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ABSTRACT

The rapid and global rise in species extinctions has prompted much research into the 
causes and consequences of biodiversity loss. In the past two decades, efforts have expanded 
beyond characterizing diversity through numbers of species -  or species richness -  and 
integrated additional information on how species interact with one another and their 
environment via functional traits. Functional traits permit a more nuanced exploration of 
patterns in community structure and composition, and provide a mechanistic basis to link 
community diversity to ecosystem processes. In this dissertation, I apply functional traits to 
observational surveys and a small-scale experimental manipulation to understand and explain 
patterns in diversity, and to link functional diversity to ecosystem functioning. In all three cases,
I show that functional traits yield substantial additional insight into ecological patterns and 
processes beyond what can be gained via richness alone.

In the first chapter, I use functional traits and two newly-derived phylogenies to 
understand the role of biotic interactions in determining how local communities of reef fishes 
assemble from the available pool of species. To address this question, I utilized data from the 
Reef Life Survey network, a global citizen science program that has conducted visual censuses of 
reef fish communities at nearly 2,000 sites across the globe. To rigorously disentangle the biotic 
and abiotic drivers of assembly, I aimed to factor out the effect of environment by grouping 
species based on their fine-scale habitat requirements, then tested for significant patterns in 
functional and phylogenetic diversity of local communities relative to the regional species pool. I 
found that most communities were functionally and phylogenetically clustered relative to the 
regional pool, meaning that species found in these communities were more functionally- and 
phylogenetically-similarthan expected by chance. This clustering increased with increasing 
latitude independent of several major axes of environmental variation. I propose several non- 
mutually exclusive explanations for this pattern, including: (1) increased competition at higher 
latitudes, potentially driven by variability in resources; (2) higher mobility of fishes at high 
latitudes reducing trait and evolutionary composition at any given site relative to what could be 
observed there (i.e., high turnover), and; (3) reduced richness at high latitudes reducing the 
probability of capturing functionally and phylogenetically unique species. This chapter is one of 
the first studies to unite a macroecological perspective on assembly with functional 
biogeography across global gradients, particularly for vertebrates.

In the second chapter, I utilized data from a 15-year observational survey of an eelgrass 
Zostera marina L. bed in the York River Estuary, Chesapeake Bay, USA to test the relative 
strength of top-down and bottom-up control and the role of species richness and functional 
diversity in mediating trophic processes. I united biological data on eelgrass, microalgal 
epiphyte, and invertebrate grazer biomass, and predator abundances with physical data on 
temperature, light, turbidity, and nutrients using structural equation modeling. Across spring,



summer, and fall seasons, biological variables appeared to be largely controlled by temperature 
and turbidity. However, there was weaker but statistically significant evidence for top-down 
control in the spring and summer, changing over to bottom-up control in the fall. In contrast to 
evidence from small-scale experiments, there was no effect of diversity on ecosystem properties 
such as standing stock biomass of eelgrass, grazers, and predators, which may have been a 
consequence of the overall low diversity and high functional redundancy present in this system. 
This chapter reveals a small but significant role for biology in the face of strong, long-term 
natural variation in abiotic parameters in a temperate eelgrass bed.

In the third and final chapter, I experimentally manipulated functional trait diversity of 
estuarine mesograzers and predators within multiple levels of species richness to test the 
relative predictive ability of functional diversity and species richness on ecosystem functioning. I 
found that multivariate functional diversity based on 8 traits was a better predictor and 
explained more variation in standing stock biomass of predator, grazer, and recruiting 
invertebrates than did species richness. Aggregating across all 8 traits in a multivariate index of 
functional diversity improved prediction accuracy relative to any individual trait. I then used 
structural equation modeling to show that the positive effects of community-level functional 
diversity were a consequence of both predator and grazer functional diversity, although 
predator effects were much stronger. I also modeled the contributions of each individual species 
to show that different functions were driven by different species with unique combinations of 
traits, suggestive of functional complementarity. Together, these results suggest that functional 
diversity is a powerful alternative to species richness in predicting the ecosystem consequences 
of species loss. This chapter is one of the first studies to conduct an a priori manipulation of 
functional traits using consumers, and the first to manipulate traits across multiple levels of a 
realistic food web.
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FUNCTIONAL TRAITS: A PRIMER

14



The widespread and increasingly rapid extinction of species on planet Earth is a well- 

documented phenomenon (Millennium Ecosystem Assessment 2005), with some suggesting 

that the planet is in the midst of its sixth mass extinction (Barnosky et al. 2011). Such a pervasive 

decline in biological diversity raises the question: what are the consequences for human well

being? The answer requires that we first understand what exactly it is that we are losing. 

Traditionally, biodiversity has been quantified as the number of different species -  or richness -  

and less often the equitability with which individuals are distributed among them -  or evenness 

(Magurran and McGill 2011). Assuming that the study system is taxonomically resolved, this 

approach is relatively straightforward: count and identify the number of species and/or 

individuals.

A species-centric approach is, however, a very coarse and potentially misleading way of 

thinking about diversity, because it implicitly assumes that all species are equally distinct 

(Petchey and Gaston 2002). Yet, we implicitly understand that some species are clearly more 

similar than others, based on any number of identifiable morphological, behavioral, 

physiological, or ecological attributes. Consider an intertidal rockpool filled with six species of 

barnacles, and a nearby rockpool containing six dramatically different species: snails, crabs, 

urchins, and so on. Since both have the same species richness, a traditional ecologist would 

treat both communities as equally diverse. To the layperson, however, the distinction is easy: 

the barnacle-filled pooled is clearly less diverse/ because the barnacles are more similar to one 

another-they all possess hard calcareous plates, have similar body shapes and sizes, and feed 

in the same way -  than are the diverse set of animals in the other tidepool (Leinster and
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Cobbold 2012). These above observations clarify how similar (or dissimilar) co-occurring species 

are from one another, and it is only within the last two decades that ecologists have begun I 

earnest to integrate so-called 'functional traits' into more nuanced descriptors of diversity.

W hat Is A Functional Trait?

Over the last twenty years, the number of published papers reporting on 'functional 

traits' has increased exponentially (Cadotte et al. 2011). As a consequence, the literature is 

replete with conflated and increasingly specialized definitions of what a 'functional' trait is.

Here, I briefly summarize the history of the term, followed by the definition I have chosen to use 

throughout this dissertation and why.

The functional trait concept appears to have evolved within the rich history of 

comparative plant ecology (Dansereau 1951). By the mid-1990s, functional traits were 

increasingly considered by researchers interested in understanding the relationship between 

plant morphological traits and ecosystem 'functions,' such as production and nutrient cycling 

(Hooper et al. 2005). McGill et al. (2006) later made the distinction between traits writ large, or 

well-defined attributes used to compare across species, and 'functional' traits specifically, used 

to indicate organismal effects on processes. Lavorel and Garnier (2002) co-opted the 

functioning-based definition under the guise of 'effect traits,' and also introduced 'response 

traits,' which define how organisms respond to, rather than shape, their environment. Violle et 

al. (2007) brought further specialization to the topic by proposing 10 separate categorizations 

for traits, only one of which they considered functional: "any trait which impacts fitness 

indirectly via its effects on [individual] growth, reproduction and survival" (p. 889). They argued 

that lumping together traits operating at different levels of organization (i.e., individuals, 

populations, ecosystems) could obscure the underlying mechanisms controlling community

16



structure and functioning. Instead, they proposed a complicated hierarchy charting how traits 

influence individual responses to environmental conditions (response traits), translate to 

differences in individual fitness (functional traits), and ultimately drive aggregate ecosystem 

properties (effect traits).

While Violle et al. (2007) proposed a sound framework, it is restricted by its complexity. 

For instance, consider plant tolerance to grazing. They argue that it should not be considered a 

functional trait, as it requires the invocation of external forces (i.e., grazers) in its definition. 

Rather, grazing tolerance is a function of individual characteristics, such as plant lifespan, height 

(and thus accessibility), and the presence of certain anatomical features or defenses, all of which 

fit their definition of functional traits as they directly reflect potential individual fitness. Yet, if 

the goal of the analysis is to consider functional traits within the context of primary production, 

the use of individual traits should lead to the same conclusion as the response trait defined by 

external factors. Consider again the common plant trait of specific leaf area. This trait has 

implications for individual growth and fitness through its role in resource use and acquisition—a 

true functional trait, sensu Violle et al. (2007) —yet the degree of resource use has direct 

implications for ecosystem primary production, and thus it could also be thought of as a 

performance or effect trait. It also can denote how a plant would respond to changes in the 

environment, say via light reduction, and thus can also be considered a response trait. Thus, it 

becomes clear through these few examples that it should not matter precisely where in the 

hierarchy of Violle et al. (2007) traits fall, as long as one recognizes that they have some 

explanatory relationship to the pattern or process under investigation.

Consequently, I prefer the broader and more operational definition of functional traits 

proposed by Diaz et al. (2013), and modified slightly here with language from McGill et al. 

(2006):
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Any morphological, biochemical, physiological, structural, phenological, life 

historical, or behavioral characteristic(s) that are expressed as measurable 

attributes o f individual organisms, and which can be used to make comparisons 

across species.

I will adhere to this definition throughout this dissertation.

Prevailing advice is that, "all traits are important for the function of interest and no 

traits are functionally informative" (p. 743, Petchey and Gaston 2002), although I believe there 

are some basic restrictions for what can be considered a useful functional trait within the 

context of any investigation. First, a functional trait should vary among at least a few species in 

the community, otherwise it does not provide any real insight (Petchey and Gaston 2006). 

Likewise, values of a functional trait should not be independent and equidistant for each 

species, in which case the trait simply reflects species richness (Schleuter et al. 2010). An 

informative functional trait should also have some realistic relationship to the pattern or process 

under investigation (Petchey and Gaston 2006). This relationship can either be hypothesized, in 

which case the analysis may be purely exploratory, or may have previous empirical support and 

is therefore confirmatory.

W hat Is Functional Diversity?

Functional diversity represents the range and value of organismal functional traits 

present in an ecological assemblage, which can be summarized in any number of metrics. 

Functional indices fall into three categories: functional richness, which reflects the total 

variation in functional traits encapsulated by a community, functional evenness, which reflects 

the equity with which traits values are distributed among individuals within a community, and 

functional dispersion, which reflects the degree to which species within a community differ from
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each other (Mason et al. 2005). A full review of the dozens of functional diversity indices 

proposed to date is beyond the scope of this introduction (reviewed in Schleuter et al. 2010), 

but the general advice is to utilize an index that reflects the goals of the analysis. For instance, if 

one is concerned only with maximizing the total functional diversity independent of relative 

abundances, or that information is unavailable, then an index of functional richness may suffice 

(Cornwell et al. 2006, Villager et al. 2008). On the other hand, if one wishes to use an index that 

is not constrained to covary positively with species richness, and thus represents a 

mathematically (but perhaps not ecologically) independent component of diversity, one might 

instead use Rao's quadratic entropy (Rao 1982, Botta-Dukit 2005).

The idea of combining information from multiple traits into a single summary index of 

functional diversity is gaining traction in the literature, particularly with the advent of statistical 

techniques used to generate univariate summary statistics from multivariate trait data (e.g., 

Villager et al. 2008). There are additional risks in trait selection when considering multivariate 

indices. For instance, correlations among traits can cause certain functional diversity indices to 

collapse to small values, making it more difficult to identify differences among communities or 

experimental treatments (Cornwell et al. 2006, Lefcheck et al. 2015). Trade-offs among traits 

may also obscure or nullify multivariate trends. For instance, Spasojevic and Suding (2012) noted 

that there were strong opposing trends in individual traits along an alpine tundra resource 

gradient, but because of trade-offs among the traits under high vs. low resources, these signals 

cancelled each other out in a multivariate index of functional diversity. Bellwood et al. (2006) 

found a low correlation between the degree of morphological specialization and diet 

specialization in tropical fishes. There was, however, a strong relationship between one 

particular anatomical trait and diet, but this signal was swamped by the overall weak effects of 

other characters in their multivariate analysis. It is difficult to anticipate when these kinds of
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trade-offs or weak relationships might occur. Thus, a common recommendation when using a 

multivariate index is to perform a thorough investigation of each trait individually, when 

possible (Ricotta and Moretti 2011, Lefcheck et al. 2015).

Thus, how many traits are sufficient? If the research question can be explained by a 

single trait, then one is enough. However, multiple traits can often be implicated in a single 

hypothesis. Explaining complex systems that are shaped by multiple factors all but requires 

multiple traits, particularly when considering the gamut of future scenarios generated by global 

change (Lefcheck et al. 2015). Additionally, certain highly informative traits may also be 

extremely difficult or costly to measure, but can be indirectly represented by a combination of 

multiple, less intensive traits (Petchey and Gaston 2006). As with highly variable traits, a pitfall 

of including too many traits is that, once combined, they simply reflect taxonomy and functional 

diversity more or less approximates species richness. However, recent analyses have uncovered 

significant discrepancies between species richness and indices derived from upwards of 20 

functional traits (Devictor et al. 2010, Lefcheck et al. 2014, Granger et al. 2014), suggesting that 

this risk may never realistically be realized. However, caution should still be taken to avoid 

include irrelevant or redundant traits for the statistical reasons outlined above.

Why Functional Diversity?

The gathering of functional trait data can be costly in terms of time, money, and 

personnel. Why bother to collect that information when we have been getting along with 

species richness for close to a century? Functional diversity offers a number of benefits to 

ecological investigations compared to a traditional species-based approach. First, it purports to 

provide information on what organisms are doing, as opposed to their evolutionary history (i.e., 

their Latin names, Petchey and Gaston 2006). In this way, traits can be mechanistically linked to
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patterns or processes of interest (Diaz and Cabido 2001), and inferences are in principle 

generalizable to other organisms and systems that possess similar trait values, far more than 

citing the contributions of specific species (McGill et al. 2006). For instance, the ability to fix 

nitrogen has been shown to enhance total productivity more than species identity or richness 

across a number of nitrogen-limited grassland plant communities (Hooper and Vitousek 1997, 

Tilman et al. 1997, Cadotte et al. 2009). Furthermore, non-overlapping trait values can provide 

insight into niche differences among species, suggesting mechanisms such as resource 

partitioning that have often been invoked to explain the positive effect of species richness on 

ecosystem properties such as biomass production and resource use (Loreau & Hector 2001, 

Cardinale et al. 2007). For example, variation in habitat preferences allowed three species of 

intertidal grazers to access different resource pools, enhancing total resource depletion beyond 

what was observed for each species by itself (Griffin et al. 2009). Such niche differences can also 

shed light on the factors promoting species coexistence, and thus can be used to address 

potential mechanisms of community assembly and the maintenance of diversity in nature 

(Pavoine and Bonsall 2011, HilleRisLambers et al. 2012).

Functional diversity can also give insight into potential redundancy among species in 

their effects on ecosystem processes, which allows estimation of how many species can be lost 

before there are significant ecosystem consequences (Rosenfeld 2002). For example, Micheli 

and Halpern (2005) found strong positive relationships between functional diversity and species 

richness across a number of marine systems, implying low functional redundancy and thus high 

vulnerability of these communities to activities which remove species, such as overfishing. This 

aspect of functional diversity may also help aid in setting priorities for conservation and 

management, either by isolating new or unique areas of high diversity (Devictor et al. 2010, 

Stuart-Smith et al. 2013), or by identifying traits that contribute to beneficial ecosystem services
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(Diaz et al. 2007). Finally, traits may allow us to better understand and predict community 

responses to global change, by linking traits that make species more or less vulnerable to 

warming, overexploitation, and other anthropogenic activities (Mouillot et al. 2013).

On a final note, there has been increasing interest in the substitution of phylogenetic 

data in place of functional traits, under the notion that genetic data capture the entirety of 

organismal variation, accounting for traits that were unmeasured or not considered (Srivastava 

et al. 2012). This may be the reason why several studies have uncovered equal or greater 

explanatory power for indices of phylogenetic than functional trait diversity (Cadotte et al. 2009, 

Flynn et al. 2011). Unlike functional traits however, phylogenetic data generally provide no 

mechanistic basis for the observed trends, perhaps outside of functional genomics in 

prokaryotes. For higher-order organisms, however, we may only reach a stage where the 

physiological and phenotypic consequences of nucleotide variation are sufficiently well-known 

across a variety of organisms to inform ecological processes in the very distant future. In the 

interim, functional traits provide a tractable alternative (Cadotte et al. 2011), but understanding 

where and when the descriptive power of functional vs. phylogenetic diversity diverge may help 

narrow the number and identity of certain functional phylogenetically-conserved traits.

Dissertation Rationale And Objectives

In this dissertation, I use functional traits to investigate the role of functional diversity in 

both generating patterns and driving processes in nature. Three chapters present the original 

research conducted as part of this dissertation.

Chapter 1 uses data from a global survey of reef fish communities collated by

collaborators to understand the biotic drivers of community assembly across latitude.

Reconciling how local communities are assembled from the available pool of species is a central
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question in ecology (Ricklefs 1987), and functional traits provide a mechanistic way to assess 

whether communities are composed of species with similar environmental tolerances, or 

species that possess traits which permit coexistence (HilleRisLambers et al. 2012). Previous 

approaches, however, may have confounded the role of environment vs. biology in evaluating 

community assembly (Mayfield and Levine 2010). Here, I use functional traits and data from two 

newly-derived phylogenetic trees with the goal of rigorously disentangling abiotic from biotic 

drivers of reef fish assembly, and to evaluate whether the importance of biological interactions 

changes between tropical and temperate regions, independent of co-occurring environmental 

gradients.

Chapter 2 utilizes data from a 15-year survey of a local eelgrass bed in the York River 

Estuary, Chesapeake Bay, USA to understand the role of biodiversity in mediating top-down 

and/or bottom-up control of ecosystem functioning in this important coastal system. Seagrasses 

are currently facing threats from increased nutrient loading and overfishing, both of which have 

the potential to alter the trophic structure and functioning of seagrass communities (Duffy 2006, 

Waycott et al. 2009). Despite numerous short-term experiments demonstrating strong top- 

down control of eelgrass by the presence and diversity of invertebrate grazers (reviewed in 

Valentine and Duffy 2006), we still have a limited understanding of whether this control will 

manifest in the face of long-term natural variation in the environment. In this chapter, I use 

structural equation modeling to unite physical and biological variables to evaluate the 

significance and direction of biological effects -  particularly species and functional diversity -  on 

ecosystem processes given a suite of environmental factors.

In Chapter 3 ,1 report on experimental manipulations of functional trait diversity within

multiple levels of species richness and across multiple trophic levels of an estuarine food web to

understand the relative explanatory power of richness vs. functional traits in predicting
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ecosystem functioning. There is growing empirical evidence that functional trait diversity better 

predicts ecosystem functioning that species richness (Cadotte et al. 2009, Flynn et al. 2011,

Gagic et al. 2015), but most of this evidence comes from post hoc analysis of existing richness 

manipulations. Moreover, there is relatively little knowledge of how functional traits may 

predict ecosystem functioning in multitrophic food webs (Reiss et al. 2009). In this chapter, I 

conduct an a priori factorial manipulation of richness and functional trait diversity across two 

levels of an estuarine food web, grazers and predators, and measure multiple ecosystem 

functions in experimental mesocosms.

For Chapters 2 and 3 ,1 also provide a freely available and fully documented statistical 

package to construct structural equation models, piecewiseSEM, which can be used in the open- 

source software R (R Development Core Team 2014). This package greatly streamlines the 

process of building, evaluating, and interpreting complex structural equation models, and can be 

accessed from: https://github.com/islefche/Diecewise5EM. In sum, my dissertation presents 

three analyses united by a functional trait approach, demonstrating the ability of functional 

traits to describe, explain, and predict ecological patterns and processes from the very small 

scale to the global scale.

Notes

Portions of this introduction appear in a slightly different form in the supplementary material of 

the following paper:

Lefcheck, J. S., V. A. G. Bastazini, and J. N. Griffin. 2015. Choosing and using multiple traits in 

functional diversity research. Environmental Conservation, doi:

10.1017/S0376892914000307.
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CHAPTER 1.

BIOTIC MECHANISMS OF REEF FISH COMMUNITY ASSEMBLY CHANGE
ACROSS LATITUDE
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Abstract

There has been increasing interest in using functional and phylogenetic patterns to infer 

mechanisms of community assembly, but to date few studies have explained how these 

patterns co-vary across broad-scale gradients, particularly for animals. We used an 

unprecedented dataset on global reef fish assemblages, comprising 2,489 species and 1,702 

sites, to rigorously disentangle the biotic drivers of community assembly across >100° of 

latitude. We show fish assemblages are more functionally and phylogenetically similar to the 

regional species pool (convergence) at higher latitudes, even after accounting for major sources 

of environmental variation. Since the analysis controlled statistically for environmental filtering, 

these results contradict most prior studies in suggesting stronger interspecific competition at 

high latitudes. This inference was supported by a meta-community analysis showing that species 

pairs were less likely to co-occur than expected by chance with increasing latitude. Further 

exploration revealed community abundance and human population size as potential drivers of 

functional and phylogentic convergence. In sum, multiple lines of evidence suggest that the 

negative effects of biotic interactions on community assembly increase between tropical and 

temperate zones, uniting community and macro-ecological predictions with functional 

biogeography.

Keywords: latitudinal diversity gradient, functional diversity, phylogenetic diversity, 

environmental filtering, limiting similarity, competitive exclusion

Introduction

Understanding what drives species composition at the local scale is a longstanding 

question in ecology (Macarthur and Levins 1967, Ricklefs 1987). Historically, local communities
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have been viewed as subsets of the regional species pool which must first tolerate local 

environmental conditions, then be sufficiently dissimilar in their ecological strategies to avoid 

competitive exclusion by one another (Weiher et al. 2011). This balance between environmental 

filtering and limiting similarity has often been inferred using functional traits, aspects of an 

organism's biology, physiology, life history and behavior that indicate how they interact with 

their environment and with other organisms (Diaz et al. 2013). Under strong environmental 

forcing, assemblages are expected to exhibit trait convergence relative to the larger species 

pool, as similar traits in principle reflect species' abilities to tolerate local conditions. 

Alternatively, under stronger competitive processes, assemblages are expected to exhibit trait 

divergence, which should theoretically limit the potential for interspecific competition 

(HilleRisLambers et al. 2012). Phylogenetic patterns have also been used to infer assembly 

mechanisms with similar expectations, under the assumption that traits contributing to 

physiological tolerances and/or relative competitive ability are phylogenetically conserved 

(Webb et al. 2002).

While traits and phytogeny have often been used to understand assembly processes 

within a particular region (Weiher et al. 2011), the same tools can be used in a biogeographic 

context to understand how the mechanisms driving assembly change from region to region 

across broad spatial gradients (Violle et al. 2014). For instance, there are clear ecological 

predictions relating the intensity of local competition to the well-described latitudinal gradient 

in species diversity. Specifically, tropical communities are expected to exhibit greater 

contemporary trait divergence as the result of stronger historical interactions (Vermeij 2005, 

Schemske et al. 2009), physiological specialization driven by low environmental variation 

(Janzen 1967), and/or increased rates of co-evolution (Stenseth 1984), all leading to niche 

partitioning.
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Conversely, in temperate communities, increased environmental variation is predicted 

to drive adaptation towards 'fixed targets,' or trait values associated with generalism (Pianka 

1966, Schemske 2002). For instance, mean body size has been shown to increase with latitude 

for many taxa, which is often implicated in temperature control -  'Bergmann's rule' (Ray 1960, 

Meiri and Dayan 2003). Body size has also been correlated with increased mobility in animals 

(Griffiths 2010), which may lead to increased connectivity among assemblages within temperate 

regions. Coupled with the overall lower richness at higher latitudes (Mittelbach et al. 2007), a 

higher degree of generalism and increased connectivity is expected to both homogenize the 

regional species pool, and decrease the probability of finding functionally or phylogenetically 

distinct species in any given community. Consequently, the temperate communities are likely to 

be more clustered relative to the regional pool, especially for traits related to habitat use and 

dispersal (Dynesius and Jansson 2000). Yet, to date, few studies have incorporated trait and/or 

phylogenetic data to evaluate the mechanisms driving community assembly across the 

latitudinal gradient, and all have focused on plants (Swenson et al. 2012, Lamanna et al. 2014, 

Qiao et al. 2015).

Recently, it has been proposed that biological interactions could lead to both trait 

divergence, in the event of competitive sorting and niche partitioning, or convergence, if species 

with certain competitively superior traits exclude competitively inferior species (Mayfield and 

Levine 2010, HilleRisLambers et al. 2012). This dichotomy is problematic as many studies have 

interpreted trait convergence as evidence for strong environmental filtering, when in reality it 

may instead indicate a significant biological component instead of or in addition to the 

environment (Kraft et al. 2014). One way to isolate the biotic effects on assembly from those 

associated with environmental filtering is to first control for the effects of environment before 

evaluating patterns in functional or phylogenetic diversity (de Bello et al. 2012). This approach
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relies on the careful definition of the regional species pool to only include species that have 

similar habitat requirements and environmental tolerances. Within a given pool of species with 

similar environmental associations, values of functional or phylogenetic diversity at the local 

level (Divcomm) can be compared to the regional pool (DiVpoo/) to determine if either of the two 

biotic mechanisms identified above are operating: niche partitioning leading to divergence 

(Divcomm > DiVpooi), or weak competitor exclusion leading to convergence {DivCOmm < Divpooi). In the 

absence of either, one would infer complete environmental control or stochastic processes 

(Divcomm ~ Divpooi). By grouping species based on shared environmental tolerances, this approach 

essentially asks if there is any biological signal driving community structure above and beyond 

what is explained by the environment.

The framework proposed above does not require the construction of complicated null 

models, where trait or phylogenetic distances are randomized among communities (de Bello et 

al. 2012), negating the selection and justification of an appropriate null model (Gotelli 2000). 

Moreover, null model approaches have recently been shown to poorly discriminate assembly 

rules under a variety of simulated scenarios, and instead are more reflective of the choice of 

metric (Mouchet et al. 2010) and the magnitude of the observed values of diversity (de Bello

2012). Under this new framework, significant divergence or convergence is instead detected by 

measuring the difference between the local diversity and the total regional diversity (ES = 

Dcomm -  Dpool), which can be compared to the null expectation that the difference is zero 

using a simple and interpretable f-test. Additionally, these effect sizes can be used as responses 

in traditional modeling frameworks to more precisely quantify the drivers of local assembly, in 

contrast to other methods used to identify assembly processes, which yield insightful but largely 

qualitative inferences regarding assembly (Dray et al. 2014).
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Marine fishes are the most diverse group of vertebrates on the planet, occupy a wide 

range of ecological roles, and are comparatively well-described and understood. Thus, they 

represent an ideal group with which to test how mechanisms of community assembly change 

across global gradients. Richness of marine fishes follows the classic inverse pattern with 

latitude (Rohde 1992, Tittensor et al. 2010), thus generating testable hypotheses with respect to 

the role of local competition. Further, a recent analysis revealed that functional trait diversity 

among marine fishes does not adhere to the same global pattern as richness (Stuart-Smith et al.

2013), suggesting that functional traits may provide further insight into the biological processes 

limiting local diversity. Here, we present an analysis of biotic drivers of local assembly using data 

from a global survey of reef fish communities by the Reef Life Survey program (RLS, 

www.reeflifesurvev.com) (Edgar and Stuart-Smith 2014). We calculated functional diversity 

using multiple functional traits representing differences in morphology, trophic ecology, 

behavior, and habitat use (Table SI), and phylogenetic diversity using a multi-gene tree proxy 

for phylogeny. We calculated the index of Rao's quadratic entropy (Rao's Q, 33) to quantify and 

compare the diversity of local communities to that of the regional species pool. We 

biogeographically defined each species pool using 'Marine Ecoregions of the World' (Spalding et 

al. 2007), and further partitioned them using fine-scale environmental data obtained during the 

surveys, including depth, temperature, nitrates, percent coral and algal cover, wave exposure, 

relief, slope, and current velocity.

Methods

Reef Life Survey Data

Fish community data were collected through the Reef Life Survey program, a global

citizen-science initiative that combines visual censuses from scientific and skilled volunteer
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SCUBA divers. Briefly, divers ran a 50-m transect across shallow reef habitats and visually 

recorded the identity and abundance of every species within 5-m on both sides and 5-m above 

the length of the transect. Further specifics about the survey methods, including diver training, 

quality control, data consistency, and management can be found in (Edgar and Stuart-Smith 

2009,2014, Stuart-Smith et al. 2013). In all, we used data from 4797 transects at 1986 sites in 77 

ecoregions, spanning 133s of latitude and on every continent except Antarctica. For this analysis, 

surveys were aggregated at the site level.

Functional Traits And Phytogeny

In total, 2465 unique fish taxa were recorded from 175 families. Eight functional traits were 

scored for each (Table SI), mostly based on data obtained from FishBase fwww.fishbase.org). 

although some were allocated based on expert knowledge (see supplementary material in 

Stuart-Smith et al. 2013). The species-by-trait matrix was converted into Gower's distance 

measure, which combines both continuous and categorical information into a single distance 

measure, using Podani's correction for ordinal data (Gower 1971, Podani 1999). Because the 

diversity metric used (mean pairwise distance, see below) can be maximized with fewer than all 

functional types if distances are not ultrametric (Pavoine et al. 2005), we used the Gower 

distances to construct a functional dendrogram using different clustering methods (Mouchet et 

al. 2008), and converted it to ultrametric using the function clue package in R (Hornik 2013). We 

then used the matrix 2-norm to identify the ultrametric dendrogram that best preserved the 

original distances (M6rigot et al. 2010), and standardized between [0,1] by dividing by the 

maximum distance across the entire matrix.

We also built two multi-gene trees as a proxy for phylogeny containing all species used 

in the analysis. First, we queried GenBank fwww.ncbi.nlm.nih.gov/genbankl to assess coverage 

for commonly sequenced genes in fishes, and determined that four genes had sufficient
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coverage across all species (or their congeners) in our dataset: cytochrome oxidase subunit I 

(CO/), 16s rRNA, 12s rRNA, and cytochrome b (cytb). The initial pulldown using the taxize 

package in R (Chamberlain et al. 2014) yielded sequences for 94% of the species, and additional 

sequences were collected manually. In a small number of cases, we substituted family-level 

relatives when sequences for species or congeners were not available (5.4% of species). No 

single gene covered all species, so we combined information from all four genes to create a 

multigene tree. We aligned the sequences using the program MAFFT version 7.145b (Katoh and 

Standley 2013). Alignments were then inspected visually and manually edited when necessary 

(to correct for inappropriately reduced gaps).

To build a multigene tree, we tested separate models of evolution for each gene using 

the program partitionFinder (Lanfear et al. 2014). All genes followed a GTR+G+I model. We 

combined the aligned sequences to create a single gappy supermatrix, which we then used to 

build two separate trees. To build a Bayesian tree, we used the program MrBayes version 3.2.2 

(Ronquist and Huelsenbeck 2003), with 500,000 runs, retaining the top 25% of trees every 5,000 

runs, and allowed model parameters to vary by gene. We also implemented family level 

constraints to assist with convergence, and utilized all compatible trees to build the single 

consensus tree used in subsequent analyses. To build a maximum-likelihood tree, we used the 

program RAxML (Stamatakis 2006), conducting 100 bootstrapped runs and also allowing the 

model parameters to vary by gene. Both trees used the basal Myxine glutinosa as the outgroup. 

To assist in convergence for both trees, we removed all identical congeners from the dataset, 

built the trees, and then reinserted those species with node lengths identical to those of their 

congeners. We converted the complete trees to ultrametric using a penalized likelihood 

approach (Kim and Sanderson 2008) implemented in the ape package in R (Paradis et al. 2004), 

rooted each tree, pruned the outgroup, and extracted the cophenetic distance matrix. As with
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the functional distance matrix, we scaled phylogenetic distances to the range [0,1] by dividing by 

the maximum distance across the entire matrix. All the code used to run each program (MAFFT, 

partitionFinder, mrbayes, and RAxML) are available in the supplementary R code, and both the 

functional and phylogenetic distance matrices are provided in Newick format.

Community Assembly

To test for biotic effects on community assembly, we implemented the framework

described in (de Bello et al. 2012). This required the construction of regional species pools 

consisting of species with similar environmental and/or habitat requirements, which we first 

defined by tallying all species observed within a given 'Marine Ecoregion of the World' (MEOW, 

(Spalding et al. 2007)). We further restricted the pools based on site-level abiotic characteristics 

within each MEOW, including depth, temperature, nitrates, percent coral cover, percent algal 

cover, wave exposure, relief, slope, and current speed. We grouped sites that shared similar 

abiotic properties using fc-means clustering. We determined the optimal number of 'sub- 

ecoregions' per MEOW by iteratively fitting to an increasing number of clusters, and comparing 

using the Duda-Hart test (Duda and Hart 1973). k-means clustering was conducted using the/pc  

package in R (Hennig 2014). Species pools that were based on fewer than three sites were 

discarded from any subsequent analyses (3% of all sites). This exercise produced 232 sub- 

ecoregions within 67 MEOWs, with an average of 6 sub-ecoregions within each MEOW.

For each local assemblage, which we considered to be a separate community, we 

calculated Rao's quadratic entropy (Rao's Q) and the mean pairwise distance (MPD) for both 

functional and phylogenetic distances. Rao's Q is the weighted average of pairwise dissimilarities 

for all individuals within a community (Botta-Dukat 2005). We additionally incorporated the 

correction for uneven sample size presented in the supplements of (de Bello et al. 2012). MPD is 

simply the average of all pairwise distances between species within a community, and does not
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take into account relative abundances or biomass (Pavoine and Bonsall 2011). Similarly, Rao's Q 

and MPD were calculated for each regional species pool. The diversity of the regional pool 

(Divpooi) was then subtracted from the diversity of each local community (D/Vcomm) to generate an 

effect size (ES = DivCOmm -  Divpooi)■ If the community has higher diversity than the regional pool 

(Divcomm > Divpooi, or ES > 0), then that local assemblage exhibits greater variation in functional 

traits or phylogenetic distance than the species pool (divergence), which is interpreted as 

limiting similarity or niche partitioning. If the community has lower diversity than the regional 

pool (Divcomm < Divpooi, or ES < 0), then the local assemblage exhibits less variation in traits or 

phylogeny than the species pool (convergence), which is interpreted as weak competitor 

exclusion. If there is no difference (Divcomm = Divpooi, or ES = 0) then the assemblage is simply a 

random subset of the regional pool (de Bello et al. 2012). We tested for significant differences 

from zero using a Student's t-test, with a  = 0.05. For comparisons of effect sizes between 

latitudinal zones, we used a Welch's t-test to account for unequal variances (Fig. 1), hence non

integer degrees of freedom reported in the text.

We used generalized linear mixed effects models (GLMMs) to predict the continuous 

variation in the above effect sizes with latitude, while accounting for additional covariates, 

including temperature, nitrates, salinity, and total community abundance and richness. Because 

we expected a hump-shapred relationship, we specified the latitude effect as a second-order 

polynomial. We allowed the intercept of the main effects to vary by the random effect of sub- 

ecoregion identified during the k-means clustering. Mixed models were constructed using the 

nlme package in R (Pinheiro et al. 2013). We extracted partial effects for the latitude effect and 

constructed 95% confidence intervals based on the variance of the fixed effects only using the 

effects package in R (Fox 2003).
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We used gradient boosted models (GBM) to understand the relative importance of 

other drivers of assembly using the package gbm (Ridgeway 2014). GBMs are an ensemble 

learning technique similar to random forests that constructs many individual regression trees 

and generalizes across them (Friedman 2001). Unlike random forests, however, GBMs build the 

ensemble sequentially, fitting each subsequent tree to the residuals of the previous ('boosting'). 

In this way, additional trees in the ensemble focus on the classification errors from the earlier 

trees, yielding more and more accurate predictions as the ensemble is grown. Trees are added 

to the ensemble based on how much they minimize a loss function (decrease in predictive 

power)—in the case of regression trees, the loss function is the mean squared error. Overfitting 

is discouraged by modifying the 'learning rate', or how drastic the change in the predictions can 

be from one tree to the next, which is modified by a shrinkage parameter. A final prediction is 

generated at the end of the procedure by simply averaging across all trees in the ensemble.

GBM is ideal for this type of analysis because of its strong predictive power for large or noisy 

datasets, particularly when predictors are on differing scales, non-normal, correlated, or interact 

with other variables (Elith et al. 2008).

We fit a GBM to both functional and phylogenetic indices in tropical and temperate 

zones, including the following predictors: total community richness and abundance, mean and 

standard deviation of temperate, nitrates, and salinity derived from the Bio-ORACLE dataset 

(Tyberghein et al. 2012), wave exposure, and an index of human population size derived from a 

year 2000 world-population density grid as in (Stuart-Smith et al. 2013). To further discourage 

overfitting, we used the caret package to test different ensemble sizes, interaction depths, and 

shrinkage levels to arrive at the optimal configuration that maximized the reduction in the loss 

function (Kuhn 2015). We drew inferences from a GBM of 5,000 trees, an interaction depth of 1, 

and shrinkage of 0.001 with 3-fold cross validation. We then derived estimates of relative
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influence for each predictor as the reduction of the squared error attributable to that variable 

(Ridgeway 2014).

Metacommunity Structure

To independently confirm the stronger role of competition in structuring temperate

communities, we employed the metacommunity framework proposed in (Presley et al. 2010).

The first part of this framework tests for coherence, or the degree to which species replace one

another along a gradient of communities (Leibold and Mikkelson 2002). This was accomplished

by using reciprocal averaging ordination to define the primary axis along which communities

sort within a sub-ecoregion, and then generating a series of null models to test whether the

pattern of species co-occurrences was significantly different than what was expected by chance

(Presley et al. 2010). If species pairs have mutually exclusive distributions (i.e., 'forbidden

combinations') and sort independently of other species pairs along this dimension, then the

pattern can be interpreted as strong competitive exclusion, or 'negative coherence' (Connor and

Simberloff 1979). Based on results from the community assembly analysis, we would expect

negative coherence to become increasingly prevalent if strong interspecific competition is acting

to structure local communities. If communities exhibit strong sorting along the primary

ordination axis, or 'positive coherence,' then this result could be interpreted as turnover along a

residual environmental gradient and further tests can be performed to identify the exact

structure (i.e., 'turnover' and 'boundary clumping') (Leibold and Mikkelson 2002). The final

possibility is that species do not sort predictably along the primary axis ('random'). To assess

different patterns in metacommunity structure, we calculated coherence (Connor and

Simberloff 1979) using the metacom package in R (Dallas 2014), modifying the functions to

incorporate the new commsim() function in the vegan beta package to construct null models

(see www.github.com/taddallas/metacom). We used a variant of the fixed-fixed model
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('quasiswap') (Miklos and Podani 2004) suggested in (Ulrich and J. Gotelli 2007). All analyses, 

including those for community assembly and RF, were conducted in R version 3.1.1 (R 

Development Core Team 2015).

Results

Based on our comparison of local to regional diversity, we found evidence for significant 

functional convergence in both tropical (tax = -32.08, P<  0.001) and temperate communities 

(tio68 = -34.03, P < 0.001) (Fig. la , Fig. SI). Functional convergence was, on average, twice as 

strong in temperate communities as in tropical ones, based on comparison of effect sizes (E S rro p  

= -0.045 vs. E S rem p  = -0.090, Welch's 11537.7 = 15.06, P<  0.001). We also found significant 

phylogenetic convergence in tropical (tax = -6 .94, P < 0.001) and temperate communities (ticxs = 

-29.02, P < 0.001). In this case, there was a seven-fold increase in phylogenetic convergence 

across latitude (ESrrop = -0.006 vs. ESremp = -0.042, Welch's tia>7.3 = 21.32, P < 0.001), and tropical 

communities were very close to exhibiting a null pattern (Fig. lb , Fig. SI). To visualize the 

increase in functional and phylogenetic clustering with increasing latitude, we continuously 

plotted effect sizes against latitude and fit a simple second-order polynomial (blue curves, Fig.

2).

Because these patterns might still be attributable to large-scale variation in abiotic 

parameters (as opposed to the fine-scale drivers used in our partitioning of regions), or to 

variation in sampling intensity, we employed a mixed model approach regressing the functional 

and phylogenetic effect sizes against a second-order polynomial of latitude, the mean 

temperature, nitrates (as a proxy for resource availability), and salinity, and total community 

richness and abundance as covariates. We then extracted and plotted the partial effect of 

latitude given all of these covariates (red lines, Fig. 2). Even after accounting for these major
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environmental gradients and potential differences in effort reflected in sampled richness and 

abundance, we found that there was still a significant decline in the effect size with increasing 

latitude for both functional and phylogenetic diversity (P < 0.001 for both linear and non-linear 

estimates of the latitude effect) (Fig. 2). In contrast with the results from the t-tests, the effect 

size was no different than zero for phylogenetic diversity in tropical communities, based on 

overlapping confidence intervals (Fig. 2b). Thus, there appear to be additional factors beyond 

variation in major sources of physiological stress (temperature and salinity), resources (nitrates), 

and the sampling intensity in driving the observed patterns in assembly with latitude.

To independently confirm the effect of latitude, we employed gradient boosted models 

(Friedman 2001) to rank the relative influence of latitude, environmental, and other variables on 

our index of assembly, including: the mean and variance in regional temperature, nitrates, and 

salinity, total community richness and abundance, and an index of human population density. 

Latitude was ranked among the most important predictors for both functional and phylogenetic 

assembly across temperate and tropical regions, and in several cases was the single most 

important predictor by a considerable margin (Fig. 3). Only richness was identified as having a 

stronger influence than latitude for phylogenetic assembly in temperate regions (Fig. 3c).

Beyond latitude and richness, the next most important predictors were community abundance 

and an index of human population density, particularly in temperate regions. Partial 

dependency plots revealed a trend towards increasing convergence with increasing abundance 

in the tropics, and the opposite in temperate regions (Fig. S2a). Similarly, increased human 

population density generally drove functional and phylogenetic convergence, but this effect 

became negative quickly after a high threshold of density (Fig. S2b).

One possible explanation for the increasing functional and phylogenetic convergence

with latitude is that we did not sufficiently account for important local environmental variation
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in reducing the regional species pool to species with similar abiotic tolerances. To test this, we 

used meta-community theory to test whether there were any non-random patterns in species 

distributions within regions (Presley et al. 2010). If any residual environmental variation 

remained within a region, then communities should sort predictably along it, with species (or 

groups of species) with similar preferences being replaced at discrete environmental boundaries 

(e.g., Gleasonian or Clementsian pattern, Leibold and Mikkelson 2002). Out of 122 regions along 

the entire latitudinal gradient, we identified only three that demonstrated non-random sorting 

along an environmental gradient (Fig. 4). The majority exhibited random sorting, and 

approximately one-sixth exhibited a checkerboard pattern, which is generated when pairs of 

species are never found together (so called 'forbidden combinations,' Leibold and Mikkelson 

2002), and these pairs sort exclusively of one another within a region. This pattern is most often 

interpreted as strong interspecific competition (Presley et al. 2010), and the number of 

ecoregions demonstrating a checkerboard pattern increased with increasing latitude (Fig. 4).

We conducted several additional analyses to assess the robustness of these results.

First, we repeated our analysis using a second distance-based index of diversity, the mean 

pairwise functional or phylogenetic distance among all species within an assemblage (MPD, 

Pavoine and Bonsall 2011), to ensure that these results were not influenced by our choice of 

metric. This index revealed identical patterns to the main analysis using Rao's Q (Fig. S3). 

Second, we calculated abundance- and biomass-weighted indices of Rao's Q, under the 

assumption that patterns of niche-partitioning or competition would more strongly manifest in 

patterns of relative abundance or biomass. All weighting schemes produced qualitatively similar 

results (Fig. S4), so we have chosen to present the equally-weighted values in the main text. 

Third, we constructed phylogenies using two different methods: Bayesian inference and 

maximum-likelihood (ML), and re-evaluated the phylogenetic patterns with latitude (Fig. S5).
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Given the overall lower confidence intervals on the ML tree, we have chosen to present 

inferences from the Bayesian tree in the main text. Finally, we evaluated each trait individually 

(Table SI), to understand whether conflicting patterns among individual traits may have altered 

or weakened the overall trends presented in Figure 2a. We found that most traits followed the 

same pattern as multivariate functional diversity, except for diel activity pattern ('time') and 

habitat complexity requirements, which both showed an inverse parabolic but relatively weak 

relationship with latitude (Fig. S6). Similarly, patterns derived from the multivariate index of 

functional diversity (Fig. 2a) appear to be driven largely by traits relating to trophic ecology and 

water column position (Fig. S6).

Discussion

Overall, we found significant functional and phylogenetic convergence of local 

communities relative to the regional species pool (Fig. 1), and that this convergence increased 

with increasing latitude (Fig. 2). This trend appears to be independent of several major axes of 

environmental variation, richness, and potential differences in sampling intensity (Fig. 2, 3). One 

possible explanation for our results is that temperate communities are dominated by fishes with 

greater dispersal and/or lower site fidelity, leading to greater exchange of species among sites at 

higher latitudes and greater regional functional and phylogenetic homogenization, in turn 

minimizing differences among local assemblages and the regional species pool. We have two 

lines of evidence that indirectly address this prediction. First, the average size of individuals 

recorded on the surveys increased with increasing latitude, particularly in the well-sampled 

southern hemisphere (Fig. S9), which corresponds with previous trends observed in marine 

fishes (Ray 1960), and recent work has linked both latitude and body size in marine fishes to 

dispersal potential (Hillebrand 2004, Bradbury et al. 2008). Second, we scored a functional trait
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that partitions species based on whether they are benthic-associated or live in the water column 

and, if the latter, whether they are mobile or site-attached (Table SI). There was a slight 

increase in the frequency of species that were considered 'pelagic, site-attached' with increasing 

latitude (Fig. S10). This interpretation is compatible with existing theory linking high dispersal 

and larger range size of temperate species with lower rates of gene flow and speciation, which 

in turn reduces diversity at high latitudes (Janzen 1967, Dynesius and Jansson 2000, Jablonski 

and Roy 2003).

Another potential explanation for increasing convergence with latitude is that there 

exists some optimum set of traits (reflected in phylogeny) that leads to increased competitive 

success in temperate regions, excluding species that possess competitively inferior traits 

(Mayfield and Levine 2010, de Bello et al. 2012, HilleRisLambers et al. 2012). Our meta

community analysis would partially support this viewpoint, with potentially competing pairs of 

species co-occurring less often than would be expected by chance in many high latitude regions 

(Fig. 4). This explanation runs counter to existing theory implicating stronger interspecific 

competition in the tropics, with abiotic filtering operating more strongly at high latitudes (Pianka 

1966, Mittelbach et al. 2007). However, a recent analysis of ant communities found that 

environmental filtering acted primarily at very large (continental) scales, with local interactions 

playing a stronger role as the pool was increasingly restricted to reflect more realistic dispersal 

scenarios (Lessard et al. 2012). Thus, our inferences may be a consequence of the scale at which 

we constructed our species pools to better reflect the potential for biological interactions.

Along those lines, we identified human population density as a potentially important

driver of assembly behind latitude and species richness (Fig. 3). Partial effects plots revealed

that higher population density is predicted to increasingly drive functional and phylogenetic

convergence, particularly in temperate zones (Fig. S2). The ability of anthropogenic activities
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such as fishing and habitat degradation to reduce or alter the functional structure offish 

communities is increasingly recognized (Villeger et al. 2010, Martins et al. 2012). These actions 

may facilitate convergence through the targeted removal of certain functional types or 

phylogenetic lineages. It may also increase competition by, for instance, removing larger 

predators. However, the influence of human population density was relatively weak compared 

to latitude (Fig. 3), suggesting that if it does play a role, it is probably minor. However, human 

density was measured on a coarser scale than other variables included in our analysis, and 

higher resolution estimates may shed additional light on this hypothesis.

It is also possible that our finding of greater convergence at higher latitudes as an 

artifact of low species richness at high latitudes (Fig. S7). For example, we observed relatively 

little change in functional diversity at the regional level across latitude (Fig. S8), and thus greater 

convergence at high latitudes could potentially have been a consequence of sampling fewer 

species from a relatively consistent functional pool. In other words, the probability of drawing a 

set of functionally dissimilar species is potentially much lower in species-poor temperate regions 

than in species-rich tropical ones. This is likely why richness emerged as having a significant 

influence on functional assembly in our gradient boosted models (Fig. 3a,b). However, we note 

that we specifically incorporated richness as a covariate for this reason in our analyses, and 

latitude still emerged as a significant predictor of functional patterns by quite a large margin 

(Fig. 3).

Finally, we must acknowledge that it is possible that we did not adequately account for

the full suite of important environmental factors when defining the regional species pool, and

thus the latitudinal trend still reflects some unmeasured environmental driver. We have taken

several steps to ensure that this is not the case. As a first pass, we grouped species based on

'Marine Ecoregions of the World,' which are, "clearly distinct from adjacent systems,
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[determined] by the predominance of a small number of ecosystems and/or a distinct suite of 

oceanographic or topographic features," and are, "strongly cohesive units, sufficiently large to 

encompass ecological or life history processes for most species" (p. 575, Spalding et al. 2007). 

Within these ecoregions, we used fine-scale data to cluster sites based on a suite of 

environmental variables, and used the species observed across all sites within a cluster to 

construct the 'regional' pool. Because we used only observed species, we likely excluded many 

species that could potentially be at those sites but were absent or missed during the surveys 

('dark diversity', Partel et al. 2011). However, the framework we employed has been shown to 

be insensitive to underestimates of the species pool (de Bello et al. 2012). There may have been, 

however, some unmeasured or unimportant environmental variables not included in our 

analysis. We have some assurance that this was not the case as our meta-community analysis 

revealed only a handful of regions where communities sorted along a detectable residual 

gradient (Fig. 4). Even so, recent work has shown that functional- and phylogenrtic-patterns are 

largely robust to changes in scale that would have been generated by our efforts to generate a 

realistic species pool (Munkemuller et al. 2014).

Another interesting outcome of our analysis is the greater proportional change in our 

index of phylogenetic versus functional community assembly across latitude (Fig. 1). This 

difference is consistent with the idea that phylogenetic distance may better reflect the entirety 

of functional variation among species than does a small suite of traits (Srivastava et al. 2012), 

and thus reflects unmeasured traits important in influencing biotic interactions. The application 

of phytogeny in lieu of functional traits may be especially relevant for coral reef fishes, for which 

functional differences between the numerous species may be finer than can be encompassed in 

large-scale studies. For example, herbivorous tropical fishes are covered within two coarse 

trophic groups in our analysis ('browsing' and 'scraping', Table SI), but they are known to
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demonstrate a wide variety of specialized feeding modes and diet preferences (Choat et al. 

2002). This finer phenotypic variation may be better reflected in their genetic variation than 

feasibly covered in trait allocation for studies at scales large enough to provide generalizable 

results. Thus, our phylogenetic results may prove to be more robust until challenged with higher 

resolution trait data. A caveat to this idea is the differences we found in the mixed model 

inferences based on the tree recovered using Bayesian inference vs. maximum-likelihood (Fig. 

S5). There have been few investigations into how methodological choices made during 

phylogeny reconstruction—including gene(s) used, the model of evolution, and the 

incorporation of Bayesian priors—may influence inferences about ecological processes (Tucker 

and Cadotte 2013), and our analysis suggests that these may play a much larger role than 

previously suspected. However, the low confidence intervals on the ML tree and the difficulty 

with which it was converted into ultrametric distances preclude us from leaning too heavily on 

this line of inquiry, and suggest future explorations using a smaller, more amenable dataset.

On a similar note, while inferences from t-tests suggest phylogenetic clustering at low 

latitudes, confidence intervals on the predicted fits from mixed models overlap zero at tropical 

latitudes (Fig. 2b). This discrepancy between the two analyses is likely the result of incorporating 

both a hierarchical random structure and, more importantly, known environmental filters such 

as temperature, nitrates, and salinity. Thus, from both a statistical and biological standpoint, it 

may be more accurate to interpret the results as suggesting random assembly at low latitudes.

In this case, our results are consistent with the 'lottery hypothesis' (Sale 1977), which posits that 

coral reef communities are not structured by resource partitioning, but by variation among 

species in their ability to colonize heterogeneous landscapes (Bode et al. 2011). Again, smaller 

body sizes in the tropics may support this idea by restricting species' ability to move between 

suitable habitats (Fig. S9). It is important to note that, under this scenario, species could in fact
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be under strong interspecific competition, but their success is instead determined by chance 

colonization (Shinen and Navarrete 2014). Such neutral dynamics would produce the seemingly 

random functional or phylogenetic structure of local tropical communities, but could obscure 

the true degree of biological interactions.

Many recent analyses of community assembly have found an overwhelming role for 

environmental filtering and a relatively minimal role for biology, an outcome which may lie with 

an insufficient ability to disentangle biological from environmental patterns driving functional 

and/or phylogenetic convergence (Kraft et al. 2014). Using both functional and phylogenetic 

approaches, we demonstrate that biotic interactions do play a role in structuring global reef fish 

communities above and beyond what is accounted for by several major axes of environmental 

variation. The results of this study provide some of the first truly global insights into the role of 

biological interactions in structuring communities above and beyond several known drivers of 

environmental filtering.
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Figure 1: (a) Functional and (b) phylogenetic patterns of community assembly revealed 

significant convergence in both tropical and temperate regions. Effect sizes were calculated as 

functional or phylogenetic diversity of the regional species pool (Dpool) subtracted from the 

diversity of a local community (Dcomm). A mean effect size significantly less than 0 indicates 

functional or phylogenetic convergence (all mean effect sizes were significantly less than 0, * * *  

= P < 0.001). Tropical communities were defined as those between -20 and 20° latitude, and 

temperate ones anything outside of the tropical range.
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Figure 2: (a) Functional and (b) phylogenetic convergence increased with increased latitude.

Effect sizes were calculated as functional or phylogenetic diversity of the regional species pool 

(Dpool) subtracted from the diversity of a local community (Dcomm). An effect size > 0 indicates 

functional or phylogenetic divergence, an effect size < 0 indicates convergence, and an effect 

size = 0 indicates stochastic processes or environmental filtering. Blue lines indicate predicted 

fits from a simple second-order polynomial regressing effect size against latitude. Red lines 

indicates predicted fits ± 95% confidence bands of the partial effects of latitude from a mixed 

model regressing effect size against the second-order polynomial of latitude plus additional 

environmental covariates (see description in main text).

57



Functional
Temperate

Functional
Tropical

Phylogenetic
Temperate

Phylogenetic
Tropical

Figure 3: Gradient boosted models revealed richness, latitude, and human population index to 

be among the most important predictors of (a-b) functional and (c-d) phylogenetic patterns in 

community assembly. Temperate and tropical regions are defined as in Figure 1. The x-axis 

represents the mean percentage decrease in prediction accuracy across each tree in the random 

forest for the out-of-bag sample based on permutations of the variable of interest. Higher values 

denote a greater loss of accuracy, or greater importance, for that variable.
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Figure 4: Metacommunity analysis revealed few regions structured along residual 

environmental gradients (light grey bars), instead exhibiting either random or checkerboard 

patterns, the latter of which can be interpreted as strong interspecific competition. The x-axis 

is latitude in 10* bins, and the y-axis is the proportional frequency of regions within each bin 

that exhibit random, checkerboard, or environmentally structured patterns. The number of 

regions (A/) within each latitudinal bin (x-axis) are given above the bars.
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Supplementary Tables

Table SI: Functional traits used in the analysis, and their expected effect on assembly 

mechanisms.

Trait Values Expected effect Explanation
Maximum
length
Trophic breadth 

Trophic group

Water column 
position

Diel activity
pattern
Preferred
substrate
Habitat
complexity
requirements

Continuous (cm)

Number of prey phyla 
consumed (1-8)
Browsing herbivore, 
scraping herbivore, benthic 
invertivore, planktivore, 
higher carnivore 
Benthic, demersal, site- 
attached pelagic, roaming 
pelagic
Nocturnal, diurnal

Hard substrate, soft 
sediment
Low, medium, high

Divergence

Divergence

Divergence

Divergence/
convergence

Divergence

Convergence

Convergence

Resource partitioning 

Resource partitioning 

Resource partitioning

Space and habitat 
partitioning

Resource partitioning, 
predator avoidance 
Resource partitioning, 
predator avoidance 
Space and habitat 
partitioning
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Supplementary Figures
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Figure SI: (a) Functional and (b) phylogenetic diversity of the regional species pool against 

local diversity. Individual points represent individual surveys. Red points indicate tropical sites 

and black ones temperate sites (defined as Figure 1 caption).
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Figure S2: Partial dependency plot of loglO-transformed index of human population size 

against (a-c) functional and (c-d) phylogenetic effect sizes. Upper panels (a, c) represent 

tropical sites, and lower panels (b, d) represent temperate ones (defined as Figure 1 caption).
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Figure S3: Effect sizes derived from the mean pairwise distance (MPO) index of (a) functional 

and (b) phylogenetic diversity. Interpretation is identical to Figure 2 in the main text, which 

reports the same effect sizes derived from a different index of diversity, Rao's Quadratic 

entropy.
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Figure S4: Abundance- (upper panels), biomass- (middle panels), and equally-weighted (lower 

panels) estimates of functional (left side) and phylogenetic (right side) effect sizes against 

latitude. Interpretation is identical to Figure 2 in the main text, which corresponds to the lowest 

set of panels.
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Figure S5: Estimates of phylogenetic effect sizes against latitude for phytogenies derived from 

(a) Bayesian approximation and (b) maximum-likelihood. Interpretation is identical to Figure 

2b in the main text.
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Figure S6: Estimates of functional effect sizes derived from individual traits (Table SI).

Interpretation is identical to Figure 2a in the main text, which corresponds to the lower right 

panel.
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Figure S7: Species richness against latitude. Blue line is the predicted fit from a simple second- 

order polynomial regression.
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Figure S8: Plots of regional (upper panels) and local diversity (lower panels) for functional (left 

panels) and phylogenetic diversity (right panels). Blue line is the predicted fit from a simple 

second-order polynomial regression.
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Figure S9: Mean body size per survey against latitude. Blue line Is the predicted fit from a 
simple second-order polynomial regression.
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Figure S10: The frequency of species occupying different values of the functional trait 'water 

column position' against latitude.
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CHAPTER 2.

TOP-DOWN VERSUS BOTTOM-UP CONTROL OF A TEMPERATE EELGRASS 
BED: INSIGHTS FROM A 15-YEAR ECOLOGICAL SURVEY
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Abstract

The relative influence of top-down and bottom-up control of ecosystems has long been debated 

in ecology. Temperate eelgrass systems (Zostera marina L.) provide a model for the investigation 

of resource versus consumer control, especially in light of anthropogenic nutrient loading and 

overfishing of this ecosystem. We used data from a 15-year ecological survey of a local eelgrass 

bed in the York River Estuary, Chesapeake Bay to explore patterns in community abundance, 

biomass, and structure. We further integrated biological information with environmental data 

using structural equation modeling (SEM) to test the relative strengths of biotic vs. abiotic 

drivers of community properties. We identified strong seasonal turnover in species but not 

functional composition, especially for invertebrate mesograzers, implying a high degree of 

redundancy among grazers throughout the year. Through SEM, we also found evidence for 

alternating trophic control, with significant top-down effects of predators and grazers more 

evident in the spring and summer, respectively, and bottom-up effects of nutrients only 

apparent in the fall. Not surprisingly, this strongly seasonal system appears to be most 

controlled by variation in abiotic variables, principally temperature and light, whose influence 

changes seasonally. This long-term dataset provides insight into the role of biology in an 

important coastal ecosystem despite natural variation in environmental parameters.

Keywords: eelgrass, epifauna, grazers, predators, top-down, bottom-up, estuaries, structural 

equation modeling
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Introduction

The role of top-down versus bottom-up control of community structure and function 

has been a longstanding question in ecology (Hairston et al. 1960, Power 1992, Strong 1992), 

leading to numerous studies to understand when, where, and why systems are under resource 

and/or consumer control (reviewed in Shurin et al. 2002, Gruner et al. 2008). Temperate 

seagrass systems, principally eelgrass Zostera marina L., have served as a model for 

investigations of top-down and bottom-up control (reviewed in Hughes et al. 2004, Valentine 

and Duffy 2006). These important coastal ecosystems are characterized by a numerous and 

diverse assemblage of epifaunal invertebrate 'mesograzers' that feed primarily on the epiphytic 

algae growing on seagrass blades (Orth et al. 1984, Valentine and Duffy 2006). This grazing can 

indirectly benefit the seagrass by removing the fouling epiphytes which block light and compete 

with the seagrass for nutrients (Orth and van Montfrans 1984, Orth et al. 1984, Duffy et al. 

2015). However, increasing anthropogenic pressures in the form of coastal nutrient loading and 

overfishing may threaten this balance by spurring both epiphyte growth (eutrophication) and 

removing large predators, potentially freeing smaller predators to reduce grazer populations 

(Valentine and Duffy 2006, Duffy et al. 2015).

The dual threats of nutrient enrichment and grazer reduction have led to a number of 

experiments to identify which has more severe implications for eelgrass ecosystems. Generally, 

this question has been addressed using factorial manipulations crossing fertilization with either 

the inclusion or exclusion of predators using field cages. The results, however, have been mixed: 

some experiments have found evidence for stronger top-down control (Neckles et a1.1993,

Heck Jr. et al. 2000, Moksnes et al. 2008, Lewis and Anderson 2012), while others for stronger 

bottom-up control (McGlathery 1995, Heck Jr. et al. 2006), and still others have found relatively 

equivalent (Douglass et al. 2007) or contrasting effects (Baden et al. 2010). More recent cageless
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exclusions of grazers in seagrass beds have supported stronger top-down influence (Cook et al. 

2011, Whalen et al. 2013, Myers and Heck Jr. 2013, Reynolds et al. 2014, Duffy et al. 2015), 

while omitting many of the artifacts associated with cage exclusions (Douglass et al. 2007).

These experiments also reveal that there are contingencies relating to top-down vs. 

bottom-up control that have been uncovered over two decades of investigation. For instance, 

the presence of omnivorous grazers (Heck Jr. et al. 2000) and predators (McGlathery 1995, Heck 

Jr. et al. 2006) can circumvent trophic cascades by feeding directly on the seagrass itself. The 

degree of top-down control has also been shown to vary temporally and along environmental 

gradients. Neckles et al. (1993) found stronger top-down control during summer versus spring 

and fall as a consequence of higher ambient nutrient concentrations, lower temperatures, and 

lower grazer densities, and Whalen et al. (2013) showed that the effect of grazer reduction 

changed on the scale of weeks, commensurate with the sustained application of the 

experimental treatment and the natural senescence of Z. marina in this region. Finally, Baden et 

al. (2010) showed that control switched from top-down to bottom-up along an increasing 

salinity gradient. In sum, these results would suggest a pivotal but context-dependent role for 

top-down control in temperate seagrass beds, a conclusion also reached in a meta-analysis of 34 

nutrient enrichment and/or grazer removal experiments by Hughes et al. (2004).

Recent experiments have built on this tradition by exploring how biological diversity and

the degree of consumer control in seagrass systems. Duffy et al. (2001,2003,2005) showed

positive effects of grazer species richness on grazer and, in some cases, eelgrass biomass, and

negative effects on epiphyte biomass in experimental mesocosms. The effects of diversity

appear to be robust to nutrient, temperature, and freshwater perturbations (Blake and Duffy

2010,2012), and have recently been shown in in situ experiments conducted at 15 field sites

across the northern hemisphere (Duffy et al. 2015). There is growing recognition, however, that
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species richness is a coarse measure which does not capture that some species vary widely in 

their ecological strategies, while others vary little. Seagrass fauna is no exception, and recent 

experimental evidence suggests that such ecological differences can be elucidated through the 

use of functional traits, aspects of the organism's biology, physiology, and life history that define 

how they interact with their environment and with each other (sensu Diaz et al. 2013). For 

example, Best and Stachowicz (2012) showed that several species of mesograzers vary in both 

their consumption rates and their susceptibility to predation, and only by incorporating that 

information were they able to sufficiently explain natural abundances of different grazers in 

local eelgrass beds. Similarly, complementarity in grazer consumption rates better explained 

variation in primary production than either species richness or phylogenetic diversity in 

experimental eelgrass mesocosms (Best et al. 2013). Lefcheck and Duffy (2015) showed that 

multiple functional traits better predicted standing stock biomass in an experimental estuarine 

food web than species richness. Together, these studies suggest that the diversity of functional 

traits may provide substantial additional insight into top-down control of seagrass ecosystems 

beyond what is gained through species richness.

While controlled experiments such as those summarized above are ideal for rigorously 

disentangling whether top-down control is possible, their simplified design and often short 

durations do not allow them to address the importance of top-down control in the face of long

term, natural variation in predators, resources, and the abiotic environment (Srivastava and 

Vellend 2005, but see Neckles et al. 1993). Temperate eelgrass beds can experience spatial and 

temporal variability in community properties (Nelson et al. 1982, Nakaoka et al. 2001, Douglass 

et al. 2010). Long-term monitoring of both environmental and biological variables is a relatively 

untapped resource with respect to this question (Gamfeldt et al. 2014, but see Jorgensen et al. 

2007, Douglass et al. 2010), and advanced statistical tools, such as structural equation modeling,
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now exist that help to rigorously disentangle both the relative contributions and the 

directionality of complex relationships in natural systems (Grace et al. 2007).

Here, we utilize a 15-year observational dataset on a temperate eelgrass bed at 

Goodwin Islands in the York River Estuary, Chesapeake Bay, USA to evaluate the relative 

strength of top-down vs. bottom-up control on community properties, with a specific emphasis 

on the role of grazer diversity. The York River Estuary is a dynamic system characterized by 

intense seasonal variation in abiotic properties. Temperatures range annually from 0°C to in 

excess of 30°C, and freshwater pulses drive seasonal changes in salinity, turbidity, and water 

column nutrients (Moore et al. 1997, Douglass et al. 2010). Specifically, we wanted to: (1) 

characterize inter- and intra-annual patterns in eelgrass community properties and diversity; 

and (2) understand whether there was any signal of biological control in light of the natural 

variation in both abiotic forcing and nutrient resources, as found in controlled experiments (e.g., 

Duffy et al. 2003,2005). This analysis builds substantially on the effort by Douglass et al. (2010), 

which reported on the first 8 of the 15 years of this dataset. Here, we incorporate 218 additional 

mesograzer samples, 542 additional epiphyte samples, 551 additional predator surveys, and 524 

sediment core samples.

Methods

Location

We conducted surveys at the Goodwin Islands National Estuarine Research Reserve at the 

mouth of the York River Estuary, Chesapeake Bay, USA (37.22 N, -76.39 W) (Fig. 1). Goodwin 

Islands is a 3.15 km2 salt-marsh archipelago that is fringed by intertidal flats and subtidal 

seagrass beds extending to 1-m mean-low-water depth. The seagrasses include the dominant 

eelgrass Zostera marina, with intermittent mixed stands of the widgeongrass Ruppia maritima.
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The area is closed to development but remains open for commercial and recreational fishing. All 

community data were collected from a sheltered cove on the southeastern side of the island. 

Sampling was conducted once a month from approximately March to November, to coincide 

with the natural annual cycle of eelgrass growth and senescence in this region (Moore and Jarvis

2008). In all, 125 dates were sampled across 15 years.

Environmental Data

Goodwin Islands have been continuously monitored for water quality since 1995 by the 

Chesapeake Bay National Estuarine Research Reserve Systems (CBNERRS, 

http://www.vims.edu/cbnerr/monitoring/index.php). Water temperature, salinity, pH, dissolved 

oxygen, and turbidity are recorded at 15-minute intervals from a permanent monitoring station 

located on the southeastern shore of the island at approximately 1.5-m mean-low-water by a 

Yellow Springs Instruments (YSI) 6600 data sonde. Since 2002, these data are supplemented 

with monthly sampling of water column nutrient concentrations (nitrate, nitrite, ammonium, 

and phosphate) by CBNERRS staff. Additional meteorological data, including photosynthetically 

active radiation (PAR), have been continuously measured since 1998 at a separate permanent 

CBNERRS monitoring site by a Campbell Scientific UT-10 meteorological station, located 

approximately 35 km northwest of Goodwin Islands at Taskinas Creek. All data are publicly 

available at: http://cdmo.baruch.sc.edu/get/export.cfm. For all subsequent analyses, we utilized 

an average value of the environmental variables in the 30 days preceding the eelgrass sampling, 

with the exception of water column nutrients, which were averaged monthly according to the 

sampling protocol.

Biological Sampling Design

Community variables were sampled using two 50-m transects parallel to the shore, one

at the innermost edge of the bed (inshore) and one at the outermost edge (offshore). A
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stratified random draw was used to select five sampling 'stations' along each transect in 10-m 

bins. Since 1998, the Marine Biodiversity Lab (MBL) at the Virginia Institute of Marine Science 

has conducted grab samples to characterize epifauna associated with grass canopy and dipnet 

sweeps to characterize small mobile predators at each sampling position. In 2001, the MBL 

began to take samples to estimate epiphytic chlorophyll-o (chl-a) on grass blades, and in 2004, 

they began to take sediment cores to quantify above- and belowground seagrass biomass. Thus, 

for all dates post-2004,10 samples were taken (five for each transect) for each of: (1) epifaunal 

grab samples; (2) predator dip-net sweeps; (3) epiphytic chl-o; (4) biomass cores. Here, we 

present data for 814 epifaunal samples from Apr 1998 to May 2012,1,112 predator sweeps 

from May 1998 to Nov 2013,1,305 chl-a samples from Sept 2001 to Nov 2013, and 803 biomass 

cores from March 2004 to Nov 2013.

Seagrass Biomass

Biomass cores consisted of a 15-cm PVC tube inserted approximately 15-cm into the 

sediment. Cores were taken even if no apparent aboveground growth was present. In the lab, 

seagrasses were identified to species (Z. marina or R. maritima), and blades and rhizomes were 

separated, dried, and combusted at 450CC to obtain biomass in g AFDM.

Epiphytic Algal Biomass

At each station along the transect line, a single shoot (~5 blades) was collected. In the

lab, all fouling material was scraped off both sides of each blade and collected on Whatman 

glass fiber filters. The surface area of the blades was then measured using a Li-Cor 3100 area 

meter. To estimate epiphytic algal biomass, we conducted chl-a extraction in 20-mL 90% 

acetone at -20°C for 24 hours, after which time the extract was passed through a 0.45-pm 

polytetrafluoroethylene membrane filter and absorbance was measured at 480,510, 630,647, 

and 750 nm using a Shimadzu UV-1601 spectrophotometer. Epiphytic algal biomass in pg was
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then estimated using the trichromatic equations for chl-a in Jeffrey and Humphrey (1975), and 

scaled to 2*the surface area in cm2 of the grass blades.

Epifaunal Surveys

From 1998 to early 2004, epifaunal samples were taken with a 12-cm diameter, 50-cm 

long acrylic core tube. The tube was placed over a stand of seagrass with one end flush against 

the bottom. Scissors were used to cut the blades at the base of the tube, and the tube was 

inverted to flush the grass and associated fauna into a 500-pm mesh bag placed over the other 

end. Beginning in April 2004, epifaunal samples were taken using a grab sampler placed around 

the grass canopy, cut as before, and emptied in a 500-pm mesh bag (Virnstein and Howard 

1987). The grab sampled a 20 x 20 cm area of the bottom, and previous analyses have shown no 

difference between the amount of aboveground biomass sampled between the core tube and 

the grab sampler (P = 0.21, Douglass et al. 2010). Epifaunal samples were immediately frozen at 

-20°C. At a later date, samples were thawed, and plant material and larger invertebrates 

separated out, dried at 60°C, and combusted at 450°C to obtain ash-free dry mass (AFDM). 

Smaller epifauna were passed through a series of nested sieves (8.0, 5 .6 ,4 .0 ,2 .8 ,2 .0 ,1 .4 ,1 .0 , 

0.71, and 0.5-mm), identified to species, and counted. Abundances for each species in each 

sieve size class were used to estimate biomass in mg AFDM using the equations in Edgar (1990).

Predator Surveys

At each station along the transect, a 5-m subtransect line was run out perpendicular to 

the main transect. A dipnet with a 52-cm wide mouth was swept once along the subtransect to 

sample invertebrate and fish mesopredators living in the grass bed. At the end of the 

subtransect, all predators were identified to lowest possible taxon, usually species, counted, and 

released.

79



Community Diversity

To understand changes in species vs. functional diversity, we compiled data on six

functional traits (Table SI). The traits included indicators of resource acquisition, growth and

reproduction, defense, and habitat use, all of which have been proposed as key traits in marine

invertebrates (Bremner et al. 2003,2006a, 2006c, 2006b, Bremner 2008) and fishes (Villager et

al. 2010, Stuart-Smith et al. 2013, Lefcheck et al. 2014). The full trait data for all species are

given in Table A l, Appendix A.

To quantify functional diversity, we chose a multivariate index of functional diversity: 

Rao's quadratic entropy (Rao's Q, Rao 1982). It is calculated as:

where S is the number of species (richness), p, is the relative abundance of species i, pj is the 

relative abundance of species and dy is the functional distance between species / and j. Q is 

therefore the average difference between individuals in a sample weighted by their relative 

abundances. Rao's Q is a specialized case of general entropy, which can be used to derive many 

other diversity indices, including Shannon and Simpson diversity. When relative abundances are 

included, Rao's Q is the functional equivalent of Gini-Simpson (or inverse Simpson) diversity 

(Pavoine et al. 2004). However, presence-absence data can be used in place of relative 

abundances, in which case Rao's Q is the functional equivalent of species richness and is simply 

the average functional dissimilarity among all species present in the community, regardless of 

how abundant they are. To make the values of Rao's Q comparable to species richness, we 

conducted the transformation proposed in Jost (2006):

s—i  s

(1)
i=1 j —l+l
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Q e f f  ( 1  - Q )  (2)

This value represents the 'effective number' of species in the sample, if all species were equally 

abundant and maximally functionally distinct.

To derive functional distances to be used in the calculation of Rao's Q (Eq. 1), we 

calculated Gower distances (Gower 1971), using the correction from Podani (1999) to account 

for ordered categorical traits (Table 1). Because values of Rao's Q can be maximized when fewer 

than the maximum number of functional types are present unless distances are ultrametric 

(Pavoine et al. 2005), we employed hierarchical agglomerative clustering to produce an 

ultrametric functional dendrogram (sensu FD, Petchey and Gaston 2002). To account for the 

sensitivity of the dendrogram to the clustering algorithm used, we employed the approach by 

Mouchet et al. (2008) of using multiple algorithms and choosing the one that best preserves the 

original, non-ultrametric distances (M6rigot et al. 2010). Finally, we extracted the ultrametric 

distance matrix from the dendrogram and scaled by the maximum value so that all values were 

scaled between 0-1 before calculating Rao's Q.

Statistical Analyses

We calculated means and standard errors across all replicates (both inshore and 

offshore) for a given sampling date to examine temporal trends in community properties, 

including biomass, abundance, and diversity. For intra-annual trends, summary statistics were 

calculated across all years for a given month.

For certain environmental variables, such as turbidity, PAR, and water column nutrients, 

some dates were unmeasured or values were discarded due to low confidence in the reported 

values by the CBNERRs staff. To leverage the full power of the biological dataset, we used 

random forest (RF) analysis to impute missing environmental variables using the remaining
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environmental variables, month, and year. RF analysis is a machine-learning technique that 

builds a number of regression trees using a bootstrapped portion of the full data, challenges 

them with the unused data to determine how well they classify variables, then summarizes the 

classification scheme that is most represented across all trees in the forest (Breiman 2001). An 

RF approach is ideal because it inherently deals with non-normal relationships and correlations 

among predictors, which is often the case with environmental variables. After imputation, we 

summed the concentrations of ammonium, nitrates and nitrites, and phosphates to fully 

characterize water column nutrients. We conducted a similar random forest imputation 

procedure for several unobtainable values of the trait 'mean length' using the remaining traits 

as predictors. All random forests were conducted using the randomForest function in the 

extendedForest package in R (Liaw and Wiener 2002).

Values of seagrass biomass from the early epifaunal samples were reported only in units 

of dry mass, and not ash-free dry mass. We imputed the missing values of AFDM using a 

generalized additive mixed model (GAMM) constructed from the samples for which both DM 

and AFDM were reported. In this case, we used a GAMM to incorporate a potential non-linear 

relationship between DM and AFDM by modeling DM as non-parametric smoothing function 

(Wood 2006). We also allowed the linear slope of DM to vary by the random effect of sampling 

date. The GAMM was run using the gamm function in the mgcv package (Wood 2011).

We used non-metric multidimensional scaling (NMDS) to visualize community structure 

throughout the year. NMDS collapses multivariate community data into a reduced number of 

dimensions based on dissimilarity of species' rank abundances (Faith et al. 1987). We used 

Wisconsin transformation on the species-by-site matrix, then characterized community 

dissimilarity using Bray-Curtis distances. The distance matrix was further square-root

transformed to reduce the influence of highly abundant species (Legendre and Gallagher 2001).
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We conducted the NMDS using the function metaMDS in the vegan package (Oksanen et al. 

2013). To statistically quantify differences among species composition through time, we 

conducted PERMANOVA, which partitions variance in the community dissimilarity matrix as a 

function of some predictors, in our case season, and uses random permutations of the data to 

assess significance (McArdle and Anderson 2001). We incorporated years as strata in the 

PERMANOVA to account for differences in the absolute dissimilarity among communities among 

years (to be expected, for instance, between pre- and post-die off years). We used the function 

adonis in the vegan package to conduct the PERMANOVA. Species were excluded from 

community analyses if they exhibited £10 individuals across the entire dataset.

Finally, we used structural equation modeling (SEM) to relate environmental and 

community variables to understand the drivers of seagrass ecosystem properties. SEM is a type 

of path analysis that combines relationships among multiple interconnected variables in a single, 

testable causal network (Grace 2006). A variant of SEM called piecewise (or directed acyclic)

SEM constructs the causal network by piecing together a series of multiple regressions (Shipley 

2000), rather than by simultaneously optimizing the observed and predicted variance- 

covariance matrix for the entire model (e.g.,Grace 2006). Recently, this approach has been 

generalized to incorporate non-random responses and hierarchical data in a mixed effects 

framework (Shipley 2009,2013), hence making it the ideal approach for time series data, where 

samples are temporally nested as well as autocorrelated.

We invoked the hypothesis-testing mode of SEM, where models are constructed using a

priori knowledge of the system. We constructed a single model linking environmental and

biological variables, using predictions generated from prior published experiments and

observations (Fig. SI). In particular, we were interested in comparing the magnitude of the top-

down effect of grazers on epiphytes, and the corresponding bottom-up effect of nutrients. A
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further explanation of the rationale behind the model paths can be found in Appendix B. We ■ 

also fit the same model for spring, summer, and fall to understand how the relative influence of 

the paths changed throughout the year.

For each of the individual regressions that make up the piecewise model, we 

constructed linear mixed effects models. We specified both a nested random structure of month 

within year, allowing only the intercept to vary, and an autoregressive 1 (AR1) correlation 

structure identical to the random structure to account for observed temporal autocorrelation. 

Model assumptions of homogeneity of variance and normality of errors were investigated 

visually, and we logio-transformed some variables to better meet test assumptions. Individual 

model fit was also assessed by calculating pseudo-R2 values corresponding to the fixed effects 

only (marginal R2) and fixed and random effects (conditional R2) (sensu Nakagawa and Schielzeth 

2012). R2 values were calculated using the function rsquared.glmm

(https://github.com/islefche/rsauared.glmer). Where R2 values are reported, we report the 

marginal value with the conditional value in parentheses. We set a threshold of a  = 0.10 to 

assess significance of individual paths to account for the tremendous intra-annual variation in 

both biotic and abiotic parameters observed in this dataset.

To assess the overall fit of the SEMs, we conducted tests of directed separation (d- 

separation) (Shipley 2000). This technique tests the significance of missing paths -  paths that 

could have been included in the mode but were not -  and uses the resulting p-values to 

construct a Fisher's C-statistic. This statistic is ^-distributed and can be compared to the null 

expectation with 2k degrees of freedom (where k is the number of missing paths) (Shipley

2009). Individual mixed effects models were constructed using the Ime function in the nlme 

package (Pinheiro et al. 2013). Goodness-of-fit tests for piecewise SEM were conducted using
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the piecewiseSEM package (https://github.com/islefche/piecewiseSEM). All analyses were 

conducted in R version 3.1.2 (R Development Core Team 2015).

Results

Environmental Variables

Over 15 years, we witnessed little interannual variability in environmental variables

(error bars, Fig. 1). Temperature generally increased through the spring, peaked in the summer,

and tapered off in the fall (Fig. la ). Salinity increased marginally throughout the year but

remained relatively constant around 18 parts per thousand (Fig. lb). Turbidity increased through

the spring and summer and peaked in September, dropping off quickly by November (Fig. lc).

PAR followed a similar pattern to temperature, peaking in the mid-summer (Fig. Id). Finally,

nutrient concentration -  a composite index of nitrate, nitrite, ammonium, and phosphates -

increased steadily throughout the year, peaking slightly in June and then again in November

(Fig. le ). Correlations among environmental variables was generally low, ranging from r = -0.02

between nutrients and both temperature and PAR, and r  = 0.53 between temperature and

turbidity.

Primary Producer Biomass

Eelgrass aboveground biomass generally increased during spring, peaked in June, and

then declined rapidly, reaching its lowest point in late fall (Fig. 2a). This pattern corresponds

with the well-described annual cycle of senescence in Z. marina in this region (Orth and Moore

1986, Douglass et al. 2010). Eelgrass belowground biomass generally tracked aboveground

biomass, with a peak in early- to mid-summer, but spring and fall declines were less exaggerated

than for aboveground biomass (Fig. 2b). Estimates of epiphyte biomass per unit area were

lowest when eelgrass biomass was highest, and increased steadily throughout the year, peaking
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in November (Fig. 2c). This system experienced two previously documented die-off events in 

2005 and 2010 in response to extreme temperatures (Moore and Jarvis 2008). Our dataset 

revealed that the die-off manifested in aboveground growth only (Fig. 3a), with belowground 

biomass largely unaffected, although we note that we did not distinguish between living and 

dead tissue, only the presence of rhizomes (Fig. 3b). We also found highest epiphyte loading per 

unit area during these times (Fig. 3c).

Epifaunal Surveys

Total mesograzer abundance and biomass per unit plant material tracked each other 

closely, increasing steadily throughout the year with a small dip in June (Fig. 2d,e). From year-to- 

year epifaunal biomass was idiosyncratic, but did noticeably spike during and immediately 

following the 2005 die-off event (Fig. 3d,e). Individual grazer species showed marked seasonal 

trends, with C. penantis, the gammaridean amphipod Gammarus mucronatus, and the 

ampithoid amphipod Cymadusa compta comprising the bulk of community biomass in the 

spring, the ampithoids C. compta and Ampithoe longimana and the amphipod Elasmopus levis in 

the summer, and the isopods Erichsonella attenuata and Idotea balthica in the fall (Fig. 4). 

Finally, the grazing gastropod Bittiolum varium showed no trends seasonally (Fig. 4b), although 

overall it comprised much less of total community biomass and abundance (Table 1). It did, 

however, show a marked increase in abundance following the 2010 die-off (Fig. S2). Other 

notable interannual trends include the disappearance of I. balthica for several years following 

the 2005 die-off, and the increase in C. compta following both die-offs (Fig. S2).

Predator Surveys

Total predator abundance peaked in the late spring to early summer (Fig. 2f). This trend 

was driven largely by high abundances of the grass shrimp Palaemonetes spp. in May and June 

(Fig. 5c). Abundance of pipefishes Syngnathus spp. peaked in July, and the sand shrimp Crangon
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septimspinosa peaked in September (Fig. 5b,d). Abundance of juveniles of the blue crab 

Callinectes sapidus was more variable, with peaks in late spring and fall (Fig. 5a). Over the 15 

year dataset, predator abundances tended to be overall much lower after the winter of 2003 

(Fig. 3f). Further investigation revealed that this was caused by declines in both C. sapidus and C. 

septimspinosa post-2003 (Fig. S3).

Community Composition

Non-metric multidimensional scaling revealed strong seasonal changes in total

community composition based on relative abundances (Fig. 6). For grazers, spring communities 

were clearly distinct from summer and fall communities (Fig. 6a). PERMANOVA revealed that 

these seasonal transitions were highly significant [Fzsos = 33.77, P<  0.001). Predators 

demonstrated similar but more diffuse patterns, with spring communities being more distinct 

from summer and fall ones (Fig. 6b). Despite this, the seasonal differences in predator 

composition were also highly significant (F2,1057 = 12.09, P < 0.001). Stress -  a measure of 

agreement between the multidimensional distance matrix and the two-dimensional 

reproduction -  was between 0.1-0.2 for all NMDS analyses, implying that the above inferences 

are a fair representation of multivariate community composition in reduced dimensions.

Community Diversity

In all, 114 unique taxa of invertebrates and vertebrates were identified across all 15 

years, although only 80 species were represented by >10 individuals. Of these, we identified 72 

with sufficient taxonomic resolution (at least to family) and collected trait data for the 

calculation of functional diversity (Table SI). When we plotted the most abundant grazers in 

reduced trait space using principal coordinates analysis, we noted that the gammaridean and 

ampithoid amphipods, caprellid amphipods, and two isopods grouped together in three discrete 

clusters (Fig. 7a). The lone abundant gastropod grazer, B. varium, existed in its own section of
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trait space, reflecting its calcareous shell, small body size, and unique morphology compared to 

the crustaceous grazers (Table A l, Appendix A). In contrast, the most abundant predators were 

far less functionally redundant, with only the two shrimps, Palaemonetes spp. and C. 

septemspinosa, grouping together (Fig. 7b).

Across all sampling dates, the mean richness per epifaunal grab sample was 9.4 ± 0.2 

(standard error of the mean), of which 5.2 ± 0.1 species were strictly classified as grazers (Table 

SI). The mean functional trait diversity of epifaunal grabs was overall much lower at 2.8 ± 0.03, 

and was 1.8 ± 0.01 for grazers. The mean predator richness per dip-net sweep was 2.5 ± 0.08, 

and the mean predator functional diversity was nearly equivalent at 2.1 ± 0.05. Mean species 

richness of grazers increased throughout the spring and peaked in July, with another lesser peak 

occurring in October. In contrast, grazer functional diversity was overall much lower, and 

remained fairly constant throughout the year (Fig. 8a). As such, there was only a moderate 

positive correlation between grazer species richness and functional diversity (Spearman rank 

correlation r = 0.56). As with grazer richness mean predator richness peaked in July with a 

smaller peak in October. However, predator functional diversity tracked predator richness much 

more closely than grazer diversity, although it was also overall lower, particularly in the summer 

(Fig. 8b). This equivalence is reflected in the strong correlation between predator richness and 

functional diversity (r = 0.98). Functional diversity appeared to be less variable through time, a 

pattern which can be better visualized by plotting the coefficient of variation (CV = 

mean/standard deviation). In addition to being fairly constant, grazer functional diversity was 

indeed much less variable based on examination of CVs (Fig. S4a). In contrast, predator 

functional diversity was only slightly less variable than species richness (Fig. S4b).
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Top-Down vs. Bottom-Up Control

To test for seasonal differences top-down and bottom-up control, we fit the full

structural equation model (SEM) described in Figure SI to the spring, summer, and fall samples. 

The spring model was an acceptable fit to the data (Cio= 22.05, P = 0.34, N = 200, Fig. 9). The 

strongest driver of any property was the positive effect of temperature on predator abundance, 

based on comparison of standardized regression coefficients. Temperature also positively 

affected grazer abundance and eelgrass aboveground biomass. The second strongest effect was 

among grazer abundance and biomass, and grazer richness and functional diversity, reflecting 

the strong dependence of these properties on one another. Contrary to predictions from 

experiments, there was no relationship between grazer diversity and any ecosystem properties. 

With respect to trophic control, there was a moderate and significant top-down effect of 

predators on grazer abundance, but not biomass. Predator abundance also increased grazer 

functional diversity, albeit only slightly. There was also a negative effect of grazer abundance on 

eelgrass aboveground biomass, which was opposite to our expectation. Finally, there were no 

relationships between any physical or biological variables and estimates of epiphyte biomass, 

and no bottom-up effects of nutrient concentration on either epiphytes or eelgrass. To better 

facilitate comparisons between seasons, paths corresponding to top-down and bottom-up 

control, their standardized estimates, and significance are summarized in Table 2.

The model fit for the summer replicates was adequate (Cio = 18.81, P = 0.53, N = 142,

Fig. 10). Once again, environmental variables, principally a negative effect of turbidity on 

predator abundance and temperature on eelgrass aboveground biomass, and a positive effect of 

temperature on grazer abundance, were the strongest effects observed in the SEM. The top- 

down effect of predators on grazer abundance was not significant (and thus is removed in Figure

10), but it did significantly reduce grazer functional diversity. In turn, grazer functional diversity
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actually decreased grazer biomass, implying an indirect positive effect of predators on grazer 

biomass. Grazer richness was unrelated to grazer biomass, but did have a weak but significant 

direct positive effect on epiphyte biomass. As with the spring model, there were no additional 

controls on epiphyte biomass (except grazer richness). There was, however, a direct positive 

effect of grazer biomass on aboveground eelgrass biomass that was not mediated through 

epiphytes. Also as in spring, there was no bottom-up effect of nutrients detected in this model 

(Table 2).

The fall model fit the data extremely well despite the low number of replicates (Cio 

=6.19, P = 1.00, N = 96, Fig. 11). Overall, there was much weaker environmental control in this 

model, with the strongest effects instead occurring among grazer abundance and both richness 

and biomass. There was once again a significant negative effect of predators on grazer 

abundance, although it was slightly weaker than in the spring (Fig. 9). There was also a 

significant but very weak positive effect of predators on grazer biomass. As with all models, 

there were no controls on epiphyte biomass. For the first time, there was a strong negative 

bottom-up effect of nutrient concentration on eelgrass biomass, and on grazer functional 

diversity. There were not, however, any significant top-down paths acting on eelgrass biomass, 

as in the spring model (Fig. 10).

Integrating across all dates and seasons and fit the same SEM (Cio = 13.04, P = 0.88, N = 

438) revealed similar trends, with strong environmental forcing by temperature and PAR, strong 

relationships among grazer variables, except between diversity and biomass, moderate top- 

down control by predators on grazer abundance, and no biological control of epiphytes (Fig. S5). 

There was also a direct positive effect of grazer biomass on eelgrass aboveground biomass, but 

a 1.4x stronger bottom-up effect of nutrient concentration (Table 2). Thus, it appears that, on
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the whole, the stronger nutrient effect on eelgrass biomass later in the year negates the grazer 

effects earlier in the year. For all SEMs, we provide the full coefficient tables in Appendix C.

Discussion

Across 15 years of the survey data, we found alternating evidence for top-down versus 

bottom-up control of ecosystem properties in a temperate eelgrass bed. When biological 

control was present, however, it was almost always exceeded in magnitude by environmental 

effects, particularly temperature, PAR, and turbidity. This near-overwhelming effect of 

environment should come as no surprise given the tremendous variation in abiotic properties in 

the Chesapeake Bay (Douglass et al. 2010). In fact, this system has, "one of the most extreme 

annual temperature ranges known for the world's coastal ecosystems" (p. 3, Murdy et al. 2002). 

That we were able to recover any biological signal at all is actually quite remarkable in light of 

such immense environmental variation. Given the relative equivalence of the top-down and 

bottom-up models and the large effect sizes for abiotic versus biotic variables, is it fair to 

conclude that this system is a total consequence of environmental forcing and there is no role 

for biology?

The reality probably lies somewhere in between, with the levels of environmental 

variables determining the degree of biological control. For instance, we found that significant 

top-down control by predators on grazers was strongest in spring and fall and absent in the 

summer (Table 2). This pattern corresponds with minima in temperature and turbidity (Fig. 

la,c), as well as eelgrass biomass (Fig. 2a). Together, these results suggest that predators 

sampled by our gear may prefer to forage in periods of low stress and high visibility enhanced by 

low eelgrass density, a pattern which is mirrored by other, more mobile predators not captured 

by our dipnet sweeps, such as the silver perch Bairdiella chrysoura (Sobocinski et al. 2013). This
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pattern may also be a consequence of reduced eelgrass biomass during the spring and fall 

limiting the available habitat for grazers at the same time when less stressful environmental 

conditions encourage the abundance of predators (Fig. 2a,f). Unfortunately, SEM is currently 

unable to independently partition the reciprocal effects of grazers on eelgrass and eelgrass on 

grazers (Shipley 2000), although future developments may one day allow this kind of rigorous 

analysis (Jim Grace, pers. comm.). Another explanation is that high secondary production during 

the warm summer months replenished grazer populations faster than they were reduced by 

predators (Douglass et al. 2010). For example, the gammaridean amphipod G. mucronatus has 

been shown to reproduce in as few as three weeks (Fredette and Diaz 1986), translating to 

tremendous population growth for many of these epifaunal invertebrates at high temperatures 

(Fredette et al. 1990).

Top-down control by grazers on eelgrass was highest in the summer (Table 2). This 

pattern appears to be a consequence of reduced predator abundance (Fig. 2f), high 

temperatures increasing grazer abundance (Fig. 10), presumably through increased metabolic 

rates (Brown et al. 2004), and increasing resources (Fig. 2c). This result agrees with experimental 

evidence showing stronger grazer control in early summer (Neckles et al. 1993), and with other 

experimental manipulations conducted during this time period in this system (Douglass et al. 

2007, Whalen et al. 2013, Reynolds et al. 2014, Duffy et al. 2015). It is important to note that we 

refer to the direct effect of grazers on eelgrass, which contradicts the prevailing paradigm that 

grazers reduce epiphytes, which then indirectly benefits seagrasses (Valentine and Duffy 2006). 

One explanation may be that grazers are so efficient at reducing epiphytes, that the relationship 

statistically manifest directly between grazers and eelgrass. It may also once again represent an 

untestable reciprocal relationship, with grazer biomass enhanced by the increase availability and 

complexity of eelgrass habitat, rather than grazers affecting eelgrass. However, given the litany
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of experimental and observational evidence focusing on the opposite relationship, we have 

chosen to report the effect as grazers affecting eelgrass.

There are two additional reasons why biological control might be more evident in the 

summer than in other parts of the year. First, the most abundant grazer in springtime was the 

caprellid amphipod C. penantis (Table 2, Fig. 4c). While it is known to ingest epiphytic 

microalgae (Caine 1974, Duffy 1990), and we classified it as a grazer (Table Bl), C. penantis is 

also capable of suspension feeding. Although the exact conditions under which C. penantis 

employs one feeding mode versus the other are unknown, it is possible that even a small 

reliance on suspension feeding by this highly abundant grazer during the earlier months of the 

year may have failed to yield a significant relationship between epiphytes and grazers (Fig. 9). 

Second, epiphytic growth may be have been unable to overtake the rapid growth and turnover 

of eelgrass substrate during the early parts of the year (Fig. 2a), particularly with reduced water 

column nutrients and light (Fig. ld,e). Thus, low epiphyte levels, particularly in spring, may be 

more a function of dilution per unit leaf area and decreased resources than any impact by 

grazers.

We only observed evidence for bottom-up control later in the year, with nutrient

concentration having a direct negative effect on eelgrass aboveground biomass in the fall (Fig.

11). As with grazers, there was no direct effect of nutrients on epiphytes, suggesting that

epiphyte growth is either efficiently transferred up the food web, or quickly depresses eelgrass

biomass. There was, however, a significant positive effect of photosynthetically active radiation

(PAR) on grazer biomass in the fall (Fig. 11), which is often implicated in primary production

(e.g., Monteith 1972). Thus, PAR may be an additional proxy for resources and this path may be

interpreted as a second bottom-up signal, this time on consumers. There was also a significant

but negative effect of PAR on grazer abundance in the spring (Fig. 9). We suggest that this path
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may represent an indirect effect of PAR driving eelgrass growth diluting grazer abundance per 

unit plant material, which we were again unable to test due to the inability to model the 

reciprocal effect of grazers on eelgrass and vice versa. This hypothesis may also explain the 

negative effect of grazer abundance on eelgrass biomass during the same period (Fig. 9).

The stronger bottom-up effect of nutrients in the fall is consistent with previous 

experimental manipulations in this system (Neckles et al. 1993). The most likely explanation for 

this effect is the increasing nutrient concentration throughout the year (Fig. le ), and the natural 

decline in eelgrass habitat in the fall (Fig. 2a) and increase in predation (Fig. 11) reducing the 

potential for top-down control by grazers. Previous experiments have also implicated light as 

the primary driver of eelgrass decline by mediating epiphyte growth (Moore and Wetzel 2000).

In contrast, we did not find any predictable relationship between PAR (or any other 

environmental variable) and epiphytes, nor did we see any direct negative effects of PAR on 

eelgrass biomass that may be suggestive of this hypothesis.

We rarely observed a significant direct path between predator abundance and grazer

biomass, only grazer abundance (Fig. 9,10). Similar epifaunal invertebrate communities have

been shown to be limited by 'resource ceilings/ where experimental assemblages converged on

consistent values of secondary production regardless of habitat and composition (Edgar 1993).

Under predation, the communities exhibited similar production but shifted their size structure

towards many smaller individuals (Edgar and Aoki 1993). In our case, it is possible that predators

reduced grazer abundances, but compensatory demographic responses prevented this effect

from manifesting in observed biomass. A more nuanced investigation of grazer community size

structure through time would shed light on this phenomenon, but, if true, would argue for a

more resource-controlled view. We did see a positive effect of predator abundance on grazer

biomass in the fall (Fig. 11). A likely explanation is that the predator community was dominated
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primarily by the sand shrimp C. septemspinosa in the fall (Fig. 5b), which is not known to be an 

important predator of epifauna and instead feeds on planktonic animals, primarily mysids (Price 

1962), at the same time when eelgrass senescence inflated the grazers per unit plant habitat.

Contrary to experimental evidence, we found no role for species richness or functional 

diversity in predicting grazer biomass in this system (Fig. 9,11), with the exception of the 

summer, where functional diversity was significantly decreased by predator abundance, and 

significantly reduced grazer biomass (Fig. 10). One possibility is that predators preferentially 

removed functionally unique grazers, reducing functional diversity. In turn, low functional 

diversity reduced complementarity, drove increased competition for resources among similar 

species, and ultimately reduced biomass production (Loreau 1998). A more likely explanation is 

that seasonal turnover in species composition yielded dominant species that were functionally 

similar, and that turnover corresponded with environmental conditions discouraging predator 

abundance, such as high temperatures and turbidity (Fig. 1,9). Indeed, the two ampithoids A. 

longimana and C. compta and the amphipod E. levis that dominated community biomass during 

the summer also overlapped significantly in their functional traits (Fig. 4 ,7a). This observation 

may also explain the lack of diversity effect at other points in the year. We witnessed very little 

variation in grazer functional diversity throughout the year (Fig. 8a, Fig. S4a), despite substantial 

turnover in community composition (Fig. 6a). Thus it may be that the high degree of functional 

redundancy among grazers buffered against predictable changes in grazer biomass independent 

of other factors, such as predators and environmental forcing. This may also explain the 

recovery of this system after the 2005 and 2010 die-off events, despite notable shifts in 

community structure (Fig. 2, Fig. 52). There was, paradoxically, a positive effect of grazer 

richness on epiphytes in summer (Fig. 10), although this could simply represent the community
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response to favorable conditions for epiphyte growth {Fig. 1), coupled with natural recruitment 

of new species to the system during this period (Fig. 8a).

The important question remains: why do experiments, several of which were conducted 

in this eelgrass bed (Douglass et al. 2007, Whalen et al. 2013, Reynolds et al. 2014), demonstrate 

stronger in situ effects of top-down control and diversity compared to this observational study? 

One explanation is time: these experiments are often conducted on the scale of weeks, which 

greatly restricts environmental variation. As shown in our SEMs, some aspect of environmental 

forcing was always a strong driver of ecosystem properties, regardless of seasons (Fig. 9-11, Fig. 

S5). However, this is a difficult hypothesis to evaluate as complex long-running experiments are 

often logistically unfeasible, and negative results are frequently unpublished. A complementary 

explanation is that experimental manipulations often decrease grazer community properties 

below what would occur naturally. This would certainly be the case in 'all-or-none' experiments 

where grazers are either present or absent (Douglass et al. 2007), but may also be true of in situ 

reductions that entirely exclude only certain taxonomic groups through the use of certain 

techniques (e.g., application of insecticides) (Whalen et al. 2013, Reynolds et al. 2014, Duffy et 

al. 2015). Even mesocosm experiments routinely employed only 3 species, on average (Gamfeldt 

et al. 2015). In contrast, we observed surprisingly little variation in grazer biomass within a given 

time point (Fig. 2e), and in grazer diversity throughout the year, holding around 5-6 species (Fig. 

8). Experimentally inflating variance around grazer abundance, biomass, and/or diversity may 

increase the chances of observing an effect on epiphytes, but may render inferences artificial 

when compared to actual effects in nature. Finally, we targeted only a small subset of the 

predator community using our dipnet sweeps. Had we more fully sampled predators, we may 

have witnessed even stronger top-down control on grazers, given the known diets of other 

mobile fishes that frequent this bed (Orth and Heck Jr. 1980, Sobocinski et al. 2013).
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Overall, this eelgrass community appears to be largely driven by abiotic variables, 

principally temperature and light. However, we did see comparatively weak but still significant 

biological control. Across all data points, there appeared to be strong bottom-up control 

through nutrients than top-down control by predators or grazers. However, when we parsed 

this effect by season, we found stronger top-down control earlier in the year switching over to 

stronger bottom-up control in the fall (Table 2). This approach emphasizes the dynamic nature 

of temperate estuaries, and the need for seasonal replication when designing long-term 

ecological surveys. We also observed high functional redundancy among the dominant grazer 

community, which may have explained the lack of significant diversity effects on grazer biomass 

after accounting for other constraints. Continued monitoring and processing of samples from 

this bed will provide valuable insight into the role of functional redundancy in sustaining this 

important coastal ecosystem in the face of increased temperatures, higher fishing pressure, and 

other coastal impacts.
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Tables

Table 1: Total abundance and biomass for epifaunal grazer species across all samples.

Species

Total 
biomass (mg 

AFDM)

Proportion 
of total 
biomass

Total
abundance

Proportion 
of total 

abundance

Erichsonella attenuata 17931.43 0.46 7543 0.10
Caprella penantis 9148.33 0.23 31986 0.40
Gammarus mucronatus 4589.53 0.12 7915 0.10
Ampithoe longimana 2149.70 0.06 10263 0.13
Idotea balthica 2086.24 0.05 1389 0.02
Cymadusa compta 1004.96 0.03 3283 0.04
Elasmopus levis 684.80 0.02 4357 0.06
Bittiolum varium 533.08 0.01 2609 0.03
Paracaprella tenuis 280.87 0.01 4081 0.05
Ampithoe valida 279.36 0.01 698 0.01
Hippolyte pleuracanthus 270.10 0.01 3898 0.05
Caprella equilibra 111.29 0 913 0.01
Dulichiella appendiculata 28.33 0 86 0
Ericthonius rubricornis 9.65 0 31 0
Melita nitida 7.07 0 35 0
Microdeutopus anomalus 2.75 0 31 0
Erichthonius brasiliensis 2.21 0 11 0
Paracerceis caudata 1.71 0 17 0
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Table 2: Comparison of standardized regression coefficients (+ /- standard error) for key top- 

down and bottom-up processes across all dates, and by season. Crosses (t ) indicate logio- 

transformed variables. Asterisks equal significant (* P < 0.10, * *  P< 0.01, * * *  P<  01). Significant 

value are bolded.

Process Predictor Response Spring Summer Fall All dates
Top- Predator Grazer -0.251 ± -0.116 1 -0.175 ± -0.125 ±
down abundancet abundancet 0.080** 0.093 0.070* 0.047**
Top- Predator Grazer biomasst 0.077 ± -0.127 ± 0.101 ± 0.0741
down abundancet 0.068 0.089 0.051* 0.036*
Top- Grazer Epiphyte -0.001 ± 0.004 ± -0.194 ± -0.061 ±
down biomasst biomasst 0.082 0.051 0.098 0.043
Bottom- Nutrient Epiphyte 0.113 ± -0.535 ± -0.219 ± 0.1941
up concentration biomasst 0.216 0.356 0.364 0.124
Top- Grazer Eelgrass 0.159 ± 0.229 ± 0.246 ± 0.1841
down biomasst aboveground

biomasst
0.098 0.114* 0.209 0.074*

Bottom- Nutrient Eelgrass 0.029 ± -0.086 ± -0.357 ± -0.2741
up concentration aboveground

biomasst
0.141 0.240 0.057* 0.125*
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Figure 1: Intra-annual trends in four major environmental variables. Points represent mean +/- 

1 standard error. Units for temperature are °C, salinity are PPT, turbidity is NTU, and nutrients 

represents the summed concentration of nitrate, nitrate, ammonium, and phosphate in mg/L.
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Figure 2: Seasonal trends in biological community variables. Points represent mean + /-1  

standard error. Units for (a,b) Zostera above- and belowground biomass are mg ash-free dry 

mass (AFDM); (c) microalgal biomass are pg cm'2; (d) grazer abundance are number of 

individuals; (e) grazer biomass are mg AFDM, and; (f) predator abundance are number of 

individuals.
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Figure 3: Interannual trends in biological community variables for the length of the survey.

Points represent mean + /-1  standard error. Units are the same as in Figure 2. Biomass cores for 

(a,b) Zostera above- and belowground biomass were not taken until spring 2004. Chlorophyll-o 

scraping to estimate (c) microalgai biomass were not taken until spring 2001.
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Figure 4: Seasonal trends in mesograzer estimated biomass (mg AFDM) for the eight most 

abundant mesograzers in the survey (Table 1). Points are logio-transformed mean per epifaunal 

grab sample + /-1  standard error.
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Figure 5: Seasonal trends in predator abundance for the four most abundant predators in the 

survey, representing >96% of cumulative abundance. Points are mean per dipnet sweep +/-1 

standard error.
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Figure 7: Principal coordinates analysis of (a) grazer and (b) predator functional traits. Labels

correspond to the relative position of species in multidimensional trait space. Labels are sized

corresponding to the proportional biomass of each species in the survey. Colors correspond to

the season of maximum biomass. Where mean biomass was not significantly different between

seasons, both seasons are reported.

113



a) Grazers

. & 0 -----------------------------------------

£§ b) Predators

2 -

Functional diversity 
-•-Species Richness

SeptMar May Jul Nov

Figure 8: Seasonal trends in species richness and functional diversity of (a) grazers and (b) 

predators. Points represent mean + /-1  standard error.
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Figure 9: Structural equation model relating environmental and biological variables in spring 

across all years. Black arrows represent significant positive paths, while red arrows represent 

significant negative paths. Non-significant paths have been removed for clarity. Values represent 

standardized regression coefficients (centered and scaled prior to regression). Variables marked 

with an asterisk (*) have been logio-transformed to better meet the assumptions of linear 

regression. Variables marked with a cross (+) have additional significant paths from the 

covariate representing total plant material in each epifaunal grab, but this variable has been 

removed for clarity.
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Figure 10: Structural equation model relating environmental and biological variables in 

summer across all years. Black arrows represent significant positive paths, while red arrows 

represent significant negative paths. Non-significant paths have been removed for clarity. Values 

represent standardized regression coefficients (centered and scaled prior to regression). 

Variables marked with an asterisk (*) have been logio-transformed to better meet the 

assumptions of linear regression. Variables marked with a cross (t) have additional significant 

paths from the covariate representing total plant material in each epifaunal grab, but this 

variable has been removed for clarity.
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Figure 11: Structural equation model relating environmental and biological variables in fall 

across all years. Black arrows represent significant positive paths, while red arrows represent 

significant negative paths. Non-significant paths have been removed for clarity. Values represent 

standardized regression coefficients (centered and scaled prior to regression). Variables marked 

with an asterisk {*) have been logio-transformed to better meet the assumptions of linear 

regression. Variables marked with a cross (+) have additional significant paths from the 

covariate representing total plant material in each epifaunal grab, but this variable has been 

removed for clarity.
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Supplementary Tables

Table SI: Functional traits used in the analysis, and their expected effect on assembly 

mechanisms.

Functional
Trait Units Description Interpretation Reference

Defense None, shell (chitin), shell Describes the Proxy for Bremner
(calcium carbonate), spines defense 

strategy of 
the organism.

palatability and 
the likelihood of 
consumption, and 
energy transfer 
through the food 
web.

20081

Body plan Anguilliform, articulate Describes the Proxy for habitat Bremner et
(laterally-compressed), body shape of preference and al. 20032,
articulate (subcylindrical), the organism. use; also for Bremner et
articulate (ventrally- palatability and al. 2006a3,
compressed), barrel, capped. the likelihood of Bremner et
conic, conic (elongate), conic consumption, and al. 2006b4,
(ovate), diffuse colonial, energy transfer Bremner
filiform, fusiform, globose. through the food 20081
hinged (laterally-compressed), web.
ventrally-compressed, worm
like (ventrally-compressed)

Feeding Detritivore, epiphytic grazer. Describes the Proxy for energy Bremner et
mode fitter feeder, omnivore, trophic level transfer through al. 20032,

predator (epibionts), predator of the the food web and Bremner et
(generalist), predator organism. potential for al. 2006a3,
(mollusks), predator Interactions. Bremner et
(polychaetes), suspension al. 2006b4,
feeder Bremner

20081
Maximum Continuous (mm) Describes the Proxy for potential Bremner et
length maximum contribution to al. 20032,

attainable community Bremner et
length of an production. al. 2006a3,
organism. Bremner et 

al. 2006b4, 
Bremner 
20081

Mean length Continuous (mm) Describes the Proxy for average Villager et
typical length contribution to eal. 2010s
d a n community
organism. production.

Development Asexual/sexual (broadcast). Describes the A proxy for Bremner et
mode sexual (broadcast), sexual reproductive dispersal ability al. 20032,

(brooder/broadcast), sexual strategy of and recruitment. Bremner et
(brooder/direct development), the organism. al. 2006a3,
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sexual (brooder/planktonic), 
sexual (brooder/broadcast), 
sexual (direct development), 
sexual (oviparous)

Bremner et 
al. 2006b4,
Bremner
20081

1Bremner, J. 2008. Species' traits and ecological functioning in marine conservation and management. 
Journal of Experimental Marine Biology and Ecology 366.

2Bremner, J., S. I. Rogers, and C. L. J. Frid. 2003. Assessing functional diversity in marine benthic 
ecosystems: a comparison of approaches. Marine Ecology Progress Series 254:11-25.

3Bremner, J., S. Rogers, and C. L. J. Frid. 2006a. Methods for describing ecological functioning of marine 
benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6:609-622.

4Bremner, J., S. I. Rogers, and C. L. J. Frid. 2006b. Matching biological traits to  environmental conditions in 
marine benthic ecosystems. Journal of Marine Systems 60: 302-316.

*Vill£ger, Sgbastien, Julia Ramos Miranda, Domingo Flores Hernandez, and David Mouillot. 2010.
Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat 
degradation. Ecological Applications 20:1512-1522.
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Supplementary Figures
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Figure SI: Structural equation model representing all paths fit for each of the models 

presented in the main text. Black arrows represent significant positive paths, while red arrows 

represent significant negative paths. Double-headed arrows represent correlations. Boxes 

correspond to discussion of the meta-model, Appendix A.
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Figure S2: Interannual trends in mesograzer estimated biomass (mg AFDM) for the eight most 

abundant mesograzers in the survey (Table 2). Points are logio-transformed mean per epifaunal 

grab sample + /-1  standard error.
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Figure S3: interannual trends in predator abundance for the four most abundant predators in 

the survey, representing >96% of cumulative abundance. Points are mean per dipnet sweep +/- 

1 standard error.
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Figure S4: Seasonal trends in the coefficient of variation (CV = mean /  standard deviation) for 

species richness and functional diversity of (a) grazers and (b) predators.
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Figure S5: Structural equation model relating environmental and biological variables across all 

seasons and years. Black arrows represent significant positive paths, while red arrows represent 

significant negative paths. Non-significant paths have been removed for clarity. Values represent 

standardized regression coefficients (centered and scaled prior to regression). Variables marked 

with an asterisk (*) have been logio-transformed to better meet the assumptions of linear 

regression. Variables marked with a cross (+) have additional significant paths from the 

covariate representing total plant material in each epifaunal grab, but this variable has been 

removed for clarity.

124



Appendix A: Functional Trait Data

Table A l: Functional trait values used in the analysis of functional diversity.

Max Mean 
Feeding length length Reproductive

Species Defense Body plan mode mm mm mode
Articulate - Sexual - brooder

Ameroculodes Shell - laterally- /  direct
edwardsi chitin 

Shell-

compressed 
Articulate - 
laterally-

Detritivore 9 development 
Sexual - brooder 
/  direct

Ampelisca sp. chitin 
Shell -

compressed Filter feeder 13.5 10 development

Amphibalanus calcium Suspension Sexual -
sp- carbonate Barrel 

Articulate -
feeder 20 10 broadcast 

Sexual - brooder
Ampithoe Shell - laterally- /  direct
longimana chitin compressed 

Articulate -
Grazer 20 11 development 

Sexual - brooder
Ampithoe Shell - laterally- /  direct
valida chitin compressed Grazer 20 12 development 

Sexual -
Anchoa mitchilli None Fusiform Filter feeder 100 59 broadcast
Anguilla Predator - Sexual -
rostrata None 

Shell - 
calcium

Anguiiliform generalist 

Predator -

1520 500 broadcast 

Sexual - direct
Astyris lunata carbonate Conic - ovate epibionts 5.8 2.5 development
Bairdiella Predator - Sexual -
chrysoura Spines 

Shell -
Fusiform generalist 300 200 oviparous

Bittiolum calcium Sexual -
varium carbonate Conic Grazer 

Predator -
6.3 5 oviparous 

Sexual -
Blenniidae sp. None 

Shell -
Fusiform generalist 103 oviparous

Boonea calcium Predator -
bisuturalis carbonate Conic - ovate mollusks 5.8 3.2
Botryllus Diffuse Suspension Asexual /  Sexual -
schlosseri None 

Shell -
colonial feeder 100 10 broadcast

calcium Diffuse Suspension Asexual /  Sexual -
Bryozoa carbonate colonial 

Articulate -
feeder 3 0.6 broadcast

Callinectes Shell - ventrally- Predator - Sexual - brooder
sapidus chitin compressed generalist 250 145 /  planktonic 

Sexual - brooder
Caprella Shell - Articulate - Suspension /  direct
equiiibra chitin subcylindrical feeder 23 development
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Sexual - brooder
Caprella Shell - Articulate - Suspension /  direct
penantis chitin 

Shell -

subcylindrical 
Articulate - 
laterally-

feeder 16 13 development 
Sexual - brooder 
/direct

Corophium spp. chitin compressed 
Articulate -

Detritivore 11 4 development

Crangon Shell - ventrally- Sexual - brooder
septemspinosa chitin 

Shell -
compressed Omnivore 70 32 /  planktonic

Crepidula calcium Sexual - brooder
fornicata carbonate Capped 

Articulate -
Filter feeder 50 35 /  planktonic 

Sexual - brooder
Cymadusa Shell - laterally- /  direct
compta chitin compressed Grazer 20 11.5 development
Doridella
obscura None Capped 

Articulate -
Omnivore 13 8

Sexual - brooder
Dulichiella Shell - laterally- /  direct
appendiculota chitin 

Shell -

compressed 
Articulate - 
ventrally-

Grazer 25 16 development 
Sexual - brooder 
/direct

Edotia triloba chitin 

Shell -

compressed 
Articulate - 
laterally-

Detritivore 9 development 
Sexual - brooder 
/  direct

Elasmopus levis chitin compressed 
Articulate -

Grazer 12 6 development 
Sexual - brooder

Erichsonella Shell - ventrally- /direct
attenuata chitin compressed 

Articulate -
Grazer 13 development 

Sexual - brooder
Erichthonius Shell - laterally- /  direct
brasiliensis chitin compressed 

Articulate -
Detritivore 6 development 

Sexual - brooder
Ericthonius Shell - laterally- /direct
rubricomis chitin compressed 

Articulate -
Detritivore 9 development 

Sexual - brooder
Gammarus Shell - laterally- /  direct
mucronatus chitin 

Shell - 
calcium

compressed 
Hinged - 
laterally-

Grazer 16 2.4 development 

Sexual -
Gemma gemma carbonate compressed Filter feeder 5 2.5 broadcast
Gobiesox Predator - Sexual -
strumosus None Fusiform generalist 

Predator -
80 oviparous 

Sexual -
Gobiidae sp. None Fusiform generalist 60 41 oviparous
Gobiosoma Predator - Sexual -
bosc None 

Shell -
Fusiform generalist 60 41 oviparous

Haminoea calcium Sexual -
solitaria carbonate Globose 

Articulate -
Detritivore 19 13.5 oviparous

Hippolyte Shell - laterally- Sexual -
pleuracanthus chitin compressed Omnivore 15 oviparous
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Hydrobia sp.

Idotea balthica

Hyanassa
obsoleta

Japonactaeon
punctostriatus

Lucania pan/a

Maldanidae sp.

Melita nitida

Mercenaria
mercenaria

Microdeutopus
anomalus
Micropogonias
undulatus

Microprotopus
raneyi
Molgula
manhattensis

Mulinia
lateralis

Mya arenaria

Mysidae sp.

Nassarius vibex

Nereis sp.

Pagurus
annulipes

Shell -
calcium
carbonate

Shell - 
chitin 
Shell - 
calcium 
carbonate 
Shell - 
calcium 
carbonate

None

None

Shell - 
chitin 
Shell - 
calcium 
carbonate

Shell - 
chitin

Spines

Shell - 
chitin

None
Shell -
calcium
carbonate
Shell -
calcium
carbonate

Shell - 
chitin 
Shell - 
calcium 
carbonate

None 
Shell - 
calcium 
carbonate

Globose 
Articulate - 
ventrally- 
compressed

Conic

Barrel

Fusiform
Worm-like -
ventrally-
compressed
Articulate -
laterally-
compressed
Hinged -
laterally-
compressed
Articulate -
laterally-
compressed

Fusiform 
Articulate - 
laterally- 
compressed

Globose
Hinged -
laterally-
compressed
Hinged -
laterally-
compressed
Articulate -
laterally-
compressed

Conic
Worm-like -
ventrally-
compressed

Conic

Sexual -
Grazer 6 3 broadcast

Sexual - brooder 
/  direct

Grazer 30 15 development

Sexual -
Detritivore 45 28 oviparous

Predator -
polychaetes 7.5 5.3
Predator - Sexual -
generalist 50 37 oviparous

Detritivore 100
Sexual - brooder 
/  direct

Detritivore 15 4 development

Sexual -
Filter feeder 150 90 broadcast

Sexual - brooder 
/  direct

Detritivore 11 development
Predator - Sexual -
generalist 550 300 oviparous

Sexual - brooder 
/  direct

Detritivore 5 development
Sexual -

Filter feeder 40 25 broadcast

Sexual -
Filter feeder 20 15 broadcast

Sexual -
Filter feeder 152 26 broadcast

Sexual - brooder 
/  direct

Omnivore 17 13 development

Sexual -
Omnivore 20 15 oviparous

Sexual -
Omnivore 152 broadcast

Sexual -
Omnivore 25 7.3 oviparous
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Articulate -
Palaemonetes Shell - laterally- Sexual - brooder
pugio chitin compressed 

Articulate -
Omnivore 50 23.5 /  broadcast

Palaemonetes Shell - laterally- Sexual - brooder
sp. chitin compressed 

Articulate -
Omnivore 50 23.5 /  broadcast

Palaemonetes Shell - laterally- Sexual - brooder
vulgaris chitin compressed 

Articulate -
Omnivore 50 14 /  broadcast

Panopeus Shell - ventrally- Sexual - brooder
herbstii chitin compressed Omnivore 64 35 /  broadcast 

Sexual - brooder
Paracaprella Shell- Articulate - Suspension /direct
tenuis chitin subcylindrical 

Articulate -
feeder 10 development 

Sexual - brooder
Paracerceis Shell - ventrally- /  direct
caudata chitin compressed Omnivore 12 development
Paralichthys Ventrally- Predator - Sexual -
dentatus None compressed generalist 

Predator -
940 oviparous 

Sexual -
Percidae sp. Spines Fusiform generalist 300 200 oviparous
Pleuronectiform Ventrally- Predator - Sexual -
es sp. None compressed 

Articulate -
generalist 940 oviparous

Rhithropanopeu Shell - ventrally- Sexual -
s harrisii chitin compressed Omnivore 

Predator -
21.3 8.41 oviparous 

Sexual -
Scianeid sp. Spines Filiform generalist 550 300 oviparous
Symphurus Ventrally- Predator - Sexual -
plagiusa None com pressed generalist 210 oviparous 

Sexual - brooder
Syngnathus Predator - /direct
floridae None Filiform generalist 250 development 

Sexual - brooder
Syngnathus Predator - /  direct
fuscus None Filiform generalist 

Predator -

330 170 development 
Sexual - brooder 
/direct

Syngnathus sp. None 

Shell -

Filiform 
Articulate - 
laterally-

generalist 330 170 development 
Sexual - brooder 
/  direct

Tanaidae sp. chitin 

Shell -

compressed 
Articulate - 
laterally-

Detritivore 4 2 development 

Sexual -
Tozeuma sp. chitin 

Shell - 
calcium

compressed 

Conic -

Omnivore 50 oviparous

Triphora sp. carbonate 
Shell -

elongate Omnivore 8

Victorella calcium Diffuse Suspension Asexual /  Sexual ■
pavida carbonate colonial feeder 3 0.6 broadcast
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Appendix B: Discussion o f Structural Equation Models

To begin, we generated a 'meta-model' corresponding to our understanding of this 

system from numerous experiments and observations (Fig. A l). The meta-model relates suites 

of variables in general terms. For our purposes, we considered predators, grazers, primary 

producers, and environmental variables. Based on existing evidence summarized in Valentine 

and Duffy (2006), we expected predators to have a direct negative effect on grazers. Similarly, 

we expected grazers to have a direct negative effect on epiphytes. Thus, there should be an 

indirect positive effect of predators on epiphytes via a trophic cascade. We also expected 

epiphytes to negatively affect eelgrass biomass. Thus, we can extend the cascade to incorporate 

the indirect positive effect of grazers on eelgrass via the removal of epiphytes. Finally, we 

expected environment to have contrasting effects depending in the specific environmental 

variable, and the response. Thus we have chosen to represent it in the meta-model with grey 

arrows, to denote potentially positive or negative effects.

We populated the meta-model using the measured variables from the survey (Fig. A l, 

Fig. SI). For predators, we substituted a single variable corresponding to predator abundance. 

For grazers, we incorporated grazer abundance, biomass, richness, and functional diversity. The 

complex interplay among these variables deserve some attention. First, we included a path from 

grazer abundance to both grazer richness and functional diversity to account for potential 

sampling bias. In other words, as more individuals are sampled, it becomes more likely that a 

new species is discovered (Magurran and McGill 2011). One alternative is to create a rarefied 

index; however, these are not yet derived for our particular index of functional diversity (Chao 

et al. 2014). Thus we have instead chosen to model abundance as a covariate. Next, we 

expected richness to inform functional diversity, as the two must covary positively. For example, 

you cannot have more functional diversity than species diversity. Finally, we modeled the
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independent contributions of both grazer richness and functional diversity to biomass to test 

the hypothesis that greater diversity enhances biomass via increased functional 

complementarity (Loreau 1998).

For grazers, we also included the covariate of total plant habitat, which is the summed 

amount of planet material corresponding to eelgrass, widgeongrass Ruppia maritima, and any 

macroalgae in a given grab sample. These paths were intended to control for the amount of
«

habitat and/or complexity increasing grazer properties. Because this was a methodological 

control vs. paths of actual biological interest, this variable and associated paths have been 

omitted from the graphics to aid in interpretability, but included in the actual statistical models. 

Thus for figures presented in the main text, the illustrated paths from and between grazer 

variables have had the effect of total plant habitat factored out.

We have modeled several top-down paths between predators and grazer properties. 

The most obvious are direct paths between predator abundance and both grazer abundance 

and biomass representing direct consumption. Of particular interest is the indirect path of 

predator abundance to grazer biomass mediated by grazer abundance, suggesting that 

predators can alter the size structure of the community but not the aggregate biomass (Edgar 

and Aoki 1993). We also had paths from predator abundance to grazer richness and functional 

diversity to test the hypothesis that increased diversity confers resistance to predation by 

increasing the probability of including a defended or unpalatable species (Duffy et al. 2007). In 

this case, we expected the effect to be stronger for functional diversity, as that better reflects 

the morphological differences among species that define defense or palatability. An alternative 

hypothesis is that these links are negative, implying that predators also reduce richness and 

functional diversity through the removal of individual species.
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Next we modeled the top-down paths between grazer properties on primary producers. 

First, all grazer properties were connected with epiphytes. The obvious links are negative effects 

of grazer abundance and biomass reflecting direct consumption. However, we also included 

richness and functional diversity to test the hypothesis that increasing diversity increases the 

efficiency of resource consumption {Duffy et al. 2007). We chose not to model a path between 

predators and epiphytes as, unlike other systems (McGlathery 1995; Heck Jr. et al. 2000), major 

predators in this system are strictly carnivorous or are not heavily omnivorous (Douglass et al. 

2011). We also chose to fit the direct effects between grazer propeties and eelgrass to reflect 

the potential for direct negative effects, as the isopod Idotea balthica and some ampithoid 

amphipods have been known to directly consume eelgrass (Duffy et al. 2005). This may be 

reflected in abundance or biomass (as the isopods tends to be larger), or richness (as higher 

diversity increases the likelihood of including a species that consumes eelgrass).

One of the paths of primary interest is the predicted negative effect of epiphytes on 

eelgrass biomass via shading and competition (Orth and van Montfrans 1984; Valentine and 

Duffy 2006). We also included a correlated error between total plant habitat obtained during 

the grab samples and eelgrass biomass derived from the core samples, since higher biomass of 

the cores reflected more plant material to sample with the grab. This correlated error is 

reported as the Pearson correlation in Figure S5.

Due to limitations in the statistical framework, we could not model several acyclic paths,

i.e, A -> B -> C -> A (Shipley 2000; Shipley 2009). Thus, we could not, for instance, estimate the

effect of eelgrass biomass (aka, habitat) on predator abundance. Similarly, we could not

evaluate reciprocal relationships, i.e., A -> B, B -> A, since the directed effects cannot be

independently partitioned. Thus, we have used a priori knowledge of the system to define

hypotheses of interest. For example, we could equally assume the relationship between
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epiphytes and eelgrass to be reversed and positive, with increased eelgrass biomass provided 

more substrate for epiphytes. However, we have chosen to test the opposite hypothesis of 

epiphytes decreasing eelgrass, given its prevalence in the literature and direct role in evaluating 

the importance of epifaunal grazers (Valentine and Duffy 2006).

Finally, we hypothesized that most environmental variables would enhance ecosystem 

properties. For instance, temperature should increase metabolic rate and thus enhance 

predator and grazer abundance and/or biomass (Brown et al. 2004). The one exception is 

temperature and eelgrass, which actually may have a non-linear relationship, with temperature 

increasing eelgrass productivity up until a point after which it becomes physiologically stressful 

(Moore and Jarvis 2008). Due to statistical constraints, we have chosen not to model it as a non

linear predictor but instead anticipated that these threshold-responses would manifest across 

the three seasonal models (Fig. 9-11, main text). The one exception to the positive effects of 

environmental variables was turbidity, which we anticipated would reduce the foraging capacity 

of predators, decreasing their abundance as they migrate out of the bed, and primary 

producers, by reducing water column light availability. The pairwise correlations among 

environmental variables was sufficiently low that we feel comfortable including multiple 

variables in the same model, although we note that we did not explicitly test for collinearity. 

Finally, due to the overall low intra-annual variation in salinity (Fig. lb ), we have chosen not to 

include it in our SEM analysis.
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Predators

Grazer
diversity

Grazer
biomass

Zostera
biomass

Epiphytes

Environment

Figure A l: Meta-model linking (a-c) biotic and (d) abiotic variables. Black arrows indicate 

expected positive relationships, red arrows indicate expected negative relationships. Grey 

arrows indicate a mix of expected positive and negative effects, depending on the variables 

considered within the broad category represented in the figure. Dashed arrows denote indirect 

effects.
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Appendix C: Coefficient tables fo r  structural equation models

In this appendix, w e report the standardized regression coefficients (variables scaled and 

centered prior to  regression), the ir standard errors, and corresponding P-values fo r all models 

reported in the main text. Corresponding figures in the main text are noted.

Table Cl: SEM coefficients from spring model (corresponding to paths in Figure 9, main text).

Response Predictor Estimate Standard Error P-value

Predator abundance Mean Temperature 0.838 0.116 0

Predator abundance Mean Turbidity -0.258 0.148 0.104

Predator abundance Mean PAR 0.064 0.125 0.62

Grazer species richness Grazer abundance 0.471 0.096 0

Grazer species richness Total plant habitat 0.224 0.115 0.053

Grazer species richness Mean Temperature 0.142 0.111 0.204

Grazer species richness Predator abundance -0.158 0.161 0.342

Grazer species richness Nutrient concentration 0.036 0.164 0.828

Grazer functional diversity Grazer species richness 0.535 0.07 0

Grazer functional diversity Grazer abundance 0.184 0.09 0.043

Grazer functional diversity Nutrient concentration -0.135 0.096 0.182

Grazer functional diversity Mean Turbidity -0.045 0.107 0.68

Grazer functional diversity Predator abundance -0.043 0.111 0.701

Grazer functional diversity Total plant habitat 0.024 0.097 0.807

Grazer abundance Total plant habitat 0.618 0.073 0

Grazer abundance Mean Temperature -0.251 0.08 0.002

Grazer abundance Predator abundance 0.442 0.139 0.007

Grazer abundance Mean PAR -0.364 0.147 0.026

Grazer abundance Nutrient concentration -0.026 0.124 0.838

Grazer biomass Grazer abundance 0.698 0.061 0

Grazer biomass Total plant habitat 0.22 0.068 0.001

Grazer biomass Predator abundance 0.068 0.043 0.118

Grazer biomass Mean Temperature 0.077 0.068 0.257

Grazer biomass Grazer functional diversity -0.1 0.098 0.322

Grazer biomass Nutrient concentration 0.011 0.049 0.816

Grazer biomass Grazer species richness 0 0.074 0.997

Grazer biomass Mean PAR 0 0.08 0.999

Epiphyte biomass Mean Temperature -0.204 0.214 0.357

Epiphyte biomass Mean PAR -0.205 0.219 0.366

Epiphyte biomass Nutrient concentration 0.125 0.216 0.573
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Epiphyte biomass 

Epiphyte biomass 

Epiphyte biomass 

Epiphyte biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass 

Eelgrass aboveground biomass

Grazer biomass 

Grazer species richness 

Grazer functional diversity 

Mean Turbidity 

Mean PAR 

Grazer biomass 

Nutrient concentration 

Mean Turbidity 

Grazer functional diversity 

Grazer abundance 

Grazer species richness 

Epiphyte biomass 

Mean Temperature

0.113 0.216 0.607
-0.015 0.069 0.832
0.003 0.079 0.974

-0.001 0.082 0.995
-0.262 0.112 0.02
0.159 0.098 0.107
0.259 0.153 0.113
0.109 0.069 0.117

0.14 0.117 0.253
0.136 0.19 0.486

-0.038 0.06 0.531
0.015 0.058 0.793
0.029 0.141 0.839
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Table C2: SEM coefficients from summer model (corresponding to paths in Figure 10, main

text).

Response Predictor Estimate Standard Error P-value

Predator abundance Mean Temperature -0.55 0.143 0.004

Predator abundance Mean Turbidity -0.367 0.14 0.028
Predator abundance Mean PAR 0.38 0.156 0.037

Grazer species richness Grazer abundance 0.465 0.087 0
Grazer species richness Total plant habitat 0.182 0.101 0.076
Grazer species richness Mean Temperature -0.134 0.164 0.435
Grazer species richness Predator abundance -0.102 0.17 0.562
Grazer species richness Nutrient concentration 0.018 0.096 0.853
Grazer functional diversity Grazer species richness 0.356 0.101 0.001
Grazer functional diversity Grazer abundance -0.266 0.108 0.015
Grazer functional diversity Nutrient concentration 0.23 0.094 0.016
Grazer functional diversity Mean Turbidity -0.302 0.122 0.033
Grazer functional diversity Predator abundance 0.036 0.13 0.787
Grazer functional diversity Total plant habitat -0.03 0.111 0.791
Grazer abundance Total plant habitat 0.587 0.08 0
Grazer abundance Mean Temperature 0.39 0.16 0.038
Grazer abundance Predator abundance -0.116 0.093 0.217
Grazer abundance Mean PAR -0.062 0.287 0.834
Grazer abundance Nutrient concentration -0.04 0.249 0.875
Grazer biomass Grazer abundance 0.548 0.089 0
Grazer biomass Total plant habitat -0.187 0.068 0.006
Grazer biomass Predator abundance 0.239 0.09 0.009
Grazer biomass Mean Temperature -0.127 0.089 0.153
Grazer biomass Grazer functional diversity 0.053 0.099 0.606
Grazer biomass Nutrient concentration 0.027 0.076 0.719
Grazer biomass Grazer species richness -0.052 0.158 0.748
Grazer biomass Mean PAR 0.019 0.206 0.93
Epiphyte biomass Mean Temperature 0.103 0.053 0.056
Epiphyte biomass Mean PAR 0.663 0.425 0.158
Epiphyte biomass Nutrient concentration -0.535 0.356 0.172
Epiphyte biomass Grazer biomass 0.296 0.206 0.188
Epiphyte biomass Grazer species richness 0.031 0.046 0.495
Epiphyte biomass Grazer functional diversity -0.117 0.259 0.664
Epiphyte biomass Mean Turbidity 0.004 0.051 0.942
Eelgrass aboveground biomass Mean PAR -0.218 0.105 0.041
Eelgrass aboveground biomass Grazer biomass 0.229 0.114 0.047
Eelgrass aboveground biomass Nutrient concentration -0.412 0.178 0.049
Eelgrass aboveground biomass Mean Turbidity 0.11 0.133 0.412
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Eelgrass aboveground biomass Grazer functional diversity -0.154 0.187 0.433
Eelgrass aboveground biomass Grazer abundance 0.07 0.093 0.456
Eelgrass aboveground biomass Grazer species richness 0.181 0.276 0.531
Eelgrass aboveground biomass Epiphyte biomass -0.086 0.24 0.731
Eelgrass aboveground biomass Mean Temperature 0.025 0.128 0.846
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Table C3: SEM coefficients from fell model (corresponding to paths in Figure 11, main text).

Response Predictor Estimate Standard Error P-value

Predator abundance Mean Temperature -0.731 0.543 0.227
Predator abundance Mean Turbidity 0.469 0.625 0.482
Predator abundance Mean PAR -0.217 0.301 0.498
Grazer species richness Grazer abundance 0.617 0.103 0
Grazer species richness Total plant habitat 0.21 0.097 0.035
Grazer species richness Mean Temperature -0.106 0.099 0.317
Grazer species richness Predator abundance -0.08 0.106 0.475
Grazer species richness Nutrient concentration 0.021 0.08 0.798
Grazer functional diversity Grazer species richness 0.453 0.112 0
Grazer functional diversity Grazer abundance -0.422 0.113 0.007
Grazer functional diversity Nutrient concentration 0.292 0.129 0.026
Grazer functional diversity Mean Turbidity 0.176 0.11 0.154
Grazer functional diversity Predator abundance 0.107 0.084 0.206
Grazer functional diversity Total plant habitat -0.032 0.11 0.775
Grazer abundance Total plant habitat -0.175 0.07 0.015
Grazer abundance Mean Temperature 0.183 0.076 0.018
Grazer abundance Predator abundance -0.272 0.197 0.216
Grazer abundance Mean PAR -0.285 0.279 0.346
Grazer abundance Nutrient concentration -0.077 0.194 0.703
Grazer biomass Grazer abundance 0.926 0.079 0
Grazer biomass Total plant habitat -0.214 0.072 0.025
Grazer biomass Predator abundance 0.279 0.104 0.037
Grazer biomass Mean Temperature 0.101 0.051 0.053
Grazer biomass Grazer functional diversity -0.097 0.067 0.152
Grazer biomass Nutrient concentration 0.038 0.062 0.538
Grazer biomass Grazer species richness -0.008 0.069 0.905
Grazer biomass Mean PAR -0.007 0.073 0.932
Epiphyte biomass Mean Temperature -0.194 0.149 0.198
Epiphyte biomass Mean PAR -0.897 0.616 0.205
Epiphyte biomass Nutrient concentration 0.129 0.136 0.343
Epiphyte biomass Grazer biomass -0.219 0.219 0.364
Epiphyte biomass Grazer species richness 0.499 0.544 0.401
Epiphyte biomass Grazer functional diversity -0.036 0.158 0.82
Epiphyte biomass Mean Turbidity 0.017 0.326 0.96
Eelgrass aboveground biomass Mean PAR -0.357 0.145 0.057
Eelgrass aboveground biomass Grazer biomass 0.246 0.209 0.244
Eelgrass aboveground biomass Nutrient concentration 0.089 0.076 0.244
Eelgrass aboveground biomass Mean Turbidity -0.149 0.132 0.263
Eelgrass aboveground biomass Grazer functional diversity -0.166 0.241 0.493
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Eelgrass aboveground biomass Grazer abundance -0.101 0.197 0.631

Eelgrass aboveground biomass Grazer species richness -0.046 0.121 0.701

Eelgrass aboveground biomass Epiphyte biomass -0.044 0.345 0.904

Eelgrass aboveground biomass Mean Temperature -0.028 0.361 0.941
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Table C4: SEM coefficients from the full model integrating across all years and months

(corresponding to paths in Figure S5).

Response Predictor Estimate Standard Error P-value

Predator abundance Mean Temperature 0.421 0.135 0.003
Predator abundance Mean Turbidity -0.309 0.148 0.042
Predator abundance. Mean PAR 0.165 0.142 0.252
Grazer species richness Grazer abundance 0.511 0.054 0
Grazerspedes richness Total plant habitat .... 0.156 ” 0.06 0.01
Grazer species richness Mean Temperature 0.171 0.08 0.037
Grazer spc^esridhness Predator abundance - 0.062 ' 0.053 0.244
Grazer species richness Nutrient concentration 0.017 0.093 0.858
Grazer functional diversity Grazer specie richness . 0.486 ; 0.054 ̂ «t£SF.S.'i2fc 0
Grazer functional diversity Grazer abundance 0.175 0.065 0.007
Grazer functional diversity Nutrient concentration ■ ; ~-0.192 0.069 oio07
Grazer functional diversity Mean Turbidity -0.073 0.07 0.3
Grazer functional diversity Predator abundance 0.049 0.057 0.39
Grazer functional diversity Total plant habitat -0.024 0.067 0.717
Grazer abundance Total plant habitat 0.572 . 0.045 0
Grazer abundance Mean Temperature 0.324 0.085 0
Grazer abundance Predator abundance -O-125 0.047 0.008
Grazer abundance Mean PAR -0.248 0.116 0.037
Grazer abundance Nutrient concentration -0.02 0.096 0.836
Grazer biomass Grazer abundance 0.716 0-041 0
Grazer biomass Total plant habitat 0.153 0.043 0
Grazer biomass Predator abundance 0.074 0.036 0.039
Grazer biomass / Mean Temperature ^ -0.088 0.043 0.046
Grazer biomass Grazer functional diversity 0.018 0.03 0.549
Grazerbiomass^ Nutrientooncentration

- TJ -yif*-
-0.023 ^

Sii-g y.-sqw-.iL; ■ '!ii,4|7rjr«w>
0.045 0.61

Grazer biomass Grazer species richness 0.018 0.036 0.613
Grazer biomass ,, r - MeanPARJ > 0.053ArmiJto*, ‘frmrtaC 0.905
Epiphyte biomass Mean Temperature 0.471 0.132 0.001
Epiphyte biomass * _ M w i n l P i T r ' 70392 . 0.148 o.on
Epiphyte biomass Nutrient concentration 0.194 0.124 0.124

. Epiphyte biomass ^ Grazer biomass -0.061 0.043 0.162
Epiphyte biomass Grazer species richness 0.043 0.045 0.341
Epiphyte biomass^ Grazer functional diversity 0.013 0.037 0.715
Epiphyte biomass Mean Turbidity 0.048 0.139 0.73
Eelgrass abo^^ound biomass Mean PAR 0.413 0.152 0.009
Eelgrass aboveground biomass Grazer biomass 0.184 0.074 0.013
Eelgrass aboveground biomass Nutrient concentration -0.274 0.125 0.034
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Eelgrass aboveground biomass Mean Turbidity -0.161 0.129 0.219
Eeferass aboveground biomass Grazer functional diversity 0.032 0.047 0.503
Eelgrass aboveground biomass Grazer abundance -0.057 0.085 0.508
Eelgrass aboveground[biomass Grazer spedes richness -0.034 0.06 0.567
Eelgrass aboveground biomass Epiphyte biomass 0.006 0.057 0.91
Eelgrass abovegrou nd biomass Mean Temperature -0.014 0.13 0.912
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CHAPTER 3.

FUNCTIONAL DIVERSITY PREDICTS ECOSYSTEM FUNCTIONING IN 
MULTITROPHIC ASSEMBLAGES OF ESTUARINE CONSUMERS
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Abstract

The use of functional traits to explain how biodiversity affects ecosystem functioning has 

attracted intense interest, yet few studies have a priori manipulated functional diversity, 

especially in multitrophic communities. Here, we manipulated multivariate functional diversity 

of estuarine grazers and predators within two levels of species richness to test how species 

richness and functional diversity predicted ecosystem functioning in a multitrophic food web. 

Community functional diversity was a better predictor than species richness for the majority of 

ecosystem properties, based on general linear mixed effects models. Combining inferences from 

8 traits into a single multivariate index increased prediction accuracy of these properties relative 

to any individual trait. Structural equation modeling revealed that functional diversity of both 

grazers and predators was important in driving final biomass within and between trophic levels, 

with stronger effects observed for predators. We also show that different species drove 

different ecosystem responses, with evidence for both sampling effects and complementarity. 

Our study extends experimental investigations of functional trait diversity to a multilevel food 

web, and demonstrates that functional diversity can be more accurate and effective than 

species richness in predicting community biomass in a food web context.

Keywords: biodiversity, functional diversity, ecosystem functioning, consumers, grazers, 

predators, estuaries
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Introduction

Hundreds of experiments have shown that biodiversity generally enhances the 

functioning of ecosystems, including biomass production, efficiency of resource use, and 

nutrient cycling, yet there are many examples where diversity has had a neutral or even 

negative effect on functioning (Hooper et al. 2005, Cardinale et al. 2006,2012, Lefcheck et al. 

2013, Gamfeldt et al. 2015). A possible explanation for negative diversity effects is that the 

species used in these manipulations overlap sufficiently in their ecological strategies to prevent 

mechanisms like resource use partitioning from occurring (Hooper et al. 2005). One way to 

characterize the degree of overlap among species is to consider their functional traits, aspects of 

their morphology, physiology, phenology, and behavior that distinguish ecological differences 

among species. The variation in these traits across all species within an assemblage can be used 

to characterize functional trait diversity (hereafter FD).

There has been a great deal of interest in using FD to predict ecosystem functioning 

because traits not only account for potential functional redundancy (Rosenfeld 2002), but also 

provide a mechanistic link to observed diversity effects (Diaz and Cabido 2001). Recent 

investigations have integrated multiple traits in multivariate indices of FD, which have yielded 

varying support for the utility of FD as a predictor of ecosystem functioning, principally standing 

stock biomass (Petchey et al. 2004, Mouillot et al. 2011, Flynn et al. 2011, Gagic et al. 2015). 

However, most experimental studies utilizing multivariate FD have taken a post hoc approach by 

applying trait data to existing richness manipulations, principally of grassland plants. This 

approach can lead to ambiguous results if the replicates within and across levels of richness 

were not sufficiently varied in terms of their functional traits. Only a few studies have a priori 

manipulated multiple traits (e.g., Schittko et al. 2014), and two used only pairwise combinations

145



of aquatic algae (Griffin et al. 2009, Shurin et al. 2014), which is not generally recognized as a 

diversity manipulation perse (Cardinale et al. 2006).

Much of biodiversity-ecosystem function research has been conducted with terrestrial 

plants, and an important challenge is understanding the consequences of changing diversity in 

complex natural food webs (Duffy et al. 2007, Reiss et al. 2009). Comparatively few studies have 

simultaneously manipulated the species richness of adjacent trophic levels (e.g., both predators 

and prey), and those that have done so generally found a strong role of consumer diversity for 

the structure and functioning of lower trophic levels (Fox 2004, Gamfeldt et al. 2005, Douglass 

et al. 2008, Bruno et al. 2008). This strong top-down effect of consumer diversity has often been 

shown to depend on feeding biology, specifically whether the consumers are omnivorous (Bruno 

and O'Connor 2005) or intra-guild predators (Finke and Denno 2004), or whether they vary in 

their per capita consumption rates (Straub and Snyder 2006) or resource preferences (O'Connor 

and Bruno 2007). While these studies suggested differences in feeding ecology among species as 

a potential explanation for their results, they did not directly manipulate resource acquisition 

strategies, but rather generally assumed that feeding diversity would be correlated with species 

richness. Of the three prior studies that a priori manipulated consumer traits within a single 

level of richness, two found variation in trophic ecology to be a strong predictor of resource 

depletion (Schmitz 2008, Best et al. 2013), while one found no effect (O'Connor and Bruno 

2009).

In this study, we simultaneously manipulated eight functional traits of consumers both

within and across multiple levels of species richness in experimental estuarine mesocosms. The

consumers included naturally abundant herbivorous grazers and their predators, which allowed

us to experimentally recreate a model estuarine food web. We expected multivariate FD to be a

better predictor of ecosystem properties than species richness by capturing a wider range of
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variation in ecological strategies (Petchey and Gaston 2002). Further, we expected FD within a 

trophic level to enhance the biomass of that trophic level (Duffy et al. 2007), and for predator 

diversity to have a stronger top-down effect than the bottom-up effect of grazer diversity 

(Gamfeldt et al. 2005, Borer et al. 2006, O'Connor and Bruno 2007, Douglass et al. 2008).

Methods

Experimental Species

We defined a 9-species pool based on natural abundances of herbivores and their

predators sampled over 15 years in the York River Estuary, Chesapeake Bay, USA (Douglass et al.

2010, Lefcheck 2015). The herbivores included three crustacean mesograzers: the amphipods

Gammarus mucronatus and Cymadusa compta (potentially including a lesser incidental number

of ampithoid amphipods, so referred to here as Ampithoid spp.), and the isopod Erichsonella

attenuata. All three species are key grazers in the Chesapeake Bay and represent an important

trophic link in local food webs (van Montfrans et al. 1984). We also used one gastropod,

Bittiolum varium, a relatively small but seasonally abundant mesograzer (Duffy et al. 2003). The

final herbivore was the shrimp Hippolyte pleuracanthus, whose diet is mainly micro- and

macroalgae, but occasionally includes animal tissue (Douglass et al. 2011). The predators

included the grass shrimp Palaemonetes pugio and juvenile blue crab Callinectes sapidus (30-50

mm carapace width), both of which are omnivorous (Douglass et al. 2011), as well as the

pipefish Syngnathus sp. and mummichog Fundulus heteroclitus. Trophic guilds were assigned

using existing stable isotope data (Douglass et al. 2011). For all of these species, we scored eight

functional traits relating to morphology (defense, mobility, mean and maximum biomass, body

plan), feeding habits (trophic level), and life history and phenology (reproductive mode, month

of maximum abundance in the York River Estuary), with both direct and indirect consequences

147



for ecosystem functioning (Table SI). All traits used in this study have been proposed to have a 

strong link to ecosystem function (Bremner et al. 2003).

Experimental Design

We employed a semi-nested design manipulating high and low multivariate FD within 3- 

and 6-species assemblages, along with each species by itself and all 9 species together (Fig. SI). 

To characterize FD, we chose the index of functional richness (Villeger et al. 2008). Functional 

richness quantifies the absolute volume of trait space occupied by all species within an 

assemblage. It is the volume of an n-dimensional polygon whose vertices are defined by the 

most functionally extreme species (Fig. S2). We chose functional richness as our index of FD 

because it does not take into account relative abundances. This behavior is ideal for our 

experiment, which combines large but rare predators with small but abundant grazers. 

Hereafter, when we refer to functional diversity (FD), we mean functional richness. Functional 

richness was calculated using the dbFD function in the FD package (Lalibert£ and Shipley 2011).

Within the two intermediate diversity levels, we generated every possible combination 

of 3- and 6-species. We calculated FD for each of these 168 combinations, and then randomly 

drew 6 replicates from the lower 25th percentile to represent 'low FD/ and 6 replicates from the 

upper 75th percentile to represent 'high FD/ for 3- and 6-species treatments respectively. We 

discarded and redrew any 3-species replicates that contained all predators, as we wanted to 

ensure resource availability for all multi-species replicates. Six additional replicates for each of 

the 9 single-species treatments and 9-species mixture yielded a total of N  = 84 replicates. In 

each treatment, we equalized the initial biomass of the grazers at densities comparable to those 

observed in the field and used in previous mesocosm experiments with these organisms (Duffy 

et al. 2003,2005). As a consequence of their large size and the logistical constraints on 

equalizing biomass, each predator simply stocked with a single individual in the treatments in
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which it appeared, and its initial weight recorded to include as a covariate in subsequent 

statistical analyses (see below).

In May 2012, experimental assemblages were created in 19-L mesocosm buckets placed 

in six flow-through seawater tanks. Water was passed through 150-pm mesh filters, which 

minimized the introduction of non-target species while permitting the passage of smaller 

invertebrate larvae (recruits) such as barnacles (Balanus spp.), bubble snails (Haminoea 

solitaria), polychaetes (Nereis sp.), and tunicates (Mogula manhattensis), as well as propagules 

of green and red filamentous algae. Mesocosms were arranged in a block design, with one 

replicate of each of the 14 treatments present in a single tank. Each mesocosm was filled with 1- 

kg of crushed oyster shell to provide a natural substrate, and 30-g wet weight of the macroalgae 

Gracilaria spp. (hereafter Gracilaria). Gracilaria is a common drift macroalgae in the Chesapeake 

Bay, and harbors a diverse epifaunal community (Parker et al. 2001). Gracilaria were defaunated 

in a diluted solution of the commercially available pesticide Sevin™ before being placed into the 

mesocosms for 72-h prior to introduction of any animals, after which time grazers were 

introduced into the experimental mesocosms, followed 48-h later by the predators. Twice a 

week, a pinch of freeze-dried krill was introduced into each mesocosm to prevent starvation of 

predators in monoculture.

The experiment was terminated after 3 weeks when we observed near total

consumption of Gracilaria in some replicates. All algal and animal material was removed from

the mesocosms and frozen, and predator wet weights were taken. Later, Gracilaria, recruiting

red and green filamentous algae, predators, and recruiting invertebrates were thawed and

identified to species, dried at 60°C until mass was stable, and then combusted to obtain final

ash-free dry mass (AFDM) of each taxon. Smaller invertebrates, such as the stocked grazers and

polychaetes, were isolated and passed through a series of stacked sieves, sorted to species, and
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counted. Abundance of each taxon in each sieve size was converted to an estimate of AFDM 

using the equations in Edgar (1990). Two replicates (one each of C. sapidus and F. heteroclitus 

monocultures) were discarded due to contamination by target species, and one replicate was 

lost during the experiment breakdown (9-species polyculture), leaving a total of N = 81 

replicates for analysis.

Statistical Analysis

To quantify the relative contributions of initial species richness vs. FD in explaining 

ecosystem responses, we constructed general linear mixed effects models (GLMMs) regressing 

each response against species richness or FD, allowing the intercept to vary by the tank in which 

the mesocosm buckets were placed. For final predator biomass, an additional covariate of initial 

predator biomass was included in the model, since predator biomass could not be equalized at 

the start of the experiment. Species richness and FD were evaluated singly to avoid issues with 

multicollinearity. We selected the best model using AIC (Burnham and Anderson 2002). We also 

calculated marginal and conditional R2 values {sensu Nakagawa and Schielzeth 2012)- 

corresponding to the variance explained by the fixed effect and the combined fixed and random 

effects, respectively—to gain a sense of the approximate variance in the response explained by 

each of the two predictors. We additionally fit regressions of each response against richness, FD, 

and their interaction, knowing that resulting P-values are likely to be inflated due to collinearity 

between richness and FD. All models were constructed in the R package nlme (Pinheiro et al. 

2013). Model assumptions, including homogeneity of variance and normality of errors, were 

assessed graphically. Diversity indices were scaled by mean and variance to better meet model 

assumptions. Even so, for several responses, residuals were highly heteroscedastic. To resolve 

this issue, we modeled the variance using the function varldent, using initial species richness
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levels as the stratum. Marginal and conditional R2 values were calculated using the function by 

Lefcheck & Casallas (https://github.com/islefche/rsauared.glmerl.

As multivariate FD may obscure the potentially interacting contributions of individual 

traits (e.g., Spasojevic and Suding 2012), we conducted two additional analyses to assess and 

clarify the role of individual traits in explaining the observed patterns. First, we calculated the 

functional richness index separately for each individual trait, essentially representing the range 

of values encompassed by a particular assemblage for that trait. We then regressed these 

univariate FD values against each ecosystem response, as above. This procedure allowed us to 

quantify the contributions of individual traits, and determine whether trade-offs existed in the 

magnitude and direction of their individual effects. Second, we assessed the contribution of 

individual traits to the multivariate effect by conducting a jack-knifing procedure that removed a 

single trait, recalculated a multivariate FD from the remaining seven traits, and regressed this 

reduced jack-knifed index against each ecosystem response. We then re-fit the GLMMs to these 

jack-knifed indices and compared them to the GLMMs regressing the full multivariate index 

using Akaike's Information Criterion (AIC). The change in AIC score between the jack-knifed 

versus the full index of FD indicated whether any trait(s) had an inordinate influence on 

multivariate FD.

Because there was a potentially complex network of interactions among variables in the

experiment, we conducted an additional analysis using piecewise structural equation modeling

(SEM). Piecewise SEM combines information from multiple separate linear models into a single

causal network (Shipley 2009). Because the individual models can incorporate various random

structures, piecewise SEM is a powerful and flexible alternative to traditional variance-

covariance based SEM. SEM also allowed us to decomposing the relative contributions of

herbivore versus predator diversity on ecosystem responses, to test whether predators were
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wholly responsible for the significant community FD effects observed in our GLMMs. Following 

the recommendations of Grace (2006), we constructed a single causal network using knowledge 

of the system and ecological theory to define the paths of interest (outlined in Appendix A). We 

fit the component models as GLMMs (as above). We ran this model twice, substituting either 

species or functional richness for variables relating to herbivore or predator diversity. Overall fit 

was assessed using Shipley's test of d-separation, which yields a Fisher's C statistic that is x2 

distributed (Shipley 2009). Species versus functional richness SEMs were compared using AIC 

(Shipley 2013). We used the open-source R package piecewiseSEM to conduct the piecewise 

SEM (https://github.com/islefche/piecewiseSEM).

We further modeled the contribution of each individual species to understand whether 

species with different combinations of traits influenced different ecosystem functions. We 

constructed GLMMs regressing each response against the presence/absence of each species 

(e.g., Isbell et al. 2011). To understand whether the strongest effects were the result of extreme 

combinations of traits, we regressed the effect sizes from the GLMMs against functional 

distinctness, calculated as the average pairwise functional distance between a given species and 

all other species. Distances were derived from Gower's metric (Podani 1999), which unites both 

continuous and categorical trait information into a single continuous measure. All data and R 

code are provided as supplements. Vertebrates were handled according to IACUC standards 

(protocol 2012-05-11-7960 administered through The College of William & Mary).

Results

Multivariate functional diversity (FD) was a better predictor of and explained more 

variance in predator, grazer, and recruiting invertebrate biomass than species richness, based 

on comparison of model AIC values and marginal and conditional R2 values (Table 1). Neither
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diversity index significantly predicted functions related to primary producers, explaining only 3- 

6% of the variance in recruiting algal and Gracilaria biomass. Despite the collinearity between 

initial species richness and FD (Fig. S3) leading to conservative P-values, models regressing the 

same responses in Table 1 against species richness, FD, and their interaction as predictors 

revealed identical trends to the model selection presented above (Table S2). Predicted fits 

extracted from the interaction models revealed a mild but significant decline in final grazer 

biomass with increasing FD (Fig. la ), presumably due to the increasing frequency of predators 

with increasing FD. Recruiting invertebrate biomass also declined with increasing FD (Fig. lb ), 

also presumably indicating direct consumption by predators and omnivorous grazers (e.g., Duffy 

et al. 2003). Final predator biomass was higher in mesocosms with higher FD, even after 

accounting for differences in initial predator biomass (Fig. lc). As found during the model 

selection procedure, there was no relationship between FD and either recruiting algal biomass 

(Fig. Id ) or final Gracilaria biomass (Fig. le).

Exploration of the effects of individual traits on final biomass responses revealed similar 

trends to multivariate FD (Fig. 2). Interestingly, the confidence intervals derived from 

multivariate FD tended to be narrower than for individual traits, particularly for armor, trophic 

level, mobility, and reproductive mode, suggesting that the composite index across multiple 

traits improved accuracy in predicting community biomass (Fig. 2, Fig. S4). These general trends 

were also conserved in our jack-knifing exercise, in which traits were individually removed and 

multivariate FD was calculated from the remaining pool of traits. The one exception was final 

predator biomass, which was more poorly predicted when either body plan, trophic level, or 

reproductive mode were left out, and better predicted when mobility and phenology (month of 

maximum abundance) were omitted (Table S3). Together, these results suggest that the
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inferences derived from multivariate FD were generally more robust than those for individual 

traits, and qualitatively corresponded with those derived from univariate FD.

To determine whether the overall effect of FD from the model fitting procedure 

persisted within each trophic level, we fit a structural equation model (SEM) decomposing 

community FD into independent herbivore and predator FD effects. We also fit the same model 

replacing FD with species richness. Overall, the FD SEM fit the data well (Cjg = 24.65, P = 0.924, 

Fig. 3), and revealed that the strongest relationship in the experiment occurred between initial 

predator FD and final predator biomass 0  = 0.476), after controlling for initial predator biomass. 

This relationship was still significant and similar in magnitude when considering only replicates 

that contained predators (P = 0.418, P = 0.012), to omit the extraneous influence of many 

replicates with 0 values for predator diversity. We also observed a positive but weaker 

relationship between final grazer FD and final grazer biomass (P = 0.164), even after the 

predator effects on grazer biomass were taken into account. This trend can be better visualized 

by extracting the partial correlations between final grazer FD and final grazer biomass, 

accounting for the other covariates in the SEM (Fig. S5). This relationship was still significant and 

even stronger when considering replicates that only contained grazers (P = 0.353, P = 0.047). In 

contrast, the SEM using species richness as the metric of diversity was a much poorer fit to the 

data than that using FD, but still adequate (Cig = 39.49, P = 0.317, Fig. 4). Indeed, comparison of 

AIC scores revealed that the SEM including FD was a much better than the one including species 

richness (AIC = 106.7 «  121.5 for FD and richness, respectively). The most striking difference 

between the two models was the lack of a significant effect of final grazer richness on grazer 

biomass in the richness SEM (Fig. 4). Additionally, the positive bottom-up path from grazer 

functional diversity to final predator biomass (Fig. 2) was absent in the richness SEM (Fig. 4).

154



In the SEM incorporating FD, the largest predator effects on final grazer biomass were 

mediated through grazer FD, as indicated by the lack of a significant direct path between final 

predator biomass and final grazer biomass (Fig. 3). The magnitude of this indirect effect is 

achieved by multiplying the two component paths: P = -0.335 x 0.164 = -0.055, indicating a 

relatively weak but still significant reduction. Initial predator biomass weakly reduced final 

grazer biomass (P = -0.180), suggesting that grazer communities experienced rapid top-down 

control by predators, and only after prey communities had stabilized that a positive effect of 

grazer FD on grazer biomass was observed. In contrast, in the richness SEM, the primary top- 

down path manifested directly between initial predator richness and final grazer biomass (Fig. 

4), although it was about 40% weaker than the corresponding effect of final predator biomass 

on grazer functional diversity (P = 0.30 vs. -0.48, Fig 3). All coefficients and their associated P- 

values are given in supplementary materials (Tables S4 and S5).

The individual contributions of each species to functioning revealed potential for 

complementarity across multiple functions (Table 2). As expected, most of the grazers positively 

and significantly contributed to final grazer biomass, with the exception of E. attenuata. 

Similarly, the two fishes F. heteroclitus and Syngnathus spp. both contributed positively to final 

predator biomass. The mummichog F. heteroclitus also significantly reduced recruiting 

invertebrate biomass, and Ampithoid spp. contributed significantly to reductions in final algal 

and Gracilaria biomass. Regression of the effect sizes in Table 2 against functional distinctness- 

calculated as the mean pairwise distance between a given species and all other species in 

multidimensional trait space—revealed that some functions were driven large-bodied, mobile 

predators, while others were driven by small-bodied, chitinous grazers (Fig. S6).
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Discussion

In this study of an estuarine food web, we found that multivariate functional diversity 

better predicted standing stock biomass across multiple trophic levels than did species richness 

(Table 1). This result was a consequence of greater variation in FD than in richness (Fig. S3), 

confirming the superior utility of FD for capturing ecologically significant variation among 

members of an assemblage compared with the raw number of species. Further, structural 

equation modeling (SEM) revealed that this result was a consequence of functional diversity of 

both predators and grazers (Fig. 3), emphasizing the importance influence of multitrophic 

diversity on community structure and functioning (Strong 1992, Polis and Strong 1996).

Contrary to our predictions, we did not find a significant interaction between species 

richness and FD for most ecosystem responses, though initial species richness and functional 

diversity had antagonistic effects on final species richness (Table S2). This may be because of the 

high collinearity between species richness and functional diversity inflating standard errors of 

our model predictions (r = 0.94, Fig. S3). Despite this potential conservative bias, we were still 

able to isolate a significant positive effect of FD but not species richness. Thus, in our 

experiment, the effect of increasing FD on grazer, predator, and recruiting invertebrate biomass 

was not contingent on the level of species richness. One explanation may be our experimental 

design, which nested two levels of FD within only two levels of species richness (Fig. SI). There 

may have been too few levels of species richness, or too little variation among species' 

functional traits, to extract a clearer signal. Future manipulations may benefit from 

incorporating an even greater range of species richness and/or traits in investigation of 

diversity-function (Gamfeldt et al. 2015).
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The stronger effects of predator FD compared relative to herbivores is consistent with 

both conceptual predictions relating to greater physiological, resource, and behavioral 

complexity with increasing trophic level (Duffy 2002), as well as experimental evidence (Griffin 

et al. 2013, Lefcheck et al. 2015). A possible explanation for the strong predator diversity effect 

in our experiment is that the predator species was more functionally distinct, on average, than 

the grazer species (mean functional distinctness ± S.E. for predators = 0.55 ± 0.06 vs. 0.45 ± 0.02 

for grazers), enhancing the potential for resource complementarity among predators (e.g.,

Griffin et al. 2008). This distinctness, however, appears to be driven largely by F. heteroclitus 

(Fig. S6), which also happens to have the largest effects of all the predators on the various 

responses (Table 2). Thus, the stronger effect of predator diversity relative to herbivore diversity 

may best be interpreted as a 'sampling effect' (sensu Loreau 1998), driven by the presence of F. 

heteroclitus. This result speaks to the central role of F. heteroclitus in the food web dynamics of 

estuarine systems in the southeastern US (Kneib 1986).

In addition to positive effects of FD on biomass within trophic levels, we observed that 

initial grazer FD, but not initial species richness, increased final predator biomass (Fig. S7). These 

results confirm as expected that it is not just the total number of species, but also the functional 

identity of the grazers that are important in mediating predator-prey interactions. Our 

exploration of individual traits revealed that the predictive ability of multivariate FD decreased 

significantly when body plan and trophic level were left out of the index (Table S3), implying that 

variation in these traits was especially important in determining final predator biomass. It is not 

surprising that these traits come out as being particularly important, as they are central to 

classical habitat-based (Grinnell 1917) and resource-based definitions of ecological niches (Elton 

1927). One possible mechanistic explanation is that body plan influenced susceptibility to 

predation. For instance, it is easy to envision how the long and slender body of the isopod E.
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attenuate may exceed the gape limit of the pipefish Syngnathus spp., but could more easily be 

manipulated by the crab C. sapidus. Thus, differences in morphology may drive predator-specific 

selection of prey, and ultimately increase aggregate consumption across a variety of prey body 

types in a diverse assemblage.

Variation in trophic level may have been important in determining final predator 

biomass simply because high variation implies the presence more than one trophic level, i.e., 

predators and their prey. A related explanation for the positive effect of grazer functional 

diversity on predator biomass could be the 'balanced diet' hypothesis, where a diverse prey 

assemblage provides a more complete range of nutrients (Gamfeldt et al. 2005, Lefcheck et al. 

2013). If prey species varied slightly in their positions within the food web, then they may be 

assimilating resources differently. For instance, the ampithoid amphipod complex was the only 

grazer to have a detectable negative effect on primary producers in our experiment by directly 

consuming algal species (Table 2), and previous experiments also documented distinct 

differences in diet between Ampithoid spp. and another amphipod grazer used in our 

experiment, 6 . mucronatus (Duffy and Harvilicz 2001). The positive effect of grazer functional 

diversity may thus indicate niche complementarity increasing aggregate biomass and/or 

nutritional value (Fig. 3, Fig. S5), leading to more prey for predators.

That the top-down effects of predators on grazers did not cascade to primary producers

or recruiting invertebrate biomass was surprising, given both theoretical predictions (Strong

1992) and past experiments with these grazers (Duffy et al. 2003, 2005, O'Connor and Bruno

2007, Douglass et al. 2008). One possible explanation is that predators were simply so efficient

at consuming grazers (Fig. la ) that our model was unable to disentangle the indirect effects of

predators removing grazers, and subsequent release of primary producers. Statistically, this

would be manifested as the strong direct positive paths between predator biomass and final
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algal biomass in our SEMs (Figs. 3,4). Similarly, while grazers can influence the recruiting 

invertebrates in mesocosms in the absence of predators (e.g., Duffy et al. 2003), their influence 

relative to larger predators was insignificant in our experiment (Table 2). This was also probably 

largely due to the rapid consumption of grazers (Fig. la). Thus, we observed a direct negative 

relationship between predator biomass and recruiting invertebrate biomass (Figs. 3,4).

Our exploration of individual traits revealed that no individual trait was responsible for 

driving the patterns in multivariate FD. Rather, all traits showed generally similar trends to 

multivariate FD in influencing final biomass (Fig. 2). While this analysis confirmed that there 

were no strong trade-offs among individual traits that may have biased the multivariate trend, it 

also raises the question: why combine inferences from multiple traits at all? One answer is that 

the multivariate index generally had lower predicted standard errors (Fig. S4), thus improving 

prediction accuracy. In some cases, the multivariate index reduced standard errors on estimates 

of grazer and recruiting invertebrate biomass by up to 40%, particularly when considering only 

armor, body plan, and trophic level. This result also explains why models dropping these two 

traits generally had worse AIC scores when attempting to predict final predator biomass (Table 

S3). Thus, combining multiple traits enhanced the explanatory power of functional diversity, at 

least in our index of functional richness.

Richness and FD of species stocked in our mesocosms were lower at the end of the

experiment than at the beginning (Fig. S8), highlighting the negative interactions among

predators and grazers, and potentially among predators. For instance, blue crabs were lost in

several replicates, leading to the overall non-significant effect of blue crabs on every ecosystem

response (Table 2). The loss of C. sapidus corresponds with other experiments using this species

(O'Connor and Bruno 2007, Douglass et al. 2008), and was partly due to crabs escaping the

experimental mesocosms, and partly due to the death of crabs, as evidenced by empty

159



carapaces found in the mesocosms at the end of the experiment. While there could have been 

antagonistic interactions among predators, all crabs were recovered from the polycultures, and 

virtually none from the monocultures. Cannibalism is not a likely explanation as predators were 

stocked individually in monoculture. This result contrasts those of Douglass et al. (2008), who 

found that crab growth and survival was highest in monoculture. They attributed this result to 

the presence of other predators modifying grazer composition to the detriment of blue crabs. 

The non-random pattern of crab loss across the treatments in this study suggests the opposite: 

that only the diverse assemblage provided the requisite resources for blue crab survival. This 

idea is bolstered by the finding that the 9-species mixture retained a higher number of stocked 

species (Fig. S8a).

Overall, this study empirically confirms that a focus on multiple functional traits can 

provide more accurate predictions regarding the functioning of whole food webs than single 

traits or species richness alone. Moreover, we show that functional diversity within multiple 

trophic levels (herbivores and predators) enhanced corresponding biomass even after 

accounting for the effects of adjacent trophic levels. This result suggests that conservation of 

diversity at multiple trophic levels, with a particular emphasis functionally diverse communities, 

can lead to enhanced community biomass.
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Tables

Table 1: AIC scores, marginal R2m, and conditional R2C values for competing models containing 

either species richness or functional diversity as a predictor of five ecosystem responses 

across three trophic levels. Models that are significantly better than the other at explaining the 

response based on lower AIC scores are bolded. Models predicting algal or Gracilaria biomass 

were approximately equivalent, and thus those rows have no bolded cells

Species Richness Functional Diversity

Response AIC R2m R2c AIC R2m R 2e

Final grazer biomass 133.1 0.106 0.107 129.3 0.167 0.168

Final predator biomass 31.4 0.479 0.479 25.4 0.534 0.534

Recruiting invertebrate biomass -52.9 0.152 0.173 -55.3 0.233 0.274

Final algal biomass -222.6 0.003 0.022 -222.3 0.000 0.018

Final Gracilaria biomass 288.5 0.063 0.063 288.9 0.059 0.059
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Table 2: Standardized contributions of each individual species to ecosystem responses based 

on regressions of presence/absence of each species against a given response. Significant 

effects (P < 0.05) are bolded. Amp = Ampithoid spp., Bitt = Bittiolum varium, Call = Callinectes 

sapidus, Erich = Erichsonella attenuate, Fund = Fundulus heteroclitus, Gamm = Gammarus 

mucronatus, Hippo = Hippolyte pleuracanthus, Pal = Palaemonetes pugio, and Syn = Syngnathus 

spp.

Response Amp Bitt Call Erich Fund Gamm Hippo Pal Syn

Final grazer biomass 1.33 -0.57 -0.29 0.10 -0.68 0.69 -0.53 -0.34 0.22

Final predator biomass 0.12 0.17 0.30 0.15 1.19 0.06 -0.03 0.15 0.45

Recruit invert biomass 0.41 -0.45 -0.24 0.24 -0.70 -0.03 -0.35 -0.09 -0.06

Final algal biomass •0.60 0.07 -0.30 -0.15 0.01 0.17 0.59 0.03 0.01

Final Gracilaria biomass -0.73 0.09 0.54 0.30 0.33 0.00 0.18 0.37 -0.28
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Figure 1: Scatterplot of initial functional richness against ecosystem responses. Shapes 

corresponds to the richness level (1, 3, 6, or 9). Grey lines represent predicted fits from a 

general linear mixed effects model for 3- (light grey) and 6-species (dark grey) treatment. The 

black line represents the overall trend from the same model, (c) The regression of final predator 

biomass again FD included initial predator biomass an additive covariate.
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Figure 2: Standardized regression coefficients from models regressing ecosystem responses 

against functional richness calculated using each functional trait individually. Points are linear 

estimates 195% confidence intervals (2*SE). Black points indicate significance (P< 0.05), while 

white points are non-significant (P 1 0.05). Vertical lines represent the linear estimates for the 

multivariate index of functional richness, and shaded areas indicate ±95% confidence intervals.

169



CD
i_o COCO
CD CD.*S

C
TJ h
2? O
CL .O

c

CD 2m g
CD

.£ -6 E
LL. o

O.X2

1 8  =

N

8

CO  CO
CD <0 (0
.E °> E U_ CO o 

!o

In
iti

al
‘ed

at
or

FR
ic

Q.

Figure 3: Structural equation model of herbivore and predator functional diversity (functional 

richness, FRic) as a predictor of community responses at the end of the experiment. Black 

arrows represent positive paths, and red arrows represent negative paths. Arrow width is 

proportional to the size of the effect, reported as the standardized effect size in the 

accompanying text box. Shaded lines represent non-significant paths (P £ 0.05).
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Figure 4: Structural equation model of herbivore and predator species richness as a predictor 

of community responses at the end of the experiment. Black arrows represent positive paths, 

and red arrows represent negative paths. Arrow width is proportional to the size of the effect, 

reported as the standardized effect size in the accompanying text box. Shaded lines represent 

non-significant paths (PS 0.05)
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Supplemental Tables

Table SI: Functional traits measured for each species included in the experiment, along with 

their units and functional interpretation for ecosystem functioning.

Trait

Defense

Body plan

Trophic level

Maximum 

biomass 

Mean biomass

Mobility

Reproductive

mode

Month of 

maximum 

abundance

Units Functional Interpretation

Categorical: None, shell (chitin, calcium 

carbonate)

Categorical: Articulate (laterally-, 

ventrally-compressed, subcylindrical), 

shelled conic, filiform, fusiform 

Categorical: Grazer, omnivore, 

predator 

Continuous (mg)

Continuous (mg)

Categorical: Swimmer (low, high), 

tube-builder, crawler

Categorical: Direct, planktotrophic, 

ovoviviparous, oviparous

Ordered (Jan, Feb, Mar, etc.)

Palatability and likelihood of 

consumption and trophic 

transfer

Habitat use and palatability

Resource use and trophic 

transfer

Maximum contribution to 

community production 

Average contribution to 

community production 

Dispersal ability and potential 

for interactions (competition, 

predation, etc.)

Dispersal ability, colonization 

potential, and population 

growth

Historical interactions with 

competitors and predators, 

resource use
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Table S2: Standardized regression coefficients (scaled by mean and variance) from generalized 

linear mixed effects models regression ecosystem responses against species richness (S), 

functional diversity (FD), and their interaction (S x FD). Significant predictors are denoted in 

bold. Marginal R2m and conditional R2C values are also reported.

Response S FD Sx FD R2m R2e

Final grazer biomass 0.292 -0.410 -0.012 0.28 0.28

Final predator biomass -0.145 0.469 0.088 0.68 0.68

Recruiting invertebrate biomass 0.014 -0.118 0.016 0.31 0.45

Final algal biomass -0.022 -0.002 0.013 0.03 0.03

Final Gracilaria biomass 0.548 -0.211 0.161 0.16 0.16

Final species richness 2.226 -0.602 -0.382 0.63 0.63

Final functional diversity -0.015 0.291 -0.021 0.75 0.75
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Table S3: The change in model likelihood (AAIC) after dropping a single trait and recalculating 

multivariate functional richness using the remaining seven traits (AAIC = AICaji tr.its -  AlCitmt 

removed)* The trait removed is indicated in the column header: armor, body plan, trophic level, 

maximum biomass, mean biomass, reproductive mode, and month of maximum abundance. 

Bolded cells indicate models that were more than ±2 units difference in AIC scores. An increase 

in AAIC indicates a decrease in model likelihood (i.e., the model was less likely than the full 

model), and thus the trait had a stronger influence in predicting the response. Oppositely, a 

decrease in AAIC indicates an increase in model likelihood (i.e., the model was more likely than 

the full model), and thus the trait had a weaker or confounding influence in predicting the 

response.

Month
Body Trophic Max. Mean Reprod. max.

Response Armor plan level biomass biomass Mobility mode abund
Final
grazer 0.79 -0.51 -0.19 -0.01 -0.03 0.34 0.51 1.72
biomass
Final
predator -0.86 2.67 2.19 1.05 1.92 -4.29 3.72 -4.67
biomass
Recruit
invert -0.91 0.36 1.54 0.30 -0.09 0.63 1.22 1.47
biomass
Final algal ^  14 Q Q2 Q (J2 o.O l 0.01 -0.04 0 -0.26
biomass
Final
Gracilaria -0.87 0.77 0.49 0.29 0.12 0.22 0.09 -0.73
biomass
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Table S4: Linear coefficients from the structural equation model decomposing independent

predator and herbivore functional diversity effects given in Figure 3, main text.

Response Predictor Estimate
Standard

error
P-

value
Final grazer functional 
richness

Initial grazer functional 
richness

0.476 0.137 0.001

Final grazer functional 
richness

Final predator biomass -0.335 0.137 0.017

Final predator functional 
richness

Initial predator functional 
richness

0.333 0.106 0.002

Final predator biomass Initial predator functional 
richness

0.464 0.121 0.000

Final predator biomass Initial grazer functional 
richness

0.327 0.118 0.007

Final predator biomass Final predator functional 
richness

-0.083 0.086 0.338

Final predator biomass Initial predator biomass 0.002 0.089 0.984
Final grazer biomass Final grazer functional 

richness
0.142 0.050 0.006

Final grazer biomass Initial predator biomass -0.180 0.080 0.028
Final grazer biomass ' Initial grazer functional 

richness
-0.267 0.138 0.057

Final grazer biomass Initial predator functional 
richness

0.224 0.151 0.144

Final grazer biomass Final predator functional 
richness

0.008 0.012 0.508

Final grazer biomass Final predator biomass -0.006 0.023 0.794
Final grazer biomass Initial grazer abundance 0.005 0.082 0.956
Final primary producer 
biomass

Final predator biomass 0.333 0.106 0.002

Final primary producer 
biomass

Final grazer biomass -0.168 0.106 0.116

Final recruiting invertebrate 
biomass

Final predator biomass -0.370 0.098 0.000

Final recruiting invertebrate 
biomass

Final grazer biomass 0.292 0.095 0.003

Final recruiting invertebrate 
biomass

Final grazer functional 
richness

0.098 0.094 0.303

Final recruiting invertebrate 
biomass

Final predator functional 
richness

-0.019 0.096 0.846

Initial grazer functional 
richness

Initial predator funcitonal 
richness

0.715 0.000
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Table S5: Linear coefficients from the structural equation model decomposing independent

predator and herbivore species richness effects given in Figure 4, main tex t

Response Predictor Estimate
Standard

error
P-

value
Final grazer species richness Initial grazer species 

richness
0.810 0.106 0.000

Final grazer species richness Final predator biomass -0.389 0.107 0.001
Final predator species richness Initial predator species 

richness
0.868 0.055 0.000

Final predator biomass Initial predator species 
richness

0.457 0.165 0.007

Final predator biomass Initial grazer species 
richness

0.154 0.096 0.115

Final predator biomass Final predator species 
richness

0.217 0.146 0.141

Final predator biomass Initial predator biomass -0.004 0.081 0.964
Final grazer biomass Initial predator species 

richness
-0.303 0.143 0.037

Final grazer biomass Initial grazer species 
richness

0.145 0.149 0.335

Final grazer biomass Final grazer species 
richness

0.059 0.079 0.457

Final grazer biomass Initial predator biomass -0.037 0.053 0.493
Final grazer biomass Final predator biomass 0.005 0.015 0.756
Final grazer biomass Initial grazer abundance -0.028 0.111 0.803
Final grazer biomass Final predator species 

richness
-0.003 0.039 0.932

Final primary producer 
biomass

Final predator biomass 0.333 0.106 0.002

Final primary producer 
biomass

Final grazer biomass -0.168 0.106 0.116

Final recruiting invertebrate 
biomass

Final grazer biomass 0.263 0.098 0.009

Final recruiting invertebrate 
biomass

Final predator biomass -0.275 0.135 0.045

Final recruiting invertebrate 
biomass

Final grazer species 
richness

0.120 0.098 0.228

Final recruiting invertebrate 
biomass

Final predator species 
richness

-0.163 0.137 0.237

Initial grazer species richness Initial predator species 
richness

0.666 0.000
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Supplemental Figures
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Figure SI: A schematic of the experimental design. We utilized four levels of species richness: 1, 

3, 6, and 9. Each of the 9 species was represented in the single-species treatments (hence the 9 

individual squares). All species were present in the 9-species mixture. For the 3- and 6-species 

treatments, we generated all possible combinations of species and calculated functional 

diversity (FD, as functional richness). We then randomly drew replicate assemblages from the 

lower 25th percentile to represent 'low FD,' and repeated this exercise for the upper 75th 

percentile to represent 'high FD.' The single species represented the minimum level of FD (FD =

0). The 9-species mixture represented the highest level of FD (maximum FD, visually depicted in 

reduced trait space in Figure S2).
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Figure S2: Principal coordinates analysis (PCO) collaping 8 functional traits into 2-dimensions.

The convex hull (area of trait space encompassed by all 9 species) is given by the shaded 

polygon.
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Figure S4: Standard errors of linear coefficients extracted from general linear mixed effects 

models regressing ecosystem responses against univariate and multivariate functional 

richness. Traits used in the univariate calculation of FD are listed on the x-axis, and the standard 

error of the multivariate FD estimate is given as the horizontal line. If points fall above this line, 

then variance around the univariate estimates was greater than around the multivariate one.
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Figure S5: Partial correlation plot of final grazer functional richness against final grazer 

biomass (mg AFDM), after accounting for additional covariates. Points have been jittered to 

better illustrate density of points at 0 FD (i.e., single-species treatments).
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Figure S6: Average pairwise functional distance against effect sizes for each of the 9 species 

derived from a general linear mixed effects model regressing the presence/absence of each 

species against each ecosystem responses. Black lines represent predicted trends from a a 

simple linear regression.
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Figure S7: Partial effects plots of (a) initial grazer functional richness and (b) initial grazer 

species richness on final predator biomass, accounting for covariates (initial predator diversity, 

initial predator biomass, and final predator diversity).
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or 9). Grey lines represent predicted fits from a general linear mixed effects model for 3- (light 
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from the same model.



Appendix A: Discussion of Structural Equation Model

To begin, we generated a conceptual 'meta-model' (Fig. A l). This meta-model 

corresponded to a simple tri-trophic food web, with predators consuming herbivores, and 

herbivores consuming primary producers. Both predators and herbivores were predicted to 

consume recruiting invertebrates, as in past experiments with these organisms (Duffy and 

Harvilicz 2001, Duffy et al. 2003, 2005). Within each trophic level, we had the expectation that 

diversity would enhance biomass (see predictions below. Fig. Ala,b). We also created composite 

variables to represent the entirety of final primary producer biomass, which was a combination 

of: final Gracilaria spp. dry mass, and recruiting filamentous algal dry mass (Fig. Ale). And the 

entirety of recruiting invertebrate biomass, which was a combination of: Nereid spp. dry mass, 

tunicate (Mogula manhattensis) dry mass, bubble snail (Haminoea solitaria) dry mass, and 

barnacle (Balanus spp.) dry mass.

We populated this meta-model using variables measured during the experiment (Fig. 

A2). Here, we briefly describe the rationale behind each path. Letters correspond to the bubbles 

in Figure A2. In all cases, 'diversity* can mean either functional or species richness, depending on 

the model considered (see main text).

A) As in Figure A l, we expected predator or herbivore diversity (functional or species richness) 

to enhance corresponding final biomass (Loreau et al. 2001, Duffy 2002). By including paths 

from both initial and final diversity to the corresponding final biomass, we can account for 

loss of species within replicates over the course of the experiment.

B) We also expected initial predator or herbivore diversity to predict final predator diversity. In 

other words, we expected to find more species left if more species were initially stocked.
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C) Because we could not incorporate predators in a substitutive design, we included initial 

predator biomass as a covariate in all paths leading to final predator biomass. Thus, the 

effects of, say, final predator diversity on final predator biomass accounted for differences 

in initial stocked biomass within each replicate. We also included a path from initial grazer 

abundance to final grazer biomass for the same reason, even though we equalized grazer 

biomass at the beginning of the experiment (this path ended up being highly non-significant 

in all models, confirming the efficacy of our substitutive design for grazers, Table S4, S5).

D) We also included a correlation between initial predator and herbivore diversity, to account 

for the fact that increasing diversity necessarily meant the inclusion of more grazers and 

predators. This has no bearing on the model estimates, but gives an indication of how the 

diversity of these two trophic levels scaled as assemblages were manipulated.

E) We expected both initial and final predator biomass to decrease final grazer biomass 

through direct consumption. Again, by incorporating paths from both initial and final 

predator biomass to grazer final biomass, we can account for changes in the predator 

community over the course of the experiment.

F) Similarly, we expected predators change the diversity of the grazer community through the 

removal of (functionally distinct) species (Duffy et al. 2005, Douglass et al. 2008).

G) We expected a more diverse predator assemblage to more efficiently consume grazers by 

employing a diversity of foraging strategies and capture mechanisms (reviewed in Duffy et 

al. 2007).

H) Along similar lines, we expected a more diverse prey assemblage to enhance final predator 

biomass (reviewed in Duffy et al. 2007).

I) We expected final grazer biomass to decrease both final algal biomass and final recruiting 

invertebrate biomass via direct consumption (Duffy and Harvilicz 2001, Duffy et al. 2003).
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J) We expected a more diverse predator assemblage to more efficiently consume recruiting 

invertebrates, for the same reasons as path G.

K) The SEMs were always a poor fit unless a direct path between final predator biomass and 

final algal biomass was included. This path was always positive. In light of the lack of direct 

negative path between final grazer biomass and primary producers (path I, Fig. A2), we 

interpreted this efficient consumption of grazers by predators, leading to a direct statistical 

effect of predators on algal resources. Had predators been less efficient or grazer biomass 

less depressed, we may have been able to recover an indirect trophic cascade leading from 

predators to herbivores to primary producers.

L) Finally, we expected final grazer diversity to negatively affect final recruiting invertebrate 

biomass, as the invertebrates considered vary in their palatability to these small 

mesograzers (Duffy and Harvilicz 2001). Thus, only by including a variety of grazer species 

would we be able to see an effect on recruiting invertebrates as a whole.
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CONCLUDING REMARKS

In this dissertation, I provide three examples of how a functional trait approach can 

inform our understanding of both patterns and processes in the natural world. A central theme 

that emerges from Chapters 1 and 2 is that biology is important in driving community structure 

and function in addition to of in spite of abiotic variation. This was true through space, as in the 

analysis of global reef fish diversity, and time, as in the analysis of a local eelgrass bed. Recent 

meta-analyses have cited abiotic filters as driving a large proportion of the variation in 

community composition, and their influence was highest in marine and estuarine systems 

(Cottenie 2005, Soininen 2014). Similarly, in studies that directly compared biotic and abiotic 

drivers of assembly, nearly four-fifths (79%) reported evidence for environmental filtering (Kraft 

et al. 2014). Yet, I found that organisms have a detectable role in both shaping their own 

community, and influence processes in the environment in which they live, across two different 

systems. These findings support long-standing theoretical and conceptual predictions about the 

role of biology at large scales (Hillebrand 2004, Mittelbach et al. 2007, Poore et al. 2012), and 

shed light on important biotic processes that lead to the maintenance and stability of 

communities (Strong 1992, Shurin et al. 2006).

Another interesting outcome is that functional diversity played a large role in driving 

community biomass in mesocosms (Chapter 3), but did not have any detectable effect in similar 

communities in the observational dataset (Chapter 2). This finding raises the interesting and 

relevant question of whether small-scale experiments translate to the real world (Srivastava and
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Vellend 2005, Cardinale etal. 2012). Compared to the hundreds of experimental manipulations 

of marine biodiversity (reviewed in Stachowicz et al. 2007, Gamfeldt et al. 2014), there have 

many fewer studies that have explicitly tested the correlation between diversity and functioning 

using observational datasets (Emmerson et al. 2001, Stachowicz et al. 2002, Dunstan and 

Johnson 2004, Hughes and Stachowicz 2004, Stachowicz and Byrnes 2006, Worm et al. 2006, 

Danovaro et al. 2008, Godbold and Solan 2009, Ptacnik et al. 2008, Mora et al. 2009, Duffy et al, 

2015). While these studies have generally found a positive effect of observed diversity on 

various ecosystem functions (Stachowicz et al. 2007), they are far from a general test.

It is also difficult to infer causative relationships from observational datasets, 

particularly in the face of complex interactions with environmental drivers (Godbold et al. 2009). 

Structural equation modeling and other modern statistical tools help to alleviate this issue 

(Grace et al. 2007), but they also assume that abiotic data are available and collected on the 

scale relevant to the biological data. We were lucky to have long-term local monitoring of 

abiotic properties for the analysis in Chapter 3. However, technological advancements and 

improvements in remote monitoring are already reducing the effort needed to collect high- 

resolution environmental data, and will facilitate the coupling of such data with biological 

surveys to better explore when, where, and why diversity effects manifest in nature. The 

emergence of large-scale research networks (e.g., Duffy et al. 2015) that integrate experimental 

approaches with natural gradients in diversity and abiotic variables may also bring some 

resolution to this question by directly testing causality while incorporating more realistic 

variation in both species composition and richness and the environment.

Across all three chapters, key functional traits that discriminated among species and

influenced observed patterns and effects were feeding ecology and body size. That traits related

to resource acquisition predict coexistence and functioning is no surprise, given that they form
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the basis for one of the oldest and most venerable concepts in ecology, the feeding niche (Elton 

1927). Similarly, body size correlates with trophic level and also represents potential habitat use, 

another fundamental niche axis (Grinnell 1917, Hutchinson 1957). Yet, I observed functional 

complementary among epifaunal grazers that were considered equivalent based on the traits 

used in my analysis (Table 2, Chapter 3). Thus, the question remains: what traits beyond those 

used here discriminate among closely-related species, particularly grazers in eelgrass systems? 

Specific diet preference and predator susceptibility are obvious candidates, based on other work 

involving amphipods (Best and Stachowicz 2012, Cothran et al. 2013), and dispersal mode is 

certainly important in determining fish community structure and diversity across heterogeneous 

landscapes (Riginos et al. 2014), but such traits require rigorous experimentation to obtain, or 

may not even be known for poorly described species. In an increasingly time- and resource- 

strapped world, are there tractable alternatives that give qualitatively similar insights? Such a 

question can only be answered through continued experimentation with the goal of identifying 

useful and realistic functional traits across a variety of organisms, particularly animals.

It will also be important to understand which traits are important under what scenarios. 

For instance, I observed no effect of functional diversity on filamentous algae in the mesocosms, 

but perhaps that was because there were other abundant resources available, or because top- 

down control by predators reduced species with traits that allowed them to capitalize on this 

particular resource. This idea is particularly relevant under future scenarios of global change, 

and whether traits can be used to predict community structure and function in the face of 

numerous anthropogenic stressors (Mouillot et al. 2013). Finally, one of the most attractive 

qualities of functional traits is that they are, in principle, generalizable to other taxa and systems 

(McGill et al. 2006). Yet there has been very little progress made on identifying a core set of 

functional traits that can be broadly applied across animal groups. Here, we propose a few traits
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-trophic guild and breadth, and body size -  that are measurable across invertebrates and 

vertebrates and appear to have some general utility in describing patterns and processes. The 

use of coordinated research networks conducting parallelized trait manipulations may be one 

way to shed further light on this issue (e.g., Wahl et al. 2011).

In sum, this dissertation presents evidence ranging from buckets to the entire biosphere 

that functional traits can: (1) provide mechanistic insight into the shifting role of biological 

interactions in how local reef fish communities are assembled from the regional species pool 

across the globe; (2) shed light on the functional role of epifaunal invertebrate grazers in 

eelgrass systems, both through time and in the face of considerable abiotic variation; and (3) 

better explain ecosystem functioning than species richness in multitrophic experimental 

assemblages.
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