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Figure 4.5: The variance and relative trace error of the trace estimator for a randomly
generated scale free graph.

experiments we show only the statistical approach described in Section 4.2, forming new

probing vectors as ζ � P , where ζ is a noise vector. For the second set of results we show

in addition the results with the original Hadamard probing vectors without the statistical

approach, since these matrices were originally chosen to show how Hadamard vectors can

remove specific diagonals. Finally, we also show how much the Hadamard method reduces

the variance, which indicates how well it would preform if used as the starting point of a

Monte Carlo method.

The first graph we examine in Figure 4.4 is the 4D Laplacian differential operator

with periodic boundary conditions on a regular lattice. These types of graphs occur in

LQCD. This is the graph Laplacian test case where the structural methods and classical

probing perform the best, remaining competitive with the spectral method. This is most

likely due to the highly structured nature of the lattice, where certain off-diagonals take

up most of the weight of A−1. Next we examine a synthetic scale-free graph with 10000

nodes, generated using the CONTEST MATLAB toolbox [13], the results of which we
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Figure 4.6: The variance and relative trace error of the trace estimator for the wiki-vote
graph.

see in Figure fig:scalevar. A scale-free graph is a network which has a degree distribution

following a power law, P (k) ∼ k−γ , where k is the degree and γ is a constant chosen

to best fit the observed data. These types of graphs are of interest because many real

world networks such as social networks, the internet, and semantic networks [14, 15, 16],

are thought to be networks of this type. Here the spectral method outperforms all other

approaches, with the structural methods preforming the worst. The final two graphs

in Figures 4.7–4.6 are small social network graphs, showing a wikipedia voting network,

and a p2p gnutella file sharing network. In both social network experiments we see the

structural methods perform poorly, while the hierarchical spectral method works well for

both graphs.

All these graphs have the advantage that they are small enough to be directly inverted

so that the actual error and variance may be determined. In all the example graphs the

spectral methods tend to preform well, while probing and other structural methods tend

to preform poorly on the less structured graphs, especially when it comes to variance
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Figure 4.7: The variance and relative trace error of the trace estimator for the p2p-
gnutella05 graph.

reduction. More importantly, the variance of the spectral method tends to reduce faster

than the Monte Carlo method, which shows promise for developing approximate spectral

algorithms that have a similar effect.

Our structural methods have better success on the second set of matrices than they do

on the graph Laplacian test cases. In general, they provide an improvement over probing

and purely statistical methods. In the gre512 and orsreg test cases, the structural meth-

ods perform as well as or slightly better then probing, probably because both methods

are finding the same dominant off-diagonals. The mhd14 matrix achieves similar results

as probing for the range of colors it explores, but terminates early, because even with very

low amounts of sparsification, the algorithm can detect very little structure. The nos6 and

bcsstk07 matrices start off as being comparable to probing, but start to surpass it signifi-

cantly as the density increases. The af23560 matrix is unique among the test cases because

the structural methods never manage to surpass probing. However, the af23560 matrix

clearly has little structure to make use of, since statistical methods, probing, Hadamard,
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Figure 4.8: The variance and relative trace error of the trace estimator for the gre512
matrix.

and our method all preform the same.

Overall, our results indicate that our proposed structural methods can provide an

improvement over probing at relatively low cost, even for matrices where probing should

be expected to preform very well, that is matrices with a sharp decay away from the

diagonal.

4.6 Conclusions

We have presented two classes of methods for estimating the trace of the inverse of an

arbitrary matrix, which we have experimentally shown to be superior to both probing and

purely statistical methods. The first class of these methods seeks to detect and exploit

structural features of the matrix, and the second class seeks to use spectral information

of the matrix to leverage ideas from algorithms designed for community detection and

partitioning. We have also identified several promising areas of future research. In the
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Figure 4.9: The variance and relative trace error of the trace estimator for the orsreg
matrix.

structural arena, the prospect of leveraging research in adaptive sampling for use with the

Nyström method may make these types of approaches more useful, due to the potential to

use some of the theoretical error bounds these ideas provide, making the structural results

more reliable. In the spectral arena, the challenge is to find algorithms that approximate

the recursive spectral bisection of Algorithm 14 efficiently. Moreover, there are many other

classes of spectral clustering algorithms which we have not yet experimented with that

could yield improved algorithms for finding good colorings.
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Figure 4.10: The variance and relative trace error of the trace estimator for the mhd416
matrix.
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Figure 4.11: The variance and relative trace error of the trace estimator for the nos6
matrix.
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Figure 4.12: The variance and relative trace error of the trace estimator for the bcsstk07
matrix.
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Figure 4.13: The variance and relative trace error of the trace estimator for the af23560
matrix.
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Chapter 5

Conclusion and future work

In this work we have investigated ways in which Diag(f(A)) may be computed when

information about the structure of A is known and we have explored algorithms for dis-

covering such information when it is not known a priori. Specifically, we have made use

of geometric, structural, and spectral methods to improve on the results of probing. We

have also developed a method for combing this information with the statistical methods

of [22] in order to obtain unbiased methods that provide also statistical error bounds on

the estimates. Further, we have provided a framework for analyzing which matrices are

likely to see improvement over purely statistical methods, based on how rapidly the largest

elements of the matrix decays. Finally we have preformed experiments on many different

tests cases, ranging from applications in LQCD, social network graphs, engineering, and

PDEs. In some cases we obtained an order of magnitude speed up compared to previously

known methods.

5.1 Methods for Lattices

Our methods greatly improved prior methods for estimating Diag(f(A)) in matrices aris-

ing from PDEs discretized onto lattices. We have introduced two methods: an extremely

efficient algorithm based on binary arithmetic which works when the dimensions of the

matrix can be factored solely into powers of two, and another method which is more gen-
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eral. For real world cases arising in LQCD, we demonstrate significant improvements over

prior methods for challenging cases, speeding up the statistical process by an order of

magnitude.

5.2 Methods for General Matrices

Further improvement to classical probing appears difficult, due to the limitations of re-

lying on a polynomial of A to approximate the structure of f(A). To circumvent this

issue we introduced several methods that seek to approximate the structure of f(A) di-

rectly, bypassing the need to compute high order matrix polynomials. There are two

main classes of information we use to discover the structure of f(A). The first of these

is structural information. By solving for random columns v of f(A), we are able to form

two approximations to f(A). First, by looking at the cross-correlation of the vectors at

specific lags, we can locate the prominent off-diagonals of f(A). Second, we can form a

rough approximation to f(A) by finding vvT . In many experiments we have found that

these two methods taken together provide more accurate colorings than classical probing.

Finally, we also make use of the spectrum of A to find good colorings of f(A) in a process

analogous to that used to find clusters in graphs.

Both these methods suggest future avenues of research. The structural methods have

close parallels with the Nyström algorithm for sparse matrix approximation. Leveraging

some of the approaches for sampling from this method may provide significant improve-

ments to our algorithm. It may also be possible to apply the Nyström algorithm directly,

an approach that deserves further study. The spectral methods also have many interesting

open questions. First, significant research is still needed to make this algorithm practical.

Additionally there are four other algorithmic ideas used for the graph clustering problem,

which we have not yet tried to adapt to our problem. Finally, while we have achieved

good results with this method for graph Laplacians, it remains to be seen if there is a way

to extend this approach to more general classes of matrices.
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