
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2004 

Measurement of the branching fraction for neutral kaon(long) Measurement of the branching fraction for neutral kaon(long) 

decaying to muon-electron-positron decaying to muon-electron-positron 

andrew J. Norman 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Norman, andrew J., "Measurement of the branching fraction for neutral kaon(long) decaying to muon-
electron-positron" (2004). Dissertations, Theses, and Masters Projects. Paper 1539623447. 
https://dx.doi.org/doi:10.21220/s2-fzvr-xe97 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.wm.edu%2Fetd%2F1539623447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-fzvr-xe97
mailto:scholarworks@wm.edu


MEASUREMENT OF THE BRANCHING FRACTION FOR

A Dissertation 

Presented to 

The Faculty of the Department of Physics 

The College of William and Mary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy

by

Andrew J. Norman 

2004

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of

Doctor of Philosophy

Approved, January 2004

Andrew J.iNorman

John Kane

/i I /V /
/  '/

Morton Eckhause

Robert Welsh

Christopher Carone

Jose Goity 
Hampton University

11

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



To James and Mary Norman

‘L’essentiel est invisible pour les yeux.” -  Antoine de Saint-Exupery

111

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CO N TEN TS

A C K N O W L E D G E M E N T S ..................................  x

LIST O F T A B L E S ...............................................................................................  xii

LIST OF FIG U RES ....................................................................................   xviii

A B S T R A C T .......................................................................   x ix

C H A PTER

1 I n t r o d u c t i o n ................................................................      2

2 Theory and P  henom enology  ........................  5

2.1 The Standard M o d e l .............................................................................. 5

2.1.1 Weak Flavor Changing C u rren ts ................................................. 10

2.1.2 GIM Mechanism ........................................................................... 12

2.1.3 CKM Mixing ..................................................................................13

2.1.4 Unitarity B ound ..........................................................................  17

2.2 The K M e s o n ............................................................................................. 20

2.3 Weak Eigenstates and Basic S y m m etrie s .............................................23

2.4 CP Violation ............................................................................................. 27

2.4.1 Indirect and Direct CP V io la t io n ................................................29

2.4.2 Measurement of e ' / e .....................................................................32

3 The Phenom enology o f and th e D ecay —>• 36

3.1 Dispersive Amplitude and 7 *7 * ..................................................... 36

3.2 Vector Meson Dominance Model (V D M ).............................................39

iv

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.3 QCD model of  42

3.4 x P T  model of  47

3.5 CP violation and  50

A K l - ^  fi+l^-e+e- at E871      . 53

4.1 Motivation for —> iJL^iTe^e~ at E 8 7 1 ............................................. 53

4.2 Prior Measurements of K% —>• [ i ^ j j r e ' ^ e ' ............................................ 56

4.3 Event Signature for K£ ii^ix~e^e~ at E 8 7 1 ...................................57

4.3.1 Decay V e r te x ................................................................................. 60

4.3.2 Tracking Stubs .............................................................................. 60

4.4 Physics B ackgrounds................................................................................ 62

4.4.1  62

4.4.2 iP£ —>• 7r+7T~7..................................................................................6 8

4.4.3 7T+7r“7r°..................................................................................73

4.4.4 K£ —> 7r'̂ 7T“ e+e‘“ ...........................................................................74

4.4.5 Kez and P ileu p ........................................................................75

5 Experim ent E871 D e t e c t o r ................................................................. 79

5.1 E871 Detector System ............................................................................. 79

5.2 Kaon Production T a r g e t ..........................................................................84

5.3 Neutral Beam CoU im ation.......................................................................85

5.4 Decay T a n k .................................................................................................8 6

5.5 Spectrometer ............................................................................................. 89

5.6 Straw Drift Chambers ............................................................................. 91

5.7 Spectrometer M a g n e ts ............................................................................. 95

5.8 Neutral Beam S t o p ....................................................................................96

5.9 Helium Balloons........................................................................................ 101

5.10 Drift C h am b ers ......................................................................................... 102

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5.11 Trigger Scintillation C o u n te r s ............................................................... 103

5.12 Threshold Cerenkov C o u n te r...................................................................109

5.13 Lead Glass Array ( P E G ) ......................................................................... 116

5.14 The Muon Hodoscope................................................................................119

5.15 Muon Range S t a c k ...................................................................................123

5.16 Muon Range F in d er...................................................................................127

6 Hardware Trigger and  D ata A cquisition  .......................   133

6.1 Overview...................................................................................................... 133

6.2 Level 0 Trigger ......................................................................................... 134

6.3 Level 1 Trigger ......................................................................................... 137

6.4 Level 3 Trigger ......................................................................................... 139

7 M onte Carlo M o d e lin g ...............................................................................144

7.1 Monte Carlo S im ulations......................................................................... 144

7.1.1 Geant S im u la tion ..........................................................................145

7.1.2 E871 Detector Simulation ..........................................................146

7.2 Blind A nalysis.............................................................................................147

7.3 Monte Carlo G o a l s ................................................................................... 149

7.3.1 Event C haracteristics................................................................... 149

7.3.2 Detector A cceptances................................................................... 151

7.3.3 Physics Background.......................................................................152

7.4 Kaon M o d e lin g ......................................................................................... 155

7.4.1 Kaon M om entum .......................................................................... 156

7.4.2 Kaon D e c a y ....................................................................................158

7.4.3 Multiple Coulomb Scattering...................................................... 160

7.5 Monte Carlo Form F a c to rs .......................................................................163

7.5.1 Four Body Decay Kinematics ................................................... 163

VI

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7.5.2 Vector Meson Dominance Model Form F a c t o r ........................165

7.5.3 QCD Form F ac to r..........................................................................166

7.5.4 x P T  Form f a c t o r .......................................................................... 169

8 Vertex and Stub A n a l y s i s ........................................................................ 172

8.1 Event Reconstruction.............................................................................. 172

8.1.1 Invariant Mass ............................................................................. 174

8.1.2 Vertex D e fin itio n ..........................................................................180

8.1.3 Transverse Momentum and Collinearity.....................................182

8.2 Distance of Closest Approach (D O C A ) .............................................. 186

8.2.1 Track to Track ............................................................................. 187

8.2.2 Vertex P o s i t io n ............................................................................. 188

8.2.3 Track to P o in t.................................................................................189

8.2.4 Punctured Plane .......................................................................... 190

8.2.5 Secant C orrection .......................................................................... 192

8.2.6 Standard M inim ization.................................................................194

8.3 Partial Tracking S t u b s ........................................................................... 196

8.3.1 Stub R ecogn ition ...........................................................................197

8.3.2 Decay Plane C o rre la tio n ............................................................. 200

8.3.3 Stub Pair C orrelation....................................................................207

8.4 Primary vertex reconstruction with partial t r a c k s ...........................212

8.4.1 Three and Four body Invariant m a s s ......................................215

8.4.2 Three and Four Body Event Transverse Momentum . . . .  217

8.5 Tracking and Vertex Corrections........................................................... 219

8.5.1 Magnetic fringe field deflection....................................................220

9 Production Analysis and C u t s .....................................   226

9.1 /i/r Vertex C u t s ........................................................................................ 226

Vll

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



9.1.1 Primary Vertex Fiducial Volume C u t ...................................... 227

9.1.2 Muon Track Momentum C u t ...................................................... 228

9.1.3 Muon Track C u t ...................................................................... 230

9.1.4 nil Vertex Doca and C u t ...................................................... 232

9.1.5 Invariant Mass C u t ............................................................. 233

9.1.6 Transverse Momentum C u t ................................................ 233

9.2 Muon Particle Id C u t s .................................................................................236

9.3 Partial Tracking Id C u t s .........................................................................238

9.3.1 Segment Ambiguity C u t .............................................................238

9.3.2 Single Stub Vertex D O C A ..........................................................239

9.3.3 Stub To Stub D O C A ................................................................... 240

9.3.4 Primary/ Secondary Vertex Separation ................................... 241

9.3.5 Secondary Vertex Fiducial Volume C u t ................................... 243

9.4 Stub Correlation Cuts ........................................................... 243

9.4.1 Single Stub To Primary Decay Plane C u t ................................244

9.4.2 Stub To Stub Opening Angle C u t .............................................244

9.4.3 Secondary To Primary Decay Plane C u t ................................ 246

9.5 Event Reconstruction C u t s .......................................................................... 246

9.5.1 Invariant Mass Reconstruction C u ts ..........................................247

9.5.2 Transverse momentum C u t s ...................................................... 250

9.6 Summary of Production Analysis C u t s .................................................251

10 N orm alization . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253

10.1 > n ^ p r  Data Sample ....................................................................254

10.2 —>• Data Sam ple................................................................255

10.3 A cceptances................................................................................................259

10.4 Model Dependent Norm alization............................................................ 259

vni

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



11 R esults and Conclusions . . .  ........................................  261

11.1 R esu lts ......................................................................................................... 261

11.2 E r r o r s ......................................................................................................... 262

11.2.1 Statistical Error {(Tstat)............................................................... 263

11.2.2 Systematic Error (cTsys)..............................................................264

11.3 C onclusions ................................................................................................265

11.4 Collaborative Effort and C o n trib u tio n s ..............................................266

A P P E N D IX  A
E871 C o lla b o r a tio n ............................................................................................ 268

A P P E N D IX  B
Four body phase space transform s  ....................................................... 270

B IB L IO G R A P H Y   .......................   273

VITA  ....................     276

DC

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A C K N O W LED G EM ENTS

The research included in this dissertation could not have been performed if not 
for the assistance, patience, and support of many individuals. I would like to extend 
my gratitude first and foremost to my thesis advisor John Kane for mentoring me 
over the course of my undergraduate and graduate studies. His insight lead to 
the original proposal to examine the possibility of re-examimng the sensitivities 
of the E871 data set, and ultimately lead to the undertaking of the search for 
K'l —)• at E871. He has helped me through extremely difficult times over
the course of the analysis and the writing of the dissertation and for that I sincerely 
thank him for his confidence in me.

I would additionally like to thank Morton Eckhause for his support in both the 
research and especially the revision process that has lead to this document. His 
knowledge and understanding of the written word has allowed me to fully express 
the concepts behind this research.

I would also like to extend my appreciation to Robert Welsh who has served 
as a voice of quiet wisdom in matters ranging from the most basic aspects of the 
experiment, to the paths that my career has eventually taken.

This research would not have been possible without the assistance of the E871 
experimental collaboration who constructed the experimental apparatus and built 
the foundations for the data analysis. In particular I would like to thank David 
Ambrose for his work on muon identification and extraction of the —>■ 
data stream.

Finally I would like to extend my deepest gratitude to my parents James and 
Mary Norman without whose love, support and understanding I could never have 
completed this doctoral degree.

This research was supported in part by the National Science Foundation, Grant 
PHY 98-03848 and Grant PHY 00-99687.

X

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF TABLES

2 .1  Lepton P roperties...........................................................................................  6

2.2 Quark P ro p e r tie s ...........................................................................................  8

2.3 Unitary limits on dilepton decays of .........................................................19

2.4 Kaon p roperties...................................................................................................25

3.1 Parameter sets for the chiral expansion of  49

3.2 Branching fraction calculations for if£  —>■ i i^ f jr e ^ e ~ ..................................50

4.1 Pair production material p ro p e rtie s ...............................................................64

4.2 Pair production interaction le n g th s ...............................................................65

4.3 Pair production probabilities............................................................................65

4.4 Expected background e v e n ts ...................................................67

4.5 Geometrically accepted background events . . . . . . .  6 8

5.1 Transverse momentum for K l decay modes [ 1 2 ] ........................................ 98

5.2 Cerenkov threshold momenta .......................................................................112

5.3 Muon hodoscope detector placement ..........................................................120

5.4 Muon hodoscope scintillator dimensions.......................................................122

5.5 Muon range finder material properties .......................................................127

5.6 Muon range stack material p lacem ent..........................................................128

xi

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5.7 Muon range finder stopping m om enta ......................................................... 130

6.1 Level 1 event trig g e rs .......................................................................................139

7.1 Multiple scattering materials and apertures................................................162

9.1 Vertex Position C u t s ...................................................................................... 228

9.2 Vertex Position C u t s ...................................................................................... 230

9.3 Muon Track C u t s .......................................................................................231

9.4 Primary Event Vertex C u ts ...................................................................... 232

9.5 K'l Invariant Mass W in d o w .........................................................235

9.6 /i/i Transverse Momentum C u t s ................................................................... 235

9.7 Stub Identification C u t s ................................................................................ 242

9.8 Secondary Vertex Position C u t s ................................................................... 243

9.9 Summary of Cuts for /i+/i“ ................................................................. 252

10.1 > /i^/i“ Signal and Background............................................................ 255

10.2 Acceptance Ratios for Differing Form Factor m odels............................... 260

10.3 > ix^ijre^e~ Branching Fraction Differing Form Factor models . 260

Xll

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF FIGURES

2 .1  Primitive electro-weak lepton interactions.................................................  7

2.2 Primitive strong, E&M, and weak quark interactions ........................... 9

2.3 First order weak flavor changing kaon decay processes...............................11

2.4 Second order weak A S  =  1 contributions to F(iF° —y  14

2.5 Geometric representation of the unitary tr ia n g le ........................................ 16

2.6 Leading order absorptive contribution to l l ..................................... 19

2.7 to mixing via an intermediate pion l o o p .........................................22

2.8 K°  to mixing via a second order A S  — 2 weak interaction . . . .  22

2.9 Leading order box diagrams contributing to m ix in g ....................23

2.10 Neutral kaon production via strong in teraction ...........................................26

2.11 Intermediate quark contributions to to m ix in g ..............................33

3.1 Short distance weak diagrams contributing to  37

3.2 Long distance dispersive diagram for  39

3.3 Long distance dispersive pole diagram for iF° —>■ 7 *7 * ...............................40

3.4 Long distance dispersive diagram for iF° —̂ 7 *7 * with vector meson
couplings..........................................................................................   41

3.5 Loop order QCD diagrams contributing to > 7 *7 * ............................ 43

3.6 Lowest order effective quark diagrams contributing to —y 7 *7 * . . 45

4.1 Long distance dispersive diagram for  55

xiii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.2 Monte Carlo invariant mass reconstructions for K'l . . .  59

4.3 Low momentum e+e~partial tracking s tu b s ................................................61

4.4 —>• ix^(jT ')  diflFerential and integrated decay r a te s .................................6 6

4.5 Inner Bremsstrahlung and Direct Emission contributions to
7r‘̂ 7r“7 ..................................................................................................................69

4.6 Maximum invariant mass reconstructions for K'l —> 7r+7r“ 7 ...................72

4.7 if ^3 and ifes Dalitz p lo ts ................................................................................ 77

5.1 Brookhaven National Labs A G S ................................................................... 80

5.2 E871 Experimental a p p a ra tu s .......................................................................81

5.3 E871 Experimental a p p a ra tu s .......................................................................82

5.4 E871 Spectrometer and particle identification ......................................... 83

5.5 AGS B5 neutral beamline for experiment E 871 ......................................... 87

5.6 E871 primary decay region g e o m e try ..........................................................8 8

5.7 Residual gas s p e c tru m ................................................................................... 89

5.8 E871 spectrometer overv iew ..........................................................................90

5.9 E871 forward spectrometer detailed sch em a tic ......................................... 91

5.10 Straw drift chamber layer g eo m etry .............................................................93

5.11 Straw drift chamber X /Y  layer a rran g em en t.............................................93

5.12 Analyzing magnets 96D40/D02 and 100D40/D03 ...................................97

5.13 Cross sectional view of E871 compact beam s to p .................................... 100

5.14 Drift chamber rate comparison.....................................................................100

5.15 E871 primary decay tank window including He filled Mylar bag . . . 102

5.16 X-measuring hexagonal drift cells cross sec tio n ....................................... 104

5.17 Simple single edge readout scintillator and phototube readout system 105

xiv

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5.18 Trigger Scintillation Counters in modules TSCl and T S C 2 .................107

5.19 Trigger Scintillation Counter slat plane designs for TSCl and TSC2 . 108

5.20 Cerenkov light cone construction .............................................................. I l l

5.21 E871 Cerenkov counter exterior geom etry................................................. 112

5.22 Burle 8854 phototube with mu sh ie ld in g ................................................. 113

5.23 Overlap of Cerenkov mirrors with X measuring TSC s la ts .................... 115

5.24 E871 Cerenkov counter interior geom etry ................................................. 115

5.25 E871 lead glass a r r a y ..................................................................................... 117

5.26 Muon Hodoscope detector plane la y o u t .....................................................120

5.27 Muon Hodoscope detector plane d e s ig n .....................................................121

5.28 Laboratory frame muon momenta for —> //+//“ e '^ e ~ .........................123

5.29 E871 muon range s ta c k ..................................................................................129

5.30 Muon Range Finder extrusion p an e l........................................................... 131

6.1 E871 DAQ system o v e rv iew ........................................................................ 135

6.2 Schematic overview of a level 1 event t r ig g e r ...........................................140

7.1 Signal region blackout for blind analysis .....................................   148

7.2 Decay planes as defined by the event vertex and particle momenta pt- 151

7.3 Uniform Dalitz plot for iF£ in the kaon rest f r a m e ............... 153

7.4 Laboratory frame muon momenta for K'l —>• p ~ ^ .............................. 154

7.5 Invariant mass reconstructions for K l  using tracking
p a i r s ................................................................................................................... 154

7.6 E871 K l  production cross se c tio n ...............................................................158

7.7 E871 K l  momentum spectrum ..................................................................... 159

XV

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7.8 E871 K l  primary decay point s im u la tion .................................................. 160

7.9 Electron and positron momentum spectra for -+ iKjjTe^e'^ . . . .  162

7.10 Double internal conversion of a pseudoscalar meson into lepton pairs . 165

7.11 Model of the QCD form factor for  ̂ j j i^p re^e~ ............................... 168

7.12 Model of the Chiral form factor for > ^ ^ i j r e ^ e ~ ............................171

8.1 Multi-body invariant mass reconstructions............................................... 178

8.2 E871 accepted multi-body invariant mass reconstructions.......................179

8.3 XY Vertex D istribution...................................................................................181

8.4 Vertex definition .............................................................................................182

8.5 Collinearity definition......................................................................................184

8 .6  Electron and Muon transverse m o m e n ta ...................................................185

8.7 e~ to momentum asym m etry .................................................................. 185

8 .8  Secant correction to DOCA v a lu e ............................................................... 192

8.9 SDC PATREC Hit C lu s te r ...................................  199

8.10 SDC1/SDC2 Cluster M atching......................................................................200

8.11 Stub Candidate to Primary Vertex D O C A ............................................... 201

8.12 Primary decay plane angles .........................................................................202

8.13 Singlet stub co rre la tio n s ............................................. 205

8.14 Fits to singlet stub c o rre la tio n s .................................................................. 206

8.15 Monte Carlo opening angle of stub p a i r s .................................................. 208

8.16 Opening angle of stub p a i r s .........................................................................209

8.17 Primary and secondary decay plane geometries.........................................210

8.18 Secondary decay plane angle (X)  210

8.19 Secondary decay plane angle (Y)  211

xvi

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8.20 Secondary decay plane angle ( Z ) ................................................................ 211

8.21 Primary to secondary decay plane correlation .........................................212

8.22 Muon pair transverse m o m e n tu m ............................................................... 213

8.23 Collinearity angles for electron s t u b s .........................................................214

8.24 Reconstructed partial track m om entum ..................................................... 215

8.25 four body invariant mass reconstructions ...................................... 216

8.26 three body invariant mass reconstructions...................................... 217

8.27 Transverse momentum reco n stru c ts ............................................................219

8.28 Low energy electron deflection in magnetic fringe fie ld .............................222

8.29 Field strength and angular dependence of deflection in magnetic fringe 
field ................................................................................................................... 223

8.30 Low energy electron deflection g e o m e try .................................................. 224

8.31 In-bend/ out-bend deflection of low energy e“ /e^  p a i r s .......................... 225

9.1 Vertex Distributions and Fiducial Volume Cuts......................................... 229

9.2 Invariant Mass Window and Transverse Momentum C u t s ..................... 234

9.3 Signal Box  236

9.4 Lead glass array electron/pion separation c o n to u r .................................. 237

9.5 Total Event Stubs C u ts ...................................................................................239

9.6 Stub to Vertex DOCA C u t ............................................................................ 240

9.7 Stub to Stub DOCA C u t ................................................................................241

9.8 Primary to Secondary Vertex Separation C u t ............................................242

9.9 Stub to decay plane angle c u t ......................................................................244

9.10 Stub to Stub opening angle c u t ...................................................................245

9.11 Primary to Secondary Decay Plane Angle C u t .........................................247

xvii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



9.12 Two body Invariant Mass C u t ......................................................................248

9.13 Three body Invariant Mass C u t .................................................................. 249

9.14 Two body Invariant Mass C u t ......................................................................250

9.15 j j .~ 'e~  Invariant Mass Under Rough C u ts ...............................251

10.1 K l  ^  11+pi- Signal Peak ( F T ) ......................................................................256

10.2 K l  11+11" Signal Peak (Q T ) ......................................................................257

10.3 K l  pt+fi-e+e- Signal P e a k ......................................................................258

xvm

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A B ST R A C T

This dissertation describes the measurement of the decay of the long lived neu­
tral kaon into two muons and two electrons. The measurement was performed using 
the data taken during experiment E871 which was performed on the B5 beamline at 
the Alternating Gradient Synchrotron (AGS) of the Brookhaven National Labora­
tory (BNL). The branching ratio B(A° is sensitive to the absorptive
portion of the long distance ampUtude for decays of the form -h- and can 
be used to properly extract the short distance weak interaction amplitudes from the 
dileptonic events.

Measurement of K l  —*■ ix^jjre^e~ additionally allows for the exploration of 
the form factor for the —> 7 *7 * vertex. Measurement of the AT£ jjTe^e" 
branching fraction from the E871 data set provides a sensitive probe to distinguish 
between form factors arising from a chiral theory near the kaon mass, a low energy 
quark/QCD theory, a vector meson dominance model, models with CP violation 
and models which exhibit a uniform phasespace.

The analysis of the data from the E871 mx data stream observed 119 K'l —> 
events on a measured background of 52 events. The K'l —>• {x''jjTe^e~ 

event sample was normalized using a simultaneously measured sample of 5685 AT£ —> 
events. The resulting branching fraction for K l  was calculated

to be 2.78 ±  0.41 ±  0.09 x 10~® under the assumption of a xPT  form factor. The 
results are consistent with the previous world average for B(A'£ —>• of
2.6 ±  0.4 X 10“® and increase the total number of K l  —̂ j l ' ' e ' ^ e ~  events observed 
world wide from 133 to 252.
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C H A PTER  1

Introduction

This thesis details the experimental search for the decay of a long lived neu­

tral kaon into a four lepton final state consisting of two muons and two electrons. 

Searches for rare decays access high energy regimes found through the interaction 

of virtual particle states and allow measurement of the fundamental processes by 

which m atter interacts. The kaon sector in particular is rich in the manner by which 

it accesses the strong, weak and electromagnetic interactions. The melding of these 

three interactions at low laboratory energies provides a rich system in which to test 

our understanding of their couplings and assess the validity of recent models that 

have been postulated to describe this moderate energy regime.

The four lepton final state examined here is motivated by multiple factors. 

The decay branch B(A£ ii^jjre^e~)  is closely tied to the dileptonic decays

B(A£ —)■ 11^^~)  and B(A° e'^e~). In each case proper extraction of the decay

amphtudes relating to the highly suppressed second order diagrams involving a weak 

flavor changing neutral current, requires knowledge of the intermediate virtual decay 

state K'l 7 *7 *. This amplitude can be recovered directly from knowledge of the 

branching ratio for JT£ —*■ iJi^yre'^e~ and the unitary bound on the decay. In the
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case of B(iir£ —> i i ^ijT )  this is of particular interest in order to measure the mixing 

angles of the CKM matrix relating the top and charm quarks.

The second motivation for measuring the decay is to de­

termine the influence of various form factors on the resulting decay spectrum of 

the interaction. These form factors are accessible in the decay owing to the dis­

tinct nature of the final state particles. In particular, interference caused by cross 

terms arising from particle interchange in the other four lepton final state decays 

/x+/x“ and K£ —> are absent in the distinct final state of

K£ —> jjL^fx~e^e~. This allows for the decay to distinguish the competing theories 

of a vector meson dominated model(VDM), a model with CP violating currents, and 

models using effective low energy coupling for the quarks within the framework of 

chiral perturbation theory. The enhancements in the kinematic spectrum for each 

of these is distinct and of value in marking the vahdity of each model.

Prior to the examination of this data set a single event for this decay had been 

observed and reported with a branching fraction of 2 .9 t |I  x 10“® by the KTeV exper­

iment E799 [1]. Through study of the four body decay and its kinematic signatures 

under the various form factors in question, it was determined that improvement in 

this measurement was possible using the K£ —>■ data set from experiment

E871 performed at the Alternating Gradient Synchrotron (AGS) of the Brookhaven 

National Lab (BNL).

Experiment E871 was designed and constructed as a search for rare dileptonic 

decay modes of the long lived neutral kaon. The experiment was a collaboration 

among researchers from the University of Texas (Austin), Stanford University, Uni­

versity of California (Irvine), the College of William and Mary, and the University 

of Richmond. Over 30 researchers participated in the collaboration. They are listed 

in Appendix A, together with the set of E871 publications. The primary goals of 

E871 were the measurement of the decay branching fractions for K f  —> [2],
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K l e'*‘e~ [3], and a search for the decay [4]. In addition to these pri­

mary investigations, other processes were examined which could be extracted from 

the primary data streams.

The data used in the examination of the decay were extracted

from the data stream of E871. The data were analyzed using the E871

analysis code and Monte Carlo modeling system, as well as with Geant simulations. 

Normalization of the final branching fraction results was performed with respect to 

the decay rate for [2 ].

Due to the nature of the experiment and the complexity of the extraction of the 

decay amplitude substantial analysis both of the theoretical and experimental meth­

ods is discussed herein. Chapter 2 discusses the rich theory and phenomenology that 

applies to the neutral kaon system. Chapter 3 relates the general phenomenology to 

the model dependent aspects and characteristics of measuring B(i^£ —>• (i^fjre^e~).

Chapter 4 discusses the experimental aspects of measuring the decay rate. The 

event signatures and background decay contributions that were considered in E871 

are specifically included as well as analysis of the allowed phase space to which 

the experiment was sensitive. The experimental equipment and data systems are 

discussed in chapters 5 and 6 .

Key aspects of the data analysis unique to the search for if£  —> are

covered in chapter 8  dealing with the methods used to determine the event vertex 

and the identification of partial tracking stubs in the forward spectrometer . The 

full production analysis is presented in chapter 9 and the normalization of the data 

to K'l —»■ is covered in chapter 1 0 .

The final results and conclusions are covered in chapter 11 along with recent 

findings and prospects for the future.
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C H A PTER  2

Theory and Phenom enology

2.1 The Standard M odel

The standard model of modern particle physics developed in the 1970’s at­

tempts to describe on the most basic level, the particle structure of m atter and its 

interactions via the fundamental forces. Within the standard model all m atter con­

sists of a finite irreducible set of spin-1 / 2  particles denoted as fermions that interact 

via the exchange of integral spin bosons. The bosons in the theory act as the force 

carriers for the electro-weak and strong nuclear forces. The fermions are subdivided 

into the classifications of leptous and quarks based on their electric charge and their 

ability to interact with the strong nuclear force.

Leptons are observed to exist with integral or zero electric charge as defined 

in units of the charge of the electron. There are three flavors of leptons forming a 

progressive mass hierarchy in a doublet arranged structure whereby each charged

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Lepton Mass Charge Le L , Lr
e~ 0.51 MeV —le 1 0 0

105.65 MeV —le 0 1 0

1777.03 MeV —le 0 0 1

I'e < 3  eV 0 1 0 0

< 0.19 MeV 0 0 1 0

Ur <  18.2 MeV 0 0 0 1

TABLE 2.1: Lepton Properties

lepton is associated with a light, neutrally charged particle denoted as a neutrino,

\ ( \ /  \  r
(2.1)

The three leptons, the electron, muon, and tan  each with negative charge are taken 

as the base particles states while their charge conjugates the e+,  ̂ and are

denoted as their anti-particles states. The neutrinos are taken to be essentially 

massless, grouped into three generations corresponding to their associated leptons. 

Within the standard model there exists no mechanism which in a direct fashion 

provides for horizontal mixing between the lepton families; as a result members of 

each family are assigned a quantum number Li corresponding to the lepton flavor 

of the particle.

The distinguishing feature of the leptons is that they do not experience a direct 

interaction with the strong nuclear force. All lepton interactions occur through 

primitive electro-weak interaction couplings, shown in Fig. 2.1, and as such are a 

sensitive probe into the structure of the weak currents.

In contrast to leptons, quarks are distinguished by their interactions with the 

strong nuclear force and their fractional electric charge. Strong force binding and 

confinement lead quarks to form the fundamental substructure for all hadronic mat-
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(a) Electromagnetic Interac­
tion

(b) Weak Neutral Current

, w -

(c) Weak Charged Current 

FIG. 2.1: Primitive electro-weak lepton interactions
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Quark Mass Charge Properties
u 1 -  5 MeV/c"^ I  = -  2
d 3 - 9  MeV/c^ - i e I  = —IJ-z 2

G 1.15 -  1.35 GeV/c^ Charm =  4-1
s 7 5 -1 7 0  MeV/c^ Strangeness =  -1
t «  174 GeV/c^ Top =  4-1
b 4.0 -  4.4 GeV/c^ - i e.... 3.̂ Bottom =  -1

TABLE 2.2: Quark Properties

ter, either in the form of a color neutral three quark bound states that form the 

common baryons such as the proton and neutron, or in quark-antiquark bound state 

mesons such as the t t , K, t], and p .  Free quarks are not accessible due to the require­

ments of color neutrality and strong force confinement at low energies. Similar to 

the leptons there exists a generational hierarchy of distinct quark flavor doublets 

based on the masses of each quark and their associated quantum properties. Each 

generation consists of two quarks each with fractional electric charges equal to — |  

and I  the charge magnitude of the electron. There exists evidence for three such 

quark generations whose associated quarks we label as up, down, charm, strange, 

top, bottom. They are arranged in flavors doublets as:

( \  u

\ ^ i

\

7

/  \
t

(2.2)

The mass hierarchy of the quark doublets is clear from Table 2.2. As with the lep­

tons, each quark flavor has a corresponding anti-particle state leading to a total of 

12 distinct particles. These quarks have strong, weak, and electro-magnetic inter­

actions as shown in Fig. 2.2. Unlike the lepton sector the weak interaction vertex 

can mix quark flavors between generations leading to s —> u like processes arising 

via weak currents.
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(b) Electromagnetic(a) Strong Color Exchange

(c) Weak Charged Current (d) Weak Neutral Current

FIG. 2.2: Primitive strong, E&M, and weak quark interactions
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2.1.1 Weak Flavor Changing Currents

Quark interactions through the weak charged and neutral currents, as shown in 

Fig. 2.2(c) and 2.2(d) allow for flavor mixing between the quark generations. The 

strangeness violating decay K'^ —> occurs through a first order interaction

of this type as shown in Fig. 2.3(a). For the charged kaon this is the dominant 

decay, accounting for over 63% of the decays. For the neutral kaon a similar first 

order weak current would be expected to dominate the allowable decay branches. 

The decay follows at leading order the weak neutral current diagram of

Fig. 2.3(b) and thus in analogy to the charged kaons would be expected to dominate 

the system. The two muon decay of K°  is highly suppressed and only occurs with 

a branching fraction of w 7 x 10~®.

To explain the suppression of the weak flavor changing currents, Cabibbo pos- 

tulated that the quark doublet for the weak interaction consisted of the up quark 

and an additive mixture of the down and strange quarks rotated through an angle 

0c[5].

u

d cos 9c + s sin 9c

\

/  L

(2.3)

The value 9c ^  0.26 or approximately 12°, is obtained through the ratio of the 

decay rates for iF+ fip to 7t+ jiu. Using the Cabibbo angle, the strong and 

weak eigenstates can be connected by a simple rotation matrix:

V J

f
COS 9c sin 9c

sin 9c cos 9c ̂
(2.4)
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I

s

(a) Weak flavor changing charged (b) Weak flavor changing neutral 
current diagram for —̂ t ^ v  current diagram for I t

FIG. 2.3: First order weak flavor changing kaon decay processes 

The weak charged and neutral currents now can be written as;

=  {dcosQc + s s i n -  7 5 )^ ,, and

— (d COS Oc + s sin dc)hiO- — 7 5 ) (d cos 9c + s sin 9 c)

(2.5)

(2 .6)

In this manner taking G to be the weak coupling constant, the charged current 

A 5 =  0 interactions such as u •«-> d are coupled via a factor of G cos 9c while the 

{AS = 1 ) u ^  s transitions are suppressed by a factor of G sin 9c or roughly a 

factor of sin^ 9c ~  1/20. For the neutral current processes the coupling will be 

proportional to the product of the wave functions of the participating states. In this 

case the neutral processes become:

uu +  d'd' — UU + (dd cos^ 9c +  ss sin^ 9c +  (sd +  ds) cos 9c sin 9̂c (2.7)
A 5 = 0 A 5 = l

This allows for first order flavor changing weak neutral current processes which 

are suppressed by cos^csindc, but still not suppressed enough to account for the 

observed rate for
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2.1.2 GIM M echanism

To explain the observed suppression of the —>■ decay, Glashow, II-

iopoulus and Maiani proposed the inclusion of an up like charm quark with 2/3 

charge, to form a second mixing doublet:

yS COS Oc — d sin Oc j
( 2 .8 )

An addmixture of the s and d quarks is again used to form the weak interaction 

eigenstates. When we now consider the neutral currents with the inclusion of the 

charm contribution we find:

uu + d'd' CC + s' s' =  -utt +  cc +  {dd + ss) cos^ Oc + {dd + ss) sin^ 0,c

(2.9)
-f {sd -T sd — sd — sd) sin Oc cos Oc

A5=:l

The A S' =  1 contribution exactly cancels leaving no first order flavor changing 

neutral currents. This can be expressed more generally in terms of the mixing 

matrix of Eq. (2.4) by denoting the mixing matrix as Vij. In this manner we can 

express the mixing of down type quarks (d,s,b) in a summation over flavors as:

i  = (2 .10)
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If the mixing matrix is required to be unitary then for N generations of quarks the 

GIM identity

N  N  N  N

i i j k (2 .1 1 )
N   ̂ ’

then regardless of the number of quarks first order flavor changing neutral currents 

are forbidden. The identity relies only on the unitary nature of mixing matrix Vij.

The GIM mechanism also explains the suppression of the second order charged 

current processes of Fig. 2.4 to the —y amplitude. Through this process

the contribution from up to strange mixing contributes with a coupling proportional 

to cos dc sin 6 c  and is almost exactly canceled by the contribution from charm to 

strange mixing which is nearly proportional to — cos 6c  sin 6 c- If the up and charm 

quarks were degenerate in mass, then the cancellation would be exact. In this 

manner K^, Kg  mass splitting A m x  can be used to place limits on the mass of the 

charm quark.

„ 37rm̂ , AmK
~ ^     (2 .12)

" 4cos2^a r{K+-^fx+u)  ̂ ^

2.1.3 CKM  M ixing

The inclusion of a third generation of strong mass states containing both top 

and bottom quarks leads to the extension of the Cabibbo mixing via a generalized 

rotation matrix by Kobayashi and Maskawa [6 ]. The 3 x 3  CKM matrix mixes the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



14

w - W -

(a) Up quaxk contribution to —> (b) Charm quark contribution to

FIG. 2.4: Second order weak A 5 =  1 contributions to F(iF£ —*• ) which approxi­
mately cancel through the GIM mechanism

down-like -1/3 charge quarks with their respective weak eigenstates.

C„ Ki,'' 

K j  V „  K *

14s 14b j v V

(2,13)

Like the Cabbibo matrix the 3 x 3  CKM matrix is unitary such that off diagonal 

mixing in the top and bottom rows are near zero.

V - i = V ^  and • V  =  1 (2.14)

The unitary condition preserves the cancellation of first order flavor changing weak 

neutral currents and preserves the GIM identity:

i  i , j , k (2.15)
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The unitaxity of the matrix restricts the elements to:

-  {2N -  1) (2.16)

independent degrees of freedom, while the orthogonality of the matrix further re­

stricts the independent real parameters to:

(2.17)

Combining the restrictions of Eq. (2.16) and 2.17 results in

(2.18)

allowable independent phases. For the 3 x 3  mixing of the CKM matrix this results 

in 3 real parameters and a single phase. Denoting the real parameters as the angles 

{9i, 0 2 , Oz) and the phase as 6  we can rewrite the mixing matrix as:

where:

/

C K M

C l -S1C3 - S 1 S 3
\

S 1 C 2  C1C2C3 -  5 2 ^ 3 6 *'̂  C 1C 2S3 +  8 2 0 3 6 ^ ^

S1S2  C1S2C3 +  C2S36*'’ C1S2S3 -  C2Cse‘'

(2.19)

Ci = cos$i and Si =  sin^,. (2 .20)

A non-zero value of the phase S leads to off diagonal contributions to Vcb and Vts 

that break the CP invariance of the weak interactions.

The CKM matrix can be related to the geometric construct of the unitary 

triangle by expanding the matrix in powers of the Cabibbo angle A =  |V^s| and
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(1, 0)(0 , 0)

FIG. 2.5; Geometric representation of the unitary triangle

rewriting the matrix in terms of (A, A, p, 77). This Wolfenstein parameterization of 

the CKM matrix becomes [7]:

V  =

1 - | A ^ A AX^{p — irj)

-A  1 -  |A2 AA^

AA^(1 — p —17]) —AA  ̂ 1

The family mixing terms have been approximated as:

(2 .21)

Vub ~  AA^(p -  17]) 

Va  ~  AA^

Vtd ~  A^(l -  p- i7])

(2.22)

(2.23)

(2.24)

(2.25)

More completely the parameterization can be extended to require unitarity of the
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imaginary part to 0 {\^) and the real part to 0 (A )̂:

V  =

^ 1 -  |A^ A AX^{p -  IT] +

- A  1 -  |A ^ -  i r j A ^ X ^  AA2(1 +  i p X ^ )

^AA^(1 — p —17]) —AX^ 1 y

(2.26)

In this manner the CP violating terms all appear to O(X^) and can be directly 

related to the decays of the charged and neutral kaons.

2.1.4 Unitarity Bound

The decay rates for kaon into leptonic pairs can be split into both its real and 

imaginary components.

B { K l  t r )  =  \ReA\^ +  \ImA\^ (2.27)

The real component of the decay rate is the dispersive part while the imaginary 

component is recognized as the absorptive piece, in analogy to the real and imaginary 

portions of a scattering amplitude. Each of these amplitudes can then further be 

broken down into the factions of each amplitude which come from short distance 

weak interactions and the component of the amplitude arising from the long distance 

electro-magnetic diagrams. In this manner the total amplitude can be written as:

A  — (Ad!isp,weak T  A(iisp,ld) T ' {̂.Aabs,weak T Aabs,ld) (2.28)

where the weak and Id refer respectively to the electro-weak diagrams involving the 

exchange of and bosons and long distance diagrams involving contributions 

from photon propogators. The diagrams associated with the weak absorptive am­

plitude are unphysical due to the mass requirements of the weak bosons, as a result
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the contribution from Aabs,weak is explicitly zero. The branching fraction can thus 

be rewritten in a simplified form whereby the only contributions from the weak 

diagrams are manifest in the real part of the decay.

B {K l  i + n  -  \Adisp\^ + I
(2.29)

= \Aweak + Aldl"̂  ■+■ l>̂ a6sP

The absorptive portion of the amplitude is dominated by a real two photon inter­

mediate state as shown in Fig. 2.6. This diagram can be exactly calculated from 

QED and is referred to as the unitary diagram. The computation by Sehgal [8 ] [9] 

gives the unitary limits on the branching fraction for the dilepton decays:

B { K l  -  77) -  2 “  ( m ; ,  j  /3 r  1 -  /? J

where a  is the fine structure constant and p  is taken as

Since no other diagrams interfere with the unitary diagram, the rate obtained from 

this calculation is taken as a lower bound on the decay rate for i i  and is

denoted as the unitary bound. Table 2.3 lists the QED predictions for the unitary 

limits and current experimental measurements of the branching fractions. It should 

be noted that the experimental measurement of the dimuon decay branch abuts 

the unitary bound without consideration of any additional decay paths including 

contributions from the dispersive weak and long distance decay amplitudes.
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Decay Branch Unitary Bound Observation
B { K l  ^  77) N / A (5.96 ±  0.15) X10-^

B { K l  ^  e + e - ) /B (K l  ^  7 7 ) 1.19x10-^ N / A
B ( K l  ^  , i+ii- ) /B(K«  ^  7 7 ) 5.32x10-^ N /A

B(A£ e+e-) (3.15±0.08)xl0-^2 (91^) X10-19
(7.04 ±  0.18) X10-9 (7.25 ±  0.16) X10-9

TABLE 2.3: Unitary limits on dilepton decays of

FIG. 2.6: Leading order absorptive contribution to iL£
intermediate state

via a real two photon
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2.2 The K M eson

The neutral K meson was first reported to have been observed in 1947 by 

G. Rochester and C. Butler[10] in a cloud chamber exposed to cosmic rays. The 

K meson was identified through two charged tracks whose trajectories could be 

reconstructed to have originated from the decay of a neutral particle approximately 

900 times that mass of the electron. Since this first observation of the kaon, the field 

of strange interactions and kaon physics has revealed key insights into the nature of 

the fundamental symmetries of the standard model.

The neutral K meson, and i t ’s antiparticle form a classic two state 

quantum mechanical system whose properties under symmetry transformations and 

interactions with the standard model Hamiltonian are smprising. The K'^ and 

both have identical charge, mass, spin and parity. They are distinguishable by the 

addition of a new quantum number which is denoted as the Strangeness S of the 

particle. With benefit of hindsight one can appeal to the quark model to assign the 

S quantum number on the basis of the strange quark content of each meson. Using 

this model we identify the as a bound state of the down quark with the anti- 

strange quark and it’s anti particle the as a bound state of the strange quark 

with the anti-down quark.

= \M) and = \sd) (2.32)

It is clear from this construction that both states are now definite eigenstates of the 

strangeness operator S.

S \ K ^ )  = + \K^) S \ K ° )  -  -  \K°)  (2.33)

The states are clearly distinguishable now based on their quantum numbers in much
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the same maimer as the neutron is distinguishable on the basis of isospin and baryon 

number from the anti-neutron.

i f " : r  =  i  n  =  - i  S =  +1
, , (2.34)

if"  : r  =  -  , T3 =  + -  , 5  =  - 1

Unlike the neutron, the presence of strangeness-changing interactions with the weak 

force permits an initially pure \K^) state to evolve into a |K °) state. As a result of 

this mixing of the strong eigenstates under the weak force, kaons exhibit strangeness 

oscillations and regeneration effects which are unique to the system. A beam of 

pure will thus evolve such that at time t  in the future it will develop a non-zero 

coefficient b{t) for the overlap of the beam population to exist in the antiparticle 

state.

\K ^ { t ) ) - ^ a { t ) \K ^ )  + b{t)\K^)  (2.35)

Because the strong nuclear force does not contain strangeness-violating pro­

cesses, and the kaon is the lightest particle species with strange content we find 

that kaon decay via a strong interaction is kinematically forbidden by strangeness 

conservation. The process of oscillation is thus not possible within the confines of 

the strong Hamiltonian since it results in a A S  =  2 transition. To describe this 

phenomena more fully we note that both the AT° and may decay into a two pion 

state (7r'^7r“ ) via a weak A S  — 1 transition. We can combine two such interactions 

to form a connecting pion loop between the states as shown in Fig. 2.7. The result­

ing A S  — 2  strangeness-violating interaction is second order in the weak couphng 

and fully allowed under the standard model.

The process can be broken down further showing the actual exchange of the 

intermediate W'^ and bosons. Fig. 2.8 shows explicitly the quark content of the
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TV.+

FIG. 2.7: to mixing via an intermediate pion loop

TC'■-V

FIG. 2.8: to iF° mixing via a second order A 5 =  2 weak interaction

interaction and denotes the effective pion loop. To leading order this transition is 

just a standard set of box diagrams. The first few terms in the expansion can then 

be expressed as shown in Fig. 2.9.

The weak perturbation to the Hamiltonian breaks the initial degeneracy of the 

two kaon states and splits the levels. We can diagonalize this new interaction

to produce two new eigenstates and of the system. The perturbation now 

splits the expectation value of the kaon masses for and in such a way that 

Arufc =  |toi — m 2 1 is smaU but non-zero.

The lifting of the degeneracy in the states leads us to rewrite the original strong
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w -

w -

M U

FIG. 2.9: Leading order box diagrams contributing to mixing 

states £is a linear combination of the new observable states \K^) and

\K°) = {a |if° )  +  b |iF °»  / V o 2 + F

\K^) = (c \K^) + d |K °))

(2.36)

(2.37)

In this new framework we can examine the consequences of basic symmetry 

operators on the kaon system as well as describe physical properties of the system 

which are observable in the lab. Most importantly the new states are now explicitly 

tied to the effects of the weak; interaction and thereby permit the exploration of 

their allowable standard model decay branches.

2.3 Weak Eigenstates and Basic Symmetries

The weak interaction is not invariant under parity transformations due to the 

explicit V — A  nature of the coupling. If however the charge conjugation operator 

C  is considered in combination with the parity operator then the weak interaction 

does display at first glance an invariance.

In the case of the kaon system it is natural to examine the transformation of
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the two sets of eigenstates that have been developed. The strange eigenstates 

and under C P  transform into one another^:

C P  |K °) =  -  |K °) C P \K ^ )  = -  \K^)  (2.38)

As a result and are clearly not the CP eigenstates. The weak eigenstates 

and K 2 arise from the perturbative breaking of the strong Hamiltonian degeneracy. 

They can be expressed as an orthonormal linear combination of the original states 

and W ith a choice of normahzation these become:

l^?> ^  ^  [ l ^ “) + 1̂ ">] 

\ K )  -  - 1̂ ”>]

The weak eigenstates are now states of definite CP'.

C P  \Kl)  =  +  I A°) 

C P \ K l )  = - \ K l )

(2.39)

(2.40)

Since pions have an intrinsic negative parity and are emitted with an angular mo­

mentum £ =  0  corresponding to a spatial wave function with positive parity, the 

overall parity of the final state of a decay can be found simply by counting the 

number of pions. In the case of the kaon system this leads to the prediction that 

the two eigenstates and ATf should have primarily CP even and CP odd decay

^We have suppressed the arbitrary phase by choosing the relative phase angle between and 
to be TT. As a result C P  \ K ^ )  — | A °) =  — | A®). Alternatively we could have invoked the

observed intrinsic negative parity (pseudoscalar nature) of the kaon to set the phase angle so that 
C P  |a:°) = ~C |if° )  =  -  |A °) .
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Kaon Species Lifetime r  (s) cr Spin C P
0.89 X 10-1° 2.67 cm 0 even

K l 5.17 X 10-^ 15.51 m 0 odd

TABLE 2.4: Experimentally observed kaon properties

25

Ki
(2.41)

K l

7T 7T 7T

tt”
(2.42)

Since the kaon has a mass ruk ^  497 MeV and pion w 140 MeV the 2n decay 

modes have 215MeV of kinetic energy available to the phase space. In contrast 

the Stt decay modes of the CP odd state have only 78MeV of kinetic energy. This 

smaller available phase space in addtion to the additional factors of 1/27t arising 

from the three body final state, suppresses the decay rate of the CP odd AT® giving 

it a longer lifetime than the CP even state.

Experimentally the effect of the CP even and CP odd phase spaces are seen 

through the observation of two distinct neutral kaon species with differing lifetimes 

and primary decays modes of opposite parity. The two observed kaons are denoted 

as the short-lived and long-lived neutral kaons, Kg and with lifetimes cr which 

differ by two orders of magnitude. The properties of these species are listed in Table 

2.4.
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TT’

P

d

A?

FIG. 2.10: Strong interaction production of a neutral kaon through associated A° hyperon 
production.

The production of kaons through the strong interaction entails a reaction of the 

form:

7r“p K °A  (2.43)

where strangeness is conserved by the associated production of a lambda hyperon 

depicted in Fig. 2.10 Prom Eq. (2.39) the strong eigenstate can be rewritten as 

linear combination of the weak CP eigenstates. If we consider a beam of kaons 

generated through the strong production mechanism of Eq. (2.43) then each state 

Kg  and is equally prevalent in the initial beam. The large difference in lifetime 

between and Kg  makes it possible to separate the species by allowing the Kg  

component to decay out leaving only the long lived kaons. A beam of pure is 

then able to decay only via the weak processes outlined above, specifically accessing 

only CP odd decay branches.

as

a
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2.4 CP Violation

The experimental observation of the decay of the into a two pion final 

state in 1964 by Fitch and Cronin[ll] demonstrated that the C P  symmetry of 

the standard model was not exact. Further measurements have found that in fact 

B(iF£ —> 7r+7r“ ) =  0.2067 ±  0.035% [12] or roughly that 1 in 500 decays of the iF° 

decay into a two pion final state. Since the kaons are spin zero pseudoscalars, the 

pions in the decay must be emitted in a spin zero state, leaving the intrinsic parity 

of the final state definitely positive. This leads to the conclusion that while strongly 

suppressed, the C P  symmetry is violated in weak decays. As a consequence of CP 

non-conservation, we note that time reversal invariance must also be violated for 

the CPT theorem to hold, leading to the conclusion that the transition amplitudes 

for ^  oscillation are not equal:

{ K ° \ S \ K ^ }  ^  { K ° \S \K ^ }  (2.44)

To quantify this CP violation we rewrite the weak eigenstates and again 

in terms of the CP eigenstates K f  and and allow for a slight mixing of the states 

through a violation parameter e:

lAt) .  (|A'S) + . |A'f))
y i  +  |e r

where the parameter e 2.3 x 10“ .̂ The actual degree to which CP is violated can 

then be expressed as a ratio of the decay rates for each of the physically observable
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states to decay to a two pion final state.

= (2.46)
(2x(if|) 1 +  e 2  ̂ '

Experimentally we measure the decay branches for the charged two pion state and 

the neutral pion state separately:

=  =  {2.47}

In this manner we can now predict the time dependent rate intensity for an initial 

state to decay into the 2 tc final state as:

I{K^ 7c' '̂K~) oc +  \r]±fe~^^* +  2 |?7±| cos {Amt + (p±) (2.48)

Where and are the proper decay rates for the short-lived and long-lived weak 

eigenstates. We note that the first two terms in the expression are the standard 

exponential decay rates of the states where the rate for contribution from the 

state is explicitly suppressed by the CP violation parameter r]±. The last term 

represents the efi'ect of quantum mechanical interferences between the states and 

corresponds directly to the degree of strangeness oscillation between the kaons. The 

phase angle (f)± of the CP violation can be extracted from this term with knowledge 

of the Kg / m a s s  splitting and the lifetimes for each state:

t a n ( 0 ± ) - 2 - ^ ^  0± =  (43.7 ±0.6)° (2.49)

The same treatment can be apphed to the neutral pion decays of the and Kg to
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obtain:

|r/ool =  (2.275 ±  0.019) x 10~^ (2.51)

000 =  (43.4 ±  1.0)° (2.52)

The quantities r/± and tjoo can be re-expressed in terms of the proportions of 

each amplitude which comes from direct and indirect CP violation[13] to determine 

the underlying flavor mixing phenomena.

2.4.1 Indirect and Direct CP Violation

The origin of CP violation in the kaon system can be explained by noting that 

two basic reaction types can lead to a final state with CP symmetry diflFerent from 

the original eigenstate that the system was prepared in.

In the case of indirect CP violation the initially CP odd state first oscillated 

through the K ^ /K ^  mixing process into a large overlap with the eigenstate and

then naturally decays through the Kg  two pion decay branch. Schematically the

process appears as:

TT+TT" (2.53)

where the intermediate Kg oscillation process involves the A 5 =  2  weak current 

effect of the virtual pion loop as shown previously in Fig. 2.7 and 2.8. This can 

also be viewed as the overlap of the with the CP even Ky state acting as an 

approximate eigenstate of the weak interaction and thus decaying to the appropriate 

two pion final state with a reduced probabihty related to the overlap coefiicient e. 

In contrast to indirect violation of the symmetry, the underlying quark substruc­
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ture of the final state mesons can lead to small but non-zero direct violation of CP. 

Normally weak hadronic interactions obey a A I  — |  transition rule for the isospin 

change of the hadrons involved, in this case corresponding to the d s transition. 

By way of example the A hyperon with an underlying uds quark substructure has a 

net isospin /  =  0, and strangeness S  = —1. The normal Clebsch-Gordon coefficients 

then predict the ratio of the rates for the two primary decay branches:

r ( A  n7T°) ^  1 .
r(A ^  pn-)  2  ̂ ’

which is experimentally observed to be correct. W hat the Clebsch-Gordon coeffi­

cients fail to account for are the additional A I  — |  decays also observed in the A

system, with a greatly reduced branching fraction.

These same A I  =  3/2 transition can also be manifested in the neutral kaon 

system. The process K  or K  can then occur where the final

states pions have an isospin /  =  0  as well as in a final state of total isospin 1  = 2 . 

The resulting transitions then each can be assigned a decay amplitude^ including a 

corresponding phase factor for each:

Amplitude for A / =  ^ (2.55)

Amphtude for A I  ~  ^   ̂ (2.56)

The difference between the phase angles Sq — 62 explicitly changes sign under time 

reversal and thus by the CPT theorem is equivalent to direct violation of the CP 

symmetry.

The forbidden A I  =  |  is allowed to occur due to the underlying flavor mixing 

between the quark generations. When the Cabibbo mixing mechanism of section

^An amplitude for the the case J  =  0 is omitted as the final state is forbidden by Bose symmetry.
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2 .1 .2  is extended to a third quark doublet containing the top and bottom it introduces 

a complex phase S into the CKM matrix parameterized by the real mixing angles

&l, &2, 02'-

VcKM =

C l -SIC3 - S 1 S 3

S1C2 C1C2C3 -  82836 ^̂  C1C2S3 +  S 2C 36*^  

\^SiS2 C1S2C3 +  C2S3e*‘̂  C iS2S3 -  C2C3e*‘̂ y

(2.57)

where

Cj =  cos 9i and Sj =  sin^*. (2.58)

The non-zero phase then results in an allowable A I  = 3/2 transition originating 

from the non-zero off diagonal elements of the matrix.

To determine the phase we examine the semi-leptonic decays of the system. 

These two major decay branches allow us to consider the asymmetry that exists 

between states that are independently conjugates of both parity and charge. In 

particular;

(2.59)

(2.60)

and

+ 7T ê Vg,

K l  TT+ê J/e

(2.61)

(2.62)

Both exhibit a slight asymmetry in their absolute decay fractions. From this asym-
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metry we can connect directly to the phase S:

r ( K f  ^ 7T~e+u,) +  r ( / f £ - T+e-^i) ' '  ^

and from the measured value of the semi-leptonic asymmetry of (0.327 ±  0.012)% 

note that the kaon system provides a unique distinction between particles and anti­

particles. Moreover it provides us with an absolute definition of positive charge, as 

being that flavor of lepton which is preferred in the decay of the neutral kaon.

Since the phase 5 from Eq. (2.63) is non-zero, we consider the effect now of the 

forbidden A I  = 3/2 transitions on direct CP violation. Taking into account both 

the and interference for /  =  0  and 1  = 2  final states it can be shown

that the indirect CP violation amplitude e and the direct CP violation amplitude 

e' can be related to the decay branch ratios [13]:

(2.64)

?7oo =  ^ e - 2 e '  (2.65)

2.4.2 M easurement o f s'je

Eq. (2.64) and (2.65) allow for the decay ratios rj± and r/oo to be used to extract 

information on e and s'. In particular it is convenient to extract the parameters as 

a ratio of the direct to indirect components of the CP violation of the form e'/e. 

Since both effects are small, extraction of the real part of the double ratio preserves 

the relative magnitudes of the parameters by suppressing systematic uncertainties 

that appear in each measured branching fraction. Taking only the real part of the
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w -

u ,c ,tu ,c ,t

FIG. 2.11: Intermediate quark contributions to to mixing

ratio, the prescription for obtaining Re{s'/e) becomes;

Re  (eVe) ~  ^ V±
Voo

(2.66)

Within the confines of the standard model this ratio of e' j e  can only be different 

from zero if there exists a complex non-zero phase in the off diagonal components 

of the CKM matrix Vij as stated in Eq. (2.57). These matrix elements describe 

the weak current mixing between the third generation top quark with the lighter 

strange and down quarks. In particular the direct and indirect contributions to CP 

violation can be related to the coupling of the top quark through the imaginary part 

of At [14];

e' a  Im At = (2.67)

which correspond to the dominance of the class of diagrams containing a heavy t- 

quark propagator, such as primary indirect contribution from to oscillation 

shown in Fig. 2.11. We can relate ImAt via the Wolfenstein parameterization of the 

CKM matrix to the Jarlskog parameter Jcp  which is the invariant measure of CP
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violation in the standard model. In particular taking the Wolfenstein A =  0.221 we 

have:

Jcp = X V l  -  XnmXt (2 .6 8 )

where Jqp is given more traditionally as an invariant combination of the CKM 

matrix elements[15]:

Jcp =  (2.69)

which reduces in all cases to:

Jcp  =  s ls 2S^CiC2C3 sin<5 (2.70)

Ci = cos 9i and Sj =  sin 9i

where 0i, ^2 , ^3 are the angles of the unitary triangle. This connection makes Jcp  

a direct measure of the area of the unitary triangle and proportional to the strength 

of the CP violation in the standard model.

In particular we notice that Jcp  vanishes if any of the conditions are met:

9i =  0, 9i = 7r / 2  (2.71)

(5 =  0 ;  5  =  7T

resulting in no CP non-conservation within the standard model.

W ith knowledge of the imaginary phase 5 and the invariant Jarlskog parameter 

the formalism still requires a measure of the length of the sides of the unitary trian­

gle, or conversely the location of i t ’s vertices through extraction of the Wolfenstein 

parameters p and rj. This additional information would provide an understanding
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of the underlying structure of CP violation in the standard model. To gain this 

information we examine the rare decays of the neutral kaon system relating to the 

the vertex and the extraction of short and long distance information from the 

decays and > /r+/.t“ e+e“ .
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C H A PTER  3 

The Phenom enology of K ^ * ^ *  and 

the Decay

3.1 Dispersive Am plitude and K\ —̂ 7 * 7 *

In addition to the contributions from the unitary diagram, decays of the form 

—»■ include the dispersive contributions from R e A  divided into the short

distance weak and long distance electromagnetic amplitudes:

R e A  =  A sd +  A ld (3.1)

The cancellation of flavor-changing neutral currents at tree level via the GIM mecha­

nism leaves the residual rates in the short distance amplitude confined to the second 

order box diagrams containing the exchange of bosons as well as the second 

order penguin diagrams involving the exchange of a boson as shown in Fig. 

3.1. To determine the contribution of these second order processes to the branching 

fraction B(A° —> the decay can be related to the charged current process

- 4- Only the real part of the amplitude contributes to the second

36
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(b) Weak Penguin Diagram(a) Weak Penguin Diagram

(c) Weak Box Diagram

FIG. 3.1: Short distance weak diagrams contributing to
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order diagrams and again the imaginary portion of the amplitude is dominated by 

the intermediate two photon state of Fig. 2.6.

Re{A) SD
0?  ( 1  — Y h i= c ,i

IK,

where r]i are the QCD corrections, X{ = m ^ / M ^  such that:

4xi — x f   ̂ 3xf InXi
T7Z \ 1“4(1 -  Xi) 4(1 -  Xi)2

(3.2)

(3.3)

We find that for the up, charm and top quark:

C { X u p )  ~  10 ® , C { X c h a r m )  «  3 X 10  ̂ , C{Xtop)^ 2.1 (3.4)

This leads to the dominance of the top quark diagrams in the short distance contri­

butions to K l  —̂ jjA/K. From this we relate the matrix elements to the Wolfenstein 

parameterization:

R e { V : ,V u )  =  - A ‘ \ \ \ - p )  

Re(V iV^)  =  -{A -  \ \ ^ )

(3.5)

(3.6)

and make the substitutions into Eq. (3.2) to show:

\AsDf  -  (4.17 X 10-'°)A " \VtC{xt)\ 1 -  p  +
474rjcC{xc)
A \ C { x t )  .

(3.7)

Prom the relations of Eq. (3.4) it becomes clear that the ratio C{x^/C{xt)  becomes 

negligible resulting in the real part of the amplitude becoming proportion to the 

Wolfenstein factor of (1 — p)^.

In order to properly extract the short distance dispersive amphtude from the
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FIG. 3.2: Long distance dispersive diagram for involving the exchange of
two virtual photons, 7 *

dilepton decay branches, thereby obtaining the Wolfenstein parameter p, knowledge 

of the long distance dispersive amplitude A ld as developed in Eq. (2.29) must 

be obtained. The long distance dispersive amplitude A ld results from the class 

of diagrams involving an intermediate state exchanging two virtual photons. The 

parent diagram for this amphtude is shown in Fig. 3.2. Difficulty arises from the 

lack of knowledge of how to compute the effective coupling of the kaon to the virtual 

two gamma state. Three main model dependent methods need to be considered in 

this respect, each yielding different results for the momentum dependence of the 

form factor of the interaction.

3.2 Vector M eson Dominance M odel (VDM )

The long distance interaction relies on knowledge of the strength of the effective 

coupling of the K meson to the virtual two gamma state, Use of a vector

meson exchange model to describe this coupfing results in the series of model depen­

dent terms such as those proposed by Bergstrom, Masso and Singer [17] and shown 

in Fig. 3.3 that contribute to the transition amphtude. The diagram of Fig. 3.3(a) 

places the A S  = 1 transition on the meson leg and as a result reduces to a process 

of the type P  7 *7 * where P is an off mass shell pseudoscalar meson. This process
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(a) A S  =  1 transition on meson leg (b) A S  =  1 transition on photon leg

FIG. 3.3: Long distance dispersive pole diagram for K ' l  —*• 7 *7 * as proposed by 
Bergstrom, Masso, Singer, et. al. [17]

can be calculated and described using a vector meson dominance model (VDM) re­

sulting in the model dependent amplitude for the long distance coupling A ld given 

by:

-4L,

V * 7* ,V £ ) M

=  —2.3 X 10 Single photon saturation

= —1.3 X 10“ ,̂ Double photon saturation

(3.8)

(3.9)

The diagram of Fig. 3.2 in combination with the intermediate state diagrams of 

Fig. 3.4 provides the leading order terms for the form-factor for dileptonic decays of 

the form K  with the 7 *7 * intermediate state.

F { s ) v d m  ~  O i \ / 2e G p f K * K ^
m:

f K - n
1 -

4
X I -

3
1 -

mi
1
9 4 - )  + 2 ( i - - 4m i J  \ m j

- 1 (3.10)

where s is the square of the virtual photon mass and a  is the model dependent factor 

used in calculating the A S  =  1 transition arising on the K* — V  leg of the diagram. 

Experimental knowledge of a , which is essentially a measure of the strength of
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(a) A (b) B

V

V

T

(c)C

FIG. 3.4: Long distance dispersive diagram for 7 *7 * as proposed by Ko involving
vector meson couplings. [18]

the transition between vector mesons, can be found through examination of the 

Dalitz decay —>• and the four lepton final state decay —»■ jj,'^jjre^e~,

providing both the single and double virtual photon vertices.

In the vector meson model of Ko [18] the model dependence of the am­

plitude is determined through the set of vector meson exchange diagrams shown in 

Fig. 3.4. In this model the vector-meson form factors cut off the high momentum 

behavior of the virtual photons resulting in a convergence for the calculation of the 

amplitude. The model parameters rely on a knowledge of the behavior of the vertex 

resulting from the Dafitz decay K'l —»■ e+e“ 7  in analogy to the Bergstrom model’s
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reliance on knowledge of —>■ The resulting amplitude and form factor

from Ko are less sensitive to the dominance of the top quark and the resulting effects 

on the saturation of the  ̂ amplitude.

3.3 QCD model of K̂*r̂*
The dispersive amplitude Re{ALD) can be treated in a less model dependent 

manner by extending the validity of a perturbative QCD down to the energy scale 

of the K l —̂ 7 *7 * transition. By assuming CP conservation, gauge invariance 

and Lorentz invariance of the QCD Lagrangian for long distance decay the 

amplitude can be expressed as [19, 20] ;

A { K l 7*(9i,ei)7*(?2,e2)) =  ie^up^e>{e'^q{qlF {q\, ql) (3.11)

Prom this formalism it is clear that the amplitude is again reduced to the evalu­

ation of a form-factor for the decay. F ( 0 , 0 ), corresponding to q\-,q\ = 0 , can be 

determined from the K  —> 7 7  width;

|F (0 ,0)1 =  y  =  (3.51 ±  0.05) X IQ-^GeV-^ (3.12)

W ith knowledge of the form-factor can be expressed in a model independent 

parameterization for the low energy regime {qf, q^ < iGeV) as:

/ 2 2\ F(g?,go) f  qf Q2 \  o gfgi
/  ( ^ l )  92)  “  ~ln  7n =  1 +  Of ( ~o o -̂----2--------- 2~ ) 3 ” (^7~2 2-\T~2--------- TT ̂ ^  F (0 ,0 ) W i - m v  { q l - m l ) { q l - m l )

(3.13)

Here a  and (3 are chosen as arbitrary real parameters which are accessible through 

experimental data. The vector meson poles are accounted for by taking m y  as the
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u ,c

(b)(a)

FIG. 3.5; Loop order QCD diagrams contributing to iF£ —̂ 7 *7 *. [19] 

p mass.

At high virtual photon momenta the loop structure of Fig. 3.5(a) and 3.5(b) 

yield operators similar to the short distance box structure of Fig. 3.1 and are domi­

nated by the c-quark. When this structure is included in a K l —> 7 *7 * —> pf^pT two 

loop decay process the weak contribution cannot be ignored in computing complete 

short distance amplitude, but can be extracted through use of an ultraviolet cutoff 

such that for large photon momenta the form factor of Eq. (3.13) yields the relation:

1 -f- 2q; -f- (3 (3.14)

The parameter a  is accessible experimentally through decays of the form K l —̂ 

£ £ 7  which are dominated by the form-factor F(g^, 0). The data from the decays 

K l —> and iF£ —> e“''e~ 7  has been used to fit the parameter from the

VDM model of Bergstrom, Masso, Singer [21] as discussed in section 3.2. Expanding
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the VDM form-factor in powers of (f’/rn̂ p gives:

4 4

2 /  /  2 
0 )vDM — 1 +  (1  — 3 . 1 a ^ ) - f  O

mt
(3.15)

Comparing the VDM form-factor of Eq. (3.15) with the QCD form-factor of 

Eq. (3.13) gives the relation:

aqcD =  - 1  +  (3.1 ±  0.5)a|,K (3.16)

Extraction of the parameter /3 is in principle possible through knowledge of the 

decay n'^iJ,~e'^e~ and is dominated by the long distance dispersive form-factor

for K l —> 7 *7 *. The amount of data available on the four lepton decay prior to this 

experiment was insufficient to determine (3; as a result a perturbative evaluation of 

the form-factor at high can be used in conjunction with the ultraviolet relation 

of Eq. (3.14) to recover a reasonable estimation of the values of the parameters.

Taking q\ ~  ql — <f ^  the form-factor evaluated in the framework of 

perturbative QCD has been found to lowest order from an evaluation of the diagrams 

in Fig. 3.6. The resulting QCD form factor can be expressed as [20]:

fQcoiq^.q^) = 9 c (3.17)

where

9iir) = +
1 -f 2 r  

6 r
w

m
and (3.18)
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u ,c ,t

u , c , t

(a) (b)

(c)

FIG. 3.6: Lowest order effective quark diagrams contributing to 
framework of a perturbative QCD expansion of F (q ^ ,  q^). [20]

7 *7 * in the
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—2 y^(l/r) — 1 arctan y ^ r/( l — r) +  2  0  <  r  <  1 

________ . ,_____ . (3.19)
V l - ( l / r ) ( ^ l n ; r V g ^ + i 7r j + 2  r > l  

The normalization factor Np is given by:

|]V I =  _  0.20 (3.20)
9 V ^ \ F { 0 ,0 ) \

where the pion decay constant =  93MeV. The result is that in a combination of 

the sum rule of Eq. (3.14) and the ultraviolet cut off constraint introduced by the 

expansion above we obtain the relation for /?:

\l + 2a + l 3 \ -  y A T ^ ~ 0 . 3  (3.21)

Extracting the (3 parameter from the VDM model in this manner leads to the con­

straint:

1 +  ‘2‘O.vdm  +  PvDM — —0.01 (3.22)

and yields the beta for the form-factor:

These results allow for the modeling of the form-factor for Kp jj3'iJi~e^e~ as 

well as providing for the extraction of the short distance amplitude for Kp  —> 

both in the QCD formalism and in the VDM model dependent approach.
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4 7

In direct analogy to Eq. (3.11) the dispersive amplitude can be calculated using 

the techniques of chiral perturbation theory to describe the low energy behavior of 

the form-factor in terms of its momentum dependence on the invariant mass of the 

virtual photons. In the limit of CP conservation the general form of the amphtude 

is taken as:

. 4  ^  7 * 7 " )  =  ^  ( t .  ( ' )  ( 3 - 2 4 )

where the invariant mass of the virtual photons 7 * and 7 *' are taken as t =  gf and 

t' — g|. t') represents the form-factor expanded to order in the framework of

chiral perturbation theory. The form factor is split into two parts Fi and F2{t, t'). 

The first portion of this form factor is taken as being independent of the photon 

momenta t, t' and is due to the presence of the 7t°, t] and rj' poles. It is expressed as 

[22][23]:

Fi -  - ^ C s F r
(3.25)

Fi = r ^ +  r^0 i -f r ^ / 0 2

In this expression Cs =  3.12 x 1“  ̂ is the octet coupling in the effective chiral 

Lagrangian, =  (1 — and the factors 0 i ,  0 2  are determined from the

chiral expansion as:

0 1  =  i  ((1 -I- 6) cos d  + 4k sin 0) x  (  cos 9 — 2 \ / 2 - ^  sin 0 )
Y *  Y  {  ( 3 . 2 6 )

02  =  X ((1 +  <̂) sin  ̂  -I- 4k cos 9) x I —̂  sin 6 — cos 9 1
3 \ i 578 ^r]\ J
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The form-factor is heavily dependent on the parameters k and 8 and is fit to the 

K l —> 7 7  decay. In this manner the form factor can be rewritten for the K l —>■ 7 7  

width as:

^■(0 ) =  ^ £ 1

(3.27)
~ ^  M l  + M l

where h  = - F ,  +  Ci

In this expression, the possible values of Li =  ±0.89, set the Fi portion of the form 

factor at either —1.2 ±  0.3 or 2.5 ±  0.3.

The momentum dependence of the form factor is written as:

F 2 { t ,  e )  =  “ ” ^ 3  [ - ( 0 2  +  2o4)D(i, t , m v )  +  C ( , j . ) ( t  +  C)] (3.28)

where C'(p) is a counter term and again =  9dMeV  is the pion decay constant. 

The momentum dependence of the form factor is carried in D{t, if, /jf) given by:

1 0  A M l  . 3 M T
- - -  I n - f  ± l n - f  
3 \  m l

+
(3.29)

4 [F{Ml, t) + F { M l,  t) + F{M l, t') + F { M l,  t')]

The chiral logarithms appear in the functions F{m?,t) given by defining y = t/m^  

and taking:

- 1) V “  - 2)
As with the QCD analysis the dominance of the p meson is assumed by taking

m y  =  mp

The parameters 0 2 , 0 4 , and the counter term G{mp) are fixed from the two pos­

sible fits to the width giving the two possible parameter sets listed in Table 3.1
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F i tt2 -\- 2U4 C{rrip)
0.89

- 0 .8 9
- 0 . 3  ±  0.3 
- 1 . 5  ± 0 . 3

14.2 ± 7 . 3
10.3 ± 7 . 3

TABLE 3.1: Parameter sets for the chiral expansion of T{t,t')[2A]

For decays of the kaon into a four lepton final state via the virtual two gamma 

intermediate state, the amplitude and decay widths can be computed. In the case 

of the final state particles are all distinguishable. The amplitude

can thus be written as:

{p++p-):.{p++p'_)a
tt'

X u { p ^ ) % u { p + )  X u{p'_)jpu{p'^)  (3.31)

and the total decay width is given by:

r { K l  ^  =  /  E  I"*'!"'**
spins

We compare this rate in standard fashion to the K l 77 width by defining:

f, = T (K l  ^  7 7 ) (3.33)

This is done for both allowable values of Fi and displayed along with the unmodified 

prediction for the branching fraction as computed without a model dependent form- 

factor [25]. The result is a significant enhancement in the total decay branching 

faction along with an enhancement in the high momentum portion of the resulting 

phase space for the muon pair. These enhancements are shown in Table 3.2.
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Fi Model p = T /V {K l  7 7 )
0.89

-0.89
Point-like Form Factor 

Ref. [25]
1.42 X 10-® 
1.71 X 10-®

0.89
-0.89

x P T  Form Factor 
Ref. [24]

(2.20 ±  0.25) X 10-® 
(2.18 ±0.25) X 10-®

TABLE 3.2: Branching fraction calculations for A£ —> e+e using both a point-like
form factor [25] and a x P T  form factor [24]

3.5 CP violation and

The CP violating amplitude arising in the transition elements of the CKM 

matrix, as expressed by the non-zero nature of e' leads to the examination of the 

angular distributions of the four lepton decay modes of both KT£ and Since 

pseudoscalar mesons emit photons with mutually perpendicular polarizations [26], 

the decay planes defined by the resulting Dalitz pairs in a K  —> 7 *7 * 

contain the electric field vectors of intermediate state photons, and have an angular 

distribution function directly related to the form factor.

The couphngs of and Kg to the photon fields are assumed initially to be such 

that K l  and Kg are approximate eigenstates of the CP operator. In this manner 

K l  K 2 with CP=-1, and Kg ^  K f  with C P=+1. The mesons couple to the 

photon field via the CPeven = and the CPom — ^ f̂iuprjPixvPpri interactions.

In general the effective Lagrangian for a decay of the form K  —> can be

written as the kaon to photon vertex described by [27]:

TP P I ^Feven  ̂ rp p  pvpri-rpu-Tpri T (3.34)

CP= - 1 CP=+1

in conjunction with the standard QED couplings for the 7  —s- ££ vertices. Here 

Fpv =  d^Av — with A^ being the photon field. Feven and Todd the form factors
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for the vertex characterizing the CP even and CP odd eigenstates.

By defining 0 as the relative angle between the decay planes as defined by the 

Dalitz pairs, the differential decay spectrum dV/ dcj) can be used to determine the 

relative strength of to the CP eigenstates via the form factors of Eq. (3.34).

Denoting the CP odd form factor as Todd — H  and the CP even form factor as 

Teven =  G, the angular dependence of the decay 7 *7 * can be

shown to take the form:

^  ' \H fa i  sin^ (j) + \G fa 2 cos
d<!> 2(27r)4(M^)5 ,

+  lm{HG*)az s in 0 cos0  +  +  \G fa 5

The coefficients c7j={2.694, 2.826, 5.504, 18.807, 9.067} are determined from 

numerical integration of the matrix element for the four lepton decay mode[28]. 

The form factors can be re-expressed in terms of their relative phases such that

H  =  , G = ,5 = {iPg -  i^h) (3.36)

In this manner the angular distribution and the ratio of the absolute strength of the 

CP violating and CP conserving contributions can be found from:

[^1 sin^ 0  +  {g/h)%  cos^ (p 
r { K  7 7 ) d(f> (3 .3 7 )

— (g/h) sin 61̂  sin 4> cos (p + I4 +  {g/h)^^]/ [l + 2{g/h)‘̂]

Where k =  Oi/ai and F  =  4 •

To isolate both the ratio of the CP conserving to CP violating strength (g/h)
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and the relative phase 5 the expressions E(< )̂ and A(0) are defined as:

d r ( 0 ) d r ( - 0 )_l_

=  [2 /1  sin^ (j) +  [g/h)‘̂l2 cos^ 0  +  ^4 +  (5 //i)^^5][l +  2 (p//i)^]  ̂

=  —2[(^ /h ) sin 5̂ 3 c o s 0 s in 0 ] [ l  +  2(^/h)^]“ ^

(3.38)

(3.39)

For the extreme cases of no CP violating form factor or no CP conserving form 

factor, the limits on the branching fraction for the decay can be computed as:

For H=0, CP=+1, 100% CP-Conserving mode:

B { K l  -> ii+iTe+e-) =  (3.67 ±0.15) x 10' (3.41)

For G=0, CP=-1, 100% CP-Violating mode:

B { K l  ij+ix-e+e-) =  (1.63 ±  0.15) x 10- 9 (3,42)

From knowledge of both the actual branching ratio for —» p'^/r^e+e” and

the angular distribution of the Dalitz pairs as characterized by the angle 4> it is 

possible to measure the strength of the CP violation arising from the quark mixing.
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C H A PTER  4

K l  n + f i - e + e -  at E871

4.1 M otivation for e'̂ e at E871

Experiment E871 performed at the Brookhaven National Laboratory’s Alter­

nating Gradient Synchrotron (AGS) was designed to measure the ultra rare dilep­

ton decays of the long lived neutral kaon to a single event sensitivity approaching 

1 X 10“ ^̂ . The experimental apparatus shown in Fig. 5.2 was designed to maximize 

acceptance for two body events with low net transverse momentum and an average 

transverse momentum per particle pt ^  225MeV/c. The primary decay streams 

searched for were iL£ and —>■ Each of these data

sets was normalized to the CP violating two pion decay, AT£ —>■ tt+tt” .

The resulting analysis of the pp  data set yielded 6216 candidate events for 

the decay A£ —> p~^p~ which leads to a branching ratio of 7.18 x 10“®[2]. At this 

level the single event sensitive of the pp  data set was calculated at 1.15 x 10“ ^̂  

subject to the restrictions of the trigger and event criteria. Prom this measurement 

the dispersive contribution to the decay arising from the diagrams of Fig. 2.1 was 

computed by subtraction of the unitary bound and the estimate of the long distance

53
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amplitude (5?(yliD)| as computed by Ambrosio and others [20].

As discussed in chapter 3 the long distance amplitude A lo arising from the 

diagram pictured in Fig. 3.2 is highly dependent upon the form of the interaction 

used to compute the vertex. The dependence of the amplitude on the differing 

form factors arising from the VDM, QCD, xPT, and CP violation models, make the 

extraction of |3?(AiD)| in a self consistent manner difficult. Without direct mea­

surement of the parameters described in each of the models, or a measurement of a 

decay which accesses the long distance amplitude and allows for a direct cancella­

tion of the long distance portions of the amplitude arising from the rate as measured 

by B(A£ —>• (jAfx~), systematic acceptances and errors are introduced through the 

experimental analysis.

During the analysis of the ee data set, evidence for the four lepton decay —>• 

e‘̂ e“ e+e“ was found to exist as a background to the primary data sample in the 

form of e"^e' tracking events which had associated partially reconstructed tracks 

in the forward straw drift chambers of the spectrometer. The partial tracks were 

recognized to be additional electrons or positrons which were incident upon the 

spectrometer in such a manner that either their polarities mismatched the field 

of the dipole analyzing magnets resulting in the particle trajectory being expelled 

from the valid region of the detector or the particle’s momentum was too low to 

correctly traverse the spectrometer. These events were removed from the data set 

by instituting a particle tracking or “stub” requirement that allowed for proper 

tagging of this event class. While this four lepton decay accesses the vertex

the final state interchange of indistinguishable particles results in interference terms 

which reduce the sensitive of the E871 spectrometer to the kinematic distribution of 

the electron/ positron pairs. The decay also suffers from significant contamination 

from other physics backgrounds making it impractical as a means of extracting the 

long distance dispersive amplitude.
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K l _ _

FIG. 4.1: Long distance dispersive diagram for e+e involving the exchange
of two virtual photons, 7 * and directly accessing the .

In analogy to the four electron final state, the decay  ̂ also

accesses the long distance dispersive amplitude through the diagram of Fig. 4.1. Due 

to the completely distinct final state, there exist no interference terms to suppress the 

phase space of the decay to which the E871 spectrometer has the greatest acceptance. 

The form factors of section 3.4, in fact, result in an enhancement of the high invariant 

mass spectrum for the pair and a softening of the momentum spectrum for

the electron pair. This set of kinematics creates a situation where it is favorable for 

decays to exist in the /r/r data set at a level sufficient to measure 

a significant event signal above known physics backgrounds.

Measurement of B(iF° from the /i/U data set also serves to give a

direct and consistent measurement of the long distance dispersive amplitude which is 

subject to the same systematic sources of uncertainty. By doing so the measurement 

can complement the measurement of B(iF° —> /r+/r“ ) and allow for extraction of the 

short distance amplitude without recourse to model dependent approximations. The 

direct measurement of B(if£ —> from the E871 data sets also permits

analysis of the decay rates and momentum spectra to help distinguish between the 

competing models mentioned in sections 3.2-3.5 as well as provide verification of the 

model dependent parameters used therein.
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I ^  II -e' e-
At the inception of the seaxch for —»• ijIpTe^e^  in the E871 data set,

there existed in the world average the observation of a single event from Fermilab 

experiment E799[l]. The observed branching ratio for the process was quoted as:

T{tx^ii-e+e-)/Vtotal = 2 .9 l |I  x 10~", (4.1)

leading to an effective range in the possible branching faction extending from 9.6 x 

10~^ to 0.5 X 10~^. This uncertainty spanned almost a full order of magnitude in 

the allowable range for the process. This indeterminate range did not allow for clear 

differentiation in the rates arising from a form factor of the type describe by the 

VDM model of section 3.2 or the more general QCD approach of section 3.3. The 

size of the observation, being limited to one event, also limited the validity of testing 

the chiral perturbation theory expansion of the form factor in section 3.4 and the 

extraction of the parameters U2 and from the momentum dependence of the form 

factor in Eq. (3.28). Enhancement of the phase space in the high muon momentum 

comer of the Dalitz plot could also not be determined from so limited a set.

The single event nature of the observation also prevented determination of the 

relative strength of the CP violation in the decay and the examination of the angular 

dependence of the planes of the Dalitz pairs as in section 3.5. The ratio of the CP- 

conserving to CP-violating form factors (g/h) as expressed in the differential decay 

rate with respect to the separation angle cj) as in Eq. (3.37) is not obtainable with the 

range of variation in the branching fraction or the lack of a statistically meaningful 

measure of the angle 4>.

The wide variation in the measurement of the branching ratio also compounds 

the difficulty in extracting the long distance amplitude for the K j* ^  vertex. All
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four major models discussed in Chapter 3 rely on the four lepton decay mode as a 

means of accessing the form factors. Proper knowledge of the form factors

and coupling of the Kj*^* vertex is required to access the long distance dispersive 

amphtude A ld of Eq. (3.1) corresponding to the diagram shown in Fig. 3.2 for the 

dimuon decay channel of the K^. The long distance amplitude then serves as the 

limiting term in extracting the weak flavor changing neutral currents, as shown in 

Fig. 3.1(c), 3.1(a), and 3.1(b) from the remaining unitary diagram and long distance 

contributions to the dimuon decay channel. W ith this knowledge the Wolfenstein 

factor (1  — p)^ and the real couphng Re(y*gVtd) are attainable.

During the course of this analysis an additional 43 events were report by the 

KTeV collaboration [29]. The events were reported through four body reconstruction 

of the decay in an invariant mass window iSOMeV/c^ < M f̂^ee <

510MeV/c^ and with total transverse momentum < 0.00025(Gey/c)^. This

measurement was reported at a branching ratio of 2.62 x 1 0 “ .̂

4.3 Event Signature for  ̂ at E871

Detection of events of the form can be characterized by any

one of four general reconstruction methods. The experimental apparatus of F871 

was designed originally to search for ultra rare dileptonic decay modes of the neutral 

kaon, as normalized to the CP violating two pion decay mode. The two body nature 

of the primary data streams mandates that all decay modes with larger numbers 

of final state particles also fulfill tracking requirements imposed by the dilepton 

triggers. In this manner, candidate event signatures for the data

stream are mandated to include two charged tracks of opposite polarity. These 

tracks must satisfy spectrometer tracking reconstruction and a parallelism require­

ment after emerging from the second dipole analyzing magnet. Additionally the
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reconstructed tracks must reconstruct under a dilepton or, for normalization, a two 

pion hypothesis^ to an invariant mass greater than A60MeV/c^. Each of these data 

streams was recorded during experimental running. The data streams were referred 

to as the pp, ee and pe data sets.

In the case of the if£  —»■ event signature, form factors discussed in

Chapter 3 impart to the muonic Dalitz pair the majority of the invariant mass and 

momentum of the parent kaon. The electron-positron Dalitz pair correspondingly 

receives little of the total momentum and results in the pair’s having a substantially 

lower reconstructed invariant mass which does not exceed the trigger threshold value 

of A&)MeV/(?. The reconstructions for both the and e'^e~ pairs are shown in 

Fig. 4.2(a). Events with mixed lepton tracks result in reconstruction of events 

for which the reconstructed invariant mass spectrum is shown in Fig. 4.2(b).

The limitations of the 460MeV'/c^ trigger threshold preclude the use of e+ e ' 

data stream events for the candidates of interest. The limited phase

space overlap of the invariant mass reconstruction of events with mixed particle 

identification tracks with the region of interest above the AQOMeV/c^ threshold 

results in a minimal acceptance for such track combinations. The pe data stream is 

therefore omitted from the viable candidate event signatures for

Basic two-body invariant mass reconstruction of events using tracks re­

sults in an event signature above the 460MeV/c^  threshold, extending up to the 

kaon mass of 497.7MeV/c^. The E871 pp data stream maximizes the acceptance of 

tracks of this nature as it was tuned to accept well defined pairs of muon tracks in 

the high invariant mass and low transverse momentum region of the allowed phase 

space.

^Invariant mass reconstructions assumes the available combinations of 
(/x+,ju~),(e+,e~),(/x^,e^) or (7T+, tt~)  prior to formal particle identification, based on trig­
gered particle identification detectors
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Dalitz Pair 
Invariant Mass

Dalitz Pair 
Invaiian t Mass

Invariant Mass M kInvariant Mass M k

(a) Invariant mass reconstruction of 
e+e” and Dalitz pairs

(b) Invariant mass reconstruction of 
tracking pairs

FIG. 4.2: Monte Carlo simulations of invariant mass reconstructions for
using (a) (e+e“ ), and (b) tracking pairs

In addition to the identification and reconstruction of a pair of muon tracks, 

the electron/positron Dalitz pair for the —>• decay is required to be

registered within the forward spectrometer. Due to the kinematics of the decay 

process the resulting signatures fall into four general classification signatures 

based upon the degree to which each of the particle’s trajectories progress through 

the spectrometer.

1. Pull four track vertex reconstruction of ii^pTe^e~ with invariant mass at 
and low py.

2. Three track vertex reconstruction with one missing or e“ with invariant 
mass greater than ddOMeV/c^.

3. Two track vertex reconstruction with invariant mass greater than 460MeF/c^ 
and two correlated tracking stubs projecting back to an associated jX^jjr 
event vertex.

4. Two track vertex reconstruction with invariant mass greater than 460MeF'/c^, 
and a single e'^ or e~ tracking stub projecting back to the primary event 
vertex.
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4.3.1 Decay Vertex

Valid vertex reconstruction is accomplished by projection of charged particle 

tracks upstream into the decay volume. The tracks must be projected to intersect 

at a point within the fiducial volume of the decay tank and within the known beam 

profile. Track intersection is defined by the distance of closest approach (DOCA) 

of the projected trajectories. The valid vertex DOCA thresholds are determined 

through detector resolution, particle track deflection in the magnetic fringe field, 

multiple scattering effects, and other known sources of systematic uncertainties. 

Vertex reconstruction is discussed fully in chapter 8 .

4.3.2 Tracking Stubs

Due to the kinematics of the four-body decay and the form factors discussed 

in sections 3.2, 3.3, 3.4, and 3.5 the electron/positron Dalitz pair emerges from the 

decay with only a small fraction of the total available invariant mass of the parent 

kaon, and with only a small fraction of the available momentum when properly 

boosted into the laboratory reference frame. Additionally the form factor results in 

a high angular correlation between the e'*"e“ trajectories resulting in little separation 

of the pair’s tracks with respect to each other. Tightly correlated track pairs entering 

the forward spectrometer are subjected to the dipole field of the analyzing magnets 

in such a manner as to impart a 416MeV/c transverse (inbend) momentum kick 

in the x coordinate direction towards the beamline to negatively charged particles 

incident on the beam right side of the spectrometer and similarly a 416MeV/c 

transverse momentum kick to positively charged particles incident upon the beam 

left side of the spectrometer. Due to the low energy nature of the pairs the 

trajectory of the member particle whose polarity does not correspond to the dipole 

field orientation receives a transverse momentum kick away from the central axis
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Beam Line (x =  0) 96D40/DO:

416A/eV7c
Beam Line (a: =  0)

/Itack  1

lii

96D40/D05

416M el^/c

IVack 1

Tirade 2

TVack 2

(a) Ejection of positron track from 
active spectrometer volume based 
on polarity mismatch with analyz­
ing magnet 96D40/D02

(b) Loss of particle tracking due to 
excessive inbend of extremely low 
momentum electron track

FIG. 4.3; Examples of low momentum e+e Dalitz pair trajectories leaving partial (stub) 
tracks in straw drift chambers SDCl/SDC2

of the apparatus which most often is sufficient to eject the particle from the active 

regions of the spectrometer. Similarly tracks with the correct polarity but low 

incident transverse momentum can be bent towards the central axis on an excessively 

steep trajectory such that they cross the x= 0  position or are unable to enter the 

second (outbend) analyzing magnet and register in the straw and wire drift chambers 

SDC3, SDC4, DC5 and DC6 . Diagrammatic examples of these situations are shown 

in Fig. 4.3(a) and 4.3(b). Low momentum e'^e” tracks of this kind leave only partial 

tracking information in the forward straw drift chambers. These partial tracking 

hits are used to construct tracking “stubs” which axe used for vertex correlation and 

event determination. Detailed discussion of the analysis of partial track and stub 

reconstruction is discussed in chapter 8 .
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4.4 Physics Backgrounds

The event signatures proposed in Section 4.3 can in some cases be mimicked 

by other real physics events which undergo decays in flight, electromagnetic pair 

production, particle misidentification or multi-event pile-up. The primary sources 

of concern with respect to the aforementioned events signatures are the real decays 

K'l —»• K i  -> 7r+7T“ 7 , —>• 7r+7T~7r‘’, 7r+7r~e+e~, as well as —»

Tv'^e^Ue and pile-up. The background contributions of each of these

decays are of importance and serve as one of the primary systematic limitations 

of the experiment. The decay channel is dismissed from the background

analysis because it is known to have a branching fraction less than 3.8 x 10“ ^°[12].

The background decays of interest have been calculated through the known 

branching fractions of each decay, detailed Monte Carlo modeling as described in 

Chapter 7, and through the calculations provided herein.

4.4.1

The Dalitz decay —>■ has a well measured branching fraction of

3.59 ±  0.11 X 10~'’̂ [12] and is the primary physics background to the measurement 

of —»• . The decay proceeds from a K'l —» 7 7 * intermediate state

and follows a high momentum profile similar to th a t of K*l —> i£^}Te^e~. This 

Dalitz decay has the ability to contribute a real signal mimicking background. This 

occurs when the two muon tracks are stiff enough to satisfy the parallel trigger and 

the associated gamma-ray converts to a e+e~ pair in the front window of the decay 

volume or in the first two layers of the straw drift chambers. Due to this possibility 

the probabilities for pair production are calculated for the interaction regions prior 

to the third layer of straw tubes in straw drift chamber SDCl in order to register a 

valid hit cluster for track reconstruction or stub identiflcation. Table 4.1 details the
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interaction materials that contribute to the possible pair production cross section for 

electromagnetic conversion of the daughter photon. The total effective interaction 

lengths of material that can contribute to this process are divided into those planes 

prior to the sensitive volume and the first three layers of the first sensitive volume. 

This allows for additional calculation of additional interaction processes of concern 

in the vacuum decay region. These are summarized in Table 4.2

The probability for a single interaction can then be computed from the faction 

of total interaction lengths F\^ of material present as:

V{Fx,) -  1 -  =  1 -  (4.2)

When the results for the materials listed in Table 4.1 and Table 4.2 are calcu­

lated they yield the total pair production interaction probabilities listed in Table 4.3.

To compute the maximum total rate for pair production arising via the real 

photon in decays of the form if£ —> we first compute the effective branching

ratio for the decay into the mass region of interest. We take the limits on the 

invariant mass of the muon pair such that 460M eF/c < . Integration

of the differential decay rate follows the prescription of Goity and Zhang [22] utilizing 

a chiral expansion for the effective interaction. The differential decay rate is 

expressed in terms of the momentum transfer, t, of the virtual photon:

^  /  0/y n 2 \  I (4.3)
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Material Thickness (mm) Total Pair 
Production 

Cross Section Aq
{g/cw?)

Total 
Interaction 

Lengths A/Aq

Kevlar 29 0.381 
(15 mil)

0.4318 
(17 mil)

229.52 10 MeV
79.87 100 MeV

58.04 1 GeV
229.52 10 MeV
79.87 100 MeV

58.04 1 GeV

2.39 X 10-4 
6.87 X 10-4 
9.45 X 10-4 
2.71 X 10-4 
7.79 X 10-4 
1.07 X 10-^

Mylar 0.127 
(5 mil)

220.38 10 MeV 
76.98 100 MeV 

56.03 1 GeV

8.01 X 10-5 
3.15 X 10-4 
2.29 X 10-4

Polyethyle: le 0.0254 
(1  mil)

231.69 10 MeV 
80.28 100 MeV 

58.07 1 GeV

1.04 X 10-5 
3.00 X 10-5 
4.15 X 10-5

Helium 183 610.17 10 MeV 
189.14 100 

MeV 
131.67 1 GeV

4.99 X 10-5 
1.61 X 10-5

2.31 X 10-5
Mylar
(straw
wall)

0.7975 
(3.14 mil)

220.38 10 MeV 
76.98 100 MeV

56.03 1 GeV

5.03 X 10-5 
1.44 X 10-4

1.98 X 10-4
Copper 3.14 X 10-4 59.00 10 MeV 

22.57 100 MeV 
17.59 1 GeV

4.77 X 10-5 
1.25 X 10-5 
1.60 X 10-5

CF^C2He
(gas)

4.0 213.68 10 MeV

74.91 100 MeV 
54.67 1 GeV

4.65 X 10-5

1.33 X 10-5 
1.82 X 10-5

Tungsten
Wire

6.16 X 10-5 28.84 10 MeV 
11.64 100 MeV 

9.26 1 GeV

6.39 X 10-5 
1.80 X 10-4 
2.45 X 10-4

TABLE 4.1: Material properties related to pair production interactions at or forward of 
SDCl
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Region Total Interaction Lengths X/Xq

Material Prior to SDCl 3.66 X 10-^ 10 MeV 
1.05 X 10-^ 100 MeV 

1.45 X 10-^ 1 GeV
Effective Length of 3 Straw 
Layers

1.92 X 10-4 10 MeV

5.40 X 10-4 100 MeV 
7.35 X 10-4 1 GeV

Total Effective Interaction 
Lengths

5.58 X 10-4 10 MeV

1.59 X 10-^ 100 MeV 
2.19 X 10-3 1 GeV

TABLE 4.2; Effective pair production interaction lengths computed at and forward of 
SDCl

7  energy Total Pair Production Probability
10 MeV 5.58 X 10-4
100 MeV 1.59 X 10-3
1 GeV 2.18 X 10-3

TABLE 4.3: Total probabilities for pair production interactions
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0 ^  0.46 0.4? 0.46 0.49 05(,GeVf(?') 0 OOOS D.01

Integrated Decay IVaction vs. M k  —

(a) i<r£ —» 7  differential decay (b) 7  integrated decay
rate rate

FIG. 4.4: Differential decay rate as a function of invariant mass of the muon pair and 
effective integrated decay rate as a function of M k  — for if£  —>

The form factor is expanded in %PT as:

(4.4)

This integrated decay rate yields

pMj.

-  4.39 X 10-1 0

(4.5)

for miow = 460 MeV/c^ and M k  — 497 MeV/c^. This is then the effective branching 

fraction for the background decay, subject only to the requirements of the mass 

window. We calculate both the decay rate and the integrated decay fraction. These 

are shown in the plots of Fig. 4.4 as functions of the invariant mass and of the 

difference between the kaon mass and the lower bound on the invariant mass cut.
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7  Energy Effective B { K l  —>■ pAfj, ( 7  - ->e+e )) Expected Background Events
10 MeV 2.45 X 10-^^ 0 .2 0  events
100 MeV 6.97 X 10-1=̂ 0.59 events
1 GeV 9.56 X 10-^^ 0.82 events

TABLE 4.4: Expected background events of the form K ' l  —> 7  in the signal stream
at varying energies

The effective decay rate for K l  —̂ with > 460 MeV/c^) can now

be multiplied by the pair production probabihty to calculate the effective rate for 

the K l  decay branch to mimic the primary decay K l

The resulting rate is taken to be the highest level at which this decay branch can 

contribute. For the observed number of K l  —> events observed the maximum

number of background events is tabulated. These rates are given as a function of 

photon energy in Table 4.4.

It should be noted that these rates represent the theoretical maxima which 

can occur due to interactions in the front chambers by assuming identical geometric 

acceptance factors for both decay modes. Since in the limit aspj ^  0 the acceptance 

for the Daliz decay must be bounded from above by the acceptance for K l  —> 

we can further strengthen our upper bound on the background by replacing the 

unity assumption for the acceptance ratio by the Monte Carlo estimate

for the geometric acceptance of the decay K l  —>• In this case we find that

from both E871 and Geant models that the acceptance ratio «  1 . The

Monte Carlo models find that the ratio is on the order of 0.05 and is subject to 

further reduction by the K l  —>• /x+yu“ 7  form factor. By including the weighting of 

this acceptance factor we arrive at the stronger upper bound on the background 

contribution attributed to K l  —̂ /x+/x“ 7  in the K l  —> ijApre'^e~ data stream as a 

function of photon energy. This set of bounds is shown in Table 4.5.
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Energy Expected Background Events
10 MeV 
100 MeV 
1 GeV

< 0 .0 1  events
<  0.03 events
< 0.04 events

TABLE 4.5: Expected background events of the form fj&n 7  including geometric
acceptance weights for the E871 apparatus

4.4.2 K l tt+ tt 7

The decay > 7r"''7r“ 7  occurs at a branching fraction of 4.38 x 10“®, roughly 

two orders of magnitude higher than the decay discussed in section 4.4.1. The

cross section for the decay is dominated by the direct emission of the photon as shown 

in diagram 4.5(b) while the contribution from the inner Bremsstrahlung process of 

Fig. 4.5(a) is highly suppressed by the CP violating nature of the > 7r+7r“ 

decay process. The direct emission dominance of the decay leads to the use of a 

p-propagator in the form factor of the decay [30].

ai
{ml -  m%) +  2mKE*

(4.6)

The parameters Ui and come from the chiral expansions of the vertex[31]. The 

result of the form factor is to soften the momentum spectrum of the photon again 

leading to a condition where the kinematics of the resulting pion pair are favorable 

to the acceptance range of the E871 spectrometer.

For the decay to mimic the p+p“ e+e” signal criteria a series of two processes 

must occur. To obtain the proper electron tracks or stubs the photon must pair 

produce in a manner similar to the > K K I  decay prior to the third layer of 

straw tubes in the first straw drift chamber (SDCl). The calculation of this process 

follows from the same interaction cross sections listed in Table 4.1 and 4.2. The 

dimuon trigger is satisfied only if the pion tracks are both misidentified and incor-
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FIG. 4.5; Inner Bremsstrahlung and Direct Emission contributions to  iF£ -> 7r"*'7r- 7

rectly flagged as muons, or decay in flight prior to the first momentum measurement 

in the spectrometer. Particles th a t decay in flight within the spectrometer result 

in poorly reconstructed or inconsistent tracks and fail momentum matching during 

the particle identification requirements for muons.

In the event of particle misidentification of a pion as a muon, or in the event 

of pion decay in flight within the tolerances of particle tracking a series of incorrect 

particle mass substitutions are made during the invariant mass reconstruction of the 

primary vertex. The original pion four vector (Ê r, p-jr) in the event of pion decay 

in flight obeys conservation of momentum such that for tt —> /x +  where {E„,Pu) 

is the neutrino four vector, then = Pfj.+ p^- The momentum p^ is measured in 

the spectrometer. Because the invariant mass reconstruction also relies upon the 

energy of the particles the substitution of for occurs when the pion track is 

incorrectly identified as a muon track. This results in the square of the original pion 

track’s energy being calculated as:

E l = p l E m l  (4.7)
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In the relativistic limit the pion momentum then becomes:

m l
- E ^  + E ,  +  E,)

2PniPl.+Pu)

The reconstructed mass of the nn  decay vertex under the double pion misidentifi­

cation or decay in flight becomes:

+ -B,')" -  (P, + Pi,'? {4-9)

We expand this in the relativistic limit where p,r ^  and in terms of the substi­

tutions above:

(-̂ uu)7r7r = E l  + EI, + 2E-^Et̂' — {pi + pI> + 2p^ ■ Pir')

( P ? + K )  +  ( P ^ + m J )  +  2 (^p, +  ^ )  +

^2 I
(4.10)

{Pn + P-K' + ■ P^'))

2 m ; 4 - 2
^PttPtt' ^PttPtt'

2(P7T ■ Ptt')

In contrast to the misidentification scenario, had the invariant mass vertex been 

reconstructed from a properly identified set of pions then the invariant mass would 

have appeared as:

=  {Et, + E ijt'Y  — iP-K + Ptt'Y

=  pI +  m l +  pI, +  ml, +  2E^E ,̂ -  {pi + pl> +  2p  ̂ • p^/) (4.11)

=  2 m^ +  2E„E^> -  2 (p^ • p^O
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Again we expand the energy in the relativistic limit to find:

^ 2 m l  + 2 (p^  +  -  2{p^ ■ k O  (4.12)

In the event of pure misidentification where there is no decay in flight of the 

pion, the true momenta are taken as measured momenta p^ . The difference in 

the invariant mass as calculated between Eq. (4.12) and (4.10) then becomes:

= 2(m  ̂-  ml) + {ml -  ml)  (4-13)

It is clear from Eq. (4.13) that the minimum difference between the true invariant 

mass and the double misidentified invariant mass under a false fifx hypothesis occurs 

for symmetric decays where p i = pi,.

For the decay the tttt invariant mass reconstruction for the end

point of the decay where the photon momentum p.y 0 approaches the invariant 

mass of the kaon such that M|^. The difference between the kaon mass and

the error induced through double misidentification of the tttt pair being reconstructed 

as a [XU pair results in an upper bound on the possible invariant mass reconstructions 

of —> 7r+7r“ 7  events. The bound is found by considering:

A < L „. =  <  -  (4.14)

The upper bound on the invariant mass as measured at the endpoint of the decay 

is then:

(4.16)

Fig. 4.6(a) and 4.6(b) show the bounding curves on the invariant mass of the
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(a) Maximum invariant mass recon­
struction of a > 7T'*'7r"'7 event 
with P t̂  =  I G e V j c  and p,r' varying 
from 1 to 10 GeV/c

(b) Maximum invariant mass recon­
struction curves for if£  —> 7r+7r~7 
events with p,r == 1 ,3 ,5,7GeF/c 
and varying from 1 to 10 GeV/c

FIG. 4.6: Maximum invariant mass reconstructions for iT£ -+ 7r+7r“ 7 events with both 
members of the 7r'^7r~pair being misidentified as a pair. The event is taken at the 
end point of the —> 7r+7r“ 7 spectrum with p^  =  0.

kaon as reconstructed from a —> 7r+7r“ 7 event where the 7r+7r“pair is misiden­

tified and the vertex subsequently reconstructed under the ii^jJT hypothesis. The 

curves are plotted from the minimum accepted muon/pion track momentum of 1 

GeV/c to the upper end of the decay spectrum at 10 GeV/c. Prom the plots it is 

easy to see tha t the effect of the momentum dependence is to push down the re­

constructed mass of events with asymmetric tracks. This results in an upper bound 

on the invariant mass of double misidentified events which occurs at The

maximum value of improperly reconstructed kaon mass is found to quickly

reach its asymptotic limit for relativistic tracks such that for >> the resulting 

upper bound for background decay reconstruction is given by:

= 463.048 MeV/c^ (4.16)

As a result of this bound, all contamination of the AT£ —>■ e+e data

stream by misidentified AT£ events with associated pair production can
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be eliminated by extending the lower bound on the invariant mass window from the 

original value of AQdMeVjc^ up to the limit set by double pion misidentification 

or decay in flight of AQZMeV/c^. In this manner the phase space for the decay 

is eliminated. Any overlap contamination of the signal region with this class of 

events due to the tracking resolution of the spectrometer is highly suppressed by 

the additional requirement of electromagnetic pair production from the associated 

gamma as detailed in section 4.4.1. In this manner the real background expected 

from —»• 7r+7r~ 7  is essentially zero.

4.4.3 K \  —> 7r'̂ 7r“7T®

Decays of the form —* 7r+7r“ 7r° can in analogy to the decays of section

4.4.1 and 4.4.2 contribute a signal mimicking that of the if'° —>• ii^jjre^e~  data 

criterion of section 4.3 when one of the photons from the produces an electron- 

positron pair on the material forward of the straw tracking chambers, and the 7r+7r“ is 

double misidentified as a pair or decays in flight to a jJî  jjT pair. Because the 

K l 7r+7r“ 7T° decay stream encompasses 12.58% of the AT£ decay branches it is of 

concern in computing the background to the event signal.

Because a K'l —> 7r"*‘7r“ 7r° event must be subjected to a double misidentification 

of the charged pions, the same analysis of the invariant mass reconstruction as 

detailed in section 4.4.2 can be applied again to compute the upper bound on the 

invariant mass of K l  vertex under improper track identification and reconstruction. 

Because the neutral is on shell the final state momentum and invariant mass 

available to the reconstructed vertex at the end point of the decay where =  0  is 

shifted off the kaon mass. In analogy to Eq. (4.14) and (4.15) the upper bound on
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the reconstructed invariant mass from double pion misidentification become:

M l ,  =  (M j -  m l,)  -  {M l,  -  ( M i x ; ,  (4-17)

= ^ { M l  -  m j.) -  ( M i ,  -  ( M l ; X  (4.18)

The analysis of these equations procees in the same manner as given in Section 4.4.2. 

Through these calculations we derive a strict upper bound on the possible invariant 

mass of a  ̂ vertex under the nji hypothesis of Ai2.9MeV/ .  This

value lies substantially under the the lower edge of the estabhshed signal box for 

K l iK'pi~e'^e~ and is not considered to contribute to the background of the data 

set.

4 .4 .4  K l  —5- 7T+7r~e''"e"

The four body decay 7r+7r“ e^e~ has been observed with a branching

faction of 3.5 ±  0.6 x 10~'^[12], roughly two orders of magnitude higher than the 

expected level of the signal for /x+/i“ e'*'e~. While similar in structure to the

four body final state of interest in this analysis, the presence of the two final state 

pions and the hadronic nature of the interactions involved result in a form factor of 

the form [32]:

^  — 9ui (M | -  M l)  +  2Mk {E,+ +  £ ’e-)J
(4.19)

This form factor leads to a kinematic acceptance which again favors low momentum 

electron pairs in a fashion similar to K'l —>■ K^}jre^e~. The Monte Carlo models 

used to simulate this decay process also indicate 7r+7r“ track momentum distributions 

similar to the expected K K  track distributions for the event signal.

For a K l  —> 7r'^7r“ e+e“ event to mimic the event signature described in Section
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4.3 a situation of double pion misidentification like that described for the 

7r+7r~ 7  decays of section 4.4.2 or decay in flight of both pions would have to occur. 

Since the decay process involves results from diagrams dominated by virtual photon 

production resulting from direct emission or internal Bremsstrahlung similar to the 

K'l —> Tr+7r~ 7  diagrams of Fig. 4.5, the analysis of the invariant mass reconstruction 

of the decay vertex based on the pion tracks is analogous to that described in sections

4.4.2 and 4.4.3. The presence of the on shell e” e+ pair again has the effect of slightly 

shifting the maximum invariant mass reconstruction off the true kaon mass. The 

analysis of the effect of double misidentification follows in an identical fashion to that 

given in section 4.4.3 resulting in an endpoint bound on the improperly reconstructed 

invariant kaon mass of 463.047MeV/c^.

The invariant mass cut at 463.048 which ehminates the background contamina­

tion from K l  —> 7r+7r" 7  thus also has the effect of eliminating contamination from 

K l  Tx^'K~e^e~ from the data set.

4.4.5 Kez and Pileup

The semi-leptonic decays K l  —> Tr^e î^e and K l  —>■ account for 38.79

and 27.18 percent respectively of the allowed decay branches for K l-  Together they 

are responsible for 65.97% of the events occurring in the forward decay tank, and 

as such present a difficult problem regarding vertex resolution and event overlap. 

Event pileup occurs when two separate kaons decay in the evacuated decay region 

at or near the same spatial coordinates and with tracks triggering the hardware and 

software criterion for a level 3 event trigger within the same 200ns event window. 

This overlap of distinct events combining to form a valid detector trigger can lead to 

an event signatme similar to tha t discussed in section 4.3 and result in background 

noise in the signal region for K l  —> jj&ijre^e~.
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For semi-leptonic decay pileup to mimic the K l  —> trigger, multiple

variants on the possible track combinations and decays in flight can contribute. The 

background resulting from these combinatorial arrangements requires Monte Carlo 

modeling and background subtraction in the final analysis. The primary modes 

that are thought to contribute to the background signal are double events, and 

mixed K^^/Ke^ events.

Double Kjj,3 events are found to mimic the trigger criterion when a positive muon 

from —*■ and a negative muon from the charge conjugate decay

enter the spectrometer and satisfy the parallel trigger requirements of the 

dimuon event trigger. The remaining tt~ and 7t+ can then enter the forward tracking 

chambers leaving partial tracking stubs as discussed in section 4.3.2. Because no 

momentum measurement or particle identification is performed on the partial track 

stub the charged pions can appear to mimic the signature of a soft e’̂ e“ pair.

The second type of pile up events involves a event in coincidence with a Ke3 

event. In this case the muon from the decay in combination with a misidentified 

pion, or pion decay in flight from either the same K^z or from the companion K^z 

satisfy the trigger criterion for the event trigger. The remaining electron

and charged pion then leave partial tracking stubs in the forward regions of the 

spectrometer thereby mimicking the event signature for K l  —> iK jjre^e~ .

Pileup events of this sort do suffer from a number of factors which diminish 

their acceptance into the detector regions or distinguish them from the four body 

event of interest. The foremost limitation on the event acceptance is the allowed 

phase space and kinematics for each of the semileptonic decays. These decays by 

their three body nature have the Dalitz plots shown in Fig. 4.7. The transverse 

momentum kick imparted by the spectrometer magnets favor the high momentum, 

high invariant mass region of the tt/ ^  decay-pair phase space to maximize acceptance 

for the decay. This requirement forces the decay to occur near its endpoint where
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FIG. 4.7; KfiS and K ^ s  Dalitz plots representing the available three body phase space 
in the center of momentum frame such that p K  ~  0. Only the high mass and M ttb 
near the Pu = 0  endpoint contribute to the events accepted into the E871 spectrometer.

the neutrino comes off at rest in the center of momentum frame, such that p„ 0 . 

By limiting the effective acceptance of the decay to  the corner of the Dalitz plot, the 

probability of event overlap satisfying the requirements of the trigger are diminished. 

Integrating the phase space results in an effective branching ratio for decays with 

kinematics favorable to the E871 detector geometry and acceptances. In addition 

to the limited phase space available to the acceptance of the decays, the pile up 

events show no tight angular correlation in the particle trajectories which leave 

partial tracking stubs in the forward spectrometer. In contrast, the pairs from 

K'l —>■ jj li jre^e~  decays are not only extremely soft in terms of their momentum 

spectrum, but have an extreme degree of angular correlation which creates a tight 

clustering in the resultant tracking stubs. Moreover the soft nature of the e"*’e“ pair 

also creates a high degree of correlation between the tracking stubs and the primary 

laboratory decay plane as defined by the pair reconstruction vertex and the

trajectories through SDCl and SDC2 . Event pileup does not exhibit this type of 

planar correlation and as such can be minimized through cuts on the decay plane 

angles.

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



78

The difficulty in determining the exact rate of event overlap is based upon Monte 

Carlo simulations of the decay vertex distributions. To fully determine the rate at 

which this process creates a significant background, the invariant mass distribution 

for decays exceeding the kaon mass is retained and used to provide a fiat background 

subtraction in the signal region.
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C H A PTER  5

Experim ent E871 D etector

5.1 E871 Detector System

The E871 detector system was designed to reach a single event sensitivity of 

10“ ^̂  for the /xe decay channel in a designated running period of 5600 hours using the 

24 GeV/c high intensity proton beam at the BNL AGS. To achieve this sensitivity 

goal the tracking chambers, particle identification detectors, and data acquisition 

systems were designed and constructed under the following general criteria:

•  Neutral kaon flux at the production target and decay products accepted by the 

detector systems should be maximized.

•  Neutral beam production size should be minimized

•  Minimal acceptance of neutral kaon background events

•  High resolution tracking, momentum measurement, vertex and invariant mass 

reconstruction and accurate particle identification of electrons, muons and pions.

The experimental apparatus was assembled at BNL and situated in the B5 

secondary beam line of the AGS as shown in Fig. 5.1. To achieve the goals outlined

79
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FIG. 5.1: Brookhaven National Labs AGS

above, the experimental apparatus was designed as a follow up and upgrade to the 

E791 experiment [33]. The E791 double arm spectrometer was redesigned into a 

single unit with symmetric beam left and right components. The apparatus was 

arrayed in linear fashion consisting of first beam transport and decay volume, then 

tracking and momentum analyzing units, followed by particle identification detectors 

and a muon range stack. Key to the success of this design was the introduction of 

a neutral beam stop within the first analyzing magnet. The overall layout of these 

systems is shown in Fig. 5.2, 5.3 and 5.4.
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FIG. 5.2: E871 Experimental apparatus

To achieve the stated design goals redundancy was built into all the systems pro­

viding multiple distinct tracking and momentum measurements as well as redundant 

particle identification of electrons and muons. The experimental apparatus started 

with production target and beam transport systems. A platinum target mounted to 

a water cooled beryllium support defining the z—0 origin of the experiment created 

a high intensity secondary beam from the incident 24 GeV primary proton beam 

delivered by the AGS. Dipole sweeping magnets, lead foils and precision collimators 

immediately downstream of the target removed charged particles and photons from 

the secondary beam and shaped the beam transported to the primary decay volume. 

Long-lived neutral kaons which decayed in the primary volume had their products 

enter the tracking spectrometer through a downstream Kevlar and Mylar window 

in the decay tank.

Tracking position measurements for charged decay products were made using 

four sets of beam left and right, fast gas straw tube drift chambers and two sets 

of hexagonal cell wire drift chambers. Two dipole spectrometer magnets inbetween 

sets of tracking chambers provided independent momentum measurements of the
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FIG. 5.3; E871 Experimental apparatus
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FIG. 5.4; E871 Spectrometer and particle identification
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particle trajectories. The magnetic fields of the spectrometer magnets were tuned 

to impart a net 200MeV/ c in-bend momentum kick, resulting in charged particles 

from 2 -body kaon decays with low transverse momentum that emerged roughly 

parallel to the beam axis.

Triggering of the experiment and particle identification were provided by a se­

ries of detectors downstream of the final spectrometer aperture. General charged 

particle triggering was performed by a series of fast response scintillator hodoscopes. 

Electron triggering and identification were performed by a large volume hydrogen 

gas threshold Cerenkov counter and a segmented lead glass array. Muon identifi­

cation was provided by a scintillator hodoscope and a lOGeV/c momentum range 

counter consisting of iron, marble and aluminum plates interspersed with an array of 

scintillator hodoscopes and planes of proportional tube counters. Pion discrimina­

tion was performed using the Cerenkov counter as a veto, lead glass array hadronic 

shower energy deposition, and veto from the muon rangefinder elements.

5.2 Kaon Production Target

K mesons are generated from the strong interaction via a standard A S  — 0 

hadronic interaction as previously discussed. A beam of kaons can thus be pro­

duced though the use of an intense proton beam which is incident upon a station­

ary hadronic target. If the incident proton beam energy exceeds the threshold for 

inclusive production then kaons are produced primarily from the 7r~p~ —> K^A  

mechanism [34]. Over the experimental run three production targets were used in 

this manner.

To highly localize the production origin a platinum strip of 127.0mm length, 

3.15mm width and 2.540mm height was thermally mounted to a water cooled beryl­

lium heat sink. Platinum has a density of 21A5g/cm^ and hadronic interaction

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



85

length of IdQ.lg/am? thus coresponding to 1.44 hadronic interaction lengths for the 

24GeV proton beam . The low mass, low Z beryllium base reduced contamination 

of the neutral beam from proton interactions off the heat sink and base stem.

The thermal interface between the platinum and beryllium was facihtated on 

the first two targets using a Ag-Cu-Sn alloy^ braze. To reduce thermal stress to the 

material due to non-uniform energy deposition over the 127.0mm interaction path, 

the platinum strip was divided into five equal length segments along the z-axis.

The target assembly was mounted in the AGS B5 beam line at an angle of 

—3.75° to the horizontal. This production angle was chosen to produces a high 

neutral kaon flux and low neutron production in the resulting beam. At a nominal 

incident flux of 2 0  x 1 0 ^̂  protons per spill the resulting neutral beam composition 

was expected to consist of 1 0 ® kaons and 2  x 1 0 ® neutrons per spill.

During a high intensity test of the target at 25 x 10^  ̂protons per pulse during 

March 1995, the thermal braze on the first two segments of the production target 

failed resulting in the loss of the upstream segments of the unit. The target was 

replaced with a spare target of identical design for the remainder of the 1995 and first 

part of the 1996 production run. In May of 1996 a new target was installed consisting 

of a 150mm long platinum strip divided into 15 equal length segments. The platinum 

was bonded to a larger heat sink using a Ag-Gu-Li alloy^ braze designed to withstand 

a higher temperature environment.

5.3 Neutral Beam Collimation

The neutral beam was extracted horizontally at 3.75° from the proton target 

axis to maximize kaon to neutron flux. The beam first passed through a pair of dipole

160% Ag, 30% Cu, 10% Sn 
2 9 2% Ag, 7.5% Cu, 0.025% Li

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



86

sweeping magnets (B5P4/B5P5) to remove charged particles from the stream. The 

first dipole B5P4 removed both the primary proton beam and positively charged 

secondary particles from the beam line by redirection to the concrete and steel 

beam dump located immediately down stream of the primary target below the 

neutral beam fine. The second sweeping magnet, B5P5, removed remaining charged 

particles from the beamline. Photons were removed from the beam line through 

a series of 17 2.5mm thick lead foils placed in the upstream dipole magnet. The 

foils were designed to convert the incident photons to e"^e“pairs which were then 

subsequently swept from the line by B5P4/B5P5. Neutral pions were eliminated by 

their rapid decay to a 7 7  prior to the lead foils, and the resulting photons removed 

as described above.

The neutral beam was collimated using a series of precision lead lined brass 

collimators as shown in Fig. 5.5. The coUimators provided an opening angle of 

5mrad in the x direction and 20mrad in the y direction. This opening permitted a 

well defined 1 0 0  /asteradian neutral beam to enter the decay region.

5.4 Decay Tank

The lifetime for the component of the neutral kaon results in a cr =  15.51m. 

In order to permit a sufficient proportion of the incident particles to decay upstream 

of the first detector elements a 10.9m long evacuated decay tank was situated after 

the second sweeping magnet and brass coUimators. The tank extended from beam 

position z=10m, down to z=20.9 using a trapezoidal geometry to expand from an 

upstream dimension of 10cm in X by 16cm in Y, to the downstream aperture mea­

suring 193cm in X by 86.4cm in Y as shown in Fig. 5.6. The tank was constructed 

of welded 5cm thick steel plates embedded in concrete to provide structural support 

and radiation shielding. The concrete used was borated to capture neutrons from
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FIG. 5.6: E871 primary decay region geometry

the target area which were moderated to thermal energies by the concrete shielding. 

The large downstream opening of the tank was sealed by a 0.127mm thick Mylar 

window. The Mylar window alone was not structurally strong enough to maintain 

an operating pressure differential between the evacuated tank and atmosphere. At 

the target operating vacuum level of 2  x 1 0 ~^forr the pressure exerted on the front 

window was approximately Iblbs/iv? resulting in over 2 0 tons of force on the front 

aperture. To provide structural support a secondary vacuum window of 0.381mm 

(15mil) thick Kevlar was used. During the final week of the 1995 run period the 

outer Kevlar window failed resulting in implosion of the 640f t^  decay region. The 

vacuum region was reconstructed using a thicker 0.4318mm (17mil) ballistic grade 

Kevlar windows to prevent catastrophic failure of the region.

The interior region was evacuated to pressure of 2 x 10“^torr and maintained 

at that level by a mechanical turbo pump. Residual gas species present in the 

decay volume were not measured during the initial experimental runs. During the 

testing of the E935 upgrade a residual gas analyzer was installed on the vacuum 

system to monitor both pressure and gas species. Prom these spectra as shown 

in Fig. 5.7 it was possible to determine that water vapor from the out-gassing of
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FIG. 5.7: Sample spectrum of residual gas present in the primary decay tank under 
evacuation via mechanical turbo pump at 1.7 x 10“ ®torr

the steel, nitrogen from the surrounding environment and helium diffusing from the 

downstream helium bags were responsible for the primary species of residual gas in 

the region.

5.5 Spectrometer

Reconstruction of a valid kaon decay required precision tracking and accurate 

momentum measurements of the charged particles. The upstream half of the E871 

experimental apparatus consisted of a spectrometer to provide track identification 

and to perform two independent momentum measurements of each candidate track. 

An overview of the forward spectrometer is shown in Fig. 5.9 and Fig. 5.8

The spectrometer consisted of 22 planes of straw tube-based wire chambers
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FIG. 5.8: E871 spectrometer overview

arrayed in x coordinate measuring and y coordinate measuring views followed by 8  

planes of hexagonal cell wire drift chambers. Each detector plane was segmented 

to provide independent beam left and beam right elements. Two high field dipole 

magnets were situated between detector planes to provide momentum measurements 

transverse to the beam axis in the x-direction.

The spectrometer was required to be highly segmented to provide low single 

channel occupancy, even in the high rate forward chambers. A low material cross 

section design was employed to prevent particle interactions and scatter which could 

distort vertex reconstruction or momentum resolution.
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FIG. 5.9: E871 forward spectrometer detailed schematic

5.6 Straw Drift Chambers

The high intensity of the neutral beam results in extremely high rates of charged 

particles in the forward region of the spectrometer resulting from interactions in the 

decay region and with the beam plug material. The rate is high enough that stan­

dard wire proportional counters cannot be used for tracking in these regions. Both 

the channel occupancy and the recycle times would not be sufficient to accmately 

measure the environment present. Straw drift chambers using an exotic fast gas 

mixture and a dense channel geometry were used to provide both the refresh time 

and single channel luminosities which were required.

Straw drift chambers (SDCs) operate on the same principles as most propor­

tional wire counters. When a charged particle traverses a medium the energy that it 

deposits can lead to ionization of the material. If the resulting free ions are placed in 

a strong electric potential then they will accelerate and cause secondary ionization 

as they pass through more material. The resulting avalanche of ions can then be
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registered. In the case of the straw drift chambers, a small cylindrical tube is placed 

at a ground potential and filled with an easily ionized gas. A wire is positioned 

under tension along the central axis of the tube and held at a positive high volt­

age, creating a potential difference between the outer wall of the cell and the sense 

wire. When a charged particle traverses the cell it ionizes the gas, resulting in an 

secondary ionization avalanche that drifts under the influence of the radial potential 

towards the central axis where the ions are registered as current on the sense wire. 

The resulting current is amplified and read out as a signal pulse.

The straw drift chambers used in E871 were constructed from 5mm diameter 

cyhndrical straws made of 25/rm copper-coated Mylar. The straw tube cathodes 

were constructed with lengths of 80cm for the upstream chambers and 1 2 0 cm for 

the downstream chambers. The sense wires for each straw consisted of a 20/um 

diameter gold-plated tungsten wire which extended down the length of each tube. 

The choice of copper-oxide as the straw coating was made to shield cathode field 

emissions and absorb soft photons owing to the high work function for the material.

To provide a fast ionization environment, each tube was filled with a mixture 

of carbontetrafluoride (CF4)  and ethane {C^Hq) in a 50/50 mixture. The inert CFj  ̂

has a low threshold for ionization and is quenched by the presence of the ethane 

which readily absorbs the de-excitation photons emitted when the molecule returns 

to the ground state. As a result, the CF4/C 2HQ mixture used exhibited a lOO^m/ns 

drift time at an operating potential of 1950V. Single channel rates of approximately 

300kHz per straw in the upstream chambers were manageable with this drift time.

Straw tubes were packed into x-measuring and y-measuring layers using a stan­

dard cylindrical packing geometry as shown in Fig. 5.10. Straw chambers SDCl, 

SDC2 and SDC4 contained both x and y measuring plans while SDCS consisted 

of only X measuring straws. Straw planes were arranged as shown in Fig. 5.11 for 

SDCl L/R  while for chambers SDC2 and SDC4 the y measuring planes were placed
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FIG. 5.10; Straw drift chamber layer geometry

SDC X/Y views

FIG. 5.11: Straw drift chamber X /Y  layer arrangement
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upstream of the x planes. The overall ordering of measuring planes was SDCl(XY), 

SDC2(YX), SDC3(X), SDC4(YX) providing seven measuring planes on both beam 

left and right. Each chamber contained 400 to 500 channels arranged in this manner 

for a total of over 6400 active straw tubes. Each straw tube channel was equipped 

with an amplifier card and the resulting signal was readout via a capacitive coupling 

which discriminated the signal at a 1.5//A threshold. A 30ns wide digital signal was 

generated by the electronics and sent via 32channel Ansley cabhng to a fast TDC 

for signal processing. High voltage to the chambers was provided by a CAEN SY127 

power supply. The voltage was varied on the beam gate between 1850V and 1950V 

corresponding to out of spill and in spill conditions. The resulting voltage change 

prevents charge accumulation on the wires out of spill and reduces overall current 

load on the system.
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5.7 Spectrometer M agnets

Two large aperture electromagnetic dipole magnets were used to facilitate the 

momentum measurement of tracks in the forward spectrometer. Each magnet con­

sisted of a conventional iron yoke and two concentric water cooled wire coils. The 

coils were oriented parallel to each other to produce a uniform magnetic field in 

the vertical direction. The magnets were situated on concrete pedestals so that the 

central axis of the magnets and the beam line axis coincided. To prevent excessive 

fringe fields, mirror plates were installed on the upstream and downstream ends 

of the yokes. These plates consisted of iron blocks arranged to saturate the field 

emerging from the aperture. The layout of both magnets can be seen in Fig. 5.12 

labeled as D02 and DOS corresponding to the upstream and downstream units.

The upstream magnet, D02, when energized with a nominal current of 3600A 

provided uniform field strength with magnetic flux per meter of 1.4 T  ■ m  which 

extended over its 96 inch wide (x) by 44 inch tall (y) aperture. The magnetic field 

orientation in D02 was such that negatively charged particles incident on beam left, 

and positively charged particles incident on beam right receive a momentum kick of 

416MeV/c towards the beam line. Additionally the compact beam stop, as described 

in Section 5.8 was located within the 96D40 preventing the passage of neutral beam 

beyond the first magnet aperture.

The downstream magnet, DOS operated at a nominal current of 1900A and 

provided a dipole field with magnetic flux per meter of 0.7T • m  in the orientation 

opposite that of D02. The magnet aperture spanned 100 inches in the x direction 

and 58 inches vertically. Positively charged particles incident on beam right and 

negatively charged particles on beam left consequentially received a momentum 

kick of 216MeV/c in a horizontal direction away from the beam line.

The net momentum kick imparted to charged particles properly entering the
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spectrometer on beam left (negatively charged) or beam right (positively charged) 

was 200MeV/c towards the beam axis. This inbend was chosen to effectively cancel 

the net transfer momentum available to the decay streams of interest and thus to 

render such tracks parallel as they emerge from D03.

Contamination to the primary decay branches of interest in E871 stemmed 

from background induced by the semi-leptonic Kes and decays. Each of these 

three-body decays exhibits a maximum transverse momentum as shown in Table 5.1 

corresponding to the endpoint decay where the neutrino is at rest in the center of 

mass frame. Similarly the two-body decays of interest exhibit net pr  peaks between 

206-249MeV/c creating a signal overlap between the three-body decay endpoint 

and the two-body phase space. The four-body decay p^pre^e~  is unique in

that the form factor for the decay enhances the high momentum region of the decay 

spectrum favoring those events where the electron Dalitz pair emerge soft. This high 

momentum enhancement leads the muon tracks from the decay to retain a transverse 

momentum similar to that of the channel. Due to this similarity in

muon momentum spectra the spectrometer settings that favor the dilepton decay 

channels that E871 was designed to measure are also favorable to the measurement 

of > fi^iTe^e~.

The overall choice of pt  kick was chosen to provide decays of interest with a 

slight outbend profile in the trigger scintillation counters, and to maximize accep­

tance to the —> TT+TT" decay mode used for overall normalization of experimental

data.

5.8 Neutral Beam  Stop

In the predecessor to this experiment, E791 [35] an optimal beam intensity of 

5.5 X 10̂  ̂protons per spill was achieved using a two armed spectrometer with wide
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FIG. 5.12; B5 Beamline line analyzing magnets 96D40/D02 (upstream) and 100D40/D03 
(downstream)
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Decay Branch Fraction Decay pt (MeV/c)
—>• TF^e^I/e ( 3 8 .7 8  ±  0 .2 7 ) % 2 2 9

K l  - ( 2 7 .1 7  ± 0 . 2 5 ) % 2 1 6

—J- 7r"̂ 7r“ ( 2 .0 6 7  ±  0 .0 3 5 )  X 1 0 “ ^ 2 0 6

K l  e+e- ( 9 .4 t ^ ; ^ )  X 1 0 - ^ 2 2 4 9

K l ( 7 .2  ±  0 .5 )  X 1 0 - ^ 2 2 5

K l <  4 .7  X 1 0 - ^ 2 2 3 8

K l  —> p^p~e^e~ ^  2 .9  X 1 0 - ^ 2 2 5

TABLE 5.1; Transverse momentum for K i  decay modes [12]

separation between the detector branches. This allowed passage of neutral beam 

through the non-active region of the experimental setup without adversely affecting 

rates in the spectrometer and detector systems. To achieve a targeted running 

intensity four times that of the prior experiment, and with increased geometric 

acceptance for the decay streams of interest, the E871 detector was designed with 

minimal separation between the left and right branches of the apparatus. This 

design required the use of a stopping mechanism downstream of the primary decay 

tank which would mitigate the effects of a high rate neutral beam with a momentum 

distribution peaked close to 9 GeV [36].

To achieve the targeted run intensity of 20 x 10^  ̂protons per spill with a factor 

of 2 0  improvement in sensitivity, the decision was made to place a highly efficient 

neutron absorber inside of the first analyzing magnet. The beam stop would subtend 

a minimal solid angle for the purposes of geometric acceptance of two-body events, 

and remain physically compact in relation to the scale of the remaining detectors. 

A tungsten-nickel alloy (Heavimet) 112cm long with a total mass of 5000 kg was 

used as the central core of the beam stop. At a material concentration of 97%, the 

tungsten provided 12 hadronic absorption lengths. To augment this core at a reduced 

cost, 1880kg of additional copper were inserted after the tungsten blocks. The core 

geometry used is shown in cross section in Fig. 5.13. The entrance tunnel to the
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core material is designed to absorb secondary emissions and to prevent backscattered 

neutrals from re-entering the upstream elements of the spectrometer. The entrance 

tunnel is continued vertically 107cm in such a manner that it spans almost entirely 

the central aperture of the 96D40 analyzing magnet.

To moderate the high neutron flux emerging from the central plug, the core 

material was surrounded by a layer of borated polyethylene. The hydrogen-rich 

material served to slow the incident neutrons though elastic coUisional processes 

whereby the light hydrogen nucleus carries off a significant portion of recoil energy. 

The polyethylene was doped with boron, or borated zirconium hydride powder was 

used to then further facilitate fast neutron capture. Each polyethylene block was 

wrapped in a borated sihcone sheeting to further mitigate the neutron flux, and 

any resulting gaps on the plug geometry were filled using silicone. The final layer 

of the beam stop was composed of a series of 1 inch thick lead sheets. The lead 

was designed to absorb all the gamma radiation produced in the back regions of 

the device from the process of neutron capture on boron. In the upstream portion 

of the beam stop where secondary emissions into the upstream geometry had to 

be highly suppressed, similar polyethylene blocks were used, but were doped with 

lithium as the captme material. This choice of dopant was chosen to eliminate the 

gamma ray spectrum which results from neutron capture on boron, as in the later 

stages of the plug. The extreme effectiveness of the beam plug can be seen most 

noticeably in the reduction of signal rates between the straw drift chambers imme­

diately upstream and downstream of the beam stop. Fig. 5.14 shows a comparison 

of the rates in SDC2L and SDC3L. At small x there is a noticeable increase in the 

chamber illuminations prior to the beam plug owing to the halo of the neutral beam. 

In the same region downstream of the compact beam stop, the sharp spike in inte­

rior chamber illuminations is reduced to a level consistent with the more uniform 

distribution which is predicted from events originating in the primary decay tank.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 0 0

S 5 s e 5
»f5 oq <0 P  b- 
i CO cd L's

3 S 5 «2.62 m
1.12 m

0.64 m

m m

^ T u n g s t e n  d P o ly e th y le n e  (B ) ^ C o p p e r

fflF lex -B o ro n  1 1  P o ive thv lene  (Li) Q  Z irconium  H ydride

FIG. 5.13: Cross sectional view of E871 compact beam stop

tS3
K
s

QflOJS

£

SDC 1 
SDC 2  

SDC 3 
SDC 4 
DCH 5 
DCH 6

Channel (Beam Left/Right)
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chambers before and after the neutral beam stop
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The resulting elimination of the neutral beam within the first analyzing magnet 

allowed for the subsequent placement of particle triggering and identification detec­

tor systems along the x=0 origin of the experiment. By spanning the zero point 

with active detector elements, the geometric acceptance for the decays in question 

were maximized without adverse trigger rates along the small x coordinate. The 

overall sensitivity of the E871 system was enhanced over the previous two-armed 

design of E791 even at beam intensities exceeding 20 x 10^  ̂ protons per spill owing 

to the unique design of the compact beam stop.

A more detailed treatment of the Monte Carlo calculations and design specifi­

cations, as well as testing procedures and rate calculations are given in [36].

5.9 Helium Balloons

Spacing between active spectrometer elements was not evacuated, presenting 

an incident particle trajectory with regions of possible interaction. To reduce the in­

teraction cross sections for multiple scattering and electromagnetic pair-production 

in these regions, the air was displaced with helium gas at a slight over-pressure to 

atmosphere.

The helium gas was contained in t hin wall Mylar bags. Each bag contributed 

an addition 0.00635cm of material per membrane in the beam line. This additional 

material was taken into consideration in the calculations for multiple scatter and 

pair production. The Mylar bags were inserted between the detector regions and 

spectrometer magnets and then inflated via a centralized gas distribution system. 

Additionally a single Mylar wall was attached to the front face of the primary decay 

volume and inflated to fill the 10cm gap between the Kevlar window and front face 

of the first set of straw drift chambers. This configuration is shown in Fig. 5.15
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FIG. 5.15: E871 primary decay tank window including He filled Mylar bag

5.10 Drift Chambers

The presence of the compact beam stop in the first analyzing magnet reduced 

the observed particle rates to a level where large cell drift chambers could be utilized 

downstream of the 100D40 analyzing magnet. Two sets of drift chambers, DCS 

and DC6 were used each consisting of over 600, 1cm diameter drift cells. The x- 

measuring cells extended 152cm in length with similar y-measuring cells 92cm long. 

Single channel occupancy of the cells approached lOOkHz.

Unlike the straw chamber cells based on a cylindrical straw tube cathode, the 

drift cells utilized a hexagonal field geometry provided by a series of field wires 

with a single sense wire at the center of each cell. The sense wires were 20/im gold 

plated tungsten, similar to the straw chambers, and held at ground potential. Each 

sense wire was surrounded by six gold-plated 109/xm aluminum alloy wires held at a 

nominal negative high voltage of 2300V. The electrostatic field was further shaped
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by 109/im gold-plated aluminum guard wires placed on the periphery of the cells 

and held at ground potential. Analogous to the straw chambers each drift chamber 

contained three planes of staggered x-measuring cells followed by two planes of y- 

measuring cells. Field and guard wires were shared between adjacent planes creating 

an extremely low mass cross section to incident particles. This configuration is shown 

in Fig. 5.16.

The chambers were filled with a 49%/49% axgon-ethane gas mixture to provide 

an appropriate low ionization threshold medium. To prevent polymerization of the 

gas mixture building up on the wires, ethanol vapor was added at a level of 2% to 

quench the process. The resulting environment exhibited a drift time of bOnm/ns 

at the nominal field gradient, corresponding to a position resolution of ISO/rm.

Drift chamber output was first routed to pre-amplifier boards located on the 

ends of the chambers which provided a signal gain of 20. The resulting signal 

was then sent to additional amplifier, discriminator and mean timer (ADM) boards 

where the signals were digitized. Output from the ADM boards was passed to the 

counting house via 500 ns of Ansley delay cable before being input to custom built 

time-to-digital converters (TDCs) gated by the level 1 trigger signal. The TDCs 

provided a 160 ns dynamic range with least count resolution of 2.5 ns and rms error 

of 0.8 ns.

5.11 Trigger Scintillation Counters

Due to the high rate of decay events passing through the experimental appara­

tus during each beam gate a detector system was required to provide a fast trigger 

indicator as to the base event quahty for data module readouts and event acqui­

sition. The trigger scintillation counter (TSC) provides the first of the hardware 

trigger systems by providing fast charged particle tracking and determination of
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FIG. 5.16: X-measuring hexagonal drift cells cross section

event quality based on track parallelism.

Organic based scintillation detectors such as the type used in E871 operate on 

the basis of converting energy loss in m atter to visible light emissions. When a 

charged particle traverses a medium there are predictable interactions and energy 

loss that occur due to ionization events. The mean energy loss due to a charged 

particle traversing a medium can be expressed by the Bethe-Bloch formula:

^ _  dTTiv^zW z r 
dx A 1 ^

2mv^
/ ( I - / ? " )

- / 3 H ,  (5.1)

where Na is Avogadro’s number, m is the electron mass, z the charge of the particle, 

V and (3 are the velocity parameters, and Z and A are the atomic and mass numbers 

of the medium. The quantity I  is taken to be the effective ionization potential 

averaged over the material. The energy loss dE /d x  is thus independent of the mass 

M of the incident particle and varies logarithmically with the velocity parameter for 

relativistic particles.

In the case of a plastic scintillating material, the energy loss experienced by the 

incident particle is imparted to the hydrocarbon dopant which experiences ionization 

and then a series of atomic de-excitations. The transitions primarily occur in the 

vibrational band of the ground state and result in a series of radiative emissions on
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FIG. 5.17: Simple single edge readout scintillator and phototube readout system

the order of a few nanoseconds after the initial ionization as the system decays. By 

careful choice of the chemical dopant, the efficiency with which the ionization energy 

as expressed in Eq. (5.1) is converted to radiative emissions can be tuned to match 

the region to which the base plastic of the scintillator is optically transparent. In 

general this conversion efficiency is on the order of 1% of the total ionization energy 

lost by the incident particle.

The resulting light emission then propagate through the length of the scintillator 

at the local speed of light. The resulting light pulse can then be collected and 

amplified in a multi stage photomultiplier tube and the resulting current read out 

and recorded. Due to the fast nature of the atomic excitations, propagation of light 

in the transparent medium, and photoelectron cascade in a phototube, these types of 

detectors have the ability to handle high signal rates as seen in E871. Two types of 

plastic scintillation counters were utilized in creating the fast level 1 trigger system.

The first trigger scintillation system consisted of two planar arrays of thin detec­

tor units divided into four x-measuring modules and two y-measuring modules. The 

first planes (T IL /T IR ) of x-measuring modules were located at z-position 29.94m 

immediately after the last set of proportional wire drift chambers and immediately
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preceding the front aperture of the hydrogen Cerenkov counter. The second set of x- 

measuring planes (T2L/T2R) immediately followed the rear surface of the Cerenkov 

counter at z=32.85m and were arranged in a mesh configuration on both beam left 

and right with an associated y-measuring module (TYL/TYR).

Each forward x-measuring detector module consisted of 32 5mm-thick scintil­

lator slats measuring 32mm in width by 1.653 m in total length. Each scintillator 

bar was enclosed first in an aluminized reflective foil to facilitate maximum internal 

light collection, and then encased in a black wrap to ensure channel isolation and 

prevent outside light contamination. A small Hamamatsu R1398 photomultipher 

tube was connected to each end of these scintillator slats and brought in optical 

contact with the readout surface via a pressure lock system and optical interface 

cookie [37]. The units were then aligned vertically in two subplanes with low mass 

intra-unit Rohacell spacers to provide unit to unit ridge support. These two verti­

cal sub planes were moimted flush to a series of carbon steel tubes welded into a 

“C” configuration, and staggered by an offset of 1.905 cm to provide a unit-to-unit 

overlap of 3 mm. As a result of the overlapping slats the center to center distance 

between two adjacent channels was 27.5 mm. The overlap in adjacent bars elim­

inated any insensitive regions near the edges of physical paddle boundaries which 

would have been present if the bars had been mounted edge to edge. This design 

produced then a single module measuring 1.65m vertical by 1.01m in the horizontal 

coordinate with full active coverage of the region.

The downstream x-measuring modules T2L/T2R were constructed and aligned 

in the manner identical to the modules T IL /T IR . These modules did however differ 

from their counterparts in the vertical dimensions of their scintillator bars. To pro­

vide full coverage for the active area the length of the scintillator bars was increased 

to 1.897 cm producing a sensitive x-position measuring plane 1.90 m vertical by 

1.01 m wide. To complement the x-measuring module, a set of two y-measuring
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FIG. 5.18: Trigger Scintillation Counters in modules TSCl and TSC2

TSC planes were placed immediately behind T2L/T2R to form a meshed grid as 

shown in Fig. 5.18. The y-measuring modules consisted of 64 thinner scintillator 

slates measuring 3.0 cm wide by 100.9cm long with a phototube readout only on the 

outside edge of the module. These bars were mounted in the same staggered manner 

as their x-measuring counterparts but with an overlap coverage of only 2.8mm be­

tween adjacent slats. The resulting module was attached to the same “C” support 

structure as T2L and T2R.

To maintain fast response and recovery, polyvinyltoluene-based Bicron BC-408 

scintillator was used. This material exhibits a decay time of 2ns and a maximum
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blue light emission peak at 430nm. The Hamamatsu R1398 phototubes used to per­

form the readout on the scintillator had a 1.9cm diameter photocathode with peak 

sensitivity at 420nm. The rise time of these ten stage tubes was 1.8ns with a transit 

time of 19ns. The phototubes were negatively biased to a nominal operating voltage 

of 1500V. The tubes received power through standard SHY cabling connected to a 

LeCroy 1440 Mainframe high voltage supply. Channels were tuned individually and 

maintained via the online monitoring system. Readout for all the units was achieved 

through a standard low-loss 135ns RG-8 signal cable and were transported to the 

main counting house where the signals were coupled to Lemo signal cables and fed 

into 16 channel LeCroy 4413 dual output discriminators. Each discriminator chan­

nel produces two standard ECL logic signals. The first signal was routed to the 

Level 1 electronics to form the base event trigger, while the second signal passed 

through a 100ns delay line to form the stop pulse for the time-to-digital converters 

(TDC) which measure the timing of the scintillator signals.

W ith an upstream to downstream module separation of 2.91m, the vertical 

counters were able to determine track parallelism to a resolution of 0.54 degrees 

prior to ofiline analysis. This information was used in turn  as the basis of the Level 

1 trigger system to limit event readout to those event classes that exhibited a high 

degree of parallelism consistent with the decay streams of interest.

5.12 Threshold Cerenkov Counter

Positioned at z=30.49m, immediately behind the first trigger scintillation counter 

bank, was the first of two electron identification detectors. The E871 threshold 

Cerenkov counter consisted of a 2.5 meter deep aluminum enclosure encompassing 

18tô  of hydrogen gas. The active volume was divided into 32 readout cells by banks 

of 2.9 m radius of curvature spherical mirrors with associated 5inch phototube as-
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semblies. These readout channels were incorporated both in the trigger system and 

read out, and recorded for further analysis in the production data stream.

The threshold Cerenkov counter was designed to distinguish electrons from 

low momentum pions and muons traversing the volume. The counter relies on the 

detection of the coherent light cone that is generated whenever a charged particle 

travels through a dielectric medium with a velocity that exceeds the local speed of

light in the medium. This condition can be expressed as p  > 1 /n  where n is taken

to be index of refraction of the material and /5 is the standard relativistic velocity 

parameter:

/? =  -  =  .  L ::  (5.2)

From this expression we see it is clear that low mass particles will have correspond­

ingly higher /? than heavier ones at similar momenta, and hence will begin the 

process of producing Cerenkov radiation at a low threshold momentum. Prom this 

observation we can then calculate the number of radiated photons in the interval 

dE = hdu by a particle of charge z over a path length dx as:

^ ^ 7  ^  ^  A  _  _ L )  f5 3)
dxdE he V /?% ')

We now turn to the Huy gen’s construct of Fig. 5.20. From this diagram we can 

determine the opening angle of the light cone created by a charged particle as it 

traverses the medium.

cos^c == “ J  =  i f  P > ~  (5.4)pet pn n

Using this expression we can now rewrite Eq. (5.3) in a more compact form showing
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FIG. 5.20: Construction of the conical Cerenkov light cone arising from a charged particle 
moving through a dielectric medium

the explicit dependence of the light output on the wavelength:

Prom this we can see that the number of photons of a given frequency is proportional 

to dv or alternatively d \ / \ ^ .  Hence the blue region of the spectrum dominates the 

Cerenkov effect. For this reason both the mirror and phototubes must be specifically 

tuned to maximize efficiency in this region.

For this detector the dielectric medium chosen was hydrogen gas at 7.6cm H2O 

of overpressure to atmosphere. For diatomic hydrogen at this pressure the index of 

refraction is taken as:

(n -  1) X 10® =  139.2 (5.6)

From this we can calculate the threshold momentum required for the particle species 

of interest to undergo the Cerenkov process:

me , .
th resh o ld   ^  (5* * j

“  1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Particle Mass {MeV/c^) Threshold (CeV/c)
0.511 0.031
105.6 6.357
139.6 8.396

P 938.3 56.233

TABLE 5.2: Threshold momenta for Cerenkov radiation in Hydrogen {H 2 )

1 1 2
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FIG. 5.21: E871 Cerenkov counter exterior geometry

In the case of the particle species of interest we find that the large gap in Cerenkov 

threshold momenta between electrons and the heavier muons and pions as shown in 

Table 5.2, allows for high efficiency differentiation between low momentum electrons 

and all other charged particles of interest. In the momentum region bordering on 

and above 6CeV a secondary identification system in the form of an electromagnetic 

shower calorimeter is used as discussed in Section 5.13.

The exterior volume of the Cerenkov counter was constructed of 2.5cm thick 

aluminum plate welded to form the geometry shown in Fig. 5.21. To minimize the
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FIG. 5.22: Burle 8854 phototube with mu shielding and collar assembly as used on the 
E871 Cerenkov counter
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amount of high Z material in the average particle trajectory, the upstream face of 

the detector was designed as a 0.125mm mylar window followed by a 0.0381mm 

black Tedlar covering to prevent ambient light leakage into the detector volume.

The interior of the volume was segmented along the beam axis to form the 

active regions of the detector. To prevent light leakage and signal contamination 

between the beam left and beam right sides of the detector, a black Tedlar curtain 

was positioned at x=0 to serve as a light barrier and symmetry plane. This plane was 

further marked externally with survey points to allow for proper detector alignment. 

The x=0 beam axis serves as a symmetry mirror plane with respect to further 

detector division. Each side of the detector was then divided into an array of 16 

active detector cells consisting of 2.9 m radius of curvature spherical mirrors cut into 

rectangular mirror blanks. These mirrors were aligned along the x-axis coordinate 

to form the mirror columns. The physical width of the mirrors differer depending 

upon column placement. Mirror columns 1 and 4 (outermost and innermost) mirrors 

measured 0.258m in the x by 0.457m in y, while the inner columns 2 and 3 were 

narrower measuring 0.231m in x by 0.457m in y. This slight difference in horizontal 

width is necessary to provide overlap coverage of the vertical slats that compose 

TSC2-X. This overlap geometry is shown in Fig. 5.23. In this manner the active 

regions of the Cerenkov counter extend 3cm beyond the active region of the TSCs to 

accurately capture the light cone of edge triggered events. The interior arrangement 

of the Cerenkov counter is shown in Fig. 5.24.

Associated with each mirror cell is a single 12cm diameter phototube. Burle 

8854 Quanticon photomultiplier tubes were chosen for their short wavelength sen­

sitivity down to 220nm and their single photoelectron response of 22.5% at 385nm. 

Prom the geometry of the detector, the front faces of the photomultiplier tubes were 

in constant contact with the hydrogen gas environment of the Cerenkov detector. As 

a result of the atmospheric conditions the photocathodes of the tubes were placed
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FIG. 5.23: Overlap of Cerenkov mirrors with X measuring TSC slats
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FIC. 5.24: E871 Cerenkov counter interior geometry
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at a ground potential and the dynode stages biased with positive high voltage. This 

presents the obvious problem of possible baseline shifts at high signal rate as well as 

voltage sagging in the later dynode stages. To combat these two effects custom high 

voltage bases were designed and built with high voltage Zener diodes to prevent 

base current effects.

Due to the proximity of the phototube/base assemblies to the second analyzing 

magnet, a 17 Gauss magnetic fringe field was present at the phototube positions. For 

the 8854 phototubes to operate correctly, the magnetic field in the assembly region 

was required not to exceed 0.5 Gauss in either a transverse or an axial orientation. 

In order to dampen the magnetic field, the 8854 phototubes were first placed inside 

an iron collar as shown in Fig. 5.22 and cemented into the adapter using a low vapor 

pressure black silicone base epoxy. The Sylgard 170 epoxy served to structurally 

secure the phototube and form a gas seal between the tube and collar. The collared 

phototube assembly was then mounted to the detector inside of an additional iron 

housing with standard 0-rings serving to gas seal the assembly. In the space between 

the outer housing and the assembly an additional high mu metal® layer of shielding 

was fitted around the PMT adapter. On the interior of the detector the front faces 

of the phototubes were also fitted with CoNetic shielding in a conical geometry to 

reduce the local field. The interior surface of the conical shield was then lined with 

aluminized Mylar to enhance the acceptance of photons from the events.

5.13 Lead Glass Array (PBG )

Situated immediately downstream of the second plane of trigger scintillation 

counters at survey positions 33.2m and 33.4m was the lead glass array (PBG). The

®CoNetic alloy was used for its ability to readily absorb the magnetic field
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FIG. 5.25: E871 lead glass array with external cooling system

full array consists of two planes of lead glass crystals  ̂weighing 6.4tons. The crystals 

along with their support structure were contained within a light tight, temperature 

controlled enclosure ® constructed from Unistrut and heavy plastic sheeting. This 

design is shown in Fig. 5.25.

The first or “converter” plane was segmented into two rows of 18 blocks, each 

measuring 10.9 x 90 x 10cm in the x, y, and z directions, respectively. This depth 

provided 3.5 radiation lengths of material along the beam direction. Each block was 

affixed with a 3 inch diameter phototube® and base providing both an unamplified 

signal and a secondary 40 gain amplified copy of the signal. The tubes were mounted 

vertically to the forward block, afigned along either the positive or negative y-

^Schott F2 lead. 46%5i02,45%P60, 5% N a2, Material density Z .% g/ar?
®Enclosure temperature maintained at 72°P 
®Amperex 3462
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axis. The second plane of crystals, denoted as the absorber region, consisted of 164 

active^ blocks aligned in 12 rows of 14 crystals. Each crystal had a square front 

face measuring 15.3cm on a side. The depth of the crystals along the beam axis is 

32.2cm corresponding to 10.5 radiation lengths. A single 5 inch diameter phototube^ 

was affixed to the downstream end of each of the blocks in a horizontal orientation. 

As with the converter readouts, photomultipliers provided both raw and amplified 

signals.

The index of refraction of the glass was 1.62 and had a hadronic interaction 

length of 35.0cm. This yields a minimum of 1.2 hadronic interaction lengths that 

a valid® particle track must pass through before exiting the downstream face of the 

detector, in comparison to the total electromagnetic interaction path for the same 

track of 13.8 radiation lengths. As a result of this difference and the segmentation of 

the array, electromagnetic showers are initiated in the forward converter block and 

fully developed and absorbed in the secondary blocks. For electron and positron 

initiated electromagnetic showers, the total energy deposited in the array should 

reflect the measured momentum of the charged tracks. Photon initiated showers 

are identical in their shower nature but are distinguished through the absence of 

charged particle tracking information correlated to the hit cluster.

Hadronic showers initiated primarily by charged pions develop slower in the 

beam axis direction resulting in a converter to back block energy energy deposition 

substantially lower than a corresponding electromagnetic shower. Full absorption 

of the hadronic shower does not occur within active region of the lead glass array 

resulting additionally in a total energy deposition to track momentum ratio much

^Four blocks in the array were considered inactive regions during the experimental run owing 
to insufficient signal response 

®EMI 9618R
®Tracks or showers prematurally exiting the active region of the array along the x or y planes 

are not considered in the analysis
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less than 1. Pion initiated hadronic showers exiting the lead glass array in this 

manner are largely absorbed by a 12 inch iron block situated downstream of the 

PBG array and prior to the first active planes of the muon range finder and muon 

hodoscope.

5.14 The Muon Hodoscope

The base Level 1 trigger requirements for E871 included the abihty to identify 

event candidates which included two parallel muon tracks both for the dilepton 

decay and for the four lepton decay K'l ^+/i~e+e“ . Due to the high

beam rates present in the E871 experiment, a system similar in nature to the fast 

trigger scintillation counters was employed. The muon hodoscope (MHO) consisted 

of 3 x-measuring and 3 y-measuring plastic slat based scintillator planes situated at 

z positions in an energy loss range stack consisting of slabs of iron and marble as 

described in Section 5.15. Table 5.3 lists the lab Z-position of each counter plane 

along with its corresponding momentum gap placement in the stack. This ordered 

positioning is shown in Fig. 5.26. Of particular note is that the plane designated 

XI is indeed situated upstream of the initial XO/YO primary trigger planes. This 

placement reflects the importance of the l.OGeV threshold that was imposed on 

the experiment to prevent contamination of the muon data set by pions creating 

hadronic shower punch through in the forward region of the range stack.

Each MHO detector plane consisted of a series of long organic scintillator slats 

fitted with clear acryhc lightguides. For the E871 experimental run the trigger planes 

MXO/MYO were custom built to satisfy the requirements of the higher rate trigger. 

The remaining foxu detector planes were recycled from the prior E791 experimen­

tal run. As a result minor differences existed in both their designs and operating 

efiiciencies. Optical interface between the lightguides and photomultipher tube
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Muon Hodoscope Planes
Plane Z Position Momentum Gap (GeV/c)
MXl 34.945 0.85
MXO 35.265 1.0
MYO 35.265 1.0
MYl 36.345 1.6
MX2 38.195 3.25
MY2 45.915 7.0

TABLE 5.3; Lab Placement and corresponding momentum gap of MHO elements

5 ....1

MX2 —  
z=38.29m

M X l-----
z=35.04m

FIG. 5.26: Muon Hodoscope detector plane layout
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FIG. 5.27: Muon Hodoscope detector plane design

readouts for MXO/MYO was maintained by an optical “cookie” ®̂ similar to those 

used in the TSC system. Contact was maintained by a pressure locked spring system 

again analogous to the method used for the trigger scintillator counts. Hodoscope 

counters M X l/M Y l and MX2/MY2 used optical epoxy to permanently affix the 

photomultiplier tube to the hghtguide. The photomultipher tubes used on counters 

MXO/MYO were the 44mm diameter bialkaline photocathode model XP2262 from 

PhiUips. The tubes exhibited a peak sensitivity near 400nm and a transit time of 

30ns. The Philips tubes were biased with nominal negative high voltage of 1850V as 

supphed by a LeCroy 1440 HV mainframe. The older modules used similar 44mm 

diameter 12 stage phototubes from Amperex. The Amperex model XP2230 photo­

tubes also exhibited a peak sensitivity of 400nm but were required to be biased at 

higher nominal voltage of approximate 2300V. All x-measuring slats were fitted with

^°Bircon BC-634 1/8in wafer bushing
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Muon Hodoscope Scintillator Dimesions
Plane Slats Length (cm) W idth (cm) Thickness (cm)
MXl 11 267 18.8 2.54
MX2 11 267 18.8 2.54
MXO 18 229 12.7 1.27
MYO 18 104 25.4 1.27
MYl 14 229 18.8 2.54
MY2 14 229 18.8 2.54

TABLE 5.4: Dimensions of muon hodoscope scintillator slats

dual readout on both top and bottom edges of the scintillator while the y-measuring 

bars were equipped with phototube readouts only on the outer edge away from the 

beam line axis. Muon hodoscope planes MXO/MXl were both constructed from 

a total of 18 scintillator slats each with dimensions as listed in Table 5.4. Each 

plane was subdivided into a beam left and right half consisting of 9 bars each in 

a mirror configuration along x=0. In a manner identical to the staggering of the 

TSC detector slats to provide edge region overlap, the MHO trigger plane scintilla­

tors were staggered to provide a l/8 in  overlap between neighboring channels. This 

overlap was performed in both the x and y measuring counters to ensure maximum 

sensitivity in the active region. Detector planes MX1/MX2 as shown in Fig. 5.27, 

both consisted of a total of 11 Polycast Corp PS-10 organic scintiUator with a 3.9ns 

decay time and peak emission spectrum at 415nm [38]. The bars were arranged in a 

standard edge to edge configuration without division into beam left and beam right 

channels as shown in Fig. 5.27. Owing to the odd number of slats in the plane’s 

design there is no edge boundary supported mirror symmetry along the x=0 beam 

line, creating an ambiguity in the center channel designation for left/right tracking. 

The older y-measuring planes MYl and MY2 both contain a to tal of 14 counter 

slats, 2.29meters in length which span the x=0 beam line position, and are thus not 

segmented into a beam left/right designation. Owing to this configuration of the
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Pu spectrum  for K ,  —*■ u ^ u  e’*'e

FIG. 5.28: Laboratory frame muon momenta for iL° e^e

y-measuring planes as not associated with a beam axis side, channels are equipped 

with only a single readout each. The phototube equipped ends were situated on the 

beam left side of the experiment.

Each planar unit was internally mounted to 1.25cm x 7.62cm aluminum struts 

and housed in an aluminum box consisting of a l/16 in  front and back protective 

skin and supported by 2 l/2 in  edge frame. This box ensured additional structural 

support for the units as well as a secondary light shield in addition to the protective 

wrappings of each channel.

Signal readout for the individual units was provided via standard RG-8 low loss 

signal cable and routed to the Level 1 trigger electronics. Channels were read to a 

threshold discriminator and combined with the TSC output to form the appropriate 

parallel trigger Level 1 muon trigger.

5.15 M uon Range Stack

Muons from the decay process iL£ at E871, exhibit a relativisitic

laboratory momentum spectrum as shown in Fig. 5.28. In this momentum regime the
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muons interact with m atter as minimum ionizing particles. The colhsional processes 

that occur between the incident muon and the charge distribution of the material 

substance are well described by a series of elastic collisions of relativistic charged 

particles. The energy loss incurred through these interactions is dominated solely in 

this energy regime by ionization of the target material and as such is well described 

by the Bethe-Bloch formula for the fractional energy loss dE /dx^^].

_ 4 7 t A u V z  
dx mv^ A  ^

2mv^

This form can be modified to included both the density effect correction 5 and the 

shell correction C  so the more appropriate form of the Bethe-Block formula used to 

compute energy loss in m atter becomes:

^  _  A'KNgz'^a^ Z  
dx mv'^ A

2mV^Wmax 
/ ( I  -  /?2)

-  2/3" -  i  -  2 | |  (5.9)

We take Wmax to be the maximum energy transfer to an electron, allowed in a single 

collision by an incident particle of mass M:

1 +  2 s y  1 + r f  +

where s = rrie/M and rj = jd'y. In the event that M  ':$> me then the limiting form of 

the maximum energy transfer becomes:

Wmax ^  2meC^r)  ̂ (5.11)

Equation (5.11) proves to be a fair approximation for the case of muons in E871.

At incident energies below approximately 0.3GeV/c the 1/(3 behavior of the 

Bethe-Bloch formula dominates the energy loss of the muons in iron. At 0.3GeV/c
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a minimum is reach and the relativistic correction to the Bethe-Bloch equation leads 

to a logarithmic rise in the ionization loss. If the modified Bethe-Bloch as shown 

in Eq. (5.9) is used then the density correction term damps the rising logarithmic 

divergence leading to a flatter tail to the difiierential energy loss as a function of 

particle momentum. Particles exhibiting this relatively constant minimum rate of 

differential energy loss, dE /dx, over the appropriate momentum range can be termed 

“minimum ionizing” . As such the integrated energy loss over an effective range R 

can be calculated as a function of the incident momentum. Taking the process as a 

series of independent coUisional events, we can show that the statistical variation in 

the expected distance that an incident particle will travel is a Gaussian distribution 

with fractional width given by [40].

For muons the fractional variance is computed as:

^  =  0.035 (5.13)
R

This 3.5% statistical variation in the particle range becomes the systematic limit on 

the design resolution of the detector system based upon the ionization energy loss 

measurement.

In contrast to the minimum ionizing nature of relativistic muons, the energy 

loss of charged pions in the accessible momentum regions are dominated by strong 

interactions rapidly producing hadronic showering in the path of the charged par­

ticle. The energy loss dynamic and shower characteristics are discussed in section 

5.13. The characteristic range for a pion induced hadronic shower as compared to 

that of the minimum ionizing energy loss of a muon provides a method of accurate
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particle differentiation. The muon range stack of E871 exploited this character­

istic difference between muons and pions to eliminate background contamination 

from the —»■ JT£ —> and data stream arising

from semileptonic decays of the form with pion misidentification and

invariant mass reconstruction in the primary signal region.

Pions were induced to undergo a hadronic shower by the placement of high 

material with high hadronic cross sections in the particle’s path after it emerged 

from the lead glass calorimeter. The first hadronic filter plane consisted of a 30.5cm 

thick iron (Fe) slab. The material exhibited a nuclear interaction length Xj ~  16.76 

and provided a total of 1.82 interaction lengths for pions traversing the first medium. 

Subsequent iron, aluminum and marble filter planes were then interspersed with 

detector planes forming the muon hodoscope (MHO) and muon range finder (MRG) 

at 5% incremental momentum gaps. To reach the fourth detector plane, MXO, in 

this range stack the incident pion traversed over 4 interaction nuclear lengths of 

material. At this level 95% of the particles will have undergone the process of 

hadronic showering and have been absorbed by the filter material. In contrast the 

material prior to the fourth detector plane represents a momentum range value of 

only IGeV/c for a minimum ionizing muon.

Table 5.5 displays the hadronic interaction lengths for the materials used in 

construction of the range stack along with the material densities used to compute the 

minimum ionizing energy loss for muons via the Bethe-Bloch prescription. Table 5.6 

displays the ordering and positions of the elements included in the muon range stack.

The iron blocks used in the construction of the range finder measure SSin x 188m 

and were used in thicknesses of either 2m, 3m or iin . Starting at momentum gap 

24, marble and aluminum slabs are used in place of iron. The marble consists of 

of 3m X M in  x 59m pieces banded and glued together to form 3m thick, 88m 

wide, 118m high slabs and grouped with 1 l/2 in  and 7/8in aluminum plate to form
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Material p{glcrr?) A/(cm)
Lead Glass 3.60 35.0
Iron (Fe) 7.87 16.76

Aluminum 2.70 39.41
Carrera Marble 2.75 -

TABLE 5.5: Muon range finder material densities and hadronic interaction lengths

the successive 5% momentum gap intervals. Fig. 5.29(a) shows the arrangement 

of material blocks and Fig. 5.29(b) shows active detector elements which form the 

detector units. In total the weight of material used in the muon range stack exceeds 

420tons and extends over 20 meters of the experimental floor.

5.16 Muon Range Finder

In addition to the muon hodoscope trigger planes, the range measurement of 

muon tracks was performed by 52 planes of proportional wire counters arrayed in x 

and y measuring planes and spaced sequentially at 5% momentum gaps extending 

out to a maximum momentum range of 10.258 GeV/c. The design of the range 

stack allowed for a comparison between the actual stopping point of the charged 

particle and that predicted based upon the momentum measurement in the forward 

spectrometer and the assumed particle identification.

Calculations of the energy loss in m atter of the charged muons as they passed 

through the iron, marble and aluminum of the range stack were computed to de­

termine that stopping gap of each detector plane. Table 5.7 lists the values for the 

ranger finder in terms of the incident momentum of a muon-hke, minimum ionizing 

particle.

Each plane of the Muon Range Finder (MRG) was constructed by bonding a 

series of extruded aluminum honeycombs together in an edge to edge configuration
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Z(cm) Material Gap Z(cm) Material Gap Z(cm) Material Gap
0 12” Fe - 256 3” Fe - 954 21” Marble -

32 MXl 1 267 MRG 19 X 20 1010 MRG 39 X 40
41 2” Fe - 270 4” Fe - 1013 21” Marble -

47 MRG 01 Y 2 282 MRG 20 Y 21 1069 MRG 40 Y 41
49 2” Fe - 285 4” Fe - 1072 21” Marble -

55 MRG 02 X 3 297 MRG 21 X 22 1129 MY2 42
59 2” Fe - 300 4” Fe - 1138 24” Marble -

64 MXO 4 312 MRG 22 Y 23 1201 MRG 41 X 43
73 MYO 4 315 4” Fe - 1205 24” Marble -

82 2” Fe - 327 MRG 23 X 24 1271 MRG 42 Y 44
87 MRG 03 X 5 330 4” Fe - 1274 24” Marble -

90 MRG 04 Y 5 343 MRG 24 Y 25 1338 MRG 43 X 45
92 2” Fe - 346 4” Fe - 1341 27” Marble -

100 MRG 05 Y 6 357 MX2 26 1413 MRG 44 Y 46
103 2” Fe - 366 12” Marble - 1417 27” Marble -

108 MRG 06 X 7 398 MRG 25 X 27 1490 MRG 45 X 47
110 MRG 07 Y 7 401 MRG 26 Y 27 1493 27” Marble/Al -

113 2” Fe - 403 12” Marble - 1565 MRG 46 Y 48
120 MRG 08 X 8 435 MRG 27 X 28 1569 30” Marble/Al -

123 2” Fe - 438 12” Marble - 1647 MRG 47 X 49
129 MRG 09 Y 9 471 MRG 28 Y 29 1651 30” Marble/Al -

134 2” Fe - 474 12” Marble - 1729 MRG 48 Y 50
141 MRG 10 X 10 507 MRG 29 X 30 1733 30” Marble/Al -

144 2” Fe - 510 15” Marble - 1811 MRG 49 X 51
151 MRG 11 Y 11 551 MRG 30 Y 31 1815 33” Marble/Al -

155 2” Fe - 554 15” Marble - 1902 MRG 50 Y 52
162 MRG 12 X 12 596 MRG 31 X 32 1906 33” Marble/Al -

164 2” Fe - 599 15” Marble - 1992 MRG 51 X 53
172 MYl 13 639 MRG 32 Y 33 1995 21” Marble/Al -

180 3” Fe - 642 15” Marble - 2052 MRG 52 Y 54
189 MRG 13 X 14 682 MRG 33 X 34 2055 3” Marble -

194 3” Fe - 686 18” Marble -

203 MRG 14 Y 15 735 MRG 34 Y 35
206 3” Fe - 738 18” Marble -

216 MRG 15 X 16 787 MRG 35 X 36
219 3” Fe - 791 18” Marble -

228 MRG 16 Y 17 840 MRG 36 Y 37
231 3” Fe - 843 18” Marble -

240 MRG 17 X 18 891 MRG 37 X 38
244 3” Fe - 895 21” Marble -

253 MRG 18 Y 19 950 MRG 38 Y 39

TABLE 5.6: Muon range stack material placement
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(a) Muon range stack material placement

MXl (z= 35 .04m )

MXO/MYO (z= 35 .36m )

-  MYl (z>=.36.44m)

p  MX2 (z= 38 .29m )

MRG ponel 

r  MY2 {z»46.01m )

beamiine
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' begin m arble

• begin Iron

(b) Muon ranger stack active detector placement

FIG. 5.29: E871 muon range stack
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Detector
Plane

Stopping
Momentum

(GeV/c)

Detector
Plane

Stopping
Momentum

(GeV/c)
1 0.978 27 3.659
2 1.043 28 3.851
3 1.114 29 4.022
4 1.114 30 4.239
5 1.183 31 4.406
6 1.267 32 4.669
7 1.267 33 4.894
8 1.316 34 5.138
9 1.406 35 5.370
10 1.459 36 5.635
11 1.528 37 5.931
12 1.645 38 6.157
13 1.785 39 6.500
14 1.888 40 6.915
15 1.990 41 7.431
16 2.093 42 7.766
17 2.192 43 8.191
18 2.310 44 8.548
19 2.421 45 8.865
20 2.574 46 9.200
21 2.698 47 9.370
22 2.875 48 9.541
23 3.012 49 9.720
24 3.207 50 9.893
25 3.492 51 10.070
26 3.492 52 10.258

TABLE 5.7: Stopping momenta by detector plane for the muon range finder
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FIG. 5.30: Muon Range Finder extrusion panel

as shown in Fig. 5.30. X view planes consisted of 12 such extrusions each with 

a length of 301cm, while Y view planes were constructed with 16 extrusion, each 

225cm long. The aluminum honeycombs were parallelogram-shaped with a base 

length of 18.75cm, height of 1.60cm, and a horizontal pitch of 60 degrees. Each 

unit was further divided into 8  subcells with outer walls measuring 2 .0 mm and 

partitioned by a 1.9mm aluminum barrier at the same 60 degree pitch angle as the 

outer edges. The detection cells each had a 2.1cm base dimension and 1.2cm height. 

Each cell contained two gold plated tungsten sense wires with a separation distance 

of 1.06cm. The cells were flushed with an argon and ethane gas mixture in equal 

parts to provide an environment for the charged particles to create an ionization 

avalanche between the sense wires and the gas environment. To prevent aging of 

the wire chambers caused by byproducts from electrical breakdowns building up 

on the sense wires, a low concentration of ethyl alcohol, on the order of 1 .6 %, was 

circulated through the system in addition to the argon/ethane mixture.

The high voltage for the sense wires were disbursed through a high voltage 

bus system mounted to each plane. The bus for each card was maintained at a 

nominal positive high voltage of 2600V by a CAEN SY127 high voltage mainframe. 

Additional low voltage amplifiers and discriminator cards were also mounted on each 

plane and powered from a series of 5V and 12V supplies located on the beam left of 

the range stack.

Each proportional counter was designed to detect the passage of charged par­

ticles through the interior cell via the ionization of the argon/ethane gas mixture.
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When ionization occurred in the field of the sense wires, the negatively charged 

particles are accelerated towards the high voltage wires. The charge migration in­

duces secondary ionization causing a cascading avalanche effect which deposits a net 

charge on the sense wire proportional to the initial ionization caused by the incident 

charged particle. The resulting signal was amplified and passed through a discrim­

inator. The output of the discriminator signals from each cell in a single extrusion 

were logically ORed to form a single readout for each panel. The composite signals 

were converted to a differential ECL logic signal approximately 160-200ns in width. 

These signals were passed over low loss differential Ansley cable to the counting 

house. Readout was performed for each unit via a FASTBUS latch crate and were 

gated on the event trigger from the Level 1 electronics.
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Hardware Trigger and D ata

Acquisition

6.1 Overview

The E871 data acquisition (DAQ) and triggering system was designed to cap­

ture and process candidate events for the fxpi, ee and /re data streams with normal­

ization to the TTTT data sample. Due to the high rate environment present in the E871 

spectrometer and particle identification system, the triggering and data acquisition 

subsystems were designed to handle an incident raw event rate in excess of 10^ H z  

and filter the resulting data streams down to a level for which the event data could 

be written to tape at a rate of 10  ̂ Hz. Due to the required level of online data 

reduction, the systems were specifically designed to efficiently accept two body K l 

decays of interest while rejecting primary background arising from the semileptonic 

Ap3 and Kes decays in order to preserve a high signal to background event ratio 

in the initial data collection. In order to accomplish a factor of 10  ̂ reduction in 

the raw event rate, the triggering and DAQ systems were divided into a multi-stage

133
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system with successive reduction at each level.

Events were broken into trigger level tiers denoted at Level 0 (LO), Level 1 (LI) 

and Level 3 (L3) before final event selection was processed to tape. The tiered event 

process worked in the following manner, for each event started with a valid single 

satisfying the LO trigger. Level 0 events were then passed to the Level 1 systems 

for basic particle identification checking and tagging for event type. Valid Level 1 

triggers notified the Readout Supervisor (RS) to begin processing of the event data. 

Crate scanners for each of the detector systems were notified by the RS to transfer 

the event data to the Dual Port Memory (DPM) units for further processing or 

to internally shift/clear the event from registers. The RS system then notified the 

LG/Ll trigger units that it was again ready for another event.

Upon filling the available memory of the DPM units, the crate scanners trig­

gered the RS to assign the event block stored in the DPM units to one of eight 

available high speed processors arrayed in parallel for limited software event re­

construction. Events transferred to the processors were analyzed by the software 

reconstruction algorithms where tracking quality and invariant mass cuts were per­

formed. Events passing the software reconstruction were denoted at L3 triggers. 

Events were then uploaded after L3 processing to the main acquisition computer 

and buffered into 200 megabyte data blocks for output to 4mm data tapes. A 

schematic overview of this process is shown in Fig. 6.1.

6.2 Level 0 Trigger

The Level 0 (LO) trigger forms the basic requirement upon which all events in 

the E871 data are based. The LO trigger requires an in-time coincidence set of hits in 

TSCIL, TSC2L, TSCYL and in TSCIR, TSC2R, TSCYR. The six fold coincidence 

it interpreted as the basis for the passage of two charged particle trajectories that
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FIG. 6.1; E871 DAQ system overview
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have traversed the forward spectrometer and entered into the particle identification 

elements.

Level 0 triggers are subdivided into two classifications based upon the hit po­

sitions of the signals in the x-measuring slats. Non-parallel LO triggers place no re­

quirement upon the position correlation of hits and TSC1L/TSC2L or TSC1R/TSC2R. 

This non-parallel trigger is used to determine raw filtering rates and other calibra­

tion data requiring an unbiased event trigger. At nominal running the trigger system 

experienced an average LG event rate of 10® hz.

Parallel LO triggers place an x-slat correlation requirement upon the hits in 

TSC1L/TSC2L and upon TSC1R/TSC2R. This correlation is set nominally at ±2 

slats eqnating to an angular deviation of ±31 mrad. The parallelism can be varied 

to provide lesser or greater correlation, but at its nominal value it corresponds 

to the expected spread in trajectories of low pt two body events passing through 

the inbend 96D40 and outbend 100D40 analyzing magnets. The coincidence is 

performed through an electronic AND of T lX  with T2X on both left and right, 

using top and bottom photomultiplier tubes. The result is then put in coincidence 

with the signal from TY.

LO =  { T l X  •  T 2 X )  •  T Y  (6.1)

In order to match the LO trigger coincidences with additional particle identification 

detectors, the LO trigger signals are grouped into a series of spatially correlated 

blocks. The 32 parallel XX coincidences formed from the initial TSC signals are 

logically OR’d into a set of 8  trigger “roads” corresponding to the upper and lower 

left, and upper and lower right quadrants of the detector modules. Similarly the 64 

TSC Y measuring counters are divided into 16 signal blocks through a logical OR 

to produce the TY coincidence signal. The X and Y signal roads are brought into
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coincidence forming a grids of 8  upper and 8  lower XY coincidence signal roads for 

the left and right sides of the detectors. These signals are passed to the subsequent 

stages of the trigger system. A non-parallel version of these trigger roads is also 

generated and passed to the subsequent Level 1 trigger systems for calibration. [41]

The parallelism requirement imposed through the XX and XY coincidences and 

road building results in a factor of four reduction in the base data rate lowering the 

LO event rate to approximately 250 kHz at nominal running. This data rate remains 

too high for software analysis filtering and requires further reduction from the fast 

particle identification detectors.

6.3 Level 1 Trigger

To further reduce the event rate from the parallel LO triggers, basic particle 

identification triggers were used to form the Level 1 (LI) trigger set. Five classes of 

LI triggers were constructed from basic electron and muon identification information 

to form the ////, ee, /ie, e/z and minimum bias triggers.

The muon trigger bits were created by requiring an in-time coincidence between 

the TSC trigger roads described in Section 6.2 and the trigger roads in the muon 

hodoscope. Since the MHO x-measuring modules consisted of nine panels, counters 

8  and 9 of the MXO counters were electronically OR’d to produce a single outer 

road before coincidences were performed with the TSC trigger roads. In addition to 

the MHO X /Y  coincidences /z trigger bits required a coincidence with the wire drift 

chambers DC5 and DC6 .

Electron trigger bits for the LI triggers were created by requiring an in-time 

and spatially correlated coincidence between the LO TSC trigger roads described in 

Section 6.2 and signals in the corresponding Cerenkov counter regions. A minimum 

signal threshold of 1 photoelectron was imposed upon the single channel Cerenkov
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signals through a bank of discriminator boards in the LI trigger. The output of 

a Cerenkov discriminator was passed to coincidence logic units for the Cer signal. 

The Cerenkov counter regions were defined through a logical OR of the 16 beam left 

and 16 beam right phototube singles to form 8  upper and 8  lower roads spanning 

the detector and corresponding spatially to the roads in the TSCs and MHO. In 

addition to the Cerenkov coincidence, a valid LI electron bit required corresponding 

hits in the wire drift chambers DC5 and DC6 .

Minimum bias trigger bits were formed by requiring only a coincidence between 

the LO TSC trigger roads and hits in the wire drift chambers DC5 and DC6 . No 

additional requirements were imposed upon the event signal thereby allowing for 

normalization data and pion data to be collected in unison with the primary data 

paths. Additionally a pion trigger was provided by vetoing on both the Cerenkov 

and MHO signal in coincidence with the TSC LO trigger and the drift chambers.

The LI trigger bits can be summarized as:

M inBias{M B)  = LO ■ DC  (6.2)

fi = LO-DC- M H O  (6.3)

e = LO-DC- Cer (6.4)

% = LQ ■ DC ■ Cer ■ M H O  (6.5)

The muon and electron trigger requirements are shown schematically in Fig. 6.2.

The LI trigger bits for the beam left and right sides of the detector were sent 

through a programmable coincidence module capable of generating up to eight pos­

sible triggers. The two body decay triggers of interest were assigned to these coin­

cidences as shown in Table 6.1.

The LI two body coincidence triggers are passed through a programmable
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Trigger Bit Type Trigger Bit Type
1 e • IX 5 M B - M B
2 fx • e 6

3 e ■ e 7
4 8 LO-LO

TABLE 6.1: Level 1 (LI) two body event trigger bits

prescaling module which effects a divide by N prescaling of physics trigger in the 

range of 1 to 2̂ ® — 1. During nominal data collection prescales of 1 were used for 

the e/r, /re, /r/r and ee streams. Minimum bias events were prescaled by a factor of 

1000, and LO triggers by 10"̂ .

Additional channels of diagnostic and calibration triggers were included in the 

Level 1 output by means of a separate calibration trigger board providing 16 channels 

of external triggers, each with an independent prescale. These external triggers 

controled ADC pedestal triggers, AGS beam gate veto, standard 50HZ pulsers and 

other types of calibration signals.

After appropriate prescales the total event rate leaving the LI trigger systems 

was lOkHz during nominal operation.

6.4 Level 3 Trigger

Events passing the LI trigger electronics caused the readout supervisor to initi­

ate a read out and record all of the data from the detector electronics crates. These 

raw event data were stored in custom designed dual port memory units and buffered 

for event reconstruction and processing. The eight dual port memory units were cy­

cled in such a manner that per beam spill only one half of the processors/DPM 

queues were used. Cycling the available queues providing each processor a full spill 

length during which to perform the software reconstruction of its assigned event
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FIG. 6.2: Schematic overview of a level 1 event trigger
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block. The size of each data block was set to 3000 events per DPM providing for a 

nominal sustained LI event trigger rate of 12,000 events/spill.

The software event reconstruction phase of the trigger system was denoted as 

the Level 3 (L3) trigger. The L3 software reconstruction was run on a set of eight 

SGI V35 micro processors arrayed in parallel and housed in a VME crate. Each 

processor was given access to five of the dual port memory units through the VME 

backplane and access to the main control computer for data upload through an 

Ethernet connection.

Level 3 event reconstruction and filtering were designed to further reduce the 

data set prior to upload by placing loose requirements on the event quality as well 

as on invariant mass reconstruction and transverse momenta of the events. Track 

reconstruction was performed by applying a hit and clustering algorithm to the 

signals in the wire drift chambers and straw chambers. Hit searches were begun in 

wire drift chambers DC5/DC6 due to the lower hit multiplicities in these chambers 

as compared to the forward straw chambers. For each chamber the total number 

of wire events was checked to insure quality. Three layer X-measuring planes were 

required to have at least two hits and no more than 250 hits, while Y-measuring 

planes were required to have at least one hit and no more than 150 hits. As in the 

case of the back drift chambers, the straw chambers were then checked in the same 

manner in the order of SDCl, SDC2, SDC3. For the fourth set of straw chambers, 

SDC4, one hit was required in both X and Y views.

Parallefism requirements in the TSC modules were reimposed by requiring at 

least one and no more than 14 hits in each X module. Each hit in the TSC2X 

module was then searched against hits in TSCIX for a spatial match conforming 

to the parallelism requirement and a ±  100ns time cut. Hits in the Y measuring 

module were checked to ensure that at least one and no more than ten slats were 

illuminated, and that the hits conformed to the same time cut as the X-measuring
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pair.

Unpacking of the event data was performed and TDC values in the straw and 

wire drift chambers were converted to distance of closest approach values (DOGA) 

through a lookup table. Clusters of illuminated wires were formed. The hit clusters 

were used to create line segments between adjacent chambers for which the line 

slope was calculated. Line segments formed by tracking in DCS and DC6  was 

used to project upstream and downstream to match tracking in the forward straw 

chambers and in the trigger scintillators. Line segments in SDCl and SDC2 were 

used to compute track slopes and matched on to hits in SDC3.

Pairs of potential tracks found through the clustering algorithm were considered 

in pairs to form appropriate decay vertex points. For each set of tracks a two 

dimensional X and Y vertex were formed to determine the z coordinate of the track 

crossing point. The vertex pairs were sorted according to proximity as determined 

by their separation. Prom these two dimensional vertex pairs three dimensional 

vertices were formed and required to lie within the decay tank boundaries extending 

from z= 8 m to z=21.5m. Additional vertex quality requirements were placed upon 

the three dimensional vertices. Maximum L3 vertex doca was set at 70cm with the 

additional positioning requirement that the z position of the vertex be greater than 

z=7m.

Track momentum was determined by calculating the angular deflection of the 

line segments formed in SDC1/SDC2 with those from the SDC3/SDC4 segments. 

Prom a position dependent magnetic field map, the transverse momentum kickwas 

computed through & B-d l  computation. Total event pr  was required to be less than 

6 GMeV/c.

Reconstruction of the invariant mass of the event was computed using the 

LI trigger hypothesis and track momenta as determined from the B-field lookup. 

Physics event triggers were required to have an invariant mass reconstruction greater
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tlian AQQMeV/c^ to pass the level 3 filter. Events tagged for the tftt or minimum 

bias data stream were subjected to an invariant mass reconstruction, but no cut was 

performed on this quantity and all events in these streams were recorded.

Level 3 data reduction resulted in a 3% pass rate for dilepton physics triggers. 

At nominal running conditions this resulted in approximately 300 physics events per 

beam spill uploaded to the host computer for output to data tape. In addition to 

the physics event triggers, all minimum bias events were passed through Level 3 and 

resulted in approximately an additional 1 0 0  events for cahbration and normalization 

being uploaded per beam spill. W ith a nominal beam spill length of 3.6 seconds the 

total upload rate of just over llOHz was achieved.
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M onte Carlo M odeling

The complexity of the E871 experimental apparatus creates a series of interde­

pendencies between the key detector systems and subsystems. The interdependen­

cies between these systems are manifest in the systematic responses, acceptances, 

and efficiencies that the detectors exhibit. The task of calculating these acceptances 

and normalizing the results is complicated by the additional interdependencies of 

the initial event state, kinematics and possible intermediate states that can develop 

through particle interactions in the active regions of the detectors. As a result of 

these factors no exact analytic expression can be determined for most quantities; 

instead statistical models are built and response functions determined by parametric 

fits to simulated data.

7.1 Monte Carlo Simulations

The process of Monte Carlo modeling was used to explore the E871 detector 

responses to both the primary data stream JT£ —̂ ix^ix~e^e~ and to a multitude 

of potential backgrounds. To ensure model dependent systematics were minimized, 

two independent simulation systems were employed using different event generation,
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transport, tracking and interaction mechanisms.

The first simulation employed the GEANT system for event generation and 

particle transport to create simulated primary event data for the examination of 

event kinematics and angular distributions. The second simulation was built upon 

the actual E871 analysis code and used simulated detector hits together with the 

actual analysis algorithms to provide accurate simulated detector response.

The strengths of each modeling system are discussed in Sections 7.1.1 and 7.1.2

7.1.1 Geant Simulation

The E871 Geant simulation was designed to investigate the characteristics of 

the —»■ event stream and its associated backgrounds in a manner

that allowed for examination of the kinematic properties of the primary vertex and 

associated daughter particles. The simulation employed a transport mechanism 

that retained full event data outside of active detector regions. This full particle ID 

and event tracking allowed for the association of hits in the forward spectrometer 

with primary track information and particle identification without the necessity for 

valid downstream particle identification triggers in the Cerenkov, lead glass, muon 

hodoscope or muon range finder. Due to the increased amount of track associated 

information that was retained, the Geant models required more processing time 

per event than similar events in the E871 detector model. While slower in this 

respect, the resulting body of data allowed for more detailed analysis of the forward 

spectrometer regions as well as for pair production and multiple scattering in a 

man ner that could not be duphcated with the detector simulations.

The Geant simulation was used primarily to examine the geometric acceptances 

for partially reconstructed track stubs. Through the use of this simulation, infor­

mation on the mean angular separation of the electron/ positron pair was gathered
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along with the angular correlation data connecting the low energy electron Dalitz 

pair to the primary decay plane as defined by the reconstruction of the muon track 

pair.

The invariant mass spectra of the decays were computed both with and without 

detector acceptances to determine the resulting constraints and momentum depen­

dent modifications that the reconstruction software imposes upon the shape of the 

spectra. In this manner the primary vertex was reconstructed using all available 

permutations of the track pairs as well as three body and full four body recon­

struction of the events. Reconstructions of these types were used to determine the 

effects of multiple scattering and track deflection in the magnetic fringe field of the 

96D40/D02 spectrometer magnets has upon the resolution of the invariant mass 

spectra.

The Geant Monte Carlo was also used extensively to examine the background 

decays as discussed in Section 4.4 due to its ability to identify pion decays in fiight 

as well as pair production in the forward regions of the spectrometer. Extensive ex­

amination of the opening angle between e'’'e “ pairs resulting from photon conversion 

in a K'l —> event was computed and compared to that of the signal pairs

as well as the correlation of the resulting pairs with the decay plane. In this 

manner the model was able to determine threshold values to differentiate between 

pair production events and real events with and without multiple scattering effects.

7.1.2 E871 D etector Simulation

The E871 detector simulation was constructed as a full model of the individual 

detector responses and efficiencies. The simulation was incorporated into the ac­

tual analysis code allowing for examination of both real and simulated events. The 

simulation system generated event data by propagating events through the tracking

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



147

and particle identification systems. W ithin each detector volume hits to  sensitive 

regions were recorded to provide simulated responses. Only detector derived data 

were recorded in the model and used to create a simulated event block identical in 

composition to the real event data produced through the data acquisition system. 

Information on particle interactions, decays in flight and actual flight trajectories 

were not retained in the model. Instead the model concentrated upon correct deriva­

tion of hits in the detector systems using measured efficiencies and accounting for 

inactive or insensitive regions.

The E871 detector simulation was used extensively to test analysis code and 

determine figures of merit and cut values for the data. These algorithms were then 

directly applied to real data sets.

In addition to detector hit derivation, the E871 detector model was used to ex­

amine the effects of different theoretical form factors for the decay —> iX^jjTe^e^ 

upon the event data and acceptance efiiciencies for the E871 detectors. Prom these 

studies it was found that the enhancements to the decay spectrum were signifi­

cant in the high invariant mass regions of the reconstructions. Prom both the 

shape and degree of enhancement present in the data, differentiation between the 

competing theories should be possible as discussed in Section 7.5.

7.2 Blind Analysis

To maintain unbiased procedures as well as algorithm development and deter­

mination of threshold “cut” values, a method of pseudo blind analysis was employed 

in conjunction with the Monte Carlo models. This methodology imposes a bflnd 

on all real data falling into the predefined signal region. No analysis routines or 

derived cut values were permitted to be tested upon the real signal data. Similarly, 

background calculations and subtractions were not permitted to influence real data
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FIG. 7.1: Signal region blackout for development of threshold cuts and algorithm devel­
opment under the blind analysis

points falling into the signal region. By blacking out the critical signal region in such 

a manner, the possibility of self consistency errors or of inappropriate cut values is 

reduced.

For the purposes of the blind procedure the signal region as described in Section 

4.3 was removed from the initial analysis. A blind was placed over the data region 

consisting of events with an invariant mass greater than A&^MeVjc? and less than 

505MeF/c^ and with a transverse momentum squared, pi < 500MeF^/c^. This 

black out region is shown in Fig. 7.1. No cuts were made upon real data falling into 

this region. Only event data generated through the Monte Carlo models was used 

to determine cut values in this region.

In addition to the described blind region, an overall normalization blind was 

imposed upon the analysis by a random event pre-scale on all Monte Carlo models. 

The purpose of the pre-scale was to prevent tampering with modeling efficiency and
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simulation process that could adversely affect the resulting signal event prediction. 

Both Monte Carlo simulations were randomly scaled by up to ±50% of the number 

of target events that was to be generated. This randomization was recorded but 

not apparent in the main data output. Initial normalization, efficiencies and event 

predictions were reported and then the true normahzations and efficiencies computed 

only after cut values and model dependencies were set.

7.3 Monte Carlo Goals

The initial goals of the Monte Carlo models were to determine base sensitiv­

ity and acceptance of the E871 detector systems for the four body decay

Along with this sensitivity, the simulations were designed to identify 

event characteristics and signatures which could be used to uniquely tag the signal. 

The event characteristics were used to determine cut values for kinematic quanti­

ties as well as to motivate analysis methods unique to the four body final state of 

interest.

In addition to the base event characteristics and detector sensitivities, the 

Monte Carlo simulations were adapted to include models of potential backgrounds 

arising from the decay streams discussed in Section 4.4 . The information gained 

through these simulations was used to compute expected background rates arising 

from as well as to exclude backgrounds from the other decay branches

as discussed in Sections 4.4.2 - 4.4.4.

7.3.1 Event Characteristics

For each of the two Monte Carlo models that were developed, specific event 

characteristics were studied to determine the parameter set upon which further 

analysis cuts could be devised. For the decay  ̂ the event is char­
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acterized by the initial lepton four vectors and the decay point of the original kaon 

denoted as the primary vertex Vk - The initial event decay time is indicated by Vt 

and included in the vertex four vector to indicate the event timing.

Pei = (pxe, Pyi, Pzt, E  (7.1)

Vk = [va: Vy Vt ) ( 7 -2 )

Prom the initial vertex and momentum four vector the direction cosines of each 

particle’s trajectory are computed. The event vertex and four lepton trajectories are 

used to compute primary and secondary decay planes for the event. The primary 

decay plane is determined by the paths of the two muons and the primary decay 

vertex. It is denoted by the unit normal to the plane using a right handed convention. 

The crossproduct is taken from the negatively charged to the positively charged 

particle such that:

Pm- X Pf.+
I P m -  X  P m +

Pe- X  Pe+ 
| P e -  X P e + l

P /J .-  P i l+  f r ,=  I     ; (7.3)
I P m -  x p ^ + l

(7.4)

The full set of kinematic parameters can be used to form the diagram of the primary 

kaon decay point as shown in figure 7.2. Prom this diagram the opening angles of 

the lepton pairs, the relative inclination of the electron to muon planes, decay plane 

momentum correlation, and solid angle projection are all used to characterize the 

K l iS^iJre^e~ events under differing production and transport mechanisms.
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FIG. 7.2: Decay planes as defined by the event vertex and particle momenta pe.

7.3.2 D etector Acceptances

The event characteristics described in Section 7.3.1 produce different kinematic 

distributions when varied by the introduction of a non-uniform form factor. The 

opening angle of the muonic pair leads to variable acceptance of the event under the 

physical geometry of the spectrometer and trigger detectors as well as for propaga­

tion of the muon tracks through the magnetic fields of DOl and D02. The angular 

correlation of the electron pair to the muon decay plane also affects the acceptance 

of the tracks in the first two straw drift chambers and the creation of a resulting 

partial tracking stub registering in the detectors.

Monte Carlo modeling of the base acceptances for the muon and electron pairs 

was created in order to measure the raw sensitivity of the detector geometry to 

the kaon decay. Acceptance factors and event rates were simulated at the major 

detector apertures and recorded. These acceptances were varied with different form 

factor assumptions to refine the expected event signature under each circumstance. 

The base geometric acceptances were used to make preliminary maximum signal 

predictions based upon total single event sensitivity and event branching fraction.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



152

Single event rates were normalized to the total number of events

reported in the E871 analysis of 6216 ±  82 events [2].

In addition to the primary event signature consisting of two muon tracks and a 

single or tracking stub pair in SDC1/SDC2, other signals were modeled to determine 

acceptances for fuller event reconstructions. The simulations considered full four 

track event reconstruction, three track event reconstruction consisting of two muon 

and one electron tracks, /xe event reconstruction with an associated tracking stub, fj,fi 

event reconstruction with an associated single momentum measured partial track 

in SDC1/SDC2 to SDC3/SDC4, and ee event reconstruction with partial muon 

tracks. These event scenarios did not contribute at a level sufficient to serve as 

primary signal candidates.

7.3.3 Physics Background

The aspects of the sources of physics backgrounds discussed in Section 4.4 were 

examined in the framework of the Monte Carlo simulations due to the complexity of 

their interactions with the detector apparatus. In particular, Monte Carlo studies 

were made of the background arising from /x‘*'/x~ 7  and —> e'^e“ 7  as well

as from event pile-up of semileptonic decays.

The K l  —> simulations were designed to study the event characteristics

of the pair in combination with a pair production event upstream of the

straw drift chambers as discussed in Section 4.4.1. Of particular interest was the 

measurement of the geometric acceptance of the two muon tracks at an invariant 

mass in excess of 460 MeV/c. The presence of the initial three body final state 

leads to a uniform Dalitz distribution of particle momenta. This distribution is 

shown in figure 7.3. The invariant mass distribution of the reconstructed kaon mass 

Mfjtfi is shown in figure 7.5(a). The resulting kinematic spectrum of the muons when
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FIG. 7.3: Uniform Dalitz plot for ^i^jx 7  in the kaon rest frame

boosted into the laboratory frame results in the and yT momenta curves as 

shown in figure 7.4.

The geometric acceptance of the spectrometer to the if£  —*> decay is

measured through the valid reconstruction of parallel muon trigger events. The 

raw invariant mass distribution of accepted parallel trigger events is shown in figure 

7.5(b). This distribution is computed prior to analysis cuts including the invariant 

mass threshold of 465 MeV, and prior to consideration of electron pair production 

or other stub inducing physics events. Events of this type are then examined in 

detail to determine acceptance rates based on the known decay branching faction 

for > y '^y~ j  of 3.59 ±0.11 x 10“ '̂ . Effects of a non-uniform distribution arising 

from a single pair conversion of a pseudoscalar meson [25] or from y P T  like form 

factor [2 2 ] are considered in the same manner that the possible form factors for 

> y'^y~e^e~ are incorporated into the E871 Monte Carlo code as described in 

Section 7.5

The analysis of the effects of the background decay stream JT£ e+e“ 7  were 

examined in the same manner as the y y ^  decay with a consideration of a signal 

arising from the highly improbable conversion of the photon to a muon pair forward 

of the spectrometer with subsequent acceptance of the tracks. Additionally the 

decay was examined for a possible secondary event signature in the form of a e“ e+
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specti-um for ^  7
Gevlc

FIG. 7.4: Laboratory frame muon momenta for —>■ fX^n 7

i.

Raw for 7  events Accepted M k .,„  for /C9 —* 7  events ^

(a) Raw invariant mass reconstruc­
tion of Dalitz pair from the
background process

(b) Invariant mass reconstruction of 
tracking pairs passing detec­

tor acceptance and parallelism

FIG. 7.5: Monte Carlo simulations of invariant mass reconstructions for 7
using tracking pairs
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tracking pair reconstruction with muon tracking stubs. The Monte Carlo showed 

that this type of signal was not viable due to resulting background from e+e“ 7

with pair production in the decay region and vacuum window, resulting in a four 

electron final state entering the detectors at a rate higher than the base acceptance 

for K l  fi^ijre^e~ events with the e'^e" event pair signature above 460 MeV.

Modeling of semileptonic event pile up was attempted using both —»■

and K l  events. Pile up was simulated by modehng a single semileptonic

event from its primary decay point. When the primary decay point was determined 

a secondary event was superimposed and all resulting daughter particles propagated 

through the detectors. The results were weighted by the decay profile to determine 

the overlap probability. This method did not include the modehng of decay vertices 

within the primary beam in close proximity to the primary vertex but not in total 

overlap. Additionally it did not include any rate dependent or spill structure effects. 

Alternative methods for determining the background induced through semileptonic 

pile up were considered outside of Monte Carlo modehng. Flat background sub­

traction in a manner similar to the method utilized in the —> K^fJT analysis of 

the E871 data [41] was determined using reconstructed event data falling above the 

prescribed kaon mass.

7.4 Kaon M odeling

Modehng of the decay requires proper treatment of the parent

kaon. Generation of the initial energy and momentum distributions as well as the 

trajectories of the parent kaons are required to allow the Monte Carlo to match the 

kinematic distributions that are observed experimentally in the E871 apparatus. 

Due to the two state nature of the kaon system as described earlier in Chapter 2 

these processes require knowledge of the strong production mechanism and the weak

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



156

decay process. Transport of the beam through the regions upstream of the active 

detectors requires consideration of additional interaction effects and the probabilities 

of particle scattering. These topics are addressed in the following sections.

7.4.1 Kaon M om entum

Production of the kaon beam within the fixed platinum target involves a reac­

tion of the form:

tt' p  —>■ (7.5)

The pions required for the interaction are produced through the interaction of a 

beam proton upon the forward end of the target. The resulting pion cloud then 

interacts with a target proton resulting in the kaon flux. This process is shown in 

Fig. 2.10.

The momentum spectrum for the kaon beam generated in this manner is not 

easily determined in an analytical fashion. Modeling of the beam was determined 

through use of the kaon production data obtained by Skubic et al. [34]. The 

kaon production data were measured at Fermilab using a 300 GeV/c proton beam 

incident on beryllium, copper and lead targets at varying production angles. The 

K'g production cross section was measured in all these experiments. Due to the 

nature of the kaon system as discussed in Section 2.3 we can relate the observed 

weak eigenstates Kg  and to the strong production states iF® and K°. In the 

absence of CP violation this becomes:

\K°) = [K b + 1^)] (’’■6)

K“> = ^ [Kb - Kb] PK
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The strong production mechanism creates an initial beam with a linear combination 

of strong eigenstates. These can be decomposed into the resulting long lived and 

short lived weak eigenstates.

K ,^ am ^a \K ^ ) + b \ K ^ )

(7.8)

The production mechanism is completely incoherent; thus the sum over all phases 

results in equal populations of \Kg) and \K^)- The production cross section for Kg 

is thus equal to the production cross section for Because of the equality of 

the production cross sections, the data of Skubic et al. can be used as a measure­

ment of the K°  production cross section and momentum spectrum. The differential 

production cross section for the reaction is thus expressed as

=  # / ( x , P . )  (7.9)dp dQ E k

The form factor f{x,pt)  is empirically determined and parameterized as

f{x ,  pt) =  exp{ci +  C2X^ +  czx +  Cixpt +  c^pl) (7.10)

Cl =  4.72 C2 =  - 2 . 0  C3 =  - 6 . 5  C4 =  - 2 . 3  Cg =  - 1 .3 4  (7.11)

The variables E k  and pk  are the laboratory energy and momentum of the kaon. 

The transverse and longitudinal components of the momentum in the center of 

momentum frame are expressed as pr  and pi, with the Feynman scaling variable 

x = pl!pT ^ .

The overall production rates are scaled by a normalization factor {Apt/Apb)°‘
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FIG. 7.6: production cross section for 24 GeV protons incident upon a fixed platinum
target at a production angle of —3.75°

to compensate for the difference between the parameterization data of Skubic et al. 

which was taken on a lead target (Pb A=207.2), and the E871 production target 

which was composed of platinum (Pt A = 195.1)

The production cross section at a target angle of —3.57° is computed from 

Eq. (7.9) for a 24 GeV incident proton beam on platinum and is shown in Fig. 7.6. 

The kaon momentum spectrum generated by the Monte Carlo simulations for this 

production process is shown in Fig. 7.7 where a lower production threshold of Pk  =  

IGeV has been imposed upon the data sample.

7.4.2 Kaon Decay

The simulated kaon beam is transported using the mean lifetime of 5.17 x 

IQ-^s to determine the z-axis location of the primary kaon decay. Primary decay 

vertices determined to occur within the fiducial volume of the decay tank extending 

from the upstream decay tank window position z = 1 0 m to the downstream vacuum 

window at z=20.9m were retained for analysis. Decay vertices occurring outside of 

these boundaries were cut from the Monte Carlo.
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^ 0  .  .  GeV oK  t m omentum  spectrum

FIG. 7.7: iF£ momentum spectrum produced by the E871 Monte Carlo event generator 
based upon the cross section of Skubic et al.[34]

The distribution of primary kaon decay points is shown in Fig. 7.8 as generated 

by the Monte Carlo simulations. In addition to the z-axis vertex positions, the decay 

distributions are tuned to mirror the beam profile in the x and y dimensions.

A defined list of decay models was used for valid vertices. The relative branch­

ing fractions for the possible decay modes were simulated by user-defined weighted 

probability functions. Decay modes of interest were modeled for both primary sig­

nal and background signal rates. Subsequent decays of daughter particles were 

controlled through the standard decay rates for unstable particles.

For three body decay channels the decay kinematics were determined using the 

standard uniform phase space of the multi-body Dahtz decay spectra. For the decays 

—>■ /i+/i“ 7  and —> e^e~'y the decay spectra was modified to include the form

factor for the decays [25]. The semi-leptonic decays iFes and iF^s were modeled using 

the known form factors.

Decay into the four body final state iF° —> //+//“ was handled separately

using model dependent form factors. The details of these calculations are presented 

in Section 7.5.
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Ti-aida positionK \  prim ary decay point

FIG. 7.8: Beam axis TT® primary decay point simulation for e+e using the
E871 kaon momentum distribution.

7.4.3 M ultiple Coulomb Scattering

In the momentum regime of the soft electron/positron pair resulting from the 

decay —>• as shown in Fig. 7.9 multiple Coulomb scattering must be

included in the transport of the charged particles to properly account for the low 

energy trajectories. Multiple scattering is accounted for in the E871 Monte Carlo 

through a computation of scattering at an aperture and through scattering within 

a volume prior to an aperture.

Multiple scattering at an aperture is used for transport of charged tracks through 

thin membranes such as the windows of the vacuum chamber and wire drift cham­

bers. In this approach the incident slope of the particle trajectory is modified by 

a Gaussian scattering distribution modified by Moliere tails. The probabihty for 

scattering through an angle 4> takes the form

2(p

< 4 ^ >
exp d(j) (7.12)
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The root mean square deflection angle for a single scatter is given as

^rms =<  [1 +  Q m m {x /X o )]  (7.13)
pv V X q

For the thin membrane we use the simplified form for the scattering angle in terms 

of the membrane thickness x  and scattering length X q.

21MeV f i r  . .

The scattering angle was limited by the parameterization in such a way that 

A0 < ScfscatVB where B was a function of the scattering thickness. In the case of 

the relativistic regime of the decay electrons the parameter was chosen such that 

B=6. The maximum transverse deflection of electrons in the front vacuum windows 

was thus limited to pt — 7MeV/c.

Multiple scattering within a volume was treated in a similar manner to the 

scattering at an aperture with the additional provision that the track position as well 

as angle could be modified at each transport step. The effective radiations lengths 

of materials present between each of the primary apertures is listed in table 7.1. The 

table details the material between the current aperture and the previous aperture for 

which the scattering is calculated using the form of Eq. (7.13). Table 7.1 also details 

the thin membrane material present at the aperture for which the scattering angle 

is calculated using Eq. (7.14). At each of these positions the transport simulation 

computes the relevant scattering and modifies the tracking parameters as needed.
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Aperture Position (m) Prior to 
Aperture x / X q 

(xlO “ )̂

At Aperture 
xjXQ 

(xlO “ )̂
Vacuum Window 20.900 1.17 0.0
SDCl 21.083 2.26 0.03
SDC2 22.191 2.26 0.20
96D40 24.000 0.0 0.32
SDC3 25.399 1.46 0.25
SDC4 25.893 2.32 0.09
100D40 27.200 0.0 0.23
DC5 28.485 1.80 0.23
DC6 29.731 1.69 0.22
TSCl 29.941 37.4 0.0
Cer 32.490 11.9 0.0
TSC2 32.854 48.9 0.0

TABLE 7.1: E871 aperture positions and material lengths for multiple scattering

e /e'^ momentum spectrum

FIG. 7.9: Electron and positron momentum spectra for K° ji^n  e+e

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 6 3

7.5 M onte Carlo Form Factors

After proper generation of the parent kaon population as described in Section

7.4.1 and transport of the particle to the calculated decay point as discussed in Sec­

tion 7.4.2 the parent kaon is decayed according to the user defined decay streams. In 

the case of the primary decay path of interest, e ' ^ , multiple methods 

of simulating the decay were used to account for variations in the principal theories. 

Theory-specific form factors were used to produce the desired decay spectra and 

angular distribution of particles.

7.5.1 Four B ody Decay Kinem atics

Modeling of the decay K% —> is treated as a double internal conver­

sion of the parent pseudoscalax meson into two distinguishable lepton pairs. Model­

ing of the four body process was first treated as a generic decay Meson  —> 

and then specialized to the indistinguishable and distinguishable final states. The 

matrix element for the decay is computed using conventional quantum electrody­

namics (QED). The matrix element M. is broken into two parts A4i and M 2 corre­

sponding to Fig. 7.10(a) and 7.10(b), respectively. The primary matrix element is 

thus expressed as:

The total decay rate for the four lepton decay can be written in terms of the matrix 

elements for the diagrams of Fig. 7.10.

F =  J  |A 4 ip #  +  J  \ M 2 \ ^ d < t >  +  j ( M i M ;  +  M 2 M t ) d ^

= Ti + T2 + I'i2
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In the case where the final state particles are completely distinguishable the 

matrix elements of the corresponding contribution from the interchange diagrams 

cause F i2 to vanish.

Fi2 -  J ( M iM*2 + M2Ml)d^

for K'l jJL^iTe^e"
(7.17)

=  0

As a result, the decay rate expressed in terms of the momenta of the virtual photons 

x i  and X2 , and the variables yi, t/2 , 0 transformed as per the prescription of appendix 

B, for the decay taJkes the form[25]

r = -(r -)7T V47T/
dxidx2dyidy2d(p

X

X

+

J _  2 (x l+ x l )  ^  (xf -  x i r
M l M l

3/2

1
XIX2

y i
Xi + ^ ' +

4m?
X2

2yf +  yl 4mem^(a;f +  xl)

f {0, 0)

sin^ (j)

(7.18)

X1X2
cos (f)

The form of the decay rate in Eq. (7.18) is used to determine the differential phase 

space allowed by the Monte Carlo population. In the most basic form the form 

factor /(a;i,a;2) / / ( 0 , 0 ) is taken to be on-shell, reducing the quantity to unity and 

removing any non-kinematic momentum dependence from the model. This version 

of the Monte Carlo is referred to as the QED kinematic distribution and serves as 

a basis for the four body phase space used in further modeling of the decay with 

non-trivial form factors [25].
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FIG. 7.10: Diagrams contributing to double internal conversion of a pseudoscalar meson 
into lepton pairs. Matrix element M i  corresponds to (a) and the interchange term M 2 

corresponds to (b)

7.5.2 Vector M eson Dom inance M odel Form Factor

The model dependence of the form factors for the decay —> /jL^n~e^e~ 

involves the use of effective couplings of the kaon to the final state leptons. The 

effective couplings used in models of vector meson dominance such as that of Ko [42] 

require knowledge of the coupling strength a  which is obtained through fits to the

K% data. Since in VDM the form factor for the decay K'l

is dominated by the K* — V  pole diagrams of Fig. 3.3(b), the corresponding form 

factor with parameter fits from the K l  —> £ + £ “ 7  data is used:

F { s ) v d m  =  o i V 2 e G p f K * K y  y  J m

- 1

X
- 1

mi
1
9

- 1

mf
+  2 1 -

mj

(7.19)

The parameter a  is the model dependent coupling strength for the interaction. 

For the purposes of the Monte Carlo the value of a  is taken from the Bergstrom
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calculation[17] such that:

|a ^ | ~  1.2 sin 0(7 cos 9c ~  0.2, (7.20)

with Jk - =  ip =  5.09. The momentum dependence of the form factor is char­

acterized by the photon mass coupled to the vector meson. For the Monte Carlo 

generation of the decay this form factor is used in conjunction with the fom body 

kinematics. Overall scaling of the form factor is not necessary since only the kine­

matics affected by the momentum distribution are relevant in determining the ac­

ceptance of the decay.

7.5.3 QCD Form Factor

In addition to the model dependent aspects of the VDM form factor the decay 

was also modeled with the low energy QCD form factor of D’Ambrosio [20] The form 

factor was modeled with the expansion of the form factor as discussed in Section

3.3 with the vector meson propagator chosen as that of the p mass. In this form the 

low energy QCD form factor used was:

Q CD I, 2 )  p  0) U i  -  gi -  m l )  (gf -  r n l ) { q l  -  m l )

(7.21)

The parameter a  is chosen to correspond to the £ + £ “ 7  data and as such is

set at:

a  =  -1.63 (7.22)
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This value can be related to the choice of a  used in the Bergstrom VDM model in 

Eq. (7.20) by the relation:

a  =  - l  +  (3 .1 ± 0 .5 )a^  (7.23)

The problem of determining the parameter j3 is difficult since in principle it should 

be empirically determined from the decay > ix^jjTe^e~. In the absence of data 

on this search decay, the parameter was set using the sum rule for the ultra violet 

cut off such that for high

l + 2a + P = 0 (7.24)

giving 0  =  2.26. In a similar fashion the parameter 0  was also determined from the 

weak sum rule:

14
l  +  2a +  /? ~  — liV Î ~ 0 .3  (7.25)

9

yielding 0  =  2.56 ox 0  — 1.96.

In this manner the low energy QCD form factor was combined with the QED 

kinematic distribution to model the decay iJ0^~e'^e~ in the Monte Carlo

simulations for both strong and weak bounds on the parameters. The diagrams of 

Fig. 7.11 show the effect of the QCD form factor on the shape of the resulting >

spectrum. The high invariant mass bands near the kaon mass M k  show

a factor of four enhancement compared to the unmodified QED decay spectrum. 

This enhancement is also evident in the modified shape of the invariant mass 

reconstruction spectrum above = 460MeV/c^ near the kaon endpoint as shown 

in Fig. 7.11(b). The resulting effect of the high invariant mass enhancement is to 

increase the efficiency with which the muon pair from decays are
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(a) QCD form factor [20] with high invariant mass enhancement bands.

0.05 a i  0.16 O.Z 0.25 0.3 0.3S 0.4 0-48 0.5

reconstruction, QCD Formfactor I ̂

(b) K^/j, invariant mass spectrum 
with the QCD form factor

FIG. 7.11: Model of the QCD form factor for 0  =  2.56 [20] used to simulate the decay 
/i+p“ e'*'e“ . Kinematic restraints are placed upon the plot regions to show high 

mass enhancement of the decay near the kaon endpoint.
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accepted by the E871 spectrometer trigger requirements. The increased sensitivity is 

due to the resulting muon track kinematics that are favorable to the low pr  required 

for events to pass the parallelism requirements of the TSC trigger.

7.5.4 x P T  Form factor

The decay K'l was also modeled with a form factor derived from

a chiral expansion of the decay as discussed in Section 3.4 using the work of Zhang 

and Goity [24]. The form factor was implemented in the form similar to that of 

Eq. (3.28) where the momentum dependence was isolated into the D{qi, Q2 , Mp) 

using again the p mass as the scale for the expansions.

FxPt(9 i ,®)  =  [~(® 2  +  2a4)D(gi, 2̂, Mp) +  C{Mp){qi +  92)] (7.26)

Both parameter sets discussed in section 3.4 involving the sign of the form factor 

for the Dalitz decays were taken into account. The parameter sets modeled were 

such that F^=93 MeV, Cs =  3.12 x 10“ ,̂ and the values for 02  +  04  and the counter 

term were chosen from the sets a2 + a^ = {—0.3,1.5}, C{Mp) = {14.2, —10.3}.

The momentum dependence of the form factor was expressed in the form similar 

to Eq. (3.29) with the meson mass set as Mp

D{qi,q2,Mp) =  {qi + q2)
3  \  M y  M l (7.27)

+ 4 [F{MI qi) + F{M]^, qi) + F{Ml  ga) + F{M]^, 2̂ )]

The functions F(m?,q) represent the chiral logarithms expressed in terms of y =  

q/rrF as:
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The full chiral form factor was combined with the QED kinematic distributions 

to fully model the decay K'l —> j X ' ' j j T e ~ . In analogy to Fig. 7.11 the diagrams 

of Fig. 7.12 schematically show the effect of the chiral form factor on the shape of 

the resulting K l  —> (ji^pre'^e~ spectrum. In contrast to the QCD form factor, the 

chiral expansion favors enhancement to both the high invariant mass bands near the 

kaon mass M k  and to the edge of the kinematic locus. This enhancement is consid­

erably more pronounced than the QCD enhancement as seen by the factor of 100 

enhancement compared to the unmodified QED decay spectrum. The enhancement 

is also seen in the modified shape of the invariant mass reconstruction spectrum 

near the kaon endpoint as shown in Fig. 7.12(b). In the same manner as the QCD 

enhancement, the effect of the high invariant mass enhancement is to increase the 

efficiency with which the muon pair from K l  —> ix''(jT  e~'~ e~ decays are accepted into 

the forward spectrometer. The resulting kinematics are even more favorable to the 

low Pt  requirements of the E871 experimental apparatus.
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(a) Chiral form factor [24] with high invariant mass enhancement bands.

C.1 0.15 0.2 0.2S 0.3 0.3S 0.< 0.45 0.5

reconstruction, x p T  Formfactor

(b) invariant mass spectrum 
with the Chiral form factor

FIG. 7.12: Model of the Chiral form factor [24] used to simulate the decay Jff£ -h- 
Kinematic restraints are placed upon the plot regions to show high mass 

enhancement of the decay near the kaon endpoint.
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Vertex and Stub Analysis

8.1 Event Reconstruction

The kinematics of a relativistic decay from an initial single particle state into 

a multi body final state can be expressed in terms of the energy and momentum of 

the initial and final states as well as the spatial coordinates and time at which the 

decay occurred.

X  — > X \  X 2  X n

(8 .1)
X ( E , f ^  = Y ,X i{E i,p i)

Imposing four momentum conservation on the decay products leaves 4(n — 1) inde­

pendent energy/ momentum parameters that determine the event. These parameters 

are dependent upon the frame of reference in which the event is observed. Recon­

struction of the decay event requires that a connection be made between measured 

quantities in each of the frames of reference. In general transformations from the 

rest frame of the parent particle to the laboratory frame in which the daughter par-

172
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tides are observed and measured can be represented by a series of boosts from the 

initial frame to another Lorentz frame by infinitesimal transformations of the form;

/ 7 - iP 0

- iP 7 0

0 0 1

0 0 0

A

(8 .2)

where the boost here is taken along the Xi direction, followed by an appropriate 

infinitesimal rotation of the spatial coordinates through a small angle Aip of the 

form:

^  0

— KiAljj 

—K2A 1I; 

y -K sA ij

-KiAljj

0

0

0

-K2A'tp

0

0

0

— KsAtp 

0 

0 

0 /

(8.3)

The difficulty in using this approach in the case of E871 is that initial momentum 

of the parent kaon is not measured, making it impossible to directly back transform 

from the laboratory frame to the rest frame of the parent particle. As an alternative 

to full event reconstruction through Lorentz transform a series of Lorentz invari­

ants is used to characterize the event and serve as the reconstruction parameters. 

Since the 4(n — 1) energy/ momentum parameters which describe the decay pro­

cess transform under these matrices as four-vectors, it is possible to choose a linear 

combination of them which forms a Lorentz scalar under the appropriate transfor­

mations and as such characterizes the decay independent of chosen reference frame. 

The first Lorentz scalar that is analyzed is the invariant mass of the parent particle.
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8.1.1 Invarian t Mass

In constructing the invariant mass of the parent particle it is first necessary to 

transform to a reference frame in which the parameters set by Eq. (8.1) axe further 

constrained. In particular there always exists the center of momentum (CM) frame 

and a transformation to it (see Goldstien [43]) such that in that frame, the spatial 

components of the total four momentum of the initial particle are zero;

pii _  
to ta l

^  E ^ E

cJ w
(8.4)

Since the internal processes of the multi-body decay are independent of the chosen 

reference frame, the total momentum four vector of any process taking the form of 

Eq. (8.1) can be expressed in the CM frame as:

pe
in i t

VP^ + M2
(8.5)

(8.6)

In this formulation it is evident that the total momentum four vector is a function 

only of the mass of the decay products. Under an infinitesimal Lorentz boost the 

total momentum four vector transforms as:

— 7 / 5 M  

0 

0

(8.7)
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The norm of the total four momentum is clearly left invariant;

P^P'^  =  g^.P"'P'“ = g ^ A \ F ^ A % P ^  

= g , ,A \A % P ^ P ^  ^  g„fP'’ P»

= PcP°

(8.8)

As a result the quantity transforms as a Lorentz scalar with the single particle 

value:

P^P^ =  (E, - P )

= E ‘̂ -P '^

-  { y p E T J p y

=

(8.9)

This quantity M  is denoted as the invariant mass of the parent particle, and hence 

the physical mass of the particle irrespective of chosen reference frame.

This invariant mass can be reconstructed from just the knowledge of the energy 

and momentum parameters of the daughter particles of the decay in the laboratory 

reference frame. In the case of a two-body decay, this invariant mass reconstruction 

takes the standard form shown in Eq. (8.10) with the mass of the decay particles 

species labeled as m i and m 2-

m2 =  P^P^ -  {Pi +  P2U P 1 + P2Y  

-  (P i +  E 2 f  -  (Pi +  P2?

=  E l  +  E l  -  P2 -  P |  +  2 P 1P 2 -  2Pi • P2 

=  m.2 +  7712 +  2 E1E2 — 2 IP1IIP2I COS012

(8 .10)
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In this formulation 6*12 is the angle between the decay tracks. The analysis can 

similarly be extended to the case of an N-body final state, where again a set of {ruj} 

particle species exist with energy/momentum parameters {Ei, P»}

N  \  /  N

\i= l /  n \* = 1  /
/  N  \  ^ /  iV

= 4 e <̂
(8 .11)/  \ j = l  

AT N  N  N  N  N

= E^?+EE^‘̂ i - E^' -E E «  • -Pi
i= :l i = l  j = l  i = l

AT Al AT N  N

=  E ’"? +  E E P iP i ~  E E lP iilP il™ " ® * !
?=1 i = l  j ^ i  i —1

We can further simplify the expression by expressing the cosine of the angle 

between any of the track pairs in terms of their direction cosines.

D

cos 6ij =  ^  cos 4>xk cos -ipxk

(8.12)

k=l

In D-dimensions with the usual Euchdean metric the explicit symmetry in the direc­

tion cosines further allows the double summations to be reduced to order (iV  ̂— N ) /  

2. W ith this modification Eq. (8.11) becomes:

N  N  N  /  D  \

M^ = Y ^ m ^  + 2 Y , Y l {  E (8-13)
i= l  i—1 j>i V fe=l /

This form of Eq. (8.11) is of use in that it depends only on parameters that are 

functions of a single particle and are readily obtainable in the laboratory frame of 

the decay. In the case that partial reconstructions are performed utilizing less than

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 7 7

the full number of true decay tracks, higher order reconstructions may be obtained 

through a simple recursion relation:

n  /  D
+  2 ^   ̂ I £'i-E'(n+l) j 11 P{n+1) \ ^   ̂^ik^{n+l)k I (8.14)

i = l  \  fe=l

The consequence of the recursion relation is that the N body reconstruction of is 

always greater than or equal to the (N-1) body reconstruction of the same particle. 

The m-body (m < N)  reconstruction then is always an explicit lower bound on 

the invariant mass of the parent particle. Calculations sensitive to such a bound 

can thus utilize a lower order reconstruction without loss of acceptance or when 

additional tracking information is not available.

In the case of the —»■ analysis, two body invariant mass recon­

structions were performed using the pairs in the manner of Eq. (8.10) with

higher order reconstructions following the prescriptions of Eq. (8.13) and (8.14). 

Initial invariant mass reconstruction using the e“*'e"'pairs was not performed due to 

the lack of e'^e~track acceptance within the requirements of the E871 spectrometer 

and trigger. Invariant mass under the e'*'e“ hypothesis was also omitted from the 

analysis due to the endpoint of the Me~e+ invariant mass at 474.7 MeV/c^. The ef­

fects of these varying reconstruction methods are shown in Fig. 8.1 using simulated 

data to obtain the raw reconstruction profiles. Fig. 8.2 shows the reconstruction 

profiles with the additional restrictions of muon track acceptance and event trig­

gering. The reconstruction profiles exclude the 463MeV lower limit on invariant 

mass, but demonstrate the high invariant mass bias that the detector geometry and 

spectrometer settings have upon the sample set.
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M k  2-body
GeV/c?

M k  3-body

(a) Two-body invariant mass recon- (b) Three-body invariant mass re-
struction construction

Gevf<? M k  4-body +  scatteringM k  4-body

(c) Four-body invariant mass recon- (d) Four-body invariant mass recon­
struction struction with low energy multiple

scattering effects

FIG. 8.1: Effects of multi-body invariant mass reconstructions of e
events without full geometric acceptance restrictions. Figure 8.1(d) shows the explicit 
smearing of the invariant mass peak due to multiple scattering of low energy electron 
tracks
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M k  2-body M k  3-body

(a) E871 accepted two-body invari- (b) E871 accepted three-body in­
ant mass reconstruction variant mass reconstruction

M k  4-body -f scattering
GeV|c?

(c) E871 accepted four-body invari­
ant mass reconstruction with low 
energy multiple scattering effects

FIG. 8.2: Effects of multi-body invariant mass reconstructions of > /i+/i~e+e~ 
events with geometric acceptance restrictions imposed upon the muon tracks. Figure 
8.2(c) again shows the explicit smearing of the invariant mass peak due to multiple 
scattering effects.
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8.1.2 Vertex Definition

Computation of the invariant mass does not rely upon any knowledge of the 

spatial location at which the primary decay occurred. As a result of this, computa­

tion of the primary decay vertex recovers information independent of the energy and 

momentum parameters of the reaction. In particular, reconstruction of the spatial 

vertex allows for correlation of the decay point with the neutral beam profile and 

for association of spectrometer tracks with a hypothesized decay chain.

Reconstruction of the primary event vertex is accomplished by pairwise consid­

eration of valid spectrometer tracks. In the case of K'l ii^iiTe^e^ vertices are 

reconstructed using and pT tracks which satisfy the LI trigger requirements and 

additional track fitting algorithms referred to as the “FT” and “QT” fitters. Tracks 

of these types are projected upstream, from the first two sets of straw drift chambers, 

into the evacuated decay region. For events in which the particles originated from 

a common decay, the projected tracks should have a common point of intersection 

which coincides with the neutral beam profile. The intersection point is denoted as 

the event vertex X( t ,  x, y, z). The geometric distribution of these points is shown in 

Fig. 8.3 for the X and Y vertex profiles. The event time can be calculated from the 

hit times in the various fast detectors and knowledge of the particle momentum.

Due primarily to chamber resolution and multiple scattering of low energy par­

ticles, the three dimensional intersection of the charged tracks used to reconstruct 

the vertex position is seldom exact. Valid spatial reconstructions are evaluated by 

the closest distance that two track trajectories come to each other. The distance 

of closest approach (doca) figure of merit is defined in the case of two tracks by 

the length of the line connecting the tracks at perigee as shown in Fig. 8.4. The 

computation of this figure of merit is discussed in detail in section 8.2 with regard 

to both the track and stub related situations that were encountered in the analysis
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FIG. 8.3: XY Vertex distribution based upon track reconstructions under the QT 
fitting algorithm
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Track 1

Track 2

FIG. 8.4: Vertex definition based upon distance of closest approach (doca) of two tracks 
in three dimensions

of the e'^e decay.

8.1.3 Transverse M om entum  and Collinearity

Once the vertex position is established, a second invariant can be constructed 

from the momentum vectors of the primary decay products. The line between the 

production target and the computed position of the decay vertex form the boost 

axis for the transformation between the CM frame of the parent particle and the 

laboratory frame in which the decay products are measured. While the magnitude 

of the Lorentz boost is not known, the components transverse to the boost axis 

are unaffected by the transformation matrix of the form of Eq. (8.2) where the Xi 

direction is taken along the axis defined by the line between production target and 

vertex. In this manner the sum of the momenta for the primary reconstruction 

tracks, pi +P2 can be computed, and the angle that the momentum sum forms with 

the boost axis is denoted as the collinearity angle © as shown in Fig. 8.5. The
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transverse momentum for the reconstruction can be trivially computed as

== (Pi +  P2 ) sin 0  (8.15)

Because the tracks used for vertex reconstruction are approximately coplanar, the 

transverse momentum which lies in the decay plane and collinearity angle computed 

in this manner are associated with the primary decay plane. Similarly the transverse 

components for each of the individual particle tracks can be computed through 

projection onto the boost coordinates and associated also with the decay plane.

Secondary tracks and partial tracking stubs are assigned a collinearity angle 

based upon their projections into the decay volume. Since partial tracking stubs 

may not have a valid momentum measurement recorded by passage through the 

spectrometer magnets, they cannot be assigned a proper transverse momentum mea­

surement through direct measurement. The collinearity angle serves as a surrogate, 

allowing for determination of events with little to no transverse angular displace­

ment to be associated with the decay planes. Even for the low transverse momentum 

e‘̂ e“ pairs expected from K'l —>• jjb^/jTe^e^, the colhnearity of the h ’̂ ijT  reconstruc­

tion plane and the collinearity of the electron tracks are found to form an angular 

correlation that assists in determination of pair associations with computed vertices.

Uncertainties in the collinearity angle arise from the projection of the line from 

target to computed vertex. The exact position at which the originated in the 

target is unknown and as such the z position of the target origin receives an uncer­

tainty of ±63.5mm. The uncertainty in in the x and y directions results from the 

cross sectional area of the production target resulting in uncertainties of ±1 .575mm 

and ±  1.27mm, respectively. These correspond to maximum angular uncertainties 

in the collinearity angle of 157.5 /.trad in x, 127 //rad in y as computed for a vertex 

at the upstream end of the decay tank.
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’arget

-Vertex

S1+P2

FIG. 8.5: Definition of the collinearity angle 0  based upon momentum sum of the primary 
track pair and the line between the calculated vertex and the production target [44]

While the collineaxity angle 0  is not invariant, the transverse momentum of the 

decay is invariant with regard to the full decay process and a conserved quantity. As 

a result the muon momentum sum and collinearity angle are balanced

by the electron momentum sum Pê  +  Pê  and the electron colhnearity angle ©e as 

shown in Fig. 8.6. From the diagram the laboratory momentum of the electron pair

can be determined from the angular distributions and the measured momentum of

the muons. The transverse components of the momentum are conserved such that 

+  Pel = 0, yielding the set of relations:

Px =  |P^|sin©^ (8.16)

P x - |P e |s in © e  (8.17)

^ I 4̂  J sin W/y
Pe ^  Pet +Pb2 = (8.18)

S in

This relation indirectly recovers the magnitude of the momentum of the soft elec­

tron/positron pair. The asymmetry of momentum within the e'*“e~pair is deter­

mined from the distribution shown in Fig. 8.7. Prom the figure it is clear that the 

phase space is dominated by e‘*‘e~pairs for which the momentum is shared in an
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Vertex

Boost Axis

FIG. 8.6: Muon pair transverse mo­
menta to electron pair transverse 
momenta sum relation through the 
collinearity angles 6^ and 0g

02 0.3 Q.i( 0.S 0.6 07GeV|̂
e  vs momentum

FIG. 8.7: e to e+ low energy
momentum asymmetries for i f  £ —>

approximately equal fashion between the particles.

Pei ~  P e a (8.19)

Prom this expression and Eq. (8.18) the momentum of the individual electron tracks 

can be approximately expressed as:

~  2 ^  2 s in e .
(8.20)

In this manner the momentum of soft e'*'e“ pairs which do not receive a successful 

momentum measurement in D02 or DOS can be approximately recovered. Higher 

order invariant mass reconstructions based upon these data are discussed in section 

8.4.1.
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8.2 Distance of Closest Approach (DOCA)

After identification of possible hit points in a tracking chamber, one or more 

potential tracking paths can be constructed using a series of pattern recognition algo­

rithms. Track and stub construction methods range from exhaustive combinatorial 

construction utiUzing all available points to more sophisticated methods utilizing 

clustering approaches either alone or in conjunction with weighting functions based 

on the different probability distributions and wire response schemes. After initial 

pattern recognition and track construction, a preliminary set {S} of particle tracks 

through the active regions of the detectors is available to the analysis.

The set {§} is taken to be composed of two subsets, one SrecU which represents 

tracks generated by real (physical) processes of interest, and Snoise generated by 

random noise or processes not of interest to the analysis. To separate these two 

subsets from the parent population a figure of merit is devised based on the primary 

decay vertex. The primary figure of merit used in vertex identification and track 

filtering is referred to as the “Distance of Closest Approach” (DOCA) between the 

sets of tracks and with the hypothesized vertex position.

Utilization of the DOCA, as the primary figure of merit in determining track 

association and vertex quality is justified by considering the initial physical process 

to occur at a definite spatial and temporal point as discussed in section 8.1.2. 

Each of the tracks in the signal set should lie on a trajectory which passes 

through the vertex point at the same time index. In contrast the tracks attributed 

to noise or unrelated physical events should not pass through the vertex point. The 

metric measuring the proximity of the tracks to the vertex point is taken as the 

quality of the association. Due to experimental uncertainties we expect each signal 

track to deviate from perfect intersection with the vertex by an error Sxi in each 

coordinate. The sum of the squares of these residuals forms the standard Euchdean
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metric and can be used as a measure of the absolute deviation. At the point where 

this deviation is minimized it corresponds to the DOCA between the vertex and 

tracks. Separation of the populations Ŝ eoZ and Snoise is achieved by placing a cut 

on the DOCA value.

The difficulty with this approach is in quantifying the methods for correctly 

computing the DOCA between different combinations of particle tracks and vertex 

points while including additional corrections for event time. The following sections 

discuss in detail the different methods and corrections used in computing the DOCA 

values for the primary vertex, primary muon tracks and for the partial tracking stubs 

left by the e+e“ pairs.

8.2.1 Track to  Track

Valid events used in the analysis were required to have two muon tracks that 

traversed the spectrometer and had appropriate parallelism in the trigger scintilla­

tors. These two muon tracks were used to compute the position of the event vertex 

by calculating the position at which the tracks when projected into the decay volume 

were at their closest point. The midpoint of the line segment connecting the two 

tracks at their closest point was defined as the vertex for the event and the DOCA 

value for the vertex computed as the sum of the DOCA values that each track had 

to the vertex.

In contrast to calculating the DOCA between a track and a fixed point, compu­

tation of the track to track DOCA points is much more difficult. The trajectory for 

each track’s projection into the decay volume is defined by its hit positions in SDC2 

and SDCl which result in the base point and direction cosine information for each 

track. Each track can be represented parametrically by the pathlength variable S)
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representing the distance of the current point from the base point.

(8.21)

The DOCA condition is found by simultaneously minimizing the metric between 

two points on the line with respect to the parameters S ).

'  1 -   ̂ '
— S i  ' ((^Ml)» ~  (̂ At2)») _  S i^ 'i  ' ((^Ml)i ~  (^^2) )̂ 2 3 ^

1 -  (E i 1 -  (E i

The points and at which the distance of closest approach actually occurs 

are found by substituting the expressions for the pathlength as found in Eq. (8.22) 

into Eq. (8.21).

E i • {{Xfj.i)i {^ji2)i) _  E i ' ((^w)i
1 -  (E i  1 -  (E i

Ei^i • ((^Mi)i ~  _  E i ~  (̂ M2)i)
1 -  (E i 1 -  (E i

(8.24)

(8.25)

The DOCA distance is computed

(8.26)

8.2.2 Vertex Position

The vertex position, when computed from the track to track DOCA method, 

is taken to be the midpoint of the line connecting the points and as shown
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in Fig. 8.4. In this manner the vertex location can be expressed as:

Xi  =  ~  (8.27)

The values of are obtained from the expressions in Eq. (8.24) and (8.25)

8.2.3 Track to  Point

The most basic geometry for which the DOCA was computed was that of a 

single track to a fixed spatial point. This geometry corresponded to the method by 

which the distance between all secondary tracks and partial tracking to the primary 

vertex were computed. The particle track is denoted as the vector x  and defined by 

a based point Xi which corresponds to the center of the hit cluster in SDC2 and a 

set of direction cosines {uj} which are computed using the hit cluster in SDCl. The 

vertex position is defined as the point V  =  {vnVy, Vz}.

W ith this formulation, the distance between the vertex and any point on the 

line can be expressed by the standard Euclidean metric.

M( x ’, V ) =  (8.28)

The point x' on the line is defined by the set of parametric equations using the path 

length S  as the defining parameter:

x[ — {xi -  aiS)

: ; (8.29)

—  {Xfi ciyi<S)
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In this manner Eq. (8.28) can be rewritten as:

M ix ',  y )  =  (8.30)

W ith the metric definition of Eq. (8.30) it is possible to solve for the exact 

DOCA. Instead of solving for the DOCA in full form there are a series of approx­

imations that can be made which simplifies the calculations and are used in the 

analysis code to save processing time during the early stages of filtering the data. It

is also used as a check and to remove ambiguities that can arise in the full method.

These methods are considered in the next section.

8.2.4 Punctured Plane

The simplest approximation to the DOCA is to approximate the distance of 

closest approach by the distance between the vertex point and the point at which 

the track “punctures” a given spatial plane. The puncture point can be computed 

by first computing the distance of the track’s base point from the plane of interest. 

The plane is denoted by Vij{Vk) and is defined to be the surface given by the 

and coordinate axis passing through the vertex point V, whose component 

is Vfc. This then generalizes to any plane by appropriate translation and rotation. 

For the purposes of the analysis the puncture plane was taken as the plane defined 

by the x and y coordinate axis at the specified z position of the vertex. Using this 

formulation the distance between the plane and the track base point is just the z 

axis distance between the two.

dix,Vij(Vk)) = \ xk - Vk \  (8.31)
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The coordinates of the point of intersection between the track an<l the plane are 

given by:

x'i = Xi + tti\xk -  Vk\d{xi,Vij{pk))
(8.32)

4  =

The approximate DOCA is then found by computing the distance between the vertex 

V  and the point of intersection x' as defined in Eq. (8.32). Expressed in this manner 

the DOCA becomes:

 Y --------------------------------  (8-33)
= y^Xxj -  Vi + ai\xk -  141)2

V i¥=k

Event time distance is computed between the track’s base point and the intersection 

point with the plane. The particles are relativistic in nature so that /? fs 1. The 

time difference A t between the points is then found from:

=  =  (8.34)
c

The punctured plane method exhibits an advantage over the full minimization 

methods discussed in section 8.2.6 not only due to its speed, but because the approx­

imation is an explicit upper bound on the true value of the DOCA. It can be shown 

that Vapprox > T̂ min] as a result using the value of Vapprox obtained from Eq. (8.33) 

as maximum value for a cut parameter does not affect the total acceptance of real 

events.
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Puncture plane

FIG. 8.8: Geometry of the secant correction to the DOCA value obtained from the 
punctured plane method.

8.2.5 Secant Correction

The punctured plane approximation to the DOCA calculated in Eq. (8.33) 

can be improved upon by considering the angle at which the reconstructed track 

intersects with the defined plane of interest. Since the approximate DOCA serves 

as an explicit upper bound on the true DOCA value, the locus of all points whose 

distance from the vertex is less than or equal to the approximate DOCA value forms 

a sphere. If the reconstructed track intersects the chosen plane at a non right-angle 

then the track projections forms a secant across the interior of the sphere as shown 

in Fig. 8.8. The true position of the DOCA lies along the track at the midpoint of 

the secant. Prom this construction the true DOCA, Vtrue is given by;

ntrue = *' ^  approx —  x"Y (8.35)
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In order to use this expression, the length of the secant, J\4(x',x") needs to be 

calculated. The length of the secant can be expressed as

M (x ',  x " f  = 2Dapprox COS (j) (8.36)

Substitution of this expression leads to the simple expression for the exact DOCA 

in terms of the angle 0:

T̂ true ~  approx ^1  ̂0 (8.37)

The track angle 0 is found by rotation of the coordinate system about the x-axis by 

an angle —9y corresponding to the direction cosine ay for the track. In this manner

the track is rotated into xz-plane and corresponds to Fig. 8.8. The angle 0 is then

given by:

0 =  cos~^ ttx (8.38)

The true vertex DOCA is then:

T ^ t r u e  ~  ' ^ a p p r o x  S i n ( c O S  t t x )

approx

(8.39)

The value of the secant correction is that it allows for the exact DOCA to 

be obtained from prior results with knowledge only of the direction cosines of the 

tracks. In this manner it is possible to refine calculations at successive steps in the 

analysis.
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8.2.6 Standard M inim ization

While the above approximation method has its own advantages in terms of 

initial speed, the standard full form calculation of the DOCA value between a track 

and a point is used in determining the cut values for vertex and stub quality. The 

full form of the DOCA is calculated through standard minimization of the metric 

between the particle trajectory expressed in a parametric form and the vertex point.

The particle track is again defined by a base point x  and a set of direction 

cosines {a*} and the primary vertex is set at V. The track is assumed linear in the 

absence of multiple scattering and magnetic deflections. The track is expressed as 

a set of parametric equations defining the line with base point x  in SDC2 and slope 

parameters Uj computed from the hit potions in SDCl.

=  {xi — aiS)

; .' (8.40)

X^ (^n ^n^')

The parameter S  is the path length between the base point x  and point of interest 

x' defined under the usual metric A4{x, x'). The DOCA is assumed to be achieved 

at a some point x' if M.{x'^ V) is at a minimum. This leads to the conditions;

» (8.41)

=  0

for all a/j. With the substitution of Eq. (8.40) into (8.41) the condition simplifies to
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only one minimization over the parameter S

d
d S '

0

+  x j  +  -  2xiVi +  2ViaiS -  2xiaiS) (8.42)

Since all coordinates are explicitly real the square root function is monotonicaUy 

increasing, it suffices to minimize just the argument of the function. This leads to 

the speciahzed minimization condition:

dS

= Y .{ 2 a \S  + 2ai{Vi-Xi))  
i

=  0,

(8.43)

giving:

^doca

The value of the DOCA is:

V  ■ =

Y,i a i{x i-V i)
T . A

J 2 ja ia j{ x j -V j ) '

E iS -

(8.44)

(8.45)
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The closest approach occurs at the coordinate point T' given by:

X/7 %

"j

(8.46)

I Xn Om ^  ^2
E t

The time correction for the DOCA point found by utilizing the path length of 

Eq. (8.44):

A t  = t - t ' = - (8.47) 
c V E i of J

For the final analysis of all vertex and stub quality, DOCA values were calcu­

lated from Eq. (8.45) and used in conjunction with the time correction of Eq. (8.47).

8.3 Partial Tracking Stubs

The E871 track reconstruction algorithms were designed to identify hits in the 

straw drift chambers and from those hits define candidate particle tracks that tra­

versed the spectrometer and were momentum analyzed in the spectrometer magnets. 

Particle trajectories which did not fully traverse the forward spectrometer or did not 

impart sufficient tracking information in the sensitive regions of the magnetic spec­

trometer were subjected to a separate series of reconstruction routines and analysis 

cuts designed to recover all possible tracking and event reconstruction information 

that was available.

Particle trajectories which left valid tracking information only in the forward 

straw drift chambers, SDCl and SDC2, were classed as partial tracking stubs and 

used extensively in the analysis of the e+e“ pairs arising from the decay —>
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(X^jjre^e~. The momentum for this class of trajectories is not directly measured, 

but instead inferred from primary vertex and muon pair information. All other 

quantities were derived from the hit clusters and associated event characteristics

8.3.1 Stub Recognition

Partial tracking stub recognition and identification was performed after both 

general pattern recognition and tracking fitting. The recognition routines were run 

only on events that satisfied primary vertex and track quality cuts sufficient to place 

the candidate event in the —>• data summary tapes. In order to maximize

overall efficiency while also minimizing event processing time, two algorithmicly 

different approaches to identifying partial tracks were explored. Each method was 

based on deriving hit clusters in the X and Y planes of the straw drift chambers 

and then matching valid clusters with other clusters in the adjacent chamber. The 

methods differed in the search method employed and the resulting combinatorics 

involved in the resulting candidate set.

Cluster to  V ertex Search Path

To minimize computation time, the first method of partial track identification 

employed a directed search algorithm that only considered hit cluster matching along 

paths defined by external vertex information. In this method hit clusters consisting 

of at most five wires in the SDC2X and SDC2Y detector viewers were considered. 

The center of each hit cluster was determined through a simple averaging of wire 

positions with appropriate drift time ambiguities, and a cut was placed on the total 

cluster size. For each detector view, X and Y, the central hit position of the cluster 

was paired with the primary event vertex. The resulting track slope was

computed along with appropriate direction cosines. The projected intersection of
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the computed vertex to SDC2 hit line with the corresponding view of SDCl was 

recorded as the projected candidate hit position. The first straw chamber planes 

were then scarmed for valid hit clusters within A x  =  ±0 .006m, Ay =  ±0.00125m of 

the projected hit. If a match was found, the resulting X or Y segment was paired 

with corresponding Y or X segment to form an XY “stub” for which the direction 

cosines and DOCA to the primary vertex could be computed.

Due to the restricted search path that was allowed when cluster matching, 

this method was able to quickly identify simple stub events. Initial cuts in stub 

quality and correlation values were based on the data gathered through this method. 

These initial cut values were used to set input parameters for the more complex full 

chamber search routine.

The cluster to vertex search path approach was not used in the final analysis 

of the data due to its high inefficiency in correctly pairing closely packed hit clus­

ters and events whose trajectories differed from the search path due to low energy 

multiple scattering.

Cluster to  C luster Exhaustive Search

The second method of partial track identification was developed to provide a 

more comprehensive and efficient detection method with improved matching criteria 

that could simultaneously deal correctly with low energy multiple scattering. In 

this method no information is used regarding the primary vertex so as to prevent 

inadvertent correlation biasing of the stub sample. Instead the only outside derived 

data used are the positions in SDC1/SDC2 and PATREC calculated hit cluster 

centers. These hit positions are used solely as a veto mask to prevent stub matching 

results that correspond to the already identified primary tracks.

The exhaustive cluster matching algorithm was initiated at the STAGE9 phase 

of the off-line analysis after primary track re-fitting with the QFT fitting methods
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FIG. 8.9: Local track slope is computed from a least squares fit to the PATREC derived 
hit cluster positions.

and correction of derived wire hits and times. All views of the first two straw 

drift chambers were first searched for hit clusters satisfying the same criteria as the 

primary track clusters. Each cluster was then fit to a series of local track slopes 

based upon the shape of the hit cluster and a weighted least squares fit to the hit 

line trajectory as show in Fig. 8.9.

Segments were formed by matching cluster positions in SDC2 forward to cluster 

positions in SDCl using solid angle limited search paths defined by local track slope 

with appropriate ambiguities. All approximate cluster to cluster matches were re-fit 

to provide corrected hit positions in both SDCl and SDC2 for each track segment. 

Exhaustive combinatorial matching of all identified track segments was considered 

to form XY track stubs. The matching ambiguities for an example event with two 

real electron tracks is shown in Fig. 8.10

All of the valid XY track stubs formed through the matching process were 

stored and sorted according to a simplified computation of the DOCA value between 

the candidate track stub and the primary vertex. Since for noisy events in

excess of 1000 possible ambiguity solutions can be generated from the combinatorial 

matching procedure, only the first 1024 solutions were considered in this manner for 

sorting and for further analysis.
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SDClHttCteffirt

FIG. 8.10: Matching of all possible cluster combinations based upon local track slopes 
between SDCl and SDC2.

The sorted list of candidate XY stubs was analyzed to determine the degree to 

which each stub correlated to the primary vertex. The best 32 candidates determined 

by the sort ordering based on the simple vertex doca were reanalyzed using the more 

complete full form track to point DOCA calculation. At the same time the point of 

closest approach was likewise recomputed. The resulting improved list was resorted 

according to the exact DOCA computation. This list was then further analyzed by 

the correlation and selection criteria which was established to distinguish between 

event-associated partial electron tracks and partial tracks from background and 

detector noise. The computed DOCA values for these signal and noise populations 

are shown in Fig. 8.11

8.3.2 Decay Plane Correlation

The AT£ —> decay when examined in the laboratory frame of refer­

ence, exhibits a distinct kinematic profile which can distinguish it from the other 

multi body decay streams being examined as backgrounds to the event signal. While
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0 0^  0.75

Stub Gaadidate vertex DOCA

FIG. 8.11: Computed DOCA between SDC1/SDC2 XY partial tracking stub and the 
primary event vertex. Events in green represent all ambiguity solutions, events in red 
represent the best stub singlet or best stub pairs.

the final state of the decay results in a four-body formfactor modified phase space, 

the like-flavor lepton pairs arising from the intermediate state virtual two y ’s retain 

pairwise correlations. The division of the available invariant mass favoring the 

pair combined with the previously discussed formfactors results in an extremely soft 

set of e‘̂ e“pair combinations. When the decay is Lorentz boosted into the labo­

ratory frame, the resulting lepton pairs are used to define a series of decay planes 

based on angular distribution of tracks emerging from the event vertex.

Since the two muon tracks encompass the majority of the event’s momentum 

and invariant mass, we always denote this as the primary decay plane for the event. 

The plane is defined by the standard right handed cross product of the two best 

muon tracks found through the PATREC and QT algorithms. The plane is oriented 

by choosing the cross product to be taken from the negatively charged muon (beam 

right track) to the positively charged muon (beam left track). This orientation of 

the decay plane results in alignment of the normal to the surface in the positive y 

direction. This orientation of the primary decay plane is shown in Fig. 8.12. The 

normal to the plane is calculated and normalized to provide a set of direction cosines
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Plane (X)Prim ary Prim ary  Decay Plane (Y) Prim ary Decay Plane (Z)

(a) X orientation (b) Y orientation (c) Z orientation

FIG. 8.12; Orientation of the primary decay plane in X,Y,Z according to the unit 
normal h  as defined in Eq. (8.48) in relation to the laboratory axis

describing the decay plane. This unit norm transforms as a vector in the usual 

manner, and is valid measure of the decay plane direction in both the laboratory 

and decay frames.

p  X p  

Ini

+
(8.48)

where the normalization can be computed in component form as:

n V i P i  X P2) ■ iPi X P2)

1-̂2j
(8.49)

The remaining tracks from the electron/ positron pair were taken as originating 

from a virtual 7  carrying sufficient momentum Pj to balance the decay kinematics. 

This intermediate momentum lies initially in the primary decay plane while the real 

momentum of the electron/positron pair in the center of momentum frame diverge 

from the plane under the standard Dalitz spectrum. The secondary decay plane 

was defined by the cross product of the identified tracking stubs taken in pairwise
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combinations. The secondary decay plane was oriented by choosing ordering of the 

track stubs such that their resulting normal is in the positive y direction.

For correct acceptance of the muon tracks into the spectrometer, the available 

energy of the virtual state cannot exceed 37.5MeV. This missing energy is mani­

fest in the Dalitz pair where at its maximum the pair emerges orthogonal to the 

defined primary decay plane. Even in this orthogonal arrangement the individual 

tracks in the center of momentum frame have at most an out of plane momentum 

of 18.75MeV/c. From the configuration of the spectrometer this momentum is then 

at its maximum perpendicular to the boost axis of the lab frame. As the boost 

parameter for transformation from the center of momentum to the laboratory frame 

is taken as the momentum of the parent kaon the spectrum of the resulting elec­

tron/positron pair is dominated by transformation along the z-axis. The resulting 

combination of high boost and low transverse momentum forces the pair to lie not 

only in the forward angle of the spectrometer but close to the primary decay plane 

of the decay.

The high correlation between primary and secondary decay planes was mea­

sured by projection of the normal to the secondary decay plane onto the normal of 

the primary plane.

C'ee ■ êe> (8.50)

and represented as the correlation angle êe

iee =  COS~^(n^  ̂• flee) (8.51)
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Correlation o f Singlet Stubs

For events containing only one identified partial track stub, correlation of the 

candidate electron stub with the primary decay plane was performed in a manner 

similar to that of an event with two candidate stubs that formed a well defined 

secondary decay plane.

The normal to the primary decay plane was calculated in the manner of Eq. (8.49) 

to obtain appropriately normalized direction cosines of the decay axis. The

singlet stub from the electron trajectory was computed as described in section 8.3.1, 

and direction cosines obtained from the SDCl and SDC2 cluster centers. The di­

rection cosines were normalized to ensure consistency in event comparisons. The 

resulting set of normalized tracking cosines dg were projected onto the computed 

normal of the primary decay plane to obtain the singlet correlation parameter Cg-

Ce =  (8.52)

Similarly, the component of the electron trajectory transverse to the primary decay 

plane was computed to obtain the angular deviation corresponding to the inclination, 

Ce, at which the electron trajectory emerges from the primary decay plane. The angle 

zetaf. was computed as:

C e -= cos • de) -  I  (8.53)

The correlation profiles for singlet stubs are shown in Fig. 8.13. These profiles are 

fit to determine the width of the correlation as shown in Fig. 8.14
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P ritaary  decay plane singlet Correlation

I

Prim ary decay plane singlet Correlation CôfiC.

(a) Correlation coefficient Ce be­
tween primary fxfi decay plane and 
singlet electron stub for all stubs 
(green) and best stubs (red) for 
Monte Carlo

(b) Correlation coefficient Ce be­
tween primary /z/i decay plane and 
singlet electron stub for all stubs 
(green) and best stubs (red) for data

FIG. 8.13: Correlations of singlet candidate electron partial tracking stubs with the 
identified primary decay plane.
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Decay plane to  Singlet S tub  Correlation ^ ^ ^ e ^ a r l o ) to  Singlet S tub C o r re la t^ ^Decay

(a) Singlet Correlation coefi&cient Q  (b) Singlet Correlation coefficient Ce
with fit to Monte Carlo distribution with fit to Data distribution

x '/ndf 361.9 /  225

0.S168E-0t

-eo -« -20 20 40 60 90

Decay plane to  Singlet S tub  TVansverse Angle

I
I

Decay plane to  Singlet Stub Transverse

(c) Angle of inclination between pri- (d) Angle of inclination between pri­
mary jUjLt decay plane and singlet mary /z/i decay plane and singlet 
electron stub from Monte Carlo electron stub from data

FIG. 8.14: Fits to the correlations of singlet candidate electron partial tracking stubs 
with the identified primary decay plane using central Gaussian peaks and independent 
Gaussian sidebands.
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8.3.3 Stub Pair Correlation

The formfactor implementations discussed in section 7.5 lead not only to the soft 

momentum spectrum of the electron/positron pair, but to a tight angular correlation 

between the two particles when viewed in the laboratory reference frame. The angle 

was computed both with and without the effects of low energy multiple scattering to 

determine the appropriate function to use in order to extract the correlation peak. 

For each model considered in the analysis this angle was computed as shown in 

Fig. 8.15 and fit first to Gaussian peak plus with exponential tails, and then refit to 

a proper Lorentzian line shape plus a background offset. The resultant correlation 

was evident in the angular separation of the partial track stubs identified from the 

raw data samples as shown in Fig. 8.16.

In addition to the tight opening angle correlation, the stub pairs also exhibit 

a tight joint correlation to the primary decay plane. This correlation is defined by 

considering the relative angle that the primary decay plane makes with a secondary 

decay plane defined by the two partial track stubs. The secondary decay plane is 

found in the same manner as Eq. (8.48) replacing the muon track trajectories by 

the partial electron tracks. The resulting secondary decay plane normal vector is 

written as:

I Wee I =  a / (ei X 62) • (Ci X 62)
----------------------------  (8.54)

=  Y (61,62^)  ̂— 61162*61^62^

Due to the low transverse momentum of each electron stub and the high momentum 

parent kaon oriented along the z-axis, two possible correlation geometries were al­

lowed for the secondary stub pair. In the first geometry the secondary decay plane 

is aligned or nearly aligned with the primary decay plane such that the x,y and z 

projections of the secondary normal onto the primary normal are on the order of
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Opening A i^ le  between Stub Pairs (No

ALLCKAN 0.2S9eE.»0STTndf
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0 2 4 6 8 to 13 14

Opemng Angle between Stub Pairs (x P T  No Scat^nHj

(a) Stub pair opening angle (No (b) Stub pair opening angle { x P T  
formfactor) model without scattering)

UDFLW 0.000
OVFLW 168.0
ALLCHAN 0.g«t^t0S
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Opening Angle between Stub Pairs (x P T  w /  5

t
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mn OVFLW

A i X C > t A N140 | i f
m

120 1 120
■

Opening Angle between Stub Pairs (QCD w /

(c) Stub pair opening angle (xFT  (d) Stub pair opemng angle (QCD 
model with scattering) model with scattering)

FIG. 8.15; Opening angle of partial track stub both with and without multiple scattering 
from Monte Carlo models with xPT, QCD or no formfactor
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Opening Angle between Stub Pairs (Data)

FIG. 8.16; Opening angle of partial track stub pairs from raw data

unity. In the second allowed geometry the e'^e~ decay plane is perpendicular to the 

while sharing a common z-axis. These geometries are shown in Fig. 8.17. 

The allowed geometries are recognized through the X,Y and Z angular distributions 

of the calculated decay planes as shown in Fig. 8.18, 8.19 and 8.20. By using the di­

rection cosines of the secondary decay plane in combination with the primary decay 

plane for the event the decay plane to decay plane correlation coefficient is computed 

through projection of the normals onto one another. In analogy to Eq. (8.52) the 

planar correlation coefficient Ĉ e is computed as:

Cee ’ ^ee| (8.55)

The correlation angle is then:

(8.56)

The resulting distributions for both the coefficient and the correlation angle are 

shown in Fig. 8.21.
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(a) Correlation of primary and sec­
ondary decay planes in an aligned 
configuration

(b) Correlation of primary and sec­
ondary decay planes in a perpendic­
ular configuration

FIG. 8.17: Possible correlated primary and secondary decay plane geometries for 
/i+/U"’e'^e~ under high z-axis momentum boost

100 120 140

faecondar)' decay plane x  angle (Monte G a x io t^ ^

I 40 eo 60 100 120 140

Secondary decay plane x  angle (data)

(a) (b)

FIG. 8.18: Secondary decay plane angle in X for Monte Carlo and raw data
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Secondary decay plane y  angle (Monte ( Secondary decay plane y angle

(a) (b)

FIG. 8.19: Secondary decay plane angle in Y for Monte Carlo and raw data

»  40 60 60 100 120 140

Secondary decay plane z angle (Monte (

^  TOO

Secondary decay plane z angle (data)

(a) (b)

FIG. 8.20: Secondary decay plane angle in Z for Monte Carlo and raw data
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P lanar Correlation Coefficient (Monte C ^ o 5 ^ Planar Correlation Angle (Monte Carlo)

(a) Planar Correlation Coefficient (b) Planar Correlation Angle

FIG. 8.21: Primary to secondary decay plane correlation coefficient Cee and angle ipee

8.4 Primary vertex reconstruction with partial tracks

The validity of the choice of primary vertex for each event is evaluated by 

considering the correlation of each stub or stub pair with the defined parameters of 

the primary decay plane. Events with sufficient correlation are fully reconstructed 

under a multi-body decay hypothesis allowing for a calculation of the parent kaon’s 

mass under a detected three or four body final state. Final state event size is 

computed using stub candidates that fulfill the correlation criterion. For events with 

more than two candidate partial track stubs, only the two best stubs are considered 

under the pairwise correlation assumptions of section 8.3.3.

For all events, the transverse momentum of each identified particle that fully 

traversed the spectrometer was directly computed from the track trajectory, spec­

trometer momentum measurement, and the decay vertex to target direction. Sim­

ilarly the transverse momentum of the muon pair that form the primary vertex is 

also computed as shown in Fig. 8.22. For particle trajectories which did not receive
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(a) Muon pair total momentum (b) Muon pair calculated pj.

FIG. 8.22: Transverse momentum of primary muon pair as calculated from momentum 
sum and track collinearity angle.

full momentum analysis in the spectrometer systems, the transverse track momen­

tum was determined from conservation laws imposed at the primary vertex position. 

Inferred transverse momenta are then used to reconstruct an approximation of the 

full track momentum for low momentum electrons and positions.

The approximate reconstruction of low energy electron and position track mo­

mentum was performed using the collinearity angles of each track as defined in sec­

tion 8.1.3. Events with distinct four body final states consisting of two muon tracks 

and two electron stubs were reconstructed according to the geometry of Fig. 8.6. 

The collinearity angle ©e denoting the angle between the vertex to target line and 

the momentum sum of the two electron stubs was computed by assuming approxi­

mately equal magnitudes for the electron and positron momenta in accordance with 

the distribution shown in Fig. 8.7. In this manner the angle was determined in 

terms of the set of direction cosines for the stub trajectories, Oj, bi and the direction 

cosines of the vertex to target line, Vi. The resulting distribution for ©e for both
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Stub pair average coliineantySingle stub collm eanty angle

(a) Collinearity angle for singlet (b) Collinearity angle for stub pairs 
stubs

FIG. 8.23: Calculated collinearity angle distributions for low energy electron stubs in 
singlet and pair configurations

single and paired stubs is shown in Fig. 8.23.

=  cos

l^l|Pl2|

Y^Vi{ai + bi)
(8.57)

The total momentum of the electron pair is found from Eq. (8.18) and split 

equally between the two particles giving the approximation

sin 0^  _  |P^j 
^  2 2 s in 0 , 2

sin 0„
(8.58)

The resulting momentum spectrum for reconstructed electron/positron pairs is shown 

in Fig. 8.24(b).

For events with a distinct three body final state consisting of two muon tracks 

and only one recognized electron stub, the momentum of the singlet stub is deter-
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Reconstructed s tub  momentum  (singles)
GeV jc

Reconstructed stub momenturn (pairs)
GeVfc

(a) Reconstructed track momentum (b) Reconstructed track momentum
for singlet stubs for paired stubs

FIG. 8.24: Reconstructed partial track momentum for single and paired stubs using 
collinearity inferred transverse momenta matching.

mined directly from the measure of its collinearity. As a result, the reconstructed 

momentum for the electron stub is found to be:

I g I sin 0^
Pei =  ------sin 0

(8.59)
ei

8.4.1 Three and Four body Invariant mass

Events for which the stub momenta could be reconstructed and an inferred 

measure of the transverse momentum and collinearity angle obtained, were sub­

ject to primary vertex reconstruction using the maximum number of reconstructed 

tracks/stubs. Four body reconstruction was performed in the manner of Eq. (8.13) 

with the summation taken over stub and track direction cosines. Unmeasured track 

momenta were assumed through the relation of Eq. (8.58). Track energies were 

calculated using particle identification for the two muon tracks, and an e~/e^  hy-
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4 Body invarient mass (K^ftec) Raw D ata
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(a) Four body reconstruction of the (b) Four body reconstruction of the
Kfiiiee invariant distribution K ^iiee invariant distribution from 

raw data

FIG. 8.25: Reconstruction of the K ^nee  invariant mass using two muon tracks and two 
electron tracks with inferred momenta recovered by transverse momentum matching and 
collinearity angles.

pothesis for the remaining stubs. The resulting distribution for stage 9 accepted 

events satisfying partial track reconstruction and stub to vertex DOCA require­

ments is given in Fig. 8.25 for both Monte Carlo and raw uncut jin event data. The 

peak is fit to a Breit-Wigner line shape as shown in Fig. 8.25(a) to determine the 

central kaon mass and the resolved width of the peak.

Events with only one additional tracking stub are reconstructed using the same 

method as described by Eq. (8.13) but with the stub momentum determined by 

Eq. (8.59). The resulting distribution does not sharply peak as in the four body 

reconstruction, but does move correlated events closer to the kaon mass in a pref­

erential manner to that of uncorrelated background. The distribution of Fig. 8.26 

shows the effect of the three body reconstruction on valid stage 9 events passing 

stub reconstruction but not yet restricted by cuts imposed on angular correlations.
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(a) Three body reconstruction of the (b) Three body reconstruction of the
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FIG. 8.26: Reconstruction of the invariant mass using two muon tracks and one
electron track with inferred momenta recovered by transverse momentum matching and 
collinearity angles.

8.4.2 Three and Four B ody E vent Transverse M om entum

Events that are subject to invariant mass reconstruction under either a three or 

a four body final state as discussed in section 8.4.1 are also examined to determine 

the total transverse momentum of the event. The transverse momentum of the event 

is determined by summing over the measured momenta of the two muon tracks and 

the inferred momentum of the identified electron stubs. The resulting total event 

momentum is projected onto the vertex to target line in order to determine the 

transverse component of the momentum.

In this manner the total final state momentum is a sum over i final state 

particles:

(8.60)
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The collinearity angle for the momentum sum is found from the total mo­

mentum Pt  and the target to vertex vector V :

The transverse momentum

F± =  Ft  sin 0 r  

= Ft \
F r - V

2 (8 .62)

\F t \ \V \

Due to the manner in which analysis of the three body events infers the missing 

stub momentum through matching the transverse component of the fj,ji momentum 

sum to the single stub’s transverse momentum, the resulting calculation of the total 

event transverse momentum Fx is very close to zero. The cancellation is not exact 

however due to the manner in which the total event momentum sum is computed 

and the resulting vector’s collinearity with the target to vertex line recomputed.

Similarly the calculation of the four body transverse momentum is also not 

exactly zero even though it relies on the same matching method to determine the 

momentum for each of the stubs. Because the average colhnearity angle is used 

to determine the individual stub momenta, while the actual stub angle is used in 

computing the momentum sum, there is a small deviation from a zero result cor­

responding to the deviation of the electron/position trajectories from the averaged 

colhnearity angle. In the case where the electron/position pair has a zero open­

ing angle and the actual trajectories approach the average, the transverse momenta 

reduces to zero by the conservation law, but due to the recalculation of the total 

momentum sum and the resulting total coUinearity angle, this quantity is again not 

exactly zero.
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(a) Three body reconstruction of to- (b) Four body reconstruction of to­
tal transverse momentum Pj_ ta l transverse momentum Px

FIG. 8.27; Total transverse momentum P ±  as reconstructed for three body and four 
body event vertices.

The transverse momentum distributions for three and four body reconstructed 

events are shown in Fig. 8.27

8.5 Tracking and Vertex Corrections

The minimum values for the measured distance of closest approach are depen­

dent primarily on the resolution of the straw tracks. In the absence of any multiple 

scattering or other physical factors that have the abihty to modify the track slopes 

in the first and second straw drift chambers, the resulting minimum DOCA values 

and momentum resolutions for both primary tracks and partial tracking stubs would 

correspond to the details of sections 8.2 and 8.3. In the E871 experimental appara­

tus it was found that in addition to multiple scattering, track slope deflection of low 

energy tracks and stubs was present due to the small magnetic fringe field created 

by the spectrometer magnets. This deflection is calculated as a correction to both
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the track slopes and resulting vertex DOCA values.

8.5.1 M agnetic fringe field deflection

Charged particles emerging from the downstream window of the decay volume 

are subject to the magnetic fringe field of the 96D4G/D02 analyzing magnet. De­

flection of the particle trajectories is influenced by the magnetic field and can result 

in significant uncertainty in the vertices reconstructed by low transverse momentum 

tracks. This deflection is of particular concern in the reconstruction of partial track­

ing stubs and association of such stubs with primary vertices reconstructed from 

high momentum muon track pairs.

The magnetic field is assumed to be uniform and static from which the relation 

for the radius of curvature a, and transverse momentum of the particle can be related 

by [45]

cp± =  eBa  (8.63)

Since the particles are of unit magnetic charge the relation can be express as

, , p±{MeV/c)
a(cm) — —  — TTT,--------r (8.d4)3.0 X lQ~^B{gauss)

The actual angular deflection experienced by a particle traversing some distance l \ z

can then be expressed in terms of the incident angle a  as;

1 . _i /  A.ZA a  = -  sm
2  \aco8{a) J
1 . . / 3  X lQ -^ B A z \

=  -  sm -----------T—r—
2 \  P±  cos(a) )

(8.65)
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The deflection of the particle in the transverse direction can be expressed as

A x  — A z
f  1 . / 3  X l^ - ^ B A z

tan  a  — tan  a  — -  sin -----------r-r—
V 2 \  P i cos{a) ^

(8.66)

The fringe field upstream of the 96D40/D02 analyzing magnet was not mapped 

in detail, but was found to average 15 G in the area near the decay tank window 

and the first set of straw drift chambers. Due to the track and stub reconstruction 

methods, the uncertainty in track or stub slope between SDCl and SDC2 is most 

sensitive to deflections in the first layer of straw tubes in SDC2. The z-axis path 

length between the front window of the decay volume and the sensitive layer of SDC2 

is measured to be 129.1 cm. The maximum incident angle for which a particle can 

be successfully accepted by the straw drift chambers is 49.5°, although the angular 

distribution of low energy electrons is peaked towards the beam axis, resulting a 

smaller mean incident angle. The resulting mean value for low energy electron 

deflection is calculated using an incident lOOMeV electron in the 15 G fringe field. 

In this manner it is determined that the mean transverse deviation at SDC2 is given 

by:

Ar(pjL, B) =  Ax{100MeV, 15Guass) = 0.375cm (8.67)

This average deflection of 3.75mm corresponds to one and a half times the radius of 

the individual straw tubes. The resulting deflection thus has the effect of smearing 

the low energy trajectories by an average of one channel. The momentum depen­

dence of this deflection is shown in Fig. 8.28 for the 15 G field. For tracks with 

steep incident angles the deflection distance Aa; is calculated from the series of 

curves shown in Fig. 8.29(a). Similarly the deflection contours of Fig. 8.29(b) show 

the effects of magnetic fringe fields in excess of the stated 15 G field.
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FIG. 8.28: Dependence of low energy electron deflection in the magnetic fringe field with 
particle momentum.

The effect of the deflection, while small at the SDC2 measuring planes, is mag­

nified during the vertex reconstruction and DOCA calculation by the z-axis distance 

that the true vertex position is from the front window of the decay tank. The geom­

etry of this amplification is shown in Fig. 8.30. From the diagram it is clear that the 

distance Ax' corresponding to the distance by which the deflected track approaches 

the true reconstructed vertex at the vertex z-position can be expressed as:

Ax' =  Ax- (8.68)

For the nominal 3.75mm deflection discussed above the maximum error induced 

in the track to vertex DOCA can be found by considering a vertex position at the 

upstream limit of the fiducial volume of the decay tank. At a vertex 10m upstream of 

the front vacuum window the resulting deflection becomes 2,90cm. This deflection 

becomes the basis for the analysis cut on reconstruction DOCA to associate low 

energy electron/ positron stub pairs with the primary ii^ jjr  reconstructed vertex.

In addition to being used to compute the limits on the associated DOCA values,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



223

10

a

<i

400 500100 200 300
Electron Momentum (MeV)

(a) Dependence of low energy electron deflection on incident track angle 
and particle momenta
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FIG. 8.29; Dependence of low energy electron deflection in the magnetic fringe field with 
incident track slope shown by the curves in Fig. 8.29(a) and the dependence on the field 
strength shown in Fig. 8.29(b)
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FIG. 8.30: Geometry of low energy electron deflection in the magnetic fringe field for­
ward of 96D40/D02 with reconstruction to the primary vertex and associated increase 
in DOCA values
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FIG. 8.31: Low energy electron/positron pairs experience in-bend/out-bend deflections 
in the magnetic fringe field leading to increased opening angle between tracks stubs

the magnetic fringe field serves to increase the opening angle between the low energy 

electron/positron pairs. Due to the opposite polarity of the particles one of the 

pair receives an in-bend modification to its trajectory while the other receives an 

out-bend modification. This situation is shown schematically in Fig. 8.31. Since 

the low energy electron/positron pairs exhibit near symmetry in their momentum 

distributions it is possible to calculate the magnitude of the effect. For a pair of 

100 MeV particles in the 15 G field it is calculated that the angular deflection in 

each trajectory will be A a  =  0.166°. Due to the polarity differences between the 

particles, the in-bend/out-bend nature of the pair splitting results in a total increase 

in angular separation of 2Aa =  0.332°. The track splitting in the fringe field has the 

effect of increasing low energy stub pair detection in SDC2. The detection of these 

pairs then allows for the determination of the secondary decay plane and subsequent 

correlations between primary and secondary planes.
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Production Analysis and Cuts

The production analysis of the //■̂ //“ e"''e~data incorporated the building of 

event ntuples from the E871 Pass 3 //// data strip. Data ntuples were built forming 

both a —>■ data set and a, data set with no event overlap

between the two streams. Each data set was then filtered using a set of tracking 

and particle identification cuts to determine final event quality.

The ordering, resultant filtering, acceptances and efficiencies were determined 

for each cut or associated group of cuts and applied to the data sets. These cuts 

and results are detailed in sections 9.1 to 9.5

9.1 /i/i Vertex Cuts

The first set of cuts applied to the production data were designed to identify 

the two primary muon tracks for each event. The cuts were designed to produce 

a high signal to noise ratio when extracting the invariant mass peak

from the data stream while maintaining a high efficiency and acceptance to both 

the and —>■ data streams.

The cuts are divided into vertex, track quality and reconstruction groups. The

226
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track and vertex quality cuts were applied to both data streams in an identical 

fashion to preserve the similar acceptances and efficiencies in relation to track res­

olutions and acceptance regions. Cuts on the event reconstruction parameters were 

set separately for the and data in accordance with

the differing final state profiles and kinematics.

9.1.1 Prim ary Vertex Fiducial Volume Cut

Each event vertex was constrained to occur within the primary decay volume. 

The event vertex was further constrained to a position within the neutral beam 

profile as defined by the sohd angle subtended along the beam axis as hmited by the 

upstream coffimators. A cut was placed upon the value of 14 and of Vy as defined 

by:

y    ^vtx ^target
^vtx ^target

Y  — Vtarget 2^

^vtx ^target

The angular deviation in the X direction was limited such that 14 < ±2.7mrad and 

the angular deviation of the vertex in the Y direction was set to I4  < ilO.Omrad.

The Z-axis position 14 of the vertex was limited to prevent acceptance of events 

that interacted either off of the upstream decay window or with the upstream edges 

of the decay tank itself. This upstream cut reduced the contamination of the signal 

data with events arising from Kg decays, where the Kg component of the neutral 

beam arises from the kaon regeneration effect of the beam passing through the 

upstream window. Additionally this cut removed from the data set a number of 

A decay chains arising from the interaction of the beam halo with the steel walls
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Vertex Parameter Cut (FT) Cut (QT)
±2.7 mrad ±2.7 mrad

±10.0 mrad ±10.0 mrad
K > 9.55 meters > 9.55 meters

< 20.6 meters < 20.6 meters

TABLE 9.1; Vertex position cuts for FT and QT determined vertices.

of the decay tank. The down stream limit of the Z coordinate was set to reduce 

contamination of the data set from semi-leptonic decays with large angle multiple 

scatters in the front window of the decay tank.

The limits on the Z coordinate of the decay vertex were set at 9.55m < Vz < 

20.6m. These cuts axe shown on the vertex distributions in Fig. 9.1 These cuts were 

performed for event vertices determined by both the FT and QT fitting routines. 

These values are summarized in Table 9.1. These cuts were applied to both the 

—>■ and data.

9.1.2 M uon Track M om entum  Cut

The momentum range of each primary muon track was limited by high and low 

cut values. These momentum thresholds were implemented to address inefficiencies 

in the particle identification code arising from low statistics at both ends of the 

measurable momentum spectrum. The low momentum threshold of 1.05 GeV/c 

was required to force muon id triggering in the muon hodoscope at detector planes 

MXO/MYO which were located at the 1.0 GeV/c momentum gap in the range finder. 

T his cut of 1.05 GeV also increased the efiiciency of muon/pion differentiation by 

reducing the probability that the hadronic shower from a pion converting in the 

lead glass array would punch through into the range stack, leaving an ambiguous 

momentum gap stopping point for the 15% momentum match criteria imposed by
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FIG. 9.1: Vertex Distributions and Fiducial Volume Cuts.
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Track Momentum Cut (FT) Cut (QT)

P.^
> 1.05 GeV/c 
< 6.50 GeV/c

> 1.05 GeV/c 
< 6.50 GeV/c

TABLE 9.2: Vertex position cuts for FT and QT determined vertices, 

the range finder.

The upper limit on the muon track momentum was set at 6.5 GeV/c in order 

to maintain a high, measured efficiency for muon identification in the rear detector 

planes of the muon range finder. This cut also reduced the number of events in which 

a muon track could trigger a valid hit in the Cerenkov counter, thereby resulting 

in particle id trigger ambiguities associated with electron/muon identification above 

the 6.357 GeV/c Cerenkov threshold in hydrogen.

The momentum cuts were placed separately for tracks fitted using the FT 

algorithm and for those fitted with the QT algorithm. These cut values are listed 

in Table 9.2 and were applied to both the iF£ —>■ /r+/r~ and data

sets.

9.1.3 M uon Track Cut

Each of the fitting algorithms used a different method to identify and fit primary 

tracks. Because each fitter had independent methods of determining the tracks 

trajectories and momentum, both were utilized in determining the overall track 

quality for a given event. Both the FT and QT fitting routines returned a figure 

of merit representing the deviation of the detector hit patterns from the determined 

track trajectory as it was swum through the measured magnetic fields of DOl and 

D02 (FT) or from the forward/rear segment matched track parameters (QT).

The track returned by the FT fitter was obtained through matrix inversion 

and the resulting sum over the covariance (error) matrix Efj and the differences be-

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



231

Track Momentum Cut (FT) Cut (QT)
Track 25 35

TABLE 9.3: Muon track cuts for FT and QT determined primary muon tracks, 

tween the actual hit positions Xi and the calculated hit positions x[ in each chamber.

x I t  =  X ]  “  ^'i)) i ^ i j ) -  4 ) )  (9-3)
ij

The track returned by the QT fitter was obtained by varying the upstream 

and down stream momentum and track slope parameters in an iterative matching 

procedure. A value was obtained for both the x and y views of a track as:

S v V  ,

\ ( r s y j  \<^50yJ

The covariances {asp, crsê jCrsy, <̂56y} were set as the RMS deviations found from 

Monte Carlo. The total track X qt is a sum of x l  and x l  per degree of freedom.

High values of the represent muons which did not conform well to the fitted 

tracks. This indicates either poor track determination, track ambiguities, acciden­

tal hits, track sharing or pion decay in flight. All these factors can contribute to 

background. The value of x^ is chosen to minimize the contribution of background 

noise to less than 1% by comparing Monte Carlo to data. For the FT fitter the 

value of was chosen at 25 while for QT the value was set at 35. These values are 

summarized in Table 9.3. These cuts were applied to events in both the 

and > /r+/x~e+e~ data streams.
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Event Vertex Cut (FT) Cut (QT)
Vertex x^ 30 15

TABLE 9.4; Primary event vertex cuts for FT and QT determined primary muon 
tracks.

9.1.4 fifi Vertex D oca and Cut

The FT and QT fitters return figures of merit for the fit to the vertex 

parameters similar to that returned for for the track fitting procedure. The 

FT fitter forms the vertex through matrix inversion over the individual track 

parameters oij consisting of the track x and y positions, x and y  direction cosines 

and one over the track momentum at the vacuum window. The is formed as a 

sum over the error matrix Efj:

x L „  =  E  (“ i -  “ D ( ® 5 ) ( “ i  -  4 )  {9-6)
ij

The QT fitter forms the vertex fi'om the actual vertex DOCA, V^tx, and the 

standard errors in the left and right direction angles.

7)2
_________  (9  7 )

(znci -  z.tx) {al + a l)   ̂ ^

The cut values for the FT and QT vertices were set at values of 30 and 15, 

respectively corresponding to the 98% efficiency level for each fitter. The cut values 

are summarized in Table 9.4. These cuts were apphed to events in both the AT° —> 

and AT£ —̂ iJ&iJL^e^e~ data streams.
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9.1.5 Knn Invariant M ass Cut

The signal region for i^£ —̂ events was determined by measuring the

momentum resolution of the FT and QT fitters and then setting a window around 

the known mass of the kaon, 497.6 MeV/c^. The limits on mass window were set at 

These limits result in an upper end efficiency loss of 0.087% and lower 

end efficiency loss of 0.2% resulting in a total signal region efficiency of 99.7%.

The mass resolution of the FT fitter was found to be 1.26 MeV/c^ for events in 

the jxiJi data stream. Similarly the QT fitter had a mass resolution of 1.43 MeV/c^ 

for /i/x events. The upper and lower limits on the reconstructed invariant mass 

set such that:

493.5 M eV/c^ <M k  „ <  502.0 M eVlc^ (FT)
(9.8)

493.0 M eV/c^ < 502.5 M eV/c^ (QT)

This mass window was applied only to events in the —>• data stream.

The summary of the invariant mass window cuts and fitter resolutions is shown in 

Table 9.5. The distributions in Fig. 9.2 show the resulting mass windows and fits 

for to the distributions to determine the mass resolution of each fitter.

Determination of the mass window for iF£ was determined in a

similar fashion to that of if£  —> /x+/x“ using two body, three body and four body 

invariant mass reconstructions. The resulting distributions and cuts are discussed 

in section 9.5.1.

9.1.6 Transverse M om entum  Cut

The transverse momentum of each event as determined by the momentum sum 

of the two muon tracks and their collinearity angle with respect to the target to beam 

axis was determined. Total transverse momentum for an event was used as a measure
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Transverse M omentum  Pt  (FT)
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FIG. 9.2: Invariant mass window and transverse momentum cuts for the FT and QT 
fitters with fits determining the mass resolution of each distribution.
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Mass Resolution FT QT
O'Mk 1.26 MeV/c^ 1.43 MeV/c^

Invariant Mass Cut (FT) Cut (QT)

M k , . > 493.5 MeV/c^ > 493.0 M eV/c
M k „ < 502.0 MeV/c^ < 502.5 MeV/c^

TABLE 9.5: Mass resolutions and —*• invariant mass window cuts using the
FT and QT fitting algorithms.

Transverse Momentum Cut (FT) Cut (QT)
Pt < 0.010 GeV/c < 0.010 GeV/c

TABLE 9.6; Limits on total event transverse momentum for —>■ jj&ii .

of the presence of any unobserved or unaccounted final state particles associated 

with the event. Measures of pi near zero represent events with correct momentum 

conservation and not more than two final state particles in the case of iL£ —> pT 

and not more than two final state particles in the case of —> pL^pTe^e~. An 

upper limit of 10 MeV/c was imposed upon the pt of each event in the A£ -> pi^pT 

data stream for events fit with both the FT and QT routines as shown in Table 9.6.

The cuts on the invariant mass window for and the limit on pt were

combined to form a two-dimensional signal box in and M k - This signal box is 

shown in Fig. 9.3.

For the —>• p&pTe^e~ data stream a similar cut on transverse momentum

was performed using two body, three body and four body event reconstruction 

procedures. These cuts are detailed in section 9.5.2
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FIG. 9.3: signal box in pf and invariant mass

9.2 Muon Particle Id Cuts

The standard E871 particle identification routines combine the selection criteria 

in the Cerenkov counter, Lead Glass Array, Muon Hodoscope, Muon Range finder 

and Trigger scintillators to perform a track associated evaluation of particle type for 

the given track. For each particle type an identification label of Good, Possible, or 

False is assigned. For the analysis of the —>■ and —>■ iJtFyre'^e~ data

streams the Electron and M uon identification labels were examined to determine 

event type.

Any primary track receiving an Electron ID rating of Good was vetoed to 

remove contamination of the data stream from ATes events. This electron veto did 

not affect K% —>• acceptance due to the low invariant mass reconstruction

of lie primary track events as shown in Fig. 4.2(b). Primary tracks with an Electron  

ID rating of Possible were not vetoed if the track was also flagged with a Possible 

or Good, M uon ID rating. This preserved acceptance to muon tracks above the 

Cerenkov threshold in hydrogen, as well as those muons with a lead glass E /P  value 

close to one placing them above the pion/electron contour cut as shown in Fig. 9.4.
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FIG. 9.4: Lead glass array electron/pion separation contour

Tracks with a M uon ID rating of Good were retained and assumed to be valid 

muons. Tracks with a M uon ID rating of Possible were retained and combined with 

the TSC ID routines before being assumed as a valid muon.

These particle identification labels were applied to both the and

K'l —> data streams.
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9.3 Partial Tracking Id Cuts

For events in the data stream additional analysis cuts were

performed after the general m i tracking cuts, to identify the number of partial 

tracking stubs related to each event. Potential partial tracking stubs identified 

through the search method described in section 8.3.1 were evaluated first for their 

relevance to the primary event vertex through a series of basic cuts related to overall 

event quahty and stub DOCA values.

These cuts were intended to reduce background arising from accidentals in the 

forward straw chambers while preserving a high acceptance to the primary decay.

9.3.1 Segment A m biguity Cut

Events with large numbers of in time hit clusters in SDC1/SDC2 cause recon­

struction of large numbers of possible stub segments that need to be considered. 

Events with more than 1024 segment ambiguities are automatically cut from the 

analysis based on the failure to reconstruct all possible solutions. These events are 

considered “noisy” and contribute only to the signal background. For events with 

less than 1024 segment ambiguities the approximate distance of closest approach 

is calculated for all solutions and the segments sorted according to the resulting 

distance score.

The best ten ambiguity solutions are then considered when determining a suc­

cessful segment to vertex match. The successful vertex match probability for signal 

events drops off sharply as a function of the number of stub solutions found. The 

percentage of events with increasing solution ambiguities is shown in Fig. 9.5.

The limit on the total number of stubs solutions found per event was set at 4 to 

reduce contamination in the data stream from ATes and pile up as well as noise 

from accidentals. The event cut at 4 stubs corresponded to a 94.6% acceptance
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FIG. 9.5: Fraction of accepted e+e events as a function of partial tracking
stub solutions.

efficiency for —> iX^fi e^e .

9.3.2 Single Stub Vertex DOCA

Each identified stub was analyzed to determine the distance of closest approach 

between it and the primary vertex as reconstructed and limited in section 9.1. The 

DOCA value and resulting DOCA coordinates are cut on in the same manner as for 

the primary vertex point. Instead of a reduced the actual value of the DOCA 

in meters is used as the figure of merit for the cut. The distribution is fit to a 

Lorentzian peak with a exponential background tail. The DOCA distribution is 

shown if Fig. 9.6 along with the resulting fit.

The distribution is found to peak at a centroid of 2.11cm and have a width 

r  =  1.79cm. The cut on the vertex DOCA value is set at 4F corresponding to a 

95.9% efficiency for the signal region.
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Stub to  Vertex DOCA cut

FIG. 9.6: Stub to vertex DOCA cut at 4F — 9.27cm.

9.3.3 Stub To Stub DOCA

Events that are identified as having more than one stub candidate are analyzed 

in a pairwise fashion to determine the existence of a secondary vertex. The distance 

of closest approach as well as secondary vertex position is calculated for each pair 

of stubs. The DOCA between the stubs is used as the primary figure of merit for 

the secondary vertex. Events with intersecting stub pairs are ignored in order to 

properly fit the non-trial solution to the secondary vertex DOCA. The resulting 

distribution is fit to a Lorentzian peak on top of a flat background.

The width of the distribution is found to be F =  1.805cm, consistent with the 

width found for the stub to primary vertex in section 9.3.2. The centroid of the 

distribution is treated as zero owing to the weighting of events with intersecting 

stubs. An upper limit is placed upon the stub to stub distance of closest approach 

of 4F =  7.22cm corresponding to a 95.9% efiiciency for the signal region. This cut
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FIG. 9.7: Stub to Stub DOCA cut at 4F =  7.22cm. 

level is shown in Fig. 9.7.

9.3.4 Prim ary/Secondary Vertex Separation

For events with both a valid primary and secondary vertex the separation be­

tween the position of each was computed. The distance between the points was 

calculated in the usual fashion:

(9.9)

The resulting distribution of the vertex separation is shown in Fig. 9.8. The 

distribution is fit to a Lorentzian peak on top of an exponential background. Signal 

peak was found at a centroid value of 1.71cm and had a width F =  2.22cm. The 

cut on the vertex DOCA value is set at 4F — 10.59cm corresponding to a 95.9%
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FIG. 9.8: Primary to secondary vertex separation cut at 4F =  10.59cm.

efficiency for the signal region.

A summary of the all the vertex and DOCA cuts made during stub identification 

is shown in Table 9.7.

Value Cut Level Efficiency
Max Segments < 1024 - -

Max Stubs < 4 - 94.6%
Stub to Vertex DOCA < 9.27 cm 4F 95.9%
Stub to Stub DOCA < 7.22 cm 4F 95.9%

Primary to Secondary Vertex Dist. < 10.59 cm 4F 95.9%

TABLE 9.7: Stub identification cuts summary
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Secondary Vertex Parameter Cut (QT)
±2.7 mrad
±10.0 mrad

V, > 9.55 meters
14 < 20.6 meters

TABLE 9.8: Secondary vertex position fiducial volume cuts based on pair-wise stub 
reconstruction.

9.3.5 Secondary Vertex Fiducial Volume Cut

Limits were placed upon the position of the secondary vertex in the same man­

ner as the primary vertex limits described in section 9.1.1. These fiducial volume 

cuts were designed to remove correlated stub pairs arising from reactions of the 

beam halo with the steel decay tank walls or with the upstream and down stream 

windows. These cuts are shown in Table 9.8

9.4 Stub Correlation Cuts

The basic vertex and DOCA cuts described in section 9.3 were designed to 

separate out track stubs and stubs pairs from unrelated background noise 

based upon the spatial proximity of the stubs to the identified primary event decay 

point. The events from the decay mode should in addition exhibit

a high degree of angular correlation to the well defined decay planes as well as a 

tight opening angle between the pair.

Placing cuts on these angular correlations helps to eliminate contamination of 

the data stream from background source including large angle multiple scattering 

and pair production in the front window of the decay tank. The angular correlations 

also reduce contamination of the data from Kes and pileup events by forcing 

the decay plane alignment of paired particles.
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FIG. 9.9: Angle between primary decay plane and single electron stub with cut at 4F 
9.472°

9.4.1 Single Stub To Prim ary Decay Plane Cut

The angle at which a single stub emerges from the primary decay plane should 

be small for the extremely low energy electrons/ positrons associated with the —>■ 

decay as described in section 8.3.2. The angular correlation between a 

single —> ix^n~e^e~ electron and the primary decay plane as shown in Fig. 9.9. 

The distribution is fit to a Lorentzian peak centered at 0° plus a small constant 

offset. The width of the distribution was found to be F =  2.368°. The correlation 

cut was set at ±4F corresponding to a 92.0% efficiency.

9.4.2 Stub To Stub Opening Angle Cut

The opening angle between the electron and positron trajectories should be 

small owing to  the various formfactors, low total momentum of the pair, and the high
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FIG. 9.10: Opening angle between e /e'*' trajectories with cut at 4F =  3.68°.

relativistic boost from the CM frame to the lab reference frame. By placing an upper 

limit on the allowed angular separation of the stub trajectories, the events arising 

from iir£ —S' fjb^jjre^e~ can be separated from those arising from pair production on 

the front window of the decay tank, interactions with the residual gas in the decay 

tank, as well as from events with large multiple scatters forward of SDC2.

The distribution of stub opening angles for K'l was fit to a

Lorentzian peak and exponential tail. The peak’s centroid was found at 0.4374° with 

a width r  — 0.8115°. The cut on the opening angle was set 4F above the centroid 

at 3.6834° to provide a 95.9% efiiciency for the signal peak. The distribution and 

cut are shown in Fig. 9.10.
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9.4.3 Secondary To Prim ary Decay Plane Cut

The angle between the primary and secondary decay planes was computed 

and checked to look for the high correlation described by the allowed geometries 

outlined in section 8.3.3 and shown in Fig. 8.17. The computed correlation coefficient 

between the decay planes was used to construct the exponential distribution shown 

in Fig. 9.11. The distribution is fit to a double exponential for the high correlation 

region above a coefficient of 0.6. The primary exponential corresponding to the sharp 

correlation is found to have a slope I / 7  =  132.6. The cut on the coefficient is placed 

5 7  below the zero angle correlation value. The resulting value of the cut was set at 

0.962 corresponding to a plane to plane angle (  =  15.7°. This cut preserves 99.3% 

of the primary peak but is considered a tight cut due to its elimination of 55% of 

the secondary tail. This excluded region is thought not to contribute at substantial 

levels due to the other angular cuts and the low spectrometer acceptance for the 

decay geometry of Fig. 8.17(b).

9.5 Event Reconstruction Cuts

In section 9.1.5 the cuts on event reconstruction were determined for 

events by placing limits on the invariant mass and transverse momentum 

of the track pair. Cuts on event reconstruction for —> gTgre^e~  were

determined in a similar fashion by reconstructing the invariant mass and transverse 

momentum using the pair’s tracks, a three body reconstruction using the 

pair’s tracks plus a single electron stub, or using a full four body reconstruction 

encompassing both muon tracks and both electron stubs. The resulting set of cuts 

provide increasingly constrained signal regions with better signal to noise resolutions.
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FIG. 9.11: Primary to Secondary Decay Plane Angle Cut

9,5.1 Invariant M ass Reconstruction Cuts

Event reconstruction for —> i i^ ire ^ e ~  is performed in three stages of in­

creasing invariant mass precision designed to separate background events from the 

data sample. All event candidates are reconstructed using a 2-

body and then a 3-body invariant mass. Events with more than one identified partial 

tracking stub are further reconstructed using a 4-body invariant mass.

Two B ody Invariant M ass R econstruction Cut

Events in the -h> data stream are first reconstructed using the

standard two body reconstruction of under the jU/i hypothesis. This reconstruc­

tion has the same resolution as for the K i  —>■ invariant mass reconstruction. 

Reconstructed masses are required to fall above 463.5 MeV/c^ to prevent contamina­

tion from double pion misidentification from the decays of the form —s- 7r+7r” -f X.
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FIG. 9.12: Invariant mass cuts for two body reconstruction of iF£ e+e under
a hypothesis for the primary tracks.

The upper limit on the two body invariant mass was set at 502.5 MeV/c^ 

corresponding to the upper edge of the RT® —> signal box. This was done to

preserve similar acceptances for the two regions. Events in excess of 502.5 MeV/c^ 

were kept for background subtraction calculations up to 510.0 MeV/c^.

The two-body reconstruction is shown in Fig. 9.12 with the upper and lower 

limits on invariant mass.

Three B ody Invariant M ass R econstruction Cut

For events with at least one electron track stub the three body invariant mass 

was calculated as The distribution was skewed towards Mk  with a large

low mass tail. Above the kaon mass the distribution should have a sharp drop off 

with tail extending out to 520 MeV/c^. High and low mass cuts were placed on the 

3-body reconstruction in a manner similar to section 9.5.1. To limit contamination
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FIG. 9.13: Invariant mass cuts for three body reconstruction of if£  e+e under
a plus electron stub hypothesis.

from particle misidentification a lower limit mass cut was again placed at 463.5 

MeV/c^. The upper limit on the 3-body invariant mass was set at 520 MeV/ c? 

to reduce contamination from Kez and pileup which have high probabilities of 

reconstructing under the three body hypothesis to a mass greater than 520 MeV/c^. 

This cut also limits possible contamination from interactions off the decay tank walls 

and upstream window of the form 77 —> 7r'*'7r~ 7  by cutting 27 MeV below the 77 mass.

These cuts are shown in Fig. 9.13 superimposed on the raw, uncut 3-body 

reconstruction distribution.

Four B ody Invariant M ass R econstruction  Cut

Events in the data stream that had two correlated e'*'e“ stubs

were reconstructed using the four body invariant mass prescription as detailed in 

section 8.4.1. The mass window on the reconstruction was based on the Monte
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FIG. 9.14: Invariant mass cuts for fail four body reconstruction of iT° —̂ e ^ e  .
Data shown includes cut on number of track stubs > = 2  and the two body >
463.5 MeV/c2.

Carlo prediction of a roughly Gaussian peak at the kaon mass of 497.67 MeV/c^ 

with a predicted width given by c7^=4.8MeV/c^. The lower and upper bounds on 

the window were set at 3cr corresponding to 483.3 MeV/c^ and 512.1 MeV/c^.

The raw distribution of the resulting invariant mass reconstructed for the —>

data stream is shown in Fig. 9.14 along with the placement of the jijiee 

mass window. Fig. 9.15 shows the placement of the same mass window but after 

application of a basic set of “rough” cuts on the events including stub to vertex 

DOCA and total transverse momentum.

9.5.2 Transverse m om entum  Cuts

The transverse momentum of each > iX^n~e^e~ event was calculated in an 

N-body manner corresponding to the highest available invariant mass reconstruc-
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FIG. 9.15: if£  -4̂  e'^e invariant mass reconstruction using “rough” cuts on stub 
DOCA and total transverse momentum.

tion. The two body pt from each event was used to explicitly veto on the p ' p

signal box as described in section 9.1.6. The three body transverse momentum was 

limited to 10 MeV/c for three body final state events. The four body transverse mo­

mentum of the events was similarly limited to 10 MeV/c to conform to the manner 

by which the selection was performed.

9.6 Summary of Production A nalysis Cuts

A summary of all cuts placed on the —> pi^pTe^e^ data stream is listed in 

Table 9.9. Prom these cuts the distribution for identified events

in the signal box extending in the four body reconstructed invarient mass from 

483.3 MeV/c^ to 512.1 MeV/c^ and in pt below 10 MeV/c was determined. This 

distribution is discussed fully in Chapter 10.
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Cut Parameter Value Notes
14 ±2.7mrad
K ilO.Omrad

9.55—20.6meters
K ±0.0027mrad

K iO.OlOOmrad
K 9.55—20.6meters

P ,- 1.05 -  6.5GeV/c
Xlk {FT) 25
Xlk {QT) 35
x l t .  {FT) 30
x L  {QT) 15

M k , ,  {FT) 493.5 - K l  -  K , -
502.0MeV/c^ signal box 

veto
Mk„  {QT) 493.0 - K l  ^

502.5MeV/c^ signal box 
veto

Ft lOMeV/c F l
signal box 

veto
11 — ID  {Left/R ight) Good/Golden

Total Segments 1024
Total Stubs 4

Stub to Vertex DOCA 9.27cm
Vertex to Vertex Dist. 10.59cm
Stub to Decay Plane /. 9.472°

Stub to Stub Opening Z 3.68°
Primary to Secondary Plane Z 15.8°

2-Body M k „  (Low) 463.5MeV/c^ Pion Mis-ID
background

2-Body Mk , ,  (High) 502.5MeV/c^
4-Body M k,„ ,  (Low) 483.3MeV/c^
4-Body M k , , , ,  (High) 512.1MeV/c^

4-Body Pt lOMeV/c

TABLE 9.9: Listing of cuts performed on the iL£ 
the final signal distribution shown in Fig.10.3.

data stream to obtain
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Norm alization

Normalization of the data set was performed by comparing

the observed number of events in the —>• signal peak to the observed

number of events in the signal peak. The event ratio was multiplied

by the world average for the branching ration B(A° —> and by the ratio

of the total acceptances for to A£ —> yields the branching

faction for > jj^jjre^e~. The efficiencies for Level 1 and Level 3 triggers, muon 

identification, tracking and vertex reconstruction, and stub finding were included as 

ratios for the two data streams.

^  I a-ID  I ^  I Urk I I 1 1  pStubs I
C/iyuee /  X^f i f i ee /  \^ ii( ie e  /

(10.1)

The efficiencies for the trigger, muon identification, primary muon tracking, and pri­

mary vertex reconstruction are based upon a similar kinematic event profile and the 

same set of cut values for the and if£  —> data. The ratios of

these efficiencies are therefore treated as unity for the purpose of the normalization.

253
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The efficiency for the stub reconstruction was computed from the Monte Carlo using 

the known distributions and final cut values.

For the purpose of this normalization the stub efficiency was calculated as 

part of the effective acceptance ratio due to correlations between the geometric 

acceptance A^f^ee and The error on was however calculated independently 

by consideration of the individual cut efficiencies. For the purpose of systematic 

error propagation is treated as:

e j i  =  0.766 ±  0.022 (10.2)

10.1 K̂r —> D ata Sample

The analysis of the E871 data using the cuts described in section 9.1 yielded 

the signal peaks for the FT and QT fitters shown in Fig. 10.1 and Fig. 10.2. The 

peaks were fit to a Gaussian distribution plus a decaying exponential background 

tail. The data were integrated between 493.5 MeV/c^ and 502.0 MeV/c^ to obtain 

a total of 6069 events in the signal region for under FT reconstruction.

Using QT reconstruction the signal region resulted in 6133 events.

The background in the signal region was subtracted using the fit to the decaying 

exponential as calculated separately for the FT and the QT distributions. The 

data were binned at intervals of Aa; =  0.25 MeV/c^ resulting in the integrated 

backgrounds:

/Jo.

0.5020
(gi06.o-208.2x̂  dz =  412.43 events (FT) (10.3)

0.4935
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Method Signal Background Total
FT 5657 ±  75 412.43±20.29 6069
QT 5714 ±  76 419.42 ±20.47 6133

Average 5685 ±  75 415.5 ±  20.38 6101

TABLE 10.1: signal and background events as observed in the E871 data
set and reconstructed under FT and QT fitting.

/>0.5020

/  (
./0.4935

,102.5-201.4a; )d x  = 419.42 events (QT) (10.4)

The actual number of K'l —> events is obtained from a subtraction of

the background calculation from the total events found within the signal region. 

Table 10.1 summarizes the signal and background for the K l  —> data sample.

10.2 Kl f i ^ f i  e ^ e Data Sample

The analysis of the E871 data using the cuts described in section 9.6 yielded 

the signal peak shown in Fig.10.3. The central peak was fit to a Gaussian plus a 

fiat background as indicated by the sidebands below 483.3 MeV/c^ and above 512.1 

MeV^, in a fashion similar to that used for the K l  data. The distribution

was integrated over the signal box region to obtain the total number of number of 

events in the K l  ijd'n~e^e~ signal region.

Background events arising from pion misidentification dominates the distribu­

tion as discussed in section 4.4.2 and was manifest in the residual distribution seen 

below 483.3 MeV/c^. This background was projected under the signal region using 

a 1.03 MeV/c^ bin size and integrated to determine the level of contamination due 

to background. The contribution to the signal region arising from background was 

found to be 57.56 ±7.6  events. By moving the low side of the 2-body invariant mass
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FIG. 10.1: if£  -> jJL^n~ invariant peak showing 6069 events in the signal region consisting 
of 5657 ±  75 signal events on an exponential background of 412 ±  20 events.
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FIG. 10.2: invariant peak showing 6133 events in the signal region consisting
of 5714 ±  76 signal events on an exponential background of 419 ±  20 events.
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FIG. 10.3: e+e invariant peak showing 171 events in the signal region
composed of 119 signal and 52 background events

reconstruction window from 463.5 MeV/c^ to 470.0 MeV/c^ the contamination of 

the signal region was reduced to 51.75 ±  7.2 events.

After proper background subtraction and error analysis as described in section 

11.2.1 the > iJL^ire^e~ peak was computed to contain 119.25 ±  17.31 events 

satisfying the strongest signal criteria.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



259

10.3 Acceptances

The ratio of acceptances Ann/A^^ee including the stub finder efficiency 

was calculated through Monte Carlo simulation of 9.4 x 10® K'l —> events

and 1.3 x 10  ̂ K% —> fj,^n~e'^e~ events. To prevent correlated errors between the 

geometric acceptance and the stub finder efficiency, factors and were

combined to provide the effective geometric efficiency for under

the analysis conditions.

(10-5)

The full set of cuts described in section 9.6 were applied to simulated data sets of 

and total events. Prom the simulated data sets the number of events in 

K l and Monte Carlo signal peaks, and iV ^^, were

counted. The ratio of the number of events in each of the resulting signal regions to 

the total number of simulated events in each data stream was computed to obtain 

the relative acceptance ratio:

A l\jMC j\jTotal
-‘V/xee flDfi')

A! AfMC MTotal 1 '
fjbfjLee fxfx

The acceptance ratio Af^nfA'i f̂^ee was calculated separately for each of the apph- 

cable form factors discussed in chapter 3. The acceptance ratios as well as individual 

geometric acceptances A^fj, and are listed in Table 10.2.

10.4 M odel Dependent Normalization

The normalization of the observed 119 —»■ pf^ijre^e~ events to the observed

5685 K'l —̂ events was computed in accordance with Eq. (10.1) using the
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Theory Afxfiee
XPT 
QCD 

Uniform {F = 1) 
VDM

1.900 X 10“ '-̂
1.900 X 10“2
1.900 X 10“^
1.900 X 10-2

1.036 X 10-3 
1.589 X 10-3 
1.224 X 10-®

18.329
1196.090

15522.876

TABLE 10.2: Acceptance Ratios for the form factor models considered in the
e+e analysis.

Theory
ix^ix e^e )

a statistical cr systematic

xPT  
QCD 

Uniform {F =  1)

2.78 X 10-® 
1.81 X 10-^ 
2.36 X 10“®

±0.406 X 10“® 
±0.265 X 10“  ̂
±0.344 X 10“®

±0.091 X 10-® 
±0.059 X 10-^ 
±0.077 X 10“®

TABLE 10.3:  ̂ pL^pL~e^e normalized branching ratio for each of the form factor
models considered in the AT£ —> iX^n~e^e~  analysis.

different acceptance ratios shown in Table 10.2 for each model. The world average 

for the branching fraction —>• jJT) — 7.25±0.16 x 10“® was used as the base­

line for the normalization. The effective branching fractions for 

computed in this manner are listed in Table 10.3 for each of the major theories 

considered in the analysis.
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R esults and Conclusions

11.1 Results

The observation of 119±17.3 fi~e'^e~ signal events in a Gaussian peak

centered at 497 MeV/ with a measured reconstruction resolution a-m =  3.0 MeV/ ĉ  

was found to match the predicted width and characteristics of the Monte Carlo sim­

ulations based upon the use of a %FT formfactor exhibiting enhancement of the high 

Hfx invariant mass region of the decay’s phase space. Background contributing to 

the signal region was removed through subtraction based on fitting of the sidebands 

of the distribution. The identified background was attributed to a combination of 

K l —*■ 7T'̂ 7r~ 7  and —> 7r+7r~e"''e~ events with double pion misidentification oc-

curing near the endpoint of the reactions resulting in a two body reconstruction of 

the invariant mass under the false ii/i hypothesis at the upper limit of 463.5 MeV/c^. 

Due to the finite resolution of the wire detectors, the reconstructions for this type 

of decay was found to extend slightly above the kinematic endpoint. The back­

ground pion misidentification was reduced by placing a 4a extension based on the 

reconstruction resolution, on the cut window placed on the lower two-body invariant

261
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mass. This procedure extended the lower limit of the region from 463.5 MeV/c^ to 

470.0 MeV/c^. The other sources of background are consistent with multi-event pile 

up of the semi-leptonic decays and with single pion misidentification. The 

contribution from pile up was found to provide a linear background as extrapolated 

from the sidebands to the central distribution. The contribution from all sources of 

background in the f j i , ~e~ signal region was calculated at the level of 52

total events in the sample.

The branching fraction for —*• ix^n~e^e~ was calculated using the observed

119 signal events normalized to a simultaneous measurement of 5685 events identified 

as Using the accepted world average for B(if£ —>■ /x+/i~)=7.25 x 10~®

the branching fraction B(iir£ —> jjL^jjre^e~) was calculated to be 2.78 ±  0.406 ±  

0.091 X 10~® under the conditions of a non-uniform form factor derived from the 

chiral perturbation theory of Goity and Zhang [23] [22] [24]. The resulting branching 

fraction is consistent with the previous world average of 2.6 ±  0.4 x 10“® to within 

less than one standard error.

In addition to the yPT  model of the —>■ 7 *7 * vertex, the Quark/QCD model 

of Ambrosio, Isidori and Portole [20], and the VDM model of Quigg and Jackson 

[46] were analyzed in relation to the acceptances of each resulting —>■ 

distribution in the E871 dectector apparatus. None of the other models considered 

with non-uniform form factors for the  ̂7 *7 * vertex was found to be consistent 

with the data. In addition, the hypothesis of a uniform distribution was tested and 

found to be incompatible with the observed experimental signal.

11.2 Errors

The errors present in the measurement of B(AT® i x ^ j j r e ^ e ~ )  were divided 

into those arising from the statistical representation of the data, and those arising
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from systematic inefficiencies of the analysis and experimental equipment.

11.2.1 Statistical Error {(Tstat)

The total statistical error in the data sample was computed by adding in quadra­

ture the contributions from the signal and the subtracted background. A systematic 

error on the background was included to account for fluctuations in the fitting and 

subtractions of the side bands. This systematic error was obtained in terms of the 

fractional error P  in the background, computed to be 16.8% from the fitting errors.

(11-1)

The resulting error on the signal was determined as:

4  =  i^Totalf +  {aBoY +  {<^Tg? (11-2)

In this manner the statistical error on the AT£ —> ix^pL^e^e~ data signal was calcu­

lated to be cr̂ êe =  ±17.31 events. This corresponded to a 14.5% statistical error 

on the signal.

In a similar manner the statistical error on the —> ̂ '^jjT data set was calcu­

lated to be =  ±83.35 events including a 5% systematic error in the background 

subtraction. This corresponded to a 1.46% statistical error on the normalization 

sample.

The calculation of the branching fraction involved the ratio of these quantities
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and as such the statistical error in the branching fraction was computed as:

I N‘̂ ( (7̂
e + e  )2  y  y y -2  I 7W-2 / V 2  I  '' ■ t-- r  J ' '  W / • ' ’• / i / ie e

* ' \ ' ^  fjbfi (Xfiee
+  X X

 ̂ fxiiee /

(11.3)

For the chiral model this results in a statistical error on the branching fraction 

(ygtat = 0.406 X 10~®.

11.2.2 System atic Error [ogy^

Due to the fact that the branching fraction depends on the ratio of the 

to —>• geometric and cut efficiencies, which equaled unity, the

systematic errors of the final branching fraction were isolated to the acceptance 

ratio This ratio is broken down into the ratio of the pure geometric

acceptances and the efficiency of all cuts related to the identification of the e'*‘e'"pair.

Afjin/A^f^ge ~  A^fj,/Anfiee X ~ (i-1-4)
^stubs

The systematic error on the geometric acceptances is taken from the —>•

analysis[41] in terms of the effects of the —+ ii^n~ cut efficiencies. In this manner

it is determined that cr^ w 0.9% for this analysis.

The systematic errors associated with the e+e“ stub cuts were determined by 

adding in quadrature the errors associated with each of the cuts listed in Table 9.9. 

The resulting total fractional systematic error was determined to be on the order of 

O'stub =  2.23%

The combined systematic error for the branching fraction was found by adding 

the systematic errors of the Monte Carlo acceptances and the e“*"e“ stub efficiencies 

in quadrature with the error on the K'l —» branching fraction. The resulting
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fractional systematic error was calculated at 3.27%. The systematic error on the 

branching fraction with a %PT form factor, was found to be;

(Jsys -  ±0.091 X 10~^ (11.5)

11.3 Conclusions

The measurement of B(iir° f j T e ~ ) has provided a self consistent mea­

sure of the long distance dispersive amplitude A ld tha t is required for extraction 

of the p parameter in the Wolfenstein formulation of the CKM matrix from the 

measurement of B(iir£ —> pApr)  as reported by the E871 collaboration[2j. This 

side-by-side measurement should reduce the systematic errors involved in the previ­

ous extraction procedure which relied upon a QED calculation of the ratio of partial 

width r(i^ ’£ —̂ p~^p^)^ry/T{K^ 7 7 ) instead of on a direct measure of the long

distance amplitude.

In addition, the measurement of the branching ratio B(iir£ —s- p'^p~e^e~) from 

the E871 data set was designed as a sensitive probe into the structure of the —> 

7 *7 * vertex and the formfactors that mediate this reaction. The unique sensitivity 

of the experimental apparatus to slight differences in the shape of the invariant mass 

distribution for  ̂ p'^p~e^e~ near the kaon mass provided a method in which 

to determine definitively the validity of competing theories regarding this A 5 =  1 

transition. The result of this measurement has been to provide strong evidence 

for the existence of a %PT formfactor that provides enhancement to the high mass 

region of the phasespace while excluding all other theories considered herein based 

on their inconsistency with the with the observed signal.

Following the results of this measurement, additional investigation into the 

presence of chiral like formfactors in the kaon system should be conducted. In
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particular, the four lepton final state of the decay should be

examined to determine the structure of the resulting phasespace. This research 

can also be extended to include other flavor changing neutral current processes in 

energy regimes where the validity of the chiral approach is likely to apply.

11.4 Collaborative Effort and Contributions

The work presented here is the result of a collaborative effort started in 1992 

and extending over the course of nearly 12 years to today. I began my work with 

the E871 collaboration in the summer of 1994 during the construction and tuning 

of the experimental apparatus. At that time I worked primarily with the Muon 

Ranger Finder system and the hydrogen Cerenkov counter in their maintenance, 

construction and tuning of the detectors and associated electronics. I continued my 

work on E871 in the winter of 1994/1995 and assisted in running data shifts during 

the 1995 run period. In 1997 I took part in the auxiliary experiment, E935, which 

was run using the E871 apparatus. During this period I extended my involvement 

with the project to include work on the lead glass array and level 1 trigger electronics.

Since the end of the E871 /E935 experimental runs I have worked on the prospect 

of measuring the decay This work has included extensive work

on developing Monte Carlo models that accurately portray the varied characteris­

tics of the decay branch under the effects of the form factors discussed previously. 

After the process of modehng the decay and determining the possibility for seeing 

at E871 my work focused on the development of analysis tools 

that could detect the unique signature of the decay. This work lead to the devel­

opment of the current partial track identification algorithms and development of 

reconstruction methods based on them. In the final phases of my graduate career I 

have analyzed the data and extracted in an unbiased fashion the results presented
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in this dissertation.

The E871 collaboration provided a unique opportunity for individuals to take 

part in every level of the experimental process, and provided valuable training and 

insight into the nature of experimental physics.

Andrew J. Norman 
January 3, 2004
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First observation of the rare decay mode —*■ [3]

New limit on muon and electron lepton number violation from 

decay. [4]

A compact beam stop for a rare kaon decay experiment. [36]
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A P P E N D IX  B

Four body phase space transforms

The variables use in the kinematic factors of decay rate as expressed in Eq. (7.18) 

for —>• are obtained through a transform of the original particle mo­

menta. For the four body decay the transformation is made according to the rela­

tions;

Pii+ — Q +  2 ( 1  + X ) P

Pe+ + ^(1 +/^)^

Pm- =  - 9 + ^ ( 1 - A ) P

P e -  =  - ^ +  ^(1
(B .l)

q - P  = Q 

^  • P '  -  0
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Prom these relations the differential volume elements are obtained as:

The phase space volume element is calculated as:

(B.2)

m  m  d?p^+d^Vu,-d^p^+(Ppf.- ...n , _ >
=  o n / f o \ s  0 0 0 0 +Pe+ +Pe- ~  P r)  B.32MK{2TTf

Pk  is introduced as the parent kaon’s momentum in order to preserve momentum 

conservation. Making the substitutions K  =  +  p^- =  P  and K ' — p^+ +  Pe- =

P' =  —P  Eq. (B.3) may be integrated as:

J pI^pV

f

(B.4)

J Pp+Pp-
A K ' \

R IO I
(B.5)

dp,

In Eq. (B.4) and (B.5) the variables and K'^ are found through the relations 

r Q =  pO  ̂+ p ° -  =  P® and K'° — p°+ +p°_ =  P'°. The full integral then becomes:

1 = j (B.6 )
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The limits of integration for A and are determined from the relations:

4 ^  (P 0 )2 '- I

i
( p / 0 ) 2 ^  I - eI ^ P  =  7 ^ 2  f  1 -  1 -  "^6 (B -8 )

In this manner the integration variables are identified in such a way that q and o' 

correspond to yi and y2 in Eq. (7.18), while P  and P' correspond to the variables 

Xi and X2-
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