
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

Fall 2016

Managing Micro Vms in Amazon Ec2 Managing Micro Vms in Amazon Ec2

Jiawei Wen
College of William and Mary, jwen01@email.wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wen, Jiawei, "Managing Micro Vms in Amazon Ec2" (2016). Dissertations, Theses, and Masters Projects.
Paper 1477068253.
http://doi.org/10.21220/S2RG60

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235412425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1477068253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1477068253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.21220/S2RG60
mailto:scholarworks@wm.edu

Managing micro VMs in Amazon EC2

Jiawei Wen

Wuhan, Hubei, China

Bachelor of Science, Huazhong University of Science and Technology, 2010

A Thesis presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Master of Science

Department of Computer Science

The College of William and Mary
August, 2016

© Copyright by Jiawei Wen 2016

ABSTRACT

Micro instances (t1.micro) are the class of Amazon EC2 virtual machines (VMs)
offering the lowest operational costs for applications with short bursts in their
CPU requirements. As processing proceeds, EC2 throttles CPU capacity of micro
instances in a complex, unpredictable, manner. This thesis aims at making micro
instances more predictable and efficient to use. First, we present a characterization
of EC2 micro instances that evaluates the complex interactions between cost,
performance, idleness and CPU throttling. Next, we define adaptive algorithms to
manage CPU consumption by learning the workload characteristics at runtime and
by injecting idleness to diminish host-level throttling. Experimental results show
that a gradient-hill strategy leads to favorable results. For CPU bound workloads,
we observe that a significant portion of jobs (up to 65%) can have end-to-end times
that are even four times shorter than those of the more expensive m1.small class.
Our algorithms drastically reduce the long tails of job execution times on the
micro instances, resulting to favorable comparisons against even small instances.

TABLE OF CONTENTS

Acknowledgments ii

1 Introduction 2

2 Background 4

3 Methodology 6

3.1 Reference Benchmarks . 6

3.2 General Characterization Results . 7

4 Workload Characterization 9

4.1 Time and Heterogeneity Effects on Performance 9

4.1.1 Static Delay Characterization 13

5 Algorithm Design 16

5.1 Stochastic Approximation . 16

5.2 Adaptive Micro-Management (AMM) 17

6 Performance Evaluation 20

7 Related Work 24

8 Conclusions 26

i

ACKNOWLEDGMENTS

I express my gratitude to my advisor Dr. Evgenia Smirni. Without her
encouragement and support, I would not start this research and finish the thesis.
Dr. Smirni is always patient with me and gave me precious guidance whenever I
ran into a trouble spot or had a question about my research or writing.

I would also like to acknowledge my dear friend Ji Xue as the second reader of this
thesis and I am appreciate his very valuable comments and suggestions on this
thesis.

I would also like to thank all the faculties and staffs at the Computer Science
Department especially my committee members Dr. Weizhen Mao and Dr. Xu Liu
for their great support.

Finally, I must thank my parents for always being supportive of my education. My
family members always support my academic decision and making me feel loved
during the entire work of the thesis.

ii

Managing micro VMs in Amazon EC2

Chapter 1

Introduction

Micro VMs (t1.micro) are a class of lightweight virtual machines that are part of the Ama-

zon EC2 offering. According to the official documentation [2] they provide: (i) a small

amount of consistent CPU resources and (ii) additional short bursts of CPU capacity when

spare cycles become available. Micro instances can provide up to two EC2 compute units,

but this capacity is offered only for short periods of time; no stable performance is guaran-

teed for the remaining time. One EC2 Compute Unit (ECU) provides the equivalent CPU

capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. In order to compensate

for the lack of performance predictability, micro VMs are then offered on-demand at much

cheaper rates than any other VM class [1]. This leaves to the user the burden of devising

the most appropriate management policy for a micro instance, which is a complex task.

We focus on applications that run at the timespan of minutes or hours, even though

possibly serving smaller units of work, and devise novel management techniques for micro

VMs. Our main contributions are as follows. First, we provide a statistical characterization

of the performance of micro VMs, focusing on the impact of artificially limiting their CPU

consumption by injecting delays. This is useful as it increases our understanding of this

cloud offering model. Second, we expose an interesting, previously unnoticed, behavior of

micro VMs. Depending on the workload characteristics, it is often possible to inject delays

in-between periods of CPU consumption of a micro VM to make it simultaneously cheaper

and under some conditions even better performing than a small VM, even across timespans

of hours. While it is known that extended idleness allows a micro VM to reclaim its

initial high-performance characteristics, idleness also degrades throughput. Devising the

optimal delay is difficult, particularly with a static choice, since it depends on the workload

2

characteristics and the specific VM instance. To address this, we propose management

algorithms for automatic delay injection at runtime in micro VMs and evaluate their

performance showing promising results. Depending on the user’s target, the algorithm may

focus on finding the optimal delay to minimize end-to-end response time or to maximize

application throughput. While Amazon’s official documentation recommends usage of

micro VMs for applications with short-term CPU burst requirements, the algorithms we

propose can enable efficient longer-term usage of micro VMs.

Summarizing, our investigation answers the following:

• What is the trade-off between response time and host-level CPU throttling in micro

VMs?

• Is it efficient to use micro VMs for continuously running applications?

• What algorithms can we use to manage at runtime micro VMs?

The paper is organized as follows. Chapter 2 illustrates the background. Definitions and

methodology are given in Chapter 3, followed by a characterization study in Chapter 4.

Chapter 5 introduces the runtime management algorithms, which are evaluated in Chap-

ter 6. Chapter 8 outlines conclusions and future work.

3

Chapter 2

Background

To better understand the risks and unknowns that arise when using the micro offering,

consider the following experiment. We instantiate a micro VM (t1.micro) and a small

VM (m1.small) in EC2 (Virginia) and run avrora, a CPU intensive benchmark from the

DaCapo suite [5], repeatedly for about 1 hour. A small provides 1 vCPU, 1 ECU, and

1.7GiB of RAM. Figure 2.1 the illustrates response times (i.e., runtimes) for each avrora

execution. Consistently with our expectations, in the small instance, response times are

stable1. Instead, in a micro VM, avrora begins with very short response times for about

8 minutes. Then, performance degrades sharply due to host-level CPU throttling and

fluctuates widely over time, almost in a periodic pattern. In addition, average response

times increase over time, casting doubts on the ability of these VMs to sustain continued

application load. Amazon’s official documentation reports that micro VMs performance

is degreased non-linearly over time and that sustained idleness of a micro VM CPU is

sufficient to return to the condition of the initial minutes. This raises the question on

what interplays exist between delays and performance fluctuations incurred bymicro users,

particularly when compared to stable instances such as small VMs.

1On I/O intensive benchmarks, reported later, no noticeable differences with respect to stability can
be seen between small and micro VMs.

4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(a) small VM

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(b) micro VM

Figure 2.1: Typical m1.small and t1.micro performance behaviors

5

Chapter 3

Methodology

3.1 Reference Benchmarks

We begin by defining the reference benchmarks that we use throughout this paper. Our

experiments use the following benchmarks from the DaCapo [5] and Sysbench [11] suites:

• Avrora that simulates a number of programs run on a grid of AVR micro controllers;

• Luindex that uses lucene [4] to index a set of documents;

• Sysbench CPU that calculates prime numbers up to a specified value;

• Sysbench IO that performs file I/O creation operations.

We also create a customized workload, sysbench hybrid, that combines both sysbench CPU

and sysbench IO to perform prime number calculations and file operations, essentially an

alternation of the two standard sysbench benchmarks. Sysbench hybrid spends nearly equal

time on CPU and I/O.

Experiments are repeated on both small (m1.small) and micro (t1.micro) instances to

help distinguish characteristics specific of micro VMs. For all VM instances, we use the

default Amazon Machine Image (AMI) with Ubuntu Server 12.04 LTS in the us-east-1a

(Virginia) availability zone.

6

3.2 General Characterization Results

First, we characterize the resource usage of each benchmark to better understand the

different resource requirement on small instances. The benchmarks are run for 1 hour

using a single EC2 small instance. We run avrora, luindex, sysbench CPU, sysbench IO,

and sysbench hybrid and measure their response time (i.e., runtime). We collect the CPU

and I/O time using the sar utility. Figure 3.1(a) shows the overall response time split in

its CPU and I/O time components for each benchmark. In this diagram, we assume the

difference between the execution time and CPU time to be the I/O time.1 The results

indicate that the time spent on I/O for avrora, luindex, and sysbench CPU is so small

that is hardly visible on the respective bars. Figure 3.1(b) presents the CPU utilization

distribution. The CPU utilization of avrora, luindex, and sysbench CPU log at the 90% to

the 95% level, while sysbench IO is as low as 5%. For sysbench hybrid on the other hand,

this measure becomes 40%. System I/O read and write amounts are given in Figure 3.1(c)

and Figure 3.1(d), respectively. Sysbench IO and sysbench hybrid have moderate I/O read

operations and significant I/O write operations.

These baseline experiments show that avrora, luindex, and sysbench CPU have very

limited I/O demand but have very high CPU utilization. Yet, they have clearly different

average runtimes, thus providing different scenarios for the evaluation of throughput. Such

differences can be attributed, for example, to different cache behavior and internal multi-

threading [7]. Sysbench IO is I/O-bound and we found that most of the time the CPU is

waiting for I/O. Sysbench hybrid represents a “balanced” workload that spends half of its

time in CPU and half in I/O. These benchmarks are then ideal for our study as they offer

simplicity of interpretation of the experimental results and at the same time cover a broad

enough workload spectrum. Although an analysis of workloads that are cache/memory

bound or bandwidth intensive is also needed, we defer their analysis as part of our future

1We do this because both micro and small are configured with 1 vCPU and we configure sysbench
benchmarks to run with single thread thus CPU and I/O time should be interleaved. These values might
not be accurate for DaCapo benchmarks since the may be multi-threaded. However, there is not much
disk activity for avrora and luindex.

7

Avrora Luindex SysCPU SysIO SysHybrid
0

10

20

30

40

Benchmark

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(s

)

I/O time
CPU time

(a) Response time (CPU and I/O)

Avrora Luindex SysCPU SysIO SysHybrid
0

20

40

60

80

100

Benchmark

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
(%

)

(b) CPU utilization

Avrora Luindex SysCPU SysIO SysHybrid
0

10

20

30

40

50

Benchmark

A
ve

ra
ge

 b
lo

ck
 r

ea
d

(s
ec

to
r/

s)

(c) Block read

Avrora Luindex SysCPU SysIO SysHybrid
0

2

4

6

8

10

12

Benchmark

A
ve

ra
ge

 b
lo

ck
 w

rit
e

(×
 1

03 s
ec

to
r/

s)

(d) Block write

Figure 3.1: Benchmark characterization on small VMs

work.

8

Chapter 4

Workload Characterization

We are interested in describing the relationship between CPU throttling, performance,

costs, and the effects of artificially injected delays that are equal to 0 seconds (no delay),

and 10, 30, 60, and 90 seconds. For each choice of artificial delay, including the case of

no-delay, we start simultaneously m = 50 spot instances for each benchmark. Thus, the

resulting dataset amounts to 250 instance runs of 6 hours for each benchmark and choice

of delay, for a total of 1,250 experiments and 7,500 hours. Our bid was sufficiently high

to make sure that no spot instances were terminated by EC2 before the completion of

the 6 hours period. The goal is to provide a statistical characterization of these results.

Characterizing these properties requires to consider the time dimension, since throttling

is amplified over time as reported in the official documentation [3, page 115–117].

4.1 Time and Heterogeneity Effects on Performance

Previous work on EC2 has highlighted how the heterogeneity of hardware characteristics

is a source of performance variability [16]. But only marginally addressed the t1.micro

class. In our experiments, we observe the performance effects of different hardware in

micro and small instances across all benchmarks, suggesting that also the placement of

micro VMs suffers from hardware heterogeneity.

Figure 4.1 illustrates the mean execution times and standard deviation from a 6-hour

run on 50 spot instances of avrora. These 50 instances are allocated on different hardware

(marked on the graph: E5645, E5507, and E5430, note that here we have three “stacked”

graphs to ease comparison across different hardware). The graphs illustrate the mean

9

execution time of avrora within each instance and its standard deviation. Across both

small andmicro instances, the effect of different hardware is strongly reflected on the mean

values. The effect of CPU scheduling is reflected on the standard deviation: the values for

small instances are very small, while for micro instances are very high. In addition, for

micro instances we observe different clusters as defined by the mean execution time that

can be almost 50% higher from cluster to cluster, even within the same hardware (see for

example Figure 4.1a for E5430).

25
35
45
55

E
54

30

25
35
45
55

S
ta

nd
ar

d
de

vi
at

io
n

(s
)

E
55

07

60 70 80 90 100 110
25
35
45
55

Mean (s)

E
56

45

(a) Micro VMs

0.5
1.5
2.5
3.5

E
54

30

0.5
1.5
2.5
3.5

S
ta

nd
ar

d
de

vi
at

io
n

(s
)

E
55

07

38 40 42 44
0.5
1.5
2.5
3.5

Mean (s)

E
56

45

(b) Small VMs

Figure 4.1: Performance results of 50 spot instances avrora on different hardware.

For illustrative purposes we also show representative experiments by plotting the mov-

ing average with a window size of 20 execution points across time. For micro and small

instances, see Figures 4.2 and 4.3 respectively. The plotted values clearly illustrate the

performance heterogeneity (the three selected experiments in each plot come from differ-

ent hardware). If we had not plotted moving average values, we would have obtained a

very jaggy plot for the micro case, where fluctuations are rapid as shown in Figure 2.1.

As expected, for CPU intensive workloads, the longer the execution of the experiment,

the worse the performance, irrespectively of the assigned hardware. On small instances,

performance is stable across time (see Figure 4.3), with values been distinguished only by

the hardware speeds. Both CPU and I/O intensive workloads have predictable and stable

performance across the entire experiment.

10

0 2 4 6
0

50

100

150

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(a) Avrora

0 2 4 6
0

10

20

30

40

50

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)
(b) Luindex

0 2 4 6
0

20

40

60

80

100

120

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(c) Sysbench CPU

0 2 4 6
0

5

10

15

20

25

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(d) Sysbench IO

0 2 4 6
0

20

40

60

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(e) Sysbench hybrid
E5430 E5507 E5645

Figure 4.2: Response time on micro VMs (moving average).

The graphs in Figures 4.2 and 4.3 are just illustrative examples. A more systematic

characterization is provided in Table 4.1, which shows the E[Xsmall
h] and E[Xmicro

h] values

for h = 1,3,6 hours, where Xt
h counts the completed jobs in h hours on a single VM of type

t. The results confirm that as time passes the throughput of micro VMs is monotonically

decreasing. Table 4.2 illustrates the results for small instances. Since performance is

stable, we report a single hourly value. By comparison with Table 4.1, it is interesting

to see that the average performance of a small instance in 1 hour is matched by a micro

instance in a variable timespan between 1 and 3 hours.

Table 4.1: Throughput mean± std of completed jobs per h hours on t1.micro

h = 1 h = 3 h = 6
Benchmark E[Xmicro

h] CPU steal E[Xmicro
h] T PUT micro

h CPU steal E[Xmicro
h] T PUTmicro

h CPU steal

Avrora 62.5±7.6 73.8%±26.9% 139.9±17.5 46.6±5.8 78.7%±21.7% 211.8±29.9 35.3±5.0 80.2%±19.9%
Luindex 194.2±23.3 73.1%±27.4% 449.8±53.8 149.9±17.9 76.3%±24.0% 692.0±92.8 115.3±15.5 79.9%±20.1%
SysCPU 86.7±11.1 66.5%±34.5% 201.1±25.8 67.0±8.6 70.3%±30.4% 361.0±53 58±7.6 71.8%±28.8%
SysIO 227.3±11.9 1.06%±2.79% 678.7±35.0 226.2±11.7 1.08%±2.88% 1358.9±66.9 226.5±11.2 1.08%±2.92%

SysHybrid 103.5±10.1 39.7%±13.5% 261.3±26.8 87.1±8.9 41.5%±12.4% 483.5±58.5 80.6±9.8 41.9%±11.9%

11

0 2 4 6

38

40

42

44

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(a) Avrora

0 2 4 6
9

10

11

12

13

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)
(b) Luindex

0 2 4 6

24

26

28

30

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(c) Sysbench CPU

0 2 4 6
0

5

10

15

20

25

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(d) Sysbench IO

0 2 4 6

15

20

25

Time stamp (h)

R
es

po
ns

e
tim

e
(s

)

(e) Sysbench hybrid
E5430 E5507 E5645

Figure 4.3: Response time on small VMs (moving average)

Table 4.2: Throughput mean± std of completed jobs per h hours on m1.small,
(throughput values across different h are the same).

Benchmark E[Xsmall
h]≡ T PUTsmall

h CPU steal

Avrora 87.7±2.8 55.6%±3.7%
Luindex 322.2±18.5 54.1%±4.6%
SysCPU 132.5±5.8 43.9%±21.3%
SysIO 310.4±77.5 2.0%±1.1%

SysHybrid 172.6±20.0 22.6%±2.8%

Table 4.1 and Table 4.2 also include columns for the CPU utilization steal percentage.

This is the percentage of time where the VM could not use the host CPUs due to the

hypervisor scheduling other VMs on it. As expected, micro VMs experience massive CPU

utilization stealing, with the percentages being in the range 67%-81% and the standard

deviation intervals suggesting that there are frequent periods where this peaks in a neigh-

borhood1 of 100%. Notice that moving from h = 1 to h = 3 there is a clear increase in

1The fact that some standard deviations added to the means would slightly exceed 100% may be
attributed to small measuring inaccuracies, note also that such effect is present only for the CPU intensive

12

the steal percentage that also grows, but slower, from h = 3 to h = 6; this provides some

characterization of the time degradation of the CPU capacity for a continuously operating

application.

4.1.1 Static Delay Characterization

In this section we investigate whether it is possible to harness better performance by

enforcing a certain amount of idle time on the micro VM CPUs to decelerate the rate of

throttling. To this end, after each benchmark execution, we issue a sleep call to keep the

micro VM idle for a fixed time before starting the next execution of the benchmark.

Figure 4.4 shows the execution time CDF (Cumulative Distribution Function) of each

benchmark with different static delay values. Since we do not have any control on the

assigned hardware by EC2, we opt to present results across all 50 instances in the form of

a CDF. The collected benchmark response times correspond to measurements during the

first hour of each VM instance. For CPU intensive workloads (see Figure 4.4(a), (b), (c),

and partially (e)), adding delays between consecutive executions is beneficial: the tails

of response times dramatically reduce, as also the mean execution times (marked with a

diamond on each CDF), is significantly reduced. The longer the delay time, the further

the execution time improves, and this effect is consistent across benchmarks. For I/O

intensive workloads, see Figure 4.4(d), adding delays does not consistently help reducing

the execution time. This is expected since the host throttles the CPU. However, we

observe a static delay of 10s to result in slightly better performance. It is unclear if

the improvement in this experiment is due to different hardware placement or to some

improvement at the CPU level (e.g., resulting in decreased I/O handling time by the

CPU) due to the injected delay. Across workloads, performance changes are significant

enough to be attributed to the injected delays.

Figure 4.4 reports on the individual execution times but these times do not contain

the VM sleep time between subsequent benchmark executions. Throughput, on the other

workloads; indeed the CPU steal value is upper bounded by 100%.

13

20 30 40 60 80 140 200
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

micro_0 (mean: 58.3)
micro_10 (mean: 51.1)
micro_30 (mean: 28.2)
micro_60 (mean: 21.4)
micro_90 (mean: 19.2)

(a) Avrora

5 10 15 20 30 40 60
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

micro_0 (mean: 18.6)
micro_10 (mean: 11.3)
micro_30 (mean: 5.1)
micro_60 (mean: 4.5)
micro_90 (mean: 4.4)

(b) Luindex

10 20 30 40 50 75 100 150
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

micro_0 (mean: 41.9)
micro_10 (mean: 36.3)
micro_30 (mean: 17.3)
micro_60 (mean: 10.0)
micro_90 (mean: 10.0)

(c) Sysbench CPU

10 15 20 30
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

micro_0 (mean: 15.9)
micro_10 (mean: 14.9)
micro_30 (mean: 17.6)
micro_60 (mean: 16.6)
micro_90 (mean: 18.6)

(d) Sysbench IO

20 30 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

micro_0 (mean: 35.0)
micro_10 (mean: 28.8)
micro_30 (mean: 22.9)
micro_60 (mean: 23.6)
micro_90 (mean: 25.0)

(e) Sysbench hybrid

Figure 4.4: Response time CDF on micro VMs with delays within one hour, the x-axis
is in log scale.

hand, as a measure, encompasses the sleep times since it provides how many benchmarks

completed execution per time unit. We compare throughput on micros with and without

delay by calculating relative throughput which we define as T PUT micro
delay /T PUT micro

0 , where

T PUT micro
0 is the average throughput on micro instances without delay. According to the

above definition, the larger the relative throughput value, the better the performance.

Figure 4.5 shows the relative throughput across the duration of the experiment. For some

benchmarks, adding delay values can maintain or improve the overall system throughput.

For avrora, see Figure 4.5(a), adding 10 seconds delay can maintain nearly the same system

throughput as in the no delay case. For luindex, adding 10 seconds delay increases the

overall throughput in the 1h to 6h duration time (see Figure 4.5(b)), same for sysbench

CPU and sysbench hybrid. For I/O intensive workloads such as sysbench IO, adding delays

does not improve the system throughput as expected, see Figure 4.5(d). Similarly, if the

14

delay is long (e.g., 90 sec), then throughput is bound to be poor. The last conclusion

holds irrespectively of the number of hours of the experiment.

The analysis in this section shows that injecting delays can help performance across

a timespan of hours. It dramatically reduces the response time tails (as well as response

time means, especially for CPU intensive workloads such as luindex) while maintaining

(in cases) almost the same throughput as the no delay scenario. Ideally, we need to strike

a balance on selecting an ideal delay such that it reduces average execution time while

maintaining high throughput.

15min 1h 3h 6h
0

0.2

0.4

0.6

0.8

1

Time

R
el

at
iv

e
th

ro
ug

hp
ut

(v
s.

 m
ic

ro
_0

s_
de

la
y)

(a) Avrora

15min 1h 3h 6h
0

0.2

0.4

0.6

0.8

1

Time

R
el

at
iv

e
th

ro
ug

hp
ut

(v
s.

 m
ic

ro
_0

s_
de

la
y)

(b) Luindex

15min 1h 3h 6h
0

0.2

0.4

0.6

0.8

1

Time

R
el

at
iv

e
th

ro
ug

hp
ut

(v
s.

 m
ic

ro
_0

s_
de

la
y)

(c) Sysbench CPU

15min 1h 3h 6h
0

0.2

0.4

0.6

0.8

1

Time

R
el

at
iv

e
th

ro
ug

hp
ut

(v
s.

 m
ic

ro
_0

s_
de

la
y)

(d) Sysbench IO

15min 1h 3h 6h
0

0.2

0.4

0.6

0.8

1

Time

R
el

at
iv

e
th

ro
ug

hp
ut

(v
s.

 m
ic

ro
_0

s_
de

la
y)

(e) Sysbench hybrid
0s delay 10s delay 90s delay

Figure 4.5: Relative throughput on micro VMs

15

Chapter 5

Algorithm Design

In this section, we focus on designing adaptive algorithms for deciding the optimal delay

to be injected for an application running inside a micro VM. We do not take any specific

assumption on the workload characteristics, except for the ability to periodically monitor

the execution progress of the application during a control window. We focus on two

measures: the application response time and system throughput. Some of the adaptive

algorithms are based on throughput, thus if jobs have long response times the update of

the throughput value to reflect this may take a long time. This may impact negatively on

the management algorithm performance. Thus, we assume that the application offers a

mechanism that allows one to monitor the progress of currently running jobs.

5.1 Stochastic Approximation

The stochastic approximation (SA) algorithm allows to statistically maximize a quantity

(e.g., system throughput) online subject to noise and it is popular in control theory [10].

We used SA to define and implement Algorithm 1 which aims at maximizing the system

throughput. The purpose is to derive the ideal value of the current delay cur delay in

an iterative manner. The algorithm depends on two parameter sequences, ak and ck, see

lines 4 and 5 in Algorithm 1, that depend on the iteration number k, these values are

suggested in the original paper [10]. For each SA iteration, the algorithm executes jobs

in two consecutive time windows and records the achievable throughput in each. Jobs

execute with a different delay value in each window, see lines 6 and 7 in algorithm 1. The

variables cur delay and delta hold the delay in the current window and the magnitude of

16

allowed delay change. The function run job with delay() runs jobs in each window and

returns the number of finished jobs X . Based on these values, the algorithm updates

cur delay based on the difference of the number of finished jobs in the two windows (see

line 8). Note that it is possible for the difference of X+ and X− value to result in a negative

number, this suggests that the throughput with a smaller delay is better, therefore it will

be advantageous to reduce the delay in the next iteration. If however the computed new

delay value (see line 9) is negative, then the jobs are scheduled with no delay, although

the computed delay value retains its value for the next iteration where it is again adjusted.

Convergence rate depends on some regularity conditions for X , however in general we

noticed SA to converge slowly.

Algorithm 1: Stochastic Approximation

1 cur delay← 0;
2 k← 1;
3 while true do
4 ak← 1/k;
5 ck← k−1/3;
6 X+← run job with delay(cur delay+ delta,window);
7 X− ← run job with delay(cur delay− delta,window);
8 cur delay← cur delay+ ak(X+−X−)/ck;
9 k++;

For the experiments presented in the following section we set delta equal to 5 seconds

and window equal to 120 seconds. We selected these values after experimenting with several

options, which resulted in varying degrees of reactive adjustment to the delay value. The

obtained values are those that provided the best results for SA in our experiments.

5.2 Adaptive Micro-Management (AMM)

Adaptive micro-management (AMM) is a new algorithm we propose for managing micro

instances. AMM is a gradient-hill method for continuously updating the injected delay in

a micro VM. Several strategies are possible to compute gradients online. The idea pursued

here is to consider control windows and explicitly compute gradient values by dynamically

17

altering the delay within successive sub-windows. Another idea is to continuously probe

the application and start and stop delays instantaneously based on observations. We tested

these ideas, but we only found effective the AMM approach described in this section. Due

to limited space, we do not document these parallel efforts.

The AMM algorithm, summarized in Algorithm 2, determines at runtime the delay

to inject in a micro VM and can be either throughput driven or response time driven.

The algorithm automatically injects a delay between two consecutive job executions. In

our implementation, this is done with simple sleep functions, but in a general scenario it

needs a cgroups [13] implementation or explicit coordination between the controller and

the application.

The control window is initially divided into three sub-control windows (line 1). The

idea is to continuously compute the gradient of the throughput (or response time) by

making small changes at runtime of the delay value and updating the delay itself based on

the best throughput (or response time) observed. To achieve this, we maintain a global

variable cur delay that holds the delay of the current window and a variable delta that

represents the magnitude of allowed delay change for the sub-windows. The algorithm uses

three different delay times: cur delay+delta, cur delay, and cur delay−delta in the three

sub-windows. The idea is to evaluate the change in throughput (or response time) following

from a delta change of delay and accept the modification that provides the best result.

To do this, run job with delay() runs during each sub-window and returns the number of

completed jobs for the throughput version or returns the average response time for the

response time version, see line 6 in Algorithm 2. At the end of each window, the algorithm

sets the next cur delay value to the delay for which get delay (see Algorithm 3) records

the best throughput (tput) or response time (rt). Since the CPU throttling imposed by

Amazon on the VMs is dynamically changing, the AMM algorithm can adapt to this effect

and thus does not converge to a certain delay.

Similarly to the SA algorithm, we experimented with different values for window and

delta. The range of values we considered was {5s,10s,20s,30s} for delta and {30s,60s,300s,600s}

18

Algorithm 2: AMM (tput/rt)

1 sub win← window/3;
2 while true do
3 /* results: num o f jobs for the tput version, avg rt for the rt version */
4 results[3]←{0};
5 for i=0, 1, 2 do
6 results[i]← run job with delay(cur delay+(1− i)∗ delta,sub win);

7 cur delay← get delay(cur delay,results,delta);

Algorithm 3: get delay(cur delay, results, delta)
input : current delay cur delay, results array results, delay change magnitude delta
output : Delay value for next round

1 /* Execute the following line only for the tput version */
2 value← max (results[0],results[1],results[2]);
3 /* Execute the following line only for the rt version */
4 value← min (results[0],results[1],results[2]);
5 for i=0, 1, 2 do
6 if value = results[i] then return cur delay+(1− i)∗ delta;

for window. The analysis was repeated for avrora, luindex, sysbench CPU, sysbench IO and

sysbench hybrid ; due to limited space we do not report these experiments. Our results

indicated that the optimal value of these parameters depends on the benchmark used,

but the combination delta = 10s and window = 60s produced consistently good results

across benchmarks. In particular, we noticed that larger window values tend to reduce

the throughput gains compared to the no delay case, whereas delta values of 5s or 30s can

occasionally yield bad results. Even though we recommend delta = 10s and window = 60s

as default parameters for AMM, we suggest in general to perform a sensitivity analysis to

establish the optimality of these values on the specific workload used.

19

Chapter 6

Performance Evaluation

To evaluate the effectiveness of the algorithm, we run AMM and SA on all five reference

benchmarks on 50 VM instances for a total execution time of 6 hours for each benchmark.

We present CDFs of the achieved response times for all benchmarks. Figure 6.1 presents

the expected response time per benchmark execution during the first hour of the experi-

ment. Results throughout the entire period are very similar (i.e., the relative performance

ranking of policies remains the same as in the first hour) and not presented here due to

lack of space. In addition to the AMM and SA results on micros, we also report results

achieved on micro VMs with no delay and delays equal to 90, as well as on results with

small VMs. On each CDF line we also mark the average value with a diamond (averages

are also reported on the legend).

Figure 6.1 clearly illustrates that small VMs display consistent results across all bench-

marks, with the only exception of sysbench IO. Across nearly all benchmarks (with the

exception of sysbench IO and sysbench hybrid), the AMM response time version achieves

nearly the same average as the one with the small VMs. Surprisingly, we also see a sig-

nificant portion of jobs ranging from 40% (see avrora) to 65% (see luindex) where the

response time is significantly less than the one of micros. These values are consistently

half as much as those of small VMs, at the expense of longer tails.

Across all experiments we see consistently that AMM (its response time version)

achieves CDFs that lie between those of micro with no delay and micro with 90 de-

lay. Naturally, for CPU intensive workloads, experiments on micros with large delays of

90 seconds remains overall very competitive with respect to response time but do poorly

with respect to throughput, while for I/O intensive workloads we observe slower response

20

times than in the small instances.

For many benchmarks, SA is marginally better than micro with no delay. Indeed, after

inspection, we see that SA converges in some periods to negative delays, which we handle

by injecting no delay. However, this affects the reactiveness of the method since it may

take a longer time before SA returns to positive delays. Indeed, one may force this by

artificially limiting the delay to remain non-negative, but it is unclear how this changes

the properties of the general SA algorithm. We left this extension to future work.

Overall, Figure 6.1 illustrates that the AMM is a very effective algorithm: its online

adjustment of delay is effective and results in superior performance for a large percentage

of jobs for all CPU intensive benchmarks, it approaches the performance of small for the

balanced sysbench hybrid case and does as well as any fixed delay algorithm for micros

for sysbench IO.

20 30 40 60 80 140 200
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

sa (mean: 56.1)
amm_rt (mean: 48.3)
amm_tput (mean: 51.8)
micro_0s (mean: 58.3)
micro_90s (mean: 19.2)
small_0s (mean: 41.1)

(a) Avrora

5 10 15 20 30 40 60
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

sa (mean: 18.3)
amm_rt (mean: 11.5)
amm_tput (mean: 16.8)
micro_0s (mean: 18.6)
micro_90s (mean: 4.4)
small_0s (mean: 11.2)

(b) Luindex

10 20 30 40 50 75 100 150
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

sa (mean: 41.1)
amm_rt (mean: 30.5)
amm_tput (mean: 38.5)
micro_0s (mean: 41.9)
micro_90s (mean: 10.0)
small_0s (mean: 27.2)

(c) Sysbench CPU

10 15 20 30
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

sa (mean: 14.9)
amm_rt (mean: 15.6)
amm_tput (mean: 15.4)
micro_0s (mean: 15.9)
micro_90s (mean: 18.6)
small_0s (mean: 12.3)

(d) Sysbench IO

20 30 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Response time (s)

C
D

F

sa (mean: 34.1)
amm_rt (mean: 27.0)
amm_tput (mean: 32.2)
micro_0s (mean: 35.0)
micro_90s (mean: 25.0)
small_0s (mean: 21.2)

(e) Sysbench hybrid

Figure 6.1: Response time CDF within one hour, the x-axis is in log scale.

21

Figure 6.2 plots the throughput 1 for h = 1 and h = 3 hours, we observed that the

longer the experiment, the worse the throughput of the micros. Since trends tend to

be monotonic, we limit to illustrate results for h = 1 and h = 3. Indeed SA results in

conservative delays and approximates closely the throughput achieved by micro with no

delay. This is also an immediate effect of the fact that the SA algorithm allows for negative

delays (which we handle by injecting no delay at all) which results in a slower time to

reach positive (i.e., actual) delays, benefiting throughput. The advantage of the AMM

throughput version is also clearly illustrated across all experiments. It does almost as well

as SA, which is another throughput-oriented algorithm.

1h 3h
20

30

40

50

60

70

Hour

T
hr

ou
gh

pu
t p

er
 h

ou
r

(a) Avrora

1h 3h

50

100

150

200

Hour

T
hr

ou
gh

pu
t p

er
 h

ou
r

(b) Luindex

1h 3h
20

40

60

80

100

Hour

T
hr

ou
gh

pu
t p

er
 h

ou
r

(c) Sysbench CPU

1h 3h

50

100

150

200

250

Hour

T
hr

ou
gh

pu
t p

er
 h

ou
r

(d) Sysbench IO

1h 3h
20

40

60

80

100

120

Hour

T
hr

ou
gh

pu
t p

er
 h

ou
r

(e) Sysbench hybrid
sa amm_rt amm_tput micro_0s micro_90s small_0s/2.2

Figure 6.2: Actual throughput

1For fairness, we divide the small throughput by 2.2 since it is the ratio of the hourly price of small to
micro. This scaling ensures that the throughput is per unit cost, where we assume the price of a micro
instance as the unit of reference.

22

1h 3h
0

0.5

1

1.5

2

Hour

T
hr

ou
gh

pu
t /

 r
es

po
ns

e
tim

e

(a) Avrora

1h 3h
0

5

10

15

20

Hour

T
hr

ou
gh

pu
t /

 r
es

po
ns

e
tim

e
(b) Luindex

1h 3h
0

1

2

3

4

Hour

T
hr

ou
gh

pu
t /

 r
es

po
ns

e
tim

e

(c) Sysbench CPU

1h 3h
0

5

10

15

20

Hour

T
hr

ou
gh

pu
t /

 r
es

po
ns

e
tim

e

(d) Sysbench IO

1h 3h
0

1

2

3

4

Hour

T
hr

ou
gh

pu
t /

 r
es

po
ns

e
tim

e

(e) Sysbench hybrid
sa amm_rt amm_tput micro_0s micro_90s small_0s/2.2

Figure 6.3: Actual throughput / mean response time

Finally, Figure 6.3 illustrates yet another way to view the compromise among two

conflicting measures. Here, we plot the ratios of average throughput over average response

times, in an effort to capture both measures within one numeric value. We see that indeed

the proposed adaptive algorithms (both AMM and SA) do at least as well as the small

instances, with the response time version of AMM doing better.

23

Chapter 7

Related Work

Performance heterogeneity across different instance types in Amazon EC2 is studied in

several works [16, 21]. Ou et al. [14] exploit hardware heterogeneity and its corresponding

performance variation within the same type of VMs on EC2. Farley et al. [8] confirm

that performance heterogeneity exists across supposedly equivalent instances and propose

a placement gaming strategy to seek out better performing VMs.

Xu et al. [19] study the long tail performance problem of Amazon EC2 instances

and find that long tails are often due to co-scheduling CPU-bound and latency-sensitive

tasks on the same node. The performance overhead due to virtualization on EC2 is

determined as the main culprit of the interaction between virtualization, processor sharing

and non-complementary workload patterns. Mao and Humphrey [12] study the startup

time of cloud VMs across Amazon EC2, Windows Azure, and Rackspace and analyze the

relationship between the VM startup time and different factors such as time of the day,

OS image size, instance type and data center location.

Walker [18] study the performance of Amazon EC2 against a local equivalent cluster.

The performance disadvantages of public clouds for parallel and scientific computing in

comparison to grids and other parallel computing infrastructures are documented in [9].

Optimizing cluster sizes across a range of workloads and goals via tools that can leverage

residual or unused resources due to over-provisioning is proposed by [6]. Zhang et al. de-

sign an evaluation framework that focuses on evaluating and selecting of different available

underlying cloud computing platforms (e.g. small, medium, or large EC2 instances) and

achieving desirable Service Level Objectives (SLOs) for MapReduce workloads [20].

Song et al. [17] design an auction mechanism for the data center spot market (DCSM).

24

This mechanism is proved truthful (i.e., bidders cannot bid for the same instance using

different price and cannot obtain a fraction of requested instances) and is based on a

repeated uniform-price auction. Bidding flexibility is also incorporated such that bidders

are able to change their bids after obtaining instances. Experimental results show that

this proposed mechanism outperforms the Amazon Spot Market.

Similar to the above studies, our work focuses on how to reduce the well-documented

long tails on micros [15]. To the best of our knowledge, besides the works that documented

high variability in execution times of micro instances on EC2, no study exists that focuses

on how to take best advantage of the current scheduling of micro instances to reduce

response time tails while maintaining high throughput. The scheduling algorithms we

propose run at the user level, do not require any system changes, and offer more consistent

performance for micro instances, which are notorious for their capacity fluctuations.

25

Chapter 8

Conclusions

In this paper, we have studied the t1.micro VM instance offering of Amazon EC2. We have

investigated experimentally the injection of artificial delays to optimize the performance

and cost usage of micro VMs in a continuous manner. By comparing different possible

strategies, we have found that gradient-like approaches provide a good solution that is

simple to implement.

Since the time these experiments were done, Amazon introduced the new class t2 which

provides a throttling mechanism for small and medium instances. Our preliminary results

show that our algorithms perform also very well on t2. We are currently investigating

the effectiveness of our algorithms on the performance of bandwidth and cache/memory

intensive benchmarks. In addition, we are investigating how micro VMs could be used for

complex web applications such as TPC-W.

26

Bibliography

[1] Amazon EC2 Pricing. http://aws.amazonaws.com/ ec2/pricing.

[2] Amazon Elastic Compute Cloud. http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

concepts micro instances.html.

[3] Amazon Elastic Compute Cloud User Guide. http://awsdocs.s3.amazonaws.com/EC2/latest/

ec2-ug.pdf.

[4] Apache Lucene. http://lucene.apache.org.

[5] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking develop-

ment and analysis. In Proceeding of OOPSLA’06, pages 169–190, New York, NY,

2006.

[6] Benjamin Clay, Zhiming Shen, and Xiaosong Ma. Accelerating batch analytics

with residual resources from interactive clouds. In Proceeding of MASCOTS’13, San

Francisco, CA, 2013.

[7] H. Cook et al. A hardware evaluation of cache partitioning to improve utilization

and energy-efficiency while preserving responsiveness. In Proceedings of ISCA ’13,

pages 308–319, New York, NY, 2013.

[8] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ris-

tenpart, Kevin D. Bowers, and Michael M. Swift. More for your money:

27

exploiting performance heterogeneity in public clouds. In Proceeding of SoCC’12,

pages 20:1–20:14, New York, NY, 2012.

[9] Alexandru Iosup, Simon Ostermann, M. Nezih Yigitbasi, Radu Prodan,

Thomas Fahringer, and Dick H.J. Epema. Performance analysis of cloud com-

puting services for many-tasks scientific computing. IEEE Transactions on Parallel

and Distributed Systems, 22(6):931–945, 2011.

[10] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of

a regression function. AOMS, 23(3):462–466, 1952.

[11] Alexey Kopytov. Sysbench: a system performance benchmark, 2004.

[12] Ming Mao and Marty Humphrey. A performance study on the vm startup time

in the cloud. In Proceeding of CLOUD ’12, pages 423–430, Washington, DC, 2012.

[13] Paul Menage. Control Groups Documentation.

https://www.kernel.org/doc/Documentation/cgroups/ cgroups.txt.

[14] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and

Pan Hui. Exploiting hardware heterogeneity within the same instance type of amazon

ec2. In Proceeding of HotCloud’12, pages 4–4, Berkeley, CA, 2012.

[15] Kjetil Raaen, Andreas Petlund, and Pål Halvorsen. Is today’s public cloud

suited to deploy hardcore realtime services? In LNCS - Lecture Notes in Computer

Science. Euro-Par LSDVE 2013, Springer, 2013.

[16] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime mea-

surements in the cloud: observing, analyzing, and reducing variance. Proc. VLDB

Endow., 3(1-2):460–471, 2010.

[17] Kai Song, Yuan Yao, and Leana Golubchik. Improving the revenue, efficiency

and reliability in data center spot market: A truthful mechanism. In Proceeding of

MASCOTS’13, San Francisco, CA, 2013.

28

[18] Edward Walker. Benchmarking amazon ec2 for high-performance scientific com-

puting. Usenix Login, 33(5):18–23, 2008.

[19] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bob-

tail: avoiding long tails in the cloud. In Proceedings of NSDI’13, pages 329–342,

Berkeley, CA, USA, 2013. USENIX Association.

[20] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Than Loo. Optimizing cost

and performance trade-offs for mapreduce job processing in the cloud. In Network

Operations and Management Symposium (NOMS), 2014 IEEE, May 2014.

[21] Hao Zhuang. Performance Evaluation of Virtualization in Cloud Data Center. PhD

thesis, KTH, 2012.

29

	Managing Micro Vms in Amazon Ec2
	Recommended Citation

	thesis_jiawei.dvi

