3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2002

Adaptive and secured resource management in distributed and
Internet systems

Li Xiao
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Xiao, Li, "Adaptive and secured resource management in distributed and Internet systems" (2002).
Dissertations, Theses, and Masters Projects. Paper 1539623406.
https://dx.doi.org/doi:10.21220/s2-deqc-ew25

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-deqc-ew25
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive and Secured Resource Management in Distributed and

Internet Systems

A Dissertation
Presented to
The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Doctor of Philosophy

by
Li Xiao

2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

A S

Li Xiao

Approved. July 2002

v

Xiaodong Zhang
Thesis Advisor

Wil T8,

William L. Bynumn

e

Phil Kearns

Robert E. Noonan

-

Mare Sher
Department of Physies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents ...

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments
List of Tables
List of Figures
Abstract

1 Introduction
1.1 Background
1.2 Problems
1.3 Statements of Contributions oL

1.4 Organization of the Dissertation

2 Application level resource management of memory systems
2.1 Literature overview on memory utilization in centralized servers
2.2 Improving Memory Performance of Sorting Algorithms
2.3 Architectural and Algorithmic Parameters and Evaluation Methodology

2.3.1 Architectural and algorithmic parameters

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

xiv

i |

10

13

13

2.3.2 Performance evaluation methodology
233 Datasets L

2.4 Cache-Effective Mergesort Algorithms
2.4.1 Tiled mergesort and multimergesort
2.4.2 New mergesort alternatives
2.4.2.1 Tiled mergesort with padding

2.4.2.2 Multimergesort with TLB padding

2.4.3 Trade-offs relating to an instruction count increase and the perfor-
mance gain Lo e

2.5 Cache-Effective Quicksort Lo
2.5.1 Memory-tuned quicksort and multiquicksorto
2.5.2 New quicksort alternatives L0 L.
2.5.2.1 Flash Quicksort

2.5.2.2 Inplaced flash quicksort oo oL

2.5.3 Simulationresults oL

2.6 Measurement Results and Performance Evaluation
2.6.1 Mergesort performance comparisons oL L.
2.6.2 Quicksort performance comparisons L. L.

2.7 A Prediction Model of Performance Trade-Offs

2.8 Chapter Conclusion

3 Load Sharing for Global Memory System Management

3.1 Literature overview on load sharing for global memory in distributed systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

16

16

17

17

21

29

31

34

36

11

43

43

3.2 CPU-memory-based Load Sharing 7

3.2.1 CPU-Memory-Based Load Sharing Policies 19
3.2.2 Performance Evaluation Methodology 53
3.22.1 Asimulatedcluster Lo 34

3.22.2 Workload Traces L. 55

3.2.23 System conditionso 0oL 56

3.2.3 Performance Results and Analysis a7
3.2.3.1 Overall Performance Comparisons 1

3.23.2 Paging and Queuingo 39

3.2.3.3 High Performance and High Throughput 61

324 Summary e 62
3.2.5 Brief description of our study on heterogeneous systems 62
3.2.5.1 CPU/Memory Weights and Heterogeneity 63

3.2.5.2 Summary of Qur Heterogencous Study 65

3.3 Incorporation job tnigration and network RAM to share memory resource . 66
3.3.1 Objectivesof thestudy 66
3.3.2 Job-migration-based load sharing vs. network RAM 68
3.3.2.1 Network RAM organjzations 68

3.3.2.2 CPU-Memory-based load sharing 69

3.3.3 Performance Evaluation Methodology 70
3.3.3.1 Performance metrics 0000 70

3.3.3.2 A simulated workstation cluster oL 71

3333 Workloads oo 72

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.4 Simulation Results and Analysis
3.3.4.1 Impact of limited network bandwidths
3.3.4.2 Trade-offs between page fault reductions and load sharing .

3.3.5 An improved load sharing schemeo

3.3.6 Summary

4 Resource Management in Internet Caching Systems
4.1 Overview of existing caching system structures
4.2 Changes in Both Workload and Internet Technologies
4.2.1 Workload Changes
1.2.1.1 Trend in NLANR Workload
14.2.1.2 Trend in BU Workload
4.2.2 Technology Changes

4.3 Overview of the Limits on Existing Caching System Structures

5 Locality and Information Sharing among Browsers
5.1 Browsers-Aware Proxy Server Lo

5.2 Simulation Environmento

5.2.2 A browsers-proxy caching environment L.
5.3 Performance Evaluation L.
5.3.1 Sizes of browser and proxy caches 000000000
5.3.2 How wmuch is browser cache data sharable?

5.3.3 Performance of browsers-aware proxy server

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

84

86

86

86

88

91

92

95

936

97

5.3.4 Performance Impact of Scaling the Number of Clients 108

5.4 Overhead Estimation 0oL 110
5.5 Chapter Conclusion 113
6 Reducing Duplications in a Proxy and Its Browsers 116
6.1 Background and Related Work 116
6.2 A simulated proxy-browser caching environment 120
6.3 Case Studies of Duplications in Web Caching 120
6.4 Cooperatively Shared Proxy-Browser Caching Scheme 122
6.4.1 Anoutline of thescheme, 122
6.4.2 Data structures and operations 124
6.4.2.1 The structure in ecach browser 124
6.4.2.2 The structure in the proxy 125
6.4.3 Offline Algorithms for Performance Comparisons 127
6.5 Performance Evaluation L Lo oL 129
6.5.1 Evaluation of the sensitivity to the proxy cache size 130
6.5.2 Evaluation of the sensitivity to a browser cache size 132
6.5.3 Evaluation of the sensitivity to the replacement threshold 134
6.5.4 Performance Impact of Scaling the Number of Clients 135
6.5.5 Latency Reduction oo 137
6.6 Overhead Analysis 138
6.6.1 Intra-network Overhead 138
6.6.2 SpaceOverhead 141

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6.3 CPUOverhead

6.7 Chapter Conclusion e

7 Data Integrity and Communication Anonymity

7.1 Introduction. L

7.2 Datalntegrity

7.3 Anonymity Issue Lo

7.4 Related Work on Anonymity Studieso
7.4.1 Publisher and Sender Anonymity
7.4.2 Existing mutual anonymity protocols: their merits and limits

7.5 Anonymity with Trusted Third Parties
7.5.1 A Mix-based Protocol: an intuitive solution
7.5.2 Center-Directing oo

7.5.3 Label-Switching 0L

7.5.4 Multiple Trusted Index Servers
7.6 Anonymity in Pure P2P L oo
T.7 Analysis L
7.7.1 Security Analysis

7.7.2 Cost of the Different Protocols
7.8 Performance Evaluationo

7.8.1 Data Transfer Time through Peer Nodes

7.8.2 Overhcad of MD3. DESand RSA

7.8.3 Additional Storage L L Lo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

149

150

160

162

165

168

168

171

172

174

7.8.4 Comparisons of Protocols 174

79 Discussion e e 176
7.10 Chapter Conclusion 180
8 Prototype Implementations and Initial Results 182

8.1 A client daemon to interface the browser and communicate with the proxy . 182

8.2 A browsers-aware proxy SCGrver L. L. e 184
8.3 Overhead Measurement and Analysiso 0000 185
9 Final Conclusions and Future Work 188
9.1 Summaryo e e e 188

9.2 Future Work: Balancing the Power between Centralized and Decentralized

Resources in Distributed Computing 191

9.2.1 Non-uniform parallel computing 0000 192

9.2.2 Resource Indexing on Grid Systemso 193

9.2.3 Resource Management on Peer-to-peer systems 194

Bibliography 196
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

My first acknowledgment goes to my advisor. Xiaodong Zhang. He provides me with an
excellent research environment both materially and spiritually: by deeply involving in guid-
ing my research. by continuously securing funding. by persistently setting a high standard
for quality. by actively promoting a discussion atmosphere and encouraging collaborations.
and insightfully sharing his visions of research. He is my role model of hardworking and
devotion to his career and to his students. He is always with his students at every moment
of facing difficulties. I also appreciate deeply for his help on building my confidence. and
for his efforts on pursuing every opportunity for his students in their career development. |
am grateful to his diligent efforts on preparing and training us to face and enjoy real-world
challenges. I am very fortunate to have him as my advisor.

I would like to acknowledge Professors Bill Bynum. Phil Kearns. and Bob Noonan for
serving the dissertation committee. and Mare Sher for serving as the external member
of the committee and making helpful comments. [thank Bill for reviewing many of my
manuscripts. and for his help and encouragement in my study. Evgenia Smirni has made
helpful suggestions to me for both techuical study and career development. My dissertation
is experimental-oriented research. and has been dependent on strong technical support
from Phil and his techie team. T would also like to thank Vanessa Godwin for her organized
management and help in my graduate study.

[have spent 4 years with many fellow students in the High Performance Computing
and Software Lab (HPCS). and enjoy working. discussing. and joking with them: Songqing
Chen. Xin Chen. Lei Guo. Song Jiang. Stefan Kubricht. Yanxia Qu. Zhao Zhang. and
Zhichun Zhu. I have productively collaborated with Songqing. Stephan. and Yanxia on
several research projects. and learned a lot from them. I enjoy my friendships with many

other fellow gradunate students: Wei Ding. Andrew LaRoy. Shanling Peng. Alma Riska. and

Xt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wei Sun.

My work as a research intern at the Hewlett Packard Laboratories in the summer of
2001 gave me a valuable experience in the graduate study. I would like to thank Dr.Zhichen
Xu. my mentor of the internship and a former member of the HPCS lab. for his advice
and collaboration. My thanks also goes to Artur Andrzejak from HP Labs for his help and
collaboration. [was also beneficial to many discussions with Dr. Yong Yan. a researcher at
HP Labs and another former member of the HPCS lab. I had opportunities to work and
discuss with several people when I was at the HP Labs: Martin Arlitt. Lucy Cherkasova.
Yun Fu. Minaxi Gupta. Vana kalogeraki. Malena Mesarina. Manohar Prabhu. and Wenting
Tang. I also thank Beveley Yang for her invitation to attend their group discussions in
Stanford University.

I want to thank the funding agencies that provided funds and equipment for my research:
Air Force Office of Scientific Research. National Science Foundation. and Sun Microsystems.
I would like to give a special acknowledgment to the Fellowship awarded by the USENIX
Association. [am honored to be a USENIX Scholar.

My gratitude to my parents and my two brothers is forever. My parents endured many
hardships in the difficult time of China. But they were always optimistic to the future.
unsclfishly protective to us. and pleasantly tic the family together. I am deeply grateful
to my parents” high expectations and their constant helps on developing my all-rounded
abilities and personality. With their unconditional love. my family always understands my

decisions. and devotes whatever they could to support my pursuits.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Architectural parameters of the 4 machines we have used for the experiments. 30

3.1 Trace Description L e 36
3.2 Summary of the 4 schemes and their impact on different system and workload

conditions/requirements. L0 oL 83

4.1 Average Hit ratio and coverage comparisons of year 1998 and 2000. where
the average hit ratio is calculated from proxy “pb”. “bol™. “bo2". “sv™ and
*sd”. which have their statistical reports in both years. and the coverage of

top 20 servers is the percentage of the number of requests to top 20 servers

over the total number of requests. Lo 87
5.1 Selected Web Traces. 100
5.2 Representative proxy cache configurations reported in {105]. 103

6.1 Trace analysis on document duplications and sharing based on the proxy-
browser system hit ratios. intra-sharing ratios. and inter-sharing ratios. . . . 121

6.2 Intra-network Overhead 141

xiil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Path Table e e 160

7.2 Sub-Tables 161

7.3 Degree of Anonymityo 170

7.4 Comparison of Protocols with & middle nodes in each covert path 171

7.0 Latency 173
xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Data layout of subarrays is modified by padding to reduce the conflict misses. 20
2.2 Simulation comparisons of the L1 cache misses (left figure} and L2 misses
(right figure) of the mergesort algorithms on the Random data set on the
simulated Sun Ultra 5. The LI cache miss curves (left figure) of the base
mergesort and tiled-mergesort are overlapped. 0L 21
2.3 Padding for TLB: the data layout is modified by inserting a page space at
multiple locations. where Kypgp=1l.and T, =8. 23
2.4 Simulation comparisons of the L2 cache misses (left figure) and TLB misses
(right figure) of the mergesort algorithms on the Random data set on the
simulated Pentium II.o 24
2.5 Simulation comparisons of the instruction counts (left figure) and saved cycles
in percentage (right figure) of the mergesort algorithins on the Random data
set on the simulated Pentium I1. The instruction count curves (left figure) of

the base mergesort and the tiled mergesort are overlapped. 25

Xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Simulation comparisons of the instruction counts (left figure) and the L1
misses (right figure) of the quicksort algorithms on the Unbalanced data set
on the simulated Pentium III. The instruction count curve of the flashsort
was too high to be presented in the left figure. 28
2.7 Execution comparisons of the mergesort algorithms on SGI O2 and on Sun
Ultra 5. e 31
2.8 Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the
Equilikely data set (left figure) and the Bernoulli data set (right figure). . . 32
2.9 Exccution comparisons of the mergesort algorithms on Sun Ultra 5 using the
Geometric data set (left figure) and the Pascal data set (right figure). . .. 33
2.10 Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the
Binomial data set (left figure) and the Poisson data set (right figure). . .. 34
2.11 Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the
Unbalanced data set (left figure) and the Zero data set (right figure). 35
2.12 Execution comparisons of the mergesort algorithms on Pentium II and on
Pentinm ITL 0 .00 00 o 36
2.13 Execution comparisons of the quicksort algorithms on the Random data set
(left figure) and on the Unbalanced data set (right figure) on the SGI O2.
(The timing curve of the flashsort is too high to be presented in the right

figure). L e 37

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.14

2.15

2.16

3.1

3.2

3.3

3.4

Execution comparisons of the quicksort algorithms on the Random data set
(left figure) and on the Unbalanced data set (right figure) on the Ultra 5.

(The timing curve of the flashsort is too high to be presented in the right

Execution comparisons of the quicksort algorithms on the Random data set
(left figure) and on the Unbalanced data set on the Pentium [I. (The timing
curve of the flashsort is too high to be presented in the right figure).
Execution comparisons of the quicksort algorithms on the Random data set
(left figure) and on the Unbalanced data set on the Pentium III. (The timing

curve of the flashsort is too high to be presented in the right figure).

Mecan slowdowns of the 4 load sharing policies as the page fault rate increases
on traces MAY and JUNE.,
Mean slowdowns of the 4 load sharing policies as the page fault rate increases
on traces JULY and AUGUST.
Paging time reduction (left figure) and queuing time reduction (right figure)
of policies MEM. CPU_MEM_HP and CPU_.MEM_HT over policy CPU. . .
The average exccution times per job (the left figure) and the networking
portions in the execution times (right figure) of “trace 0" with job migration
restrictions running on clusters of 6. 12 and 18 workstations.
The average execution times per job (the left figure) and the networking por-
tions in the execution times (right figure) of “trace 07 without job migration

restrictions running on clusters of 6. 12 and 18 workstations.

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

39

10

60

~I
(4]

3.6 The average execution times per job of “trace 0" without job migration re-
strictions running on a 10 Mbps cluster (the left figure). and a 100 Mbps
cluster (the right figure) of 6 workstations. 78

3.7 The average execution times per job of “trace 0° without job migration re-
strictions running on a 10 Mbps cluster (the left figure). and a 100 Mbps
cluster (the right figure) of 12 workstations. o079

3.8 The average exccution times per job of all the 8 traces (the left figure for the
8 traces where some jobs are non-migratable. and the right figure for the 8
traces where all the jobs are migratable). running on a 10 Mbps cluster of 6
workstations. Lo 81

3.9 The average execution times per job of all the 8 traces (the left figure for the
8 traces where some jobs are non-migratable. and the right figure for the 8
traces where all the jobs are migratable). running on a 100 Mbps cluster of

6 workstations. L e e 82

4.1 The percentage of the requests to each of the top 20 servers over the total
number of requests versus cach rank of servers.00 0L 87
1.2 The percentage of the requests to cach server or document over the total

requests versus server ranking or document ranking. 89

5.1 Organizations of the browsers-aware proxy server. 98
5.2 The hit ratios and byte hit ratios of the five caching policies using NLANR-uc

trace. where the browser cache size is set mintmum. 104

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 The breakdowns of the hit ratios and byte hit ratios of the browsers-aware

proxy using NLANR-uc trace. where the browser cache size is set mnimum. 106
5.4 The hit rates and byte hit rates of the browsers-aware-prozy-server and prozy-

and-local-browser scheme using NLANR-uc trace. where the browser cache

size Is set average. o 108
5.5 The hit rates and byte hit rates of the browsers-aware-prozy-server and prozcy-

and-local-browser scheme using NLANR-bol trace. where the browser cache

size is set average. e e B 0
5.6 The hit rates and byte hit rates of the browsers-aware-prozy-server and prozy-

and-local-browser scheme using NLANR-pa trace. where the browser cache

size is set average. oL e e 110
5.7 The hit rates and byte hit rates of the browsers-aware-prozy-server and proxy-

and-local-browser scheme using Boeing-4 trace. where the browser cache size

isset average. L Lo 111
5.8 The hit rates and byte hit rates of the browsers-aware-prozy-server and procy-

and-local-browser scheme using Boeing-5 trace. where the browser cache size

isset average.o C e 112

e
5=

The hit rates and byte hit rates of the browsers-aware-prozy-server and the
prozy-and-local-browser scheme using the BU-95 trace. where the browser
cache size is set average.o 113
5.10 The hit rates and byte hit rates of the browsers-aware-prory-server and the
prozy-and-local-browser scheme using the BU-98 trace. where the browser
cache size is set average. o 114

X1x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.11 The hit ratios and byte hit ratios of the browsers-aware-prozy-server and
prozy-and-local-browser scheme using the CA*netll trace. 115
5.12 The hit ratio and byte hit ratio increments of the browsers-aware-prozy-server

over the prozy-and-local-browser. 115

6.1 Duplication among a proxy and its client browsers. 117
6.2 The management operations in each browser when a remote client request
hitsinit. e 125

6.3 The Management operations in the proxy when a client request hits in the

6.1 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy
cache sizes using BU-95 trace (4=10. th=0.5). 130
6.5 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy
cache sizes using BU-98 trace (3=10. th=0.5).. 131
6.6 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy
cache sizes using Boeing-4 trace (5=10. th=0.5). 132
6.7 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy
cache sizes using Boeing-5 trace (=10, th=0.5). 133
6.8 Hit ratio and byte hit ratio of the three caching schemes versus relative
browser cache sizes using BU-95 trace (ps=1%. th=0.5). 134
6.9 Hit ratio and byte hit ratio of the three caching schemes versus relative

browser cache sizes using BU-98 trace (ps=1%. th=0.5). 135

XX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.10

6.11

6.12

6.13

6.14

6.15

6.16

7.1

7.2

73

74

Hit ratio and byte hit ratio of the three caching schemes versus relative
browser cache sizes using Boeing-4 trace (ps=1%. th=0.5).
Hit ratio and byte hit ratio of the three caching schemes versus relative
browser cache sizes using Boeing-5 trace (ps=1%. th=0.5).
Hit ratio and byte hit ratio of the three caching schemes versus the replace-
ment threshold using BU-95 trace (ps=1%. 4=10).

Hit ratio and byte hit ratio of the three caching schemes versus the replace-
ment threshold using BU-98 trace (ps=1%. #4=10).
Hit ratio and byte hit ratio of the three caching schemes versus the replace-
ment threshold using Boeing-4 trace (ps=1%. #=10).
Hit ratio and byte hit ratio of the three caching schemes versus the replace-
ment threshold using Boeing-5 trace (ps=1%. #=10).
The hit ratio and byte hit ratio increments of the cooperative-caching over

the prozy-and-local-browser.

Integrity Protocol
An example of the Mix-Based Protocol
An example of the Center-Directing Protocol
An example of the shortcut-responding Protocol
Breakdown of data transfer and protocol overhead with 2 and 5 middle nodes
for Boeing March 4 trace (left) and Boeing March 5 Trace (right). M B(k)

represent mix-based protocol with & middle nodes. Similarly. CD. LS and SR

represent center-directing. label-switching. shortcut-responding. respectively.

Xxi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

137

138

139

140

141

8.1 The organization of client daemon to interface with a client browser and the
PIOXY. .« o o it o

8.2 The organization of proxy daemon to interface with a client browser and the

xXxil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The effectiveness of computer system resource management has been always determined
by two major factors: (1) workload demands and management objectives. (2) the updates
of the computer technology. These two factors are dynamically changing. and resource
management systems must be timely adaptive to the changes. This dissertation attempts
to address several important and related resource management issues.

We first study memory system utilization in centralized servers by improving memory
performance of sorting algorithms. which provides fundamental understanding on memory
system organizations and its performance optimizations for data-intensive workloads. To
reduce different types of cache misses. we restructure the mergesort and quicksort algorithins
by integrating tiling, padding. and buffering techniques and by repartitioning the data set.
Our study shows substantial performance improvements from our new methods.

We have further extended the work to improve load sharing for utilizing global mem-
ory resources in distributed systems. Aiming at reducing the memory resource contention
caused by page faults and I/O activities. we have developed and examined load sharing
policies by considering effective usage of global memory in addition to CPU load balancing
in both homogencous and heterogencous clusters.

Extending our research from clusters to Internet systems. we have further investigated
memory and storage utilizations in Web caching systems. We have proposed several novel
management schemes to restructure and decentralize the existing caching system by ex-
ploiting data locality at different levels of the global memory hierarchy and by effectively
sharing data objects among the clients and their proxy caches.

Data integrity and communication anonymity issues are raised from our decentralized
Web caching system design. which are also security concerns for general peer-to-peer sys-
tems. We propose an integrity protocol to ensure data integrity. and several protocols to
achieve mutual communication anonymity between an information requester and a provider.

The potential impact and contributions of this dissertation are briefly stated as follows:
(1) two major research topics identified in this dissertation are fundamentally important for
the growth and development of information technology. and will continue to be demanding
topics for a long term. (2) Our proposed cache-effective sorting methods bridge a serious
gap between analytical complexity of algorithms and their execution complexity in practice
due to the increasingly decp memory hicerarchy in computer systems. This approach can
also be used to improve memory performance at different levels of the memory hierarchy.
such as [/O and file systems. (3) Our load sharing principle of giving a high priority to the
requests of data accesses in memory and I/Os timely adapts the technology changes and
effectively responds to the increasing demand of data-intensive applications. (4) Our pro-
posed decentralized Web caching framework and its resource management schemes present
a comprchensive case study to examine the P2P model. Our results and experiences can
be used for related and further studies in distributed computing. (5)The proposed data
integrity and communication anonymity protocols address limits and weaknesses of existing
ones. and place a solid foundation for us to continue our work in this important area.

Xx1i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive and Secured Resource Management in Distributed and

Internet Systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Background

System resource management has been seriously considered since the computer was born.
The original objective of resource management is to make good use of computer resources
for high performance. Today the objective has been extended beyond performance. to
security. availability and reliability. An effective resource management must be adaptive
to the changes of workload and technology. For example. resource management between
cache and memory became an essential topic after the cache was installed. A cache could be
useless if its locality is not exploited. Resource management in a distributed system came
hand in hand with networking systems. and it differs from that in a centralized system in a
fundamental way [122]. Resource management on the Internet has become another focused
resecarch topic. The security issue is becoming a major concern as global distributed resource
sharing dramatically increases.

The two major themes of this dissertation are (1) to make resource allocation be adaptive
to the changes of workload and technology. and (2) to make resource sharing secure and

protected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 3

Resource management should target the major system components affecting system per-
formance. Fundamental resources in a modern computer system are CPU cycles. memory.
input/output. network interface. and Internet bandwidth. Workloads are becoming increas-
ingly data-intensive. while the speed gap between processing and data accessing continues
to widen as the development of memory and disk lags farther behind that of CPU [42]. The
speed of microprocessors has been steadily improving at a rate of between 50% and 100%
every year. over the last decade. Unfortunately. the memory speed has not kept pace with
this. improving only at the rate of about 10% per year during the same period [67]. Thus.
the memory hierarchy in both servers and distributed/Internet systems becomes a com-
puting crucial resource. The first focused dissertation topic is to provide new solutions to
effectively utilize the memory hierarchy in computing servers and distributed and Internet
systems for data-intensive application workloads.

Resource sharing of both computing and information over the Internet is dramatically
increasing. This system decentralization trend challenges the existing client /server model.
and leads to a new distributed computing paradigm. the peer-to-peer (P2P) model. In a
P2P system. a client is no longer a pure consumer but also an information producer or
disseminator. This can solve some of problems caused by the client/server model. espe-
cially. hot spots surrounding big servers and underutilization of resources [62]. Examples
of P2P systems include Napster [90] . Freenet [52]. Gnutella [60]. So P2P can offer an at-
tractive alternative to the traditional client/server model. and can better utilize networked
resources. P2P. however. also creates several challenges. including how to implement dis-
tributed controls and how to enforce trust and anonymity. In a P2P system. a peer expects

the information that she receives is genuine. A peer may desire to remain anonymous with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 4

respect to the content she possesses or requests. A peer has many reasons to remain anony-
mous: to keep her life away from danger. to avoid being prejudged by other people. to hide
sensitive information from competitors. or simply to keep her privacy [94]. For example.
with cooperative proxy caches. the information held in the proxy cache of an organization
can be a trade secret. Leaking this information could compromise its competitive advan-
tage. The second focused topic in this dissertation is to propose effective methods to enforce

data integrity and communication anonymity for P2P resource sharing.

1.2 Problems

We have identified four related problems of resource management in distributed and Internet

systems:

e Memory system utilization in a centralized server. Efforts have been made at the
level of program and algorithm optimization. This is a preliminary work to set up
a foundation for memory hierarchy management of distributed and Internet systems.

Our case study is to improve memory performance of sorting algorithms.

e Load sharing for global memory utilization in distributed systems. Efforts have been
made at the level of middleware/system scheduler to migrate jobs. Our case studies
are (1) resource allocation for jobs with known and unknown memory demands. and

(2) incorporating network RAM and job migrations.

e Data management of Internet caching systems. Efforts have been made at the appli-
cation level on Web caching. We propose a P2P framework for browser-aware caching

to cffectively share browser caches. One algorithm aimed at reducing unnecessary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 5

document duplications in the caching storage hierarchy is also proposed. In order to
safely and reliably share browser caches. the issues of data integrity and communica-
tion anonymity must be addressed. This can be extended as a general problem for

P2P systems. which is the last identified problem in this dissertation.

e Data integrity and communication anonymity for P2P Internet systems. Efforts have
been made to ensure the data integrity of multiple data copies among the peer nodes.
and to provide privacy protection for each peer by enforcing anonywmous cominunica-

tions in different types of P2P systems.

1.3 Statements of Contributions

Contributions and potential impact of this dissertation are stated as follows:

e The two major research topics identified in this dissertation. the memory-centric re-
source management and security/privacy protection in distributed and Internet sys-
tems are fundamentally important to the growth and development of information

technology. and will continue to be demanding topics for a long term.

e We propose a group of cache-cffective software techniques to improve sorting algo-
rithms. which experimentally outperform existing sorting algorithms with cache op-
timizations. This experimental approach bridges a serious gap between analytical
complexity of algorithms and their execution complexity in practice due to the in-
creasingly deep memory hierarchy in computer systems. This approach can also be
used to improve memory performance at different level of the memory hierarchy. such

as [/0O and file systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 6

e The traditional principle of “load balancing™ in resource management of distributed
systems had been highly effective before the memory hierarchy became a performance
bottleneck in computer systems. We propose new load sharing policies by not only
taking memory and I/0O into considerations but also giving high priority to the re-
quests of data accesses. Our resource allocation principle timely adapts the technology
changes and effectively responds the increasing demand of data-intensive applications.
Our resource management policies for known and unknown memory allocations can
be widely applicable. and implemented as a user software or a middleware for high

performance cluster computing.

e Computing and information sharing has inevitably and globally decentralized with the
rapid advancement of Internet infrastructure. We believe that the P2P model will soon
become a standard paradigm co-existing with the client/server model in distributed
systems. We present a comprehensive case study to examine the P2P model by
proposing the browser-aware Web caching framework and its resource management
schemes. Our results and experiences can be used for related studies in distributed

computing.

e For a highly decentralized system. the issue of security and privacy has become cru-
cially important. The research and I'T community has started to pay more serious
attention to this issue since the Tragedy of September-11. The last effort we have
made in this dissertation on data integrity and communication anonymity targets on
this important issue in P2P systems. The algorithms and protocols we have proposed

address limits and weaknesses of existing ones. and place a solid foundation for us to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 7

further improve Internet security.

1.4 Organization of the Dissertation

Chapter 2 presents our study on memory system utilization in centralized servers by im-
proving memory performance of sorting algorithms. Chapter 3 presents our studies on load
sharing for global memory utilization in distributed systems. Chapter 4 raises resource
management issues in the Internet caching system. The existing caching system struc-
tures are first overviewed. This chapter presents our motivation and rational to study on
effectively sharing browser caches using the peer-to-peer model. In Chapter 5. we pro-
pose a peer-to-peer Web document sharing technique. called Browsers-Aware Prory Server
that makes the browsers and their proxy share the contents to fully utilize the Web con-
tents and network bandwidth among clients. In order to further improve performance. a
peer-to-peer Web caching management scheme. called cooperatively shared prozy-browser
caching is proposed in Chapter 6 to reduce document duplications among a proxy and its
client browsers. Chapter 7 addresses two problems of data integrity and communication
anonymity in browser-aware systems and general peer-to-peer systems. Chapter 8 presents
a prototype implementation of the P2P browser sharing system and initial measurement

results. Chapter 9 concludes the dissertation and presents future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Application level resource

management of memory systems

2.1 Literature overview on memory utilization in centralized
servers

Caches could help to bridge the speed gap between fast CPU and slow memory. but scientific
applications typically exhibit poor performance in cache-based systems [46]. The reason is
that scientific programs run on large data sets and have traversal patterns that may not
exploit data locality. Intensive studies have been done in 90's to effectively exploit the

benefits of caches at four different levels.

o Hardware Techniques:
Examples of hardware techniques to improve cache performance include set-associate
caches [73]. pseudo-associative caches [3][17]. group-associative caches [97]. victim
caches {72]. and multi-column caches {147]. These techniques aim at reducing conflict

cache misses for general purpose application programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 9

o Compiler-time Techniques:

Compiler transformations have been developed to restructure the computation se-
quence and to improve data locality [18][21](85][103]. Loop interchange. loop reversal.
and loop skewing perform loop restructuring to improve data locality [130]. Loop
tiling reduces capacity misses by enhancing data locality [30][77][23]. Tile size is an
essential factor affecting performance. A compiler should be able to select a right tile
size for a given problem and a given cache size. because improperly selected tiling can

introduce misses due to cache mapping conflicts.

e Run-time Techniques:

Run-time techniques are also effective in reducing cache misses. especially for dynamic
applications (see e.g. [9]. [71]. [140]). A combination of compiler and run-time support
for a class of run-time data reordering techniques is studied in [32]. where an access
sequence is examined and used to reorder data to improve spatial locality as the access

sequence is traversed.

¢ Programming-level Techniques:

There have been many studies and implementations at the programming level to im-
prove cache performance of application programs. Many such implementations have
been done in a format of scientific libraries. The PhiPAC project [11] aims at produc-
ing highly tuned code for specific BLAS 3 [34] kernels such as matrix multiplications
that are tiled for multiple levels of the memory hierarchy. An implementation of
recursive matrix multiplication is provided by [53]. Paper [65] discusses the role of re-

cursive control strategies in automatic variable blocking of dense linear algebra codes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 10

and shows dramatic performance gains compared to implementations of the samne rou-
tines in IBM's Engincering and Scientific Subroutine Library (ESSL). Authors in [24]
explore nonlinear array layout functions to improve reference locality. and show high
performance benefits on a benchmark suite with dense matrix kernels. Papers [57]
and [146] provide cache-optimal methods for bit-reversals. Paper [87] evaluates the
impact of data and computation reordering using space-filling curves. and introduces a
multi-level blocking technique as a new computation reordering strategy for irregular

applications.

The first three techniques provide automatic services to users. But generally one spe-
cific technique can only benefit several classes of applications and may not be beneficial
to performance of some applications. For example. an improperly selected tile size can
degrade performance of applications and the technique proposed in (32] has the side ef-
fect of improving TLB performance. In contrast. techniques at the programming design
level using application-specific knowledge of the data structures can be highly effective.
and are expected to outperform optimizations using the first three system methods. This
chapter presents our work on improving memory performance of sorting algorithms at the

programming design level. This work was in collaboration with Stefan Kubricht.

2.2 Improving Memory Performance of Sorting Algorithms

Sorting operations are fundamental and are often repeatedly used in many large-scale scien-
tific and commercial applications. Because of this prominence. any effort to maximize the

efficiency in these programs requires ensuring that the sorting algorithms used have been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 11

correctly selected and are precisely implemented. Restructuring standard efficient sorting
algorithms (such as mergesort and quicksort) to exploit cache locality has proven to be
an effective approach for improving performance on high-end systems. Since sorting algo-
rithms are highly sensitive to both the memory hierarchy of the computer architecture and
the types of data sets. care must be taken when choosing an algorithm to fully optimize
the performance for a specific sorting operation. Existing restructured algorithms (e.g..
[78]) mainly attempt to reduce capacity misses on direct-mapped caches. In this chapter.
we present several restructured mergesort and quicksort algorithms that exhibit substantial
performance improvements by further increasing the locality of the memory references to
reduce other types of cache misses. such as conflict misses and TLB misses. These new
algorithms utilize both tiling and padding techniques. data set repartitioning. and knowl-
edge of the processor hardware (such as cache and TLB associativity) to fully optimize
the performance. Thus. in order to maximize efficiency. it is necessary to implement the
cache-effective algorithms carefully and precisely at the algorithm design and programming
levels.

Our efforts focus chiefly on restructuring mergesort and quicksort algorithms to more

effectively utilize the cache. Our results and contributions are summarized below:

e By applying padding techniques we are able to reduce significantly cache conflict
misses and TLB misses. which are not fully addressed in the algorithm designs of
tiled mergesort and multimergesort [78]. For our two mergesort alternatives. the opti-
mizations improve both cache and overall performance. Our experiments on different

high-end workstations show that our algorithms achieve up to a 70% reduction in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 12

execution time compared with the base mergesort. and up to a 34% reduction versus

the fastest of the tiled and multimergesort algorithms.

e By partitioning the data set based on data ranges. we are able to improve the cache
locality of quicksort on unbalanced data sets. Qur two quicksort alternatives signifi-
cantly outperform the memory-tuned quicksort [78] and flashsort [92} on unbalanced

data sets.

e Cache-effective sorting algorithm design depends on the computer architecture as well
as the type of data set. The algorithm design should include parameters such as the
size and associativity of both the data cache and TLB. the ratio between the data
set size and the cache size. and possibly other factors. Using our measurements and
simulations. we show the importance of considering these factors by demonstrating

how machines interact differently with the various algorithins.

e A major issue that must be considered when designing a sorting algorithm for practical
use concerns the trade-offs resulting from increasing the instruction count in order to
reduce cache misses and other high-latency memory operations. To address this.
we give an execution timing model to quantitatively predict the performance of an
algorithm. We also give analytical predictions of the number of cache misses for the
sorting algorithms before and after the cache optimizations. We show that cycles lost
from increasing the instruction count to maximize cache reuse can be a negligible price
to pay when compared to the many cycles that would otherwise be lost from different

types of cache misses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 13
2.3 Architectural and Algorithmic Parameters and Evalua-

tion Methodology

In this section. we first list and describe the architectural-dependent parameters we used in
designing the algorithms. We then introduce the performance evaluation methodology and

present the data sets used in the experiments.

2.3.1 Architectural and algorithmic parameters

A data sct consists of a number of clements. One element may be a 4-byte integer. an
8-byte integer. a 4-byte floating point number. or an 8-byte double floating point number.
We use the same generic unit. an element. to specify the cache capacity. Because the size
of caches and cache lines are always a multiple of an clement in practice. a general unit is
practically meaningful to both architects and application programmers. The algorithmic
and architectural parameters we will use to describe cache-effective sorting algorithms are
as follows: N: the size of the data set. C: the data cache size. L: the size of a cache
line. K: the cache associativity. Ts: the number of entries in a TLB set. Ky p5: the TLB

associativity, and Py: the size of a memory page.

2.3.2 Performance evaluation methodology

Directly monitoring and measuring a program’s cache behavior is an important task for
providing insights and guidance for optimizing the memory performance of an algorithm.
Since current systems are not able to directly report memory related performance statistics

(such as the number of cache hits or misses) during program execution. users must use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 14

tools to gather these statistics. ATOM [118] is a system utility for DEC Alpha machines for
instrumenting and analyzing program exccutables. The ATOM analysis tool accepts the
results of an instrumented program and presents the cache performance statistics. Using
the ATOM utility. users can directly monitor and measure the cache performance on DEC
Alpha machines. The analysis of sorting algorithms in {78] uses the ATOM tool. Due to its
platform dependence. memory performance studies using ATOM are not feasible on other
types of machines.

The need for studying a broad range of platforms necessitates an alternative approach.
We conducted our performance evaluation in two steps: (1) completing algorithm analysis
and measuring performance on different high-end workstations. and (2) utilizing execution-
driven simulations to gather insight into the memory performance of the algorithms on these
machines. Employing the first step. we are able to measure the algorithm performance on a
wide variety of machines. From the second step we are able to gather a deeper understanding
of how the cache behavior affects the execution performance.

For our simulation environment. we used the SimpleScalar tool set [15]. a family of sim-
ulators for studying interactions between application programs and computer architectures.
The simulation tools take an application program’s binaries compiled for the SimpleScalar
Instruction Set Architecture (a close derivative of the MIPS instruction set) and generate
statistics during the execution of the program on the simulated architecture. The statistics
generated include many detailed execution traces that are not available from measurements
on a computer. such as the number of cache misses in the L1. L2 and TLB caches.

We ran the compared sorting algorithms on different simulated memory architectures

with memory hierarchies similar to those on typical high-end workstations to observe the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 15

following performance factors:

e L1 or L2 cache misses per element: to compare the number of data cache misses.
o TLB misses per element: to compare the number of TLB misses.

Instruction count per element: to compare the algorithmic complexities.

Reduction rate of total execution cycles: to compare the percentage of cycles saved in

comparison to the base mergesort or the memory-tuned quicksort.

2.3.3 Data sets

The algorithins are compared and evaluated experimentally and analytically. We tested
the sorting algorithms on a variety of data sets consisting of 8-byte integer clements. The
9 data sets we used are enumerated below. (Probability Density Functions and Inverse

Distribution Functions of some of the number generators used can be found in [95].)

1. Random: the data set is obtained by calling the random number generator random()

from the C library. which returns integers in the range of 0 to 2%! — 1.

o

Equilikely: function Equilikely(a,b) returns integers in the range a to b.
3. Bernoulli: function Bernoulli(p) returns integers 0 or 1.
1. Geometric: function Geometric (p) returns integers 0. 1. 2. ...

Pascal: function Pascal(N,p) returns integers (0. 1. 2. ...

(<]

6. Binomial: function Binomial (N,p) returns integers 0. 1. 2. ... N.
7. Poisson: function Poisson(y) returns integers 0. 1. 2. ...

8. Zero: the data set consists entirely of 0s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 16

9. Unbalanced: function returns integers in the range of 0 to 2! — 1 fori =0 to EZIN - 1.
by calling rand () from the C library. where ¢ is the data element index and N is data

set size: and returns integers M AX/100+: for 1 = %N to N. where MAX =231 - 1.

2.4 Cache-Effective Mergesort Algorithms

In this section. we first briefly evaluate the two existing mergesort algorithms on their cache
locality. as well as their merits and limits. We present two new mergesort alternatives to
address these limits. The experimental performance evaluation done through measurements

will be presented in Section 2.6.

2.4.1 Tiled mergesort and multimergesort

LaMarca and Ladner [78] present two mergesort algorithms to effectively utilize the data
cache. The first one is called tiled mergesort. The basic idea is to partition the data set
into subarrays that are sorted individually. This is mainly done for two reasons: to avoid
capacity misses and to fully use the data loaded in the cache before it must be replaced.
The algorithm is divided into two phases. In the first phase. subarrays of length C/2 (half
the cache size) are sorted by the base mergesort algorithm to exploit temporal locality. The
algorithimn returns to the base mergesort without considering cache locality in the second
phase to complete the sorting of the entire data set.

The second mergesort. called multimergesort. addresses the limits of the tiled mergesort.
In this algorithm. the first phase is the same as the first phase of the tiled mergesort. In the
second phase. a multiway merge method is used to merge all the sorted subarrays together

in a single pass. A priority queue is used to hold the heads of the lists (the sorted subarrays

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 17

from the first phase) to be merged. This algorithm exploits cache locality well when the
number of subarrays in the second phase is less than C/2 (half the cache size). However.
the instruction count is significantly increased in this algorithm.

Our analysis of the two mergesort algorithms shows two areas for improvement. First.
both algorithms significantly reduce capacity misses. but do not sufficiently reduce conflict
misses. [n mergesort. the basic idea is to merge two sorted subarrays to a destination array.
In a cache with low associativity. mapping conflicts occur frequently among the elements in
the three subarrays. Also. reducing TLB misses is not considered in the algorithm designs.
Even when the data set is only moderately large. TLB misses may severely degrade execu-
tion performance. compounding the effect of normal data cache misses. Qur experiments
show that the performance improvement of the multimerge algorithm on several machines
is modest—although it decreases the number of data cache misses. the heap structure sig-

nificantly increases the number of TLB misses.

2.4.2 New mergesort alternatives

We present two new restructured mergesort alternatives for reducing conflict misses and
TLB misses with a minimized instruction count increase: tiled mergesort with padding and

multimergesort with TLB padding.

2.4.2.1 Tiled mergesort with padding

Padding is a technique that modifies the data layout of a program so that conflict misses
arc reduced or eliminated. The data layout modification can be done at run-time by system

software [9. 140] or at compile-time by compiler optimization [103]. However. padding done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 18

at the algorithm design level using a full understanding of the data structures is expected
to outperform optimizations using the two methods above [146].

In the second phase of the tiled mergesort. pairs of sorted subarrays are sorted and
merged into a destination array. One element from each of the two subarrays is selected at
a time for a sorting comparison in sequence. These three data elements in the two different
subarrays and the destination array can potentially be in conflicting cache blocks because
they may be mapped to the same block in a direct-mapped cache and in a 2-way associative
cache. This phenomenon occurs most often when the source array (containing the two
subarrays) and the destination array are allocated contiguously in memory.

On a direct-mapped cache. the total number of conflict misses for the tiled mergesort

in the worst case is approximately

2N

(1+ L)Nflog:»?

5C 1. (2.1)

where log, % is the number of passes in the second phase of the sorting and 1+ .,L(represents
1 conflict miss per comparison and zL(conflict misses for every time an clement is placed
into the destination array following a comparison. respectively.

In order to change the base addresses of these potentially conflicting cache blocks. we
insert L elements (or a spacing the size of a cache line) to separate every section of C
clements in the data set in the second phase of the tiled mergesort. These padding elements
can significantly reduce the cache conflicts in the second phase of the mergesort. The
memory used by the padding elements is trivial when compared to the size of the data
set. The increase in the instruction count (resulting from having to move each element in

a subarray to its new position for the padding) is also minor. We call this method as tiled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 19

mergesort with padding.
On a direct-mapped cache. the total number of conflict misses for the tiled mergesort

with padding is at most

3 2N g v
ZNﬂog-z C 1. (2.2)
where log, 1—(\— is the number of passes in the second phase of the sorting and —: represents

the number of conflict misses per element. After the padding is added. the one conflict

miss per comparison is reduced to } and the _,+ conflict misses from the placement in
(2.1) are climinated. Comparing the two approximations in (2.1) and (2.2). we see that
tiled mergesort with padding reduces the conflict misses of tiled mergesort by about 25%.
(Our experimental results on the Sun Ultra 5. a workstation with a direct-mapped cache.
show that execution times of tiled mergesort were reduced 23% to 68% by tiled mergesort
with padding. These execution time reductions mainly come from the abatement of conflict
misscs.)

Figure 2.1 shows an example of how the data layout of two subarrays in the second
phase of tiled mergesort is modified by padding to reduce conflict misses. In this example.
a direct-mapped cache holds 4 clements. In the figure. identical lines represent a pair
comparison and the corresponding action to store the selected element in the destination
array. The letter “m” in the figure represents a cache miss. Without padding. there are 8
conflict misses when merging the two sorted subarrays into the destination array: there are
only 4 after padding is added.

Figure 2.2 shows the L1 misses (see the left figure) and the L2 misses (see the right figure)

of the base mergesort. tiled mergesort. and tiled mergesort with padding on a simulated

machine with the cache architecture of a Sun Ultra 5 using SimpleScalar. On this machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 20

Before padding
0 | N 3 4 s) * %
f T 1 v
Lo :
T T BV S) LN
— ; i - |
\ . . -
L m Jmmomm
. <
$contlct \ . R 4canflct
\ VAR ' usses
Toses . .
(MW AW/ YAV Y]]
Coa : : e o
TN T Y7y T 7
. ’ /l A
1’ ~
i destmation
PO : N » N vl DT i L 4 [- .
10 u vod oW ¢ I u [CIN SR U S St S U] ul

Figure 2.1: Data layout of subarrays is modified by padding to reduce the conflict misses.

the L1 cache is direct-mapped and contains 16 KBytes. and the L2 cache is 2-way associative
holding 256 KBytes. The experiments show that the padding reduces the L1 cache misses
by about 23% compared with the base mergesort and tiled mergesort. These misses are
conflict misses that cannot be reduced through tiling. The L2 cache miss reduction by
tiled mergesort with padding is almost the same as that by tiled mergesort. which shows
that the padding is not very effective in reducing L2 conflict misses on this machine. This
is because the 2-way associativity in the L2 cache significantly reduces the percentage of
conflict misses. in comparison to the direct-mapped L1 cache.

Capacity misses in the second phase of the tiled mergesort are unavoidable without a
complex data structure. because the size of the working set (two subarrays and a destination
array) is normally larger than the cache size. As we have shown. conflict misses can be
reduced by padding in this phase. However. the padding may not completely eliminate

all conflict misses due to the randomness of the order in the data sets. Nevertheless. our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 21
L1 Misses Per Element L2 Misses Per Element
20 ng v T LS T T T v Al T 8 LS T T Al Al T T Ll B T A
base mergeson —— base mergeson ———
tled mergesort ------- - tiled mergesort ------- |
tiled mergesort with padding tiled mergeson with pagding
6}]
z g
® 3
H E St p
] s
[[
o 3 4F 9
Q Q
] a
H a3r / :
s s S s
2t T 1
1t C 4
M“/ |
0 4 A d. ' yE— | A 1 i A o A i l 4 l A d A A i y
1K K 16K 64K 256K ™ M K K 16K 64K 256K ™ am
Data set size (in elements) Data set size (in elements)

Figure 2.2: Simulation comparisons of the L1 cache misses (left figure) and L2 misses (right figure)
of the mergesort algorithms on the Random data set on the simulated Sun Ultra 5. The L1 cache
miss curves (left figure) of the base mergesort and tiled-mergesort are overlapped.

experimental results presented in Section 2.6 using the 9 different data sets consistently

show the effectiveness of the tiled mergesort with padding on the Sun Ultra 5.

2.4.2.2 Multimergesort with TLB padding

In the second phase of the multimergesort algorithm. the multiple subarrays are completely
sorted in a single pass. Multiple subarrays are used only once to complete the sorting
of the entire data sct to effectively use the cache. This single pass makes use of a heap
structure to hold the head elements of the multiple subarrays. (Because of this structure.
we will often refer to these subarrays as lists.) However. since the heads come from all the
lists being multimerged. the working set is much larger than that of the base mergesort
(where only three subarrays are involved at a time). This large working set causes TLB
misses that degrade performance. (We will explain the TLB structure in the following
paragraph.) Our experiments indicate that multimergesort does significantly decrease the

number of data cache misses: however. it also increases the TLB misses. which offsets the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 22

performance gain. Although a rise in the instruction count leads to additional CPU cycles
in multimergesort. this has a minimal effect. The performance of the algorithm is degraded
mainly from the high number of TLB misses—memory accesses are far more expensive than
CPU cycles.

The TLB (Translation-Lookaside Buffer) is a special cache that stores the most recently
used virtual-physical page translations for memory accesses. The TLB is generally a small
fully associative or sct-associative cache. Each entry points to a memory page of 4 to
64Kbytes. depending on the architecture. A TLB cache miss forces the system to retrieve
the missing translation from the page table in memory. and then to replace an existing
TLB entry with this translation. The TLB can hold a limited amount of data for sorting.
When the data to be accessed spans more memory pages mapping to the same TLB set
than the TLB can hold. TLB misses will occur. For example. the TLB cache of the Sun
UltraSparc-IIi processor holds 64 fully associative entries (T; = 64). each of which points
to a page of 8 KBytes (P; = 1024 8-byte elements). The 64 pages in the TLB of the Sun
UltraSparc-IIi processor hold 64 x 1024 = 65536 clements. which represents a small-sized
data set for sorting. Furthermore. in practice we often have more than one data array being
operated on at a time. Some processors’ TLBs are not fully associative. but set-associative.
For example. the TLBs in the Pentium IT and Pentium III processors are 4-way associative
(KrLp = 4).

In the second phase of multimergesort. we insert Py clements (or a page space) to
separate cvery sorted subarray in the data set in order to reduce or eliminate the TLB
cache conflict misses. The padding changes the base addresses of these lists in page units

to avoid potential TLB conflict misses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 23

Figure 2.3 exemplifies how padding for the TLB works: in this case the TLB is a direct-
mapped cache of 8 entries. and the number of elements in each list is a multiple of 8 page

elements. Before padding, cach of the lists in the data set is mapped to the same TLB entry.

At Pathee e
' »| I» n ‘
Dta 2 Wi Dt gt el

Figure 2.3: Padding for TLB: the data layout is modified by inserting a page space at multiple
locations. where Kr; g = 1. and T, = 8.

After padding. these lists are mapped to different TLB entries. When multimergesort is run
on a large data set and the size of cach list is a multiple of T,. the number of TLB misses
per clement is close to 1. After the TLB padding, the average number of TLB misses per
clement for the multimergesort algorithm becomes approximately

A

1 (2.3
A+ K'{'L[;)

where A = ;— is the number of average misses for cach TLB set entry. The above approxi-
s

mation is further derived to

C
C+Krip xT,

(2.4)

Figure 2.4 shows the number of L2 misses and TLB misses for the five mergesort algorithms
on the Pentium II memory architecture as simulated using SimpleScalar. where the L1
cache is 4-way set-associative with 16 KBytes. the L2 cache is 4-way sct-associative with
256 KBytes. and the TLB is a 4-way set-associative cache with 64 entries. The simulation

shows that multimergesort and multimergesort with TLB padding have the lowest L2 cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 24

L2 Misses Per Element TLB Misses Per Element
12 T T b‘aw h f“ L] L T T ’ T L LS biase ""e T T Y L Al v T
tled mergesort ------- ied mergeson -------
10k tiled mergesort with padding L tiled mergesort with padding
mult-mergesort 08 mult-mergesorn h
_ muftr-mergesorn with TLB paddng - - - mufti-mergesort with TLB padding - - - -
g 8 r §
K] g 06 F 4
o [
g er ‘ ; g .
[} ’/ - "] .- - J
§) P e i § 04 + -
5 P 1 3
Al LT oz} 1
S S
0 PR E— y i L i A e 4 e i e A‘ 0 v ’e " b e
1K 4K 16K 64K 256K ™ M M 1K 4K 16K
Data set size (in elements) Data set size (in elements)

Figure 2.4: Simulation comparisons of the L2 cache misses (left figure) and TLB misses (right
figure) of the mergesort algorithms on the Random data set on the simulated Pentium [L

misses among the different algorithms (see the left figure in Figure 2.4). Multimergesort
also had the highest number of TLB misses. but these misses are considerably reduced by
the TLB padding (see the right figure in Figure 2.4).

Here is an example verifying the approximation in (2.4) of TLB misses of mnultimergesort.
Substituting the parameters of Pentium II to the approximation. C = 256. K115 = 4. and
T, = 64. we get 0.5 TLB misses per element for multimergesort with TLB padding. which is
very close to our experimental result. 0.47 (in the right figure of Figure 2.4). We will show
in Section 2.6 that multimergesort with TLB padding significantly reduces TLB misses and

improves overall execution performance.

2.4.3 Trade-offs relating to an instruction count increase and the perfor-

mance gain

Figure 2.5 shows the instruction counts of the five mergesort algorithms and the percentage

of total cycles saved by the four improved mergesort algorithms compared to the base

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 25

mergesort on the simulated Pentium II. The simulation shows that multimergesort had the

Instructions Per Element Cycles Saved vs Base Mergesort
800 —r—r—7—r——T7T——r—r—r—7T T w....‘ed'.'I.Yf'
ergeso! tiled mergeson ——
%al:: : A tiled mergesort with padding -------
700 + ergesor 4 a
tiled mergesort with padding mult-mergeso
- mutti-mergesoft 60 +mutt-mergeson with TLB padding 9
é 600 Fmyn-mergesort wih TLB padding - - - - b
2 500 3
[>
3 E
S w0 3
s 3
§ 300 H
g 3
3
£ 200 1
100 1
0 e Nl i A b e A - vl - e ;l 20 - ot A d A P RS 1 o & R
1K 4K 16K 64K 256K ™ M 8™ 1K 4K 16K 64K 256K ™ M BM
Data set size (in elements) Data set size (in elements)

Figure 2.5: Simulation comparisons of the instruction counts (left figure) and saved cycles in
percentage (right figure) of the mergesort algorithms on the Random data set on the simulated
Pentium II. The instruction count curves (left figure) of the base mergesort and the tiled mergesort
are overlapped.

highest instruction count. while tiled mergesort had the lowest instruction count. Taking
advantage of the low number of L2 cache misses in multimergesort and by reducing the
TLB misses through padding. multimergesort with TLB padding saved cycles by about
40% on large data sects compared to the base mergesort even though it has a relatively
high instruction count. Tiled mergesort with padding did not improve performance on the
Pentium II. This is because this machine has a d-way set associative cache where conflict

misses are not major concerns.

2.5 Cache-Effective Quicksort

We first briefly assess the merits and limits of the two existing quicksort algorithms. es-
pecially considering their cache locality. We present two new quicksort alternatives for

improving memory performance further. Experimental results will be reported in the next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 26

section.

2.5.1 Memory-tuned quicksort and multiquicksort

LaMarca and Ladner in the same paper [78] present two quicksort algorithms for cache
optimization. The first one is called memory-tuned quicksort. which is a modification of the
base quicksort [110]. Instead of saving small subarrays to sort in the end. the memory-tuned
quicksort sorts these subarrays when they are first encountered in order to reuse the data
clements in the cache.

The second algorithm is called multiquicksort. This algorithm applies a single pass to
divide the full data set into multiple subarrays. with the hope that each subarray will be
smaller than the cache capacity.

The performance gain of these two algorithms from experiments reported in [78] is
modest. We implemented the two algorithms on simulated machines and on various high-
end workstations and obtained consistent performance. We also found that the performance
of quicksort and its cache-optimized alternatives are very sensitive to the types of the data

set being used. These algorithms were not efficient on unbalanced data sets.

2.5.2 New quicksort alternatives

In practice. the quicksort algorithms exploit cache locality well on balanced data. A chal-
lenge is to make the quicksort perform well on unbalanced data sets. We present two
cache-optimized quicksort alternatives that work well on both balanced and unbalanced

data sets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 27

2.5.2.1 Flash Quicksort

Flashsort [92] is extremely fast for sorting balanced data sets. The maximum and minimum
values are first identified in the data set to identify the data range. The data range is
then evenly divided into classes to form subarrays. The algorithm consists of three steps:
“classification” to determine the size of each class. “permutation” to move cach element into
its class by using a single temporary variable to hold the replaced element. and “straight
insertion” to sort elements in each class by using Sedgewick’s insertion sort [110]. This
algorithm works very well on balanced data sets because the sizes of the subarrays after the
first two steps are similar and are small enough to fit in the cache. This makes flashsort
highly effective (O(N)). However. when the data set is not balanced. the sizes of the
generated subarrays are disproportionate. causing ineffective usage of the cache. and making
flashsort as slow as insertion sort (O(N?)) in the worst case.

In comparison with the pivoting process of quicksort. the classification step of flashsort
is more likely to generate balanced subarrays. which favors better cache utilization. On the
other hand. quicksort cutperforms insertion sort on unbalanced subarrays. By combining
the advantages of flashsort and quicksort. we present a new quicksort alternative. flash
quicksort. where the first two steps are the same as in flashsort and the last step uses

quicksort to sort the clements in each class.

2.5.2.2 Inplaced flash quicksort

To further improve overall performance. we employ another cache optimization to improve
temporal locality in flash quicksort. We call this alternative inplaced flash quicksort. In

this algorithm. the first and third steps are the same as in flash quicksort. In the second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 28

step. an additional array is used as a buffer to hold the permuted elements. In the original
flashsort. a single temporary variable is used to hold the replaced element. A cache line
normally holds more than one element. The data structure of the single variable minimizes
the chance of data rcusage. Using the additional array. we attempt to reuse clements in
a cache line before their replacement and to reduce the instruction count for copying data
elements. Although this approach increases the required memory space. it improves both

cache and overall performance.

2.5.3 Simulation results

Figure 2.6 shows the instruction counts (left figure) and the L1 misses (right fizure) of
memory-tuned quicksort. flashsort. flash quicksort. and inplaced flash quicksort. on the
Unbalanced data set on the simulated Pentium [T memory architecture. which has a higher

memory latency and a larger L2 cache (512 KBytes) than the Pentium II. The instruction

Instructions Per Element (Unbalancea data set) L1 Misses Per Element (Unbatanceg data set)
1m v A} Al AJ Al Al A) A Af AY / Al 8 AS Al A A AS Al Al Al Il X o ﬁ_T
memory-tuned quickson ———— / memory-luned quicksorn
flashsort ------- / 7k flashsort ------- 4
flash quicksort ; J flash quicksort
_ 800 | mplaced flash quicksort ; nplaced flash quicksort
g / .8 ,)
£ g |
T 600 < % ST / 7
2 K]
s 5 4 4
c Q /
[+] o
g 400 + - § 4
g S
£ . 4
200 b 4T e
0 vt L A A e e 1 A 4 A e 4 L A
1K 4K 16K 64K 256K ™ M 256K ™ 4aM
Data set size (in elements) Data set size (in elements)

Figure 2.6: Simulation comparisons of the instruction counts (left figure) and the L1 misses (right
figure) of the quicksort algorithms on the Unbalanced data set on the simulated Pentium [II. The
instruction count curve of the flashsort was too high to be presented in the left figure.

count curve of flashsort was too high to be presented in the left figure of Figure 2.6. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 29

same figure shows that the instruction count of memory-tuned quicksort also increases
rapidly as the data set size grows. In contrast. the instruction counts of flash quicksort
and inplaced flash quicksort change little as the data set size increases. The simulation also
shows that the number of L1 misses increases much more rapidly as the size of the data
set grows in the memory-tuned quicksort and flashsort than in the flashsort and inplaced
flashsort algorithms. The simulation results are consistent with our algorithm analysis. and

show the effectiveness of our new quicksort alternatives on unbalanced data sets.

2.6 Measurement Results and Performance Evaluation

We have implemented and tested all the sorting algorithms discussed in the previous sections
on all the data sets described in Section 2.3 on a SGI O2 workstation. a Sun Ultra-3
workstation. a Pentium II PC. and a Pentium III PC. The data sizes we used for experiments
are limited by the memory size available on the experimental machines since we focus on
cache-effective methods. We used “lmbench™ [86] to measure the latencies of the memory
hierarchy at its different levels on each machine. The architectural parameters of the four
machines are listed in Table 2.1. where all the L1 cache specifications refer to the L1 data
cache: all the L2 caches are uniform. The hit times of the L1 and L2 caches and the main
memory measured by Imbench have been converted to the corresponding number of CPU
cycles.

We compared all our algorithms with the algorithms in [78] and [92]. The execution

times were collected by “gettimeofday()”. a standard Unix timing function. The reported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 30

Table 2.1: Architectural parameters of the 4 machines we have used for the experiments.

Workstations SGI 02| Sun Ultra s Pentium Pentium
Processor type R10000 | UltraSparc-IIi | Pentium II 400 | Pentium III Xeon 500
clock rate (MHz) 150 270 400 500
L1 cache (KBytes) 32 16 16 16
L1 block size (Bytes) 32 32 32 32
L1 associativity 2 1 4 4 J
L1 hit time (cycles) 2 2 2 3
L2 cache (KBytes) 64 256 256 512
L2 associativity 2 2 4 4
L2 hit time (cycles) 13 | 14 21 24 :
TLB size (entries) 64 64 64 64]
TLB associativity 64 6 i 4 Ji
| Memory latency (cycles)] 208 [76 ! 68 i 67 j

time unit is cycle per element (CPFE):

execution time x clock rate

CPE = N

where erecution timne is the measured time in seconds. clock rate is the CPU speed (in cycles
per second) of the machine where the program is run. and N is the number of elements in
the data set.

Each execution time reported in this chapter represents the mean of 20 runs. The
variances range from 0.096 to 23.72 cycles? (corresponding to standard deviations ranging
from 0.31 to 4.87 cycles). As a result. the coefficients of variation calculated by the ratio of
the standard deviation to the mean is in a range of 0.00035 to 0.01.

The performance results on all the data sets are fairly consistent. Because of this. we
only present the performance results of the mergesort algorithms using the Random data

set on the four machines (plus performance results of the other data sets on the Ultra 5 to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 31

show the effectiveness of the tiled mergesort with padding). We present the performance

results of the quicksort algorithms using the Random and the Unbalanced data sets on the

four machines.

2.6.1 Mergesort performance comparisons

We compared five mergesort algorithins: the base mergesort. tiled mergesort. multimerge-
sort. tiled mergesort with padding. and multimergesort with TLB padding. Proportional
to each machine’s memory capacity. we scaled the mergesort algorithms from V=1K up to
N=16M eclements. All our algorithms demonstrated their effectiveness as the data set size
grew. Figure 2.7 shows comparisons of cycles spent per element for the five algorithms on

the SGI O2 and the Sun Ultra 5. Multimergesort with TLB padding performed the best

Mergesorts on 02 (Random aata set) Mergesorts on Ultra 5 (Random cata set)
1600 T T ™7 T T Y T T s 2000 —— —T T T v T
base mergesor base mergesor
1400 + nled mergesort ------- J tled mergesort ----- -
tiled mergesort :mn padding tiled mefges?:uﬁgf;ds'gg
muft-mergesort
1200 Fmyin-mergesort with TLB pra?:dmg .- /_/ 1500 |- mutb-mergesort with TLB padging - - - - 4

1000 + / -

cycles par element
\
A

cycles per element

0 A A A L A A < ' A 4 o 4 A I L - L ’ L L
1K 4K 16K 64K 256K ™ 1K 4K 16K 64K 256K ™ M
gata set size n elements data set size in elements

Figure 2.7: Execution comparisons of the mergesort algorithms on SGI 02 and on Sun Ultra 3.

-

on the O2. with execution times reduced 55% compared to the base sort. 35% compared to
tiled mergesort. and 31% compared to multimergesort on 2M elements. On the other hand.
tiled mergesort with padding performed the best on the Ultra 5. reducing execution times

45% compared to multimergesort. 26% to the base mergesort. and 23% to tiled mergesort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 32

on 4M elements. Multimergesort with TLB padding on Ultra 5 also did well. with a 35%
improvement over multimergesort. 13% over the base mergesort. and 9% over tiled merge-
sort on 4M elements. The reason for the incredible performance improvements on the Q2
is its long memory latency (208 cycles): this makes the cache miss reduction techniques
very effective in improving the overall performance of the sorting algorithms. The L2 cache
size of the SGI is relatively small (64 KBytes) and the TLB is frequently used for memory
accesses. Thus. TLB padding is very effective. In addition. both L1 and L2 caches are
2-way set associative. where the padding is not as effective as on a direct-mapped cache. In
contrast. the Ultra 5's L1 cache is direct-mapped and the L2 cache is 4 times larger than
that of the O2. On this platform data cache padding is more effective than TLB padding.

In order to show the effectiveness of tiled-mergesort with padding on a cache system
with a low associativity. the performance curves of the five mergesort algorithms from the

Sun Ultra 5 on the other 8 data sets are provided in Figure 2.8 - 2.11. Our experiments

Mergesorts on Ultra 5 { Equikkely data set) Mergesonts on Ultra 5 (Bemoulli data set)
2000 T T T 2000 LEREENL S B S SEM S S S S S
base mergesont —— base mergesonn ———
tiled mergesort ------- tiled mergesont ------- /—
tiled mergeson with padding tiled mergesort with padding T
mult-mergesort mufti-mergesort beeeee -
_ 1500 r mutt-mergeson with TLB padding - - - - R _ 1500 r muit-mergesort with TLB padding - - - - ; b
5 § -'
€ €
o 2 "
[° N
2 & 1000 F : B
Q a
a "
2 o
o i ' l — L i i Al b e A o e - A - A e v i 1 A
1K 4K 16K 64K 256K ™ M 1K 4K 16K 64K 256K ™ 4M
data set size m elements data set size in elements

Figure 2.8: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Equilikely
data set (left figure) and the Bernoulli data set (right figure).

show that tiled-mergesort with padding consistently and significantly outperforms the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 33

Mergesorts on Uttra 5 (Geometrc data set) Mergesonts on Utra § (Pascat data set)
m T T T Rl Al T T v T T ZM T T T Al T B SR T T T T
base mergesort —— base mergesort
tled mergeson ------- tiied mergesort -------
tiled mergesort with padaing tied mergesort with padding
mufti-mergeson mult-mergeson
1500 | multi-mergesort with TLB padding - - - - ﬁ 1500 |- mutti-mergesort with TLB padding - - - - 7

cycles per element
cycles per element

° i 'l d A A A 4 A 1 A e 0 4 d A i I3 ' l (1 L L N
1K 4K 16K 64K 256K ™ M 1K 4K 16K 64K 256K ™ M
data set sze m elements data set size in elements

Figure 2.9: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Geometric
data set (left figure) and the Pascal data set (right figure).

mergesort algorithms on the Ultra 5. For example. tiled mergesort with padding achieved
70%. 68%. and 54% reductions in execution time on the Zero data set compared with the
base mergesort. tiled mergesort. and multimergesort. respectively. Using other data sets.
tiled mergesort with padding achicved 24% to 53% reductions in execution time compared
with the base mergesort. 23% to 52% reductions compared with tiled mergesort. and 23%
to 44% reductions compared with multimergesort.

Figure 2.12 shows the comparisons of cycles per element between the five mergesort
algorithms on the Pentium II 400 and the Pentium IIT 500. The measurements on both
machines show that multimergesort with TLB padding performed the best. reducing execu-
tion times 41% compared with multimergesort. 40% compared with the base mergesort. and
26% compared with tiled sort on 16M elements. The L1 and L2 caches of both machines are
4-way set associative so the issue of data cache conflict isses is not a concern (as discussed
in Section 2.4.1). Since TLB misses are the main source of inefficiency in the multimergesort

algorithm. padding for the TLB is very effective in improving the performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 34

Mergesorts on Ulra 5 (Bnomial data set) Mergesorts on Ultra5 (Paisson data set)
2000 —r T T g 2000 — \ 7 —
base mergesoft —— base mergesornt ——
tied mergesor ------- tled mergesoft -------
iied mergesort with padding tileg mergesort with padding
muft-mergesort mult-mergesort
.. 1500 | mutt-mergesort with TLB padding - - - - k _ 1500 F mumm-mergesort with TLB paddng - - - - 1
5 §
E 3
2 o
[[]
3]
Q Q
] [
2 2
2 2
o o
O A A A A 1 A A A A 4 e
1K 4K 16K 64K 256K ™ 4aM 1K 4K 16K 64K 256K ™ M
data set size n elements data set size n elements

Figure 2.10: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Binomial
data set (left figure) and the Poisson data set (right figure).

In summary. tiled mergesort with padding is highly effective in reducing conflict misses
on machines with direct-mapped caches and multimergesort with TLB padding performns

very well on all types of architectures.

2.6.2 Quicksort performance comparisons

We present the results of quicksort algorithms on the 4 machines using the Random data set
and the Unbalanced data set. The 4 quicksort algorithms are: the memory-tuned quicksort.
flashsort. flash quicksort. and the inplaced flash quicksort.

Figure 2.13 shows the comparisons of cycles per element between the four quicksort
algorithms on the Random data set (left) and the Unbalanced data set (right) on the SGI 02
machine. The performance results of the four quicksort algorithins using the Random data
set are comparable. with the memory-tuned algorithm slightly outperforming the others.
The performance results using the Unbalanced data sct are much different. As we expected.

the number of cycles spent to sort cach element is relatively stable for flash quicksort and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 35

Mergesorts on Ultra 5 { Unbalanced data set) Mergesonts on Ultra 5 (Zero data set)
m T T Al LS T T T v T T m T T T T Ll v A o LS T Al
base mergesort base mergesart
tiled mergesort ------- fired merggson
tled mergesort with padding 2500 tiled mergesort with padding f
mult-mergesorn mult-mergeson .-
_ 1500 - muft-mergesart with TLB padding - - - - < .~ multi-mergeson with TLB pagding - - - -
[c ;
o - N -
2 g 2000
o 2
[[
; 5 1500 + e
Qe - S
0 [l "
o o ;
% % 1000 L b
o A 1 4 e " e d A " A i o 1 . l e d A i 1 e L A
1K 4K 16K 64K 256K ™ M 1K 4K 16K 64K 256K ™ M
data set size n elements data set size n elements

Figure 2.11: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Unbal-
anced data set (left figure) and the Zero data set (right figure).

the inplaced flash quicksort as the size of the data set increases. while the performance of
memory-tuned quicksort and flashsort greatly diminishes. The timing curves of flashsort
are even too high to be shown in the right figure in Figure 2.13.

Figure 2.14 shows the comparisons of cycles per element among the four quicksort algo-
rithms on the Random data set (left) and the Unbalanced data set (right) on the Sun Ultra
5 machine. On the Ultra 5. all four algorithms showed little difference in their execution
times on the Random data sct. On the other hand. the flash and inplaced flash quicksorts
exhibited much better performance on the Unbalanced data set. For example. when the
data set increased to 128K clements. the execution time of flashsort is more than 10 times
higher than that of the other three algorithms (the curve is too high to be plotted in the
figure). When the data set is increased to 1M elements, the execution time of the memory-
tuned quicksort is more than 3 times higher than that of the flash quicksort and inplaced
flash quicksort. and the execution time of the flashsort is more than 100 times higher than

that of the others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 36

Mergesorts on Pentium 1) 400 (Random data set Mergesorts on Pentium Hll 500 (Random data set)
1m T T AS T T T T v v T LS T Ll
base mergesort
1400 | tiled mergesort ------- 4
tiled mergesort with padding

mutli-mergeson
1200 I myt-mergesont with TLB padding - - - - 1

cycles per element
cycles per element

1K 4K 16K 64K 256K ™ m 16M 1K 4K 16K 64K 256K ™ LU 16M
data set size n elements data set sze n elements

Figure 2.12: Execution comparisons of the mergesort algorithms on Pentium II and on Pentium
III.

Figure 2.15 and Figure 2.16 show the comparisons of cycles per element between the
four quicksort algorithms on the Random data set (left) and the Unbalanced data set (right)
on the Pentium II and the Pentium III machine respectively. On both Pentiums using
the Random data sct. flashsort. flash quicksort. and inplaced flashsort displayed similar
execution performance and reduced execution times around 20% compared to the memory-
tuned quicksort on large data sets. Again. flash quicksort and inplaced flash quicksort
significantly outperformed the memory-turned quicksort algorithm on the Unbalanced data

sets on the two Pentium machines.

2.7 A Prediction Model of Performance Trade-Offs

The essential issue that must be considered when designing an algorithm that has an ef-
ficient memory access pattern is the trade-off between the optimization achievement -the
reduction of cache misses. and the optimization effort--the increment in the instruction

count. The optimization objective is to improve overall performance- to reduce the ex-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 37

Quicksons on 02 (Random data set) Quicksorts on 02 (Unbatanced data set)
!‘m T A T T T ST T Al A n “w 13 Al LS 1 T Bg Y T T T T]
memory-tuned quickson —— memory-tuned quickson /
1200 + flash sont ------- B 1200 + flash sont ------- /
flash quickson flash quicksort /
nplaced flash quickson nplaced flash quicksont /
- -~ 1000 / 4
c c
[]
§ H /
° 3 800 | . <
® . A
Q a
3 g /]
] o - -
5 L’f 400 ;—// -
200 F .
0 y e i i e 4 A A Y R n 0 A A N i A i i ' R S |
1K 4K 16K 64K 256K ™ &M 1K 4K 16K 64K 256K ™ aM
data set size in elements gata set size In elements

Figure 2.13: Execution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set (right figure) on the SGI O2. (The timing curve of the
flashsort is too high to be presented in the right figure).

ecution time of a base algorithm. This trade-off and the objective can be quantitatively
predicted through an execution timing model. The execution time of an algorithm on a

computer system based on Amdahl’s Law [67] is expressed as

T = CPU clock cycles + memory stall cycles = IC x CPI + CAx MR x MP. (2.5)

where IC is the instruction count of the algorithm. CPI is the number of CPU cycles per
instruction for the algorithm. C A is the number of cache accesses of during the algorithm’s
execution. M R is the cache miss rate of the algorithm. and M P is the miss penalty in cycles

of the system. The exccution time for a base algorithm. Ty, is expressed as

Toase = [Chase X CPI + C Apgse X M Rpgse x M P. (2.6)

and the execution time for an optimized algorithm. T,p,. is expressed as

Topt = ICopt X CPI + C Agpt X M Ropy x MP. (2.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 38

Quicksorts on Uitra 5 (Random data set) Quicksorts on Ultra 5 (Unbalanced dala set)
1400 —rTrTr7r—7r—Tr—rr 1400 77T T
memory-tuned quicksont —— memory-luned quickson ——— ,
1200 flash soit ------- A 1200 + flash sort ------- / A
flash quicksont - flash quicksont
nplaced flash quicksorn nplaced flash quickson ,
£ 1000 1 £ 1000 ! :
] H
§ £ /
3 s 800 /]
g H
- . 600 J
2 2
2 2
Q O 400 <
200 + b
0 3 A 4 S — A) E— A A & 4 o A e - e 1 - L A i n
1K 4K 16K 64K 256K ™ 4aM 1K 4K 16K 64K 256K ™M aM
data set size n elements cala set size n elements

Figure 2.14: Execution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set (right figure) on the Ultra 3. (The timing curve of the
flashsort is too high to be presented in the right figure).

where ICpqase and ICyyp, are the instruction counts for the base algorithm and the optimized
algorithm. C Apqase and C A,y are the numbers of cache accesses of the base algorithm and
the optimized algorithm. and M Ryes. and M Rqp are the cache miss rates of the base
algorithm and the optimized algorithm. respectively.

In some optimized algorithms such as tiled mergesort and tiled mergesort with padding.
the total number of cache accesses may be nearly the same as for the base algorithm. For
this type of algorithms. we combine equations (2.6) and (2.7) with CApyye = CAgpy = CA
to predict the execution time reduction rate of an optimized algorithm as follows:

_Tbasr_Topt _ AMRxCAx MP - AIC xCPI
Toase IChase X CPI + CApgse X MRygse x MP~

R (2.8)

where AM R = M Ryqse — M Ropt represents the miss rate reduction. and AIC = IC,p, -

ICpqse represents the instruction count increment. In order to obtain a positive reduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 39

Quicksorts on Pentium i1 400 (Random data set) Quicksorts on Pentium 1l 400 (Unbalanced data set)
1400 T T T T T T T T T T T T T 1400 T T T T T T T T T T T T
memory-luned quicksorn mEmory-tuned quicksart d
flash sont ------- flash sort ------- '
1 L 4 1 L
200 flash quicksort 200 flash quicksorn]
mplaced flash quickson inplaced flash quicksort
€ T 1000 - J 4
£ £ /
o
s s 800f 1
g g
@ « 600 4
° 2
[*] 5]
by & a0k 4
200 + p
0 1 L " i L i L " n 4 i i . 0 4 1 . n i i i A i " n . 1 |
1K 4K 16K 64K 256K ™ am 16M 1K 4K 16K 64K 256K ™ M 16M
data set size n elements data set size n elements

Figure 2.15: Exccution comparisons of the quucksort algorithms on the Random data set (left
figure) and on the Unbalanced data set on the Pentium II. (The timing curve of the flashsort is too
high to be presented in the right figure).

in exccution time. the following must hold true:
AMRxCA x MP > AIC x CPI.

This model describes the quantitative trade-off between instruction count increase and
miss rate reduction. and gives the condition for an optimized algorithm to improve the

performance of a base algorithm:

AIC CAxMP

AMR S T CPI (2.9)

For multiphase optimized algorithms which have different cache access patterns in cach
phasec. such as multimergesort and multimergesort with TLB padding. we combine equations
(2.6) and (2.7) with C Ay, # CAgpe to obtain the condition for an optimized algorithm to

improve the performance of a base algorithm:

AIC Mp

. 2.
AMR <CA) < CPI (2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 10

Quicksons on Pentiwm (Il 500 { Random data set } Quicksorts on Pentium (Il 500 (Unbalanced data set)
1‘m LS L4 T A AS A Y B S AS Al AS AR I 'm v v Al AS S AS A v Al AJ ; AS AS Al
memory-tuned quicksort memory-tuned :;mckson
L flash sort ------- L lash sort -------
1200 flash quicksort] 1200 flash quickson ' ﬁ
nplaced flash quickson nplaced flash quicksort
€ £ 1000 | . 4
[o .
& §
§ f ol J/ j
3 3
[-% Q
@ ° 600 P -
2 2
2)
by o 400 ﬁ
200 + A
o 4 A vt 4 A e 4 4 y ’e e A e 0 A e e e - e A ’e e e e -
1K 4K 16K 64K 256K ™ M 16M 1K 4K 16K 64K 256K ™ M 16M
data set size m elements aata set size mn elements

Figure 2.16: Exccution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set on the Pentium III. (The timing curve of the flashsort is too
high to be presented in the right figure).

where A(MR x CA) = M Rygse X CApgse — M Ropt x C Aoyt

There are architecture related and algorithimn related parameters in this prediction model.
The architecture related parameters are CPI and M P. which are machine-dependent and
can be easily obtained. The algorithm related parameters are /C. CA. and M R. which
can be either predicted from algorithm analysis or obtained from running the program on
a simulated architecture, such as SimpleScalar. The algorithm related parameters can also
be predicted by running the algorithms on relatively small data sets that are larger than
the cache capacity on a target machine.

Using the prediction model and the parameters from the SimpleScalar simulation. we
are able to predict the exccution time rate of reduction for the optimized algorithms. Our
study shows that the predicted results using the model are close to the measurement results,

with a 6.8% error rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 41
2.8 Chapter Conclusion

We have examined and developed cache-effective algorithms for both mergesort and quick-
sort. These algorithms have been tested on four representative processors dating from 1995
to 1999 to show their effectiveness. We also use simulations to provide additional evalua-
tion of performance. We have shown that the memory architecture plays the largest role in
affecting the performance of various mergesort algorithms. while the type of data set used
affects quicksort algorithms the most.

Our techniques of padding. partitioning. and buffering can also be used for other al-
gorithms for optimizations directed at the cache. Whenever a program regularly accesses
a large data set that cannot be entirely stored in the cache. the danger of conflict misses
exists. particularly when the algorithm partitions the data sets in sizes that are a power
of 2. Padding is effective for this type of program to eliminate or reduce conflict misses.
Examples include matrix accesses and manipulations and data reordering and swapping
between data sets. When a program sequentially and repeatedly scans a large data set that
cannot be stored in the cache in its entirety. the program will suffer capacity cache isses.
Partitioning the data sct based on the cache size to localize the memory used by a stage in
execution is cffective for this type of program. Tiling for mergesort is one example where
this is used: other tasks where this optimization approach can be used include data accesses
by loops and data manipulations of a large data file in a sequential order. The buffering
technique is effective to reduce or eliminate conflict misses by using an additional buffer to
temporarily hold data elements for later reuse that would otherwise be swapped out of the

cache. Examples where this can be employed include programs manipulating data in an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory systems 42

inplaced fashion and programs where data accesses easily cause conflict cache misses.

The only machine-dependent architecture parameters for implementing the four meth-
ods we presented in this chapter are the cache size (C). the cache line size (L). cache
associativity (K). the number of entries in the TLB cache. and a memory page size ().
These parameters are becoming increasingly known to users. They can be defined as vari-
ables in the programs. making migration from one platform to another easy for a user. In
this way. the programs are easily portable—all that is required is the knowledge of the four
required parameters.

There are several ways to provide sorting algorithms with architecture-dependent pa-
rameters. One approach leaves the work to an informed user who is familiar with the
machine architecture: this user could simply input the required parameters into the pro-
grams. A sccond possibility: users could conduct some brief exccutions using a runtime
library to obtain estimated architectural parameters for the program optimizations. The
overhead caused by this approach is normally acceptable [140]. ATLAS [129] uses a tool to
first automatically determine architectural parameters by extensive tests on the target ma-
chine. The program is then recompiled with these parameters included. A third possibility
would be to utilize the ATLAS approach to support our sorting program optimizations.

casing the burden on an end-user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Load Sharing for Global Memory

System Management

3.1 Literature overview on load sharing for global memory

in distributed systems

A major performance objective of implementing a load sharing policy in a distributed
system is to minimize execution time of each individual job. and to maximize the system
throughput by effectively using the distributed resources. such as CPUs. memory modules.
and 1/0s.

CPU-based Policy:

Most load sharing schemes (e.g.. [36]. [38]. [11]. [66]. [68]. [74]. [149]) mainly consider
CPU load balancing by assuming each computer node in the system has a sufficient amount
of memory space. These schemes have proved to be effective on overall performance im-
provement of distributed systems. However. with the rapid development of CPU chips

and the increasing demand of data accesses in applications. the memory resources in a
43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 14

distributed system become more and more expensive relative to CPU cycles. We believe
that the overheads of data accesses and movement. such as page faults. have grown to the
point where the overall performance of distributed systems would be considerably degraded
without serious considerations concerning memory resources in the design of load sharing
policies. We have following reasons to support our claim. First. with the rapid development
of RISC and VLSI technology. the speed of processors has increased dramatically in the past
decade. We have scen an increasing gap in speed between processor and memory. and this
gap makes performance of application programs on uniprocessor. multiprocessor and dis-
tributed systems rely more and more on effective usage of their entire memory hierarchies.
In addition. the memory and I/O components have a dominant portion in the total cost
of a computer system. Seccond. the demand for data accesses in applications running on
distributed systems has significantly increased accordingly with the rapid establishment of
local and wide-area Internet infrastructure. Third. the latency of a memory miss or a page
fault is about 1000 times higher than that of a memory hit. Therefore. minimizing page
faults through memory load sharing has a great potential to significantly improve overall
performance of distributed systems. Finally. it has been shown that memory utilizations
among the different nodes in a distributed systemn are highly unbalanced in practice. where
page faults frequently occur in some heavily loaded nodes but a few memory accesses or no
memory accesses are requested on some lightly loaded nodes or idle nodes [2].
Memory-based Policy:

Some work has been reported on memory resource considerations of load sharing. Using
analytical models. researchers have studied performance impact of memory allocations in

scheduling parallel jobs on both shared-memory multiprocessors and distributed memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 45

systems. (e.g.. see [96] and [98]). The impact of the memory demands in parallel scientific
workloads on different parallel machines are also studied in [112] and [113]. However.
memory demands of workloads on distributed systems could be much higher and more
random than many parallel scientific programs running on MPPs. Basically. there are two
major approaches to more effectively use global memory resources in a workstation cluster:
(1) job-migration-based load sharing schemes and (2) network RAM. A job-migration-based
load sharing system attempts to migrate jobs from a workstation without sufficient memory
space to a lightly loaded workstation with large idle memory space for the migrated jobs.
When a job migration is necessary. the migration can be either a remote execution (where
a job is initiated on a remote workstation). or a preemptive migration which suspends the
selected job and moves it to a remote workstation where it is restarted. In a network RAM
system [48]. if a job cannot find sufficient memory space for its working sets. it will utilize
idle memory space from other workstations in the cluster through remote paging. Since
accessing remote memory is slower than accessing local memory but much faster than local
disk access. the idle global memory space or the network RAM can be considered as another
layer between the local memory and the local disk in the memory hierarchy of a workstation.

Regarding network RAM implementations. the Global Memory System (GMS) [44] [124]
and the Remote Memory Pager [84] attempts to reduce the page fault overhead by remote
paging techniques. Although the page fault cost is reduced. remote paging may also increase
network contention. DoDo (2] is designed to improve system throughput by harvesting idle
meimnory space in a distributed system. The owner processes have the highest priority for
their CPUs and memory allocations in their nodes. which divides the global memory system

into different local regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 46

Regarding job-migration-based load sharing systems. an early study in [74] considers
using the free memory size in each node as an index for load sharing. Compared with CPU-
based policies. this study did not find the memory-based policy particularly effective. This
is because the workloads were CPU intensive. and the processors then were much slower
than what we are using today. In the MOSIX load sharing system. a memory ushering
algorithm is used when the free memory of a node is lower than a certain amount (e.g. 1/4
MBytes) [5]. A preemptive migration is then applied to the smallest running job in the
node by moving it to a remote node with the largest free memory. A load sharing policy
that only considers memory resource without considering CPU resource is very likely to
cause uneven job distributions among workstations. which is not favorable for optimizing

the average job queuing time.

We propose CPU-Memory-based load sharing policies [133] that will be presented
in the next Section. These policies are job-migration-based. They share both CPU and
memory services among the nodes in order to minimize both CPU idle times and the
number of page faults caused by unbalanced memory allocations of distributed jobs in dis-
tributed systems so that overall performance can be significantly improved. The new load
sharing policies not only improve performance of memory-bound jobs. but also maintain
the same load sharing quality as the CPU-based policies for CPU-bound jobs. The load
sharing design is extended on heterogencous distributed systems (137]. Performance results
show that the CPU-based load sharing policy is not robust in a heterogeneous system. and
performs poorly for memory-intensive workloads. The performance of the memory-based

and CPU-Memory-based load sharing policies are quite independent of system heterogene-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 47

ity changes for memory-intensive workloads and independent on several different memory
demand distributions.

Effective usage of global memory resources is an important consideration in the design
of load sharing policies for cluster computing. When a workstation does not have suffi-
cient memory space for its assigned jobs. the system will experience a large number of page
faults. resulting in long delays for cach job. In this case. job-migration-based load sharing
approach is not sufficient. Section 3.3 presents how we optimize designs of cluster resource
management systems by effectively combining the job-migration-based load sharing sys-
tem approach and network RAM system approach. We also propose a software method
incorporating with dynamic load sharing. which adaptively reserves a small number set of
workstations through virtual cluster reconfiguration to provide special services to the jobs

demanding large memory allocations. This study can be found in [28].

3.2 CPU-memory-based Load Sharing

Aiming at reducing the memory resource contention caused by page faults and 1/0 activities.
we have developed and examined load sharing policies by considering effective utilization
of global memory in addition to CPU load balancing in clusters. Our study counsists of
two parts: load sharing policies dealing with known memory demands. and with unknown
memory workloads.

For the first part of the study. we use real-world application traces obtained from the
public domain. which contain average requested and used CPU times. and average requested

and used memory space for cach job. Relying on the knowledge of memory demands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 48

we develop several load sharing policies with coordinated utilizations of both CPU and
memory resources. Trace-driven simulations are conducted for performance comparison and
evaluation. The practical basis of this part is that memory demands of some applications
can be known or can be predicted based on users’ hints.

Since memory demands of many other applications may not be known in advance or
may be hard to predict. and memory accesses and allocations can be dynamically changed.
it is highly desirable to develop load sharing schemes with unknown memory demands.
We have addressed this issue in the second part of this study. This investigation requires
workloads with dynamic memory access and allocation traces. To our knowledge. there
have not been workload traces with dynamic memory information available in the public
domain. Thus. we have conducted kernel instrumentation to collect application workload
execution traces to capture dynamic memory access patterns. and have proposed load shar-
ing schemes dynamically monitoring the jobs status of resource utilizations. and making
resource allocation decisions timely and adaptively.

A detailed study with unknown memory demands can be found in [27]. in which we
present three new results and contributions in the study. (1) Conducting Linux kernel
instrumentation. we have collected different types of workload execution traces to quanti-
tatively characterize job interactions. and have modeled page fault behavior as a function
of the overloaded memory sizes and the amount of jobs™ I/O activities. (2) Based on ex-
perimental results and collected dynamic system information. we have built a simulation
model that accurately emulates the memory system operations and job migrations with vir-
tual memory considerations. (3) We have proposed a memory-centric load sharing scheme

and its variations to effectively process dynamic memory allocation demands. aiming at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 49

minimizing execution time of each individual job by dynamically migrating and remotely
submitting jobs to eliminate or reduce page faults and to reduce the queuing time for CPU
services. Conducting trace-driven simulations. we have examined these load sharing policies
to show their effectiveness.

We focus on presenting the load sharing study with known memory demands in this
dissertation. where the performance evaluation methodologies are described. and the per-
formance results are reported. In practice. some jobs” memory demands are known in
advance or predictable based on users” hints {7]. In this part of our study. the job’s memory
demand is assumed to be known. and the memory allocation for this job is done at the
arrival of the job. A job’s working set size is assumed to be stable during its execution.

This part of the work was in collaboration with Yanxia Qu.

3.2.1 CPU-Memory-Based Load Sharing Policies

In a multiprogramming environment. multiple jobs share a node for both its CPU and
memory space. There are two types of page replacement policies in a multiprogramming
environment: global replacement and local replacement. A global replacement allows the
paging system to select a memory page for replacement throughout the memory space
of a node. A local replacement requires that the paging systemn select a page for a job
only from its allocated memory space. Most time-sharing operating systems use a global
LRU replacement policy. We use node index j to represent one node a cluster. and use
variable P’ to represent the total number of nodes in the cluster. We give the following
memory related characterizations in a multiprogramming environment using a global LRU

replacement policy on a single node:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 50
e RAM,: the amount of user available memory space on node j for j = 1..... P.

e U,: the memory usage is the total amount of requested memory space accumulated
from jobs the node j. This requested or declared amount of space reflects the maxi-

mum amount of the working set. but not the real memory load in executions.

e ML,: the memory load in bytes is the total amount of memory loads accumulated
from running jobs on node j. (After a job is in its stable stage. its working set size
should also be stable {116]. We call the memory space for the stable working set the
memory load of the job. If RAM, > ML,. page faults would rarely occur. otherwise.

paging would be frequently conducted during the executions of jobs in node j.)

e 7,: the average page fault rate caused by all jobs on a node is measured by the number
of page faults per million instructions when the allocated memory space equals the

memory load.

When a job migration is necessary in load sharing. the migration can be cither a remote
execution. which makes jobs be executed on remote nodes in a non-preemptive way. or a
preemptive migration. which may suspend the selected jobs. move them to a remote node.
then restart them. We have compared the performance of the remote executions with
preemptive migrations for load sharing in a homogeneous environment [145]. Our study
indicates that an effective preemptive migration for a memory-intensive workload is not
only affected by the workload’s lifetime. but also by its data access patterns. Without a
thorough understanding of workloads™ execution patterns interleaving among the CPU. the
memory and the [/O. it is difficult to effectively use preemptive migrations in load sharing

policies. For this reason. we have decided to only use the remote execution strategy in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 51

part. This part focuses on the three policies using remote executions: the first one is based
on CPU resource information. the second one uses information on memory usage. and the
third one is based on data concerning both CPU and memory resources. Descriptions of

the three policies are given as follows.

CPU-based load sharing. The load index in each node is represented by the length of
the CPU waiting queue. L;. A CPU threshold on node j. denoted as CT),. is the maximum
number of jobs the CPU is willing to take. which is set based on the CPU computing
capability. For a new arriving job in a node. if the waiting queue is shorter than the CPU
threshold (L; < CT,). the job is executed locally. Otherwise. the load sharing system tries
to find the remote node with the shortest waiting queue to remotely execute this job. This

policy is denoted as CPU in performance figures.

memory-based load sharing. Instcad of using L,. we propose to use the memory load.
ML, to represent the load index. For a new arriving job. if the memory load is smaller
than the user memory space (ML, < RAAM,). the job is executed locally. Otherwise. the
load sharing system tries to find the remote node with the lightest memory load to remotely

execute this job. This policy is denoted as MEM.

CPU-memory-based load sharing. We have proposed a load index that considers both
CPU and memory resources. The basic principle is as follows. When a node has sufficient
memory space for both running and requesting jobs. the load sharing decision is made by a
CPU-based policy. When the node does not have sufficient memory space for the jobs. the
system will experience a large number of page faults. resulting in long delays for cach job

in the node. In this case. a memory-based policy makes the load sharing decision to ecither

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 52

submit jobs to suitable nodes or to hold the jobs in a waiting queue if necessary.
The load index of node j (7 = l..... P) combining the resources of CPU cycles and

memory space is defined as

L,. ML, < RAM,.

Indexn,(j)(L,. ML,) = { CT,. ML,> RAM,.

When ML, < RAM,. CPU-based load sharing is used. When ML, > RAM,. the CPU
queue length (the load index) is set to CT), as if the CPU is overloaded so that the system
refuses to accept jobs. In our implementation. when ML, > RAM,. the local scheduler
immediately searches for the most lightly loaded node in the system as the job's destination.

Since the load index of node j is set to CT, when ML, > RAM,. it may not allow a node
with the overloaded memory to accept additional jobs. This approach attempts to minimize
the number of page faults in cach node. This load index option is in favor of making each
job execute as fast as possible. which is a principle of high performance computing. That is
the reason we define this option as an high performance computing load index. defined as
Indezyy.

However. this policy may not be in favor of high throughput computing which emphasizes
on cffective management and exploitation of all available nodes. For example. when ML, >
RAM, on one node. this condition may be true in several nodes. If the load indices in many
nodes have been set to CT and consequently they may refuse to accept jobs. the amount of
node resources accessible to users would be low. For this reason. we design an alternative
load index for high-throughput-computing. Instead of aggressively setting the load index
to CT,. we conservatively adjust the load index by a memory utilization status parameter

when ML, > RAM,. The memory utilization parameter is defined as vy, = ﬁJ\T When
AT,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 53

Y, < 1. the memory space of the node is sufficiently large for jobs. When v, > L. the
memory system is overloaded. This option is designed for high throughput computing. and
its load index is defined as follows:

L, ML, < RAM,.

Indezn(G)(L,- ML) = { L, xv,. ML,> RAM,.

Memory utilization parameter v, is used to proportionally adjust the load index. When
ML, > RAM,. the CPU queue length is enlarged by a factor of v, as if the CPU were
increasingly loaded. The increase of the load index would reduce the chance of this node
being selected soon for a new job assignment.

Both load index options have their merits and limits. and they are workload and system
dependent. The load sharing policy based on above two load indices can be expressed as

follows:

local execution. [nder(y) < CT,.

LS§(Indez(j)) = { remote execution. Index(y) > CT,.

where Indez is cither Indexy, or Indexy,. This policy is denoted as CPUMEM_HP or

CPU_MEM_HT.

3.2.2 Performance Evaluation Methodology

Our performance evaluation is simulation-based. consisting of two major components: a

simulated cluster and workloads !.

'The simulator can be accessed at http://www cs.wm.edu/hpes/WWW/HTML /publications/abs00-
1.html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

Chapter 3. Load Sharing for Global Memory System Management 54

3.2.2.1 A simulated cluster

Workstations in a cluster could be heterogeneous with different CPU powers and memory
capacities. In a heterogencous system. load indices of a node can be adjusted based on the
node’s relative computing capability and memory capacity in this system [137]. In order to
simplify the description. We focus on presenting our study on a homogeneous system and
give a brief summary of our study on heterogeneous system at the end of Section 3.2.

We simulated a homogencous cluster with 32 nodes. where each local scheduler holds
all the load-sharing policies we just discussed: CPU-based. Memory-based. CPU-Memory-
based and their variations. The simulated system is configured with workstations of 800
MHZ CPUs and 1GBytes Memory each. The memory page size is {Kbytes. The Ethernet
connection is 100Mbps. Each page fault service time is 10 ms. and the context switch time
is 0.1 ms. The overhead of a remote execution is 0.05 second.

The widening speed gap between CPU and memory makes memory accesses and page
faults increasingly expensive. Using SPEC CPU 1995 and SPEC CPU 2000 benchmark
programs. and exccution-driven simulations of modern computer architectures. researchers
have quantitatively evaluated their execution time portions for CPU operations and memory
accesses [79] and [148]. For example. using the SPEC CPU 2000 benchmarks on a simulated
1.6 GHz. 4-way issue. out-of-order core with 64 KB split L1 caches. a 1 MB on-chip L2 cache.
and an infinitely large main memory. in average. the system spends 57% total execution
time serving memory accesses (L2 misses). 12% of its time serving L1 misses. and only 31%
of its time for CPU operations. If we cousider a small percentage of the memory accesses

experiences page faults in a system with limited main memory space. the percentage of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 55

execution time spent for CPU operations can be significantly low. Our cluster simulation
environment is consistent with reported results.

The CPU local scheduling uses the round-robin policy. Each job is in one of the following
states: “ready”. “execution”. “paging”. "data transferring”. or “finish™. When a page fault
happens in the middle of a job execution. the job is suspended from the CPU during the
paging service. The CPU service is switched to a different job. When page faults happen in
executions of several jobs. they will be served in FIFO order. The page faults in each node
are simulated as follows. When the memory load of jobs in a node is equal to or larger than
the available memory space (ML, > RAM,). each job in the node will cause page faults at
a given page fault rate. g, x %[-;-,L where ML} is the memory load of job ¢ in node 5. and

ATAY
M A; is the allocated memory space for job i in node j.

In practice. application jobs have page fault rates from 1 to 10.

3.2.2.2 Workload Traces

We select a workload from the Los Alamos National Lab. which contains detailed informa-
tion about resource requests and usage including memory. This workload was collected from
a 1024-node Connection Machine CM-5 during October 1994 through September 1996. This
workload can be downloaded from Feitelson's Workload Archive [45]. We extract 4 traces
from this workload. which are summarized in Table 3.1. Trace “MAY™. “JUNE". “JULY"
and "AUGUST" include jobs submitted in May 1996. June 1996. July 1996 and August
1996. respectively. The parallel workloads have been converted to sequential workloads by
accumulating CPU and memory demands of all parallel tasks of cach job to a sequential job.

Each job in our trace has 4 items: (1) arrival time. (2) arrival node. (3) requested memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 56

size. and (4) requested CPU time. Item 1 can be obtained from the original CM-5 workload
directly. Item 3 and 4 are the total amount of requested CPU time and memory size of a
Jjob. Item 2 is assigned to a node whose number is the same as the job’s submission date.
For example. if a job is submitted on May 16. 1996. this job is assumed to be submitted
to node 16. We specially assign jobs to node 31 and/or 32 as follows. Node 32 in trace
"MAY". “JULY" and "AUGUST" contains all jobs submitted on June 1. 1996. August 1.
1996 and September 1. 1996. respectively. Node 31 and node 32 in trace “June™ include
all jobs submitted on June 1. 1996 and June 2. 1996. respectively. We converted the job

duration time into Million Instructions according to the CPU speed.

[trace name duration l # jobs | avg. CPU demand [avg. memory demand |
MAY May. 1996: June 1. 1996 1177 10166236 MIPS 1006 MB i
JUNE June. 1996: July 1-2. 1996 | 3738 9783912 MIPS 735 MB j
JULY July. 1996: Aug. 1. 1996 8639 5121149 MIPS 552 MB

AUGUST | Aug.. 1996: Sept. 1. 1996 3209 11428627 MIPS 901 MB

Table 3.1: Trace Description

3.2.2.3 System conditions

We have following conditions and assumptions for evaluating the load sharing policies in
g p g

the cluster:

e Each node maintains a global load index file which contains both CPU and memory
load status information of other nodes. The load sharing system periodically collects

and distributes the load information among all nodes.

e The location policy determines which node to be selected for a job execution. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 57
policy we use is to find the most lightly loaded node in the cluster.

e Similar to assumptions in [59] and [124]. we assume that page faults are uniformly

distributed during job exccutions.

e We assume that the memory load of a job is 10% of its requested memory size. The
practical value of this assumption has also been confirmed by the studies in [59] and

[124].

3.2.3 Performance Results and Analysis

Slowdown is the ratio between the wall clock execution time and the CPU execution time
of a job. A major timing measurement we have used is the mean slowdown. which is the
average of each program’s slowdown in a trace. In the rest of the chapter. “slowdown™ means
the “mean slowdown™. Major contributions to the slowdown come from the delavs of page
faults. waiting time for CPU service. and the overhead of remote execution. The mean
slowdown measurement can determine the overall performance of a load sharing policy. but
may not be sufficient to provide performance insights. We have also looked into the total
execution time and its breakdowns. For a given workload scheduled by a load sharing policy
(or without load sharing). we have measured the total execution time. The execution time

is further broken into CPU service time. queuning time. paging time. and migration time.

3.2.3.1 Overall Performance Comparisons

We have experimentally evaluated the 4 load sharing policies. and present performance
comparisons of all the traces. Figure 3.1 and 3.2 present the mean slowdowns of 4 traces

scheduled by different load sharing policies. The average memory demand of a job is known

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 58

in advance. but memory access interactions of multiple running jobs are unknown. We
use different page fault rates to characterize different interactions. Intensive interactions
mean that memory accesses of multiple running jobs happened at the same time. which
could cause more page faults than those in less intensive interactions. Before getting into
details. we present two general observations based on the results in the figures. First.
the slowdown are proportionally increased as the page fault rate increases. Second. when
average page fault rates are low. the performance differences among the load sharing policies
are insignificant. However. when average page fault rates are high. the CPU-Memory based

load sharing policies significantly outperform both CPU-based and Memory-based policies.

Trace MAY Trace JUNE
180 T - T T T Y
CPU —— CPY —— ﬂ
160 | MEM ---x--- L L MEM ---x-- |
CPU_MEM_HP -« S00 CPU_MEM HP «
180 I CPU_MEM_HT a2 4 CPUMEM HT =3 i
c : 5 o 400 <
2 E 2
4 o
- 3
o 7 8 300 4
0 7]
[4 =4
3 3
b { =20 .
1 100 4
20+ E
[+] L 4 4 0 S s 1
2 3 4 5 6 2 3 4 5 6
Average Page Faut Rate Average Page Faults Rate

Figure 3.1: Mean slowdowns of the 4 load sharing policies as the page fault rate increases on traces
MAY and JUNE.

Policy CPU does reasonably well when the page fault rate is low. but does poorly when
the rate is high. Policy MEM performs slightly better than CPU. but it still far below the
performance of CPUMEM based policies. Policies CPU.MEM_HP and CPU_MEM_HT
perform well under all conditions. and do show their effectiveness. Here is an example on

trace AUGUST. When the page fault rate is 4. the slowdowns of the last three policies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 59

Trace JULY Trace AUGUST
T T v I T T v T
1 -
CPU —— % CPU ——
200 - MEM ---x--- b 160 MEM ---x---
CPU_MEM HP = CPU_MEM HP «
CPUMEM HT 2 7 140 | CPUTMEM HT]
§ 150 S < J
H £ 120
3 [3 $
9 o 100)
7] 7]
c 100 2 5 % . 4
3 8 s
2 -3 80 4
50 1 40! g 4
j i ¥
0+ «
o 4 A A 0 A d A A4 —
2 3 L} 5 (3 2 3 4 § 6 7 8
Average Page Faults Rate Average Page Fautts Rate

Figure 3.2: Mecan slowdowns of the 4 load sharing policies as the page fault rate increases on traces

JULY and AUGUST.

are about 1.04 times lower. 1.84 times lower. 1.62 times lower than that of CPU policy.
respectively. When the page fault rate is increased to 8. the slowdowns of these three
policies are about 1.09 times lower. 2.03 times lower. 1.75 times lower than that of CPU

policy. respectively.

3.2.3.2 Paging and Queuing

Our simulator also records execution breakdowns. Qur experiments confirm that in different
load sharing policies the CPU service time is not changed. The migration time spending
on remote execution is neglected. So paging time and queuing time become the major
parts to evaluate performance of load sharing policies. Figure 3.3 presents the paging time
reduction and queuing time reduction of policies MEM. CPU_MEM_HP and CPU_MEM_HT
over policy CPU for different traces when the average page fault rate is 6.

Surprisingly. the paging time reduction of policy MEM is very small. This is because

policy MEM does not consider CPU load balancing at all so that some nodes may hold

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 60

2% 45
EMEM o . WMEM
@CPU_MEM_HP - @CPU_MEM_HP
g‘éﬂ “*QCPU_MEM_HT £35 . OCPU_MEM_HT.
g §
= g0 -
815 3
°
: i
Py 2o0 -
Eo £
- ™5
g H
£ g 210 -
a o
5 .
0 0

MAY JUNE JUuLY AUGUST JUNE JuLY AUGUST

Figure 3.3: Paging time reduction (left figure) and queuing time reduction (right figure) of policies
MEM. CPUMEM_HP and CPUMEM_HT over policy CPU.

a large number of running jobs. However. these nodes could be viewed as lightly loaded
because idle memory may still be available there. The heavy CPU load tends to make
these running jobs stay longer. and cause more page faults in these nodes when more jobs
have to move in. which offsets the page fault reduction gained from other nodes holding
fewer running jobs. In contrast. the paging time reductions of policies CPU_MEM_HP and
CPU_MEM_HT are significant. For example. in trace AUGUST. the paging time reduction
of policy MEM is only 3.88%. The reductions of CPU_MEM_HP and CPUMEM_HT are
24.43% and 24.27%. respectively.

Quecuing time reductions for different policies follow the same trend. The reduction of
MEM is very small. On one hand. some nodes hold a small number of running jobs with
large memory demands. The queuing time could be significantly reduced in these nodes.
On the other hand. it’s very likely that a large number of jobs running in the same node
in a time-sharing mode because these jobs demand small memory space. The queuing time

in these nodes significantly increases. The right figure of Figure 3.3 clearly shows that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 61

two parts are comparable so that the queuing time reduction of MEM is only modest. The
queuing time reductions of Policies CPU_MEM_HP and CPU_MEM_HT balancing both
CPU and memory loads are very effective. For example. In trace AUGUST when page fault
rate is 6, the queuing time reduction of MEM is 7.25%. while reductions of CPU_MEM _HP

and CPU_MEM_HT are 44.16% and 42.43%. respectively.

3.2.3.3 High Performance and High Throughput

We have further compared the high performance (HP) approach and the high throughput
(HT) approach in our load sharing policies (see Figure 3.1 and 3.2) Generally. the high
performance approach is comparable with. but is slightly more effective than. the high
throughput approach for all cases. This is because the high throughput approach tends to
encourage more jobs to be executed in a time-sharing mode in a cluster so that it could cause
slightly more page faults compared with the high performance approach. Occasionally. the
high throughput approach outperforms the high performance approach. A cluster managed
by CPU_MEM _HP refuses to accept jobs when either CPU or memory is overloaded. This
approach attempts to make each running job execute as fast as possible. But if many jobs
are refused or some jobs are delayed for a very long period of time. the overall performance
could be affected. In these cases. the high throughput approach can outperform the high
performance approach. For example (see Figure 3.1 and 3.2). the performance results in
trace JULY with page fault rate of 5 and 6. in trace JUNE with page fault rate of 4. and

in trace AUGUST with page fault rate of 7 give such examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 62

3.2.4 Summary

We summarize our study on load sharing with known job memory demands as follows.

e The performance of a load sharing policy considering both CPU or memory resources is
robust for all traces in this part of the study. and is much better than the performance
of a load sharing policy considering only CPU or only memory resource. particularly

when the memory access interactions are intensive.

o The reason that CPU-MEM-based policies perform well is that these policies cffec-
tively reduce the paging time and queuing time. Meanwhile. CPU policy suffers large

paging overhead. and MEM policy could not reduce queuing time.

e The high performance approach is slightly more effective than the high throughput

approach for all traces in this part.

3.2.5 Brief description of our study on heterogeneous systems

Practical systems are often heterogeneous with a large variation in the computing power and
memory capacities of different workstations.We have designed and evaluated load sharing
policies by considering both system heterogeneity and effective usage of CPU and memory
resources. The detailed study can be found in [137]. We first present how we characterize
heterogeneity. then give a brief summary of our study on Heterogencous Systems in this

Subsection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 63

3.2.5.1 CPU/Memory Weights and Heterogeneity

In this study, heterogeneity only refers to the variations of CPU powers and memory capaci-
ties. but not the variations of operating systems. nctwork interfaces and hardware organiza-
tions among the workstations. In this section. we quantitatively characterize heterogencous
CPU powers and memory capacities in a network of workstations. The simple models to
be discussed here have been used in the designs and evaluation of load sharing policies. We
use node index j to represent one of the nodes in a heterogencous network of workstations.
We also use variable P to represent the total number of nodes in the system.

The CPU weight of a workstation refers to its computing capability relative to the fastest
workstation in a distributed system. The value of the CPU weight is less than or equal to
1. Since the CPU weight is a relative ratio. it can also be represented by the CPU speed of

cach node measured by millions of instructions per second (MIPS). If V.,.(y) is the speed

of workstation M, in MIPS. j = 1..... P. the CPU weight can be expressed as follows:
Vepu(J .
Weou(j) = _Veuld) (3.1)

maxl";l Vepu(1)

The total CPU power of a system is defincd as the sum of the CPU speeds of each

workstation. which represents the accumulated computing capability of the system:

P
Tprpu = Z L:'pu (7). (3.2)
=1

Similarly. the memory weight is calculated by comparing the memory sizes among the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 64

computing nodes:
RAM,

—) 3.3
max’ | RAM, (3:3)

Winem (.l) =

where RAM, is the amount of user available memory space on node j for j = 1..... P.

The total memory capacity of a system is defined as
P
TPrem = »_ MS,. (3.4)
=1

where M S, is the memory size of node ;.
The system heterogeneity can be quantified as the variance of computing powers and
memory capacities among the workstations. Using standard deviation and CPU weights.

we define the CPU heterogeneity as follows:

Hcpu — \/Z:;l(wqm - chu(]))z

3.5
P (3.5)
17 ZP=1“'rxm(J) . i . ..
where W, = ==5——. is the average CPU weight. Similarly. we define memory
heterogeneity as follows:
H"wm - \/ijzl (Wmemp” ‘Vm('m (J))J) (36)

o S Waem(y) .) . .
where Wopem = === is the average memory weight in the system. Higher val-

ues of Hey and Hyye in a distributed system correspond with a higher variation in the
CPU capability and memory capacity among different nodes. A homogeneous system is

characterized by Hepy = Hipem = 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 65

3.2.5.2 Summary of Our Heterogeneous Study

We have experimentally examined and compared CPU-based. memory-based and CPU-
Memory-based load sharing policies on heterogeneous networks of workstations. Based on

our experiments and analysis we have following observations and conclusions:

e The CPU and memory weights of workstations can be effectively used to characterize
heterogeneity of a distributed system for designs of load sharing policies. For given
total CPU power and total memory capacity. we can have different homogeneous and
heterogeneous configurations with a roughly equivalent purchase cost. Under such a

condition. the performance evaluation and comparisons are meaningful and useful.

e The CPU-based load sharing policy is not robust in a heterogencous system. and

performs poorly for memory-intensive workloads.

e The performance of the memory-based and CPU-Memory-based load sharing policies
are quite independent of system heterogencity changes for memory-intensive work-
loads. This is because the job migrations considering both memory and CPU resources
offset the negative effects of the system heterogencity. As the system heterogencity
increases to a certain degree. the remote executions and page faults also increase pro-
portionally for the two policies. resulting a moderate degradation of the performance.
However. our experiments also show that changes of the heterogeneity do not affect

the functionality and nature of the two policies.

e An initial job pool assignment which uses information regarding system heterogeneity

can allocate system resources effectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 66

e We also show that the CPU-based. memory-based and CPU-Memory-based load shar-

ing policies are independent on several different memory demand distributions.

3.3 Incorporation job migration and network RAM to share

memory resource

3.3.1 Objectives of the study

The job-migration-based load sharing system approach and the network RAM system ap-
proach share the same objective of reducing page faults in each local workstation. The two
approaches have another common technical feature in their implementations. Both sys-
tems maintain a global load index record for cach workstation about how its CPU and/or
memory resources arc being utilized. This record is either stored in a master workstation or
distributed among the workstations. and is updated periodically by the cluster workstations.

There are several major differences between the two approaches in the ways that the
global memory resources are shared. Because of these differences. each approach has its own
merits and limits. First. in a network RAM cluster system. a workstation is provided with a
huge global memory space for its jobs. The global memory space could be even larger than
its local disk space. Thus. it is possible to eliminate accesses to local disks due to page faults
in a network RAM cluster. In contrast. memory allocations of a job could be limited by the
local memory size of a workstation in a migration-based load sharing cluster system where
local memory modules are not shared by other workstations. A network RAM cluster system
could be more beneficial to large or non-migratable data-intensive jobs than a migration-

based load sharing cluster system. Second. the effectiveness of global paging operations in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 67

a network RAM cluster system is heavily dependent the cluster network speed. In contrast.
the network, in general. is less frequently used in a remote-execution-based load sharing
cluster system. In other words. a remote-execution-based load sharing system relies less on
network speed than a network RAM system. Finally. a migration-based load sharing system
is able to balance the workloads among workstations by sharing both CPU and memory
resources. while a network RAM system only considers global memory resources for load
sharing. Without job migrations. job executions may not be evenly distributed in a cluster
— some workstations can be more heavily loaded than others. Although the lightly loaded
workstations in a network RAM cluster system can be used as memory servers for heavily
loaded workstations. their CPU resources are not fully utilized by the cluster.

Conducting trace-driven simulations. we have compared the performance and trade-offs
of job-migration-based load sharing policies and Network RAM. and their impact on job
execution time and cluster scalability. In this study. we quantitatively address the following
three questions: (1) Under what cluster and workload conditions is a migration-based load
sharing policy or the network RAM beneficial for performance improvement? (2) What are
the performance effects of limited network bandwidths and cluster size to the two system
approaches? (3) How do we optimize designs of cluster resource management systems by
effectively integrating and combining the two system approaches?

The rest of the section is organized as follows. We describe the job-migration-based
load sharing policies and the network RAM implementations we have used in this study
in Section 3.3.2. We present the performance evaluation methodology and experimental
environments in Section 3.3.3. The performance comparisons and analyses are presented in

Section 3.3.4. We propose an improved load sharing policy supported by network RAM in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 68

Section 3.3.5. Finally. we summarize the work in Subsection 3.3.6.

3.3.2 Job-migration-based load sharing vs. network RAM

Network RAM and job-migration-based load sharing related operations on workstation j.

for j = 1..... P. are characterized by the following variables:
e RP,: the amount of remote paging in Mbytes from the workstation.

e FM,: the idle memory space in Mbytes of the workstation.

3.3.2.1 Network RAM organizations

A network RAM organization makes each workstation not only have its own local mmemory.
but also be able to access idle memory space of other workstations through remote paging

in a cluster. The memory allocation decision for a job on workstation j is made by

local memory if ML, < RAM,

4 tion =
memeory allocation { global memory if ML, > RAM,.

where the global memory allocation is implemented by finding the most lightly loaded

workstation one by one for remote paging based on the following search algorithm:

Allocate the idle local memory space to the arrival job:

MD,=ML,:
While (M D, > RAM,) and (idle memory space is available elsewhere)
do

find node @ with the largest idle memory space among P — 1 nodes (excluding node y):
allocate RP, = min{M D, — RAM,. FM,} MBytes from node z to the job in node j:
FM, = FM, - RP,;

MD, =MD, - RP;:

where M D, represents the current local memory demand on workstation j. The while

loop continues until the memory demand is met or no idle memory available in the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 69

If ML, > RAM, after the global allocations. disk accesses due to page faults will occur
in workstation j. In order to minimize the global paging, we give local memory accesses
the highest priority. The global paging is only conducted when the remote workstation has
additional idle memory space. Therefore. when a new local job arrives. the network RAM
paging services for remote jobs will be transferred to other workstations if any memory

space occupied by remote pages is needed for this new job.

3.3.2.2 CPU-Memory-based load sharing

The job-migration-based load policy we have selected for this comparative study is the
CPU-Memory-based load sharing scheme previously described. which makes a job migra-
tion decision by considering both CPU and memory resources. The basic principle of this
scheme is as follows. When a workstation has sufficient memory space for both running
and requesting jobs (ML, < RAM,). the load sharing decision is made by a CPU-based
policy where the load index in each workstation is represented by the length of the CPU
waiting queue. As long as the CPU waiting queue is not larger than the threshold which is
set based on the CPU capability. the requesting jobs will be locally executed in the work-
station. Otherwise. the load sharing system finds the remote workstation with the shortest
waiting queue to either remotely execute this job or to preemptively migrate an eligible job
from the local workstation to the remote workstation. When the workstation does not have
sufficient memory space for the jobs (ML, > RAM,). the load sharing scheme attempts to
migrate jobs to suitable workstations or even to hold the jobs in a waiting pool if necessary.
Again. the migration can be either remote execution or preemptive migration.

During an execution of a memory-intensive job. page faults may occur periodically. Each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 70

such period is called a transition. where page faults are conducted to bring a working set
into memory. The data references will then be memory hits for a while before the working
set changes and page faults are conducted in the next transition period. The local reference
period is called a phase. If the phases of a job are disjoint. or almost disjoint. the best time
to do a preemptive migration is at the end of a phase and before starting another transition
period for a new working set. The migrated job would carry no data or a small data set to
a remote workstation. However. in practice. it may be difficult to predict the data access
phase and transition patterns of so many different jobs. If this prediction is impossible.
remote executions should be a practically optimal solution for load sharing of memory-
intensive jobs [145]. For this reason. remote executions are used in our CPU-Memory-based

load sharing policy.

3.3.3 Performance Evaluation Methodology

Our performance evaluation is simulation-based. We discuss performance evaluation met-

rics. the simulation model. and the workloads in this subsection.

3.3.3.1 Performance metrics

For a given workload scheduled by a job-migration-based load sharing policy. supported by
network RAM. or without load sharing and network RAM. we target evaluating and com-
paring their performance merits and limits under various system and workload conditions.

The following performance metrics are used in our evaluation:

ot

=i—_ where t, is the measured

e average erecution time per job is defined as t =

execution time of an individual job. and n is the number of jobs in a given workload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 71

e ezecution time breakdowns: The average execution time is further broken into CPU
service time. queuing time. disk access time due to page faults. and networking time

for job migrations or remote pagings including network contention time.

3.3.3.2 A simulated workstation cluster

We have developed a simulator for a bus-based workstation cluster that has multiple func-
tions by: (1) supporting different job-migration-based load sharing policies including the
CPU-Memory-based policy. (2) simulating a remote paging system for a network RAM in
the cluster. (3) simulating bus contention. and (4) having system heterogeneity. The simu-
lated cluster is scalable and is configured by 6 to 18 workstations of 300 MHz CPUs with
local memory of 128 MBytes. The cluster network is an Ethernet bus of 10 Mbps and 100
Mbps. Each disk access time due to a page fault is 10 ms. The size of a memory page is 4
KBytes. The CPU local scheduling uses the round-robin policy.

When a page fault happens during job execution. the job is suspended from the CPU
during the paging service. The CPU service is switched to a different job. When page faults
happen in the executions of several jobs. they will be served in FIFO order. The overhead
of a remote execution is (.1 second.

The bus service and contention are simulated as follows. Each workstation is given a
sequence number. which also represents its priority rank to access the bus. The priority
increases as the sequence number decreases. As multiple requests for bus services arrive in
sequence. the requests will be served in FIFO order. If the requests arrive simultaneously.

they will be served in an order based on their workstations® bus access priorities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 72

3.3.3.3 Workloads

The workloads we have used are the 8 traces from [66]. Each trace was collected from one
workstation on different daytime intervals. The jobs in cach trace were distributed among

6 homogeneous workstations. Each job has the following three major parameters:

< arrival time. arrival workstation. duration time>

The 8 traces have different inter-arrival distributions and different Pareto service time dis-

tributions.

We have made the following modifications of the traces for our study. We converted the
job duration time into Million Instructions according to CPU speed. The memory demand
of cach job in the traces is generated from a Pareto distribution with the mean sizes of 1

MBytes. Each job has the following 4 items:

< arrival time. arrival workstation. requested memory size. duration time>

The number of jobs is doubled and tripled in cach trace as the number of workstations
is scaled from 6 to 12. and scaled from 12 to 18. respectively.

For the job-migration-based load sharing system. the page faults in cach workstation
are conducted in our simulation as follows. When the memory load of jobs in a workstation
is equal to or larger than the available memory space (ML, > RAM,). each job in the
workstation will cause page faults at a page fault rate that is proportional to the memory
usage of this workstation. In practice. application jobs have page fault rates from 1 to 10
per million instructions. We set the rate in the same range in our experiments.

For the nctwork RAM system. when ML, > RAM, in a workstation. remote paging is

conducted as described in Subsection 3.3.2.1. The remote paging rate of a job is proportional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 73

to the size of the global memory space allocated to this job. If the aggregate global memory
space in the cluster is not sufficient for the job. the job in the workstation will cause page

faults to access the local disk at a page fault rate.

3.3.4 Simulation Results and Analysis

Our performance evaluation targets understanding the effects of network bandwidth changes
to both the job-migration-based load sharing scheme and network RAM supported by re-
mote paging. We have also quantitatively cvaluated two performance trade-offs for com-
paring the two schemes: (1) the trade-off between reducing local disk accesses due to page
faults and increasing network contention and delay due to remote paging: (2) the trade-off
between reducing more local disk accesses by network RAM and balancing job execution

among workstattons by job migrations.

3.3.4.1 Impact of limited network bandwidths

It is widely known that CPU speeds are increasing much more rapidly than network speeds.
For example. the 10 Mbits per second (Mbps) Ethernet has been a common network infras-
tructure for many years. while the CPU speed of workstations/PCs connected to networks
of this speed has been updating every year. Both job migrations and remote paging rely on
the cluster network for data transfers. However. the performance of each scheme is affected
differently by changes of the network speed.

Figure 3.4 presents the average execution times per job (the left figure) and the network
contention portions in the exccution times (right figure) of “trace 07 running on clusters

of 6, 12 and 18 workstations. where the jobs arc executed without load sharing (denoted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 74

as “Base”). scheduled by CPU-Memory-based load sharing policy with remote executions
(denoted as “LS_RE"). and executed on a network RAM system (denoted as “Net _RAM").
The bus speed varies from 10 Mbps to 100 Mbps. The mean memory demand of jobs is 1
MBytes.

The page fault rates was set to 5.96 per million instructions for all the experiments on
“trace 0”. Since the number of jobs proportionally increases as the number of workstations
increases in the cluster. the average execution times per job of “trace 07 by “Base™ are
identical on clusters of 6. 12. and 18 workstations. Using the same page fault rate. we
conducted the experiments to compare the execution time performance between ~LS_RE”™
and “Net RAM" for the same workload of “trace 0".

We have the following observations based on the experimental results in Figure 3.4.
First. the performance of “LS_RE" is not significantly affected as the cluster is scaled from
6 to 12. and from 12 to 18 workstations. The performance improves only slightly as the bus
speed increases from 10 Mbps to 100 Mbps. This is because data communication via the
network by remote executions is a small portion in the total execution time (0% to 0.005%.
see the right figure in Figure 3.4). Second. the performance of “Net_RAM™ supported by
remote paging is highly sensitive to the network speed and the number of workstations in
the cluster. For example. the average execution time of "Net_RAM™ is 46% lower than that
of “LS_RE" on the cluster of 6 workstations where the bus speed is 10 Mbps. As the bus
speed increases to 100 Mbps. the average exccution time of “Net_RAM™ is further reduced
45%. However. as the cluster of 10 Mbps increases to 12 workstations. the average execution
time of "Net_ RAM™ sharply increases (about 3.6 times higher than that of “LS_RE™). As

the cluster speed increases to 100 Mbps. the execution time is significantly reduced. and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 75

69% lower than that of “LS_RE”. Similar performance data are collected as the number
of workstations increases to 18. Our experiments show that the cluster scalability and
workload performance when using network RAM are highly dependent on the speed of the
cluster. because the network latency due to data transfer and contention is a significant
portion in the total execution time (0.05% to 46.03%. sce the right figure in Figure 3.4).
Finally. in the workload of “trace 0. some jobs are marked as non-migratable. Therefore.

the power and benefits of job migrations may be limited.

Some Jobs are Non-migratable in Trace0 Some Jobs are Non-migratable in Trace0

&

%06

€«

BLS AE
@Net_RAM

' mBase M
« @LS_RE -
1o DNet_RAM;

&

ob (Seconds)
A

-

E

n

4

i
f

i}
I
3

4

-

Average Execution Time Per
‘ <|___
Networking Portion in Execution Time (%)
N oon
*

'a
EI‘:'

0MDOY 100MNGS
18 workstations

e *0MOY
6 workstations 12 workstations 18 workstatons

Figure 3.4: The average execution times per job (the left figure) and the networking portions in
the execution times (right figure) of “trace 0" with job migration restrictions running on clusters of
6. 12 and 18 workstations.

In order to fully take advantage of job migrations. we released the restrictions on the non-
migratable jobs so that remote executions can be applied to all the jobs in “trace 0. Figure
3.5 presents the average execution time per job (left figure) and the networking portions
in the execution times (right figure) of the modified “trace 0 scheduled by “LS_RE™ in

comparisons with “Base™ and “NET_RAM" on the clusters of 6. 12 and 18 workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 76

We show that the performance of “LS_RE" is significantly improved. The execution times of
“LS_RE" using a 10 Mbps cluster are slightly lower than the execution times of “Net_RAM™
using 100 Mbps clusters of 6. 12. and 18 workstations. In this case. the remote-execution-
based load sharing policy not only outperforms the network RAM. but is also more cost-
effective.

From the scalability point of view. "LS_RE"™ demands less network bandwidth in order
to scale the cluster by connecting more workstations than *Net _RAM™ does. For example.
“LS_RE" is scalable from 6 to 18 workstations for both 10 and 100 Mbps buses. while

“Net_RAM” is only scalable for the 100 Mbps bus.

All Jobs are Migratable in Trace0 All Jobs are Migratabie in Trace0
g o HED g
| - -3

§.. WBase N | g<. WLSRE
$ WLSHRE i - g
= , «. @Net_RAM.
3 O Net_RAM g
- =x.
- 3
g, - — i,
[] w
E:s Ex.
:) sr B
5 gx
: 2.
§: § B AP
; . ; a2 =T im
< MOOE TOOMDOS. “Obos 0oL

§ worksiations 12 workstations

Figure 3.5: The average execution times per job (the left figure) and the networking portions in
the execution times (right figure) of “trace 0" without job migration restrictions running on clusters
of 6. 12 and 18 workstaticns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 77

3.3.4.2 Trade-offs between page fault reductions and load sharing

Page faults in the network RAM are reduced at the cost of additional network contention
and delay. Although page fault reductions may be limited by the remote-execution-based
load sharing scheme for large data-intensive jobs. the scheme requires less additional network
support compared with the network RAM. In order to provide insights into the trade-offs
between the two schemes. we present the exccution time breakdowns of “trace 07 where
all jobs are migratable in Figures 3.6 and 3.7. The execution time of a workload consists
of “CPU". "networking™. “page faults”. and "queuning” portions. “CPU" is the execution
time by the CPU for the workload. “Networking™ is the time spent on the cluster network.
which is used for remote pagings by the network RAM. or for remote executions by the load
sharing scheme (including network contention time). “Page faults™ is the local disk delay
time for both schemes. “Queuing” is the average waiting time for a job to be executed on
a workstation.

When the workload is executed on a 10 Mbps cluster of 6 and 12 workstations. the
networking time for remote pagings by the network RAM is one of the major portions in
the execution time. For example. the networking times contribute 15.5%. and 23.08% to
the execution times on the 6 workstation cluster. and the 12 workstation cluster (see the
left figures in Figures 3.6 and 3.7). respectively. In contrast. the networking time for remote
executions by the load sharing scheme is insignificant (0.06% and 0.11%). Consequently.
the queuing time for cach job in the network RAM is significantly increased by networking
delay. causing much longer execution times than for the remote-execution-based load sharing

scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 78

We have also shown that the networking time portions in the executions of the workload
by the network RAM are significantly reduced by increasing the bus speed from 10 Mbps
to 100 Mbps. Consequently. the queuing time for cach job is also significantly reduced (see

the right figures in Figures 3.6 and 3.7).

10Mbps Cluster of 6 Workstations 100Mbps Cluster of 6 Workstations
g oo — T T o
2 @2
§ 14 15 Qnetworkang g e 0 1315 nnemmng
Opage faults N Opage faults
érz- @CPU [SFR [[oiV]
.. Bqueung .. Bqueung
4
oe. o8
[
.E 06 - e :‘n; E o6 1 3307
e 00002 s PR 00001 20017
o1g 00139 [+131.]
s - 01315 1715
L r & 4316 02«
2061 2050 7
w0 - -— W °- . .
LS_RE Net_RAM BASE LS_RE Net_RAM

Figure 3.6: The average execution times per job of “trace 0° without job migration restrictions
running on a 10 Mbps cluster (the left figure). and a 100 Mbps cluster (the right figure) of 6
workstations.

Another trade-off of the two schemes is between page fault reductions and load sharing.
Without job migrations. job executions may not be evenly distributed among the work-
stations by the network RAM although page faults can be significantly reduced through
remote pagings. The unbalanced loads among workstations in network RAM is another
reason for the long queuing times for the workload executed on the 10 Mbps clusters of 6

and 12 workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 79

10Mbps Cluster of 12 Workstations 100Mbps Cluster of 12 Workstations
gls-——v—— — e gts- N
g« Onetworiang o g« Onetworking
K Opage faults b Dpage taults
& mcry pous 3+ acry
1. @queung 1. Bqueung
5. 25
d ! Q0000 z
g c
1 3E 30z = 8,5]
E 1315 E 1)
= =
00004 E
05 - e uon; a5 - e 33"’,’3 ggv:;l:
131 18 121
i, . - -
BASE LS_RE Net_RAM BASE LS_RE Net_RAM

Figure 3.7: The average execution times per job of “trace 0" without job migration restrictions
running on a 10 Mbps cluster (the left figure). and a 100 Mbps cluster (the right figure) of 12
workstations.

3.3.5 An improved load sharing scheme

Our experiments show advantages and limits of the network RAM and the remote-execution-
based load sharing scheme. A natural optimization step for overcoming the limits of cach
scheme is to combine them. Here is the basic idea of this improved load sharing scheme.
When a workstation has sufficient space for both current and requesting jobs. the job ex-
ecution location will be determined by the CPU-based policy. When a workstation riuns
out of memory space for both current and requesting jobs. we first attempt to migrate the
new arrival job to the most lightly loaded workstation. If the workstation does not have
sufficient memory space for the job. the network RAM will be used to satisfy the memory
allocation of the job through remote paging. The memory allocation combing both remote

executions and network RAM of the scheme is outlined as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 80

If (ML, > RAM,)
find workstation ¢ with the largest idle memory space among P workstations:
Ifi#y
remotely execute the job at workstation 1:
If (ML, > RAM,) and (Qnet < NT)
allocate global memory by using network RAM:
else
execute the job locally:

Variable Q. is the number of jobs waiting for network access. and NT is the network
threshold. which functions to allow only a limited number of network accesses at a time.
The purpose of setting NT is to prevent a large number of bus requests during a small time
interval. Such bursty bus requests will cause network contention to sharply increase.

The improved load sharing scheme is denoted as “LS_Net _RAM”. Each workload trace
is further divided into two types: (1) some jobs are restricted for migrations in a trace and
(2) all the jobs in a trace are migratable. Figures 3.8 and 3.9 present the average execution
times of all the 8 traces of both type 1 (left figure) and type 2 (right figure) executed on
the 10 Mbps and 100 Mbps clusters of 6 workstations. respectively.

Our experiments show that “LS_Net_RAM™ performs well for all the 8 traces of both
types. while "LS_RE™ or “Net_ RAM™ only performs well on one type of traces. We obtained

consistent results on clusters of 12 and 18 workstations.

3.3.6 Summary

We have experimentally examined and compared job migrations and network RAM for
sharing global cluster memory resources. Based on our experiments and analysis we have

the following observations and conclusions:

e Providing a large memory space through remote paging. the network RAM is par-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 81

Some Jobs are Non-migratable in All Traces , AliJobs are Migratable in All Traces
“ ,
g . g,
s‘lt 4 ; ‘
i - .
‘ BBASE 5
‘g . BLS_RE 5., BBASE
3! ONet_RAM 3 @Ls RE
W, OLS_Net_AAM W, . ONet RAM
) $ DLS _Net_RAM
B]
2 b
_‘ !] Li P 1 L 1 .
ce0 vace! wam2 vecsd) most taceS Vet vece’ a0 ace! vaol? wacsd vaoed vaeS vosh vace
10 Mbps Cluster of 6 Workstations 10Mbps Clusier of 6 Workstations

Figure 3.8: The average execution times per job of all the 8 traces (the left figure for the 8 traces
where some jobs are non-migratable, and the right figure for the 8 traces where all the jobs are
migratable). running on a 10 Mbps cluster of 6 workstations.

ticularly beneficial to large or data-intensive workloads where some jobs may not be
migratable. However. the network RAM performance is heavily dependent on the
cluster speed and the availability of the idle memory space in the cluster. Since
load balancing is not considered. uneven job distributions may degrade the overall

performance of cluster computing using network RAM.

e Dynamically migrating jobs by considering both the CPU and memory resources of
the cluster. the load sharing policy using remote executions is particularly beneficial
to data-intensive workloads where most jobs are migratable. and where cach job fits
in a memory space of a single workstation. The requirement of network speed by
the remote-execution-based load sharing scheme is not as high as the network RAM.
However. if the memory allocation of a job does not fit in any single workstation in the

cluster. the additional memory requirement has to be satisfied by local disks. causing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory Systein Management

Some Jobs are Non-migratable in Ail Traces All Jobs are Migratable in All Traces

-
-

-

g g
£ I -
e 8BASE 'R h H
é oLS RE 2
F Net RAM 8‘l4
= LS _Net_RAM W
‘: ‘:]‘
i i |
vas) wem! waceZ wacad waced YmeS st vace?
100Mbps Cluster of 6 Workstations

BBASE
OLS_RE
ONet_RAM
QLS _Net RAM

82

Figure 3.9: The average exccution times per job of all the 8 traces (the left figure for the 8 traces
where some jobs are non-migratable. and the right figure for the 8 traces where all the jobs are

migratable). running on a 100 Mbps cluster of 6 workstations.

longer execution time.

e The improved load sharing scheme overcomes the limits and combines the advantages

of the both schemes. We have shown that this scheme is effective for scalable cluster

computing.

The impact of the 4 schemes (*Base™. "Net_.RAM™. “LS_RE". and "LS_Net_.RAM") on

conditions/requirements of clusters and workloads such as CPU sharing. memory sharing.

non-migratable jobs. network usage demand. aud network speed demand. are summarized

in Table 3.2. In the table. the relationship between a scheme and each type of system and

workload condition/requirement is represented by symbol “+” (beneficial). =+

beneficial). and “=" (non-beneficial). A blank represents minor or no effects.

+-

(highly

Memory allocations of jobs are generated by a Pareto distribution in the experiments

presented in this subsection. We have also run the simulations on the workloads with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 83

Base | Net RAM | LS_RE | LS Net_RAM
CPU sharing - - + +
memory sharing - ++ + ++
non-migratable jobs + + - +
lightly loaded cluster + + +
heavily loaded cluster - + ++ ++
large individual jobs - ++ + ++
network speed demand high moderate moderate
network usage demand high moderate moderate

Table 3.2: Summary of the 4 schemes and their impact on different system and workload condi-
tions/requirements.

different memory demand distributions. and observed consistent performance results with
that of the workloads by the Pareto memory demand distributions. The other distributions
we have used for comparisons are uniform distribution. exponential distribution. and erlang
distribution.

This study also has two limits. First. we assume that the memory requirement is known
in the beginning of the execution. Workloads with dynamic memory allocations may not be
accurately handled by our memory-based policies. Second. there is only one working set in
cach job. Although the simulated memory access patterns in our workloads could sufficiently
show the performance impact of the memory demand. the memory access patterns may not
be the same as those of some practical jobs.

In order to address these limits and to scale the trace-driven simulations. we have col-
lected large real-world traces for experiments. and have investigated the effects of more
dynamic memory and [/O related activities to global memory resource management for

cluster computing in [133].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Resource Management in Internet

Caching Systems

4.1 Overview of existing caching system structures

Web caching. that is. the temporary storage of Web objects. is an effective solution to
reduce bandwidth consumption. reduce server load. and reduce latency [128]. Much work
has been done on Web caching at different ievels.

Caching can be performed on the server side to reduce the number of requests that the
server must handle. The caching issues on the server side are representatively discussed in
(10} and [93]. These methods aim at improving server caching performance by balancing
load and reusing requested documents.

Caching can be used in the middle of the client and the server as part of a proxy. Proxy
caches are often located near network gateways to reduce the bandwidth required over ex-
pensive dedicated Internet connections. Proxy caches can be organized in a hierarchy for
greater performance. e.g. the caching scheme in Harvest [31]. This is a very similar orgauni-

zation to the memory hierarchy in a computer system. Proxy caches can also cooperate to

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 85

achieve better performance. Cooperative proxy caches are discussed in papers [43]. [83]. and
[56]. [141]. They use different approaches to improve cache performance and reduce collab-
orative overhead. In adaptive Web caching schemes [144]. cache servers are self-organizing
and form a tight mesh of overlapping multicast groups and adapt as necessary to changing
conditions.

Caching can also be perforined by the client application. and is built into most Web
browsers. Designs and implementations of browsers have been studied in papers [80]. [101].
[109]. and {127]. The work in [142] attempts to transfer the server’s functions to clients.
They aim at larger storage. more features and better performance.

Client access patterns are characterized by several research groups (sce c.g. [6]. [39].
[63]. and [131]). The hit ratios to proxy caches have been observed in a decreasing trend in
practice for a few years. There are two major reasons for the decrease. First. e-commence
and personalized services have increased the percentage of dynamic documents. Dynamic
documents are usually noncachable. Many recent studies (e.g. [22]. {20]. [35]. [L17]) have
shown that requests for dynamic Web content also contain substantial locality for identical
requests. and have provided several methods to cache dynamic Web contents. Second. the
increase of proxy cache size has not been sufficient to keep up with the rapid increase in
the numbers and types of Web servers and clients™ diverse interests. For example. paper
[6] gives a comprehensive study of the changes in Web client access patterns based on
the traces collected from the same computing facility and the same nature of the user
population separated by three years. Their experiments show that. compared with the data
three years ago. the hit ratios are reduced and the most popular documents are less popular

in the transfer dataset. That means accesses to different types of Web servers have become

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 86

more cvenly distributed. One reason for this. we believe, is that the access variations have
increased as more and more Web servers are emerging. The number and types of Web
servers have increased and will continue to increase dramatically. providing services to a
wider range of clients with more diverse interests. Thus. the number of unique documents
has increased and will continue to increase. It will be more difficult to retain an optimal
hit ratio by only increasing proxy cache size. Cache size enlargement will be expensive and
may not be cost-effective.

Therefore. in such a trend we should consider effective resource management methods

to well utilize the limited caching space.

4.2 Changes in Both Workload and Internet Technologies

4.2.1 Workload Changes
4.2.1.1 Trend in NLANR Workload

In order to further understand and confirm the changes in Web access patterns. we have
analyzed proxy access pattern statistics of National Lab of Applied Network Research avail-
able in public domain [91]. The “Status of NLANR Caches™ report indicates that a lot of
system upgrade work had been done from the summer of 1997 to the summer of 1998.
1

In order to maintain the fairness of comparisons. we decided to compare the caching

patterns hetween year 1998 and year 2000 when there were no major upgrade events. We

"All of their proxies have been upgraded. For example, the old proxy “sd” DEC alpha has been replaced
with a new Pentinum-II with 512MB RAM and 36GB of disks on July 27. 1998. Proxy “pa” has been
replaced with a Digital AlphaStation 500/500 with 512MB of RAM and 60GB of disk on QOctober 23. 1997.
They also upgraded the software. They upgraded caches to Squid-1.1.16 on August 22.1997 and begin
running Squid-1.2.betal7 on March 20. 1998. All caches have been converted over to unicast [CP on April
2, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 87

randomly selected days in both 1998 and 2000 to do the comparisons. Since most results

are consistent. we only present representative comparisons of two days here.

Metrics August 17 First Wednesday of October

1998 2000 | reduction | 1998 2000 | reduction
average hit ratio 27.60% | 18.40% | 33.33% | 24.50% | 21.40% | 12.65%
coverage of top 20 servers | 14.02% | 13.33% 4.92% 13.68% | 12.00% | 12.28%

Table 4.1: Average Hit ratio and coverage comparisons of vear 1998 and 2000. where the average
hit ratio is calculated from proxy “pb”. “bol™. “bo2". "sv" and “sd”. which have their statistical
reports in both years. and the coverage of top 20 servers is the percentage of the number of requests
to top 20 servers over the total number of requests.

g g
2 August 17 2 First Wednesaay of October
° o
3 T T T 3 3 T T T
g 35 198 — { § 1998 ——
c 2000 ------- c 2000 -------
=} g
s) g 25¢ 4
g 3n g
c ! c
o i] \
a 25! 1 e 2k]
@ W @ i
o ' 0 |
7 2 & !
- - Y
g E 1 5 r. \. -
]] }
2 15 b 2 -
9 2 q¢ 4
/7] 4]
[} 1k - o
&~ &
a a
° 0S 4 2 05r)
° o
o o
g 0 1 I L % 0 i L 1
g 0 5 10 15 20 ;:; 0 5 10 15 20
3]
4 Servers H Servers
a e

Figure 4.1: The percentage of the requests to cach of the top 20 servers over the total number of
requests versus each rank of servers.

Based on the hit ratio for each proxy. the number of requests to the top 20 requested
servers. and other statistics reported in [91]. we present comparisons of proxy access pattern
changes between 1998 and 2000. Table 4.1 compares the average hit ratio per proxy and the
percentage of accesses to the top 20 servers over the total number of accesses (coverage) on

August 17 and the first Wednesday of October between 1998 and 2000. We show that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 88

hit ratios have decreased by 33.33% and 12.65%. respectively. and the coverage percentage
of the top 20 servers was reduced by 4.92% and 12.28%. respectively.

In Figure 4.1. we plot the percentage of the requests to each of the top 20 servers over
the total number of requests versus cach server rank by sorting the numbers of accesses
to the top 20 servers in decreasing order. The tail distributions of requesting accesses and
server accesses of most traces (only one exception) in the study of [14] were reported to fit
the Zipf-like distribution Q/i®. We also roughly fit the curves in Figure 4.1 into Zipf-like
distributions.

In order to estimate the cache size requirement difference between 1998 and 2000 for a
given hit ratio. we assume that the request distributions are identical to the server access
distributions. and the file size with the same rank in 1998 is the same as that in 2000. We
also assume that the priority of caching a document is based on the document popularity.
Thus. for a 20 GByte proxy cache on August 17. 1998. in order to keep the same the hit
ratio in 2000. the cache size needs to be enlarged to 37.29 GBytes (a 86% increase). A
20 GByte proxy cache on the first Wednesday of October in 1998 needs to be enlarged to

107.58 GByte (an increase of 5 times) in order to keep the same hit ratio in 2000.

4.2.1.2 Trend in BU Workload

Boston University collected traces from the similar computing facility and user population
in 1995 and 1998. which can be found in [13]. We sclect the traces in a period of two
months of the two years. which are denoted as BU-95 and BU-98. respectively. We have
also analyzed the browser access pattern of BU traces. The difference between the total

number of requests of BU-95 trace and that of BU-98 trace is very big. In order to make fair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 89

comparisons. we compare request ratios instead of the numbers of requests between these
two traces. We compare two statistical results: (1) the percentages of requests to different
servers over the total requests. and (2) the percentages of requests to different documents

over the total requests. both reflecting access distributions.

9
£ BU Traces > BU Traces
@ ——r T @ 10 T T T
g | ' C U9 2 ' RTINS
32 b BU-98 5 BU-98 —
® T
T 5 L
E I A]
5 2
[ad c
c 1 4 5]
c a
P 2 o1b 4
H 2
3 D
g 4
g ot i ¢
] 5 00fp §
3 E
o 3
a g, .
) U
9 001 X 1 s Q001+ . 3
g : & -
g 1 - . 1] g U L ol Ja
S 10 100 1000 g 1 10 100 1000 10000
8 o
Server Ranking 4 Document Ranking

Figure 4.2: The percentage of the requests to each server or document over the total requests
versus server ranking or document ranking.

In the left figure of Figure 4.2. we plot the percentage of the requests to each server over
the total requests versus server ranks. The ranks are obtained by sorting the percentages
of accesses to servers in decreasing order. In the right figure of Figure 4.2, we plot the
percentage of the requests to cach document over the total requests versus document ranks
by sorting the percentages of accesses to documents in decreasing order. We have two
observations. First. the access distributions presented in the two figures are consistent with
an observation reported in [14] — the distributions of requesting accesses and server accesses
follow the Zipf-like distribution /7. Second. the accesses had been changed to be more

evenly distributed during the 3 year period. Specifically. the request percentages of BU-95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 90

trace are higher than those of BU-98 for very high rank servers and documents. But for
lower rank servers and documents. the request percentages of BU-98 exceed those of BU-95.
So for the same cache size. BU-95 could get higher hit ratio than that BU-98. However.
the hit ratios of BU-98 can be increased in a faster pace than that of BU-95 if the cache is
larger than a certain size.

This type of access pattern change demands progressive increase of the cache size in order
to retain a fixed hit ratio during a period of time. To estimate the cache size requirement
difference between BU-95 and BU-98 for a given hit ratio. we fit the curves in Figure 1.2
into Zipf-like distributions. We assume that the file size with the same rank in BU-95 is the
same as that in BU-98. and the priority of caching a document is based on the document
popularity. From the fit Zipf-like distribution curves. we estimate that a 12.7 times larger
cache is needed for BU-98 to achieve a given hit ratio in BU-95. (In fact. we obtained a
number of 10 that is smaller than 12.7 from simulation results. This is because the average
document size in BU-98 is smaller than that in BU-95.)

Both workloads show the same trend. The assumptions and numbers may not be directly
used to guide the proxy cache design. but we attempt to show the trends of decreasing
hit ratios in proxies and the diversity of the Web contents. We envision that the access
distribution is becoming more evenly distributed. Thus. in order to retain the proxy cache
hit ratios. we have to enlarge the cache size as time passes. However. the proxy cache size
cnlargement will be no longer sufficient. Therefore. we should consider alternative methods

to cffectively utilize the limited caching space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 91

4.2.2 Technology Changes

A browser cache was initially developed as a small data buffer with a few simple data
manipulation operations. Users may not effectively retain the cached data with a high
quality of spatial and temporal locality.

There are two types of browser caches: persistent and non-persistent. A persistent
cache retains the cached document unless a user manually deletes it. A non-persistent
cache deallocates the cached document when a user quits the browser. Persistent caches
are commonly used in almost all the commercial browsers. such as AOL. Communicator.
Internet Explorer. and Netscape browsers.

Current technologies have improved browsers in the following three areas. First. browsers
provide a function for users to sct the browser cache size. With the rapid increase of memory
and disk capacity in workstations and PCs. and with the rapid growth of Web applications.
user browser cache size will tend to increase as time passes. In addition. several new soft-
ware techniques are introduced for users to effectively increase the browser cache size. For
example. “browser cache switch” [49]. allows users to set multiple browser caches in one
machine. and to switch them from one to another during Web browsing. Thus. different
caches can be used for different contents and for different time periods. This technique
significantly increases the size of a browser cache for an effective management of multiple
data types. However. the larger the browser cache size is set. the more spatial locality will
be neglected by the proxy cache server.

Secondly. in order to help Web users to cffectively use and manage large browser cache

data. browser software has been upgraded to include several sophisticated database func-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 92

tions. such as file searching, folding, and grouping. With the aid of these functions. users
will pay more attention to the organized browser cache data objects. and tend to keep them
in the cache much longer than to keep the unorganized data objects. However. the longer
the cached data is retained. the more temporal browser cache locality will be neglected by
a proxy cache server.

Thirdly. in order to improve the browsing speed. a large mermory drive can be configured
to store the entire browser cache. This technique of “browser cache in memory™. has been
implemented in several commercial browsers. such as Internet Explore and Netscape. This
technique can be further extended to periodically save the cached data objects in a special
directory in the disk. The data will be brought back from the disk to the special memory
drive whenever the system is restarted or rebooted. Several studies (see e.g. [44]. [93].
and [135]) have shown that transferring data through a moderate speed network will be
significantly faster than obtaining the same amount of data from a local disk through page
faults. The high speed memory access is not only beneficial to a local user. but also speeds
up data accesses for remote users to share browser caches.

Therefore. the browsers are becoming more powerful and the more powerful resources

are not fully utilized.

4.3 Overview of the Limits on Existing Caching System Struc-

tures

The configuration of a prozy-browser system is a commonly used infrastructure for Web

caching, where a group of networked clients connects to a proxy cache server and cach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 93

client has a browser cache. A standard Web caching model built on a proxy-browser system
has the following data flows. Upon a Web request of a client. the browser first checks if
the requested document exists in the local browser cache. If so. the request will be served
by its own browser cache. Otherwise the request will be sent to the proxy cache. If the
requested document is not found in the proxy cache. the proxy server will immediately send
the request to its cooperative caches. if any. or to an upper level proxy cache. or to the Web
server. without considering if the document exists in other browsers™ caches.

This model has two features that prevent it from effectively utilizing the rapid improve-
ment in Internet technologies and from adapting in a timely manner the changes of the
supply and demand of Web contents. First. with a significant increase of memory and disk
capacity in workstations and PCs. and with the fine improvement of Web browser caching
capability. users are able to enlarge browser cache size for more frequent accesses to cached
documents and to retain the documents in an organized manner for a longer period of time.
Furthermore. there exist some documents which are already replaced in the proxy cache
but still retained in one or more browser caches. because the request rates to the proxy and
to browsers are different. causing the replacement in the proxy and browsers at a different
pace. However. the browser caches are not shared among the browsers and the available
locality in browsers is neglected in Web proxy caching. When a requested document misses
in a local browser cache and the proxy cache. it may have been cached in other browser
caches. Second. with the rapid increase of Web servers and the huge growth of Web client
populations in both numnbers and types. the requested Web contents have become. and will
continue to be, more diverse. causing a decrease of proxy hit ratios and an increase in the

amount of document duplications among the proxy cache and the browser caches. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 94

two limits prevent clients from effectively utilizing the increasingly limited caching space.
We will focus on the resource management of a proxy-browser system to address the
limits of existing caching systems. aiming at adapting the changes of both workload and
technologies (e.g. peer-to-peer). Chapter 5 presents how we address the neglected locality in
browsers using the peer-to-peer model. Chapter 6 presents how we address the duplications
among the proxy cache and browser caches. Chapter 7 handles the new problems caused

by sharing browser caches. Chapter 8 presents a prototype implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Locality and Information Sharing

among Browsers

We will first address the first limit in current proxy-browser system. the neglected locality
in browsers. We believe there are three practical reasons for a proxy server to exclude the
consideration of neglected locality in browsers. First. the browser caches are not shared
for software simplicity and user privacy reasons: and the dynamic status in each cache
is unknown to the proxy server. Second. the possibility of a proxy cache miss that is a
browser cache hit may have been considered low. although no such a study has been found
in literature. Finally. a browser cache was initially developed as a small data buffer with a
few simple data manipulation operations. Users may not effectively retain the cached data
with a high quality of spatial and temporal locality. But changes in workload and tech-
nology show that potential benefit gain in caching performance by exploiting the neglected
locality is increasing. The quality of spatial and temporal locality in browser caches has
been and will continue to be improved. inevitably providing a rich and commonly sharable
P2P storage among trusted Internet peers. In this study. we introduce a P2P technique

to fully utilize browser caches. called “browsers-aware proxy server”. Conducting trace-

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 96

driven simulations. we quantitatively evaluate its potential benefits for further improving
proxy caching performance. Our effort shares the same objective of building effective P2P
infrastructure that lets users casily and reliably share files and processing power over the

Internet.

5.1 Browsers-Aware Proxy Server

In the design of the browsers-aware proxy server. the proxy server connecting to a group
of networked clients maintains an index file of data objects of all clients” browser caches.
If a user request misses in its local browser cache and the proxy cache. the browsers-aware
proxy server will search an index file attempting to find it in a client’s browser cache before
sending the request to an upper level server. If such a hit is found in a client. we propose
two alternative implementations to let the requesting client access the data object. First.
the proxy server will inform this client to directly forward the data object to the requesting
client. In order to retain user browsers™ privacy. the message passing from the source client
to the requesting client should be anonymous to cach other. The second implementation
alternative is to make the proxy server provide the data by loading the data object from
the source client and then storing it to the requesting client.

In order to implement the browsers-aware concept in a proxy server. we create a browser
indez file in the proxy server. This index file records a directory of cached file objects in
cach client machine. Each item of the index file includes the ID number of a client machine.
the URL including the full path name of the cached file object. and. if any. a time stamp of

the file or the TTL (Time To Live) provided by the data source. Since the dynamic changes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 97

in browser caches are only partially visible to the proxy server (when a file object is sent
from the proxy cache to the browser). the browser index file will be updated periodically
by each browser cache. Here is another alternative. After a file object is sent from the
proxy server to a client’s browser cache. its index item is added to the browser index file.
Whenever this file object is replaced or deleted from the browser cache. the client sends an
invalidation message to the proxy server. After that. the proxy deletes the corresponding
index item.

Figure 5.1 presents the organization of the browsers-aware proxy server by an example.
A group of client machines is connected by a local area network. For a given Web service
request with a specific URL in client machine i. the browser cache is first searched attempt-
ing to satisfy the request. After the request misses in the browser cache. client i sends the
request to the proxy server. where the proxy cache is searched for the same purpose. After
the request misses again in the proxy cache. the browser index file is searched. where the
URL is matched in client machine j. The proxy server informs client machine j to forward
the cached file object to client 1. or fetches the cached object from machine j and then

forwards it to client i.

5.2 Simulation Environment

The browsers-aware proxy server and related performance issues are evaluated by trace-
driven simulations. The evaluation environment consists of different Web traces. simulated
clustered client machines. and a proxy server having aware or unaware browser caches. We

will discuss the selected Web traces and our simulation model in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 98

Proxy
Server | proxy
cache proxy
) miss
discovfr
browser
browser browser +
miss index hit
| browser| - :
‘l cache forward requested document;
| or load/store by the proxy server |
I g . . fo. o .
client 7 client ¢ client j client
L)

LAN

Figure 5.1: Organizations of the browsers-aware proxy server.
5.2.1 Traces

Table 5.1 lists the Web traces we have used for performance evaluation. where “Inf. Cache”
denotes infinite cache size that is the total size storing all the unique requested documents.
and *Max HR" and “Max BHR" denote maximal hit ratio and maximal byte hit ration.

respectively.

1. NLANR traces: NLANR (National Lab of Applied Network Research) provides san-
itized cache access logs for the past seven days in the public domain [91). NLANR
takes special steps to protect the privacy of those participating in their cache mesh.
Client IP addresses are randomized from day-to-day. but consistent within a single log

file. Client IP addresses are very important in our study. so we use traces based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 99

one day’s log file. NLANR provides about ten proxies™ traces. We have used one day's
trace of July 14. 2000 from the -uc” proxy and one day’s trace of August 29. 2000
from the “bol™ proxy and “pa” proxy. which are denoted as NLANR-uc. NLANR-bol

and NLANR-pa.

2. Boeing traces: The Boeing Company collected anonymized logs from Boeing's Puget
Sound perimeter (firewall) proxies by using an anonymizer tool (log2anon) and made
these logs available in {12]. For privacy reasons. client [P addresses are not identical
between two different days. so we usc traces based on one day’s log file. We have used
one day’s trace on March 4. 1999. and one day’s trace on March 5. 1999. which are

the most recent traces in this site and denoted as Boeing-4 and Boeing-5.

3. BU traces: Boston University collected traces from the similar computing facility and
user population in 1995 and 1998. which can be found in [13]. We select the traces
in a period of two months of the two years. which are denoted as BU-95 and BU-98.

respectively.

4. CA*netll traces: The CA*netll (Canada’s coast to coast broadband rescarch network)
parent cache provides sanitized log files in [16]. The client IDs are consistent from
day to day. so we concatenate two days’ logs together as our trace. The two logs we
used are the traces collected on September 19. 1999 and September 20. 1999. which

are the most recent traces in this site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 100

Traces Period # Requests | Total GB | Inf. Cache | # Clients | Max HR | Max BHR

NLANR-uc 7/14/00 360806 1.36 3.72GB 95 19.11% 14.80%
NLANR-bol 8/29/00 263942 1.71 1.22 GB 115 21.32% 28.79%
NLANR-pa 8/29/00 310939 2.52 1.85 GB 145 22.78% 26.71%
Boeing-1 3/4/99 219951 7.54 6.21 GB 3996 41.91% 17.69%
Boeing-5 3/5/99 184476 7.00 5.50 GB 3659 15.07% 21.63%
BU-95 Jan.95-Feb.95 502424 1.31 0.90 GB 591 64.14% | 31.37%

BU-98 Apr.98-May 98 72626 0.45 0.29 GB 306 10.62% | 3594 % |

[__CA*netll [9/19-/9/20/99 | 745943 | 0.089 | 0.062 GB | 3 34.20% | 29.84% |

Table 5.1: Selected Web Traces.

5.2.2 A browsers-proxy caching environment

We have built a simulator to construct a system with a group of clustered clients connecting
to a proxy server. The cache replacement algorithm used in our simulator is LRU. We do
not simulate document aging. However. all the traces have the size of a document for
cach request. If a user request hits on a document whose size has been changed. we count
it as a cache miss. We have implemented and compared the following five Web caching

organizations using the trace-driven simulations:

1. Prozy-cache-only: Each client does not have a browser cache. Every client request is

sent directly to the proxy cache server.

2. Local-browser-cache-only: Each client has a private browser cache. but there is no

proxy cache server for client machines.

3. Global-browsers-cache-only: Each client has a browser cache that is globally shared
among all the clients by maintaining an index file in cach client machine. The index
file records a directory of cache documents of all clients. A browser does not cache
documents fetched from another browser cache. If a request is a miss in its local

browser. the client will check the index file to see if the requested file is stored in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 101

other browser caches before sending the request to a Web server. There is no proxy

cache server for the group of client machines.

4. Prozy-and-local-browser: Each client has a private browser cache. and there is a proxy
cache server for the group of client machines. If a request misses in its local browser.
it will be sent to the proxy to check if the requested document is cached there. If it

misses again. the proxy will send the request to an upper level server.

5. browsers-aware-prozy-server: This is the enhanced proxy caching technique presented

in section 35.1.

We have validated our simulator motivated by the method in {39]. We simulated each
NLANR trace with an infinite proxy cache size. which is the total size storing all the unique
requested documents. We compared the simulated and actual daily hit ratios in the public
domain [91]. The reason we use an infinite cache size for comparisons is as follows. All
the proxies of NLANR allocate about 16 GB of the disk for caching. But. for privacy and
protection reasons. we are only able to use one day’s log file. whose total requested document
size is less than 16 GB. Qur experiments show that the average hit ratio difference is about
6% for six NLANR traces. In the actual daily statistics of NLANR traces. some of today’s
requests hit the documents cached “yesterday™. The simulation does not reflect this small
number of special hits. This is a major reason for the 6% error. We also validated our
simulator by comparing the hit ratios and byte hit ratios of above schemes 4 and 5 with
infinite cache proxy cache and browser cache. They all join to the same point.

We use two performance metrics. Hit ratio is the ratio between the number of requests

that hit in browser caches or in the proxy cache and the total number of requests. Byte hit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 102

ratio is the ratio between the number of bytes that hit in browser caches or in the proxy

cache and the total number of bytes requested.

5.3 Performance Evaluation

Before presenting performance results. we will first look into a browser and proxy cache
size related issue to provide a basis and a rationale for us to configure our simulated Web

caching system.

5.3.1 Sizes of browser and proxy caches

Rousskov and Soloviev [105] have studied seven Squid proxies covering several levels of the
caching hierarchy from leaf university proxies. to top level proxies for large country-wide
networks. and to the international root proxy located at NLANR. Three of them are leaf
proxies which are related to our study: ruu from Netherlands. uit from Norway. and adfa
from Australia. Their proxy cache related configurations are listed in the second to fourth
columns of Table 5.2. Squid uses a two level cache. The first level is a small and hot memory
in which very popular and recently requested documents are kept. The second level is a
disk cache where the majority of documents reside. The second and third columns in Table
5.2 are the sizes of the hot memory and disk caches. The last two columns are the average
proxy cache size in hot memory per client and the average proxy cache size in disk per client.
We assume each client’s browser has a cache. If we use the average proxy cache size per
client in Table 5.2 as the browser cache size of cach client. the memory space ranging from
0.04 MB to 0.08 MB is certainly too small. and the total cache size ranging from 7.34 MB

to 10.86 MB is also not large enough in practice for today’s computer systems. Therefore.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 103

Proxies | hot memory | disk cache | # clients | memory cache/client | disk cache/client
ruu 32MB 5.6GB 518 0.0618MB 10.8MB
uit 32MB 3.8GB 378 0.0847MB 10.1MB
adfa 32MB 5.8GB 798 0.0401MB 7.3JMB

Table 5.2: Representative proxy cache configurations reported in [105).

in our study we define a minimum browser cache size as

) Cache
Min(Cachepropser) = ——— 2258
m

where Cachep,oyser is the size of a client browser cache. m is the number of clients. and
Cache is the size of the proxy cache responsible for the m clients. We also conservatively
prory y)

: 3Cache,,,,
define an average browser cache size as ——— 2ot

3Cachepor,

Average(Cachepropser) = (5.2)

m

where 4 is in a range of 2 to 10. Since the accumulated browser cache size increases faster
than the increase of the proxy cache size, the value of /3 tends to increase if both clients

and the proxy server are upgraded as time passes.

5.3.2 How much is browser cache data sharable?

To answer this question. we have operated the five caching policies with different traces on
a simulated Web caching environment where the browser cache size of each client is set to
minimum by (5.1). Performance results of all the traces we have used are quite consistent.
We only representatively present the results of hit ratios and byte ratios from the NLANR-

uc trace in Figure 5.2, where the size of the proxy cache is scaled from 0.5%. 5%. 10%. and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 104

to 20% of the infinite proxy cache size. the browser cache size is also scaled up accordingly

by (5.1).
NLANR-uc Trace NLANR-uc Trace
20 T . T
2 2
% 10k e < §
14 i .
i Proxy-cache-only —— o 6F Proxy-cache-only —— 4
8. Locarbrowser-cache-only ~-x--- = Locakbrowser-cache-onty ---x---
Proxy-and-locak-browser -+ #--- o R Prory-and-iocatbrowser -« |
S5t Global-browsers-cache-only & - K Global-browsers-cache-only <%
Browsers-aware-proxy-server - -@ - Browsers-aware-proxy-server - -@ -
Maxmal htt ratio 2 b Maxmal byte htt ratio 4
0 1 A - 0 1 L 1 ‘
0 5 10 15 20 0 5 10 15 20
Relative Cache Stze (% Infinte Cache Sze} Relative Cache Size (% Infinte Cache Size)

Figure 5.2: The hit ratios and byte hit ratios of the five caching policies using NLANR-uc trace.
where the browser cache size is set minimum.

Figure 5.2 shows that the hit ratios (left) and byte hit ratios (right) of the browsers-
aware-prozy-server are the highest. particularly. the hit ratios are up to 5.94% higher and
the byte hit ratios are 9.34% higher than those of the prozy-and-local-browser. even when
the browser cache size is set to minimum. This means that sharable data locality does exist.
even for a small browser cache size. The sharable data locality proportionally increases as
browser cache size increases and as the number of unique file objects cached in browsers
increases. both of which are the trends in Web computing. In next subsection. we will show
that significant proxy cache performance improvement can be achieved by the proposed
browsers-aware proxy server to exploit sharable data locality.

We also show that methods of prozy-cache-only. local-browser-cache-only. and global-

browsers-cache-only are not as effective as the method of prozy-and-local-browser. Local-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 105

browser-cache-only had the lowest hit and byte hit ratios due to the minimum caching
space. prozy-and-local-browser only slightly outperforms prozy-cache-only. which implies
that performance gain from a local browser cache is limited. Another observation worth
mentioning is that prozy-and-local-browser and global-browsers-cache-only had lower hit and
byte hit ratios than browsers-aware-prory-server. This observation confirms the existence
of two types of misses. First. there exist some documents that are already replaced in the
proxy cache but still retained in one or more browser caches. because the request rates to
the proxy and to browsers are different. causing the replacement in the proxy and browsers
at a different pace. Second. there are some documents that are already replaced in browser
caches but still retained in the proxy cache. because a browser cache is much smaller than
the proxy cache. The browsers-aware-prozy-server effectively addresses these two types of
misses.

Figure 5.3 presents the breakdowns of the hit ratios and the byte hit ratios of the
browsers-aware-prozy-server using NLANR-uc trace. There are three types of hits: hits in
the local browser cache. hits in the proxy cache. and hits in remote browser caches. We
show that the hit ratio and byte hit ratio in remote browser caches should not be neglected
even when the browser cache size is very small.

The browsers-aware-prozy-server has another advantage over the prozy-and-local-browser
policy in terms of “memory”™ byte hit ratios. In other words. for the same byte hit ratio. a
higher percentage of requests will hit in the main memory of browser caches and the proxy
cache provided by the browsers-aware-prory-server. To quantitatively justify this claim. we
have compared the memory byte hit ratios of the two policies for an equivalent byte hit

ratio.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 106

NLANR-uc Trace Hit Ratio Breakdowns NLANR-uc Trace Byte Hit Ratio Breakdowns
18
14 -
12
Z1o-
% Qremote-browsers'
4 @proxy
I @locarorowser
5% 10% 20%

Qremote-browsers g-
- @proxy
_@local-browser 6
4-
2 N
Q
0.50%

0.50% 5% 0% 0%
Retative Cache Swze (% Infnte Cache swze)

Retative Cache Size (% Infinte Cache Sue)

Figure 5.3: The breakdowns of the hit ratios and byte hit ratios of the browsers-aware proxy using
NLANR-uc trace. where the browser cache size is set minimum.

In our simulation. we set the memory cache size in the proxy as 1/150 of the proxy
cache size based on the memory ratio reported in Table 5.2. We also set the memory size
of a browser cache as 1/150 of the browser cache size. which is not in favor of the browsers-
aware-prozy-server because the memory cache portion in a browser can be much larger than
that for the proxy cache in practice. We also conservatively assume that one memory access
of one cache block of 16 Bytes spends 200 ns (the memory access time is lower than this in
many advanced workstations). and one disk access of one page of 4 KBytes is 10 ms.

Figure 5.2 shows that the hit and byte hit ratios of the browsers-aware-prozy-server at
5% of the infinite cache size are very close to those of the prozy-and-local-browser policy at
10% of the infinite cache size (the hit ratio comparison is 15.3 v.s. 15.7. and byte hit ratio
comparison is 13.06 v.s. 12.91). However. the memory byte hit ratios of the two schemes
are quite different under the same condition. which are 3.5% for the browsers-aware-prozy-

server. and 1.9% for the prozy-and-local-browser policy. respectively. The larger memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 107

byte hit ratio of the browsers-aware-prozy-server in this case would reduce 15.2% of the
total hit latency compared with the prozy-and-local-browser. The latency reduction due to
the higher percentage memory accesses will be larger in practice because the memory cache

size of each browser is much larger than the assumed size.

5.3.3 Performance of browsers-aware proxy server

We have evaluated and compared the performance of the browsers-aware-prozy-server and
prozy-and-local-browser schemes using the NLANR-bol trace and two BU traces. For ex-
periments of each trace. the proxy cache size is set to 0.5%. 5%. 10%. and 20% of the infinite
proxy cache size. Accordingly. each browser cache is also set to 0.5%. 5%. 10%. and 20% of
the average infinite browser cache size calculated from all the browsers. The infinite cache
size of a browser is the total size of all uniquely requested documents in this client. For
example. if the proxy cache is set to 0.5% of the infinite proxy cache. all browsers’ caches
will also be set to 0.5% of the average size of the infinite browser size of all browsers. The
value of 3 calculated from cach trace falls into the average range of 2 to 10.

Figures 5.4 - 5.10 present the hit ratios (left) and byte hit ratios (right) of the two policies
on NLANR-uc trace. NLANR-bol trace. NLANR-pa trace. Boeing-4 trace. Boeing-5 trace.
BU-95 trace. and the BU-98 trace. respectively. Compared with the prozy-and-local-browser
scheme. browsers-aware-prozy-server consistently and significantly increases both hit ratios
and byte hit ratios on all the traces.

The limit of the Browsers-Aware Proxy Server
When the number of clients is small. and their accumulated size of the browser caches

is much smaller or not comparable to the proxy cache size. the cache locality inherent in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 108

NLANR-uc Trace NLANR-uc Trace

2
< :
2 z
: <
T I
4 2
>

@ i

Sr proxy & browser —— < 13 oroxy & browser ——

browser-aware ---x--- Drowser-aware ---x-- |

Max. hit ratio 2t Max. hit ratio]

i .

o i —_ i | 0 i " i 1

0 5 10 18 20 o 5 10 15 20
Relative Cache Size (% Infinte Cache Size) Relative Cache Size (% Infinte Cache Size}

Figure 5.4: The hit rates and byte hit rates of the browsers-aware-prozry-server and prozy-and-
local-browser scheme using NLANR-uc trace. where the browser cache size is set average.

browsers is low. so the performance gain from the browsers-aware proxy cache will also be
insignificant. Figure 5.11 presents such an example. where the total number of clients of
the CA*netlI trace is only 3. the accumulated size of three browser caches is small. The
increases of both average hit ratio and byte hit ratio of this trace by the browsers-aware-

prozy-cache are below 1%. compared with the prozy-and-local-browser scheme.

5.3.4 Performance Impact of Scaling the Number of Clients

We have also evaluated the effects of scaling the number of clients to browsers-aware proxy
servers. For cach trace. we observe its hit ratio (or byte hit ratio) increment changes by
increasing the number of clients from 25%. to 50%. to 75%. and to 100% of the total number
of clients. We also regard each percentage as a relative number of clients. For all relative
numbers of clients of cach trace. the proxy cache size is fixed to 10% of the infinite proxy

cache size when the relative number of clients is 100%. The byte hit ratio increment or the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 109

NLANR-bo1 Trace NLANR-po1 Trace
25 A T 1
20
- g
&1 °
S 3
5 :
I
F0F 1 @
z o :
Proxy-and-iocak-browser —— B Prssx.ya-:g?-lo:l-n.row:er e
Sr Browsers-aware-proxy-server ---x--- rowsel € proxy.server
Maximal ht ratio Sr Maxmal byte ht ratio A
0 1 1 . 0 L 1 1
0 5 10 15 20 0 5 10 15 20
Reiative Cache Size (% Infinte Cache Size) Relative Cache Size {% Infimte Cache Size)

Figure 5.5: The hit rates and byte hit rates of the browsers-aware-prory-server and prozy-and-
local-browser scheme using NLANR-bol trace. where the browser cache size is set average.

hit ratio increment of the browsers-aware proxy server for a given trace is defined as

(byte) hit ratio of browse-aware — (byte) hit ratio of prory-and-local-browser
(byte) hit ratio of proxy-and-local-browser '

Figure 5.12 presents the hit ratio increment curves (left figure) and the byte hit ratio
increment curves (right figure) of the three traces as the relative number of clients changes
from 25% to 100%. Our trace-driven simulation results show that both hit ratio increment
and byte hit ratio increment of the browsers-aware proxy server proportionally increases as
the number of clients increases. For some traces. the increments are significant. For example.
the hit ratio increment of BU-98 trace increases from 10.70% to 13.35%. to 16.87%. and to
19.35%. as the relative number of clients increases from 25% to 50%. to 75%. and to 100%.
respectively. The byte hit ratio increment of BU-95 trace increases from 1.33% to 20.17%.
to 24.82%. and to 28.08%.

The performance results indicate that a browsers-aware proxy server is performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 110

NLANR-pa Trace NLANR-pa Trace
25 T m T 30 T T T
20
9
3 <
£15 2
9 I
5 :
I
£ e
s‘ 10 g 4
proxy & browser ——
5t p';xy § browse e browser-aware ---x---
Qwser-aware 5t Max. it ratio -
Max. ht ratio
0 L L ye o o 1 1
0 5 10 15 20 0 5 10 15 20
Relative Cache Size (% Infinte Cache Size) Relative Cache Size (° Infinte Cache Size)

Figure 5.6: The hit rates and byte hit rates of the browsers-aware-prozy-server and prozy-and-
local-browser scheme using NLANR-pa trace. where the browser cache size is set average.

beneficial to client cluster scalability because it exploits more browser locality and utilizes

more memory space as the number of clients increases.

5.4 Overhead Estimation

The additional overhead of the browsers-aware proxy cache comes from the data transferring
time for the hits in remote browsers. The simulator estimates the data transferring time
based on the number of remote browser hits and their data sizes on a 10 Mbps Ethernet.
The browser access contention is handled as follows. If multiple requests hit documents
in a remote browser simultaneously, the bus will transfer the hit documents one by one in
the FIFO order distinguished by each request’s arrival time. Our experiments using the
ping facility show that the startup time of data communications among the clients in our
local arca university network is less than 0.01 second. Setting 0.01 second as the network

connection time. we show that the amounts of data transferring time and the bus contention

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 111

Boeng-4 Trace Boeng-4 Trace
50 T T T 20 T — T
45+ 4 J—— Mmoo nnrm e y
40
15 by 4
_®
23 0
St { Tt]
I =
I
Tar 1 ¢
>
15F 4 o
5+, proxy & browset ——
10+ proxy & browser —— 4 browser-aware ---x---
browser-aware ---x--- Max. hi ratio
S5t Max. htratio - §
0 — 1 i 0 1 1 1
0 5 10 15 20 0 5 10 15 20
Relative Cache Size (% Infinde Cache Size) Refative Cache Size (* Infinte Cache Size)

Figure 5.7: The hit rates and byte hit rates of the browsers-aware-prozy-server and prory-and-
local-browser scheme using Boeing-4 trace. where the browser cache size is set average.

time spent for communication among browser caches of the browsers-aware proxy server on
all the traces is very low. For example. the largest accumulated communication and network
contention portion out of the total workload service time for all the traces is less than 1.25%.
In addition. the contention time only contributes up to 0.12% of the total communication
time. which implies that the browsers-aware proxy server does not cause bursty hits to
remote browser caches.

Another potential overhead is the update of the browser index file if the update is not
conducted at a suitable time or conducted too frequently. There have been some solutions
to address this concern. For example. the browser could send its update information when
the path between the browser and the proxy is free to avoid contention. The study in [43]
shows that the update of URL indices among cooperative caches can be delayed until a
fixed percentage of cached documents are new. The delay threshold of 1% to 10% (which

corresponds to an update frequency of roughly every 5 minutes to an hour in their exper-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing anm.ong Browsers

Boeng-5 Trace Boemng-5 Trace
50 T T v 25 T T T
45+ - 1 A
P Weoarmmmmmmme oI
40 20+ g
35 = "
% <
&3 o 15} 4
) T
55 i ¢
T b4
.I: 0r - 2 0F p
E
15F b ©
proxy & browser ——
10+ proxy & browser —— 1 st/ browser-aware < 1
browser-aware-pb ---x--- Max. ht ratio
Sk Max. ht ratio 1
0 d e i 0 | S L b 1
0 5 10 15 20 0 5 10 18 20

Relative Cache Size (% Infinte Cache Size) Relative Cache Size (* infinte Cache Size)

Figure 5.8: The hit rates and byte hit rates of the browsers-aware-prozy-server and prory-and-
local-browser scheme using Boeing-5 trace. where the browser cache size is set average.

iments) results in a tolerable degradation of the cache hit ratios. In their experiments.
the degradation is between 0.02% to 1.7% for the 1% choice. Qur concerns should be less
serious because the updates are only conducted between browsers and the proxy without
broadcasting. Thus. the index file update overhead between browsers and proxy is very low.

The last potential concern is the space requirement of the proxy cache to store the
Each URL is represented by

browser index. We address this concern by an example.

a 16-byte MD5 signature [88]. Assume there are 1000 clients connected to one proxy.
Each client has a browser with a 8MB cache. We assume that an average document size
is 8 KB. Each browser has about 1 K Web pages. The proxy server only needs about
1000 x (SMB/8KB) x 16 = 16MB to store the whole browser index file for the 1000
browsers. If we apply the compression methods presented in [43] or [89]. the browsers-

aware proxy server requires even less space to store the index file. (e.g. a storage of 2 MB

is sufficient for the 1000 browsers with a tolerant inaccuracy).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 113

BU-95 Trace BU-95 Trace

80 T Y T 40 T T ——

0+ 4 K i

60 b 30 r . e -
gw 1 Tsp /_///
; 3
g 40 {1 Tar - 1
: ol
T 1 215¢ J

Q
20+ Proxy-and-local-browser —— 4 0r 4
aware-proxy-server ---x--- Proxy-and-locakbrowser ——
10F Maxmalhtrao - - sk Browsers-aware-proxy-server ---x--- |
Maximal byte hit ratio
0 1 L - 0 1 1 I
0 5 10 15 20 0 5 10 15 20
Relative Proxy Cache Size (% mfinite cache size) Reiatrve Proxy Cache Size (% infinite cacne size)

Figure 5.9: The hit rates and byte hit rates of the browsers-aware-prozy-server and the prory-and-
local-browser scheme using the BU-95 trace. where the browser cache size is set average.

We can also take advantage of a Bloom filter that is used to keep URL indices of
cooperative caches in [43]. Assume that therc are 1000 clients connected to one proxy.
Each client has a browser in which has a 8MB cache. Similar to [43]. we also assume that
an average document size is 8KB. Each browser has about 1K Web pages. The Bloom filter
needs 2KB to represent 1K pages of each browser. The proxy needs only about 2000KB =~

2MB to store the whole browser index file.

5.5 Chapter Conclusion

We have proposed and evaluated a browsers-aware proxy server to provide a distributed P2P
Web document sharing service. We have also quantitatively answered two questions: how
much browser data is sharable? and how much proxy caching performance improvement

can we gain by this P2P approach? Could the browsers-aware proxy server be scalable and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 114

BU-98 Trace BU-98 Trace
50 T T T 40 T T L
45+ 4
40
¥ 3
£ s
[s
8 % <
I
X o
>
15]
Proxy-and-loca-browser —— 10r Proxy-and-local-browser —— 4
0r Browsers-aware-proxy-server ---x--- Browsers-aware-proxy-server ---x---
5 Maxmai hit ratio 5t Maximal byte hit ratio]
0 L L 1 0 1 4 N
0 5 10 15 20 0 5 10 18 20
Relative Proxy Cache Size {% infinde cache size) Relative Proxy Cache Size (% infinite cache size)

Figure 5.10: The hit rates and byte hit rates of the browsers-aware-prozy-server and the prory-
and-local-browser scheme using the BU-98 trace. where the browser cache size is set average.

reliable? Our study shows that the amount of sharable data is significant and should be
utilized and the proxy caching performance can be significantly improved by the proposed

browsers-aware structure that is scalable and reliable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 115

CA*netll Trace CA'netll Trace
40 T T T 35 T T L]
B 1 0t -
30 -/.»"‘""—' ’ | “
5 -/ p
*9' z 20¢r 1
50F 1 £
E[_- I st 4
I5F 4 °
g
0F Proxy-and-local-browses —— -
0+ Proxy-and-local-browser —— < Browsers-aware-proxy-server ---«---
Browsers-aware-proxy-server ---x--- Maxmal byte ht ratio
5| Maxmal ht ratic g 5t .
0 1 1 i 0 ol L A
0 5 10 15 20 0 5 10 15 20
Relative Cache Size (% Infintte Cache Size) Relative Cache Size (% Infinte Cache Size)

Figure 5.11: The hit ratios and byte hit ratios of the browsers-aware-prozry-server and prozry-and-
local-browser scheme using the CA*netll trace.

Hit Ratio Increment vs Number of Clients Byte Hit Ratio Increment vs Number of Clients
2 j i ' T T T T 30 T T T T T T T
-4
) ~&5r 5)
S 15F | 2 |
ag =3 Lt
< . :
E . exr 4 NLANR-bo! —— -
0 5 ’ BUGS v
g | 2 g BU-98 -+
- L 3 E l/
H s BT]
% NLANR-bo1 —— 3
BU-95 ---x--- o | ‘
E BU-98 -4 I 10 .
I st : '
o i
----------------- 4 5t]
T -
------- [t
0 S . L L 1 i 1 0 1 L TR L 1 L
20 X 4 50 6 70 80 9% 100 0 W 40 0 6 0 8 %0 100
Retative Number of Clients (% Total Number of Clients) Relative Number of Clients (% Total Number of Clients)

Figure 5.12: The hit ratio and byte hit ratio increments of the browsers-aware-prozy-server over
the prory-and-local-browser.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Reducing Duplications in a Proxy

and Its Browsers

6.1 Background and Related Work

This chapter focuses on addressing the second limit in current proxy-browser system. the
duplications among the proxy cache and the browser caches. The amount of document du-
plication between the proxy and browser caches is generally very large because the requested
document is cached in both the proxy and a requesting client browser in most cases. It is
also highly possible to generate a large amount of document duplication among browsers for
two reasons. First. multiple clients request some popular documents cached in the proxy.
Each requesting client will duplicate these documents in its local browser cache. Second.
when a request from a client is missed in the proxy cache but is a hit in another client’s
browser cache. the requesting client will duplicate the document in its own browser cache.

Envisioning the rapid advancement of networking technology. we argue that the dupli-
cation issue can seriously limit potential benefits to be gained from the current structure of

Web caching systems. Here are the reasons. First. high speed networking technology will

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 117

soon close the speed gap between local and remote accesses. Therefore. data duplications
over the Internet will truly not necessary. Second. data duplications will significantly cause
additional overhead. such as global data invalidations and broadcasting. Minimizing the
number of owners for a data document also strengthens security and privacy protections.
Finally. unnecessary data duplications over the Internet can widely waste storage space.
Both the additional operation and space overheads will certainly limit the scalability of

Internet computing.

Q(p) Q(p)
Subi) (b2} Q(b3) Qbl) Q(b2) Q(bh3)
(a) (b)

Figure 6.1: Duplication among a proxy and its client browsers.

Figure 6.1 (a) is a duplication caching scenario among the browsers and the proxy.
We use (p) to represent the set of documents cached in the proxy. Q(b;) to represent
the set of documents cached in the ith browser of P browsers. where 1 = 1.2.....P.
We also use U(p) to represent the set of documents only cached in the proxy. U(b,) to
represent the set of documents only cached in the ith browser. We aim at minimizing

Qp) N Q(b,) (the dark overlapped part in Figure 6.1 (a)). and minimizing Qb)) N 2b,))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 118

(the lightly dark overlapped part in Figure 6.1 (a)). where 1. = 1.2.....P.i # j; such
that U(p) YU (b)) JU(b2)...[JU(bp) is maximized. Figure 6.1 (b) is an ideal case after the
duplicated documents among the proxy and its browsers have been eliminated.

Numerous studies focus on local caching replacement policies. For example. papers
[4] and [69] provide theoretical bases for approximate optimal performance and designing
effective online algorithms. Papers {19] and [70] propose practical caching replacement
strategics and showed promising experimental performance results. However. cooperative
caching can significantly improve performance compared to local replacement [75]. and has
been studied in both horizontal and vertical directions.

In the horizontal direction. cooperative proxy caches are studied in many papers (e.g.
[43]. [56]. [83]. [141]). which focus on the proxies at the same level. These papers provided
different approaches attempting to effectively sharing files among same level proxies. such
as how to locate a file cached in another cache precisely and quickly. and how to place a
file as close as possible to a proxy requesting the file with highest probability. None of
these studies consider the file duplications among same level proxies. A practical reason for
allowing file duplications among proxies is because proxies are normally far from each other
in locations. Emphasizing eliminating file duplications too highly could cause too many re-
quests to remote proxies so that the overall response time might be hurt. However. browsers
connecting to the same proxy are usually located nearby. thus. reducing file duplications
among browsers enables more files to be shared to improve overall performance.

In vertical direction. Web proxy workloads from different levels of a caching hierarchy
are studied in [82]. Paper {76] develops an optimal algorithm for hierarchical placement

problem. Papers [75] [123] propose practical schemes to cooperate hierarchical proxies by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 119

hierarchical GreedyDual replacement algorithm and placement algorithmm that can cache
file close to clients. They conclude that hierarchical cooperative caching can significantly
improve performance. The study in [40] is not so optimistic about hierarchical cooperative
caching. and concludes that the performance in terms of response time can not be improved
without paying careful attention to details of cooperation design to eliminate overhead.
such as better distributing network traffic and avoiding congested routes. Two previous
studies attempt to reduce file duplications in hierarchical cooperative caching. Paper {26]
proposes a hierarchical cooperative caching architecture to avoid a requested file cached in
cach intermediate cache. A cache is viewed as a filter with its cutoff frequency equal to
the inverse of the characteristic time. Files with access frequencies lower than this cutoff
frequency have a good chance to pass through the cache without cache hits. A collaborative
method is proposed in [143] for hierarchical caching in proxy servers to reduce duplicate
caching between a proxy and its parent or higher level proxies in the hierarchy. In particular.
a collaboration protocol passes caching decision information along with the document to the
next lower level proxy to facilitate its caching decision. Qur work focuses on a proxy-browser
system. which is a different issue of reducing duplication in the different level proxies. Our
proposed scheme not only reduces the duplications between different level caches (between
proxy and browsers). but also reduces the duplications at the same level caches (among

browsers).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 120

6.2 A simulated proxy-browser caching environment

The cooperatively shared proxy-browser caching scheme is evaluated by trace-driven simu-
lations. We use the traces of Boeing-4. Boeing-5. BU-95 and BU-98 that are described in
Chapter 5. We have implemented and compared the following four Web caching organiza-

tions using the trace-driven simulations in this chapter:

1. Prozy-and-local-browser: If a request misses in its local browser. it will be sent to the
proxy to check if the requested document is cached there. If the request is a hit in the
proxy. the hit document will be cached in the browser cache of the requesting client.
If the request misses in the proxy. the proxy will send the request to an upper level
server. The document fetched outside the proxy-browser system will be cached both

in the proxy and the browser of the requesting client.

2. Browser-aware-prozy-server: This is browser-aware-proxy caching technique without

duplication reduction consideration. which is discussed in Chapter 3.

3. Cooperatively shared prozy-browser caching server: This is the cooperative caching

technique proposed in this chapter. which will be discussed in Section 6.4.

4. Offline-algorithm: These are the offline algorithms close to optimal performance for

comparisons with our proposed schemes. which will be discussed in Section 6.4.

6.3 Case Studies of Duplications in Web Caching

We have analyzed the 4 different Web traces: BU-95. BU-98. Boeing-4 and Boeing-5. These

traces have been operated in a simulated system with an infinite proxy cache and infinite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers

Traces BU-95 | BU-98 | boeing-4 | boeing-5 | average
hit ratio (%) 64.14 | 40.62 44.91 15.07 48.69
intra-sharing (%) | 27.64 | 35.18 39.55 42.42 36.20
inter-sharing (%) | 72.36 | 64.82 60.45 57.58 63.80

121

Table 6.1: Trace analysis on document duplications and sharing based on the proxy-browser system
hit ratios. intra-sharing ratios. and inter-sharing ratios.

browser caches. There are two types of data sharing in Web surfing: individually requested
documents by a single client. and commonly requested documents by multiple clients. We
define “intra-sharing™ ratio as the percentage of the requests only hit in local browsers
for individual usage of clients out of the total hit requests in the proxy-browser system.
We further define the “inter-sharing” ratio as the percentage of the requests coming from
multiple clients but hitting the same documents out of the total hit requests in the proxy-
browser system.

We have three observations based on the trace analysis results reported in Table 6.1.
First. the average hit ratio of the { traces is 48.69%. which means that 51.31% of requested
documents are only accessed once and remained in both proxy and browser caches. Second.
among the total hit requests in the proxy-browser system. the average intra-sharing ratio
is 36.20%. Since this large portion of documents is only for individual usage. the documents
do not need to be cached in the proxy. but only need to be cached in the requesting local
browser caches. Unfortunately. the standard Web caching model stores this high percentage
of documents in the proxy. Finally. the hits for inter-sharing by multiple clients that need
to be cached in the proxy is 63.80%. However. documents of this type are duplicated in the
proxy cache and multiple browser caches.

Our analysis and case studies show that a significant amount of document duplication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 122

exists in commonly used Web caching models. If supply and demand of diverse Web contents
are continually increased, this duplication will soon limit the effective utilization of caching
space. In addition. current Web caching models lack data sharing mechanism between the
proxy and browsers with which to further exploit data locality and utilize caching space.
This preliminary trace analysis motivates us to propose new caching management schemes
for reducing the document duplications among a proxy and its browsers for performance
improvement by utilizing more caching space.

Using the browser-aware caching model as a framework. we propose a new Web caching
management model. called cooperatively shared prozy-browser caching. where the proxy
cache is managed mainly to store the shared documents requested by multiple clients. and
browsers are managed mainly to store the individually used documents. The objective of
this caching management scheme is to effectively enlarge the caching space for clients by
significantly reducing the document duplications among a proxy and its client browsers.

and to significantly reduce the traffic to Web servers.

6.4 Cooperatively Shared Proxy-Browser Caching Scheme

6.4.1 An outline of the scheme

Upon a client request. the cooperatively shared proxy-browser caching scheme provides the

following data flows for document service and storage management:

1. If the request is a hit in the local browser. the document will be read from the browser

cache.

2. If the request misses in its local browser cache but hits in the proxy. then. in addition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 123

to providing the document. the proxy will increment the counter of the number of
remote accesses to this document from this requesting client. The proxy will inform
the requesting client to cache this document only if the value of this counter is larger

than a pre-determined threshold. TH_.BROWSER.

3. If the request is a miss in the local browser and the proxy. the index file (which
maintains the records of all documents cached in client browsers) in the proxy will be
searched to sce if the document is cached in another browser cache. If the request is
a hit in another client’s browser cache. then the hit browser will do two bookkeeping
operations besides providing the document: (1) increment the counter of the total
number of distinct remote requesting clients to this document if the requesting client
accesses this document for the first time. and (2) increment the counter of the number
of remote accesses to this document from this client. If the first counter is larger
than a pre-determined threshold. TH.PROXY. it means this document is shared by
a sufficient number of clients so that the hit browser will transfer and cache the
document to the proxy. The requesting browser is informed to cache this document

only if the value of the second counter is larger than TH.BROWSER.

4. When the request is missed in the entire proxy-browser system. the requested docu-
ment will be provided by an upper lever proxy or a Web server. The initial document
coming externally will be cached only in the requesting browser. However. if the proxy
cache has enough free cache space for the document, it can be cached in the proxy at

the same time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 124

In the above items 2. 3. and 4. the document may be cached in either a browser cache or
the proxy. When the browser cache or the proxy cache does not have sufficient space
to store the document. one or more currently cached documents have to be replaced.
LRU _Threshold (which does not cache a document larger than a threshold size) is used
as the basic replacement policy for our scheme. (Most practical systems use algorithins
similar to LRU_Threshold [{105]). For a document larger than the threshold. our scheme
also caches it as long as the cache has enough free space. but it is marked as an LRU doc-
ument. The cache size threshold used in LRU _Threshold in the proxy and a browser cache

is different due to significant difference of their cache sizes.

6.4.2 Data structures and operations

Two structures are maintained to facilitate this scheme. One structure allocated in each
browser is used to manage cached documents in it. Another structure allocated in the proxy

is used to manage all documents cached there.

6.4.2.1 The structure in each browser

A counter and an array is allocated for each cached document that has been requested
by other clients. The counter CC keeps the number of other clients that have accessed
the document. Its value will be used to check if this document should be cached in the
proxy. Each clement of the array AC has two fields: Client_Alias and Access Count.
An AC.Client_Alias records a client who has accessed the document. AC.Client_Alias
is produced by the proxy to hide the true identity of the requesting client. The aliases

are consistent and untraceable as in LPWA [54]. AC.Access_Count records the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 125

of accesses from the corresponding client. The array is of size TH_.PROXY. of which CC
clements are in use. It is allocated for a document only if there is a remote client requesting
this document. When a document is replaced. the counter and array for this document are

also replaced.

£

A request from client j(alias) for a document

I ’ ;Allocalc CC and AC[TH_PROXY]. Set CC=1.
: - T\ Yes ;AC[0].Client_alias=j. AC[0].Access_count=1.
(Js this the first remote C‘f;;“ to request ts client tACTi].Client_alias=-~1. AC[i].Access_count=0
0 ifori=1. 2, ... TH_PROXY
1Search for all elements in the array for this document =0
]
Yes Existan elementsl - No k=12 No
 stch that AC Client_alias=)’/ | CC-TH PROXY™ - N .
{Search for the first element 12 1n the ch i
|;m;é‘ics‘l‘g‘ AlC[illl.Clicnt_allas:-l | Sent the document along with the array |
et AC[i2].Client_alias=).
AClil}.Access_count++| ACIi2]. Access_count=. i | tothe proxy and inform the proxy
{CCas = i to cache the document
—————— |
k=1l

]

Yes Clk].Access_count=TH_BROWSER’] No

Inform clientjt0 * Inform client) not to !
cache this document ! I cache this document !

I

[§cnd the document to client to display and/or cache

End)

Figure 6.2: The management operations in each browser when a remote client request hits in it.

Figure 6.2 presents the management operations when a remote client requests a doc-
ument cached in this browser. When a browser is informed to cache a document sent by
another client. it will cache this document.

6.4.2.2 The structure in the proxy

Each cached document in the proxy needs to count the number of accesses to this document

from different requesting clients. This is used to check if this document should be duplicated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 126

in a requesting client browser. We use a linked list for each document. Each clement of
the list LL includes three fields: (1) Client_ID: the ID number of a requesting client: (2)
Access_Count: the number of requests from this client: and (3) Pointer: a pointer to link
to the next element. A new clement is allocated to the linked list of a document only if

this document is requested by a client for the first time. When a document is replaced. its

linked list is also replaced.

. Befln :

. A request from client j for a document

l

i Search for all elements in the linked list for this client

Yes / Exist an element LL1 No
such that LL1.Client_ID=j?

[Build an element LL2.
|Set LL2.Client_ID=j.

(LL1.Access_count++! 'LL2.Access_count=1.
{LL2.pointer=NULL. :
LL=LL1 | Link it to the end of the list ;

TLL=LL2

I YeSCLL Access_count=TH_BROWSER")ﬁ’l

’lnform client j to ; .' - - :

cache this document. i i Inform client jnot to |

!Delctc this element from the list ! cache this (?ocument :
[

I

LSend the document to client j to display and/or cache |

J

' End |

~—

Figure 6.3: The Management operations in the proxy when a client request hits in the proxy.

Figure 6.3 presents the management operations when a client request hits in the proxy.
When the proxy is informed to store a document sent by a client. the proxy first caches
the document. and then copies the necessary clements of the array sent by the client to

the corresponding fields in the newly created linked list. The necessary elements are those

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 127

with AC.Client_ID # -1 and AC.Access_Count < TH_BROWSER. When the proxy
has to fetch a document outside the proxy-browser system. it will pass the document to the
requesting client and inform the client to cache it. The proxy will not cache a new arrival

document.

6.4.3 Offline Algorithms for Performance Comparisons

The goal of obtaining optimal hit ratio and byte hit ratio in a proxy-browser system is
equivalent to finding optimal replacement algorithms for objects with different sizes in a
single cache whose size is the accumulated size of the proxy and all browsers. Studies in
[69] provide two offline algorithms that are close to the optimal replacement algorithms.
These offline algorithms are not viable in practice due to their requirement of knowing
future requests. However. in order to evaluate the effectiveness of the proposed schemes.
we compare their performance with that of the offline algorithms. This section gives an
overview of two models of cost measurement for offline Web caching algorithms and discusses

the respective approaches. They both follow [69]. and are also discussed in [4].

1. The Fault Model. where the cost of an algorithm for a request sequence o equals

the number of cache misses.

2. The Bit Model. where we sum up the sizes of the documents each time they are

brought into cache.

Both models do not discriminate whether a document is stored in a proxy or in a browser

cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 128

If all documents have the same size and same costs of bringing them into cache. the
Belady's Rule [8] is known to be optimal strategy for evicting pages from the cache: on
a fault cvict the most distant page that is the page whose next request is farthest in the
future. However. for caching of Web documents with different sizes these assumptions are
not appropriate. We consider therefore for each of the above models a separate offline
algorithm.

For the Fault Model. we use the Offline Fault Model Algorithm (OFMA) [69]. which
is shown in Algorithm 1. It guarantees that for any request sequence o the number of
cache misses is within the factor 2log & of the number of cache misses for an optimal offline

algorithm. Here k is the ratio between the largest and the smallest document in o.

Algorithm 1 Offline Fault Model Algorithm [69]

Divide the documents into at most [log k| + 1 l-classes Cy.
where C; holds the documents of sizes [2'.. ... 2+).
for each request to a document d in a [-class:
if d is not in the cache:
bring it in.
if size of the cache is exceeded:
for all j. do twice:
if C, is not empty:
evict the most distant document in C,.

As for the BIT Model. we use the Offline Bit Model Algorithin (OBMA) from [69].
The cost of this algorithm is essentially within the factor 5(log k& + 4) of the optimal offline
algorithin. As in OFMA. the documents are first divided into [-classes. If the cache capacity
is exceeded by h when a new object is cached. OBMA evicts from every class most distant
objects until there is enough room or there are no objects in that class. In order to avoiding
evicting a large page when the cache is only exceeded by a small amount. OBMA maintains

a counter for each class. If h is smaller than the most distant object in a class. it is added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 129

to the counter of this class. When the counter is larger than the size of the object. OBMA
evicts the object and subtracts the size of the object from the counter.

The goals of the Fault Model and the Bit Model are to maximize hit ratios and byte hit
ratios. respectively. In order to show how close the performance of the proposed caching
scheme is to the optimal one. we compare the performance of our scheme with that of the

two offline algorithms.

6.5 Performance Evaluation

We have evaluated and compared the performance of the prozy-and-local-browser. browser-
aware-prozy-server. cooperatively shared prozy-browser caching (which will be simplified as
cooperative-caching in the rest of the chapter) schemes. and the offline-algorithm using the
two BU browser traces and two Boeing traces. In the comparisons of hit ratios. the offline
Fault Model Algorithm is used. while in the comparisons of byte hit ratios. the offline BIT
Model Algorithm is used. We will discuss the performance sensitivity to four important
parameters: proxy cache size. browser cache size. cache size threshold for replacement.
and the number of clients. We use ps to denote proxy cache size. which is based on the
percentage of infinite proxy cache size. We use bs to denote browser cache size. which is
based on the value of 3. We assume that all browsers have the same size. We use th to
denote cache size threshold used in LRU_Threshold cache replacement policy. which is a

ratio of a given cacheable document threshold size over the proxy (or browser) cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 130

6.5.1 Evaluation of the sensitivity to the proxy cache size

We have examined how sensitive the hit ratios and byte hit ratios are to the changes of the
proxy cache size. For the experiments of each input trace. we set ps to 1%. 2%. 3%. 5% and
10% of the infinite proxy cache size. We set 3 = 10. We also choose th = 0.5. which means
the proxy size threshold is half of the proxy cache size. and the browser size threshold is also
half of browser cache size. Qur trace-driven simulations show that our cooperative-caching
consistently outperforms browser-aware-prozy-server and prozy-and-local-browser for all the

traces measured by hit ratios and byte hit ratios. in Figures 6.4 - 6.7. respectively.

BU-85 Trace BU-95 Trace
w ¥ T 1 L1 40] T L T j
|
0 4 35 F 5
- ,.._..-.G od —8

8 8 8 8
® 8
1J

x
-
"i

\.

!

!

‘.

!

‘.

Hit Ratio (%)

Li
A
Byte Hit Ratio (%)
- —~ ny
=) an S
T L} T
\ o -

20F proxy & browser —— b
browser-aware ---x--- proxy & browser ——
10+ cooperative caching ---4-- 5t browser-aware ---x--- |
offine agorm =] cooperalive caching -
offine algorthm 2
0 L i l i 0 A e L L
0 2 4 6 8 10 0 2 4 6 8 10
Relative Proxy Cache Size (% nfinte cache size) Relatve Proxy Cache Size (% mfinte cache size)

Figure 6.4: Hit ratio and byte hit ratio of the three caching schemes versus relative proxy cache
sizes using BU-95 trace (,3=10. th=0.3).

We first compare the performance of browser traces BU-95 and BU-98 (sec Figures 6.4
and 6.5). For prozy-and-local-browser. BU-98's hit ratio is much lower than BU-95s hit
ratio. but is also much lower than BU-98's hit ratio of offline-algorithm. which means that

the hit ratio of the BU-98 trace has much more potential for improvement. while the hit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 131

BU-98 Trace BU-98 Trace
50 T g Y y 40 T T nam
(L0 g 4 3k
40 +
30 -
Br =
S
gt S5
g 3
g B E 2
z
= 20 - |]
T 215
15+] o
proxy & browser —— 0r proxy & browser ——
or browser-aware ---x--- browser-aware ---x---
ralive caching -4+ cooperatve caching -4- |
Sr cooooemmzea;mhu:g ; 7 St offine algorthm 5
o L A L L o 1 4 i 1
0 2 4 6 8 10 0 2 4 6 8 10
Relative Proxy Cache Size (% nfinte cache size) Relative Proxy Cache Size (% infinite cache size)

Figure 6.5: Hit ratio and byte hit ratio of the three caching schemes versus relative proxy cache
sizes using BU-98 trace (3=10. th=0.5).

ratio of BU-95 trace has almost no room for improvement because it is so close to offline-
algorithm. Both traces’ byte hit ratios of prozy-and-local-browser have similar performance
gaps with offline-algorithm. Our scheme of cooperative-caching improves hit ratios and
byte hit ratios of both traces. which are very close to offline-algorithm. As an example of
ps = 5%. the offline-algorithm outperforms cooperative-caching by only 3.03% and 1.26%
measured by hit ratio and byte hit ratio for BU-98. So cooperative-caching is more promising
to improve year 1998’s trace than the trace three years before. because requests in the year
1998’s trace are more evenly distributed.

Boceing-1 and boeing-5 are proxies traces. but we still see a big performance gain from
cooperative-caching. The intra-network overhead simulation for these two traces in Section
6.6.1 shows that the increase of intra-network overhead of cooperative-caching is trivial.
which does not offset the (byte) hit ratio gain from this scheme. So reducing document

duplications among cooperative proxies in the same organization is still promising for per-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 132

boeng-4 Trace boeng-4 Trace
50 T Ld T T 25 T R 4 T T
45
“r 20t .
BF -
s £
Q0+ o 15F 3 ‘3
;’ i X ..
14 x)
o § % o
f 20Fr P 10F
P
15} / i
proxy & browser ——
10r browser-aware ---x-- 1 S5r proxy & browser ——
cooperalive caching -4 browser-aware ---x---
5r offine aigorthm 3 cooperative caching -«
offine aigorthm 2
0 1 L A e 0 A A i i
0 2 4 6 8 10 0 2 4 6 8 10
Relative Proxy Cache Size (% nfinite cache size) Relative Proxy Cache Size (° infinite cacne size)

Figure 6.6: Hit ratio and byte hit ratio of the three caching schemes versus relative proxy cache
sizes using Boeing-4 trace (.J=10. th=0.5).

formance. But it is not desirable for higher level proxies. which are closer to servers and
farther to clients. because long distances among these proxies and potential networking
congestion may offset (byte) hit ratio gains so that response time can not be improved [40].

The percentage (ps) reflects the ratio between the actual proxy cache size and the
accumulated size of unique documents. If the increase of the numbers of servers and of the
diverse client populations is faster than the increase of the proxy cache size. the relative
proxy cache size (ps) will continue to decrease. In other words. our cooperative-caching
scheme will be more performance-beneficial as Web servers and Web client populations

continue to increase in both numbers and types.

6.5.2 Evaluation of the sensitivity to a browser cache size

We have examined how sensitive the hit ratios and byte hit ratios are to the changes of a

browser cache size. For the experiments of each input trace. we set 3 to 0.1. 1. 5. 10. 15. 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 133

boeng-5 Trace boeng-5 Trace
50 T L] T T 25 T T T T
45 p
]
L L 2]
“ 2 3 :“ .. - "'..__'___,...---“"'_1
T I
g30r o 15F T
0 g
5 5F I
ot S 0k
>
15+ b
proxy & browser —— proxy & browser ——
10 browser-aware ---x--- Sr browser-aware ---x--- 1
cooperalive caching - &-- cooperative caching -
Sr offine aigonthm 3 offine aigorthm <
0 1 — 1 1 0 b 1 - 1
0 2 4 6 8 10 0 2 4 6 8 10
Relative Proxy Cache Size (% nfinite cache size) Relatve Proxy Cache Size (*o nfinte cache size)

Figure 6.7: Hit ratio and byte hit ratio of the three caching schemes versus relative proxy cache
sizes using Boeing-5 trace (.3=10. th=0.3).

and 50. respectively. We set ps to 1% of the infinite proxy cache size. and choose th=0.5.
Our trace-driven simulations show that our cooperative-caching consistently outperforms
browser-aware-prozy-server and prozy-and-local-browser for all the traces with all the given
3 values measured by hit ratios and byte hit ratios in Figures 6.8 - 6.11. respectively. The
performance gain of all the schemes is improved slowly after 3 reaches a certain value. The
best performance gain was achieved for 3 in the range of 1 to 15. If 3 is too small. such
as less than 0.1, the accumulated browser cache is not large enough to be effective for both
cooperative-caching and browser-aware-prozy-server. It is also not desirable to increase 3
to a very large value. (The paper in [131] also points out this). For the examples in section
5.3.1. the range of 1 to 15 of /3 corresponds a browser cache size in the range of 10 MBytes
to 150 MBytes. which is a reasonable range of browser cache size in current disk storage

capacity of workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 134

BU-95 Trace BU-35 Trace

s
]
&

] Br .
4
60 0+ e —
g e e e
gso ;25_ a » X e s
o s I 3 -
2w 0§ T J
: Eb
I ;:l_15-
o

proxy & browser ——
browser-aware ---x--- |
cooperative caching -«

cftmne allgonmin €

0 1 1 L L 1 4 L 1 1 0 L L I 1 —r L
0 5 10 15 20 25 30 3 40 45 50 0 5 0 15 20 25 0 3B 4L 45 0
Relative Browser Cache Size (% mfinte cache size) Relative Browser Cache Size (* nfinte cache size}

Figure 6.8: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using BU-95 trace (ps=1%. th=0.5).

6.5.3 Evaluation of the sensitivity to the replacement threshold

We use the basic LRU _threshold cache replacement policy in both prozy-and-local-browser
and browser-aware-prozy-server. We have revised the LRU _Threshold policy for cooperative-
caching. where a document larger than the threshold could be cached as long as enough
free caching space is available but is marked as an LRU document. We have examined how
sensitive the hit ratios and byte hit ratios are to changes of the replacement threshold. For
experiments of each trace. the th variable is set to 5'; % ;ﬂ- l‘ % T‘ é and 1. respectively.
We set ps to 1% of the infinite proxy cache size. and choose 8 = 10.

Our trace-driven simulations show that cooperative-caching cousistently outperforms
browser-aware-prozy-server and prozy-and-local-browser for all the traces with all the given

relative thresholds measured by hit ratios and byte hit ratios in Figures 6.12 - 6.15.

Our experiments show that in gencral small cache threshold values are more effective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 135

BU-98 Trace BU-98 Trace
w T T T T T T T T T 40 T 1 L] L nl T T R
&5 4
40+ 2
Lol
5r o 2 et 1 3
-~ o)
Lut g T 1 g
o a T g
El- 3 A S { «
c ¥ .~ 3
pop o 1 %
- >
15F 4 @
proxy & browser —— 10F proxy & browser —— 4
or browser-aware ---«-- Drowser-aware ------
cooperative caching -4 | cooperative caching a4+ |
St offine aigonmfg € 3 offine aigorthm &
0 i L 1 L L 1 1) yl 0 1 1 Ll L L 1 1 1 i
0 5 0 15 20 25 30 3B 40 45 50 0 5 0 18 20 25 30 3B 40 45 50
Relatve Browser Cache Size (% mnfinde cache size) Relatve Browser Cache Size (% nfinte cache size)

Figure 6.9: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using BU-98 trace (ps=1%. th=0.3).

for cooperative-caching than large threshold values measured by the hit ratios. This is
because file size distribution is heavy-tailed [6]. The average size of popular documents is
smaller than that of unpopular documents. But a very small threshold is not beneficial
to performance measured by byte hit ratios. Comparing hit ratios of cooperative-caching
for trace BU-95 and BU-98. we show that small cache threshold values are more effective
for BU-98 trace. This can be explained by the findings in [6): BU-98 trace shows a shift
toward smaller sizes overall than BU-95 trace. The threshold impact to (byte) hit ratios
of cooperative-caching is much less sensitive than those of browser-aware-prozy-server and

prozy-and-local-browser for browser traces.

6.5.4 Performance Impact of Scaling the Number of Clients

We have also evaluated the effects of scaling the number of clients to cooperative-caching.

Figure 6.16 presents the hit ratio increment curves (left figure) and the byte hit ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 136

boeing-4 Trace boeing-4 Trace
50 T T T T T T T T T 25 T T L] T L T ! T
45
40r . @ a 20F 4
B 2 s - ® . - 3
S & g €
i*_' 0+ e --=o=" Ll) 15#3 3 ¢© y
o P o § Boeo oo
g sl i c
c R TS)
z s] T oo 3
b
15+ @
proxy & browser
10+ proxy 8 browser —— st browser-aware --v--- |
browser-aware ---x--- cooperalive caching
5 cooperative cachng & | offine aigonthm €
cffline algonthm & b
o i - A . Al - - vy d 0 A 4 L yl b 1 1 1 L
0 5 10 15 20 25 30 35 4 45 50 0 § W0 15 20 25 0 I 4 45 50
Relatve Browser Cache Size (beta) Relative Browser Cache Size (beta)

Figure 6.10: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using Boeing-4 trace (ps=1%. th=0.5).

increment curves (right figure) of the five traces as the relative number of clients changes
from 25% to 100%. Our trace-driven simulation results show that both hit ratio increment
and byte hit ratio increment of the browser-aware proxy server proportionally increases as
the number of clients increases. For some traces. the increments are significant. For example.
the hit ratio increment of BU-98 trace increcases from 16.89% to 23.85%. to 28.13%. and
to 34.13%. as the relative number of clients increases from 25% to 50%. to 75%. and to
100%. respectively. The byte hit ratio increment of Boeing-5 trace increases from 36.35%
to 46.34%. to 52.92%. and to 66.02%.

The performance results indicate that cooperative-caching scales very well for the traces
with up to 3996 clients because it will exploit more browser locality and utilize more space

as the number of clients increases in the cluster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 137

beeing-S Trace boeng-5 Trace
50 T T T T L] T T T T 25 v T L T I T T
45- e
4 [
- - - -
40 0 o a D 200 a a a G
BE @ m e SR P *
- 8 B e L A * < B e MeemeWmnemseemeneememeseseatesessasasesooios
Zaf o R :
0 - . I
E 25’ q c
¥ =
b
F0r 4 e 10F 4
>
15 ® Faer guare
rowser-a
o omirne = | pgahesoey 1|
offine a x
cooperative caching -
5 ommeam"m':g o J o
0 1 i S L A L 1 1 i e 0 1 |l L e SR R i L A
0 5 10 5 20 25 30 3B 40 4 50 0 5 10 15 2 25 30 3B 40 45 S0
Relative Browser Cache Size (beta) Relative Browser Cache Size (beta)

Figure 6.11: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using Boeing-5 trace (ps=1%. th=0.3).

6.5.5 Latency Reduction

The access delay for fetching a missed document in the proxy cache from a remote server
can be estimated by the summing the network connection time and the data transferring
time in the Internet. We estimated connection times and data transferring times by using
the method presented in [70]. where the connection time and the data transferring time
are obtained by applying a least squares fit to measured latency in traces versus the size
variations of documents fetched from different remote servers. The access latency to remote
servers reduced by the cooperative-caching can be further estimated by accumulating the
latency times used to access remote servers for those requests missed in browser-aware
prozy server or prozy-and-local-browser. but hit in cooperative-caching. Our experiments
show that the cooperative-caching achieves average latency reduction of 21.25%. compared

with the browser-aware-prozy-server scheme. and about 56.61%, compared with the prozy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 138

BU-85 Trace BU-85 Trace

m T S T T 40 v T T T

0 8 B J

60 0r 1
g %0 IR N . IR . ¥
] g e)
g4 s 0°F T 4
14 c |
=3 = X
IXNr g I 5t -

L
,X—
20F proxy & browser —— o 10
browser-aware ---x--- proxy & browser ——
10t cooperative caching ¥ st prowser-aware ---x--- |
cooperative caching - &
0 1 1 L 1 0 L 1 L b
0 02 04 0.6 08 1 0 02 04 06 08 1
Relative Threshold (% cache size) Relative Threshold (% cache size)

Figure 6.12: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using BU-95 trace (ps=1%. 3=10).

and-local-browser scheme.

6.6 Overhead Analysis

The overhead associated with the cooperative-caching comes from communications among
the proxy and its client browsers (intra-network overhead). the additional space for building
management data structures. and the CPU time spent on the management operations. We

will discuss these three types of the overhead in this section.

6.6.1 Intra-network Overhead

The additional overhead of cooperative-caching comes from (1) the time spent on data
transferring between two browsers for hits in remote browsers. (2) the time spent on data
transferring from the proxy to a browser for hits in the proxy cache (these hit documents

might be hit in requesting browsers by prozy-and-local-browser but not by the cooperative-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 139

BU-98 Trace BU-98 Trace
50 T T T T 4o s 1 1 L
45+ 4 k]
40+ 4
K1l g 4
% -l 1 ;\: - u ¢ L ® L |
e ~ o S 4
2Nr ., . . - 3 225 PR Mook
I} JPUBEIRPUR y o -
E5B5F e 4 T 20
| e i -4
z0t o I
I RN
™ -
15 » x Q x
X proxy & browser —— 0F proxy & browser ——
or browser-aware ---x--- 4 / browser-aware ---«---
cooperative caching - - 5t /’ cooperative caching -« |
5H 4
/4
o 1 1) L 0 L 1 1 d
0 0.2 04 06 08 1 9 02 04 06 08 !
Relative Threshold (% cache size} Relative Threshoid (% cache size)

Figure 6.13: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using BU-98 trace (ps=1%. 3=10).

caching scheme). (3) the time spent to transfer documents from a client browser to the
proxy due to requests by multiple clients.

We estimated the data transferring times from the above three sources on a 10 Mbps
Ethernet in our simulation. The browser access contention is handled as follows. If multiple
requests ask for bus service simultaneously. the bus will transfer documents one by one in
FIFO order distinguished by ecach request’s arrival time. Our experiments based on the
ping facility show that the startup time of data communications among the clients in our
local arca network is less than 0.01 second. Setting 0.01 second as the network connection
time. Table 6.2 presents the maximal intra-network overhead for cach trace with different
parameters in simulations. Column ~Time™ is the total workload service time. Column
“communication” shows the additional intra-network latency time and the percentage of
this latency out of the total workload service time. Column “contention™ is the waiting

time due to the additional intra-network communication contention for the bus and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 140

boeng-4 Trace boeng-4 Trace
50 B T T T 25 T T T L
45 4
40 - 4 04+ .
L8
Br e . PRI . . 3 z
‘\: e —~ b - -
56 30 S eoeeeamnmneenee Keemeecmnmmemns RRCEt 2 % 15 [. . . =
i 25+ < o8
14 S NSV PR s 4
b bd b R LT TP Wommememeae e
i 0°r 4 o 0F 4
)
15¢ b proxy & browser ——
10 pmw&bm —_— 5t browser-aware -« -- B
browser-aware ---x--- cooperative caching #
5| cooperavecaching ¢ | T
0 L L J. A 0 L1 e 1 1
q 02 04 06 08 1 0 32 04 36 08 1
Relative Threshold (% cache size} Relative Threshold (°. cache size)

Figure 6.14: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using Boeing-4 trace (ps=1%. .3=10).

percentage of the waiting time out of the “communication™ time. In this table. we also
present the intra-network overhead of browser-aware-prozy-server that comes from the time
spent on data transferring between two browsers for the hits in remote browsers.

We show that the amounts of data transferring times and the bus contention times spent
for communications among the proxy and clients of the cooperative-caching scheme on all
traces arce very low. For example. the largest accumulated communication and network
contention portion out of the total workload service time for all traces. is less than 1.51%.
In addition. the largest contention time of cooperative-caching is 0.01 seconds. which only
contributes up to 0.004% of the total communication time. This implies that cooperative-
caching does not cause bursty communications in a proxy-browser system. Notice that
“communication” times of cooperative-caching are even smaller than that of browser-aware-
prozy-server for browser traces BU-95 and BU-98. which shows that cooperative-caching

can place documents in more suitable places for these two traces than browser-aware-prozy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 141

boeng-S Trace boeing-5 Trace
ﬁ 1 T L] ¥ 25 T T T T
St 4
Qo 4 20} 4
[8
_ B ¥ 4 . :.-“' --------- . ‘".: ---------- : ;\? :_':‘;;.:; % e e [- [
&30 f et wencmmrenT T 5 o 15F " R T 4
9 T
| IE
- I
f 0F ~ 2 10+ -
15 p 4) proxy & browser ——
browser-aware ---x---
10 L——/ proxy & browser —— 5t cooperative caching «
browser-aware ---x---
5t cooperative caching -« 4
0 L 1 1 1 0 1 I It .
0 02 04 06 08 1 0 0.2 04 0.6 08 1
Relative Threshold (% cache size) Relative Threshokd (% cache size)

Figure 6.15: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using Boeing-5 trace (ps=1%. 3=10).

server.
Traces | Time (s) Browser-aware-prozxy-server Cooperative-Caching
communication contention communication I contention
BU-95 3668313 | 2501s (0.068%) | 0.01s (0.0004%) 232s (0.006%) 0.01s (0.004%)
BU-98 4164302 167s (0.005%) 0.01s (0.006%) 43s (0.001%) 0.01s (0.003%)
Boeing-4 86382 668s (0.77%) 0.0022s (0.0004%) | 1304s (1.51%) | 0.0004s (0.00003%)
Boeing-5 86176 7T41s (0.86%) 0.011s (0.0017%) 1255s (1.46%) 0.0052s (0.0005%)

Table 6.2: Intra-network Overhead

6.6.2 Space Overhead

The additional space of cooperative-caching is allocated for two data structures kecping
track of reference counts to manage data placement.

First. linked lists are used in the proxy to count the number of accesses to the same doc-
uments from different requesting browsers. The size of this space requirement depends

on TH.BROWSER and the number of clients to access this document. The value of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 142

Hit Ratio Increment vs Number of Clients Byte Hit Ratio Increment vs Number of Clients
‘0 T T T T T T T 70 T T T T v T 1
§
B+ i 60 k 4
:
- w - ~
bl e] T Sor
- gpes]
=
85} . £
: - | o
- [
g 20 gu-ss —_ °
= .- U-98 ---x--- E b
St Boeng-4 - g%
T Boeng5 - @ 3
z @ 0
I 10F « <
1 3
5t o 0r
0 - e 1 A1 l A A 0
20 3 4 S0 60 70 8 W 00 20 0 4 50 6 70 8 % 00

Relatve Number of Clients (% Total Number of Clients) Relative Number of Clients (% Total Number of Clients)

Figure 6.16: The hit ratio and byte hit ratio increments of the cooperative-caching over the prozy-
and-local-browser.

TH_BROWSER reflects the trade-off between the amount of document duplications and
intra-network communication overhead. Our simulation results show that an optimal range
of TH.BROWSER is 3 to 5. We use 5 to estimate the space requirement. Our simulation
results also show that the average number of clients to access one document is less than 6.
For cach element in the list. we use 2 bytes for LL.Client_ID. | byte for LL. Access_Count.
and 5 bytes for LL.Pointer. The 2 bytes can record up to 65.536 different clients. The 1
byte can represent up to 256 accesses which is much larger than the optimal TH_ BROWSER
we used. The 5 bytes could represent up to 1024 G address space. We assume that the
proxy has a 32 GByte cache. and an average document size is 8 KByte. The proxy has
about 4 M Web pages. The proxy needs to allocate (32GB/8KB) x (2+ 1 +5) x 6 = 192
MBytes for the linked lists. which only occupies 0.59% of the proxy cache. and can be easily
placed in the main memory of a proxy server.

Second. a counter and a structure array is allocated for cach cached document that has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 143

been requested by other clients. The array size is TH_ PROXY. The value of TH_.PROXY
also reflects the trade-off between the amount of document duplications and intra-network
communication overhead. Our simulation results show that an optimal range of TH_PROXY
is 3 to 7. We use 7 in our calculation. which will overestimate the space requirement.
For cach element of the array. we allocate 2 bytes for AC.Client ID. and | byte for
AC.Access_Count. One byte is also enough for the counter because we use TH_ PROXY=7
here. We assume that each client has a large browser cache with a 80 MByte cache. and an
average document size is 8 KByte. Each browser has about 10 K Web pages. The browser
needs to allocate about (80M B/8K B) x (7 x (2 + 1) + 1) = 220 KBytes. which only oc-
cupies 0.27% of a browser cache. This requirement is overestimated because the array and

the counter are allocated to a document only if this document is accessed by other clients.

6.6.3 CPU Overhead

In a browser. the additional CPU overhead comes from searching structure arrays. The size
of cach array is TH_ PROXY. As we mentioned previously. an optimal range of TH_PROXY
is 3 to 7. So handling such a search for each request fromn a remote client requires O(1)
time.

In the proxy. the additional CPU overhead comes from searching a linked list for a hit
request. The CPU time requirement for handling such a search for a document from a
remote client depends on the number of clients that have requested the document. As we
mentioned previously. the average number of clients to access one document is less than 6.
Thus. handling such a search requires O(1) time in average. But it is possible that there

is a long list for one document. The following strategics have been applied to alleviate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 144

this possible delay. First. an element for a client will be deleted from the list when the
document has been requested as many times as TH_.BROWSER because the client has
been informed to cache this document. Second. the list search can be overlapped with
passing the document to a client. In detail. when a client request hits in the proxy. the
proxy first sends the requested document to the client. The client will spend some time to
view the document. At the same time. the proxy searches for the list of this document to
check how many times this client has requested this document. Afterwards. the proxy will
inform the client whether to cache this document or not depending on the searching result.

The searching process will not delay response times to the clients.

6.7 Chapter Conclusion

We have demonstrated trends of decreasing proxy hit ratios and increasing access diversity.
and significant document duplications in Web caching systems. In order to effectively utilize
the increasingly proxy and browser caching space. we propose a peer-to-peer Web caching
management scheme. called cooperatively shared prory-browser caching. We show that the
performance of our scheme compares very favorably with the performance of near-optimal

offline Web caching algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Data Integrity and Communication

Anonymity

7.1 Introduction

In order to make the browsers-aware proxy scrver feasible in practice. the reliability and
security of the browser data must be seriously considered [134]. For example. the browser
data files that have been modified by an owner client are not reliable for sharing among
clients. In addition. the identities of a requesting browser and a hit browser. and the hit
document should not be visible among clients to preserve the privacy of ecach client. These
concerns can be addressed by ensuring data integrity and making anonymous communica-
tions between clients.

We have proposed protocols to enforce data integrity and communication anonymity
[139]. This part of the work was in collaboration with Zhichen Xu at Hewlett Packard
Laboratories. Our study shows that the associated overheads are trivial. These protocols
are based on symmetric and public key encryptions [88]. In a symmetric key system. two

communicating parties share an identical secret. the symmetric key. used for encryption

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 146

and decryption. DES (Data Encryption Standard) is such an example. In a public key
system (e.g. RSA). such party has a public/private key pair. A public key can be accessed
by everyone. A sender encrypts an outgoing message using a receiver's public key. and the
receiver uses its private key to decrypt this ciphertext. DES is much faster than RSA. A
practical way is to combine DES and RSA. for example. to use DES to encrypt a large

message and use RSA to encrypt the DES key.

7.2 Data Integrity

To ensure that a document received by a client is tamper-proof. we need to find a way for
a requesting browser to check whether the content it receives is intact. For this purpose.
we use the proxy server to produce a digital water mark in the following manner: for a
document f. the digital water mark is produced by first generating a message digest using
MD5 [104]. and then encrypt the message digest with the proxy server’s private key. (We
assume that the private key of the proxy is z. the corresponding public key is y. and the
public keys of the browser caches are known to all peer clients. We use K (M) to represent
either (i) the message M being encrypted with the key K. or (ii) the ciphered message M
being decrypted with decryption key K.)

Figure 7.1 shows the integrity protocol. Initially. when a client ¢,. sends a request to
the proxy for a document. the proxy obtains the requested document. denoted as f. either
from the server or an upper level proxy. The proxy generates a MD5 message digest. i(f).
of the document. It then encrypts h(f) with its private key z to produce r(h(f)). The

message {f.z(h(f))} is sent to the client ¢, and stored in its local cache. If another client ¢)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 147

xhD)| £ N\ L. .
y(x(h()))
h() ?= h(’)

Figure 7.1: Integrity Protocol

requests the same document. and this document has been replaced in the proxy cache and
is found to be in ¢;’s cache. the proxy will instruct ¢, to send the message {(h(f)). f} to ¢,.
On receiving the message. ¢, will produce a message digest of the document using MDS5.
and compare the message digest with y(x(h(f))). No client can tamper with the document
f and produce a matching digital water mark. because no client but the proxy server knows

the private key of the proxy server.

7.3 Anonymity Issue

One important problem in peer-to-peer (P2P) systems is to enforce the trust of the data
stored in the system and the security of the peers. So we extend our study on anonymity to
generalized peer-to-peer systems. Ina P2P system. each peer can play three different roles:
as a publisher to produce documents: as a provider (or a responder) to host and deliver
documents upon requests: as a requester (or an initiator) to request documents. In some

systems. a provider and a publisher can be the same peer for the same document. In some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 148

other systems. a provider and a publisher are different peers for the same document for
various reasons. For example. a publisher can distribute its documents to other provider
peers in order to resist censorship: and documents can also be cached in some non-producer
peers.

Depending on circumstances. applications and users of a system may require different
levels of anonymity. It is desirable in practice that the identity of a publisher be hidden
to resist censorship (publisher anonymity). or that ecither a responder or an initiator be
anonymous (responder or initiator anonymity). or that both responder and initiator be
anonymous (mutual anonymity). In the most stringent version. achieving mutual anonymity
requires that neither the initiator. nor the responder can identify each other. and no other
peers can identify the two communicating parties with certainty. This is also the goal of
our browser sharing system.

P2P systems can be classified into two classes: pure P2P systems. where peers share data
without a centralized coordination: and hybrid P2P. where some operations are intentionally
centralized. such as indexing of peers’ files. Which form the system takes makes a difference.
For instance. in a hybrid P2P. whether the indexing servers can be trusted or not has a
critical implication on how anonymity is enforced.

In the next section (Section 7.4). we will overview the existing anonymity protocols. and
present our motivation and objectives of the work.

Our goal is to achieve mutual anonymity between the initiator and responder with high
efficiency. We consider two cases. In the first case. we assume the existence of trusted
index servers (e.g.. Napster[90]. and browser-aware proxies [138]). In our work. instead of

having both the initiator and responder each prepare their own covert path. we rely on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 149

index server to prepare a covert path for both of thern., significantly reducing operations and
communication overhead. We have proposed two new techniques: center-directing. where
encryption cost is independent of the length of the covert path. and label-switching that
eliminates potentially excessive messages in center-directing (Section 7.5).

In the second case. we assume a pure P2P setting. We propose an anonymity protocol
called shortcut-responding that can greatly reduce communication overhead while preserving
mutual anonymity (Section 7.6).

We analyze our proposed protocols in Section 7.7. We present our empirical experience
of the techniques in a browser-sharing environment in Section 7.8. We discuss how to select
the protocols based on their merits and limits from different aspects in Section 7.9. We

conclude in Section 7.10.

7.4 Related Work on Anonymity Studies

The related work includes existing protocols for the three types of anonymity. We have
paid special attention to the work on mutual anonymity. which has motivated us to develop

new protocols.

7.4.1 Publisher and Sender Anonymity

Publisher Anonymity: In order to protect a publisher peer. many systems provide cen-
sorship resistance facility. In Freenet {29]. cach node in the response path may cache the
reply locally. which can supply further requests and achieve publisher anonymity. Publius
(126] splits the symmetric key used to encrypt and decrypt a document into n shares using

Shamir secret sharing and store the n shares on various peers. Any k of the n peers must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 150

be available to reproduce the key. Instead of splitting keys. FreeHaven[33] and {111] split
a document into n shares and store them in multiple peers. Any k of the n peers must be
available to reproduce the document. Tangler [125] and Dagster[120] make newly published
documents depend on previously published documents. A group of files can be published
together and named in a host-independent manner.

Initiator/responder Anonymity: Most existing anonymity techniques are for client/server
models. which only hide the identities of the initiator (clients) from the responder (the
server). but not vice versa. Anonymizer [55] and Lucent Personalized Web Assistant
(LPWA) [54] act as an anonymizing proxy between a user and a server to generate an
alias for a user. which does not reveal the true identity of the user. Many systems achieve
sender anonymity by having messages go through a number of middle nodes to form a
covert path. In Mix {25] and Onion [121]. the sender part determines the covert path. and
a message is encrypted in a layered manner starting from the last stop of the path. Instead
of having the initiator select the path. Crowds [102] forms a covert path in such a way that
the next node is randomly selected by its previous node. Hordes [115] applies a similar
technique used in Crowd. but it uses multicast services to anonymously route the reply to
the initiator. Freedom [51] and Tarzan (50| are similar to Onion Routing. but they are

implemented at IP layer and transport layer rather than the application layer.

7.4.2 Existing mutual anonymity protocols: their merits and limits

Our study targets mutual anonymity between an initiator and a responder. There are
two most related and recent papers aiming at achieving mutual anonymity: Peer-to-Peer

Personal Privacy Protocol (P?) [114]. and Anonymous Peer-to-peer File Sharing (APFS)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Cominunication Anonymity 151

[108].

Paper [114] first proposes to usc a global broadcast channel to achieve mutual anonymity.
where all participants in the anonymous communication send fixed length packets onto this
channel at a fixed rate. Noise packets can be used to maintain a fixed communication
rate. Besides enforcing both initiator and responder anonymity. this protocol pays a special
attention to climinate the possibility of determining the communication linkability between
two specific peer nodes by providing equal and regular broadcast activities among the entire
peer group. The broadcast nature of this framework can limit the size of the communication
group. To address this limit. the authors further propose the P® scheme that creates a
hierarchy of broadcast channels to make the system scalable. Different levels of the hierarchy
provide different levels of anonymity at the cost of communication bandwidth and reliability.
As authors stated in this paper. P? will not provide high bandwidth efficiency. But P? allows
an individual peer to trade-off anonymity degree and communication efficiency.

In the APFS system. a coordinator node is sct to organize P2P operations. Although
this node is not considered as a highly centralized and trusted server. it should be in
service all the time. and it plays an important role to coordinate peers for file sharing.
APFS allows new peers to join and leave the system periodically by sending a message
to the coordinator. Willing peers begin anonymously announcing themselves as servers to
the coordinator. After contacting the coordinator. peers anonymously and periodically send
lists of files using alias names to those servers. An initiator peer starts to request documents
by anonymously querying the coordinator for available servers. The coordinator responds
with a list of current servers. A peer then anonymously sends queries to some servers. Upon

requests, these servers will send back N matches to the initiator peer. The initiator sends

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 152

the match request to a path. where the tail node is the last member. The tail node then
forwards the request to the responder and returns the reply back to the initiator. APFS
uses Onion as the base to build their protocol. There are two advantages of APFS. First. all
the communications in the system are mutual anonymous. Even the coordinator does not
know the physical identities of the peers. Second. the anonymous protocols are designed
for a pure P2P where the trusted centralized servers may not be available.

However. there are also several disadvantages associated with APFS solely relying on
volunteering. First. the suitability of a volunteering peer needs to be taken into account.
which can significantly affect the performance of P2P systems. To do so. the coordinator
nceds to examine each volunteering peer before possibly assigning a task. such as peer
indexing. The background checking of peers has to be done anonymously. increasing the
communication overhead. Second. the number of servers can be dynamically changed. In
the worst scenario. no qualified peers are available for a period of time. causing the P2P
system to be in a weak condition. Thirdly. since any peer can be a server. a malicious node
can casily become a server. Although the peer identities are hidden from a server. a server
has the power to provide wrong indexing information to mislead the initiators. Finally.
since no trusted servers are available. the anonymous communications have to be highly
complicated.

Both P® and APFS provide unique solutions to achieve mutual anonymity in pure
P2P systems without any trusted central controls. We believe that limited trusted and
centralized services in decentralized distributed systems are desirable and necessary. In
practice. trusted central parties exist and effectively function. such as proxies and firewalls

in Internet and distributed systems. Utilizing these trusted parties and aiming at both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 153

reliability and low-cost. we propose a group of mutual anonymity protocols. We show that
with some limited central support. our protocols can accomplish the goals of anonymity.
efficiency. and reliability. We have also proposed a mutual anonymity protocol solely relying
on self-organizations among peers without any trusted central controls. In this protocol. the
returning path can be shorter than the requesting path. Comparing with P>, this protocol
does not need to broadcast the requested file back to the requester so that bandwidth is
saved and efficiency is improved. Comparing with APFS. this protocol does not need special
nodes to keep indices of sharing files. thus. eliminating the index maintenance overhead.

and the potential problem of inconsistency between index records and peer file contents.

7.5 Anonymity with Trusted Third Parties

We present our techniques for achieving mutual anonymity of the initiator and responder
with the help of trusted index servers that keep (but do not publicize) the whercabouts of
the contents that are stored in the peers. Each peer sends an index of files they are willing
to share with others peers to selected index servers periodically or when the percentage
of updated files reaches to a certain threshold. We use I to represent the initiator. R to
represent the responder. S to represent the index server that [contacts, and p, (1 = 1.2....)
to represent a peer. For conciseness of the presentation. we assume there is only one index
server. Section 7.5.4 discusses how multiple index servers will be involved in order to scale
a P2P system.

A simple solution is to have an index server act as an anonymizing proxy hiding the

identities of I and R from cach other and other peers. But this index server may become

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 154

a bottleneck making the system not scalable. Instead. we have the index server randomly
select several peers to act as middlemen. These middle nodes form a covert path for the
peer that possesses the content to send the content to the peer that requests the content.
We describe one intuitive protocol using mirx. and two new protocols. center-directing
and label-switching, which are advanced alternatives. In the rest of the chapter. we use
X — Y : M to represent X sending a message M to Y. We use Ky to denote the public

key of X. and { M} K to represent encrypting the message M with the key K.

7.5.1 A Mix-based Protocol: an intuitive solution

The detail of the mix-based protocol is shown below:
Step 1: The initiator sends a request to S. The request is encrypted with S’s public
key.

[> S:{fileID}Kys

Step 2: S finds out that the file is possessed by R. it selects a list of peers pg.pi. ... px
at random. and builds a mir with R as the first member of the path. [as the last
member. and with p; in the middle. We call this path miz. A mir is of the form
(po. (p1...(I. fakemiz)K,, ..)Kp,) Kgr. The item fakemir is introduced to confuse the last
node in the miz. p;. so that the format of a message passing through the middle nodes are
the same. So p; cannot be sure that she is the last stop. In addition. it generates a DES
key K. It then sends a message to R. The message includes K encrypted with R's public
key. {file_ID} encrypted with the DES key K. K encrypted with I's public key. and the
miz.

S = R:{K}Kg. {file.ID}K.{K}K;.miz

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 155

Step 3: R obtains K using its private key to decrypt {K}Kpg: it uses K to decrypt
the portion of the message {file ID}K and gets the file f based on the file ID: it
uses its private key to peel mix to obtain pg. and also the rest of the path. mis'. i.c.

(p1---(I. fakemiz)K,, ...)Kp,. It encrypts the file f with K and sends a message to pg:

R-py: {f}K.{K}K;.miz'

Step 4: p; decrypts maz’ using its private key to obtain the address of the next member
in the mix paths. and this also produces the rest of the path. miz”. It then sends a message

to piy1. For pi. pr.1 is I.

pi =1 {SIK{K}K;.miz"

Step 3: I obtains K using its private key. and uses K to decrypt the encrypted file.

We omitted the details on how the initiator knows that the content is destined to it.
This must be done efficiently. There are three alternatives: (i) to have S also encrypt
file_ID with the I's public key and have R send this along with the content: (ii) to encrypt
a magic number and the DES key with I's public key: (iii) to encrypt file ID in fakemar
using the I's public key. In the remainder of the chapter. we assume that our protocols
choose one of the above alternatives.

The anonymizing path is selected by the trusted index server. and the mix routers are
selected among the peers. Having the index server perform a path selection. this scheme

becomes less vulnerable to traffic analysis since the peers’ public keys need only be exposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 156

to the index server. Otherwise. an eavesdropper who knows the peers’ public keys may
reconstruct the path by applying the public keys in a reverse order. Furthermore. the index
server has the opportunity to balance the load of the peers that act as mix routers. In
this protocol. only the path is encrypted with an expensive public key encryption. and
the content is encrypted with a less expensive DES key. This arrangement makes the
scheme efficient. This scheme can be made more efficient by encrypting the mix path using
secret keys that are shared between the index server and cach of the peers. The content is
encrypted by a key that is generated by the index server and is only known to [and R.
This hides the content from anybody except [and R.

To well defend against traffic analysis. S can have the responder pad the contents.
and the middle nodes can encrypt the DES-encrypted message pair-wise so that a message
appears different along the path. These enhancements can be done to all our protocols.

Figure 7.2 shows an example with two middle nodes.

Index Server

- {file_IDIK 2 {{KIKg. (file_IDIK. [K}K)
N - (py-1L fakcmlleplledKRl

3 UK. (KK .
:HflK.lKlK'.fakcmlxl 1K TN

in Al fakcmllep|)Kp }

Initiator
K KIK . : :

{1 fakcmnx}Kpl}

Responder

Figure 7.2: An example of the Mix-Based Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 157
7.5.2 Center-Directing

Alternatively. S can be used to reduce the number of encryption/decryption operations.
We describe two new protocols: center-directing and label-switching.

Instead of passing the mir through the whole covert path in miz-based protocol. the
center-directing protocol has the index server send each node in the covert path its next hop
individually. The basic idea of the center-directing protocol is as follows. The index server
S selects several peers to form a covert path. It directs the content through the path by
sending cach middle node p, a pair < lahel(p,). p,~1 > that is encrypted with p,’s public key.
The labels can be generated such that label(p,.) = {label(p,)} K Py The labels uniquely
identify a message. and p,. is the next member in the covert path. When the peer p, sees
a message from a peer labeled "I'. it will change the label to {I}K,,h*l and forward the
message to p,.;. Each p; keeps a hash table to synchronize between the message from the
index server and the message from its previous hop. The p,, ., is a random generated node
number. Using the random node’s public key to encrypt the request label each time. we
can defend against traffic analysis in the sense that (1) labels for the same request appear
differently along the covert path. and (2) the random generated node has no correlation with
the nodes in the covert path. This protocol takes advantage of the fact that encryption cost
is much lower than decryption cost in public key encryption. In contrast to the mix-based
scheme. this protocol uses messages to set up the path. Although this incurs additional
cost in hashing. setting up the path can be done in parallel. The big difference lies in the
size of items being encrypted and decrypted. The server needs to encrypt &k < label.p, >

pairs. Each peer decrypts once to reveal the next hop. and encrypts once to produce a label

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 158

for the next hop. Therefore. the sizes of items that need to be encrypted by public key
encryption are independent of the path length.
The details of the protocol are shown below:

Step 1: The initiator I sends a request to S.
I - S:{fileID}Kgs

Step 2: S first generates & that is the number of middle nodes in the covert path. S
then generates a unique label for the request. n. and the first middle node in a covert path.
po- S also generates a DES key K. In addition. it randomly generates another node number

used to convert the request label in node R. py. S then sends the following message to R:

S>> R:{K}Kg.{n.filedID.po.p,,} K {K}K,

Step 3: S generates the next stop of pg. p;. and another random node number p;,. It

converts the request label n to {n}K, . S then sends a message to node po:

S = po: {n}Kp, . {pi.p; } Kp,

Step 4: R obtains K using its private key to decrypt { K} Kpg: it uses K to decrypt the
portion of the message {file ID}K and gets the file f based on the file_ID: it converts

the request label n to {n}Kp . It encrypts the file f with K and sends a message to po:

R—po:{n}K, {f}KA{K}K,;

Step 5: S generates the next stop of p,. p,.y. and another random node number p,, _,.

It converts the request label {... {n}K, ...}K, to{...{n}K, ...}Kp . For py. prs,

10 "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 159

is . S then sends a message to node p;:

S —'pl : {... {n}Kp)O ...}Kph-{pl-¥l'p]|+l}K v

Step 6: p; first matches the request label coming from the index server and the request la-

bel coming from last stop. {... {n} K, ...} Kp, .so that it finds the next stop for the request.

0 "

pi-1. It then converts the request label {... {n}Kp ...}Kp to{...{n}K, ...}K, _.and

Jo

sends a message to p,.,. For pi.. pr.y is [.

R—po:{...{n}Kp, ... }Kp ASIKAK}K

Step 7: I obtains K using its private key. and uses K to decrypt the encrypted file.

Figure 7.3 illustrates this protocol with two middle nodes. Each middle node uses

an encryption operation to compute the label for setting up the path instead of using a

decryption operation.

2 1K1Ky, (n. file_ID. p,.p oK. [KIK
1 {file_IDIKy KK (n. fle-1D-py -yl TKIK,

3
Hn|Kp]0~ p r P”IKP()}

Initiator Responder

7 I(Ilnllﬂ,()l
J
Po

6. H(anp]OiKp”. K AKIK

T UKy KKK

Figure 7.3: An example of the Center-Directing Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 160

7.5.3 Label-Switching

The label-switching protocol further reduces the messaging overhead of center-directing by
putting more states on the peers. Rather than sending the middle nodes labels and next
hop addresses on-the-fly. the index server produces a path table beforehand. The table is
produced such that each peer p,. as a destination. is associated with several path options.
The path is of the form p, - p, — ---p, (L). This table is broken into sub-tables and
distributed to peers (encrypted with their public keys). The sub-table of p, consists of
a list of pairs of the form (L.nerthop). For every appearance of p, in the path table.
.= P; = Puw — --- (L). the pair (L.p,) is added to p,’s sub-table.

Table7.1 shows an example path table with 4 options for each peer. Table7.2 shows
some sub-tables derived from Table7.1. In this example. each path option has two middle
nodes. The number of middle nodes is not fixed in our design. It has alrcady been shown
that variable path-length strategies perform better than fix-length strategies[64]. Assuming
that the index server needs to prepare a path from node 5 to 0. it can select among 4
paths from entry for node 0: 2-3-0(L8). 4-6-0(L3). 3-4-0(L4). and 1-7-0(L1). Suppose L4
is picked. The message will route to node 3. 4 and finally to 0. with each peer using their

own sub-tables.

Table 7.1: Path Table

Peers path
0 2-3-0(L8) | 4-6-0-(L3) | 3-4-0(L4) | 1-7-0(L1)
2

The detail of the protocol is shown below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 161

Table 7.2: Sub-Tables
Peerl Peer2 Peerd Peer4

Lt | 7 L8 | 3 L8| 0 L3 | 6
L4} 4 L4 | O

-

Step 1: The initiator I sends a request to S.

I - S:{fileID}Ks

Step 2: S randomly selects a path in the entry for I in the path table (say po—p1 ... pi —
I). and a key K. Assuming that this path has a label . It sends the following message to
R:

S— R:{L.p}K.{K}Kp {K}K]

Here pq is the first middle node in the path.

Step 3: R sends a message (the label) to pg:

R — pgy:!

A persistent connection will be established between R and pg if the connection does not
already exist. This connection is bound to the label I. Each p, sends a message to p,.; that

is obtained from the sub-table of p,.

Pr = poey

A persistent connection is set between p, and p,. .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 162

Step 4: A message is sent along the persistent connections from R to .

R-1-I:{f}K{K}K,

We use —! — to represent the persistent connection identified by the label {.

Step 5: I obtains K using its private key. and uses K to decrypt the encrypted file.

This protocol does not need the synchronization associated with center-directing pro-
tocol: it does not need as much encryption/decryption operations compared with the mix-
based protocol: the only encryption and decryption occurs during the sub-table distribution.
The overhead comes from the spaces for storing the path table and sub-tables and the time
spending on table look-ups. Even though the path table kept in the trusted index may be
a target of attack. multiple paths for a given source-destination pair adds one additional
level of defense.

To simplify our presentation. we have assumed that we use a single label for the entire
path. This protocol can be improved for stronger anonymity by introducing a pair of labels
(like the center-directing protocol) for each hop rather than using a single label for the

entire path. so that a label appears differently along the covert path.

7.5.4 Multiple Trusted Index Servers

In order to scale a P2P system to a large size. we will use multiple trusted index servers.
Since multiple proxy servers are always available in an Internet region. this arrangement can
be casily set up in practice. Besides scalability, the arrangement of multiple index servers

will improve the reliability of a P2P system. As a peer node joins a P2P system. it will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 163

register itself in multiple index servers. Servers may be down sometimes but unlikely at the
same time. Thus. the indexing service is fault tolerant and much more reliable than the
system with a single index server. However. use of multiple index servers also raises a load
balancing issue. Without proper scheduling and redirection of peer requests. the workloads
among the index servers can be unbalanced. generating some hot spot servers and leaving
some others idle or lightly loaded.

We will adapt our own load sharing schemes [133] to make resource allocations in the
P2P system. Each index server node maintains a current load index of its own and/or a
global load index file that contains load status information of other index server nodes. The
load status can be the number of registered peers. the average number of handled requests.
storage for index of files to be shared. and so on. There are two alternatives to balance the

workloads among the indexing servers when a peer wants to join the system.

e indez-server-based selections. When a peer node joins the system and asks for an
indexing service. it first randomly selects an index server. The load sharing system
may periodically collect and distribute the load information among all index server
nodes. Based on the load information of all index server nodes. the selected server
will then suggest a list of lightly loaded index servers. including or excluding itself. for
the peer node to be registered. One advantage of this approach is reliability. When
a peer node leaves the system. it will inform one of the index nodes. This node will
carry this message when it broadcasts its load status to other index server nodes.
Since all index servers are trusted. a selection of most lightly servers is guaranteed.

One disadvantage of this approach is that the global load statuses have to be updated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 164
frequently among all the index servers to keep each node informed.

o peer-node-based selections. When a peer node joins the system and asks for an indexing
service. it first broadcasts its request to all the index servers. Each index server will
then return its status back to the peer node. The peer node will select a list of index
servers to be the hosts. which are hopefully the most lightly loaded. When a peer node
leaves the system. it will broadcast this status change message to all the index server
nodes. In contrast to the alternative of index-server-based selections. this alternative
does not require updating the load statuses globally among the index servers because
a peer node will collect them each time it needs them. However. reliability is not
guaranteed because peer nodes are not trusted. and they may not follow the load

balancing principle when they select index server nodes.

There are also two alternatives when a peer node requests a file. The first alter-
native is straight forward. The peer node simply sends the request to index servers one by
one. When it reaches the index server that has the index of the requested file. the file will
be anonymously delivered to the peer node from a path arranged by the index server. The
second approach involves two steps. The peer node first broadcasts a query message to all
the index servers. The index servers that have the indices of the requested file will inform
the peer node about their service availability. The peer node will then send the request to
the index server that has responded carliest. for an anonymous file delivery. If the index
server does not deliver the file for some reason. the peer node will try to send the request
to other index servers that responded later than the first one. Although broadcast is not

involved in the first alternative. the search is not as objective as the second alternative. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 165

general, we have no strong reasons favoring one approach over another.

7.6 Anonymity in Pure P2P

We now describe a technique to achieve mutual anonymity in a pure P2P setting without
any trusted third party. We call it shortcut-responding protocol. In this protocol. a peer
along the requesting path can elect itself to receive document on behalf of the initiator.
thereby shortening the returning path.

We describe the details below:

Step 1: The initiator I randomly selects a list of peers. rg.ry.....7%r. and builds a one-
time replyblock with I as the last member of the path. and with r, in the middle. The
remailer replyblock is of the form (ri,. (rir—-y...(ro. (I. fakemir)K,)K,,...)K,,). Then I

randomly selects a peer. pg. sends it the message:
I - pg: {r.replyblock. K}

where r encodes the request.

Step 2: A peer p, can elect itself to act as a relay of the returning path with a probability
pv. We call pv the shortcut probability. If p, has not clected itself. the request remains as
{r.replyblock. K;}. If p, has self-clected. the replyblock and the request will be left in this
node and the request format is changed to {r.relay : p,. K;}. It then decides whether to
select p,.; or broadcast the request with probability pb. If p, has decided to broadcast the
message. it will mark the message to avoid broadcasting it multiple times. Therefore. for
P:i. the requests it can receive is one of the two formats: formatl : {r.replyblock. K;} or

format2: {r,relay:p,.K;}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 166

Step 3: If p; can not find the content in local storage. it will save the request. We call
p: as R if p; finds the content in local storage. R encrypts the found file content using K.

If R has the request format of formatl. R contacts the first node in the replyblock. ri,.
then sends the encrypted file through the replyblock to I.

I:r {f}K;

_—
replyblock

If R has the request with the format2. it selects a list of peers 0g. 0y. ... 0, at random.
and builds an Onion with og as the first member of the path. relay as the last member. and
with o; in the middle. The Onion is of the form (0y. (0 ...(0ke. (relay. fakemiz)K,, K, _,...)Ko,).
The R first sends the encrypted file through the Onion to the relay. If the request has not
been discarded in the relay. the relay then sends the encrypted file through the replyblock

to /. It discards the request so that duplicated responses can be dropped.

I:r {f}K;

relay

Onwon replyblock

Step 4: I uses her private key to decrypt the encrypted file.

Figure 7.4 illustrates the protocol with an example. Peer p3 clects itself as a relay
to receive the content on behalf of I. The peer that possesses the content R sends the
response to p3 through the Onion. The peer p3 further sends the response to I through the
replyblock.

This protocol has scveral advantages: (1) The response path can be shorter than the

requesting path because a peer who receives the request and has the content will send the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 167

Replyblock

{r. rcaly:g }

{r. replyblock r. replvblock r. replyblock | 1. repivblock] BT,
P ;
i

Iniuator (r. relay:g |

Onion
Responder

Figure 7.4: An example of the shortcut-responding Protorol

content through an Onion and a replyblock instead of going through the requesting path
to the initiator. (2) Duplicated responses can be discarded earlier. (3) The protocol does
not need special nodes to keep indices of sharing files like APFS. thus eliminating the index
maintcnance overhead and the potential problem of inconsistency between index records
and peer file contents. (4) The protocol does not need to broadcast the requested file like
P> while it still keeps mutual anonymity. so the efficiency is improved compared with P?.
(5) The protocol uses replyblock that is also used in FreecHaven [33]. where the responder
contacts directly to the replyblock so that the first stop in the replyblock knows who the
responder is. In contrast. shortcut-responding protocol has the responder send the requested
file to a relay through an Onion. and then has the relay send the file back to the initiator
through the replyblock so that nobody in the requesting path and responding path can
guess the identity of initiator and responder with certainty. The initiator and responder
also can not guess each other with certainty. Here is a related question to ask. If a node

with a request of formatl finds the requested file. it then contacts the replyblock and sends

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 168

back the file. In this case. can the first stop in the replyblock guess the one who contacts
her is the responder? The answer is no. because the first stop in the replyblock can not
distinguish whether the one who contacts her is the responder or a relay. Here is another
proposed alternative. Upon receiving a request with formatl. if a peer node realizes that
the requested file is locally allocated. she will not send the file through the relay because the
first stop in the relay can guess that the one who has just been connected is the responder.
Instead of immediately providing the file. this peer forwards the request again. But this
particular request is marked by her so that she will accepts a later broadcast request. As
soon as she receives this request again from a broadcast. she sends the file back through

the Onoin and replyblock.

7.7 Analysis

We analyze the degree of anonymity each protocol can achieve. and compare their costs in

terms of numbers of encryption/decryption operations.

7.7.1 Security Analysis

We analyze how the different protocols can defend against attacks from the various parties in
the P2P networks. Because the situations for the initiator and the responder are symmetric.
we consider only how different parties can guess the identity of the initiator.

The responder: To the responder. all other peers have the same likelihood of being
the initiator. The probability that the responder correctly guess the identity of the initiator
is "—L—l (n is the total number of peers). Instead of making a random guess. the responder

can bet that the peer to whom she sends the message is the initiator. She is only able to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 169

make the right bet if there is no middle node selected. We assume that probability that
there are k middlemen is p(k). the probability that the responder makes the right bet is
p(0).

A middle node: We consider two cases: In the first case the middleman makes a
random guess. because the only thing she can be sure about is that she is not the initiator.

In this case, the probability it makes a correct guess is +1 In the second case. the

n
middleman bets that the peer to which it sends the message is the initiator. If there are
k middlemen. only one of the & middlemen will make a correct bet. The probability that
a middleman can make the correct bet is — i p—‘kfc—). aud p(k) is the probability that
there are £ middlemen.

In both cases. the probability will become smaller if multiple peers communicate simul-
taneously. For the protocols with the index server. even if a middle node can figure out who
is communicating with whom. it still cannot figure out what is communicated.

A local eavesdropper: An cavesdropper is an entity that can monitor all local traf-
fic. The worst case is when there is only one pair communicating (or the messages being
communicated are so distinctive such that the eavesdropper is able to figure out who is com-
municating with whom). Even in this worst case. the cavesdropper still cannot figure out
the content without the cooperation either from the responder or initiator (for the protocols
with the index server) or one of the middlemen (for the shorteut-responding protocol).

Cooperating Peers: We consider cases where at least two middle nodes cooperate.
and assume that neither the responder nor the initiator is involved. Two things make it

hard for cooperating nodes to guess the identity of the initiator: (1) the middlemen do not

know for sure how many communications are proceeding simultancously. and (2) the format

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 170

of a message passing through the middle nodes is the same. If k& collaborating peers were
to make a random guess. the probability that they make the right guess is n—é—k- because all
pecrs other than the k peers can be the initiator. If the collaborating peers were to make
a bet. they can first eliminate all the peers that are communicating with peers that they
know for sure is not the initiator. The worst scenario is when at least . — 1 out of all m
middle nodes are involved. Even in this case. these middle nodes only have % probability
of correctly guessing that there is only one communication is conducted. The probability
for them to correctly bet the identity of the initiator is % Table 7.3 summarizes the results

and compares them with P> and APFS.

Table 7.3: Degree of Anonymity

Our Protocols P> /APFS
Guess Bet Guess Bet
Initiator — p(0) — p(0)
Responder "ITI p(0) "ITI p(0)
Middle node RL_I n_£_2 22;12 .’LP_ anl ﬁ zz;[’ x@
Cooperating nlk < % if they are not certain that ank < 1—, if they are not certain that
Peers there are multiple messages there are multiple messages |

For all protocols. we can add the following operations to increase the anonymity degree
by introducing more confusion. The protocols prepare multiple covert paths for each request.
The responder splits the requested file in multiple parts. The parts of the file can be sent
back to the initiator through different covert paths. The different parts of the file can be
casily combined. based on sequence numbers given by the responder. The Shamir algorithm
can also be borrowed to split and combine files. With this algorithm. a file can be split into

n parts and any k parts of them can reproduce the original file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 171

7.7.2 Cost of the Different Protocols

In Table 7.4. we summarize and compare the costs of the protocols in terms of numbers of
encryption/decryption operations.

For the center-directing protocol. the time spent on RSA for setting up the anonymizing
paths can be less than that of mix-based protocol for two reasons. First. RSA encryption is
much faster than RSA decryption. Center-directing uses more encryption than decryption
operations. Second. some steps are parallelizable. For the example in Figure 7.3. steps 3
and 4. and steps 5 and 6. The messages transferred in steps 3 and 5 are smaller than those

in steps 4 and 6. so steps 3 and 5 may be finished before steps 4 and 6.

Table 7.4: Comparison of Protocols with k& middle nodes in each covert path

Protocols Mix-based | Center-directing | Label-switching | Shortcut
MD5 2 2 2 N/A
DES path 1,1 1.1 1.1 0.0
(Encrypt. Decrypt) | content 1.1 1.1 1.1 0.0
RSA path | 4+Ak 4+k 1+3k.3+k 3.3 2k
(Encrypt. Decrypt) | content 0.0 0.0 0.0 1.1

7.8 Performance Evaluation

We estimate the additional overhead incurred in the protocols for achieving mutual com-
munication anonymity. Qur testbed is the browser-sharing environment where clients share
cached Web contents [138]. The clients are the peers. and the proxy server is the index
server. The proxy maintains an index of all files that are possibly cached in its clients’

browser caches. If a user request misses both in the client’s local cache and in the proxy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 172

cache. the proxy will search the index file in an attempt to find the file in another client’s
browser cache. If the file is found in a client’s cache. the proxy can then instruct this browser
to forward the file to the requesting client. Our metric is the additional response time for
each request hit in a remote browser cache compared with the response time of a request
hit in the local browser cache. The increment comes from two major sources: time spent
on transferring the requested data from the remote cache to the local cache. and time spent
on the protocols.!

We use trace-driven simulations and the Boeing traces [12] for the evaluation. We
selected two days’ traces (March 4 and March 5. 1999). There are 3996 and 3659 clients
involved in these two days’ traces. representing the total numbers of requests of 219.951
and 184.476. respectively. The total requested file sizes for the two traces are 7.54 and 7.00
Ghbytes.

The results show that the average increment of the response time caused by the protocols

is trivial. We present detailed performance results in the subsections that follow.

7.8.1 Data Transfer Time through Peer Nodes

We estimate the data transfer time through peer nodes based on a 100 Mbps Ethernet in our
simulation. The bus contention is handled as follows. If multiple clients request bus service
simultaneously. the bus will transfer documents one by one in FIFO order distinguished
by cach request’s arrival time. Our experiments based on the ping facility show that the

startup time of data communications among the clients in our local arca network is less

'We have neglected the costs for building and looking up the hash tables because the hashing cost is
insignificant comparing with the other costs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 173

than 0.01 second. Setting 0.01 second as the network connection time. Table 7.5 presents
the intra-network data transfer time for each trace. We can see that the amounts of data
transfer times and the bus contention times spent for communications among clients on

both traces are very low.

Traces Total Workload | # Files Transferred | Size of all files Data Transfer Time via 2 Data Transfer Contention Time
Service Time among peers in Column 3 middiemen (% of Column 2) for Bus % of Calumn %)
Boeng.3/4 | 86.398.9 s 12.647 | 612 MB 177.82 s (.21%) 0.00003 s (.00002%)
Boeng.3s5 | 86,175.8 s 9.868 | 607 MB 149.64 s (.17%) 0.005 s (.0034%)

Table 7.5: Latency

7.8.2 Overhead of MD5, DES and RSA

The source programs of MD5. DES and RSA are obtained from [104] [106]. The machine
we used for the experiments is a PC with a 1000 MHz Pentium [II CPU and 128 Mbytes of
memory. We used a large number of cached files in Microsoft’s [E5 browsers as the input
files for the tests. We ran cach test 10 times. The average of 10 measurements is used.
The running times of MD5 and DES are proportional to the sizes of the input files.
Our measurement results show that MD5 performs at 119 Mbps and DES’s speed is 43.3
Mbps. The ratio of the RSA’s running time to the input file size is not linear. RSA can
encrypt/decrypt at a speed of 543/45.4 Kbps with a 512-bit value. 384/24.8 Kbps with
a 768-bit value. and 275/14.6 Kbps with a 1024-bit value. It should be noted that the
decryption speed of RSA is 12-19 times slower than the encryption speed. These measured
results and the results in Tables7.4 and 7.5 are used in our simulations to calculate the

overheads of MD5, DES and RSA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 174

7.8.3 Additional Storage

The label-switching protocol requires additional storage to keep the path table in the index
server and sub-tables in the peers. We allocate 2 bytes for each peer identification and 2
bytes for each path identification. The 2 bytes can represent up to 65536 different identifi-
cations. For each entry of destination described in Figure7.1. 26 bytes are required in the
index server. For the trace with 3996 peers. the total storage for the path table is 26*3996.
which equals to 101 Kbytes. There are a total of 3996*4 paths. and 1 bytes are needed for
each entry of a path in a sub-table (see Figure7.2). The storage needed for each peer is
less than 3996*4*4. which equals to 62Kbytes. These storage requirements are sufficiently

small for the path table and sub-tables to be held in memory for quick accesses.

7.8.4 Comparisons of Protocols

We have shown the data transfer times and the costs of MD5. DES and RSA operations.
Here we compare the accumulated overheads of the protocols. Figure 7.5 compares the total
increased response times and their breakdowns for the protocols using the “Boeing March
4 trace” and “Boeing March 5 trace™ with 2 and 5 clients acting as middle nodes.

The performance results in Figure 7.5 show that center-directing and label-switching
protocols generate very low overhead. while the other two have relatively higher overhead.
The label-switching protocol shows its best performance. It is not desirable if the response
time of a request hit in a remote browser cache is larger than that of the same request to
the server. This is not a concern because our experiments show that the average response

-

time increment is less than 8.4 ms when we use 5 middle nodes for both traces. The two

protocols with lower overhead only increase the response time to about 3.4 ms when 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 175

middle nodes are used.

Boeing March 4 Trace Boeing March S Trace
_9 9
E. } 'u‘rmmlov ol éﬂ . ‘u‘l'ran:!m e
DRSA b ORSA

§, .BDES g;. @DES .
ES @MDs u g S |MOs
i U NN I N g6 e i
£s R £s - i B
3 e by
S: : : 33 . i
¢ |
82" ' 37" P
g : £ P
< 0 - < 0 L_. N Y

L 1) D@ O LS €N SR (LLH LT th N D) EY A LY

Figure 7.5: Breakdown of data transfer and protocol overhead with 2 and 5 middle nodes for Boeing
March 4 trace (left) and Boeing March 5 Trace (right). M B(k) represent mix-based protocol with
k middle nodes. Similarly. CD. LS and SR represent center-directing. label-switching. shortcut-
responding. respectively.

The time spent on RSA for the mix-based protocol increases as the number of middle
nodes increases. In contrast. the times spent on DES and RSA for the center-directing and
label-switching protocols are independent of the number of middle nodes. The number of
RSA operations of center-directing protocol is the highest (see Table 7.4). However. most
of them are low-cost encryption operations for small messages (such as a request. labels.
node [Ds). which are parallelizable. Both center-directing and label-switching protocols
show very good scalability.

Compared with other three protocols. the time spent on RSA is considerably high for the
shortcut-responding protocol. This is because we use a public key to encrypt the response
content that is usually much larger than a message like a request. a label or a path. The

cfficiency can be improved if we encrypt the response content with DES keys that are

encrypted using public keys in a pair-wise fashion. The traffic analysis can be defended.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 176

but the content will be exposed to all middle nodes in a covert path.? The RSA cost is
high. but it is a constant. So the shortcut-responding protocol scales well.

The data transfer time increases proportionally to the increase of the number of middle
nodes. The transfer time of label-switching is lower than that of other protocols because
it uses a persistent channel for continuous data transfers between the the same pairs of
sending and receiving nodes. The data transfer time is still a dominant portion of the
total overhead. We should limit the number of middle nodes to balance the two basic
goals: achieving mutual anonymity and quick response time. Paper [64] shows that the
anonymity degree may not always monotonically increase as the length of communication

path increases.

7.9 Discussion

We have analyzed a mix-based scheme and several new protocols along with our empirical
I

experience. We now discuss how to select the protocols based on their merits and limits.

How to select protocols by considering both efficiency and anonymity degree’
For a pure P2P system. the shortcut-responding protocol can be a good candidate. and

its cost can be controlled by properly selecting the number of middle nodes in covert paths.
For a system with a trusted third party. such as a proxy and a firewall. this party can

be utilized to provide some centralized support. With such limited support. both reliability

and efficiency of mutual anonymity protocols can be significantly immproved.

*In all of our protocols. the response content is only visible to the initiator and responder. but is not to
any other nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 177

If storage space is not a concern. the label-switching protocol is the best choice in terms
of efficiency. In fact. the storage requirement of this protocol can be acceptable for systems
of moderate size (thousands of nodes). The other advantages of this protocol are: it uses
minimal numbers of encryption/decryption operations: it does not need to keep all private
keys in the third party. which can be vulnerable if the third party is attacked. Although the
third party keeps a path table. there are multiple options for each destination. Therefore.
even if the path table is exposed. it can still be very hard for an attacker to figure out which
path is used for a specific data transfer.

If storage space is limited. the center-directing protocol is a good candidate. The mix-
based protocol can be used if the RSA costs are tolerable.

Unlike the mix-based protocol. the cipher costs of center-directing and label-switching
protocols are independent of the path length. In the case that a large number of middle
nodes are required to enforce strong anonymity. center-directing and label-switching are the

best choices.

What if a node in a covert path is down ?

All covert-path based protocols can have this problem. The center-directing protocol
could handle this case very well. Since the trusted index server dynamically generates the
next node in a covert path. it is easy for the index server to generate another node when it
finds that the node it just generated is down.

APFS. shortcut-responding and mix-based protocols share the same concern for this
problem. APFS and shortcut-responding protocol uses Onion as the base. A selected

Onion passes through a whole covert path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 178

In the mix-based protocol. the trusted index server generates a mir that also needs
to pass through the whole covert path. When a node in the covert path is down. the
communication path needs to be recovered. One solution for this is to let the initiator send
the request again when it can not get response within a certain period of time. Another
covert path will be selected. in which all middle nodes are alive hopefully.

In the shortcut-responding protocol. if the relay can not get response within a certain
period of time. it will send back a message of “NO RESPONSE”. When the initiator receives
a message of "NO RESPONSE". it means that the Onion part is down and the replyblock
part works. If the initiator can not get anything within a certain period of time. she can
not judge which path is down (maybe both are down). The request has to be sent again.
Because the replyblock and Onion are one-time paths. hopefully all the selected nodes for
the new request to form these paths are alive.

In APFS. for some initial requests. such as a request to volunteer to be a server. a
request to ask for servers. or a request to update index. the requests will be resent if they
can not get response within a certain period of time. For an initiator who already gets N
matches for its request. there are also two covert paths between the initiator and responder.
One is a path between the responder to its tail node. and another one is a path between
the tail node and initiator. Because the communications are two-directional. the initiator
can not judge which path is down if she can not get response. even with the help of the
tail node. So the initiator has to send the same match request or another match request
again. But the initiator will not need to start from the very beginning to request volunteer
servers. APFS is more advanced than the shortcut-responding protocol in the sense that it

will not sacrifice too much efficiency when a node in a covert path is down. But APFS still

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 179

can not compete with the center-directing protocol. because only one covert path needs to
be handled in center-directing protocol.

The label-switching protocol generates a path-table in a trusted index server beforchand.
and peers keep relevant portions of the path table as subtables. Although the path table
and subtables are updated periodically for security reasons. the protocol has to trade-off
cfficicncy if a middle node is down. One solution for this is to let the initiator send the
request again with a note to the trusted index server that its first request for the same file
not been responded to. when the initiator can not get response within a certain period of
time. The index server will select a different covert path in the path table. Hopefully all

middle nodes in this covert path are alive.

What if a file can not be found due to an obsolete index ¢

All index-based protocols. such as mix-based. center-directing. label-switching. and
APFS. can have this problem. The index servers keep an index of files that peers are
willing to share. The indices are updated by the peers periodically. It is possible that the
file has already been replaced in a peer. but the index still shows its existence.

When this happens in the mix-based. center-directing. label-switching protocols. the
responder just informs the trusted index server that she can not find the file. The index
server then will contact another peer who has the file or send back a message of “NQ FILE
FOUND"™ to the initiator. Another alternative is that the responder sends the message of
“NQ FILE FOUND" to the initiator through the covert path as usual. Then the initiator
sends the request again to the index server with a note that the responder can not find the

file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 180

In APFS, the responder reply a message of “NO FILE FOUND" to initiator. Since the
initiator was responded N matches for her request. she will just try to get the file from

another match if she can not get the file from the first match.

Comprehensively considering all factors. the center-directing protocol is the best. If
efficiency has a high priority over reliability. the label-switching and shortcut-responding
protocols work well for a system with a trusted third party. and a system without any

central controls. respectively.

7.10 Chapter Conclusion

Providing a reliable and efficient anonymity protection among peers is highly desirable in
order to build a scalable and secured P2P system. In this chapter. we have presented several
protocols to achieve mutual anonymity in a P2P file-sharing environment. Our first group of
protocols take advantage of the existence of trusted third parties to improve efficiency and
reliability. and use them to prepare the covert paths for anonymous communications. The
other proposed protocol. shortcut-responding. combines both broadcast and self-organizing
covert path techniques to achieve mutual anonymity in pure P2P systems without any
trusted central controls. After several hop-to-hop requests. this protocol broadcasts the
request that is normally a small message. It then sends back the requested file back to the
initiator through a dynamically created covert path instead of broadeasting. achieving both
communication anonymity and cfficiency.

The protocols utilizing trusted third parties may have three potential limits. First. these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 181

trusted third parties may become single points of failure. This potential problem can be
addressed by our proposed methods of multiple index servers. In addition. we can enforce
anonymous communications between any peer to the trusted servers. hiding their identities
and locations.

Second. one may have a concern about scalability of P2P system with the involvement
of trusted parties. Specifically. we may not have enough trusted parties to handle the
increasingly growing Internet user community. We believe this is not a necessary concern.
The client/server model will continue to play its important roles and continue to co-exist
with the P2P model. Thus. the number of trusted servers will proportionally increase as
the number of peers increases.

Finally. a P2P system with the involvement of trusted parties may not be completely
open and free. but may put some restrictions on peers. For example. a peer has the freedom
to join and leave a pure P2P system any time. Although a peer still has this freedom in our
system. she needs to do registration to a pre-defined index server(s). In fact. we view the
involvement of the trusted parties for this respect positively. Researchers in the distributed
system community have made a long-term effort to attempt to build trustworthy systems
out of untrusted peers. We believe that this principle applies to P2P systems.

The performance and robustness of a P2P system to a great extent depend on the
capacity of trusted servers. and the suitability of peers to act as middle nodes. A strong
P2P system should be self-organizing. and adaptive to dynamic application demands and
network condition changes. When a peer is used for some centralized function (e.g.. index
servers), some reputation system must be used to regulate their use. We attempt to follow

these principles in designing our protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Prototype Implementations and

Initial Results

In order to implement the additional communication and computing functions in each client.
the security and integrity protocols between clients. and the data management schemes for
browsers-aware caching. we have built a system infrastructure based on existing client and
proxy servers. The infrastructure consists of two parts: a client daemon to interface its
browser and to communicate with the proxy. and a browsers-aware proxy server. Coordi-
nating the operations between the two sites. we are able to build a secured browsers-aware
caching system. The system is still in its prototype stage. Songqing Chen was involved in

part of the design and implementation.

8.1 A client daemon to interface the browser and communi-

cate with the proxy

We have selected the mozilla (http://www.mozilla.org. or netscape) software as the working

browser system since it is widely used in applications. Instead of revising the browser source

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.inozilla.org

Chapter 8. Prototype Implementations and Initial Results 183

code. we have built a client daemon interfacing the browser and communicating with the
proxy. This approach makes the commercial browser software still portable. and keeps its
independent functions. The client daemon consists of a pair of parent-child processes at
the user level. The child process serves as a receptionist that “listens™ at a reserved port
to incoming messages of requesting data files from the proxy. If such a message is received.
the receptionist searches and fetches the file from the client browser and sends it back to
the proxy or sends it to a target client. The parent process serves as browser file index
manager. This manager periodically checks the status of file changes in the browser. and
timely sends the index updates to the proxy. Three major data management functions are

implemented to coordinate caching activities between browsers and the proxy.

o make_a_browser_caching_decision. This function decides whether the arriving docu-
ment should be cached in the local disk. The decision is made based on a threshold

value of the local requesting counter.

e make_a_prory_caching_decision. This function decides whether a document requested
by another client should be cached as a shared document in the proxy. The decision
is made based on a threshold value of the global requesting counter. For this purpose.
a port is reserved for a dedicated communication between a browser and the proxy.
When a client sends back a document that proxy requests. it will use the same reserved

port.

o inder_file_management. This user function dynamically monitors the status of the
local browser document index files. Whenever sufficient amount of local files are

replaced (for example. a 10% change) and the network is not busy. it will send the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. Prototype Implementations and Initial Results 184

related items based on replaced files to the proxy for updating its browser index file.

With these three functions. the client daemon adds simple and sufficient functions to
a client browser so that it is able to actively communicate with other clients directly or
through the proxy. The client daemon is activated at the time when the system is booted.
Figure8.1 illustrates the organization of the client daemon and its interface with the netscape

browser.

Send a request

make_a_
browser_ Receive requsted data
caching_ [*—
decision

Receive a request from proxy
d
(a reserved port)

make_a_
proxy_
caching_ Send data & decisons to proxy

decision via the same socket

index_file_

Send updated index information to proxy .

management

Figure 8.1: The organization of client daemon to interface with a client browser and the proxy.

8.2 A browsers-aware proxy server

We have selected the Squid proxy server (http://www.squid-cache.org) as the working sys-

tem. Besides creating a global browser index file in the proxy. three additional functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.squid-caclie.org

Chapter 8. Prototype Implementations and Initial Results 185

are added to the proxy server:

o check_indez_file. This function checks the global browser index file after a miss occurs
in the proxy. If the index file search is successful. it sends a data request to the target

client.

e cache_data_in_prozy. This function caches the data after receiving a positive decision

from a client.

e global_indez_file_management. This user function maintains and updates the global
browser index file upon receiving a new file from an upper level scerver or updated
browser file status from a client. For this purpose. a port is reserved for a dedicated

communication between a browser and the proxy.

Figure 8.2 illustrates the organization of the proxy daemon and its interface with the

Squid proxy.

8.3 Overhead Measurement and Analysis

There are three major items of additional operations involved in browsers and proxy if an

object can be provided by another browser instead of going to a Web server.

e browser-indez file searching: The searching is done in the proxy after a request miss
in the proxy. The browser index file consists of all the active URL's MD5 digests of
browsers. We have used the secarching facility for managing the cached documents in

the Squid proxy. A hash function is used for the search. thus the search time is index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. Prototype Implementations and Initial Results 186

Receive a request

Request data from a client

check_
index_file

-

Receive requested data cache_data_
in_proxy

Receive updated index information global_
—* index_file_

management

(a reserved port)

Figure 8.2: The organization of proxy daemon to interface with a client browser and the proxy.
file size independent. Specifically. function storeGETPublic is used. where function
hash_lookup is called.

The searching time is denoted as T,,4.r. Running the Squid proxy on a Pentinum III

of 1000 MHz machine. we obtained the average searching time. Tip,4., = 0.0076 ms.

e requesting service from a client: If the requested document is found in a browser
cache after the index file searching. the proxy sends a request to the identified client.
A requesting message is always 256 bytes. The communication time is denoted as

Treq- and is dependent on a local area network speed.

e data delivering between a client and the prozy: The browser fetches the requested

document and sends it back to the proxy that delivers it to the requesting client. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. Prototype Implementations and Initial Results 187

data transferring time is denoted as T,,. and is dependent on the local area speed

and size of the document.

The additional browsers-aware service time is Torerhead = Tinder + Treq+ Tdata- We measured
this service time by varying the size of the requested document from browsers on a 100 Mb
Ethernet. and obtained Ty ernead = a+yD. where a = 2.05 ms. is the startup time including
both Tip4er and Treq. and vy = 1.10 is the data transferring rate (ms/Kbytes). and D is the
size in Kbytes of the document transferred between a browser and the proxy. Considering
8 Kbytes as the average size of a Web document. we obtain Tyuerpeqd = 10.85 ms from the
model. which is very close to the measurement resuit.

There are also other types of unique operations in browsers-aware proxy. For example.
the user daemon in each browser periodically sends the updated browser content information
to proxy. and the proxy updates its index file accordingly. However. these operations are
not in the critical path of the browsers-aware caching system. and can be done when the
browser. proxy and networks are not in a heavy demand.

One important question we want to ask is how much latency time we can reduce with
the support of the browsers-aware service. Without such a service. a proxy miss will conse-
quently cause a request to a Web server and a data delivering from the server to the proxy.
The average static HTML service time from a Web server is over 50 ms without considering
the network congestion [150]. In contrast. our measurements show that the browsers-aware
service can reduce this time to 10.85 ms. a reduction of more than 78%. if the document

exists in one of the clients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Final Conclusions and Future Work

9.1 Summary

Effective resource management and its security issues have become crucial for the applica-
tions in distributed and Internet systems. Resource management covers a wide spectrum
ranging from resource management in uniprocessor systems. to resource management on
distributed and Internet systems. None of them can be ignored in order to significantly
improve overall performance. An effective resource management must be adaptive to the
changes of workload and technology. We have seen the rapid advancement of technology:
the uniprocessor becomes increasingly fast. but the access speeds of memory and stor-
age continue to lag behind. The high speed cluster and Internet technology have made
the computing and information sharing widely decentralized and globalized. We have also
observed several major changes of human demands. First. application workloads become
increasingly data-intensive. relying on fast and efficient data accesses. Second. “computing”
(including all the computer and Internet activities) has become an indispensable part of our
daily life. Effective resource management directly improves the quality of life. Finally and

most importantly. high performance is no longer the only resource management objective.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 189

The objectives of security. availability. and reliability of the systems have become equally
important!

We first study memory system utilization in centralized servers by improving mem-
ory performance of sorting algorithms. Memory hierarchy considerations during sorting
algorithm design and implementation play an important role in significantly improving
execution performance. Existing algorithms mainly attempt to reduce capacity misses on
direct-mapped caches. To reduce other types of cache misses that occur in the more common
set-associative caches and the TLB. we restructure the mergesort and quicksort algorithms
further by integrating tiling. padding. and buffering techniques and by repartitioning the
data set. Our study shows that substantial performance improvements can be obtained
using our new methods.

After considering memory system utilization in centralized servers. we have further
extended our study on load sharing for global memory utilization in distributed systems.
The cluster system we consider for load sharing is a compute farm. which is a pool of
networked server nodes providing high performance computing for CPU-intensive. memory-
intensive. and [/O active jobs in a batch mode. Existing resource management systems
mainly target balancing the usage of CPU loads among server nodes. Aiming at reducing
the memory resource contention caused by page faults and [/0 activities. we have developed
and examined load sharing policies by considering effective usage of global memory in
addition to CPU load balanciug m both homogeneous and heterogeneous clusters. There
are two major approaches to more effectively use global memory resources in a workstation
cluster. aiming at minimizing page faults in cach local workstation and improving overall

performance of cluster computing: (1) job-migration-based load sharing schemes and (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 190

network RAM. scalability. We also propose an improved load sharing scheme by combining
job migrations with the network RAM for cluster computing. The improved scheme has the
merits of both job migrations and network RAM. Our experiments show its effectiveness
and scalability for cluster computing.

The Internet system is another branch of distributed systems. With the foundation of
our load sharing study. we have further investigated memory and storage utilizations in
Internet caching systems. Internet workload shows the trends of decreasing hit ratios in
proxies and the diversity of the Web contents. Some limits of the existing caching sys-
tem structure prevent them from effectively utilizing the rapidly improvement in Internet
technologies and from adapting in a timely manner the changes of the supply and de-
mand of Web contents. We propose a peer-to-peer Web document sharing technique. called
Browsers-Aware Prozy Server that makes the browsers and their proxy share the contents
to fully utilize the Web contents and network bandwidth among clients. Our study show
that the amount of sharable data in browser caches is significant and can be utilized for
peer-to-peer document sharing to improve Web caching performance and scalability.

In order to further improve the performance. a peer-to-peer Web caching management
scheme. called cooperatively shared prozy-browser caching is proposed to reduce document
duplications among a proxy and its client browsers. To evaluate this approach. we conduct
trace-driven simulations with Web traces and compare the hit ratio. the byte hit ratio
and the Web server access latency of the proposed Web caching management scheme with
the values for the traditional approach and “Browsers-Aware Proxy Server™. As a result.
we show that both the hit ratio and byte hit ratio of this scheme are indeed significantly

higher. and the Web server access latency is reduced substantially. Finally. we empirically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 191

show that the performance of our scheme compares very favorably with the performance of
near-optimal offline Web caching algorithms.

New concerns are raised in the P2P browser sharing systems. Data integrity may not be
trusted because a user is cligible to modify cached documents in the local browser cache. For
security and privacy protections. our browsers-aware proxy system should hide the identities
of both browser senders and receivers. General P2P systems also share the same concerns
of data integrity and communication anonymity. We propose an an integrity protocol to
ensure data integrity in browser-aware systems. We also present several protocols to achieve
mutual communication anonymity between an information requester and a provider in a
P2P information-sharing environment such that neither the requester. nor the provider
can identify cach other. and no other peers can identify the two communicating partics
with certainty. Our study shows that the average increase in response time caused by our
protocols is trivial. and these protocols show both security and performance advantages
over existing protocols in a P2P system.

We have built a system infrastructure based on existing client and proxy servers. The
infrastructure consists of two parts: a client daemon to interface its browser and to com-
municate with the proxy. and a browsers-aware proxy server. Coordinating the operations

between the two sites. we are able to build a secured browsers-aware caching system.

9.2 Future Work: Balancing the Power between Centralized

and Decentralized Resources in Distributed Computing

We will discuss future work in the following three directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 192

9.2.1 Non-uniform parallel computing

For a large scale application job demanding a huge memory space and and [/O accesses. a
single node server can not produce the results in a tolerant time period. or can not produce
the correct results. If the CPU power in a single node is sufficient. memory/IO is the
fatal bottleneck. Here are two technical approaches to resolve this problem and to scaile the
application job for more computing power and space: (1) single job using global memory/I10
in a cluster. and (2) parallelizing the job.

Our studies presented in Chapter 3 belong to the first approach. Using migration-based
load sharing schemes. we can try to migrate the job to a node with enough memory/10
resources. Using network RAM. we can also utilize global memory/IO resources from other
nodes. Using our proposed scheme by combining job-migration and network RAM. we
can further effectively utilize global memory /IO resources. The single node service in this
approach limits the scalability of computing power. In addition. the single node can casily
become the hot spot slowing down the conumunication and computation.

The second approach is to let multiple nodes run this job. where the CPU and memory
resources are evenly distributed and used. Local accesses or the data accesses between a
CPU and its memory and disk are maximized. Another advantage is the nature of load
balancing in parallel computing. However. these two advantages may not serve the best
performance interests of parallel jobs becanse the balanced workload distribution among
the nodes may result in a different unbalanced resource utilization in a cluster. Specifically.
in a time-sharing environment. multiple parallel jobs may not have enough memory space.

using local disk as the swapping site. But the CPU in each node may be under-utilized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 193

If we further increase the number of nodes for the parallel job, the memory space may be
satisfied. but the CPUs among the nodes become even more under-utilized.

Having examined the limits of the two approaches. we propose a new approach called
non-uniform parallel computing to better utilize the resources of both CPU and memory.
Instead of evenly allocating parallel tasks among the nodes. we cousider CPU and memory
resource allocations separately. Under this non-uniform scheme. the number of CPUs to
be assigned to a parallel job will be minimized in order to better utilize the increasingly
powerful CPU cycles. Since a single job or a small number of jobs will be assigned in each
node. the context switch overhead is also reduced. Regarding the memory resources. ecach
job can not only utilize the local memory space from the assigned CPUs. but also remote
memory space in other nodes. We do not limit the number of nodes for a job. but cautiously
increase it so that the CPU of each node is fully utilized. In summary, the CPU cycles will
be provided by a small number of nodes. while the global memory space of a cluster is
open to the memory demand of the job. Since the speed gap between accessing a local
memory and a remote memory is shrinking. and the speed gap between accessing a local
disk and a remote memory continues to enlarge. the proposed scheme is expected to be

highly performance beneficial.

9.2.2 Resource Indexing on Grid Systems

A Grid is a global cluster of clusters. which is a platform for large scale problems unsolvable
by a single cluster. Resource management on Grids has several challenges because it needs
to address more complex management issues.

Identifying and allocating available resources among the Grids is a challenge. Keeping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 194

index of all nodes in a Grid system is not practical because updating index among different
domain’s clusters causes a high index maintenance overhead both in space and time. In
addition. some Grids may not want to globally share the status information for security
reasons. We propose solutions for this problem.

The first proposal is to create some special nodes in each Grid with the privilege of
knowing resource availability of local cluster and its neighbor Grids. The advantage of this
method is that the available resources can be quickly identified at an affordable expense.
A future study will take the sccurity into the consideration. and tradeoff the overhead and
the performance.

The second proposal is related to allocating resources adaptively based on more dynamic
changes of resource availability among different domain’s Grids. The resources include CPU.
memory. [O. network bandwidth. and others. In order to allocate resources among different
domain’s Grids. we need to predict available network bandwidths among different domains.
But this prediction requires additional system effort. We will utilize the power of network
bandwidth monitoring and measurecment to collect the dynamic information for effectively
allocating resources from different domains.

Reliability becomes more important for Grid computing and harder to handle than in a
single cluster. Without enough reliability guarantee. the overall performance improvement

is also hard to guaranteed. We plan to look into several reliability issues.

9.2.3 Resource Management on Peer-to-peer systems

P2P has recently attracted a lot of attention in the Internet community, and it represents

a computing model that advocates decentralization. It also raises many new issues to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 195

addressed on resource management.

A pure P2P can be classified into Structured and Unstructured P2P [81]. Structured
Pure P2P means that files are placed at some locations with specific rules. such as hash-table
so that the queries can also follow corresponding rules for fast retrieval. Studying effective
rules to place and retrieve a file is one topic for Structured P2P systems. An unstructured
P2P means that nodes can join a peer group with its own files. The file location has no
correlation with a node. Querying a file in an unstructured P2P system is quite different
from that in a structured P2P system. A study for fast and scalable searching techniques
is one topic for unstructured P2P systems.

In unstructured P2P systems. scarching is not as effective as in structured systems
because of the uncertainty of file locations. Another assistant technique for fast searching
is to make certain replicas of files. such as caching a file in other nodes. Several related
performance issues will be studied in unstructured systems.

Security is an important issue to be strongly addressed in P2P systems. We will continue
our study in this direction based on our current work of communication anonymity. We
are looking into combining different approaches to further and synergistically achieve the
goal for both strong anonymity and high communication efficiency. as well as to adapt to

application needs and network conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

(1] M. Abrams. C. R. Standridge. G. Abdulla. S. Williams. and E. A. Fox. “Caching
proxies: limitations and potentials™. Proceedings of the Fourth International World
Wide Web Conference. December. 1995.

(2] A. Acharya and S. Setia. “Availability and utility of idle memory in workstation clus-
ters”. Proceedings of ACM SIGMETRICS Conference on Measuring and Modeling of
Computer Systems. May 1999. pp. 35-46.

(3] A. Agarwal and S. D. Pudar. “Column-associative caches: a technique for reducing
the misses rate of direct-mapped cache™. Proceedings of the 20th Annual International
Symposium on Computer Architecture. 21(2):179-190. May 1993.

[4] S. Albers. S. Arora. and S. Khanna. “Page replacement for general caching problems™.
Proceedings of 10th Annual ACM-SIAM Symposium Discrete Algorithms. (SODA99).
1999. pp.31-40.

[5] A. Barak and A. Braverman. “Memory ushering in a scalable computing cluster”™.
Journal of Microprocessors and Microsystems. Vol. 22. No. 3-4. August 1998. pp. 173-
182.

(6] P. Barford. A. Bestavros. A. Bradley. and M. Crovella. “Changes in Web client access
patterns: characteristics and caching implications™. World Wide Web Journal. 2(1):15-
28. January.1999.

[7] A. Batat and D. G. Feitelson. “Gang scheduling with memory considerations™. Proceed-
ings of 14th International Parallel € Distributed Processing Symposium (IPDPS2000).
May 2000. pp. 109-114.

[8] L. A. Belady. " A study of replacement algorithms for virtual storage Computers™. IBAM
Systems Journal. 5:78-101. 1966.

[9] B. Bershad. D. Lee. T. Romer and B. Chen. ~Avoiding conflict misses dynamically in
large direct-mapped cache™ Proceedings of the 6th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. October. 1994.

[10] R. Bianchini and E. V. Carrera. ~Analytical and experimental evaluation of cluster-
based network servers™. World Wide Web Journal. volume 3. number 4. December

2000.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 197

[11] J. Bilmes. K. Asanovic, C. W. Chin. and J. Demmel. “Optimizing matrix multiply
using PHiPAC: a portable. high-performance. ANSI coding methodology™. Proceedings
of International Conference on Supercomputing. Vienna. Austria. July 1997. pp.340-
347.

(12] Boeing log files. ftp://researchsmp2.cc.vt.edu/pub/boeing/

[13] BU traces. ftp://cs-ftp.bu.edu/techreports/1995-010-www.client-traces.tar.gz
ftp://cs-ftp.bu.edu/techreports/1999-011-usertrace-98.gz

[14] L. Breslau. P. Cao. L. Fan. G. Phillips. and S. Shenker. “Web caching and zipf-like
distributions: evidence and implications™. Proceedings of IEEE INFOCOM. 1999.

[15] D. Burger and T. M. Austin. The simplescalar tool set. version 2.0. TR 1342, Depart-
ment of Computer Sciences. University of Wisconsin. Madison. June 1997.

[16] Canada’s coast to coast broadband research network: http://ardnocdl.canet2.net/:
Sanitized log files: http://ardnoc4l.canet2.net/cache/squid/rawlogs/

{17] B. Calder. D.Grunwald. and J.Emer. “Predictive sequential associative cache™. Pro-
ceedings of the Second International Symposium on High-Performance Computer Ar-
chitecture. February 1996.

(18] B. Calder. C. Krintz. S. John. and T. Austin. “Cache-conscious data placement™. In
8th International Conference on Architectural Support for Programming Langueges and
Operating Systems. October. 1998.

[19] P. Cao and S. Irani. “Cost-aware WWW proxy caching algorithms™. Proceedings of
the USENIX Symposium on Internet Technologies and Systems. December 1997.

[20] P. Cao. J. Zhang. and K. Beach. “Active cache: caching dynamic contents on the
Web”. Proceedings of Middleware 98. 1998. pp. 373-388.

[21] S. Carr. K. S. McKinley. and C. W. Tseng. “Compiler optimizations for improving data
locality”. In Proceedings of the Gth International Conference on Architectural Support
for Programming Languages and Operating Systems. October 1994. 28(5):252-262.

[22] J. Challenger. P. Dantzig. and A. Iyengar. “A scalable and highly available system
for serving dynamic data at frequently accessed Web sites™. Proceedings of SC'98.
November. 1998.

[23] J. Chame and S. Moon. “A tile selection algorithm for data locality and cache inter-
ference”™. Proceedings of International Conference of Supercomputing. Rhodes Greece.
June 1999. pp.492-499.

[24] S. Chatterjee. V. V. Jain. A. R. Lebeck, S. Mundhra and M. Thottethodi, *Nonlinear
array layouts for hierarchical memory systems”. Proceedings of International Confer-
ence of Supercomputing, Rhodes Greece, June 1999, pp.444-453.

[25] D. Chaum. “Untraceable electronic mail return addresses. and digital psendonyms™.
Communications of the ACM. 24, 2. Febh.1981. pp.84-88.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://researchsmp2.cc.vt.edu/pub/boeing/
ftp://cs-ftp.bu.edu/techreports/1995-010-www.client-traces.tar.gz
ftp://cs-ftp.bu.edu/techreports/1999-01
http://ardnoc41.canet2.net/
http://ardnoc41.canet2.net/cache/squid/rawlogs/

BIBLIOGRAPHY 198

(26] H. Che, Z. Wang. and Y. Tung, “Analysis and design of hierarchical Web caching
systems”. Proceedings of IEEE INFOCOM 2001. April 2001.

[27] S. Chen. L. Xiao. and X. Zhang. “Dynamic load sharing with unknown memory de-
mands of jobs in clusters™, Proceedings of the 21st International Conference on Dis-
tributed Computing Systems. (ICDCS'2001). Phoenix. Arizona. April 16-19. 2001. pp.
109-118.

(28] S. Chen. L. Xiao. and X. Zhang. “Adaptive and virtual reconfigurations for effective
dynamic resource allocations in cluster systems™. Proceedings of the 22nd International
Conference on Distributed Computing Systems. (ICDCS'2002). Vienna. Austria. July
2-5. 2002. pp.35-42.

[29] L Clarke. O. Sandberg. B. Wiley. and T. W. Hong. “Freenet: a distributed anonymous
information storage and retrieval system. Design Privacy Enhancing Technologies™.
Workshop on Design Issues in Anonymity and Unobservability. LNCS 2009. ed. by H.
Federrath. Springer-Verlag (2001). pp.46-66.

(30] S. Coleman and K. S. McKinley. “Tile size selection using cache organization and
data layout™. In Proceedings of the ACM SIGPLAN'95 Conference on Programming
Language Design and Implementation. Lajolla. California. June 1995. pp.279-290.

[31] P. Danzig, R. Hall. and M. Schwartz. “A case for caching file objects inside internet-
works”. Proceedings of ACM Conference on Communications Architectures. Protocols

and Applications (SIGCOMM). 1993. pp.239-248.

[32] C. Ding and K. Kennedy. “Improving cache performance of dynamic applications with
computation and data layout transformations™. Proceedings of the ACM SIGPLAN 99
Conference on Programming Language Design and Implementation. May 1999.

[33] R. Dingledine. M. J. Freedman, and D. Molnar. “The Free Haven project: distributed
anonymous storage service”. Workshop on Design Issues in Anonymity and Unobserv-
ability. LNCS 2009. ed. by H. Federrath. Springer-Verlag (2001). pp.67-95.

[34] J. J. Dongarra. J. D. Croz. I. S. Duff. and S. Hammarling. A set of level 3 basic
linear algebra subprograms™. ACM Transactions on Mathematical Software. 16(1):1-
17. Jan.1990.

(35] F. Douglis. A. Haro. and M. Rabinovich. "HPP: HTML macro-preprocessing to sup-
port dynamic document caching”. Proceedings of the USENIX Symposium on Internet
Technologies and Systems. December. 1997, pp. 83-94.

[36] F. Douglis and J. Ousterhout. “Transparent process migration: design alternatives and
the sprite implementation™. Software - Practice and Ezperience, Vol. 21, No. 8. 1991.
pp. 757-785.

[37) P. Druscheland A. Rowstron. “PAST: a large-scale. persistent P2P storage utility™.
Proceedings of 8th workshop on Hot Topics in Operating Systems. 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 199

(38] X. Du and X. Zhang, “Coordinating parallel processes on networks of workstations™.
Journal of Parallel and Distributed Computing. Vol. 46. No. 2. 1997. pp. 125-135.

[39] B. M. Duska. D. Marwood. and M. J. Feeley. "The measured access characteristics
of world-wide-web client proxy caches™. Proceedings of the USENIX Sympostum on
Internet Technologies and Systems. December. 1997.

[40] S. G. Dykes and K. A. Robbins. ~A viability analysis of cooperative proxy caching”.
Proceedings of IEEE INFOCOM 2001.

[41} D. L. Eager. E. D. Lazowska. and J. Zahorjan. “The limited performance benefits
of migrating active processes for load sharing”™. Proceedings of ACM SIGMETRICS
Conference on Measuring and Modeling of Computer Systems. May 1988. pp. 63-72.

[42] J. H. Edmondson. P. I. Rubinfeld. P. J. Bannon. etc. “Internal organization of the
Alpha 21164. a 300-Mhz 64-bit quad-issue CMOS RISC microprocessor™. Digital Tech-
nical Journal of Digital Equipment Corporation. 7(1): 119-135. winter 1995.

[43] L. Fan. P. Cao. J. Almeida. and A. Z. Broder. “Summary cache: a scalable wide-arca
web cache sharing protocol™. Proceedings of 1998 SIGCOMM Conference. pp. 254-265.

[44] M. J. Feeley. et. al.. “Implementing global memory management systems™. Proceedings
of the 15th ACM Sympostumn on Operating System Principles. December 1995. pp. 201-
212.

[45] Dror Feitelson. The Parallel Workload Archive.
http://www.cs.huji.ac.il/labs/parallel/workload /logs.html#lanlcm5. 1998.

[46] J. Ferrante. V. Sarkar. and W. thrash. “On estimating and enhancing cache cffec-
tiveness”. In Proceedings of the Fourth International Workshop on Languages and
Compilers for Parallel Computing. Santa Clara. California. August 1991. pp.328-343.

[47] R. A. Finkel. “Operating systems™. ACM Computing Surveys. Vol.28. No.l. March
1996. pp.201-203.

[48] M. D. Flouris and E. P. Markatos. “Network RAM™, Chapter 16. High Performance
Cluster Computing. Vol. 1. Edited by R. Buyya. Prentice Hall. New Jersey. 1999. pp.
383-508.

[49] J. Fox. “Browser cache switch for internet explorer™. WebDeneloper Conference 2000.
San Francisco. California. September 2000).

[50] M. . Freedman. E. Sit. J. Cates. and R. Morris. “Introducing Tarzan. a peer-to-
peer anonymizing network layer™. Procecdings of the Ist International Workshop on
Peer-to-peer Systems. March. 2002. MIT Faculty Club. Cambridge. MA. USA.

[51] Freedom. http://www.freedom.net/

[52] Freenet. http://frecnet.sourceforge.net/. 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.huji.ac.i1/labs/parallel/workload/logs.litml%23lanlcm5
http://www.freedom.net/
http://frcenet.sourceforge.net/

BIBLIOGRAPHY 200

[53] J. D. Frens and D. S. Wise. “Auto-blocking matrix-multiplication or tracking BLAS3
performance with source code™. In Proceedings of the Sizth ACM SIGPLAN Sympo-
stum on Principles and Practice of Parallel Programming, Las Vegas. NV. June 1997,
pp.206-216.

[54] E. Gabber. P. Gibbons. D. Kristol. Y. Matias. and A. Mayer. “Consistent. yet anony-
mous. Web access with LPWA™. Communications of the ACM. Vol. 42 No. 2. February
1999. pp.12-47.

[65] E. Gabber. P. Gibbons. Y. Matias. and A. Mayer. “How to make personalized Web
browsing simple. secure. and anonymous™. Proceedings of Conference on Financial
Cryptography. 1997.

[56] S. Gadde. M. Rabinovich. J. Chase. “Reduce. reuse. recycle: an approach to building
large internet caches™. Proceedings of the sixth Workshop on Hot Topics in Operating
Systems. May. 1997.

[57] K. S. Gatlin and L. Carter. “Memory hierarchy considerations for fast transpose and
bit-reversals™. Proceedings of 5th International Symposium on High-Performance Com-
puter Architecture. January 1999.

(58] Pat Gelsingle. “Building the peer-to-peer community™. Intel Developer
Forum Conference. Spring 2001. Keynote Presentations. February 2001.
http://developer.intel.com/idf

[59] G. Glass and P. Cao. “Adaptive page replacement based on memory reference behav-
ior™. Proceedings of ACM SIGMETRICS Conference on Measuring and Modeling of
Computer Systems. May 1997. pp. 115-126.

[60] Gnutella. http://gnutella.wego.com. 2001.

[61] G. Gonnet and R. Bacza-Yates. Handbook of Algorithms and Date Structures in Pascal
and C. Addison-Wesley. 1991.

[62] Li Gong. “JXTA: a network programming environment”. [EEE Internet Computing.
5 3. May/June 2001. pp. 88-95.

[63] S. D. Gribble. E. A. Brewer. “System design issues for Internet middleware services:
deductions from a large client trace™. Proceedings of the 1997 Useniz Symposium on
Internet Technologies and Systems. December 1997.

[64] Y. Guan. X. Fu. R. Bettati. and W. Zhao. “An optimal strategy for anonymous commu-
nication protocols™. Proceedings of the 22nd International Conference on Distributed
Computing Systems. (ICDCS2002). July 2002.

[65] F. G. Gustavson. “Recursion leads to automatic variable blocking for dense linear-
algebra algorithms™. IBM Journal of Rescarch and development. 11(6):737-755.
Nov.1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://developer.intel.com/idf
http://gnutella.wego.com

BIBLIOGRAPHY 201

[66] M. Harchol-Balter and A. B. Downey. “Exploiting process lifetime distributions for
dynamic load balancing”™. ACM Transactions on Computer Systems. Vol. 15. No. 3.
1997. pp. 253-285.

(67] J. Hennessy and D. Patterson. “Computer architecture: a quantitative approach™. 2nd
ed.. Morgan Kaufmann Publishers. Inc.. 1996.

[68] C.-C. Hui and S. T. Chanson. “Improved strategies for dynamic load sharing™. I[EEE
Concurrency. Vol. 7. No. 3. 1999. pp. 58-67.

[69] Sandy Irani. “Page replacement with multi-size pages and applications to Web
caching™. Proceedings of the twenty-ninth annual ACM Symposium on Theory of Com-
puting 1997. (STOC97). pp.701-710.

(70] S. Jin and A. Bestavros. “Popularity-aware greedydual-size Web proxy caching al-
gorithms™. Proceedings of 20th International Conference on Distributed Computing
Systems. (ICDCS'2000). April 2000.

[71] T.Johnson. M.Merten. and W.Hwu. “Run-time spatial locality detection and optimiza-
tion™. In 30th International Symposium on Microarchitecture. December 1997.

[72] N. P. Jouppi. “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers™. Proceedings of 17th Annual International
Symposium on Computer Architecture. May 1990. pp.364-373.

[73] R. E. Kessler, R. Jooss. A. Lebeck. and M. D. Hill. “Inexpensive implementations of sct-
associativity”. Proceedings of the 16th Annual International Sympostum on Computer
Architecture. 17(3):131-139. 1989.

[74] T. Kunz. “The influence of different workload descriptions on a heuristic load balancing
scheme”™. [EEE Transactions on Software Engineering, Vol. 17. No. 7. 1991. pp. 725-
730.

[75] M. R. Korupolu and M. Dahlin. “Coordinated placement and replacement for large-

scale distributed cached™. IEEE Transactions on Knowledge and Date Engineering.
2001.

[76] M. R. Korupolu. C. G. Plaxton and R. Rajaraman. “Placement algorithms for hierar-
chical cooperative caching™. Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, (SODA99). January 1999. pp.586-595.

[77] M. S. Lam. E. E. Rothberg, and M. E. Wolf. “The cache performance and optimization
of blocked algorithms™. In Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. Santa Clara.
California. April 1991. pp.228-239.

[78] A.LaMarca and R. E. Ladner. “The influence of caches on the performance of sorting™.
Procecdings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms. 1997.
pp-370-379.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 202

[79] W.Lin. S. K. Reinhardt. and D. Burger. “Reducing DRAM latencies with an integrated
memory hierarchy design”. Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, (HPCA-7) Nuevo Leon. Mexico. January 20-24
2001. pp.301-312.

[80] T. S. Loon and V. Bharghavan. “Alleviating the latency and bandwidth problems in
WWW browsing”. Proceedings of the 1997 Useniz Symposium on Internet Technologics
and Systems. December 1997.

[81] Qin Lv. Pei Cao. Edith Cohen. Kai Li. Scott Shenker. “Search and replication in
unstructured peer-to-peer networks”. Proceedings of the 16th ACM International Con-
ference on Supercomputing. (ICS'02). New York. USA. June 2002.

[82] A. Mabhanti. C. Williamson and D. Eager. “Traffic analysis of a Web proxy caching hi-
erarchy”, I[EEE Network. Special Issue on Web Performance. Vol.14. No.3. May/June
2000. pp.16-23.

[83] R. Malpani. J. Lorch. D. Berger. “Making world wide web caching servers cooperate™.
Proceedings of the 4th International World Wide Web Conference. December. 1995.

[84] E. P. Markatos and G. Dramitinos. “Implementation of a reliable remote memory
pager”. Proceedings of the 1996 Useniz Technical Conference. January. 1996. pp.177-
190.

[85] K. S. McKinley. S. Carr. and C. W. Tseng. “Iinproving data locality with loop trans-
formations™. Transactions on Programming Languages and Systems. 18(4). July 1996.

[86] L. McVoy and C. Staelin. “lmbench: portable tools for performance analysis.” Pro-
ceedings o USENIX Technical Conference. San Diego. California. 1996. 279- 295.

[87] J. Mellor-Crummey, D. Whalley and K.Kennedy. “Improving memory hierarchy per-
formance for irregular applications™. Proceedings of International Conference on Su-
percomputing. June. 1999.

(88] A..J. Menezes. P. C. Van Qorschot. and S. A. Vanstone. Handbook of Applicd Cryp-
tography. CRC Press. 1996.

[89] B. S. Michel. K. Nikoloudakis. P. Reiher. and L. Zhang. “URL forwarding and com-
pression In adaptive Web caching™. Proceedings of IEEE INFOCOM 2000. March.
2000.

[90] Napster. http://www.napster.com.

[91] National Lab of Applicd Network Research. http://www.ircache.net/
Sanitized access logs: ftp://ircache.nlanr.net/Traces/
Statistics: http://www.ircache.net/Cache/Statistics/

(92] K.-D. Neubert. “The Flashsortl algorithm™. Dr. Dobb’s Journal. February 1998.
pp-123-125.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.napster.com
http://www.ircaclie.net/
ftp://ircache.nlanr.net/Traces/
http://www.ircache.net/Cache/Statistics/

BIBLIOGRAPHY 203

[93] V. S. Pai. M. Aron. G. Banga. M. Svendsen. P. Druschel. W. Zwaenepoel. and E.
Nahum. “Locality-aware request distribution in cluster-based network servers™, Pro-
ceedings of the Eighth Sympostum on Architectural Support for Programming Languages
and Operating Systems. (ASPLOS-8). pp.205-216. October 1998.

[94] A. Oram. Peer-to-Peer Harnessing the Benefits of a Disruptive Technology. O Reilly.
March 2001.

[95] S. Park and L. Leemis. Discrete-event stmulation: a first course. Lecture Notes. College
of William & Mary. Revised Version. January 1999. Preprint of a Prentice-Hall book.
August. 1999.

[96] E. W. Parsons and K. C. Sevcik. “Coordinated allocation of memory and processors in
multiprocessors”. Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems. May 1996. pp.57-67.

(97] J. Peir. Y. Lee. and W. Hsu. “Capturing dynamic memory reference behavior with
adaptive cache topology™. In Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems. October 1998.

(98] V. G. Peris. M. S. Squillante. and V. K. Naik. “Analysis of the impact of memory
in distributed parallel processing systems”. Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems. May 1994. pp. 5-18.

[99] K. Psounis and B. Prabhakar. “A randomized Web-cache replacement scheme™. Pro-
ceedings of IEEE INFOCOM 2001.

(100] S. Ratnasamy. P. Francis. M. Handley. R. Karp. and S. Shenker. A scalable content-
addressable network™. ACM SIGCOMM 2001.

(101] M. Reddy and G. P. Fletcher. “An adaptive mechanism for Web browser cache man-
agement”, [EEE Internet Computing. 2(1). January 1998.

[102] M. K. Reiter. and A. D. Rubin. “Crowds: anonymity for Web transactions™. ACM
Transactions on Information and System Security. 1.1. November 1998. pp. 66-92.

(103] G. Rivera and C. W. Tseng. “Data transformations for climinating conflict misses™.
In Proceedings of the SIGPLAN 98 Conference on Programming Language Design and
Implementation. June 1998.

(104] R. Rivest. “The MD5 message-digest algorithm™. Internet
RFC/STD/FYI/BCP Archives. Request for Comments: 1321. April 1992.
(http://www.faqs.org/rfcs /rfc1321.htmnl).

(105] A. Rousskov and V. Soloviev. = A performance study of the Squid proxy on
HTTP/1.0". World Wide Web, 2(1-2):47-67. January 1999. “on Performance of
Caching Proxies™. SIGMETRICS 98, pp.272-273.

[106] RSAREF20. http://tirnanog.ls.fi.upm.es/Servicios/software/ap/crypt /disk3/rsaref20.zip

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.faqs.org/rfcs/rfcl321.html
http://tirnanog.ls.fi.upm.es/Servicios/software/ap/crypt/disk3/rsaref20.zip

BIBLIOGRAPHY 204

[107] Stefan Saroiu. P. Krishna Gummadi. and Steven D. Gribble. A measurement study
of peer-to-peer file sharing systems™. Proceedings of Multimedia Computing and Net-
working 2002 (MMCN'02).

[108] V. Scarlata. B. N. Levine and C. Shields. “Responder anonymity and anonymous
peer-to-peer file sharing™. Proceedings of the 9th International Conference on Network
Protocols (ICNP 2001). November. 2001.

(109] R. C. Seacord and S. A. Hissam. -Browsers for distributed systems: universal
paradigm or siren’s song”. World Wide Web Journal. 1998. pp.181-191.

[110] R. Sedgewick. ~Implementing quicksort programs”. Communications of the ACAM.
Vol. 21. No. 10. 1978. pp. 847-857.

[111] A. Serjantov. " Anonymizing censorship resistant systems”. Proceedings of the st In-
ternational Workshop on Peer-to-peer Systemns. March. 2002. MIT Faculty Club. Cam-
bridge. MA. USA.

[112] S. Sectia. "The interaction between memory allocation and adaptive partitioning in
message-passing multicomputers™. Proceedings of the IPPS Workshop on Job Schedul-
ing Strategies for Parallel Processing. 1995. pp. 146-164.

[113] S. Setia. M. S. Squillante. and V. K. Naik. ~The impact of job memory requirements
on gang-scheduling performance™. Performance Evaluation Review. March 1999.

[114] R. Sherwood. B. Bhattacharjee. and A. Srinivasan. “P?: A protocol for scalable
anonymous communication”. Praceedings of 2002 [EEE Sympostum on Security and
Privacy, May 2002.

[115] C. Shields and B. N. Levine. ~A protocol for anonymous communication over the inter-
net”. Proceedings of 7th ACM Conference on Computer and Communication Security
(ACM CCS 2000). November 2000. pp.33-42.

[116] A. Silberschatz and P. B. Galvin, Operating systems concepts. 4th Edition. Addison-
Wesley. 1994.

(117] B. Smith. A. Acharya. T. Yang. and H. Zhu. ~Exploiting result equivalence in caching
dynamic Web content™. Proceedings of the 2nd USENIX Symposium on Internet Tech-
nologies and Systems. October. 1999.

[118] A. Srivastava and A. Eustace. “ATOM: a system for building customized program
analysis tool.” Proceedings of ACM Symposium on Programming Languages Design
and Implementation. 1994. pp.196-205.

[119] I. Stoica. R. Morris. D. Karger. M. F. Kasshock. H. Balakrishnan. “Chord: A scalable
peer-to-peer lookup service for internet applications™. ACM SIGCOMM 2001.

[120] A. B. Stubbleficld and D. S. Wallach. "Dagster: censorship-resistant publishing with-
out replication™. Technical Report TR01-380. Department of Computer Science. Rice
University. July 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 205

[121] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. “Anonymous connections and
onion routing”. 1997 IEEE Symposium on Security and Privacy (S&P’97). pp.44-53.

[122] A. S. Tanenbaum and R. Van Renesse.. “Distributed operating systems™. ACM Com-
puting Surveys. Vol.17. No.4. December. 1985. pp.419-470.

[123] R. Tewari. M. Dahlin, H. M. Vin and J. S. Kay. “Design considerations for distributed
caching on the Internet”™. Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, (ICDCS). May 1999.

[124] G. M. Voelker. H. A. Jamrozik. M. K. Vernon. H. M. Levy. and E. D. Lazowska.
“Managing server load in global memory systems”™. Proceedings of ACM SIGMETRICS
Conference on Measuring and Modeling of Computer Systems. May 1997. pp.127-138.

[125] M. Waldman. D. Mazi. "Tangler: a censorship-resistant publishing system based on
document entanglements™. Proceedings of the 8th ACM conference on Computer and
Communications Security. 2001. pp.126-135.

[126] M. Waldman. A. D. Rubin. and L.F. Cranor. "Publius: A robust. tamper-evident.
censorship-resistant web-publishing system™. Proceedings of the 9th USENIX Seccurity
Symposium. August 2000. pp.59-72.

(127) W. Wang and M. W. Mutka. “Intelligent browser initiated server pushing™. Proceed-
ings of the IEEE International Performance. Computing and Communications Con-
ference. February 2000.

[128] Web-caching site: http://www.web-caching.com.

(129] R. C. Whaley and .J. J. Dongarra. “Automatically tuned linear algebra software.”
Proceedings of Supercomputing'98. November 1998.

[130] M. E. Wolf. “Improving locality and parallelism in nested loops™. PhD thesis. Dept.
of Computer Science. Stanford University. August 1992.

(131] A. Wolman. G. Voelker. N. Sharma. N. Cardwell. M. Brown. T. Landray. D. Pinnel. A.
Karlin. and H. Levy. “Organization-based analysis of Web-object sharing and caching™.
Proceedings of the 2nd USENIX Symposium on Internet Technologies and Systems.
Octaober. 1999.

[132] Working Group on Peer-to-Peer Computing. http://www.peer-to-peerwg.org

[133] L. Xiao. S. Chen. and X. Zhang “Dynamic cluster resource allocations for jobs with
known and unknown memory demands™ [EEE Transactions on Parallel and Dis-
tributed Systems. Vol.13. No.3. 2000. pp.223-240.

(134] L. Xiao and X. Zhang. “Exploiting neglected data locality in browsers™. Proceedings
of the 10th International World Wide Web Conference (WWW-10). Hong Kong. May
1-5. 2001 (an extended abstract).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.web-caching.com
http://www.peer-to-peerwg.org

BIBLIOGRAPHY 206

[135] L. Xiao. X. Zhang, and S. A. Kubricht. “Incorporating job migration and network
RAM to share cluster memory resources™. Proceedings of the 9th IEEE International
Symposium on High Performance Distributed Computing (HPDC-9). Pittsburgh. Penn-
sylvania. August 1-4. 2000. pp. 71-78.

(136] L. Xiao. X. Zhang. and S. A. Kubricht. “Improving memory performance of sorting
algorithms™. ACM Journal on Ezperimental Algorithmics. Vol. 5. No. 3. 2000. pp.
1-23..

(137] L. Xiao. X. Zhang, and Y. Qu, “Effective load sharing on heterogencous networks
of workstations™ Proceedings of 2000 International Parallel and Distributed Processing
Symposium. (IPDPS'2000). Cancun. Mexico. May 1-5. 2000.

[138] L. Xiao. X. Zhang, and Z. Xu. "A reliable and scalable peer-to-peer Web document
sharing system”™. Proceedings of 2002 International Parallel and Distributed Processing
Symposium. (IPDPS'2002). Fort Lauderdale. Florida. April 15-19. 2002.

(139] Z. Xu. L. Xiao. and X. Zhang. “Data integrity and communication anonymity in
peer-to-peer networks™. Hewlett Packard Laboratories. Technical Report HPL-2001-
204. August 2001.

(140] Y. Yan. X. Zhang, and Z. Zhang. “Cacheminer: a runtime approach to exploit cache
locality on SMP™. IEEE Transactions on Parallel and Distributed Systems. Vol.11.
No.4. 2000. pp.357-374.

[141] J. Yang. W. Wang. R. Muntz. “Collaborative web caching based on Proxy affinities™.
Proceedings of ACM SIGMETRICS 2000. Santa Clara. June. 2000. pp.78-89.

[142] C. Yoshikawa. B. Chun. P. Eastham. A. Vahdat. T. Anderson. D. Culler. “Using smart
clients to build scalable services™. Proceedings of the USENIX 1997 Annual Technical
Conference. January. 1997.

(143] P.S. Yu and E. A. MacNair. “Performance study of a collaborative method for hier-
archical caching in proxy servers”. Proceeding of the seventh International World Wide
Web Conference. April. 1998.

(144] L. Zhang. S. Michel. K. Nguyen. A. Rosenstein, S. Floyd. and V. Jacobson. “Adaptive
web caching: towards a new global caching architecture™. Proceedings of 3rd Interna-
tional WWW Caching Workshop. Manchester. England. Junc. 1998.

[145] X. Zhang. Y. Qu. and L. Xiao. “Improving distributed workload performance by shar-
ing both CPU and memory resources™. Proceedings of 20th International Conference
on Distributed Computing Systems. (ICDCS 2000). Taipei. Taiwan. April 10-13. 2000.

(146] Z. Zhang and X. Zhang. “Fast bit-reversals on uniprocessors and shared-memory
multiprocessors™. SIAM Journal on Scientific Computing. Vol.22. No.6. 2001.

[147) C. Zhang. X. Zhang. and Y. Yan. "Two fast and high-associativity cache schemes™.
IEEE Micro. Vol. 17. No. 5. 1997. pp.40-49.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 207

[148] Z. Zhang, Z. Zhu. and X. Zhang. “Cached DRAM for ILP processor memory access
latency reduction™. IEEE Micro. Vol. 21. No. 4. July/August. 2001. pp.22-32.

(149] S. Zhou. “A trace-driven simulation study of load balancing™. [EEE Transactions on
Software Engineering. Vol. 14. No. 9. 1988. pp.1327-1341.

[150] H. Zhu and T. Yang. “Class-based cache management for dynamic Web content”.
Proceeding of IEEE INFOCOM 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Li Xiao

Li Xiao received her BS and MS degrees in Computer Science from the Northwestern Poly-
technic University. China. She was enrolled the Ph.D. program of Computer Science at the
College of Williamn and Mary in the Fall semester of 1998. She has been a teaching assistant
and a research assistant in the department since then. She was a research intern at the
Hewlett Packard Labs in the summer of 2001. She is a recipient of USENIX Fellowship for
Ph.D. dissertation research in her last year of graduate study. Her research interests are
in the areas of distributed and Internet systems. system resource management. and designs

and implementation of experimental algorithms. She is a member of the IEEE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Adaptive and secured resource management in distributed and Internet systems
	Recommended Citation

	tmp.1539734415.pdf.oD2q7

