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ABSTRACT

An inverse mathematical estuarine eutrophication model with eight state variables has 
been developed. The model provides a framework to estimate unknown param eter values 
by assimilation o f the concentration data o f those state variables. The inverse model 
developed is a laterally integrated, two-dimensional, real-time model which consists of 
a hydrodynamic model, an eutrophication model (forward model) and an adjoint model 
(backward model). The hydrodynamic model simulates tide, current, salinity, and 
dispersion to supply the dynamic fields for the transport portion o f both the eutrophication 
model and the adjoint model. The eutrophication model simulates eight water quality state 
variables which are phytoplankton, organic nitrogen, ammonium nitrogen, nitrite-nitrate 
nitrogen, organic phosphorus, inorganic (ortho) phosphorus, carbonaceous biochemical 
oxygen dem and and dissolved oxygen. The adjoint model is used during the processes of 
the param eter estim ation to provide gradients of the cost function, data misfit, with 
respect to the param eters to be estimated. To increase the com putational efficiency and 
reduce the com puter storage space, a decoupling scheme is im plem ented in the inverse 
model, in which the kinetic processes are decoupled from the physical transport for the 
purpose o f numerical computation. An efficient preconditioning technique is introduced 
in the inverse model to speed up the rate o f convergence.

The experiments conducted in this study provide the information o f the feasibility of 
parameter estim ation, uniqueness of the parameters, and the field data requirement for the 
model calibration. The model experiments with hypothetical data sets show that the 
unknown param eters can be accurately estimated for short period and long period model 
simulations under both constant and time-varying boundary conditions. The inverse 
model is convergent with different initial guess parameter values and under different 
environmental conditions.

The inverse model was successfully applied to aid calibration of the eutrophication 
model of the tidal Rappahannock River, Virginia. With the use o f the inverse model, the 
eutrophication model can be calibrated efficiently and systematically. The results of both 
model calibrations and verifications show that the agreement between the model 
predictions and observations are very satisfactory.

The studies show that the inverse model is not only useful to aid model calibration but 
also useful in addressing the important questions of whether the estimated parameter 
values are unique and whether sample data are sufficient to calibrate a model. Therefore, 
the inverse model may also serve as a tool in helping design a field program to collect 
data for model calibration.

xi
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I. INTRODUCTION

1.1 Problem Description

In recent years, mathematical models have often been used to study and analyze 

eutrophication and other water quality problems in aquatic environments. Most 

eutrophication models incorporate many parameters which quantify biogeochemical 

processes in the water column and between water and bottom sediment. The reliability 

o f a model is dependent on how well these parameters are estimated. However, 

estimation o f these parameter values cannot always be obtained by controlled 

experiments or independent measurements in the field or laboratory. M oreover, some 

parameters incorporated in the model are lumped parameters in the sense that they 

represent a number of underlying processes for which separate modeling is undesirable 

or impractical, so that their numerical values have a well-defined physical meaning 

only for the system under study with the context o f the model specified (van Straten 

1983). In most cases, it is difficult to give precise parameter values in advance. 

Consequently, model calibration achieved by adjusting the parameter values in some 

way is inevitable.

Traditionally, model calibration or parameter estimation is based upon trial-and- 

error and graphical matching techniques. Parameter values are adjusted until calculated 

concentrations o f state variables match field data in a "satisfactory" fashion. Such 

techniques are often laborious and sometimes subjective. It would be difficult in a

2
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situation where parameters are cross-related to each other and parameters are spatially 

dependent. Also, questions as to whether or not the derived set of values is the 

optimum and as to how many sets of values are equally good are difficult to answer 

(Cooley 1977). There is no knowledge whether the parameters estimated are unique 

when a trial-and-error method is used. As a consequence, the response of model and 

system may differ for inputs different from those that have been used for calibration. 

These problems have stim ulated considerable research of inverse modeling strategies 

to obtain the required param eter values more systematically.

Although many methods have been introduced to obtain model param eter values, 

the variational method has recently received wide attention and has been shown to be 

one of the most efficient techniques for parameter estimation. It has been used in 

estimating groundwater flow model parameters (Jacquard and Jain 1965; Carter et al. 

1982; Sun and Yeh 1985; Carrera and Neumann 1986), estimating friction and wind 

forcing in ocean circulation model (Tziperman and Thacker 1989), estimating vertical 

eddy viscosities (Yu and O ’Brien 1991; Panchang et al. 1992; Lardner and Das 1994), 

estimating phase speed for a Pacific Ocean model (Smedstad and O ’Brien 1991), in 

numerical weather prediction (Lorenc 1986; Navon 1986), in petroleum reservoir 

simulation (Chavent et al. 1975), in the field of oceanography (Bennett and McIntosh 

1982; Prevost and Salmon 1986). Although the literature on applying the variational 

method to solve inverse problems in the field of meteorology, oceanography and 

others is quite rich, the same is not true in the field of eutrophication modeling. The 

inverse eutrophication modeling is a typical coupled inverse problem, which is 

governed by a set o f nonlinear partial differential equations. The basic concepts and
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4

methods of parameter estimation for a coupled inverse problem are similar to those for 

the single state variable. However, there are several differences between them that 

make the inverse eutrophication modeling more complex and challenge. There are at 

least four important factors which contribute to this situation: ( 1) the number o f  

nonlinear governing equations for eutrophication processes are large, and usually range 

from eight to more than twenty, as are the state variables, (see, for example, Cerco 

and Cole 1994; Kuo and Park 1995; Kuo et. al. 1991; EHL 1986). (2) the num ber o f 

parameters is very large, with different scales and units and many of them are spatially 

dependent. (3) the available prototype observations are scattered in the spatial and 

temporal domains. The interval between two measurements can be weeks or m onths, 

i.e., long period model simulation is necessary. (4) the concentration o f each state 

variable often depends on several parameters, i.e., there are cross effects among 

parameters. These nonlinearities and cross effects can be expected to degrade the 

common methods used in other fields. The feasibility of an inverse estimation o f 

parameter values for an eutrophication system is still questionable. A basic issue 

needing study is whether the unknown parameter values of an eutrophication model 

can be estimated accurately, uniquely, efficiently.

1.2 Background and Previous Works

The inverse method or optimization method for parameter estimation in the 

numerical modeling concerns the optimal determination of parameter values by 

observing the difference between the model results and the state variables m easured in 

the spatial and temporal domains. Many techniques have been introduced to estim ate
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param eter values during the last two decades. Possible approaches include a variety of 

optimization methods and statistical methods as well as stochastic methods (Yeh 1986; 

Beck 1987). Articles and reports covering research on estimation parameters include 

those by Jacquard and Jain (1965), Neuman (1973), Carter et al. (1974), Chavent 

(1975), Cooley (1977), van Straten (1983), Yeh (1983, 1986, 1990), Das and Lardner 

(1991), Smedstad and Brien (1991), Yu and O ’ Brien (1991), Lardner and Das (1994), 

Carrera and Neuman (1986), Panchang et al. (1992) and Lai (1995). The parameters 

estimated are friction coefficient, transmissivity, storage coefficient, roughness, and 

eddy diffusivity. The early contributions to parameter estimation in water quality 

modeling were mostly with models o f two state variables, dissolved oxygen (DO) and 

biochemical oxygen demand (BOD). Articles include those by Lee and Hwang (1971), 

Koivo and Phillips (1971; 1976), Shastry et al. (1973), Beck and Young (1976),

Rinaldi et al. (1976; 1979). Many models considered were steady state models or time 

varying models with spatially uniform distribution of state variables. Beck (1974), Di 

Toro and van Straten (1979), Jorgensen et al. (1981), Mejer and Jorgensen (1983), and 

van Straten (1983) studied uncertainty o f parameter estimation problems for more 

complicated eutrophication systems. M any of these applications have focussed, with 

varying degrees of complexity (from one to 17 state variables), on the development of 

models for phytoplankton dynamics in lake ecosystems. Di Toro and van Straten 

(1979) and van Straten (1983) have addressed one o f the largest scale problems of 

param eter estimation. They have used a 12-state variable model with 20 parameters to 

be estimated. To date, no detailed studies have been conducted on the feasibility o f 

estimating biochemical parameters for a real time estuarine eutrophication model
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6

which simulates both temporal and spatial distributions of algal population and its 

associated nutrients as well as dissolved oxygen. Questions as to if there is an efficient 

method for the inverse modeling of estuarine eutrophication model and as to if the 

solution is unique are still open.

The available methods for parameter estimation fall into two categories, i.e., either 

"direct" or "indirect" based on Neuman’s (1973) classification. The "direct approach" 

treats the model parameters as dependent variables in a formal inverse boundary value 

problem. The "indirect approach" is based upon an output error criterion where an 

existing estimation of param eter value is iteratively improved until the model output is 

sufficiently close in a sense to that of the measured data.

If "direct approach" is used in eutrophication modeling, one needs full knowledge 

of variations and derivatives o f the state variables over the entire flow region and time 

domain. With the aid of boundary conditions and flow data, the direct solution for the 

unknown param eter values may be possible if a set of algebraic equations of unknown 

parameters can be derived. Direct methods have been applied in several areas o f water 

resources (see, for example, Sagaret et al. 1975; Nutbrown 1975; and Yeh et al. 1983). 

However, direct methods ignore most of the statistical aspects o f the estimation 

problems and involve large errors due to differentiation o f measured data and 

interpolation o f missing data in the spatial and temporal domains. Because of its 

dependence on linearlization and by its somewhat artificial nature o f the cost function, 

direct methods are probably m ost useful when the model of interest is linear and 

computation simplicity is a dominant consideration (M cLaughlin 1978).

The basic idea o f "indirect method" is that the output o f a numerical model must
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7

agree with the measurements, allowing for observational errors. The procedure 

generally adopted in the indirect approach is to adjust parameter values so as to 

minimize a cost function which measures the misfit between computed results and 

measured data. The main advantage of this approach is that the formulation of the 

inverse problem is applicable to the situation where the number o f observations is 

limited and it does not require differentiation o f measured data (Yeh 1986).

Various optimization algorithms have been used to perform the minimization. 

Solution of the problem generally proceeds through one o f three approaches. The first 

group o f methods is based on various modifications to the steepest descent method.

The second group o f methods is based on various modifications o f the Gauss-Newton 

method. The third group o f methods is the conjugate gradient method. All these 

methods are iterative methods which produce better parameter values to minimize the 

cost function with each iteration. When using these algorithms, the gradients of the 

state variables or cost function with respect to the parameters are needed for the 

optimization algorithms used in computing the parameter values that gives the best fit. 

There are several ways to calculate these gradients, sometime referred to as 

"sensitivity coefficients". The general methods are the influence coefficient method, 

the sensitivity equation method, and the variational method (Yeh 1986). The influence 

coefficient method uses the concept of parameter perturbation. The method requires 

perturbation o f each param eter one at a time. The increment o f a param eter used in the 

perturbation is usually determined on a trial-and-error basis. If there is one governing 

equation with L  unknown parameters, the governing equation has to be solved (1+L) 

times for each iteration. The sensitivity equation method obtains sensitivity coefficients
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8

by solving a sensitivity equation, a partial differential equation sim ilar to the 

governing equation. However, the number of sensitivity equations to be solved are on 

the order of the number o f  unknown parameters (same as the influence coefficient 

method). For a system with spatial varying parameters, the num ber of equations to be 

calculated will increase very dramatically. This method is not an efficient way if the 

num ber o f unknown parameters is more than the number o f governing equations, such 

as the eutrophication model. For the variational method, the best fit of the model 

output is determined by a system  o f equations consisting o f the model equations and 

their corresponding adjoint equations forced by the model data misfit. The adjoint 

equations provide the gradient o f the cost function (total misfit) with respect to each 

parameter. The number o f adjoint equations to be solved is the sam e as that o f the 

governing equations. Because the gradient of the cost function with respect to each 

param eter can be directly com puted from the solutions of the adjoint equations, one 

does not need to calculate the sensitivity matrix. The com putation time can be reduced 

dramatically. Since the adjoint equations have similar forms as the governing 

equations, a similar com putation scheme can be easily developed. Therefore, the 

variational method provides a powerful technique for com puting such gradients, and it 

is especially useful when the number of parameters to be estim ated is large.

In recent years the variational method or the variational data assimilation has been 

widely used in numerical w eather prediction (Lorenc 1986; N avon 1986; Le Dimet et 

al. 1986), in petroleum reservoir simulation (Chavent et al. 1975), in the field of 

oceanography (Bennett and M cIntosh 1982; Prevost and Salmon 1986), in estimating 

eddy viscosity of tidal flow model (Yu and O’Brien 1991; Lardner and Day 1994),
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and in groundwater hydrology modeling (Yeh and Sun 1990). The variational method 

was first used for solving the inverse problem of parameter estimation in groundw ater 

modeling by Jacquard and Jain (1965) and then by Carter et al. (1982), and recently 

by Sun and Yeh (1985) and Yeh and Sun (1990). The parameters they estimated are 

transmissivity, storage coefficient, and leakage coefficient. The first application o f the 

variation method to estimate eddy viscosity was by Yu and O’ Brien (1991), who 

estimated the eddy viscosity and surface drag coefficient in an ideal horizontal uniform  

model of the ocean from measured velocities o f  a wind-driven flow. Recently, Lardner 

and Das (1994) applied this approach to estimate viscosity in a quasi three 

dimensional numerical tidal and storm surge model. Yu and Lardner’s approach is 

different from Yeh’s approach. Yu and Lardner introduced Lagrange multipliers and 

processed the variational analysis on the Lagrange function. A point that should be 

stressed is that the use of Lagrange multipliers greatly simplifies the derivation o f the 

adjoint equations, especially deriving the adjoint equations from the finite difference 

equations of the governing equations. Their studies suggest that the variational method 

is an efficient technique to be introduced to estimate parameters in a large system  with 

large number of parameters to be estimated.

One difficulty in param eter estimation is that parameter estimation and, in general, 

inverse modeling techniques are often ill-posed problems. The ill-posedness is 

generally characterized by the nonuniqueness and instability of the parameters in the 

identification process. It has been found by several authors, e.g. Chavent (1974, 1983), 

Yeh (1986), Smedstad and O ’Brien (1991), Carrera and Neuman 1986, and D as and 

Lardner (1991), that if one is estimating parameters which are distributed in the space
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time domain, the study is fraught with instability and non-uniqueness. The uniqueness 

problem has great practical importance, as addressed by Chavent (1974), because in 

the case o f non-uniqueness, the estimated parameters will differ according to the initial 

estimation o f the parameters, and there will be no reason for estimated parameters to 

be close to the "true" parameters. Chavent studied the uniqueness problem for two 

situations: ( 1) the case of constant parameters and (2 ) the case of distributed 

parameters, i.e, parameters that are spatially dependent. It is shown in Chavent’s study 

that in the case of constant parameters, the inverse problem is unique because there 

are generally more measurements than unknowns. However, in the case o f distributed 

parameters, the inverse problem is often non-unique due to a shortage o f 

measurements. The uniqueness problem in parameter estimation is intimately related to 

identifiability (Carrera and Neuman 1986). The basic issue is how many measurements 

and what kind of data sets, which are practically feasible, are needed in order to reach 

the uniqueness. To overcome these problems special techniques have to be introduced 

in the algorithms for each particular inverse problem (Richardson and Panchang 1992; 

Lardner and Das 1994). The suggested methods include choosing different criteria to 

measure data misfit (Yeh and Sun 1984; Chavent 1983; van Straten 1983) and adding 

penalty terms into cost function (Lardner and Das 1994; Richardson and Panchang 

1992; Carrera and Neuman 1986). Since identifiability is closely related to the model 

to be investigated, there is no general method to be adopted so far. More research is 

warranted in this area.
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1.3 Objectives

The purpose o f this study is to investigate the feasibility of the inverse approach 

of eutrophication modeling in estuarine system and to improve the understanding of 

the possibility of inverse parameter estimation through theoretical and numerical 

investigations o f a typical eutrophication model. The basic objectives are: (1) to 

investigate inverse numerical modeling of estuarine eutrophication problems 

theoretically, (2 ) to develop an inverse eutrophication model with the capability o f 

estim ating unknown param eter values o f the system, (3) to develop an efficient 

algorithm for estimation o f model parameter values, (4) to investigate the feasibility 

and uniqueness of param eter estimation for a particular system through numerical 

experiments, and (5) to apply the inverse model to calibrate a real estuarine 

eutrophication model.
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II. METHODOLOGY

In this chapter, an inverse eutrophication model is developed by using the 

variational method. The inverse eutrophication model is built on the top of a vertical 

two-dimensional eutrophication model developed by Park and Kuo (1996). The basic 

idea o f the inverse approach is that the model parameter values are varied until a 

defined cost function, which measures the misfit between the model output and 

observation data, is minimized while the model dynamics and kinetics are treated as 

strong constraints. The best fit is determined by a system o f equations consisting of 

the model equations and their corresponding adjoint model equations forced by the 

model data misfit. The adjoint equations provide intermediate results to calculate the 

gradients of the cost function with respect to the unknown parameters. The gradients 

are used with an appropriate iterative descent method to search out the optimal 

estim ations of the model param eter values.

2.1 M odel Equation

The eutrophication model used in this study is a laterally integrated two- 

dim ensional model developed by Park and Kuo (1993a). Eight w ater quality state 

variables are modeled, which are phytoplankton, organic nitrogen, ammonium

12
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nitrogen, nitrite-nitrate nitrogen, organic phosphorus, inorganic (ortho) phosphorus, 

carbonaceous biochemical oxygen demand and dissolved oxygen (Fig. 2 -1). The mass- 

balance equation of a water quality state variable can be written as

d(C B ) d(C Bu) d (C B v ) 3  3C. 3 dC

where t = time; u, v = the horizonal and vertical velocities, respectively; C, = 

laterally averaged concentration of the ith state variable (1 = 1, 2, —, 8 ); 5, = 

functions describing the time rate o f internal increase (or decrease) of mass by 

biochemical reaction and external addition ( or withdrawal ) o f the ith state variable; (3 

= (P [, P2,- • -,Pm )T is the parameter to be estimated; m  =  the number of unknown 

parameters; Kx & K ~  dispersion coefficients in the x  and z directions, respectively; B 

= river width. The concentration corresponding to each state variable is denoted as C 

= (C„ C2, - ,  Cg)T = (Chi, N l, N2, N3, P I, P2, CBOD, DO)T, where Chi = 

chlorophyll 'a '  (pg I'1); N l = organic nitrogen (mg I"1); N2 = ammonium nitrogen 

(mg 1‘‘); N3 = nitrite-nitrate nitrogen (mg I'1); PI = organic phosphorus (mg l '1); P2 = 

inorganic phosphorus (mg I'1); CBOD = carbonaceous biochemical oxygen demand 

(mg I'1); DO = dissolved oxygen (mg I'1). The model formulation of source and sink 

functions are fully described in Park and Kuo (1993a) and listed in Appendix A.

2.2 Scaling Model Equations

In Eq. 2-1, the state variables have different units and magnitudes. They have to
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be scaled so that each state variable has similar "weight" during optimization 

processes. The system chosen to scale the state variables are as follows:

C hl' = — .  ,  N I ' = J 1 L  , N 2 '= —  , N 3 '= .N3
Chl° N J°  N 2° N3°

P 1 ' = I L  , P 2 ' =1 2 - ,  C B O D '= , D O ' = ,
P l °  P2° CBO D 0 D O 0

where superscript "0 " denotes maximum concentrations o f the state variables. 

Introducing some scale factors defined as follows:

C M 0 v  _ C h l°  v  __Chl° v  = Chl°  v  _ C h l°  
y C N l ~ ^ J o '  ' y CN2 - j j ^ O  '  YcW J ~ j j j o  ' y CPI - J J o  ' Y cP2 - J J o

Chl° _ Chl° _N 1° _ N 2 °  _ P I °
bo~~c b o d ° '  yc ° 0 ~~DO* '  y m ~ W °  '  '  y n l ~ W :
= N 3°  v  = CBOD°  v  = N2°

^ N3Da~DO° ’  Y c s o °  D O 0 ’  ^ N2D°~~DO°

Substituting dimensionless variables and scale factors into Eq. 2-1, the original mass 

balance equations can be written as

F |.(C ',p )= F 7T C /)+ F S .(C / ,p)=0 i= l,2 , —,8  (2~2)

where

, 9(C/F) d(C'Bu) d(Cf Bv) 9 dC,' a dC,' n  ^
F T (r ')=  k  n___L - J L k b ___L

1 dt dx dz dx 1 dx 9z : dz

is the transport function, and
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F 5 (C / ,(3)=-fi5,/ (C ',P ) (2 -2 b)

is the scaled source and sink function. The scaled source and sink functions (5 ,' ) are 

listed in Appendix B.

2.3 Adjoint Model

Eq. 2-2 provides a set o f  differential equations for eight water quality state 

variables over a domain M  with spatial domain £2, boundary T, and temporal domain 

[0,7^]; Tn is a time later than the last date when prototype observations are available. 

In the equations, the velocity fields, u(t, x, z) and v(t, x, z), dispersion coefficients ATt 

(t, x, z) and K. (t, .t, z), are assum ed to be known values which are obtained from the 

hydrodynamic model.

Denoting F  = (F ,, F2, —, FS)T, the mass-balance equation (Eq. 2-2) can be written 

symbolically as

Let c ' = { C [ , C * , C ^ , C ' , C ' ) T be the available prototype observed data of

concentrations of the state variables over domain M, where C .7 ’s are also scaled

concentrations. A weighted least-squares criterion is chosen to measure the data misfit, 

the cost function is then defined as

F( C ',p)=0 (2-3)

8
w.(tjc,z)(C,- - C >i )1BdQ.dt (2-4)
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where w,(f, x, z) = weight with respect to the ith state variables; and dQ.=dxdz. The

goal is to seek a set of optimum param eter values P such that the difference between

the model results C" and the observation data C  or 7, is minimized.

A systematic approach for solving the problem is based on a generalization of the 

classical Lagrange multiplier technique used in finite-dimensional spaces. Let

\= (X  X . —X)=(X X X X X X X X ) be scalars called Lagrange/V V 'V 'S ' ’ 8 ' '' Clil ' N l , / WJ '  P I '  P2 '  CBOD '^ D O ! °  °

multipliers. The Lagrangian o f the constraint problem is the scalar function o f C ' , P 

and A defined by

L (C / ,p,A)=7(C/ )P )+f ; | r j f \ .  F ^ C '& d Q d t  (2-5)
8

E
i= \" ‘N"

The first-order variation of 5L  resulting from perturbations 8 C, dX and Sp is equal to 

(Le Dimet and Talagrand 1986):

8 8 
5L=E  J r -c ')B & C '.dQ dt+ Y , \ T j [  [ \.5 F i(C / ,P )+F i.(C/ ,P)8A.;] r fn *  (2‘6)

z=l v /=1  "

Integrating by parts of Eq. 2-6 gives

8 8
5L=E  I  [  [ " ( C /  -C [)B  +A (C ' ,A ,p ) ]8 C 'd Q d t ^  £  j> ,( C ',P ) 5  

z=l /=! "

tn 8 j7r*

♦ E  t t ( L  W )6p
i t = r r^ / = i

kdQdt
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8

+E  {jaB^ lov 5 C ' dQ *ST j uB u l . Ir5 C /d a * }  +fr [ B . X  |r 5 C > r f /}  (2-1)

where F (C ',A ,P )  ar>d dF S /d (3t are the functions to be determined later. Q , ,

Q z are the spatial domains with respect to the horizontal (jc) and vertical (z) directions, 

respectively. Tx and T. are boundaries with respect to x  and z directions, respectively.

For given C", A and P, L will be stationary if and only if 5L  is zero for any 

perturbations 8C ,8X, and 8 P*. This will be the case if and only if the following 

conditions are simultaneously satisfied.

Eqs. 2-8 to 2-10, together with initial and boundary conditions Eqs. 2-11 to 2-13, 

are Euler-Lagrangian equations of the original mass balance equations. It can be seen 

that Eq. 2-8 recovers the original Eq. 2-2. Eq. 2-9 is the adjoint model of the original 

model. The terms on the left-hand-side of Eq. 2-10 (see Eq. 2-16) is the gradient o f J

Ft( C \  P)=0

w .lC '- C 't f+ R iC ',  A ,P)=0 on M

on M

1 2 • • •  8 1 jU (2-9)

(2-8)

on M  k = 1,2,- • -,/n (2 - 10)

(2- 11)

T" J  BuK. | r 5 C ,'dzdt=0 

r - f  BvX.\r 8C 'dxdt= 0
Jo Jq

(2-13)

(2 - 12)
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with respective to the parameter P* at location (x, z) and time t. This gradient is used 

in the conventional algorithm to minimize the cost function by the conjugate gradient 

method or the steepest descent method (Gill and Murray 1982). It will vanish when 

the cost function (Eq. 2-4) reaches its minimum. All the initial conditions and 

boundary conditions can be satisfied if assuming X = 0  at boundary T, and at times t 

= 0 and t  = Tn.

The adjoint model (Eq. 2-9) that is obtained from integration by parts of Eq. 2-6 is 

listed below:

vv(C/ -C /jP + F fC  ',A ,P)=0 (2-14)

where

F ' i C 'X V ^ - F f i X ^ B  F S ^ C 'A ,P) (2 -14a)

F 5 ,= - (G - /? -P )^ w+/i:0 î - a n(/?+ a P)[Yc^ /+Ycw( l - F ) ^ ]

CN2^^ ^N2 CN}( 1

-a p(R +a rP)[y cp/ p' K , 1  -F p) \ 2}

CP2ap^'^P2~acac,Jy CBO^r^^CBOD^ CDO^^'G- ——)A.DQ] (2 -14b)

(2 -14c)
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FS = ■ K- ,K.h- ----- ? ? - _ ( X . , - y a  A_J
3 (Kh2t+N2)2 Km +DO m N2i N2DO "" DO

♦CM' - K / ™ I l^ L n 2 °(yCP1apl r l . YC„A X „ 1  a x f i ca J> Q -\DO-X a l)

(2- 14d>

re=g„ Kû .m..*a chi'-K ep™, 3w-p«)wj0( , -y ™ AJ
4 nii ^  + Q Q  n Xr 1 £* 0^yj

/liJ

* C U ' - K 'p r i L * L N 3 \ Yc„A Xw n c^

- Y CDcPc^aPQ- ^DO ~^-ClJ ^

^  If  r)v̂
F 5 P,2 hP,2 (X -y  X ) +K (2-140

(KIipI2+P1)2 Pu P- p" dz

FS,=K „ ? h i+ C h l '-K  QTl'20IL— P 2°(ycp,a l p,
6 p 22 ^  A'r 1 L  0 P 2  ‘ CP2 P p -

+y  CN3ai?^NJ~y CDOacaa P Q ^‘DO~^"ClJ

*a ,C U '  - K f ^ I ^ l l p i  »(Yo„X „ -y cmXw ) <2-14g)

3A.
^ = K X cbod^ cbdoK X Do+Kbod- ^ -  (2 - 14h)

^ 8  ^  N2DO—  —T r y ——   2 ( Y  N2DOa iui^DO +^N 2  “T  N 2 3 ^N ^
K H23+ N 2  ( K ni,+ D ° F

+(1 -y  l)K X D0^ DONJKa1,— J ± - — XN}
^ hJ3-D O )2

SOD ^ do dB -i y » i/ii\
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t fL p 2<^'N2.1

otherwies

otherwies

(2 -14k)

and LiV23 and LP2 are defined in Appendix A.

For the first order approach, the gradient of N»PR with respect to N2 and N3 can 

be neglected since both nutrient limitation N  and ammonium preference PR  approach 

constants if nutrients are abundant or both are small values if  nutrients are scarce.

The terms on the left-hand-side of Eq. 2-10 is the gradient o f the cost function 

with respective to the param eter which can be obtained as follows.

Note that Eq. 2-6 can be written as

where BIT  is the initial and boundary conditions, i.e., Eqs. 2-11 - 2-13. Note that the 

condition 8 L/8 p = 0  should be satisfied at the stationary point, which gives

8 8
£  f  {Ft{C 1 ,$ )§ \d Q d t  
~ 1

(2-15)
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(2-16)

In the present inverse model, thirteen parameters are chosen, as an example, to be 

estimated. They are :

Kgr= optimum phytoplankton growth rate at 20 °C (d a y 1);
R20 = phytoplankton respiration rate at 20 °C (d a y 1);
P20 = phytoplankton mortality rate at 20 °C (day ' 1 );
K„12(20) = am m onification rate o f N l to N2 (mg I' 1 day ');
K„21(20) = nitrification rate of N2 to N3 (mg I' 1 d a y 1);
K„3j(2 0 ) = denitrification rate at 20 °C (d a y 1);
Kpl2(20) = organic phosphorus mineralization rate at 20 °C (mg I' 1 day'1);
Kqj = settling rate o f phytoplankton (cm day ' 1 );
K„u = settling rate o f  N l (cm day '1);
Kp,, = settling rate o f P I (cm day'1);
Kp22 = settling rate o f  P2 (cm day'1);
1^(20) = first-order decay rate of CBOD at 20 °C (d a y 1); and 

= settling rate o f CBOD (cm day '1).

These parameters are related to the environment to be modeled and represent some

underlying processes which are simplified in the model. The gradients o f the cost

function with respect to these parameters are listed below:

*Y„,„o ,a„PQXD0}B-CM' N dQ dt

CNian^n^'NI^CN3aJ-^~^Jl '̂N2+̂  CPiap ^ p \C P I p  p '^ P I

(2-17)

C D C T c c n
(2-18)

+y  CP2a p (  1 - Fp)K 2^icBOaca,hcBO^} B C k l ' ^ d Q d t
(2-19)
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hl2
(2 -2 0 )

5 7 * = f  A.nj e r 2°- N 2 ' D U 'U dQdt 
K-  J r jn  ' N2DO n“ D0 5 K  +N2 K  +DOh23 nit

(2 -2 1 )

5 7 ,  = f  ( - \ 3 Kh-,jN3  06 20 B dQdt 
K-  J r ja  K ^ + D O

(2 -2 2 )

8  dQ ft
(2 -2 3 )

(2-2 4 )

(2 -25 )

57 ,  - f  (V ,,,3^ '  5  7 0 // 
A"' J rvJa p/ 3Z

(2-2 6 )

5 7 ,  = r  r ^ ^ 2 / 5  7o / / (2-27 )

s  A . - / r * y a o ^ r °  b  d a n (2-2 8 )

(2 -2 9 )

where 5 J R=(&J„ ,S J B ,§ J D )T are the gradients of the cost function with

respect to the parameters.

2.4 Method o f Solution

2.4.1 Solution procedure

The solution scheme to solve the model equation (Eq. 2-1), forward model, is
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detailed in Park and Kuo (1993a). The adjoint model equations have a similar form as 

the forward model equations, except for two important features. The dispersion terms 

have the opposite sign to those in the forward model equations. The source terms 

include the data misfit as an additional source, i.e., w fiiC  ',-C ',). Because o f negative 

dispersion, the adjoint model is stable only if integrated backward, i.e. from time TN to 

0. A similar scheme as the forward model can be developed to integrate the adjoint 

model backward (see section 2.4.3). The procedural steps o f using the inverse model 

to estimate parameters can be summarized as:

(1) Begin with a set o f best initial guess values for the unknown parameters

|3|, P2, — >Pn-

(2) Integrate the model equations (Eq. 2-1) forward in time to calculate the 

concentration of each state variable and use the output at times when field data 

are available to calculate the data misfit w,(C, -C, )  and the value o f the cost 

function.

(3) Integrate the adjoint equations (Eq. 2-14) backward in time to calculate the values 

of X's.

(4) Calculate gradient V7p (Eqs. 2-17 - 2-29) corresponding to each param eter P, to 

P.3-

(5) With the gradient information, apply the conjugate gradient algorithm (Navon 

1987; Polak and Ribiere 1969) to obtain the new parameter (update parameter 

value).

(6 ) Verify that the minimization process is done. The convergence criterion is satisfied 

if lV/pl/1 V7 p°ke , where Vyp0 is the value at the initial iteration, or verify that
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the relative total error of the cost function LM/’kE, , where J° is the value o f the

cost function at time zero.

(7) Return to step (2) if the optim al solution is not found.

2.4.2 Grid system and geometry

The forward model equations and the adjoint model equations are solved using 

finite difference method with an uniform  grid of spatial staggered variables. The 

geometry of the grid used in the model and the location o f variables within the grid 

are shown in Fig. 2-2. The grid system  has surface elevation (r\) defined at the middle 

of each segment, while C, X, and B  are at the center o f the grid cell. The variables, v, 

A., and K„ are defined at the bottom  face of the grid cell, while the grid containing u, 

At, and K. is staggered by half the segment length as these that are defined at the grid 

cell walls.

2.4.3 Finite difference treatment

A two-time level finite difference scheme is used to solve the system. The finite 

difference scheme of the forward model is detailed in Park and Kuo (1993a). The 

finite difference scheme o f the adjoint model is described in this section. Although the 

adjoint model (Eq. 2-14) is very sim ilar to the forward model (Eq. 2-2), the finite 

difference scheme of the adjoint model is different from that of the forward model 

since the conservative control volum e formulation is used to integrate the forward 

model. An alternate way to obtain the finite difference scheme of the adjoint model, 

which corresponds exactly to the schem e used in the forward model, is to derive it
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directly from the finite difference equations of the forward model.

For the two-time level finite difference formulation, the finite difference form of 

the forward model at cell (/, k) and time level "/i+l" for the yth state variable 

(/' = 1,...,8 ) can be generally written as:

(2-30)

where C/j"*1 is the scaled concentration of the yth state variable at cell (i, k) and

time-level n+ I. The discrete form o f the Lagrangian of the constraint problem 

(Eq. 2-5) can be written as

i = E  E  E  E  k ( c r - c T 1V b ^ - a ? "  W /  <2-3 1»
n j  i k  1

where C .* '\  ^  are the scaled field observations and Lagrangian multipliers,

respectively. The finite difference equations of the adjoint model can be obtained by 

taking the derivative of Eq. 2-31 with respect to c/j" • The detailed derivations and

the finite difference equations of the adjoint model are presented in Appendix C.

2.4.4. Decoupling kinetic processes

The governing mass-balance equation (Eq. 2-1) and the adjoint model equation 

(Eq. 2-14) consist of physical transport, advective and dispersion, and kinetic processes
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(or error source of misfit). Since the time step used for calculating physical transport 

processes is on the order of few minutes, the kinetic processes should be updated on 

the same time interval if they are solved simultaneously. Because the concentrations o f 

the state variables at each time step will be used when integrating the adjoint model 

backward, the concentrations of all the state variables have to be stored at each time 

step at every cell. For long period model simulation, both computation speed and 

storage space should be considered. In the present model, the kinetic terms are 

decoupled from the physical transport processes when solving Eqs. 2-1 and 2-14. 

Decoupling o f the physical transport and kinetic processes has been used in some 

models (Park et al. 1995; Kuo and Neilson 1988; Ambrose et al. 1988). The solution 

scheme involves a two-step com putation, in which mass of state variables are 

physically transported first and then followed by the update o f kinetic processes. The 

mass-balance equation for physical transport only, which takes the same form for each 

state variable, can be written as

d(CB) + d(CBu) + d(CBv) _ 9 ^  ^ d C  + 9 ^  p dC  (2-32)
dt dx dz dx x dx dz ' dz

The equation for kinetic processes only, which will be referred to as the kinetic 

equation, is

3(Cg) =RS (2-33)
dt

In the same way, the error source and sink functions of the adjoint model can be
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decoupled from its physical transport. The physical transport processes and error 

functions for the adjoint model can be written as

B— +Bu— +Bv— = -J L k B— - — K B —  (2-34)
dt dx dz dx dx dz ' dz

and

- ^ l = / r5 (C ',A ,P )+ w (C / 'C / ) (2-35)
dt

A two-step computation of the decoupling method is used in the present inverse 

model to solve Eqs. 2-32 to 2-35. Since the time scale of kinetic processes is on the 

order o f hours, which is much slower than the time scale o f physical transport, it is 

possible to update kinetic processes hourly instead of updating them every few 

minutes. That is, the kinetic equations can be updated following several time steps of 

physical transports. Fig. 2-3a illustrates the solution procedures over the time period 

from t„ to tn+m, where subscripts represent time level and m > 1.

The first step, S I, solves kinetic processes alone (Eq. 2-33) over m/2-At from tn 

to tn+1/2m explicitly and gives an intermediate concentration, C.Pn+1/2m, where subscript - 

P designates one lacking the physical transport over m/2-At. Next, S2, the intermediate 

concentration Field C.Pn+1/2m or C +K ( C +K = C Pn+I/2m ), where the subscript +K 

designates one with a surplus kinetic update over m/2-At, are physically transported m 

time steps over mAt from tn to t„+m by the transport equation (Eq. 2-32). The

intermediate results are denoted as c"^m * where subscript -K designates the
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intermediate concentration that lacks a kinetic update over l/2m-At. Finally, S3, the 

intermediate concentration ca'Km or C+Pn+l/2m ( CtPn+l/2m = c"'Km ). where the

subscript +P designates one with a surplus physical transport over m/2At, are updated 

kinetic processes again by solving Eq. 2-33 explicitly to give the Final results o f 

concentration Cn+m. The same procedure will repeat every m time steps.

When solving the adjoint model, the same method is used to integrate Eqs. 2-34 

and 2-35 backward. The procedures are illustrated in Fig. 2-3b. Because the errors of 

m isfit functions (Eq. 2-35) are calculated twice for every m time steps of physical 

transport, one only needs to save concentrations of the state variables at the time steps 

corresponding to those at which errors o f misfit are needed during the integrating

processes of the forward model, i.e., only need to save concentrations C_"P'/2m and

C +m at time n+ l/2m  and n+m, respectively, for every m time steps. The values o f Xa 

and Xn+m are used to calculate gradients of the cost function with respect to each 

parameter.

Fig. 2-4 shows an example of the comparisons o f the forward model results of the 

concentrations o f eight state variables (surface maximum and bottom minimum) 

between updating kinetic processes every 8 minuets ( At = 480s, m = 1) and every two 

hours (15At, m = 15). It can be seen that results are very satisfactory even updating 

kinetic processes every two hours. Using a two-step computation o f  the decoupling 

m ethod, both computation time and storage space can be reduced significantly.
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Figure 2-1. A schematic diagram of interacting water quality state variables.

Rectangular boxes represent eight state variables being simulated and 

the arrows represent the biogeochemical processes included in the 

model.
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2.5 Weights o f the Cost Function

Because random errors and sampling errors associated with the field data are 

different with respect to each state variable, the contribution of each state variable to 

the cost function should be carefully scaled so that each state variable has a proper 

weight. Moreover, the errors due to the model structure should be considered when 

applying a model to a real environment. To reduce errors due to the observations and 

model structure, the weighted least-squares criterion is used as the cost function. The 

weights in the cost function reflect confidence in the quality of the observed data and 

the model predictions. A proper weight increases the model accuracy. However, 

choosing a good weight for a given problem is considered to be an art. For practical 

applications, choosing weights often relies on engineering judgem ent and sometimes 

on a trial-and-error basis, van Straten (1983) and Carrera and Neuman (1986) proposed 

a method to choose the weights based on the likelihood theory. Their results give a 

probabilistic justification for the use o f weighted least-squares criterion. To understand 

the limitation of the method, their results are discussed here. Some different symbols 

and subscripts are used for simplicity in the following derivations in which an upper 

case letter denotes a vector or a matrix and a lower case letter denotes a value at an 

individual point.

Following van Straten (1983) and Carrera and Neuman (1986), let C,y be the 

column vector o f the model results o f the scaled concentrations o f the state variables 

at instant time r7 and location (x,, zf). Thus

C,i(P) = (C„/P), • • •,c„J(P ), • -,cD)(P ) |t
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for j  = 1 , 2 , - -  •, n; i = 1, 2, • • •,/?; k = 1, 2, • • •, L

where (3 = the parameter vector with dimension m; n = the number of observations;

and p  = the number o f sampling locations; L  = the number of state variables; ckjj = the 

scaled concentrations of the kth state variables at location (x„ z,) and time tr Let C,t be 

the column vector o f the observed scaled concentrations of the state variables at tim e 

instant /y and location (x,, z,). Thus

C,f={ c tij, • • cklJ, - • cUj}T 

where ckiJ = the observed concentration o f the £th state variables at location (x,, z,) and

instant time r. The cost function (Eq. 2-4) is then written as

j{C  ;P)=E E E  (2'36)
k= li= \j= \ z

where wklj = the weight for the &th state variable at time instant t- and location (x,, z,). 

Assuming are constant with respect to time and space, Eq. 2-36 can be written as

yt=l /= ly=l

where the ’s are global weights. Eq. 2-37 is the commonly used weighted least-

squares estimator. Since C(> is a model for Cijy C{j can be expressed as
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C..=C..(P)+V.. (2-38)IJ tj'r * tJ

where Vtj denotes the sum of all errors at time tj and location (x„ z,), which includes 

random errors, sam pling errors, and model structure errors. Assuming Vu is normally 

distributed with variance-covariance matrix Rijt the multivariance probability density 

function o f Cu with respect to the parameter p can be written as

/(C.^P)=_______ !_______e x p [-( l/2 )(C..-C..(P))ri?„’ l(C..-C..(P))] (2-39)
"  (2n )U2(detR.j) m  "  "  '  "  "

If  the distributions Vtj are independent with respect to time and space, the likelihood 

function can be written as

« P ) = n n / « : , , ; p >  (2-40>i=i;=i

The log-likelihood function can be written as

1 P n
-ln L (p )= (pnZ y2)ln (27c)+ l£  £  ln(detfly)

i=ly=l

4 E  E  [ ( c . - c . c p j W c a - c ^ p ) ) ]  (2-4Di=ly=l
In Eq. 2-40, both the elements of R tj and the param eter P are unknown. Some 

assumptions are necessary to further simplify the equation. Following DiToro and van 

Straten (1979), it can be assumed that R{j does not depend on the parameter estimates
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(3 and no correlations exist among the error disturbances of the state variables. Under 

these assumptions, Rtj is a diagonal matrix which can be written as:

R -

rcA,i 0 0

0  o kiJ 0

0  0 a Ui-

(2-42)

Substituting Eq. 2-42 into Eq. 2-41 gives

L p  n
-lnZ,((3) =(pnU2)\n(2n) E E E 1" ^ )

2 Jfc=ll = ly = I

L  p  n

+̂ - e e e 4 - ( v % (p))2
^k= \i= \j= \

(2-43)

Differentiating Eq. 2-43 with respect to (3 gives

L p  n
3 c J ( 3 )

E E E - V - c v ^ P w - ^ 1 - 80
k =l i — 1 j — 1 a,uj 9(3

(2-44)

If one further assumes that <*kij is not varying with respect to time and space, Eq. 2-44 

can be written as

L  . p  n 9 c fRl
£  4 r E  £  - °  (2 -45)
it= id * i= iy = i
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This is equivalent to the weighted least-squares problem (Eq. 2-37) with weights

w = m 2k
(2-46)

Differentiating Eq. 2-43 with respect to Gfa> and assuming GUj are not varying with 

respect to time and space leads to

which shows that the model error variance is the mean residual variance. Eq. 2-47 

gives a meaningful result. For the state variable associated with large errors, less 

weight is given.

A disadvantage o f Eq. 2-47 is that it holds only for the true parameter (3. The 

implement of the result is not straightforward because one does not know the true

parameter (3, thus &k remains an unknown variable, van Straten and Carrera

suggested updating during the optimization. However, they both showed that a

continuous weight update turned out to be very insensitive to the choice o f the 

parameter values and led to a poor parameter estimation. It should be noted that

updating $  during optimization process implies that $  is a function o f param eter
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p, which conflicts with the assumptions. Moveover, the cost function (Eq. 2-37) 

becomes a constant when updating $  during optimization, i.e.

L
J ^ p n - p n L  (2-48)

k=l

thus, the cost function becomes insensitive to the parameter values. This suggests that 

a continuous update is not a proper technique. In a case without model structure

errors, & can be estim ated by observation errors. However, the observation errors are

often unknown in reality. &k remains an unknown variable. Although it is difficulty

to use Eq. 2-47 in the model, Eq. 2-47 gives a  guideline for choosing weights. W ith 

no knowledge of sampling errors and random errors, weights can be possibly estimated 

on a try-and-error basis based on Eq. 2-47, the error residual variance o f the model.

2.6 Preconditioning M ethod

The success o f the inverse model (minimization of Eq. 2-14) is dependent on 

the condition of the Hessian matrix, the second derivative o f the cost function with 

respect to the parameters. A sufficient condition for an unique solution is that the 

Hessian matrix is positive defined (Carrera et al. 1986). Convergence properties of the
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minimization are determined by the eigenvalue spectrum of the Hessian matrix and 

speed of convergence is related to the Hessian condition number, the ratio between its 

maximum and minimum eigenvalues. If the Hessian matrix is ill-conditioned, 

calculated descent direction is almost quasi-orthogonal to the optimal direction 

resulting in slow convergence or no convergence. A way to improve ill-conditioning of 

the Hessian is to introduce a  preconditioner so that the new condition num ber o f 

preconditioned Hessian is close to unity.

Preconditioning has been used in applications o f minimization in meteorological 

problems (Axellsson and Barker 1984; Conn et al., 1992; Courtier et al. 1994; Li et al. 

1994). Two methods o f preconditioning introduced are: using weights to m odify the 

cost function (Courtier et al. 1994); and applying parameter transformation so that the 

Hessian has better condition with respect to the new parameter (Li et al. 1994; Carrera 

et al. 1986). The purpose o f the parameter transformation is to scale the param eters 

and the gradients so that the gradients of the cost function with respect to the scaled 

parameters have the same order o f magnitude.

For the present inverse model, the parameter transformation m ethod is used to 

construct a precondioner. If  one knows the true Hessian, an ideal preconditioner would

be the Hessian itself. Let y  "  be the Hessian matrix o f the cost function with respect

to the original parameter (5 and assume that it is positively defined. A linear 

transformation can be applied to the parameter P, i.e.,

_ r "  (2-49)
P = /|
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where j ' '  1 is the preconditioner and Y  is the new parameter vector. The gradient of

the cost function with respect to Y  is

It shows that the condition number of the preconditioned Hessian with respect to the 

new parameter is unity (eigenvalues are equal to unity). This means that minimization 

can be obtained in one iteration. However, for the present inverse model, the Hessian 

matrix is unknown. The basic issue is whether the unknown Hessian can be estimated. 

Although estimation o f the Hessian is very difficult for a nonliner system, the Hessian 

can be estimated in some special cases and the estimated Hessian provides som e 

useful information to relax the ill-conditioning of the Hessian.

For a nonlinear model, the Hessian can be written as

V J Y=J{' TV /p
(2-50)

The new Hessian matrix /  "  obtained after linear transformation is

(2-51)

d2J  J C T (2-52)
dP.dP, d p (. dP;
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where C  and C are the column vectors of the concentrations o f the state variables and 

observations over all sample locations, respectively; W  is a weight matrix. Assuming 

that the system is a quasi-Iinear system, the second term (second derivative) on the 

right-hand-side o f Eq. 2-52 can be neglected, i.e.,

d2J  _ dC  Tw  dC  (2-53)

If  we further assuming that the Hessian is weakly dependent on the param eter (3, the 

gradient can be expanded at a certain point p0, thus

d C r = dC  r | + d2C  (2_54)

ap, ap, 'p- ap,apy

Substituting Eq. 2-54 into Eq. 2-53 and neglecting the second order derivative term 

gives

d2J  _  dC  (2-55)
ap,3p. ap. a p /

Eq. 2-55 shows that the Hessian can be estimated at a certain point P0 if linearization 

around the param eter values is reasonable. With a quasi-lineaer assumption, the error 

covariance matrix is the inverse of the Hessian (Rabier et al. 1992). Let P, be the true

param eter and P f be the result of the minimization, then
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(2-56)

where

is the covariance matrix, j  "  is the estimated inverse Hessian. W ith the assumption

that the Hessian is weakly dependent on the parameters, the inverse Hessian can be 

estim ated at po

Eq. 2-57 provides a way to estimate the Hessian since the covariance matrix can be 

estim ated using the method given in Chapter 4 or the method given by Courtier et al. 

(1994). It should be noted that this result is reasonable only if the linearization around 

the param eter values is reasonable. In case of pronounced nonlinear behavior, Eq. 2-57 

may yield the wrong estimation. The experiments show (see section 3.1.2) that using 

Eq. 2-57 to estimate the Hessian and using Eq. 2-49 as the param eter transformation 

does not improve the speed o f  convergence of the present inverse m odel. The reason is 

nonlinearity of the system. Using Eq. 2-49, parameters are very sensitive to the 

precondition matrix. Errors in estimating the precondition m atrix result in the wrong 

estim ation o f the gradients. Instead o f using the whole matrix o f the estimated

(2-57)
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Hessian, the diagonal o f the Hessian can be used to construct a preconditioner since 

the diagonal o f the estimated Hessian provides the basic information o f the Hessian.

In this study, linear transformation is applied to the original param eter p, thus

P =LY  (2-58)

where Y  is the new param eter and L  is a preconditioner which is a diagonal matrix. 

W ith the linear transformation, the cost function with respect to the new param eter Y  

is

A /y=ZA/p (2-59)

and the new parameters can be written as 

Y=L "‘p (2 ' 6°)

Three methods are introduced to specify the L  matrix and each method is tested. The 

convergence of the inverse model with respect to each method is com pared in section 

3.1.2.

The first method uses the diagonal of the estimated Hessian to calculate L  so that

L -d ia g O " " ” ) <2-6 l >

The second method uses empirical scales o f the parameters to scale the parameters. 

The L  m atrix can be written as
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/,=

/, 0  0

0 lk 0

0  0 /.

(2-62)

where /t = p ^ °  ; Pic° = the scale value of the fcth parameter; K°g[ = the scale value 

of the optim um  phytoplankton growth rate. The third method uses the following

matrix to specify L

L=

V i 0 0

0 < *• 
*

0

0 0 v I

(2-63)

where lk is the sam e as Eq. 2-61 and vk’s are the empirical coefficients to be 

determined through the model experiments so that the gradients o f the cost function 

with respect to the scaled parameters have the same order o f magnitude, or the 

estimated Hessian has the smallest condition number.
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III. INVERSE M ODEL EXPERIMENTS

The test inverse model used the tidal Rappahannock River, one o f the western shore 

tributaries o f the Chesapeake Bay, as a prototype estuary. The estuary was divided into 71 

segments (Ax = 2.5km) with up to 10 layers vertically (Az  =  2m). The model transects in 

the tidal Rappahannock River are shown in Fig. 3-1. The two-dimensional eutrophication 

model developed by Park and Kuo, hereafter referred to as the original model, has been 

calibrated, verified and applied successfully to study hypoxic conditions in the river (Park 

and Kuo 1993b, 1996). Their model calibrated param eter values were adopted in the 

present inverse model study as the basic set o f  param eter values. The parameters used in 

the inverse model are listed in Table 1. The parameters marked " * " are to be estim ated 

in the present inverse model study. Several numerical experiments were conducted to 

study the feasibility o f parameter estimation by the inverse model. The numerical model 

experiments were designed to determine the response o f the model to different scenarios 

o f the estuary. In the following sections, the results of numerical experiments with several 

different hypothetical data sets under different boundary conditions are presented.

3.1 Experiments W ith Constant Boundary Conditions

3.1.1 Test model description

For the experiments using constant boundary conditions, the inverse model was forced 

by an M2 tide with a tidal amplitude of 18.3 cm  at the mouth. The freshwater discharge

46
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was 48 m V , the long-term average. The point source loads were located at 7.5km, 10km, 

12.5km, and 15km from the head of tide, respectively. M onthly mean loads of point 

sources, and nonpoint source during period June 6  to July 5, 1990 (the same period for 

the original model calibration) were used as constant loads. The downstream boundary 

conditions of the state variables were specified using the mean values of the slack w ater 

surveys of June 6  and July 5, 1990. Constant solar radiation and light extinction 

coefficients as well as zero benthic fluxes were used throughout the model experiments. 

The time series data of velocities and dispersion coefficients to drive the transport portion 

of the model were computed from the hydrodynamic model and saved to a database for 

frequent retrieval during inverse modeling processes. The initial conditions were com piled 

from the slack water survey o f June 6 , 1990. Examples of the surface and bottom 

concentrations of state variables as the initial conditions are shown in Fig. 3-2. These 

initial conditions were used for the model experiments with constant boundary conditions.

Sample prototype data required for the inverse model experiments were generated by 

running the inverse model forward with the original model calibrated parameters, except a 

constant settling velocity Kp22 o f 2 0  (cm day ' 1 ) was used instead o f using spatially 

varying parameter values. A t particular times, based on different model experiments, 

original model outputs were saved as "field" data sets. Each data set included 

concentrations of eight state variables at each cell vertically at seven locations along the 

estuary. The locations o f the sample stations, denoted by are shown in Fig. 3-4. The 

param eter values used to generate sample data were treated as the "true" values. Using 

model generated data to investigate the strategy of inverse modeling has three advantages.
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First, it is possible to study the identifiability of the unknown parameter values for 

different conditions because the "true" parameter values are known. Second, the model 

generated data are consistent with the model so that the problem  of mechanisms not 

modeled can be eliminated. Third, the model generated data are void o f sampling errors 

which are inherent to prototype data.

The initial guess values o f the unknown parameters for the inverse model were 

specified using mean values based on the data compiled from an EPA report (Johnson et 

al. 1985) and other published results (Table 2). The param eter values were bounded by 

upper-limit and lower-limit values to ensure that the estimated parameter values were 

within the acceptable range. The maximum values in Table 2 were used as upper-limit of 

the parameters and zeros were used as lower-limit of the parameters. The estimated 

maximum concentrations of state variables in the estuary were used to calculate scale 

factors.

3.1.2 Test o f preconditioning

Before starting the inverse model experiments, the different methods of preconditioning 

were tested. Three test runs for a ten-day model simulation were conducted with constant 

boundary conditions and initial conditions described in the last section. In these runs, the 

mean values o f the parameter listed in Table 2 were used as initial guess values and it 

was assumed that one sample data set was available at the beginning o f day 10. Run P I 

used Eq. 2-61 as the preconditioner. The Hessian was estim ated using Eq. 2-57 at P„, the 

initial guess values. Run P2 used Eq. 2-62 as the preconditioner. The maximum values
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listed in Table 2 were used as param eter scale values. Run P3 used Eq. 2-63 as the 

preconditioner. The scales for each parameter were round up values of those used in Run 

P2. The coefficients were adjusted based on the estimated condition number and the 

gradients of the cost function with respect to the parameters in the first few iterations so 

that the gradients have the sam e magnitude. Because calculated gradients o f the cost 

function with respect to the settling velocities and denitrification rate are an order o f 

magnitude smaller than the gradients with respect to the rest of the parameters, large 

coefficients associated with settling velocity were used. The scale values and coefficient u 

are listed in Table 3. The estim ated condition numbers for Run P I, P2, and P3 are listed 

in Table 4.

Two test runs, one w ithout the preconditioner and one with the preconditioner using a 

full estimated matrix o f the Hessian (Eq. 2-57), were also tested. The inverse model was 

not convergent for both runs. W ith proposed preconditioning, the inverse model was 

convergent. The relative errors o f the cost function, the error of total data misfit at the last 

iteration divided by the total data misfit at the beginning o f the iteration, for Run P I , P2, 

and P3 are compared in Fig. 3-3. It shows that the rate o f convergence for Run P I and 

P2 are almost the same, while Run 3 has the quickest convergence speed. The results 

suggest that a proper preconditioner is very important for the convergence o f the inverse 

model. The estimated condition num ber corresponding to the new parameters also 

indicates that the condition o f the Hessian matrix with respect to the new param eters is 

improved with a proper preconditioning (Table 4). The preconditioner used in Run P3 is 

used for the rest of the inverse model experiments and the model calibration with field data.
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3.1.3 Basic parameter estimation tests

To ensure the inverse model functions properly, three experim ents for a ten-day model 

simulation were conducted to test the response of the model to different initial guess of 

the parameters and to different environments. Run C l used the mean values listed in 

Table 2 as the initial guess param eter values and Run C2 used either maximum or 

minimum values listed in Table 2 as the initial guess parameters (Table 5). In both runs, it 

was assumed that three sample data sets, as described in the aforem entioned paragraph, 

were available at the beginning o f day 3, day 6 , and day 10, respectively. The original 

model calibrated parameters served as "true" parameters and the original model results 

with true parameters were considered as true results. The com parisons o f the daily surface 

m axim um  and bottom minimum concentrations of the state variables over the 10th day 

between model results with initial guess parameters for Run C l and the true results are 

shown in Fig. 3-4. It shows that the model results are far away from  the true results if the 

wrong parameter values are used. Run C3 used a new set of param eters (Table 6 ), which 

were either maximum or minimum values listed in Table 2, as "true" parameters to create 

a very different environment from  Run C 1 and Run C2. The initial guess parameters for 

Run C3 were the same as those for Run C l. The percentage error in the estimated 

param eter is calculated by the following equation:

| True value-Estimated value \ x [qq% (3 _1 )
True value

The results of Run C l, Run C2, and Run C3 are listed in Tables 5 and 6 , respectively.
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The results indicate that the inverse model is convergent with different initial guess 

parameters (Run C 1 vs. Run C2) and for different environments (Run C 1 vs. Run C3).

The relative errors are on the order o f lxlO '7 after more than 200 iterations (exclude 

unsuccessful gradient search) for Run C l and Run C2. It take 476 iterations to reach 

relative errors on the order o f lxl0"6for Run C3. If higher accuracy is desired, more 

iterations have to be conducted. It can be seen that speed of convergence is affected by 

the initial guess parameters and varies with different environments. The errors in the 

estim ated parameters are up to 1% in 219 iterations for Run C l and are up to 6 % in 476 

iterations for Run C3, except for K ^ .  The graphical presentations o f the inverse model 

results from Run C l, Run C2 and Run C3 are all indistinguishable from those o f true 

results and, hence, they are not presented.

Since the model sensitivity to each parameter is different in the system, the errors in 

the estimated parameters are not the same. The errors in estim ated settling velocities are 

large compared to other parameters for Run C l and Run C2 and are on the same order as 

others for Run C3. The settling velocity of CBOD, K ^ ,  has the largest error among the 

parameters. The large error o f suggests that the model is not sensitive to the settling 

velocity o f K ^ .  This is confirmed by a sensitivity experiment. The sensitivity experiment 

was conducted by varying from 0.0 to 0.45 ( true value is 0.02) while true values 

were used for all other parameters. The results showed that the relative errors due to 

change o f were less than lxlO '7. It indicates that the model is not sensitive to K ^ .

For the model setup, the magnitude of used in the model was very small. As a 

consequence, no measurable data misfit is sensed by the model within the error criterion
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of lx lO '7. It suggests that the accuracy o f  parameter estimation is dependent on how 

sensitive the system is with respect to the particular parameter and what error criterion is 

given in the model. No unique solution o f  a particular parameter may be obtained if the 

system is not sensitive to that param eter within the given error criterion. The sensitivity is 

directly related to the parameter uncertainty. For an insensitive parameter, it is 

characterized by its large uncertainty. The parameter uncertainty will be further discussed 

in Chapter 4.

Fig. 3-5 plots the relative error o f the cost function as a function o f the number of 

iterations for Run C l. Each iteration includes running the inverse model forward and 

backward several times to search out the gradients and step length. It shows that relative 

error is reduced very quickly within the first 25 iterations. The rate o f  error reduction 

slows down between iteration 25 and 160. Error reduction increases again after 160 

iterations and becomes slow again after 170 iterations. The degradation o f convergence 

occurs after the first 25 iterations. During this period, the number o f forward and 

backward runs within each iteration to search out the new gradients are more than that 

required during the first 25 iterations. Sometimes a perturbation o f a local minimum must 

be activated in order to search out the new gradients. The major causes of degradation of 

convergence are cross effects among parameters and multiple scales associated with the 

param eter system. Because the concentrations o f the state variables depend on the 

com bined effects o f several parameters, a different set of parameters can provide 

equivalent results with the same total error o f data misfit. For example, over estimated 

algal growth rate can be compensated by over estimating respiration rate and mortality
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rate. Sometimes the local equilibrium cannot be broken without a perturbation of a local 

minimum. As a consequence, parameters often oscillate within their neighborhood during 

iteration processes and speed of convergence reduces drastically. On the other hand, the 

preconditioner used is an empirical method and it implies that the Hessian is not a 

function o f the parameters. The preconditioner may become improper during iteration 

processes when the parameters converge to the new values which deviate from their initial 

values. Some parameters are over-corrected and some are under-corrected in each 

iteration. The over-correction or under-correction often causes more iterations to correct it. 

A lthough some degree of degradation o f convergence may occur, the parameters can be 

correctly estimated by the inverse model.

3.1.4 Experiments with noisy data

In practice, the water quality data collected from the field are often associated with 

random  and sampling errors. The feasibility and the accuracy of estimating model 

param eters by field data with a certain degree of error are very important in model 

calibration. For this scenario, it was assumed that sample data sets were associated with 

norm ally distributed random errors. Two model runs (Run C4 and Run C5) were 

conducted for this scenario. The true parameter values and their initial guess values for 

both runs were the same as Run C l. Three sample data sets were generated by adding a 

normally distributed random number with specified standard deviations to the sample data 

sets used in Run C l. The standard deviations for Run C4 and Run C5 are 10% and 20%, 

respectively, o f mean concentrations calculated from the true sample data sets used in Run
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C l. Since the relative errors o f  total misfit cannot be reduced after 55 iterations and 77 

iterations for Run C4 and Run C5 respectively, the results at 54 and 77 iterations are 

treated as final results. The model results o f Run C4 and Run C5 are presented in Table 7. 

The comparisons o f instantaneous surface and bottom concentrations of state variables at 

the 10th day between the inverse model results (Run C4 and Run C5) and the true results 

are shown in Figs. 3-6 and 3-7, respectively. The sample data with random errors are also 

plotted in the figures. Figures show  that the inverse model results agree with true results 

better than with the data used for param eter estimation, i.e., the data with random errors.

Using sample data with 10% random error, the errors in estimated parameters are less 

than 10% except settling velocity K ^,, and denitrification rate K ^ .  Although the 

errors in parameters Kq ,, and are relatively large, model results are very satisfactory 

(Fig. 3-6). Again can not be recovered due to model insensitivity. The errors in the 

estimated parameters increase when sample data with 20% random error were used (Table 

7). Although a graphic match (Fig. 3-7) can be obtained, the errors in some estimated 

parameters are very large. In this case, it was found that multiple sets of optimal 

parameters can be obtained if starting with a different set of initial guess param eter 

values. Unique solution cannot be obtained by using three sample data sets with more than 

20% random error. It can be seen from Table 7 that large errors are often associated with 

the settling velocities in the experim ents because the model is less sensitive to these 

parameters for a given error criteria. Fig. 3-8 is the scatterplots o f the inverse model 

results of Run C4 vs sample data and true results. It shows that the inverse model has a 

smoothing effect. The noise within the sample data are smoothed out as the inverse model
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reaches its convergence. However, caution must be exercised when using noisy data, since 

errors in estimated parameters may be large for those parameters to which a model is not 

sensitive and a unique solution may not be guaranteed even though a graphic match is 

satisfactory. The problem of the uniqueness will be further discussed in the section 3.2.3.

3.1.5 Long period simulation with limited data sets

One difficulty in inverse water quality modeling is that available field data for the 

model calibration are often limited. Long period model simulation is often required in 

order to calibrate the model. For this scenario, Run C6  was conducted. Run C6 was the 

same as Run C l, except the inverse model was run for a 30-day model simulation with 

only one sample data set available at the beginning of the 30th day. After 63 iteration, the 

errors in the estimated parameters are already less than 10% (Table 5) except for and 

the relative error is 3.1810X10"4 . The results shows that param eter values can be estim ated 

with one sample data set. It suggests that more sample data sets are not necessary. The 

comparisons of the daily surface maximum and bottom minimum concentrations o f state 

variables over the 30th day between the inverse model results and the true results are 

presented in Fig. 3-9. It shows that the results are very satisfactory. Again K ^, cannot be 

recovered due to model’s insensitivity as discussed earlier. The results suggest that the 

inverse model can be useful to aid model calibration for long period simulation.
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TABLE 1. Parameter Values Used in The Inverse Model2

Name Eq. Values i Name Eq. Values

A A-7 0.05 mg C per pg Chi | 04 A-2 1.04
A-2 0.007 mg N per pg Chi j Khl2 A-2 1.0 mg r 1

S A-5 0.001 mg P per pg Chi | 0s A-3 1.04
A A-2 1.0 I Kh23 A-4 1.0 mg I' 1
PQ A-8 1.0 moles 0 2  per mole C | K n i t A-5 2.0  mg I' 1
RQ A-8 1.33 moles C 0 2 per mole 0 2 | 06 A-5 1.046
K™ A-l 0.025 mg I’1 | K.33 A-5 0.5 mg I' 1

A-l 0.001 mg I' 1 | F„ A-3 0.75
0 , A-l 1.066 | BenNl A-2 0.0  g m'2 day' 1

I, A-l 250 langleys day' 1 | BenN2 A-2 0.0-0.05 g m'2 day
K e ,C h l A-l 0.00018 1 pg' 1 cm' 1 | BenN3 A-3 0.0  g m'2 day' 1

02 A-l 1.08 I *K„I2(20) A-2 0.04 mg I ’day' 1

0 3 A-l 1.0 j *Kn23(20) A-3 0.3 mg Uday' 1
*Kgr A-l 2.0 day' 1 | A-2 8.0  cm day' 1
* K c h l A-l 10.0 cm day' 1 | *1̂ ( 2 0 ) A-4 0.35 day' 1

*R20 A-l 0.17 day' | 07 A-5 1.04
*P2o A-l 0.02  day' 1 | K p h . 2 A-5 1.0 mg I' 1
08 A-7 1.047 | FP A-5 0.55
Ko A-8 393 | BenPl A-5 0.0  g m'2 day' 1

09 A-8 1.024 j BenP2 A-6 0-0.005 g m'2 dat' 1
K d o A-7 0.5 mg I' 1 | *Kp12(20) A-5 0.06mg 1 ‘day' 1
SOD A-7 2.0  g m'2 day ' 1 | *KpU A-5 10 cm day' 1

* K b o d A-7 0.02  cm day' 1 | *KpM A-6 0-20  cm day' 1
*1̂ ( 20) A-7 0.1 day' 1 |

a see Park and Kuo 1993b
* the parameters to be estimated.
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TABLE 2. Values of Parameters for Eutrophication Model

Name Unit Range Mean Reference*

Kgr day' 1 0.410 - 3.000 1.70 EPA
r 20 day' 1 0.030 - 0.460 0.16 EPA
P20 day' 1 0.030 - 0.460 0.16 (1) (2) (3) (4)
^ , , ( 20) mg I' 1 day' 1 0.001 - 0.400 0.07 EPA
* W 20) mg I' 1 day' 1 0.025 - 5.700 0.90 EPA
1̂ ( 20) o. 0.002 - 0.350 0.16 EPA
Kp12(20) mg I' 1 day' 1 0.001 - 0.800 0.17 EPA
Kc day*1 0.010 - 4.250 0.46 EPA
Kchl cm day' 1 5.000 -80.000 18.00 EPA
Knn cm day' 1 1.000 -50.000 10.00 (I) (2) (3) (4)

Kpu cm day' 1 1.000 -50.000 10.00 (1) (2) (3) (4)
Kp22 cm day' 1 1.000 -50.000 10.00 (1) (2) (3) (4)
Kbod cm day' 1 1.000 -50.000 10.00 (1) (2) (3) (4)

a (1) Thomann, R. and J. A. Mueller, 1987.
(2) Kuo, A. Y. et al. 1991a.
(3) Park, K. and A. Y. Kuo, 1993b.
(4) Cerco, C. F. and Cole, T. M., 1994.
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TABLE 3. Parameter Scale Values and Empirical Coefficients for Run P3

Parameter
Name

Scale
Values

Coefficient
u

Ksr 5.0 I
r 20 0.5 1
^20 0.5 1.5
Knu(20) 0.5 1
I W 2 0 ) 5.0 1
1̂ ( 2 0 ) 1.0 10
K„12(20) 1.0 0.6
Ke 4.0 0.5
Kq . 50.0 10
K.,, 50.0 5

Kp.. 50.0 10
Kp22 50.0 10
Kboa 50.0 20

TABLE 4. Condition Number o f Test Runs

W ithout Preconditioning PI P2 P3

899000 534 360 125

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

TABLE 5. Estimated and True Values of the Parameters for Run C l, Run C2, and Run C6

Par. True 1 Run Cl (219 iterations) Run C2 (254 iterations) 1 'Run C6  (66  iterations)
Name value | Ini. value Res. Error % Ini. value Res. Error% | Res. Error%

Kp 2.00 | 1.70 1.9983 0.085 0.400 1.9970 0.150 | 1.9359 3.21
Rra 0.17 I 1.16 0.1696 0.235 0.460 0.1710 0.588 | 0.1579 7.12
P20 0.02 | 0.16 0.0200 0.000 0.460 0.0200 0 .000  | 0.0214 7.00
J W 2Q) 0.04 | 0.07 0.0400 0.000 0.001 0.0397 0.750 I 0.0379 5.25
I W 20 ) 0.30 | 0.90 0.3002 0.067 0.025 0.2986 0.467 | 0.2898 3.40
* W 20 ) 0.35 | 0.16 0.3513 0.371 0 .002 0.3457 1.229 | 0.3574 2.11
Kp„(20) 0.06 | 0.17 0.0600 0.000 0.800 0.0596 0.667 | 0.0571 4.83
Kc 0.10 | 0.46 0.1001 0.100 4.200 0.0999 0.100  | 0.1016 1.60
Kou 10.0 | 18.00 10.1109 1.109 1.000 9.2608 7.392 | 10.9971 9.97
K.,, 8.00 | 10.00 7.9458 0.678 1.000 8.2164 2.705 | 7.5971 5.04

Krii 10.0 | 10.00 9.9707 0.293 1.000 10.3647 3.647 | 10.0961 0.96
Kp22 20.0 | 10.00 19.9917 0.042 1.000 19.6489 1.756 | 18.6822 6.59

0.02 | 10.00 0 .0000 100.00 1.000 0.4166 ** | 0.0413 **

Relative error 1 3.2020xlC -7 5.9060x1 O'7 | 3.1810X10-4

** error is more than 100%.
a initial guess values are same as Run Cl
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TABLE 6 . Estimated and True Values o f The Parameters for Run C3

Parameter
Name

Initial
value

Result
(476 iterations.)

True
value

Error
(%)

Kgr 1.70 2.7828 2.80 0.61

r 20 0.16 0.4128 0.40 3.20
P20 0.16 0.3798 0.40 5.05

0.07 0.3474 0.35 0.74
B W 2 0 ) 0.90 4.8592 5.00 2.82
K„33(2 0 ) 0.16 0.1938 0 .2 0 3.10
Kp12(2 0 ) 0.17 0.5955 0.60 0.75
Kc 0.46 3.9055 4.00 2.36
Kou 18.00 37.6938 40.00 5.77
K .„ 10 .00 41.3328 40.00 3.33

Krn 10 .0 0 40.2912 40.00 0.73
Kp22 10 .00 40.3548 40.00 0.89

10 .00 13.2643 40.00 66 .8

relative error 7.4060x1 O'6

TABLE 7. Estimated and True Values o f The Parameters for Run C4 and Run C5

Par.
Name

Initial
value

True
value

1 Run C4 (55 iterations) 1 
j Result Error % |

Run C5 (77 iterations) 
Result Error %

Ksr 1.70 2.00 1.8961 5.20 | 1.9540 2.30
0.16 0.17 0.1607 5.47 j 0.1916 12.71

^20 0.16 0.02 0.0210 5.00 | 0.0080 60.00
K„i2(20) 0.07 0.04 0.0401 0.25 | 0.0369 7.75
IW 20) 0.90 0.30 0.3259 8.63 | 0.2984 0.53
1W 20) 0.16 0.35 0.4041 15.46 | 0.2826 19.26
Kp12(20) 0.17 0.06 0.0556 7.33 1 0.0573 4.50

0 .46 0.10 0.1027 2.70 j 0.0872 12.80
Kou 18.0 10.0 6.8468 31.53 | 0.0024 99.98
K... 10.0 8.00 8.4266 5.33 j 12.9478 61.84
Kpn 10.0 10.0 9.7661 2.34 | 8.9826 10.16
K ^ 10.0 20.0 21.279 6.40 j 24.1299 20.64
Ktod 10.0 0.02 0.0031 84.50 | 4.5287 **

Relative error 0.05030 i 0.1729
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Figure 3-1 The model transects in the tidal Rappahannock River.
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Figure 3-2 Distributions o f initial concentrations at the surface and the bottom layers for 
experiments with constant boundary conditions. (Solid lines are 
the surface concentrations and dashed lines are the bottom  concentrations,
N1 = organic nitrogen; N2 = ammonium nitrogen; N3 = nitrite-nitrate 
nitrogen; PI = organic phosphorus; P2 = inorganic phosphorus; Chi = 
phytoplankton; CBOD = carbonaceous biochemical oxygen demand; and DO 
= dissolved oxygen).
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Figure 3-3 Comparisons of the rate of convergence o f different preconditioning 
m ethods (dotted line = Run P I; dash-dotted line = Run P2; and solid line 
Run P3)
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Figure 3-4 Comparisons o f the daily surface maximum and bottom minimum
concentrations o f the state variables between the model results (Run C l)  
with initial guess param eter values and the true results over the I Oth day 
(solid lines are the true surface maximum concentrations; dashed lines are 
the true bottom minimum concentrations, dot lines with ’+ ’ are the model 
surface maximum concentrations, and dot lines with ’x ’ are the model 
bottom minimum concentrations. The +’s are the locations o f sample 
stations).
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Figure 3-5 The relative error o f cost function as a function o f the num ber o f iterations 
for Run C l.
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Figure 3-6 Comparisons o f instantanous surface and bottom concentrations o f the state 
variables between the inverse model results (Run C4) and the true results 
together with sample data (with 1 0% error) at the 10th day (solid lines are 
the model results at surface, dashed lines are the model results at bottom, 
+ ’s and x ’s are the true results at the surface and the bottom, respectively, 
and o ’s and *’s are the sample data at the surface and the bottom, 
respectively).
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Figure 3-7 Comparisons of instantanous surface and bottom concentrations of the state 
variables between the inverse model results (Run C5) and the true results 
together with sample data (with 20% error) at the 10th day (refer to Fig. 3-6 
for symbol description).
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Figure 3-8 Scatterplots o f the inverse model results (Run C4) vs. true results and
sam ple data ( s are the model result vs. true results, circles are the model 
results vs. sample data (with 10% error), and solid lines indicate one to one 
correspondence).
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Figure 3-9 Comparisons of daily surface maximum and bottom minmum concentrations 
of the state variables between the inverse model results (Run C6 ) and the 
true results over the 30th day (refer to Fig. 3-4 for lines description).
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3.2 Experiments With Time Varying Boundary Conditions

3.2.1 Model boundary conditions and sample data description

The model experiments with time-varying boundary conditions were conducted for 

the period during June 6  to July 5, 1990 (the same period for the original model 

calibration). The model setup for the present study is exactly the same as the original 

eutrophication model. The field data collected by Virginia Institute of Marine Science 

(VIMS) during that period were used for the model boundary conditions. They included 

upstream and downstream boundary conditions, sedim ent oxygen demand (SOD), benthic 

fluxes and light intensity related parameters. The full description of the field surveys and 

data were presented in Kuo et al. (1991a) and Park and Kuo (1993b).

A. U pstream  and  D ow nstream  B oundary  C onditions: Three time-varying boundary 

conditions controlled the hydrodynamic model, freshwater inflow through the upstream  

boundary, tide and salinity at the mouth. They were specified for the hydrodynamic 

model. The upstream boundary condition was specified with daily freshwater discharge 

measured at the Fredericksburg gauge station (USGS 1991). The model updated the 

freshwater discharge by linear interpolation over a 2  hour period from 0 0 0 0  to 0 2 0 0  hours, 

and then held it constant for the remaining 22 hours. Hourly tidal elevation measured at 

the mouth was used for the downstream boundary condition. The model linearly 

interpolated the hourly data to obtain the boundary condition every time step. Three 

slackwater surveys were conducted at the slack before flood (SBF) on June 6  and July 5. 

The salinity measurements at the mouth were linearly interpolated in time and used for the 

boundary condition. The water quality conditions at the mouth between those slackw ater
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surveys were also linearly interpolated in time and used for the daily downstream 

boundary conditions for eight water quality state variables.

B. N onpoint and  P o in t Source Loads: The nonpoint source contribution from the 

watershed above the fall line was evaluated from freshw ater discharge rates and 

concentrations o f w ater quality state variables at the fall line. Results from a regression 

analysis were used for the concentrations of all nutrient form s including N l, N2, N3, PI, 

and P2 (Kuo et al. 1991a). Daily input for the concentrations o f Chi, CBOD and DO was 

obtained from the linear interpolation of monitoring data. D uring the sampling period, four 

sewage treatment plants (Claiborne Run, FMC, Fredericksburg, and Massaponax STP’s) 

discharged waste w ater into the uppermost 10 km reach o f  the river. The monitoring data 

from the STP’s were linearly interpolated in time and used for the daily input of the point 

source loadings.

C. B enthic Fluxes: The original model (Park and Kuo 1993b) calibrated results of 

benthic nutrient fluxes including N l, N2, N3, PI, P2 and SOD  were specified for the 

inverse model. These fluxes remained constant throughout the model experiments.

D. L igh t C onditions: The measurements of daily inputs o f  Ia, ^  and td at VIMS were 

used to calculate solar radiation. The original model calibrated light extinction coefficients 

were used for the present model.

E . In itia l C onditions: The field data collected on June 6  slackw ater survey were used in 

the present model to specify the initial conditions. The distribution o f surface and bottom 

concentrations of eight state variables are shown in Fig. 3-10. These initial conditions of 

state variables were used for both the inverse model experim ents and sample data
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generation.

The sam ple data were generated by running the original model from June 6  to July 

5, 1990 with tim e-varying boundary conditions and initial conditions described in the last 

paragraph. The original model calibrated parameter values (Table I), except settling 

velocity K ^ ,  were used as "true" parameter values to generate sample data. A constant 20 

cm day ' 1 was used for Kp22 instead of using spatial varying values. At the beginning of 

day 32 (July 5) after the model started, the model output was saved as "field" data set.

The data set included the concentrations o f eight state variables at each cell vertically at 

seven locations along the estuary. The locations of the sample stations denoted by ' + ' are 

showed in Fig. 3-11.

3.2.2 Basic param eter estimation tests

As experim ents conducted with constant boundary condition, two experiments (Run 

T1 and Run T2) w ere conducted to test the response o f the inverse model to the different 

initial guess o f param eter values. The initial guess values o f parameters for Run T 1 and 

Run T2 were the sam e as those used in Run C l and Run C2. The model simulations 

were conducted from June 6  to July 5, 1990. The sample data set saved at day 32, i.e.,

July 5, was used as "field sample data" and the parameter values used to generate "field" 

data were treated as "true" values. The results o f estimated param eter values together with 

true values and initial guess values are listed in Table 8 . The results show that the inverse 

model is convergent after 141 iterations for Run T1 and Run T2. The errors in the 

estimated param eter values are less than 4% for Run T1 except for the settling velocity
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K ^ .  The errors in the estimated parameters for Run T2 are relatively larger, especially 

some settling velocities. If better accuracy is desired, more iterations have to be 

conducted. Again, a good initial guess of param eter values significantly increases the 

speed o f convergence. Since the model is less sensitive to the settling velocities, 

convergence o f the settling velocities are relatively slow. The graphical presentations of 

the inverse model results from Run T1 and Run T2 are all indistinguishable from those o f 

true results and, hence, they are not presented.

3.2.3 Experiments with noisy data

As experiments conducted in section 3.1.4, random errors with 10% of the mean 

concentration as standard deviation for each state variable were added to the data set used 

in Run T l .  The results of the estimated param eter values are listed in Table 9 and the 

comparison o f instantaneous results between the inverse model and data with random 

errors together with the true results are shown in Fig. 3-11. Although most estimated 

parameter values are close to the true parameter values, errors in some estimated 

parameter values are relatively large, such as P20 and K ,^  even though the graphic match 

is very satisfactory. It suggests that unique solutions for some parameters cannot be 

guaranteed for long period simulation with limited sample data set with random errors.

The unique solutions are difficult to obtain, particularly for the system where 

several parameters are strongly correlated as van Straten (1983) pointed out in his 

research. For example, the kinetic equation (Eq. A-3) o f N2 is given as
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d(N2) K 2iN2 D 0  Knl2NI
 __ L=-____:____________ +------------ +other terms

dt K,?,+N2 K  +D0 K + N lIi2.l nil h i 2

where ammonification rate (Knl2) and nitrification rate (Kn2J) are highly correlated. N2 

concentration is dependent on the net results o f the rate o f ammonification and 

nitrification rather than on individual parameter Knl2 and Kn2J. To determine individual 

parameter, it must rely on additional governing equations. For example, the 

ammonification and nitrification rate are incorporated in the mass balance equation of N l  

and N3 (A-2 and A-4). If there are no errors in the sample data, the differences between 

the sample data and the calculated concentrations o f N l  and N3 will provide additional 

information through XNl and A.N3 to correct Knl2 and Kn2i through Eqs. 2-20 and 2-21. 

However, if there are errors associated with sample data N l  and N3, the error messages 

will continuously feedback from data misfit even as the param eters converge to the true 

values. Consequently, the parameters converge to the values which give the best fit of the 

field data in a sense of minimum error of misfit. Some individual parameters may not 

close to their "true" values while the model results can be very good in a sense of least- 

squares criterion. On the other hand, the accuracy o f param eter estimation also depends on 

the model sensitivity with respect to individual param eter within the error criteria.

Because of the errors in the sample data, the cost function cannot be reduced to zero. 

Within certain error misfit, the inverse model may be not sensitive to some individual 

parameters, such as Khlld. Because the parameter estimation by the inverse model is based 

on a best fit criterion, increased sample data can be expected to improve the accuracy o f
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parameter estimation if errors associated with sample data are normally distributed. 

However, increased sample data may not be feasible practically. For those parameters with 

large uncertainty, accuracy estimation may not be guaranteed even though more sample 

data are used. For large random errors, the inverse model may not converge without 

alteration of the cost function. This can be more clearly seen during the inverse model 

calibration with field data in Chapter 5.
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TA BLE 8 . Estimated and True Values o f Parameters for Run T1 and Run T2 
( basic parameter estimation tests with time vary boundary conditions)

Par.
Name

True | 
value |

Run T1 (141 iterations) 
Ini. value Res. Error %

Run T2 (141 iterations)
Ini. value Res. Error %

2.00 | 1.70 1.9877 0.62 0.400 2.0221 1.11

R » 0.17 1 0.16 0.1659 2.41 0.460 0.1778 439
P 2D 0.02  | 0.16 0.0204 2 .00 0.460 0.0192 4.00
Knl2(20) 0.04 | 0.07 0.0395 1.23 0.001 0.0405 1.25
K*a(20) 030 | 0.90 0.2996 0.13 0.025 0.2996 0.47
^ 3 (2 0 ) 0.35 j 0.16 0.3531 0.89 0 .002 03376 3.54
Kp12(20) 0.06 j 0.17 0.0593 1.17 0.800 0.0605 0.83
Kc 0.10  | 0.46 0.0993 0.70 4.200 0.0974 2.60
Kcsi 10.0 | 18.00 10.1202 1.20 1.000 93815 938
K * i 8.00 | 10.00 7.6769 4.04 1.000 83206 4.01
Kpn 10.0 | 10.00 9.7591 2.41 1.000 11.0404 10.40
Kp22 20.0 | 10.00 19.9616 0.19 1.000 19.6268 1.87

0.02  | 10.00 1.3857 ** 1.000 1.4525 **

Relative errorl 3.49200xl0'5 | 5.6490X10"6

TA BLE 9. Estimated and True Value o f  Parameters for Run T3 
(experiments with 1 0% random error data)

Parameter Initial 
Name value

Result
63 iterations

True
value

Error
(%)

1.70 1.9453 2.00 2.74
R* 0.16 0.1536 0.17 9.65
P20 0.16 0.0341 0 .02 70.50
K„i2(20) 0.07 0.0427 0.04 6.75
Kn23(20) 0.90 03136 0.30 4.53
K*33(2 0 ) 0.16 03982 035 13.77
Kpi2(2 0 ) 0.17 0.0624 0.06 4.00
Kc 0.46 0.1121 0.10 12.10

Kai 18.00 93339 10.00 6 .66

K h 10.00 7.4688 8.00 6.64
Krn 10.00 103596 10.00 3.60
Kp22 10.00 22.8105 20.00 14.05
K ^ 10.00 8.6871 0 .02 **

Relative error 1.1650x10*
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Figure 3-10 Distributions o f initial concentrations at the surface and the bottom layers for 
experiments with time vary boundary conditions and field data calibration. 
(Solid lines are the surface concentrations and dashed lines are the bottom 
concentrations, N l = organic nitrogen; N2 = am monium nitrogen; N3 = 
nitrite-nitrate nitrogen; P I = organic phosphorus; P2 = Inorganic phosphorus; 
Chi = phytoplankton; CBOD = carbonaceous biochemical oxygen demand,
DO = dissolved oxygen).
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Figure 3-11 Comparisons of instantaneous surface and bottom concentrations of the 
state variables between the inverse model results (Run T3) and the true 
results together with sample data (with 10% error) at the 30th day (solid 
lines are the model results at surface, dashed lines are the model results at 
bottom, +’s and x’s are the true results at the surface and the bottom, 
respectively, and o ’s and *’s are the sample data at the surface and the 
bottom, respectively).
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IV. THE UNCERTAINTY OF THE PARAMETER

4.1 Parameter Uncertainty

To understand the behavior o f the parameters in the system in detail, it is 

important to study the uncertainty of each parameter and the relations among the 

parameters in the system. The uncertainty of the parameters, or errors associated with 

the estimated parameter values, can be estimated by the covariance matrix of the 

estimated parameters. The covariance matrix of the estimated parameters is defined by

(4-D

where P is the true parameter, P is the estimated parameter, E  is mathematical

expectation, and superscript T  denotes the transpose of a vector. With the assumption 

o f uncorrelated errors, an approximation of the covariance matrix o f the estimated 

parameters in nonlinear regression can be obtained by the following equation (Bard 

1974; Yeh 1986):

C o v (P )= -^ - [A (P )] - ' (4-2)
N -m
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where / ( P ) is the least squares error, N  is the number of observations; m  is the

param eter dimension; A = [ASTASJ; and As is the Jacobian matrix, or sensitivity 

matrix, i.e., the gradients o f the concentrations of the state variables with respect to the 

param eter p. Eq. 4-2 gives a lower-bound for the parameter variance-covariance, the 

actual convariance may be higher than that given by Eq. 4-2 because errors are often 

correlated. A well-estimated param eter is generally characterized by a sm all variance 

as compared to an insensitive parameter which is associated with a large variance.

The sensitivity matrix can be obtained by the influence coefficient method or 

variational method (e.g. Yeh 1986). The influence coefficient method uses the concept 

of parameter perturbation and the element of As is approximated by:

, SC,* lim C,‘(P ,*A B )-C ,'

for each j  -  1, 2,—, m ; £ = 1 ,2 , •••,«; k = 1 ,2 , —, L\ and s = k t, k2, •••, k lt —,k„

where a k is the sensitive coefficient o f the kth state variable at the sam ple location i
*j

with respect to the param eter Py; AP; = a small increment of P;, C,k is the fcth state 

variable at the sample location i; L = the number of state variables; n = the num ber of 

sample stations; and m  = the number o f parameters. Using matrix notation, Eq. 4-3 

can be expressed as:

( ^ s ) n x /7I APmxm= ACNxm (4-4)
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where N = nxL; and A(3 = a diagonal matrix with A(3 t| = Afi, for i = j  and 0 for 

others.

For the inverse model experiment with time varying boundary conditions (Run 

T l) , the param eter uncertainty is provided by the diagonal terms o f the sensitivity 

matrix (here the factor 7(P)/(N-m) was omitted). The uncertainties associated with the 

parameters are shown in Table 10. It can be seen that the large uncertainties o f the 

parameters are associated with the settling velocities. These parameters are so 

uncertain that they are not identifiable without applying param eter transformation. This 

result is consistent with results o f the test runs presented in section 3.1.2, which show 

that the inverse model is not convergent without preconditioning. A large uncertainty 

o f individual param eter also indicates that the model is not sensitive to that parameter. 

It is perhaps more appropriate to speak of sensitivities rather than uncertainties when 

the estimated parameters are not close to the "true" values (van Straten 1983). After 

applying param eter transformation, parameters become identifiable in the new 

parameter space (Table. 11). In fact, the parameter transformation used in this study is 

equivalent to scale the parameters based on their physical scales and their 

contributions in the system so that the contributions o f the scaled parameters are 

comparable in the new param eter space. For an individual parameter, it may not be 

considered identifiable in the original parameter system, while it is identifiable in the 

new parameter system. For instance, the estimated value of is about 1.4 in Run 

T l .  It deviates from the true parameter value of 0.02 if viewing it in the original 

parameter space. However, it is considered identifiable in the new parameter space 

because the difference between estimated value and the true value is on the order of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



82

Ix10 1 (see Table 3, the scale for Kh()d is IxIO 1). In other words, the error due to 

wrong estimation of is negligible.

4.2 Parameter Correlation and Singular Value Decomposition

W ith the result of the covariance matrix, one can obtain the correlation matrix 

of the estimated parameters. The correlation matrix is defined as:

where c,j's are the elements of the covariance matrix of the estim ated parameters. A 

correlation analysis o f the estimated parameters will indicate the degree of 

interdependence among the estimated parameters in the param eter system. For a 

system with high correlations among parameters, it can result in a slow rate of 

convergence or even nonoptimal parameter estimation (Yeh 1986). The correlation 

matrix o f the parameters (Run T l)  is shown in Table 12. The results show that many 

parameters are correlated with each other, such as R20, K ^^and  Kq,,; P20and K ^ ;  

K„i2, and Kn23; and K ^ ,  Kpl, and K ^ . Many settling velocities are highly correlated 

with other parameters. Because o f the high correlations am ong the parameters, the 

concentrations of the state variables are dependent on the com bined net effects of 

several parameters rather than on the individual parameter. In other words, the model 

predicted concentrations may not be affected significantly if the com bined net effects

Im
(r C  ) l/2' C l l  '■'mm'

(4-5)

c . cm l  ^ # mm
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of the correlated parameters are the same even though the parameter values deviate 

from their "true" values. This phenomenon can be seen more clearly in the 

experiments with noisy data, in which the model predictions are very satisfactory even 

though errors in some estimated parameters are relatively large (Table 9).

To understand the relations among the param eters in detail, the singular value 

decomposition (SVD) method is introduced here to further investigate the relations 

among the parameters in the system. The SVD method was previously used by 

Wiggins (1972) and Uhrhammer (1980) to calibrate seismologic parameters and 

recently used by Lai (1995) to study the river roughness. Using SVD method, one can 

diagnose the sensitivity matrix and understand the parameters of the model in great 

detail (Lai 1995).

The SVD is based on the theorem that a matrix As can be decomposed into 

three matrices U, A, and V such that

where U, V = NxN  and m xm  matrixes of orthogonal singular vectors, respectively; 

and A = an Nxm diagonal matrix of singular values o f As (Noble and Daniel 1975). 

With symmetric matrix, SVD provides eigenvalues and eigenvectors.

Assum ing £* is the differences between model results and the sample data for 

the kth state variable at location /, then,

As = UAVT (4-6)

(4-7)
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for each s = k,, k2, —. k,, i = 1 ,2 , —,n  ; k = 1 ,2 , —, L,

where C /’s and C / ’s are the model results and the sample data, respectively.

Recalling Eq. 4-3, the corrections in parameter A(3 required to make e*=0 can be

approximated by the set of following equations (Wiggins 1972; Lai 1995):

>̂AP;=-e.v (4'8)

or, in matrix form

A A(3=-e (4-9)

where e = errror matrix. Using SVD method, Eq. 4-9 can be expressed as 

AAZ=-AD (4 -10)

where

AZ=V rA(3 (4-11)

AD = U Te  (4-12)

Eq. 4-10 tells us that the errors of data misfit (AD) are dependent on the new 

linearly independent parameter corrections AZ, which is the linear combination of the 

difference between the true parameters and the estimated param eters (Eq. 4-11). For a 

system with parameters correlated with each other, the system can be described by
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only mp ( mp< m) dom inant new independent parameters. The contribution of the new 

independent param eter correction Az, is given by its corresponding singular value X,. 

Applying SVD to the original parameter system, i.e., without parameter transformation, 

the calculated first four vectors of V, which correspond to the four largest singular 

values, are shown in Table 13. The independent parameter corrections (AZ) can be 

calculated by linear com bination of the difference between the true parameters and 

estimated parameters (Eq. 4-11). The coefficients o f each linear combination, listed in 

Table 13, can be treated as weights corresponding to the parameter deviations shown 

in column a. The first four independent new parameter corrections contribute 99.37%  

of the error information to the system. It suggests that the correlations among the 

original parameters can be represented by these four new independent parameters 

which contribute 99.37% of the error o f data misfit. In other words, the model will 

give a good prediction (99.37% accuracy) as long as these new independent param eter 

corrections are very small even though an individual parameter may deviate from its 

true value. For instance, two different sets o f parameters may give the same error o f 

the data misfit if their corresponding new independent parameter corrections are very 

close.

The coefficients listed in Table 13 not only give the information about 

correlations among param eters but also give the information indicating importance o f 

the individual parameter. For example, column 1 shows that Knl2 and Kpl2 are the key 

parameters in the model. Column 2 shows that Kgr, R20, P20, KnI2, Kpl2, Kn21, and Kc 

are the key parameters in the model. These seven parameters are very important in the 

system. They indicate the relations among growth, respiration, and mortality and the
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relations among nutrients recycling and mineralizations. For example, column 2 shows 

that the growth rate has the opposite sign as the respiration rate and mortality rate, so 

that the net error will not increase if an increase of growth rate, respiration rate, and 

mortality rate occur simultaneously. It indicates that an increase o f growth rate can be 

compensated by an increase o f  respiration and mortality rates to keep the net effect 

unchanged. Notice that R20 and P20 in column 2 have the opposite sign as Kpl2 and 

K„l2. The large values o f R20 and P20 also indicate the quick nutrient recycling back to 

the system. However, an increase of nutrients recycling can be balanced by an increase 

in the rate of mineralization processes resulting in no net change in terms of error. The 

accuracy of model prediction is about 83.4% if these seven parameters can be 

estimated accurately. All the settling velocities are associated with small coefficients 

which indicate that these parameters are not very important in the system. A wrong 

estimation of these parameters will not increase the error of data misfit significantly 

resulting in a high uncertainty of these parameters. The results o f SVD o f the new 

parameter system are shown in Table 14. The results show that the first four 

independent new parameters only contribute 85.51% of the error information to the 

system. It took ten independent new parameters to have the total contribution o f 

98.77%. This indicates that the new parameters are almost independent in the new 

parameter system after param eter transformation. Examining the weights associated 

with the parameters, they are on the same order of magnitude so that each parameter 

is important in the new param eter system. The results of SVD suggest that applying 

parameter transformation can also reduce correlations among parameters resulting in 

increased speed of convergence.
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TABLE 10. Parameter Uncertainty (diagonal terms) of Run Tl

Parameter
Name

Uncertainty
(%)

Parameter
Name

Uncertainty
(%)

Ksr 0.596 Kc 0.021
R20 0.024 K c 7732.35
R20 0.007 Knu 799.55
JW 20) 0.002 Kpu 2487.44
IW 20) 0.170 Kp22 4432.51
*W 20) 0.882 Kbod 11027.15
Kpu(20) 0.006

TA BLE 11. Parameter Uncertainty (diagonal terms) of New
Parameters After Parameter Transformation (Run T l).

Param eter
Name

Uncertainty
(%)

Parameter
Name

Uncertainty
{%)

K s r 0.60 Kc 0.03
*20 0.59 K c, 0.77
f*20 0.17 * n l l 0.08
J W 2 0 ) 0.32 * p l l 0.99
* W 2 0 ) 0.17 * p 2 2 0.44
K x W ) 0.22 * b o d 0.28
K„,2(20) 0.14
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TABLE 12. Correlation Matrix of The Estimated Param eters 
( Run Tl in absolute values)

Kr rm P20 K„I2 Ŝi23 K„33 Kp.2 KchJ Knll Kp„ Kc
1 1.00
2 R» 0.33 1.00
3 P20 0.03 0.25 1.00
4 K„I2 0.26 0.06 0.08 1.00
5 ^ 2 3 0.04 0.05 0.02 0.74 1.00
6 n̂33 0.51 0.22 0.07 0.29 0.39 1.00
7 Kp.2 0.49 0.12 0.02 0.37 0.12 0.46 1.00
8 Kchl 0.33 0.60 0.02 0.28 0.08 0.19 0.68 1.00
9 K,„ 0.00 0.61 0.02 0.51 0.43 0.35 0.37 0.74 1.00
10 Kpii 0.28 0.52 0.01 0.38 0.17 0.14 0.70 0.92 0.72 1.00
11 Kp22 0.22 0.28 0.02 0.04 0.06 0.06 0.44 0.25 0.26 0.48 1.00
12 Ke 0.02 0.00 0.25 0.06 0.05 0.05 0.03 0.08 0.04 0.06 0.03 1.00
13 Kbod 0.01 0.15 0.81 0.09 0.01 0.09 0.05 0.10 0.03 0.08 0.04 0.65
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TABLE 13. The Coefficients of the First Four Vectors of V Matrix

a I 2 3 4

AKpr 0.0069 -0.0125 0.0134 -0.1053
ar20 -0.0163 0.2418 0.1677 0.9106
ap20 -0.0003 0.8351 -0.4628 -0.0537
ak„12 -0.8957 -0.1983 -0.3812 0.0944
AK„„ -0.0334 0.0150 0.0450 -0.0854
AKnv, 0.0199 -0.0062 -0.0134 0.0262
AK,,,, 0.4426 -0.3974 -0.7651 0.2364
AKcj -0.0006 0.0006 0.0008 0.0018
AK,,.. -0.0003 -0.0002 -0.0001 -0.0003
AKp,, -0.0010 -0.0004 -0.0005 0.0013
AKp72 -0.0004 -0.0002 0.0004 0.0000
AK,. -0.0077 -0.2157 0.1579 0.2899
AK^ 0.0000 -0.0006 0.0005 0.0006

*(%) 45.59 37.89 14.64 1.25

sum 45.59 83.48 98.12 99.37

TABLE 14. The Coefficients of the First Four Vectors of V Matrix 
of New Parameters after transformation

a 1 2 3 4

AKrr 0.0288 -0.0407 0.0131 -0.1954
AR20 -0.0785 0.0698 -0.1008 0.3732
ap2o 0.2737 0.2705 -0.0704 0.3283
A IU -0.1245 0.1592 -0.1308 -0.2247
AK„2, 0.0110 0.0219 0.1537 -0.0712
AK^ 0.0366 -0.0450 0.3309 0.3178
AKp,2 0.2929 -0.3277 0.3932 0.4855
AKcw -0.3856 0.4396 -0.0971 0.4291
AK,,, -0.2795 0.4100 0.7802 -0.2193
AK,,,, -0.2155 0.2517 -0.1851 0.2543
AKp27 -0.1517 0.1716 -0.1639 -0.0375
AKp -0.6268 -0.5113 0.0203 0.1516
AK^ -0.3554 -0.2636 0.0162 -0.0348

X (%) 45.98 19.38 9.82 10.33

sum 45.98 65.36 75.18 85.51
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V. M ODEL CALIBRATION WITH FIELD DATA

In this chapter, using the inverse model to calibrate the eutrophication model of 

the Rappahannock River with field data will be discussed. The eutrophication model 

was calibrated with a simulation o f distributions of the state variables from June 6 to 

July 5, 1990. The boundary conditions, initial conditions, and benthic fluxes are 

described in section 3.2.1, which were the same as those used for the experim ents with 

time-varying boundary conditions. The results of the slackwater survey conducted on 

July 5 was used for the model calibration. The eutrophication model was verified by 

using data collected on August 7, 1990.

5.1. Model Calibration

To calibrate a model with field data accurately, the effects of observation errors, 

model structure errors, and random variability of the nature that can not be reproduced 

by a deterministic model should be considered. A way to reduce these errors is to treat 

them as a combined random error and introduce weight to the cost function based on 

the likelihood theory. Because these random errors associated with each state variables 

were unknown, the proper weights were determined based on a trial-and-error basis, 

while using Eq. 2-47 as a guideline.

A trial run was first conducted by using all the data available on July 5 and unit

90
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weights for ail the state variables. The inverse model simulated the distributions of the 

state variables from June 6 to July 5, 1990 with initial guess param eter values used in 

Run T l, i.e., mean values com piled from published results. The results of the trial run 

were not satisfactory. The errors between the observations and model predictions 

associated with N2. CBOD, Chi, and P2 were very large. By exam ining the field data 

carefully, it was found that som e unusual data values occurred in the measurements of 

N2 and CBOD. The unusual high values o f N2 between km 140 to 160 were noted by 

Park and Kuo (1993b). By com paring point source loading and concentrations o f N2 

and Chi between the field surveys on July 5 and August 8, they concluded that there 

might be some errors in the measurements of N2 between km 140 to 160 on July 5. 

High concentrations o f the bottom N2 also occurred between km 0 to 40. The main 

reason for this was due to an increase of benthic release of N2 (Park and Kuo 1993b). 

During the period o f field survey, the concentration o f DO near the bottom was almost 

zero (see Fig. 5-1). The anoxic condition resulted in increasing the release of N2 from 

the bottom. However, the present model does not model this mechanism and the 

benthic flux of N2 was treated as a constant release, i.e., not as a function of DO. 

Discrepancy between the model predictions and field observations was expected. High 

concentrations of CBOD at the surface between km 0 to 60 on July 5 were also noted. 

Comparing the concentrations o f CBOD between July 5 and August 7, no unusuai 

high concentration of CBOD near the surface was observed on August 7. The 

concentration of CBOD near the surface was on the same order as that at the bottom 

between km 0 to 60 on August 7, even though the DO concentration was almost the 

same as that on July 5. The reason for causing high concentration o f CBOD on July 5
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is not known. To reduce the model structure errors and observation errors associated 

with the field data, the final data used for the inverse model calibration excluded those 

data o f N2 with concentration higher than 0.25 mg I'1 and data of CBOD with 

concentration higher than 4 mg I'1.

From the trial calibration, it was also found that the model fit one state variable 

better than another. It was difficult to make the inverse model fitting all the state 

variables equally well because the random variability were different with respect to 

each state variable. Since it is important to model Chi, N2, P2, and DO accurately, 

higher priority was given to N2, P2, Chi, and DO. In order to do this, the global 

weights associated with each state variable were objectively specified. The weights 

corresponding to N l, N2, N3, P I, P2, Chi, CBOD, and DO were 0.05, 0.15, 0.10,

0.05, 0.15, 0.25, 0.05, 0.2 respectively. The weights of Chi and DO were emphasized. 

With new weights and corrected field data, the second trial run was conducted. The 

calibration results were much improved this time. The calculated error residual 

variances showed that large errors between the model predictions and observations 

occurred mainly in P2, N2, CBOD, and Chi. The inverse model predicted relatively 

low concentrations of N2 between km 140 to 160 and km 0 to 50, low surface 

concentrations of CBOD from the km 0 to 60, and low concentration of Chi and P2 

between km 90 to 140. N2 had the largest error residual which was mainly due to the 

model structure error and observation errors as mentioned in the last paragraph. It 

suggested that the weight for N2 should be decreased based on the likelihood theory. 

The low estimation of Chi was possibly due to the incorrect estimation o f P2 because 

P2 was predicted too low between km 90 to 140. Since the system was phosphorus
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limited, the concentration of Chi was very sensitive to the availability of P2. The 

weight for P2 should be increased. The concentration of DO was almost unchanged. It 

seems that DO was insensitive to the weight. As a matter o f fact, the experim ent 

showed that the prediction o f DO was satisfactory even though the wrong param eters 

was used (Fig. 3-4). The reason is that the concentration o f bottom DO is mainly 

controlled by the physical processes as Kuo et. a i ,  (1991b) pointed out, while the 

concentration of surface DO is mainly controlled by the temperature. The weights used 

for N l, N2, N3, P I, P2, Chi, CBOD, and DO were adjusted and the new values were 

0.10, 0.07, 0.2, 0.1, 0.22, 0.15, 0.05, 0.15 respectively. Here, the weight for Chi was 

decreased so that high priority was given to P2. N3 had the smallest error residual so 

that the weight for N3 was increased.

With the adjusted weights, another trial run was conducted, the results were 

improved (not shown). The results showed that the estimated values of Kn,, and K ^  

were larger than the values obtained from the original model calibration. It was also 

found that the inverse model always attempted to reduce the values of the Knl2 and 

Knjj during the iteration processes while the total misfit was increased as soon as these 

two param eter values were reduced. It seems that the results obtained might be a local 

minimum. It was decided that a new set of the initial guess parameters with small 

values was used for the calibration.

To find a new solution, the inverse model calibration Run IMC-1 was conducted 

with new weights and initial guess values. The calibration results o f Run IMC-1 is 

shown in Fig. 5-1. The eight state variables (N l, N2, N3, P I, P2, Chi, CBOD, and 

DO) are presented in which the ranges over a day from the inverse model results at
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the surface and bottom layers are compared with the field data along the distance from 

the river mouth. The results are satisfactory. The estimated param eter values o f IMC-1 

are listed in Table 15. To com pare the present model calibration results with the 

original model results (Park and Kuo, 1993b), the model results with original model 

calibrated (OMC) param eter values are shown in Fig. 5-2 and the original model 

parameter values are also listed in Table 15.

Comparing the results of the inverse model calibration with the original model 

results (Figs. 5-1 and 5-2), there are four aspects to be noted: (I)  the prediction of 

concentrations of Chi is im proved by o f IMC-1 comparing to that o f OMC around km 

100; (2) the prediction o f concentrations of N2 is improved by IMC-1 com paring to 

that of OMC between km 140 to 160; (3) lower P2 concentration is predicted by IMC- 

1 than that of OMC around km 100; and (4) lower CBOD is predicted by IMC-1 than 

that of OMC near the mouth. One difference between IMC-1 and OMC was that a 

constant settling velocity Kn2 of 40 cm day '1 was assumed for IMC-1 while OMC 

used variable Kp22. The value of 40 cm day '1 seems too high for all reaches, so another 

Run IMC-2 was conducted by varying Kp22 along the channel. A value o f 40 cm day '1 

was used between km 140 to 160, and zero was used for the rest o f the channel. The 

results of the IMC-2 calibration are shown in Fig. 5-3 and the estim ated param eter 

values are listed in Table 15. Fig. 5-3 shows that the model prediction o f P2 is 

improved but Chi prediction is not as good as IMC-1. There are not much difference 

for the rest of the state variables between IMC-1 and IMC-2. The im provement o f 

predictions by IMC-2 is not evident.
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5.2 Model Verification

Table 15 shows that the values of estimated parameters for both IMC are very 

different from that of OMC even though the total data misfit is very close. Some 

parameter values are different by an order of magnitude, such as K„12 and Kn2v It is 

hard to judge which set o f parameter values is more appropriate without additional 

information. Since both the inverse model and original model were calibrated with one 

set of the field data, it does not guarantee that validity o f the model can be extended 

beyond the data set used in the calibration processes. By verification tests, one may 

examine the response of the model, with a particular set o f param eter values, to a 

different ambient condition.

The model runs, with different sets of parameter values (Table 15), were 

extended through August 7, 1990. The capability of the model, with respect to each set 

o f parameter values, was tested through comparisons o f the model predictions and the 

field data collected on August 7. The comparisons between the model results o f IMC- 

1, OMC, and IMC-2 and field data are shown in Figs. 5-4, 5-5, and 5-6, respectively.

It can be seen that low prediction of P2 by IM C-1 and high prediction of P2 by OMC 

are improved by IMC-2. The low prediction of N2 by OM C between km 140 to 160 

can be well predicted by IMC-1 and IMC-2. IMC-1 gives the best prediction of Chi on 

August 7, while the predictions of Chi by IMC-2 and OM C are similar. OMC gives 

the best prediction o f CBOD.

The model-data comparison of the results of calibration and verification can 

only provide a qualitative evaluation of the difference among different calibrations.

The perceived agreement between predictions and the observations depend on the
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viewpoint o f the assessors. To evaluate the difference o f the model predictions with 

different sets o f the parameters obtained from different calibrations, quantitative 

assessments of the model accuracy are desirable. Many methods are available to 

quantify the model performance (Cerco and Cole 1994). In the present study, the root- 

mean-square, mean error, and relative error are used to evaluate the model results.

The root-mean-square error is defined:

where

RM S  = root-mean-square; O = observation; P = model prediction; and n = the number 

of observations. The RMS is an indicator of the deviation between model predictions 

and observations.

The Mean error is defined:

where MER  = mean error. Mean error provides the information o f overprediction or 

underprediction. Positive mean error indicates model predictions are less than 

observations, on average. A negative mean error indicates model predictions exceed 

observations, on average.

The relative error is defined:

(5-1)

MER=£ -~  - ? ■ (5-2)
n
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RER= -S J ?  -P-  (5-3)
E °

where RER = relative error. The relative error is the ratio o f the absolute mean error to 

the mean o f the observations. It permits the comparisons o f state variables with 

different units.

The calculated RMS, MER, and RER  of the model results with the different sets of 

parameters obtained from the different model calibrations are listed in Tables 16, 17 

and 18 respectively. The observations of July 5 and August 7 were used to calculate 

these errors. Those data excluded from the calibrations were not used in the error 

calculation.

Table 16 showed that root-mean-square error o f IMC-1 and IMC-2 are less than 

that o f OMC for most of the state variables. The differences between model 

predictions and observations of the state variables are reduced in IMC-1 except for 

CBOD. The results show that error reductions are mainly due to the improvement o f 

the predictions o f nitrogens and Chi. The improvements o f  P2 in IMC-1 was attributed 

to the reduction of P2 around km 150 which compensated low prediction of P2 around 

km 100. Based on the results o f RMS, IMC-1 gives the best model prediction.

However, the improvements results in a sacrifice of CBOD prediction.

The results of the mean errors showed that model prediction by IMC-1 was similar 

to that of OMC. The observations exceeded predictions by both IMC-1 and OMC for 

most of the state variables except for DO. The only difference was that IMC-1 gave a
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underprediction o f P2 while OMC gave a overpredition o f P2. MER  of IMC-1 in N l, 

N2, N3, P I, Chi, and DO were less than that o f OM C while MER  in P2 and CBOD 

were increase. MER  o f IMC-2 in N l, N2, P2, Chi and DO were reduced comparing 

with OMC, while MER  in N3, P I, and CBOD were increase.

All calibrations showed that DO had the smallest relative errors. The low error was 

attributed to the nature o f DO distributions. Surface DO is always near saturation, 

thus mainly controlled by the temperature, while bottom DO is mainly controlled by 

the estuarine circulation. The errors in CBOD were Iagre for all three calibrations. It 

suggested that model predictions of CBOD were not satisfactory. Comparing the 

results of IMC and OMC, the relative errors in N l, N2, N3, P I, and Chi were reduced 

by IMC-1 while the relative errors in N l, N2, N3, P2, and Chi were reduced by IMC- 

2. Large error reductions were due to the im provement o f model predictions of 

nitrogens by the inverse model calibrations, especially N l and N3. The resuls of 

relative error showed evidence of improvement o f the predictions by the inverse model 

calibration.

To compare the overall performance among the different calibrations, a paired 

comparisons between IMC-1 and OMC, IMC-2 and OM C, and IMC-1 and IMC-2 are 

listed in Table 19, in which "+" signs indicate that errors are decrease and "-*' signs 

indicate that errors are increase. It shows that IMC-1 gives overall better result.
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5.3. Calibration Summary

The results o f the eutrophication model calibration and verification presented in the 

preceding sections show that the inverse model is a good tool to aid calibration o f the 

eutrophication model and provides a new approach to the model calibration. With the 

use o f the inverse model, the model calibration can be conducted more efficiently and 

systematically com pared to traditional procedures.

The accuracy o f the model calibration relies on the quality and quantity of field 

observations, model structure, and the nature of the system. Because o f limited data 

sets and random variability in the nature, the unique solutions may not be guaranteed 

for those parameters to which the model is not sensitive. To overcom e these 

weaknesses, the selection o f the cost function and the previous knowledge o f the range 

of the param eter values are very important. Because of the random variability that 

cannot be reproduced by a deterministic model, the accuracy of the inverse model 

calibration is dependent on what kind of cost function is selected. In the present 

inverse model calibration, the weighted least-squares was chosen as the cost function. 

Although the way of selecting weights was based on an engineering judgement and a 

try-and-error method, it did incorporate part of the random variability of the system 

into the cost function. The model calibration showed that the model can not be 

calibrated accurately w ithout using proper weights. In processes o f the inverse model 

calibrations, each param eter was bounded by its upper-bound and lower-bound. The 

previous knowledge o f the range of parameter values in a particular system can 

successfully control the accuracy of parameter estimation. It is important to be aware 

that the parameters obtained from the inverse model calibration is based on the
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assumption that other parameters and the boundary conditions are certain. It is 

expected that the model results may be improved by fine tuning the other parameters 

or by adjusting boundary conditions if measurements are available.
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TABLE 15. Estimated Parameter Values of Model Calibration

Parm. i OMC 1 IMC-1 1 a IMC-2
Name | Result I Initial Guess Result | Result

Kgr 1 2.00 I 1.000 1.3952 | 1.7580
R» 1 0.17 1 0.100 0.0683 | 0.0988
P2o 1 0.02 0.100 0.0190 | 0.0590
IW 2 0 ) 1 0.04 1 0.010 0.0074 I 0.0222
1 ^ (2 0 ) | 0.30 1 0.100 0.0739 | 0.0847
^33(20) | 0.35 1 0.100 0.3156 | 0.2436
KpI2(20) | 0.06 0.100 0.0271 I 0.0502
Kc 1 0.10 1 0.100 0.2249 1 0.2466
Kcn 1 10.0 I 18.00 3.2446 I 9.1153
K... 1 8.00 10.00 8.5074 | 9.2172
Kp,, 1 10.0 1 10.00 8.6867 I 11.8844
Kp 22 1 20.0 10.00 39.998 | 40.000
Kbod 1 0.02 I 10.00 8.8272 I 10.1081

bError 0.178356 1 0.1835 | 0.16437

a: the initial guess values are same as IMC-1 and Kp22 is specified (see text).
b: value of the cost function
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Table 16. Root-M ean-Square Errors Between the 
Observations and Model predictions

Name n IMC-1 IMC-2 OMC

N l 60 0.1396 0.1578 0.1781
N2 63 0.0496 0.0487 0.0576
N3 70 0.0733 0.0793 0.1032
PI 55 0.0187 0.0206 0.0198
P2 70 0.0074 0.0061 0.0081
Chl 60 5.9824 6.5200 6.9849
CBOD 61 1.6088 1.5947 1.4384
DO 70 1.0164 1.0262 1.0660

Table 17. Mean Errors Between the Observations 
and Model Predictions

Name n IMC-1 IMC-2 OMC

Nl 60 0.0111 0.0106 0.0135
N2 63 0.0050 -0.0027 0.0107
N3 70 0.0065 0.0173 0.0136
PI 55 0.0045 0.0088 0.0064
P2 70 0.0033 -0.0000 -0.0018
Chl 60 1.8169 -3.1839 3.4080
CBOD 61 0.7432 0.6104 0.2362
DO 72 -0.1676 -0.1724 -0.2608

Table 18. Relative Errors Between the Observations 
and Model Predictions

Name n IMC-1 IMC-2 OMC

Nl 60 0.2580 0.2925 0.3325.
N2 63 0.5236 0.5282 0.6156
N3 70 0.3109 0.3427 0.4892
PI 55 0.3533 0.3910 0.3717
P2 70 0.5439 0.3931 0.4953
Chl 60 0.2671 0.2900 0.2933
CBOD 61 0.6565 0.6797 0.6004
DO 72 0.1353 0.1374 0.1442
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Table 19. Comparisons of Errors Between Different Calibrations

IMC--1 vs. OMC IMC-2 vs. OMC IMC--1 vs. IMC-2
RMS MER RER RM S MER RER RM S MER RER

N l + + + + + + + . +
N2 + + + + + + - - +
N3 + + + + - + + + +
PI + + + - - - + + +
P2 + - - + + + - - -
Chl + + + + + + + + +
CBOD - - - - - - - - +
DO + + + + + + + + +

Total
improvement 7 6 6 6 5 6 5 4 7
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Figure 5-1. The inverse model (IM C-1) calibration results on 7/5/90 (daily
maximum and minimum at the surface and bottom, solid lines are the 
model results at the surface layer, dashed lines are the model results at 
the bottom layer, x ’s are the field data at the surface, o ’s are field data at 
the bottom layer, and *’s are the field data at the m iddle layer).
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Figure 5-2. The original model (OMC) calibration results on 7/5/90 (daily maximum
and minimum at the surface and bottom, refer to Fig. 5-1 for line and
symbol description).
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Figure 5-3 The inverse model (IMC-2) calibration results on 7/5/90 (daily maximum
and minimum at the surface and bottom, refer to Fig. 5-1 for line and
symbol description).
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Figure 5-4 The inverse model (IMC-1) verification results on 8/7/90 (daily maximum
and minimum at the surface and bottom, refer to Fig. 5-1 for line and
symbol description).
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Figure 5-5 The original model (OMC) verification results on 8/7/90 (daily maximum
and minimum at the surface and bottom, refer to Fig. 5-1 for line and
symbol description).
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Figure 5-6 The inverse model (IMC-2) verification results on 8/7/90 (daily maximum
and minimum at the surface and bottom, refer to Fig. 5-1 for line and
symbol description).

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



in

I/Buj 2N

t x

o x  : 
<x

O X

o

I/Buu \.d

XD

in

:XD

o

|/6 uj 1.N

c x

CM

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

D
i

s
t

a
n

c
e

 
fr

o
m

 
m

o
u

t
h

 
(

k
m

)
 

D
i

s
t

a
n

c
e

 
fr

o
m

 
m

o
u

t
h

 
(

k
m

)



:-o

r~O E

; c x

XD

OX

C \J00

c x

O;

oo
| / 6 n  m o

in ~

X -.0
‘o x

o

I / B u i  a o g o

o

[CX

lO

o
| / 6 i u  3 d

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

An inverse mathematical estuarine eutrophication model with eight state variables 

has been developed. The model provides a framework to estimate unknown parameter 

values o f the eutrophication model by assimilation o f the concentration data o f those 

state variables. The inverse model developed is a laterally integrated, two-dimensional, 

real-time model that consists o f a hydrodynamic model, an eutrophication model 

(forward model) and an adjoint model (backward model). The hydrodynamic model 

simulates tide, current, salinity, and dispersion to supply the dynamic fields for the 

transport portion of both the eutrophication model and the adjoint model. The 

eutrophication model simulates eight water quality state variables which are 

phytoplankton, organic nitrogen, ammonium nitrogen, nitrite-nitrate nitrogen, organic 

phosphorus, inorganic (ortho) phosphorus, carbonaceous biochemical oxygen demand 

and dissolved oxygen. The adjoint model is used during the processes of the parameter 

estimation (model calibration) to provide intermediate results to calculate the gradients 

of the cost function, data misfit, with respect to the parameters to be estimated. The 

process of parameter estimation is an iteration process. The parameter values are 

improved during each iteration until the total data misfit is small. The inverse model is
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solved by using a two time level, finite difference scheme. To increase the 

computation efficiency and reduce the computer storage space, a decoupling scheme is 

im plem ented in the model, in which the kinetic processes are decoupled from the 

physical transport processes for the purpose of numerical computation. An efficient 

preconditioning technique is introduced in the inverse model to speed up the 

convergence rate o f the inverse model. Several numerical experiments with 

hypothetical data sets were conducted to study the identifiability of the kinetic 

param eters and data requirement for the model calibration. The inverse model was 

applied to aid calibration of the eutrophication model o f the tidal Rappahannock River, 

Virginia.

6.1.1 The inverse model formulation

In this study, the variational technique is used to develop the inverse model. The 

basic idea o f the inverse modeling is that the model param eter values are varied until a 

cost function, which measures the data misfit between the model results and 

observation data, is minimized while the model dynam ics and kinetics are treated as 

strong constraints. The best fit is determined by a system o f equations consisting of 

the eutrophication model equations and their corresponding adjoint model equations 

forced by the model data misfit. The adjoint equations provide the intermediate results 

to calculate gradients o f the cost function with respect to the parameters those values 

are to be determined. These gradients are used with the conjugate gradient algorithm 

to search out the optimal estimations of the model param eter values. An outline 

procedure o f the parameter estimation is given in section 2.4.1.
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The detailed mathematical derivation of the inverse model is presented in chapter 

2, section 2.1 to section 2.3. The main effort is to derive the adjoint model that is 

given in Eq. 2-14. In this study, only thirteen parameters were selected to be estim ated 

so that only the gradients of the cost function with respect to these parameters are 

given (Eq. 2-17 - 2-29). However, it is easy to extend the method to estim ate more 

parameters following the general derivation given in section 2.3. Because the 

conservative control volume scheme is used to solve the eutrophication model 

equations, the computation scheme of the adjoint model will be different from the 

forward model equations if it is derived from the continuity form of the adjoint model 

equations. The scheme used to solve the adjoint model equations is derived directly 

from the finite difference equations of the forward model and given in section 2.4.3 

and Appendix C.

Since the time step used for calculating physical transport processes is on the order 

of a few minutes, the kinetic processes should be updated on the same time interval if 

they are solved simultaneously. Concentrations o f all the state variables need to be 

stored for each time step at every cell because these values are required when 

integrating the adjoint model backward. For a long period model simulation, both 

computation speed for calculation and computer storage space should be considered. In 

the present model, the kinetic processes (or data misfit) are decoupled from the 

physical transport processes when integrating both the forward model and the adjoint 

model for the purpose o f numerical computation. This permits the use of larger time 

step for computation o f kinetic processes than that for the physical transport. The 

decoupling scheme used in the inverse model is presented in section 2.4.4 and an
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example o f test results is shown in Fig. 2-4. The decoupling treatment makes it 

possible to use the inverse model to calibrate the eutrophication model when long 

period model simulation is required.

The convergence o f the inverse model is dependent on the condition of the Hessian 

matrix, the second derivative o f the cost function with respect to the parameters. 

Convergence properties o f the minimization are determined by the eigenvalue 

spectrum of the Hessian matrix and speed of convergence is related to the Hessian 

condition number, the ratio between its maximum and minimum eigenvalues. If the 

Hessian matrix is ill-conditioned, calculated descent direction is almost quasi- 

orthogonal to the optimal direction resulting in slow convergence or no convergence.

In this study, the parameter transformation method is used to construct a 

preconditioner to relax the ill-conditioning of the Hessian. Because the true Hessian is 

hard to be estimated accurately, the empirical preconditioner is used. The theory and 

the method used in this study are discussed in section 2.6. A comparison of the 

convergence speed with different methods is presented in section 3.1.2.

6.1.2 The inverse model experiments

Several numerical inverse model experiments were conducted to study the 

parameter identifiability. Thirteen parameters were selected to be estimated in the 

present inverse model studies. They are phytoplankton optimum growth rate (Kgr) at 20 

°C, respiration rate ( R20) at 20 °C, mortality rate (P20) at 20 °C, ammonification 

rate (Knl2 ) of N1 to N2, nitrification rate (Kn23) of N2 to N3, denitrification rate (Kn11) 

at 20 °C, organic phosphorus mineralization rate (K ^2) at 20 °C, settling rate (Kq,,) of
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phytoplankton, settling rate ( Knll ) of N I, settling rate (KplI ) of P I, settling rate (Kp::

) o f P2, first-order decay rate (Kc) of CBOD at 20 °C, and settling rate (K ^, ) of 

CBOD. These parameters are assumed to be spatially and temporally invariant for the 

present study. In order to conduct the experiments to simulate better real environment, 

the geometry of the tidal Rappahannock River is used for the model experiments. The 

field measurements in the summer of 1990 were used as the model boundary 

conditions and the initial conditions as well as point sources and non-point source 

loads. The results of the model experiments with constant boundary conditions and 

tim e-varying boundary conditions are presented in section 3.1 and 3.2, respectively.

The experiments were designed to verify the convergence of the inverse model 

under different conditions. The conditions investigated by the model experiments are:

(1) Convergence with different initial guess parameter values, Run C 1 versus Run 

C2 and Run T1 versus Run T2;

(2) Convergence under constant and time-varying boundary conditions, Run C l 

versus Run T 1;

(3) Convergence for different environmental conditions, Run C l versus Run C3;

(4) D ata requirement for the convergence, Run C 1 versus Run C6;

(5) Convergence with noisy data under different boundary conditions, Run 4 versus

Run T2; and

(6) Convergence with data sets o f different errors, Run C4 versus Run C5.

The sample prototype data required for the inverse model experiments were

generated by running the forward model with the "true" parameter values, which are 

the param eter values obtained from Park and K uo’s model calibration (1993b), except
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that a constant settling velocity Kp22 of 20 cm day '1 was used instead of using spatially 

varying parameter values. At particular times, based on the different model 

experiments, the forward model outputs were saved as "field" data sets. Each data set 

included concentrations of eight state variables at each cell vertically at seven 

locations along the estuary.

6.1.3 Inverse model application

The inverse model developed in this study was applied to calibrate the 

eutrophication model of the tidal Rappahannock River, Virginia. The field data 

collected on July 5, 1990 were used for the model calibration. The detailed procedures 

for the model calibration, including estimation of weights and selection of initial 

param eter values, are discussed in section 5.1. The calibration results with the inverse 

model are compared with the results obtained from conventional procedure. The model 

was further verified by the field data collected on August 7, 1990. The results of 

verification are presented in section 5.2.

6.2 Conclusions

The numerical experiments conduced in this study dem onstrate the feasibility of 

using the inverse model to estimate unknown parameter values for an estuarine 

eutrophication model. The results of the experiments show that the parameter values 

can be accurately estimated for short period and long period model simulations under 

both constant and time-varying boundary conditions with hypothetical data sets. The
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inverse model is convergent with different initial guess parameter values and under 

different environmental conditions. The results of long period experiments with limited 

data sets show that the inverse model is feasible in aiding real model calibration.

The inverse model was successfully applied to calibrate the eutrophication model 

of the tidal Rappahannock River. With the use o f the inverse model, the results of 

model prediction are improved compared with the results obtained from conventional 

calibration. The results o f the model calibration and verification show that the 

agreement between the model predictions and observations are very satisfactory. With 

the use of the inverse model, the eutrophication model can be calibrated more 

efficiently and systematically.

The studies also show that the inverse model is not only useful in aiding model 

calibration but also useful in addressing the important questions of whether the 

estimated parameter values are unique, and whether the sample data are sufficient to 

calibrate a model. Therefore, the inverse model may also serve as a tool in helping 

design a field program to collect data for model calibration.

The accuracy of param eter estimation is dependant on the quantity and quality of 

the field data. The experiments with noisy data show that the errors in estimated 

parameter increase when the random errors in the data sets increase. Caution must be 

exercised when using data with random errors and sampling errors to calibrate a 

model. The unique results cannot be guaranteed for those parameters to which the 

model is not sensitive. However, the model can provide satisfactory predictions o f the 

state variables. For those insensitive parameters, the error in some estimated 

parameters can be very large even though the model predictions match the field data
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graphically.

The uniqueness of parameter estimation is related to parameter identifiability.

For a system with parameters highly correlated with one another, the unique solution 

o f the parameter cannot always be obtained while the model predictions are very 

satisfactory in a sense o f minimum data misfit because the concentrations of the state 

variables are dependent on the com bined net results o f several parameters rather than 

on the individual parameter. The feasibility o f param eter estimation not only depends 

on how many data sets are available but also on how sensitive the system is to a 

particular parameter. The sensitivity is related to the error criterion given in the model. 

For a given error criterion, the solution may not be unique for those parameters to 

which the model is not sensitive within the given error criterion.

The convergence speed o f the inverse model is very critical for long period 

modeling. The rate of convergence depends on the condition of the Hessian and varies 

with different initial guess param eter values and different environmental conditions. 

Tw o m ajor factors that degrade the speed of convergence are cross correlation and 

multiple scales among the param eter system. M ultiple scales pose a difficult problem.

If unsuitable scales are used to scale the parameters, some parameters may be over

corrected and some under corrected during each iteration. The over-correction, or 

under-correction, often requires m ore iterations to correct them. For the present 

eutrophication system, the inverse model is not convergent without proper 

preconditioning. The experiments show that a proper preconditioner can speed up 

convergence very significantly. Since it is difficult to estimate the Hessian accurately, 

some judgements are needed in selecting scales and possibly some experiments are
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required to construct a proper preconditioner.
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6.3 Recommendations

During this study, the following limitations have been noted. These need to be 

further investigated and to be improved for the inverse eutrophication modeling.

(1) One of the critical problems in the inverse m odeling is the uniqueness o f the 

parameter values. The uniqueness problem is related to the problem of param eter 

identifiability. For a system with parameters highly correlated with one another, large 

error in the estimated parameters can occur when using data with large random errors 

,such as sampling errors, model structure errors, and random variability o f the real 

system. Because convergence o f the inverse model is m easured by the best fit, which 

depends on the given cost function and available field data, incorporating error 

information of the field data into the cost function and increasing the am ount o f  field 

data can improve the result. However, what kind of cost function should be used and 

how much data are required to ensure that the errors in the estimated param eters are in 

the acceptable range is still an issue. It requires further study both theoretically and 

experimentally.

(2) The model calibration conducted in this study assumes that the benthic fluxes 

o f the nutrients and other parameters are certain. The param eter values may differ 

from that obtained from this calibration if model calibration is conducted with 

different boundary conditions. The results o f the inverse model calibration can be 

improved if the benthic fluxes can be treated as the parameters and estimated during 

calibration.
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(3) At this study, only the identifiability of limited constant param eter is 

concerned. The inverse model can be applied to estimate more parameters and even to 

estimate spatially varying param eters (distributed parameters) if enough data are 

available. However, the data requirement should be considered when using the inverse 

model to estimate distributed parameters because the system can easily become under

determined for limited data sets. For an undetermined problem, the parameters are not 

identifiable individually. G rouping distributed parameters by spatial domain and 

estimating parameters with respect to each group seems to be a good approach. 

However, grouping distributed parameters is not a simple task because there is no 

knowledge o f the distribution o f the parameters. For practical application, possibly 

some experiments are required to group the parameters for different environments.

(4) One difficulty of using the adjoint model is the speed o f convergence. The 

speed of convergence is very critical when long period simulation is required. The 

present study shows that degradation of the speed o f convergence occurs during the 

inverse model experiments because multiple scales are involved in the eutrophication 

system. The experiments show that a proper preconditioner will speed up the 

convergence dramatically. However, it is very difficult to construct a optimal 

preconditioner without knowing the Hessian matrix. To increase the rate o f the 

convergence, an efficient technique to estimate the Hessian matrix is required.
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APPENDIX A. SOURCE AND SINK FUNCTIONS

The model formulation o f source and sink functions Sj (Eq. 2-1) are listed as follows:

A. Phytoplankton (Chi)

c tr- d r  dChl WChlS= (G -R -P )C hl+ K Chl- ^ — +— —  (A -1)

where

G=KgrQ ™ IL{Ia,Is,ke,C h lM Y N {N 2 M ,P 2 ) ;

k j  ■ i t  r  ) r  -  N 2 + N 3  r  -  P 2A'-miniL^,, Lpj  , —— —— , LP7“*N23 ’ P2 ’ N23  7777777? ’ &K  +N2+N3 P2 K  +P2 ’mn mp

, 2 .718 . „ „  =.  l t .  •«.». .
‘  T a F  ' T T  ’

7f=0 i f  t4 tu or t x d ;

K r K +Kemchi , r = r 2Q-qI~20 , P=P20- e r °  ;

G & R = growth and respiration rate of phytoplankton (day '1 ), respectively; 
P = mortality rate due to predation and other factors (day '1);
Kqj = settling rate of phytoplankton (cm day '1 );
Az & V = layer thickness (cm) and layer volume (liter), respectively;
WChl = external loading of Chi (pg day'1) including nonpoint source;
Kgr = optimum growth rate at 20 °C (day'1);
0, = constant for temperature adjustment o f growth rate;
T = temperature (°C );
IL = attenuation o f  growth due to suboptimal lighting;
N = attenuation o f  growth due to nutrient limitation;
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Hs = depth from the free surface to the top o f the layer (cm);
Ke = light extinction coefficient (c m 1) corrected for self-shading of

phytoplankton;
K = light extinction coefficient (cm '1) at zero chlorophyll concentration;
Ked- = light extinction due to self-shading of phytoplankton (cm '1 per pg I'
IS = optimum solar radiation rate (langleys day '1);
I, = solar radiation at time t (langleys day '1);
la = total daily solar radiation (langleys day '1);
t =  time of day (in hours);
tu & td =  times (in hour ) of sunrise and sunset, respectively;
K,,,,, & = half-saturation concentrations (mg I'1) for uptake o f inorganic nitrogen

and inorganic phosphorus, respectively;
R20 & P20 = respiration and mortality rate at 20 °C (day '1), respectively;
02 = constant for temperature adjustment o f respiration rate; and,
03 = constant for temperature adjustment o f mortality rate.

B. Organic Nitrogen (N l)

+a (R+a P)F Chl+K ^H L + B en N l— — +— J  (A-2)
2 Khn+Nl n r " ""  dz B dz V

where

K nl2=KnI2m < ~ Z 0 ;
K„12 = ammonification rate o f N l to N2 (mg I'1 d ay '1);
1 ^ ( 2 0 )  = ammonification rate o f N l to N2 at 20 °C;
04 = constant for temperature adjustment o f ammonification rate;
Khl2 = half-saturation concentration for ammonification (mg I'1);
a„ = ratio o f nitrogen to chlorophyll in phytoplankton (mg N per pg Chi);
a,. = fraction of consumed phytoplankton recycled by zooplankton;
K„m = settling rate of N l (cm day '1);
Fn = fraction of metabolically produced nitrogen recycled to the organic pool;
B enN l = benthic flux of N l (g m '2 day ‘‘ ); and
WN1 = external loading of N l (mg d a y 1) including point and nonpoint source.

C. Ammonium Nitrogen (N2)

K . N 2  D 0  K I2N1
S = - — ^ L  uJ l . -n/f — +a (R+a P )(\ -F J C h l

3 ^ , + N l  Knit+DO Khn+Nl - '

„  DD . BenN l 9B WN2-a  G-PR-Chl+--------------- +- (A-3)
B dz V ( ’

where
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pp=  N2-N3 +
(Km + im K ms N 3 )  W + N W . S N 3 )  ’

= nitrification rate o f N2 to N3 (mg I' 1 day '1);
1 ^ ( 2 0 )  = nitrification rate at 20 °C;
0 5 = constant for temperature adjustment o f  nitrification rate;

= half-saturation concentration for nitrification (mg l'1);
K^, = half-saturation concentration for oxygen limitation o f nitrification (mg I'1);
PR = preference o f phytoplankton for N2 uptake;
BenN2 = benthic flux o f N2 (g m '2 day '1); and
WN2 = external loading o f N2 (mg day '1) including point and nonpoint sources.

D. Nitrite-Nitrate Nitrogen (N23)

c  K„23N 2 DO p p . r u , „  BenN3 dB WN3S . - ------------------------- - f lG  I -P R )C hi-K   +--------------- +_____ fA-41
K ^ r a K ^ D O  " KUJ+DO B dz V

where

^ = ^ ( 2 0 ) - e r °  ;
K„33 = denitrification rate (day'1);
^ 33(2 0 ) = denitrification rate at 20 °C;
0 6 = constant for temperature adjustment o f  denitrification rate;

= half-saturation concentration for denitrification (mg I'1);
BenN3 = benthic flux o f N3 (g m' 2 day '1); and
WN3 = external loading o f N3 (mg day '1) including point source and nonpoint

sources.

E. Organic Phosphorus (P I)

S5=~ , +ap(R + a P )F C h h K pU^ £ L  + Ben? 1 dB + W? J (A-5)

where
k V 2 *p i  dz B 3z

Kp12 = mineralization rate of PI to P2 (mg I' 1 d ay '1);
Kp,2(20) = mineralization rate at 20 °C;
0 7 = constant for temperature adjustment o f mineralization rate;
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KhpI2 = half-saturation concentration for mineralization (mg I'1);
ap = ratio o f phosphorus to chlorophyll in phytoplankton (mg P per pg Chi);
Kp,, = settling rate o f PI (cm day'1);
Fp = fraction o f metabolically produced phosphorus recycled to the organic pool;
BenPl = benthic flux o f  PI (g m'2 day'1); and
WP1 = external loading o f PI (mg day '1) including point and nonpoint sources.

F. Inorganic (or ortho) Phosphorus (P2)

K  JPl
S = pJ i . . +a (R+a P)( 1 - F  )Chl-a G'Chl+ 

6 K ^ + P l  » r P „

„  dP2 BenP2 dB Wp2 K  ____ +___________+ r
p22 dz B dz V 

where

P2 = concentration o f inorganic phosphorus (mg I*1);
Kp22 = settling rate o f  P2 (cm day'1);
BenP2 = benthic flux o f  P2 (g m'2 day'1); and
WP2 = external loading o f P2 (mg day'1) including point and nonpoint sources.

G. Carbonaceous Biochemical Oxygen Demand (CBOD)

Sn=-K  CBOD+a a (a P)Chl+KB0D ^ CB0D)  + S 0D_ _j¥L+K B. 0 D . (A-7)7 c c '  bod dz B  K do+d o  a z v

where

K = K c(20 )-Q ro ;

IQ = first-order decay rate of CBOD (day'1);
1^(20) = CBOD decay rate at 20 °C;
0g = constant for temperature adjustment o f CBOD decay rate;
a,. = ratio o f carbon to chlorophyll in phytoplankton (mg C per pg Chi);
aco = ratio o f oxygen demand to organic carbon recycled = 2.67;
Kbod = settling rate o f CBOD (cm d a y 1);
SOD = sediment oxygen demand (g m'2 day '1);
Kdo = half-saturation concentration for benthic flux o f CBOD; and
WBOD = external loading o f CBOD (mg day '1) including point and nonpoint sources.

H. Dissolved Oxygen (DO)
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K , JV2 n n  R
S = - K  CBG D -a - J ^ L    +a a (P Q -G -J L )C h l

8 ‘ n“K + N 2 K + D O  c c " RQh2J rut

+ ( l - r , ) £ ( P O  - D O ) - - - ? __ D.°  * ^ 2 —  (A-8)
1 r 1 B Kdo+DO dz V

where

K = K r(20)-eT9'20 • K ( 2 0 ) 4 k  S  +W L L  ;

A m h rat) Az

W =72.8(/J/2-3 1 .7 (/ +3.72(7^ :rc ti  w  v  •»

DO =0.146244-102-0.36713T+0.4497- 10-2T 2-(0.966-10'1-0.205-10-2T-0.2739-10-3S)S ;

a„0 = ratio of oxygen consumed per unit o f ammonium nitrogen nitrified =4.57;
PQ = photosynthesis quotient (moles 0 2 per mole C);
RQ = respiration quotient (moles C 0 2 per mole 0 2);
K,. = reaeration rate (d a y 1);
K,.(20) = reaeration rate at 20 °C;
DOs = saturated DO concentration (mg I'1);
W DO = external loading o f OD (mg day '1) including point and nonpoint sources;

= proportionality constant = 393.3 in CGS unit;

ueq = weighted velocity over cross-section = (Bkhk) !

hcq = weighted depth over cross-section = X(Bk.hk.)/BT1;
Bn = width at the free surface;
Wrca = wind-induced reaeration (cm day '1);
Uw = wind speed (in m sec'1) at the height o f 10 m above surface;
09 = constant for temperature adjustment o f reaeration rate; and
Y, = 0  for k=l (at top layer) 1 for 2 < k < N, and N is the number o f layers at

each segment.
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APPENDIX B. SCALED SOURCE AND SINK FUNCTIONS

The scaled source and sink functions of Eq. 2-2 are as follows:

51 = (G -R -P )C h l' +KcJ - hl.'-
dz V

/ K  , J f l ' M l  '
52 =~——  +Yr ,v/z (R+a P)F C hi' +K „ - - —

Km +Nl " r n nU dz

B e n N l ' dB W N I '
B dz

, K . N 2  D 0  K . N 1 '
S i  = - _ ± £ -------- fL L _+ Y  _ J ^ :------+j a ( R+a  P)( 1 -F J C h l '

K. -+N2 K  +DO K .n +Nl 0/2 n r n/U J  Jiff n l2

r o D n u n  B e n N 2 ' d B  W N 2'
~VcN2anG 'P R ’Chl +~ B dz V

, K , N 2 '  n o
S i  = 7 ^ — --------- - i - - . - y  a G (  1 -P R )C h l'

K .7.+N2 K  +DO CN3 "ttij nit

K ^ '  B e n N 3 ' d B  W N3'
‘“A. _ ,  -------------------+  , - . + ./UJ’ B dz V

S j= - -K-p!.z P I . a (R+g P)F C hl'+ K  J ^ L L  + BenPJ ^ dB + W P 1' 
K ^ + P l  ,CPI p r p p"  dz B  dz V

s H ^ ^ ' ^ ^ R + a f K i - F j c u ' ^ ^ G - c h i '
hpI2

r  d P 2 ' B e n P 2 ' d B  W p2' 
p22~ d z ~+ B ~dz +~ V ~
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(B -l)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)
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S '  - K 'C B O D '  ^ a o f ,a J a f)C h l> + K BOO d(CB̂ D '>

-i S O D ' ^ 00 dB W BO D '
*yc.oo B KDo. D O d z ' — r ~

/ / K  ? / DO
S ^ - Y cbooK cC B O D '- y ^  **

K + N 2  K  +D0h2J mt

" T c ^ A ^ e - G - A ) C « ' h i  -T  J K f P O l  - D O ')

SO D ' D O  dB W DO' 
B KDO+ D O ~dz+ V ~

Note that all the term s o f benthic fluxes and external loads are scaled by 

maxim values of their corresponding state variables.
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APPENDIX C. FINITE DIFFERENCE EQUATIONS O F TH E ADJOINT MODEL

In this appendix, the finite difference formulations of the adjoint model (Eq. 2-14 ) 

are given. The grid system is shown in Figure 2-2. Since the transport portion o f the 

adjoint model (Eq. 2-14) are same for all the state variables, the superscript "j" for 

state variables will be omitted in the following derivations. The variables with 

superscript "1" indicate at new time level at "n+1" and the variables without 

superscript indicate at old time level "n". E  is a summation o f the terms over the 

spatial and temporal domains, i.e, summation for all the index n, i, and k, where n, i, 

and k  are time level, cell and layer index, respectively. The finite difference scheme 

for the adjoint model is obtained by taking derivative of Eq. 2-31 with respect to Ci k .

C -l. Finite Difference Scheme of The Adjoint Model

A. Inertial term

The finite difference form o f the inertial term of Eq. 2-31 can be written as 

^  e .T p c , ,  ( c _ t )

Taking derivative of Eq. C -l with respect to Cik and summing all term s together, the 

corresponding adjoint form can be obtained as follows
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(C-2)

where 0, = 1 for k  = I (at top layer), and 0, = 0 for the other layers. Notice that Eq. 

C -l is the summation for all n, i, and k. There are several term s containing Cik. The 

result o f finite difference schem e of the adjoint model is obtained by summing those 

term s together. The same fashion is applied in the following derivations.

B. Horizontal advection term

Using quick scheme, the finite difference form o f the horizontal advection can be 

written as

(C-3)

where

H AdviX =(BiX +BhlJ). '/♦UM (C-3 a)
Ax

{Ci. r C )+ U C n t- \)C U R V i (C-3b)

N otice that

C '  is defined at the right side wall o f the "i" cell and

CURVi=C^lx-2C iJ+Ci for ui+, > 0
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C U R V r C ^ - l C ^ C , for ui+1 < 0

A fter substituting Eqs. C-3a and C-3b into Eq. C-3, Eq. C-3 can be written as follows

H A dx -H A d2+HAd3 (C-4a)

where

A."
H A d i =E (C-4b)

A."
(C-4c)

A.
H Ad3 = £  -^H A d v J .C n ^ -l)C U R V .-H A d v ._ lJiCn^ l -1 )CURVhl)) (C-4d)

6 1 1  1 '

The finite difference schemes of the adjoint model correspond to Eqs. C-4a to C-4d 

are as follows

AH Advu  -A H A dvl -AHAdv2jX +AHAdv3iX (C-5)

where

AHAdvliJ=-M<.HAdvuXtu *HAdvM̂ J) - m d v uK1:*HAdVl_uXU1))

/UiAdv2ii^ C n m d v j K IJ,-\^)-CnMHAdvl_ J l l -K u ) )

and

(C-5a)

(C-5b)

A H A dv3 .=tjc. (C-5c)

2f-(Cn,!,-l)AM*,.uV.1̂ „ .1*<Ch,?l-l)H4<ft>,.u(V.u-Ai)S„.1 +
o
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{ . C n t - W A d v ^ - K ^ ^ C n l r W A d v ^ ^ f i ^ ]

where

,1 «>0
5 u-1 ( - 2

M

-2 «.<0

-2  uMX>
1 «w<0

(0 U ..20
5 m-2= U u . , < 0

f“ l

s  “m2 0
w*1 10 u. ,<0 (♦2

C. Vertical advection term

The finite difference form o f the vertical advection term can be written as

The adjoint schem e is 

where

02 = 0 for k  = K (at the bottom  layer), and 02 =1 for the other layers.

D. Vertical diffusion term

The vertical diffusion terms are treated implicitly. They can be written as
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where

D  + D

DZr- n*l— V
u  ~'tu f l x r  *w  (hk+Qlti,. )*hktl

The adjoint scheme is 

( i (C-9)

E. Horizontal diffusion term

The horizontal diffusion terms can be written as

E  K { H W u (C l. u - c u) - H D ir , . j ; c „ - c MJ))  (C-IO)

where

(A +0.Tl .)+(/l +0.TI . .)
H D i f ^ B ^ B ^ )  * . i l  . — - - 1- /T4, ,U)

4Ax^

The adjoint scheme is 

HDifjKu-K*)-HDifMJ.Xl-lUJ  (C-l 0

F. Source and sink functions

The source and sink (or error misfit) functions of the adjoint model are treated 

explicitly, i.e., all the terms are evaluated using the values o f state variables at time

n+1. The error source functions are calculate by substituting c f f  a°d  i*-" intoIji r^iji

Eqs. 2 -14b - 2 -14k and substituting summation for integral. The error source due to

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



data misfit at a cell (i,k) is calculated by

132 

(C -12)

C-2. Finite Difference Equation of The Adjoint Model

The implicit treatment o f the vertical diffusion term in Eq. C-8 results in the 

equations containing the K xK  tri-diagonal matrix in the vertical direction. In matrix 

notation,

[A A.j]=[F] (C-12)

That is

0 . . 0 \ A . i  > rFu ]
C2 D2 0 • • 0 ■ \jj i- 1

0 . . . 0 .

0 • C k Ek • 0 =

0 . . - 0 . •

0 • ■ ■ C / c - l E K - \ e k - \ E i J ( - l

V O • • ■ C K dJ
A - i r

(C-13)

and the non-zero elements, Ck, Dk, Ejj and Fk, are given by,

k 2~ — :— r—:—

(C -14)

(C-15)
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D = B iJc-J— L ^ - C k-E k (C-16)

Fk= B « - J - ± .X ? s S o S k '

1 - W ; - ' - K )

~{AHAdvLx -AHAdv2.x +AHAdv3ix)

+{HDifiXW u -X?x) -HDifMX Q t l - f c j ) )  (C -17)

where

(ht +d.r[)+(h.+Q.r[. .)
H D i f . M B + B .  ) . \ *v a  i*\aj 4 ^ . 2 *o*u>

and the terms AHAdv l i k , AHAdv2u  and AHAdv3ik are listed in Eqs. C-5b, C-5c and 

C-5d, respectively. SoSk  is a source functions due to data misfit (Eq. C-12).
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