
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2002

Adaptive and secured resource management in distributed and Adaptive and secured resource management in distributed and

Internet systems Internet systems

Li Xiao
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Xiao, Li, "Adaptive and secured resource management in distributed and Internet systems" (2002).
Dissertations, Theses, and Masters Projects. Paper 1539623406.
https://dx.doi.org/doi:10.21220/s2-deqc-ew25

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-deqc-ew25
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive and Secured Resource Management in Distributed and

Internet Systems

A Dissertation

Presented to

The Faculty of the Departm ent of Com puter Science

The College of William & M ary in Virginia

In Partial Fulfillment

O f the Requirements for the Degree of

Doctor of Philosophy

by

Li Xiao

2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

Tliis dissertation is subm itted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

.JU
Li Xiao

Approved. July 2002

Thesis Advisor

V)JjU^ 'I
W illiam L. Bvmun '

Phil Kearns

c/C'-vX ^ A^
Robert E. Noonan

Marc Slier
Department of Physics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

To m y parents

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A cknowledgm ents xi

List o f Tables xiv

List o f Figures xxii

A bstract xxiii

1 Introduction 2

1.1 B ack g ro u n d ... 2

1.2 P r o b le m s .. 4

1.3 Statem ents of C o n tr ib u tio n s .. 5

1.4 Organization of the D issertation .. 7

2 A pplication level resource m anagem ent o f m em ory system s 8

2.1 Literature overview on memory utilization in centralized se rv e rs 8

2.2 Improving Memory Performance of Sorting A lg o rith m s..................................... 10

2.3 Architectural and Algorithmic Param eters and Evaluation Methodology . . 13

2.3.1 Architectural and algorithm ic p a ra m e te r s .. 13

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 Performance evaluation m ethodology ... 13

2.3.3 D ata s e t s .. 15

2.4 Cache-Effective M ergesort A lg o r ith m s .. 16

2.4.1 Tiled m ergesort and multiinergesort ... 16

2.4.2 New m ergesort a l te rn a t iv e s .. 17

2.4.2.1 T iled mergesort with padding .. 17

2.4.2.2 M ultiinergesort with TLB p a d d in g ... 21

2.4.3 Trade-offs relating to an instruction count increase and the perfor

mance g a i n ... 24

2.5................................Cache-Effective Q u ic k s o r t .. 25

2.5.1 M emory-tuned quicksort and m u ltiq u ick so rt... 26

2.5.2 New quicksort a lte rn a tiv es ... 26

2.5.2.1 Flash Q u ic k s o r t ... 27

2.5.2.2 Inplaced flash q u ic k s o r t .. 27

2.5.3 Simulation results .. 28

2.6 Measurement Results and Performance E v a lu a t io n .. 29

2.6.1 Mergesort performance c o m p a r is o n s ... 31

2.6.2 Quicksort perform ance comparisons ... 34

2.7 A Prediction Model of Performance T ra d e -O f f s ... 36

2.8 C hapter Conclusion ... 41

3 Load Sharing for G lobal M em ory System M anagem ent 43

3.1 Literature overview on load sharing for global memory in distributed system s 43

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 CPU-m em ory-bascd Load Sharing 47

3.2.1 CPU-M emory-Based Load Sharing P o l ic i e s ... 49

3.2.2 Performance Evaluation M e th o d o lo g y ... 53

3.2.2.1 A sim ulated cluster .. 54

3.2.2.2 Workload T ra c e s ... 55

3.2.2.3 System c o n d it io n s .. 56

3.2.3 Performance Results and A n a l y s i s .. 57

3.2.3.1 Overall Performance C o m p a ris o n s ... 57

3.2.3.2 Paging and Q u e u in g .. 59

3.2.3.3 High Performance and High T h r o u g h p u t 61

3.2.4 S u m m a r y ... 62

3.2.5 Brief description of our study on heterogeneous s y s te m s 62

3.2.5.1 CPU /M em ory W eights and H eterogeneity............................... 63

3.2.5.2 Sum m ary of Our Heterogeneous Study 65

3.3 Incorporation job m igration and network RAM to share memory resource . 66

3.3.1 Objectives of the study .. 66

3.3.2 Job-m igration-based load sharing vs. network R A M 68

3.3.2.1 Network RAM o rg a n iz a t io n s ... 68

3.3.2.2 CPU-Memory-basod load sh a rin g .. 69

3.3.3 Performance Evaluation M e th o d o lo g y ... 70

3.3.3.1 Performance m e tr ic s .. 70

3.3.3.2 A sim ulated w orkstation c l u s t e r .. 71

3.3.3.3 W o rk lo a d s ... 72

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.4 Sim ulation Results and A n a ly s i s .. 73

3.3.4.1 Impact of lim ited network ban d w id th s 73

3.3.4.2 Trade-offs between page fault reductions and load sharing . 77

3.3.5 An improved load sharing schem e.. 79

3.3.6 S u m m a r y ... 80

4 Resource M anagem ent in Internet Caching System s 84

4.1 Overview of existing caching system s t r u c tu r e s .. 84

4.2 Changes in Both Workload and Internet Technologies 86

4.2.1 W orkload Changes ... 86

4.2.1.1 Trend in NLANR W orkload ... 86

4.2.1.2 Trend in BU Workload .. 88

4.2.2 Technology C h a n g e s ... 91

4.3 Overview of the Limits on Existing Caching System S t r u c tu r e s 92

5 Locality and Inform ation Sharing am ong Browsers 95

5.1 Browsers-Aware Proxy Server 96

5.2 Simulation E n v iro n m e n t.. 97

5.2.1 T r a c e s .. 98

5.2.2 A browsers-proxy caching env ironm en t... 100

5.3 Performance E v a lu a t io n .. 102

5.3.1 Sizes of browser and proxy caches .. 102

5.3.2 How much is browser cache da ta sharable? .. 103

5.3.3 Perform ance of browsers-aware proxy s e rv e r .. 107

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.4 Performance Im pact of Scaling the N um ber of C l i e n t s 108

5.4 Overhead E s tim a tio n ... 110

5.5 C hap ter Conclusion ... 113

6 R educing D uplications in a P roxy and Its B row sers 116

6.1 Background and Related W o r k ... 116

6.2 A sim ulated proxy-browser caching environm ent ... 120

6.3 Case Studies of Duplications in Web C a c h in g ... 120

6.4 Cooperatively Shared Proxy-Browser Caching S c h e m e 122

6.4.1 An outline o f the scheme ... 122

6.4.2 Data structures and o p e ra t io n s .. 124

6.4.2.1 T he structu re in each browser ... 124

6.4.2.2 T he structu re in the p r o x y .. 125

6.4.3 Offline Algorithms for Performance C o m p a r is o n s 127

6.5 Performance E v a lu a t io n .. 129

6.5.1 Evaluation o f the sensitivity to the proxy cache size 130

6.5.2 Evaluation o f the sensitivity to a browser cache size 132

6.5.3 Evaluation o f the sensitivity to the replacem ent th r e s h o ld 134

6.5.4 Performance Im pact of Scaling the N um ber of C l i e n t s 135

6.5.5 Latency R e d u c tio n ... 137

6.6 Overhead A n a ly s is .. 138

6.6.1 Intra-network O v e r h e a d ... 138

6.6.2 Space Overhead .. 141

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6.3 CPU O v e rh e a d ... 143

6.7 C hapter Conclusion .. 144

7 D ata Integrity and C om m unication A nonym ity 145

7.1 In troduction ... 145

7.2 Data In teg rity .. 146

7.3 Anonymity I s s u e ... 147

7.4 Related Work on Anonym ity S t u d ie s .. 149

7.4.1 Publisher and Sender A n o n y m ity .. 149

7.4.2 Existing m utual anonym ity protocols: their merits and limits 150

7.5 Anonymity with Trusted T hird P a r t i e s ... 153

7.5.1 A Mix-based Protocol: an intuitive s o lu t io n .. 154

7.5.2 C e n te r-D ire c tin g ... 157

7.5.3 Label-Switching ... 160

7.5.4 M ultiple Trusted Index S e r v e r s ... 162

7.6 Anonymity in Pure P 2 P ... 165

7.7 A n a ly s is ... 168

7.7.1 Security A n a ly s is ... 168

7.7.2 Cost of the Different P r o to c o l s ... 171

7.8 Performance E v a lu a t io n ... 171

7.8.1 Data Transfer T im e through Peer N odes... 172

7.8.2 Overhead of MD5. DES and R S A .. 173

7.8.3 Additional S to r a g e ... 174

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.8.4 Com parisons of P r o to c o ls .. 174

7.9 D iscussion .. 176

7.10 C hapter Conclusion .. 180

8 P rototyp e Im plem en tation s and Initial R esults 182

8.1 A client daemon to interface the browser and com m unicate with the proxy . 182

8.2 A browsers-aware proxy server ... 184

8.3 Overhead M easurem ent and A nalysis... 185

9 Final Conclusions and Future Work 188

9.1 S u m m a r y .. 188

9.2 Future Work: Balancing the Power between Centralized and Decentralized

Resources in D istribu ted C o m p u tin g .. 191

9.2.1 Non-uniform parallel computing ... 192

9.2.2 Resource Indexing on Grid Systems ... 193

9.2.3 Resource M anagem ent on Peer-to-peer s y s te m s 194

Bibliography 196

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

My first acknowledgment goes to my advisor. Xiaodong Zhang. He provides me w ith an

excellent research environm ent both materially and spiritually: by deeply involving in guid

ing my research, by continuously securing funding, by persistently setting a high standard

for quality, by actively prom oting a discussion atm osphere and encouraging collaborations,

and insightfully sharing his visions of research. He is my role model of hardworking and

devotion to his career and to his students. He is always w ith his students at every moment

o f facing difficulties. I also appreciate deeply for his help on building my confidence, and

for his efforts on pursuing every opportunity for his s tuden ts in their career development. I

am grateful to his diligent efforts on preparing and tra in ing us to face and enjoy real-world

challenges. I am very fortunate to have him as my advisor.

I would like to acknowledge Professors Bill Bynum. Phil Kearns, and Bob Noonan for

serving the dissertation committee, and Marc Slier for serving as the external mem ber

of the com m ittee and making helpful comments. I thank Bill for reviewing many of my

m anuscripts, and for his help and encouragement in my study. Evgenia Smirni has m ade

helpful suggestions to me for both technical study and career development. My dissertation

is experim ental-oriented research, and has been dependent on strong technical support

from Phil and his techie team. I would also like to thank Vanessa Godwin for her organized

m anagem ent and help in my graduate study.

I have spent 4 years with many fellow students in the High Performance Com puting

anti Software Lab (HPCS). and enjoy working, discussing, and joking with them: Songqing

Chen. Xin Chen. Lei Guo. Song Jiang. Stefan K ubricht. Yanxia Qn. Zhao Zhang, and

Zhichun Zlm. I have productively collaborated with Songqing. Stephan, and Yanxia on

several research projects, and learned a lot from them . I enjoy my friendships with m any

o ther fellow graduate students: Wei Ding. Andrew LaRoy. Shanling Peng. Alma Riska. and

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wei Sun.

My work as a research in tern a t the Hewlett Packard Laboratories in the sum m er of

2001 gave me a valuable experience in the g raduate study. I would like to thank Dr.Zhichen

Xu. my mentor of the internship and a form er member of the HPCS lab. for his advice

and collaboration. My thanks also goes to A rtu r Andrzejak from HP Labs for his help and

collaboration. I was also beneficial to many discussions with Dr. Yong Yan. a researcher at

HP Labs and another former m em ber of the H PCS lab. I had opportunities to work and

discuss with several people when I was a t the HP Labs: M artin A rlitt. Lucy Cherkasova.

Yun Fu. Minaxi G upta. Vana kalogeraki. M alena M csarina. M anohar Prablm . and Wonting

Tang. I also thank Beveley Yang for her inv itation to a ttend their group discussions in

Stanford University.

I want to thank the funding agencies tha t provided funds and equipm ent for my research:

Air Force Office of Scientific Research. National Science Foundation, and Sun M icrosystems.

I would like to give a special acknowledgment to the Fellowship awarded by the USENIX

Association. I am honored to be a USENIX Scholar.

My gratitude to my parents and my two bro thers is forever. My parents endured many

hardships in the difficult tim e of China. B ut they were always optim istic to th e future,

unselfishly protective to us. and pleasantly tie the family together. I am deeply grateful

to my parents' high expectations and their constan t helps on developing my all-rounded

abilities and personality. W ith their unconditional love, my family always understands my

decisions, and devotes whatever they could to support my pursuits.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 Architectural param eters of the 4 machines we have used for the experim ents. 30

3.1 Trace D esc rip tio n .. 56

3.2 Sum mary of the 4 schemes and their im pact on different system and workload

conditions/requirem ents.. 83

4.1 Average Hit ratio and coverage comparisons of year 1998 and 2000. where

the average hit ratio is calculated from proxy "pb". "bo l" . "bo2” . "sv " and

"sd". which have their statistical reports in both years, and the coverage of

top 20 servers is the percentage of the num ber of requests to top 20 servers

over the to ta l num ber of requests... 87

5.1 Selected Web Traces.. 100

5.2 Representative proxy cache configurations reported in [105]................................ 103

6.1 Trace analysis on document duplications and sharing based on the proxv-

browser system hit ratios, intra-sharing ratios, and inter-sharing ratios. . . . 121

6.2 Intra-network O v e r h e a d .. 141

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 P ath Table ... 160

7.2 Sub-Tables ... 161

7.3 Degree of A nonym ity ... 170

7.4 Com parison of Protocols with k m iddle nodes in each covert p a t h 171

7.5 L a t e n c y .. 173

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 D ata layout of subarrays is modified by padding to reduce the conflict misses. 20

2.2 Simulation comparisons of the LI cache misses (left figure) and L2 misses

(right figure) of the mergesort algorithm s on the Random d a ta set on the

sim ulated Sun Ultra 5. The LI cache miss curves (left figure) of the base

mergesort and tiled-mergesort are overlapped ... 21

2.3 Padding for TLB: the da ta layout is modified by inserting a page space at

multiple locations, where K t l b = U an d T s = 8.. 23

2.4 Simulation comparisons of the L2 cache misses (left figure) and TLB misses

(right figure) of the mergesort algorithm s on the Random d a ta set on the

sim ulated Pentium II.. 24

2.5 Simulation comparisons of the instruction counts (left figure) and saved cycles

in percentage (right figure) of the m ergesort algorithms on the Random d a ta

set on the simulated Pentium II. The instruction count curves (left figure) of

the base mergesort, and the tiled m ergesort are overhapped................................. 25

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Simulation comparisons of the instruction counts (left figure) and the LI

misses (right figure) of the quicksort algorithms on the Unbalanced d a ta set

on the simulated Pentium III. The instruction count curve of the fiashsort

was too high to be presented in the left figure... 28

2.7 Execution comparisons of the mergesort algorithms on SGI 0 2 and on Sun

U ltra 5.. 31

2.8 Execution comparisons of the mergesort algorithms on Sun U ltra 5 using the

Equilikely data set (left figure) and the Bernoulli d a ta set (right figure). . . 32

2.9 Execution comparisons of the mergesort algorithms on Sun U ltra 5 using the

Geometric d a ta set (left figure) and the Pascal da ta set (right figure). . . . 33

2.10 Execution comparisons of the mergesort algorithms on Sun U ltra 5 using the

Binomial data set (left figure) and the Poisson data set (right figure). . . . 34

2.11 Execution comparisons of the mergesort algorithms on Sun U ltra 5 using the

Unbalanced da ta set (left figure) and the Zero data set (right figure)............. 35

2.12 Execution comparisons of the mergesort algorithms on Pentium II and on

Pentium III.. 36

2.13 Execution comparisons of the quicksort algorithms on the Random d a ta set

(left figure) and on the Unbalanced data set (right figure) on the SGI 02 .

(The timing curve of the fiashsort is too high to he presented in the right,

figure).. 37

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.14 Execution comparisons of the quicksort algorithm s on the Random da ta set

(left figure) and on the Unbalanced d a ta set (right figure) on the Ultra 5.

(The timing curve of the fiashsort is too high to be presented in the right

figure)... :{8

2.15 Execution comparisons of the quicksort algorithm s on the Random da ta set

(left figure) and on the Unbalanced d a ta set on the Pentium II. (The timing

curve of the fiashsort is too high to be presented in the right figure).............. 39

2.16 Execution comparisons of the quicksort algorithm s on the Random da ta set

(left figure) and on the Unbalanced d a ta set on the Pentium III. (The timing

curve of the fiashsort is too high to be presented in the right figure).............. 40

3.1 Mean slowdowns of the 4 load sharing policies as the page fault rate increases

on traces MAY and JU N E.. 58

3.2 Mean slowdowns of the 4 load sharing policies as the page fault rate increases

on traces JULY and AUGUST... 59

3.3 Paging time reduction (left figure) and queuing tim e reduction (right figure)

of policies MEM. CPU.M EM _HP and C PU .M EM .H T over policy CPU. . . 60

3.4 T he average execution tim es per job (the left figure) and the networking

portions in the execution tim es (right figure) of "trace 0“ with job migration

restrictions running on clusters of 6. 12 and 18 w orkstations............................. 75

3.5 T he average execution times per job (the left figure) and the networking por

tions in the execution times (right figure) of "trace 0“ w ithout job migration

restrictions running on clusters of 6. 12 and 18 w orkstations............................. 76

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 The average execution times per job of "trace 0" w ithout job m igration re

strictions running on a 10 Mbps cluster (the left figure), and a 100 Mbps

cluster (the right figure) of 6 w orkstations.. 78

3.7 The average execution times per job of "trace 0” w ithout job m igration re

strictions running on a 10 Mbps cluster (the left figure), and a 100 M bps

cluster (the right figure) of 12 w orkstations.. 79

3.8 The average execution times per job of all the 8 traces (the left figure for the

8 traces where some jobs are non-migratable. and the right figure for the 8

traces where all the jobs are m igratable), running on a 10 M bps cluster of 6

workstations.. 81

3.9 The average execution times per job of all the 8 traces (the left figure for the

8 traces where some jobs are non-m igratable. and the right figure for the 8

traces where all the jobs are m igratable), running on a 100 M bps cluster of

6 w orkstations... 82

4.1 The percentage of the recpiests to each of the top 20 servers over the to ta l

num ber of requests versus each rank of servers.. 87

4.2 The percentage of the requests to each server or document over the to ta l

requests versus server ranking or docum ent ranking.. 89

5.1 Organizations of the browsers-aware proxy server.. 98

5.2 The hit ratios and byte hit ratios of the five caching policies using NLANR-uc

trace, where the browser cache size is set m inim um ... 104

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 The breakdowns of the hit ratios and byte h it ratios of the browsers-aware

proxy using NLANR-uc trace, where the browser cache size is set m inim um . 10b

5.4 The hit rates and byte hit rates of the browsers-aware-proxy-server and proxy-

and-local-browser scheme using NLANR-uc trace, where the browser cache

size is set average... 108

5.5 The hit rates and byte hit rates of the browsers-aware-proxy-server and proxy-

and-local-browser scheme using NLANR-bol trace, where the browser cache

size is set average... 109

5.6 The hit rates and byte hit rates of the browsers-aware-proxy-server and proxy-

and-loc.al-browser scheme using NLANR-pa trace, where the browser cache

size is set average... 110

5.7 The hit rates and byte hit rates of the browsers-aware-proxy-server ami proxy-

and-local-browser scheme using Boeing-4 trace, where the browser cache size

is set average... I l l

5.8 The hit rates and byte hit rates of the browsers-aware-proxy-server and proxy-

and-loe.al-browser scheme using Boeing-5 trace, where the browser cache size

is set average... 112

5.9 The hit rates and byte hit rates of the browsers-aware-proxy-server and the

proxy-and-local-browser scheme using the BU-95 trace, where the browser

cache size is set average.. 113

5.10 The hit rates and byte hit rates of the browsers-aware-proxy-server and the

proxy-and-local-browser scheme using the BU-98 trace, where the browser

cache size is set average.. 114

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.11 T he hit ratios and byte hit ratios of the browsers-aware-proxy-server and

proxy-and-local-browser scheme using the CA *netII trace.................................. 115

5.12 T he hit ratio and byte hit ratio increm ents of the browsers-aware-proxy-server

over the proxy-and-local-browser... 115

6.1 D uplication among a proxy and its client browsers... 117

6.2 T he management operations in each browser when a remote client request

hits in i t ... 125

6.3 T he Management operations in the proxy when a client request hits in the

p r o x y 126

6.4 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy

cache sizes using BU-95 trace (/i=10. th= 0.5)... 130

6.5 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy

cache sizes using BU-98 trace (/i=10. tli= 0.5)... 131

6.6 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy

cache sizes using Boeing-4 trace (/i=10. th= 0.5).. 132

6.7 Hit ratio and byte hit ratio of the three caching schemes versus relative proxy

cache sizes using Boeing-5 trace (/^=10, th= 0.5).. 133

6.8 Hit ratio and byte hit ratio of the three caching schemes versus relative

browser cache sizes using BU-95 trace (p.s=l% . th= 0.5)...................................... 134

6.9 Hit ratio and byte hit ratio of the three caching schemes versus relative

browser cache sizes using BU-98 trace (p.s=l% . th = 0.5)...................................... 135

xx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.10 Hit ratio and byte hit ratio of the three caching schemes versus relative

browser cache sizes using Boeing-4 trace (p.s= 1%. th= 0.5)................................. 136

6.11 Hit ratio and byte hit ratio of the three caching schemes versus relative

browser cache sizes using Boeing-5 trace (p s= l% . £/i=0.5)................................. 137

6.12 Hit ratio and byte hit ratio of the three caching schemes versus the replace

ment threshold using BU-95 trace (p.s=l%. d = 1 0).. 138

6.13 Hit ratio and byte hit ratio of the three caching schemes versus the replace

m ent threshold using BU-98 trace (/ j .s = 1% . /1=10).. 139

6.14 Hit ratio and byte hit ratio of the three caching schemes versus the replace

ment threshold using Boeing-4 trace (p.s=l%. /^=10)... 140

6.15 Hit ratio and byte hit ratio of the three caching schemes versus the replace

ment threshold using Boeing-5 trace (p.s=l%. ^ = 1 0) ... 141

6.16 The hit ratio and byte hit ratio increments of the cooperative-caching over

the proxy-and-local-browser... 142

7.1 Integrity P ro to c o l.. 147

7.2 An example of the Mix-Based P ro to c o l... 156

7.3 An example of the Center-Directing P r o to c o l ... 159

7.4 An example o f the shortcut-responding Protocol .. 167

7.5 Breakdown of da ta transfer and protocol overhead with 2 and 5 middle nodes

for Boeing M arch 4 trace (left) and Boeing March 5 Trace (right). MB{ k)

represent mix-based protocol with k middle nodes. Similarly. CD. LS and SR

represent center-directing, label-switching, shortcut-responding, respectively. 175

xxi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 The organization of client daemon to interface with a client browser and the

proxy.. 184

8.2 The organization of proxy daemon to interface with a client browser and the

proxy.. 186

xxii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The effectiveness of com puter system resource management has been always determined
by two m ajor factors: (1) workload dem ands and management objectives. (2) the updates
of the com puter technology. These two factors are dynam ically changing, and resource
management systems must be timely adaptive to the changes. T his dissertation attem pts
to address several im portant and related resource management issues.

We first study memory system utilization in centralized servers by improving memory
performance of sorting algorithm s, which provides fundam ental understanding on memory
system organizations and its performance optim izations for data-intensive workloads. To
reduce different types of cache misses, we restructure the mergesort and quicksort algorithms
by integrating tiling, padding, and buffering techniques and by repartitioning the data set.
O ur study shows substantial performance improvements from our new methods.

We have further extended the work to improve load sharing for utilizing global mem
ory resources in distributed systems. Aiming at reducing the memory resource contention
caused by page faults and I /O activities, we have developed and examined load sharing
policies by considering effective usage of global memory in addition to CPU load balancing
in both homogeneous and heterogeneous clusters.

Extending our research from clusters to Internet systems, we have further investigated
memory and storage utilizations in Web caching systems. We have proposed several novel
m anagement schemes to restructure and decentralize the existing caching system by ex
ploiting da ta locality at different levels of the global memory hierarchy and by effectively
sharing d a ta objects among the clients and their proxy caches.

D ata integrity and comm unication anonymity issues are raised from our decentralized
Web caching system design, which are also security concerns for general peer-to-peer sys
tems. We propose an integrity protocol to ensure da ta integrity, and several protocols to
achieve m utual comm unication anonymity between an information requester and a provider.

The potential impact and contributions of this dissertation are briefly stated as follows:
(1) two m ajor research topics identified in this dissertation are fundam entally im portant for
the growth and development of information technology, and will continue to be demanding
topics for a long term. (2) O ur proposed cache-effective sorting m ethods bridge a serious
gap between analytical complexity of algorithm s and their execution complexity in practice
due to the increasingly deep memory hierarchy in com puter system s. This approach can
also be used to improve memory performance at different levels o f the memory hierarchy,
such as I/O and file systems. (3) O ur load sharing principle of giving a high priority to the
requests of da ta accesses in memory and I/O s timely adapts the technology changes and
effectively responds to the increasing demand of data-intensive applications. (4) Our pro
posed decentralized Web caching framework and its resource m anagem ent schemes present
a comprehensive case study to examine the P2P model. O ur results and experiences can
be used for related and further studies in d istributed com puting. (5)The proposed d a ta
integrity and communication anonymity protocols address limits and weaknesses of existing
ones, and place a solid foundation for us to continue our work in th is im portant area.

xxiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive and Secured Resource Management in Distributed and

Internet Systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Background

System resource m anagem ent has been seriously considered since the com puter was born.

The original objective of resource m anagement is to make good use of com puter resources

for high performance. Today the objective has been extended beyond performance, to

security, availability and reliability. An effective resource management must be adaptive

to the changes of workload and technology. For example, resource management between

cache and memory becam e an essential topic after the cache was installed. A cache could be

useless if its locality is not exploited. Resource m anagement in a distributed system came

hand in hand with netw orking system s, and it differs from th a t in a centralized system in a

fundam ental way [122]. Resource m anagement on the Internet has become another focused

research topic. The security issue is becoming a m ajor concern as global distributed resource

sharing dram atically increases.

The two m ajor them es of this dissertation are (1) to make resource allocation be adaptive

to the changes of workload and technology, and (2) to make resource sharing secure and

protected.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter I. Introduction 3

Resource m anagem ent should target the m ajor system components affecting system per

formance. Fundam ental resources in a modern com puter system are CPU cycles, memory,

in p u t/o u tp u t, network interface, and Internet bandw idth. Workloads are becoming increas

ingly data-intensive. while the speed gap between processing and da ta accessing continues

to widen as the development of memory and disk lags farther behind that of CPU [42]. The

speed of microprocessors has been steadily improving a t a rate of between 50% and 100%

every year, over the last decade. Unfortunately, the memory speed has not kept pace with

this, improving only a t the rate of abou t 10% per year during the same period [67]. Thus,

the memory hierarchy in both servers and d istribu ted /In ternet systems becomes a com

puting crucial resource. The first focused dissertation topic is to provide new solutions to

effectively utilize the memory hierarchy in com puting servers and d istribu ted aud Internet

system s for data-intensive application workloads.

Resource sharing of both com puting and information over the Internet is dram atically

increasing. This system decentralization trend challenges the existing client/server model,

and leads to a new distributed com puting paradigm, the peer-to-peer (P2P) model. In a

P2P system , a client is no longer a pure consumer but also an inform ation producer or

dissem inator. T his can solve some of problems caused by the client/server model, espe

cially. hot spots surrounding big servers and underutilization of resources [62]. Examples

of P2P systems include Napster [90] . Freenet [52], G nutella [60]. So P2P can offer an a t

tractive' a lternative to the traditional client/server model, and can better utilize networked

resources. P2P. however, also creates several challenges, including how to implement dis

tribu ted controls and how to enforce tru s t and anonymity. In a P2P system, a peer expects

the inform ation th a t she receives is genuine. A peer may desire to remain anonymous with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter I. Introduction 4

respect to the content she possesses or requests. A peer lias many reasons to rem ain anony

mous: to keep her life away from danger, to avoid being prejudged by other people, to hide

sensitive inform ation from competitors, or simply to keep her privacy [94]. For example,

w ith cooperative proxy caches, the information held in the proxy cache of an organization

can be a trade secret. Leaking this information could compromise its com petitive advan

tage. The second focused topic in this dissertation is to propose effective m ethods to enforce

da ta integrity and communication anonymity for P2P resource sharing.

1.2 Problem s

We have identified four related problems of resource m anagement in d istribu ted and Internet

systems:

• Memory system utilization in a centralized server. Efforts have been m ade at the

level of program and algorithm optim ization. This is a preliminary work to set up

a foundation for memory hierarchy m anagement of distributed and Internet systems.

O ur case study is to improve memory performance of sorting algorithm s.

• Load sharing for global memory utilization in d istributed systems. Efforts have been

made at the level of middleware/system scheduler to migrate jobs. O ur case studies

are (1) resource allocation foi jobs w ith known and unknown memory dem ands, and

(2) incorporating network RAM and job m igrations.

• D ata m anagem ent of Internet caching systems. Efforts have been made at the appli

cation level on Web caching. We propose a P2P framework for browser-aware caching

to effectively share browser caches. One algorithm aimed at reducing unnecessary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 5

document duplications in the caching storage hierarchy is also proposed. In order to

safely and reliably share browser caches, the issues of d a ta integrity and communica

tion anonym ity must be addressed. This can be extended as a general problem for

P2P system s, which is the last identified problem in this d issertation.

• D ata integrity and communication anonym ity for P2P Internet system s. Efforts have

been m ade to ensure the data integrity of multiple da ta copies am ong the peer nodes,

and to provide privacy protection for each peer by enforcing anonym ous communica

tions in different types of P2P systems.

1.3 Statem ents o f Contributions

C ontributions and potential impact of th is dissertation are stated as follows:

• The two m ajor research topics identified in this dissertation, the m em ory-centric re

source m anagem ent and security/privacy protection in d istribu ted and Internet sys

tems are fundam entally im portant to the growth and development of information

technology, and will continue to be dem anding topics for a long term .

• We propose a group of cache-effective software techniques to improve sorting algo

rithms. which experimentally outperform existing sorting algorithm s with cache op

timizations. This experimental approach bridges a serious gap between analytical

complexity of algorithm s and their execution complexity in practice due to the in

creasingly deep memory hierarchy in com puter systems. This approach can also be

used to improve memory performance at different level of the mem ory hierarchy, such

as I/O and file systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction 6

• T he trad itional principle of "load balancing" in resource m anagem ent of distributed

system s had been highly effective before the memory hierarchy becam e a performance

bottleneck in com puter systems. We propose new load sharing policies by not only

tak ing memory and I/O into considerations but also giving high priority to the re

quests of d a ta accesses. O ur resource allocation principle tim ely adap ts the technology

changes and effectively responds the increasing dem and of data-intensive applications.

O ur resource m anagement policies for known and unknown memory allocations can

be widely applicable, and implemented as a user software or a middleware for high

perform ance cluster computing.

• C om puting and information sharing has inevitably and globally decentralized with the

rap id advancement of Internet infrastructure. We believe that the P2P model will soon

becom e a standard paradigm co-existing with the client/server model in distributed

system s. We present a comprehensive case study to exam ine the P2P model by

proposing the browser-aware Web caching framework and its resource management

schemes. O ur results and experiences can be used for related studies in distributed

com puting.

• For a highly decentralized system, the issue of security and privacy has become cru

cially im portant. The research and IT community has s ta rted to pay more serious

a tten tio n to this issue since the Tragedy of Septcm ber-11. T he hist effort we have

m ade in this dissertation on d a ta integrity and comm unication anonym ity targets on

this im portan t issue in P2P systems. The algorithms and protocols we have proposed

address lim its and weaknesses of existing ones, and place a solid foundation for us to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter I. Introduction

further improve Internet security.

7

1.4 Organization of the Dissertation

C hapter 2 presents our study on memory system utilization in centralized servers by im

proving memory performance of sorting algorithm s. C hapter 3 presents our studies on load

sharing for global memory utilization in d istribu ted systems. C hapter 4 raises resource

m anagement issues in the Internet caching system . The existing caching system struc

tures are first overviewed. This chapter presents our motivation and rational to study on

effectively sharing browser caches using the peer-to-peer model. In C hapter 5. we pro

pose a peer-to-peer Web document sharing technique, called Browsers-Aware Proxy Server

th a t makes the browsers and their proxy share the contents to fully utilize the Web con

tents and network bandw idth among clients. In order to further improve performance, a

peer-to-peer Web caching management scheme, called cooperatively shared proxy-browser

caching is proposed in C hapter 6 to reduce docum ent duplications among a proxy and its

client browsers. C hapter 7 addresses two problem s of da ta integrity and communication

anonym ity in browser-aware systems and general peer-to-peer systems. C hapter 8 presents

a prototype im plem entation of the P2P browser sharing system anti initial measurement

results. C hap ter 9 concludes the dissertation and presents future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Application level resource

management o f memory system s

2.1 Literature overview on memory utilization in centralized

servers

Caches could help to bridge the speed gap between fast, CPU and slow memory, but scientific

applications typically exhibit poor performance in cache-based systems [40]. The reason is

th a t scientific programs run on large d a ta sets and have traversal patterns that may not

exploit d a ta locality. Intensive studies have been done in 90’s to effectively exploit the

benefits of caches at four different levels.

• Hardware Techniques:

Examples of hardware techniques to improve cache performance include set-associate

caches [73]. pseudo-associative caches [3][17], group-associative caches [97], victim

caches [72], and m ulti-colum n caches [147]. These techniques aim at reducing conflict

cache misses for general purpose application programs.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 9

• C om piler-tim e Techniques:

Compiler transform ations have been developed to restructu re the com putation se

quence and to improve da ta locality [18][21][85][103]. Loop interchange, loop reversal,

and loop skewing perform loop restructuring to improve da ta locality [130]. Loop

tiling reduces capacity misses by enhancing da ta locality [30] [77] [23]. T ile size is an

essential factor affecting performance. A compiler should be able to select a right tile

size for a given problem and a given cache size, because improperly selected tiling can

introduce misses due to cache m apping conflicts.

• R un-tim e Techniques:

Run-time techniques arc also effective in reducing cache misses, especially for dynam ic

applications (see e.g. [9]. [71], [140]). A combination of compiler and run-tim e support

for a class of run-tim e d a ta reordering techniques is studied in [32]. where an access

sequence is exam ined and used to reorder da ta to improve spatial locality as the access

sequence is traversed.

• Program m ing-level Techniques:

There have been m any studies and implementations a t the program ming level to im

prove cache perform ance of application programs. Many such im plem entations have

been done in a form at o f scientific libraries. The PhiPAC project [11] aim s at produc

ing highly tuned code for specific BLAS 3 [34] kernels such as matrix m ultiplications

th a t arc tiled for m ultip le levels of the memory hierarchy. An im plem entation of

recursive m atrix m ultiplication is provided by [53]. Paper [65] discusses the role of re

cursive control strategics in autom atic variable blocking of dense linear algebra codes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory systems 10

and shows dram atic performance gains com pared to implementations of the sam e rou

tines in IBM 's Engineering and Scientific Subroutine Library (ESSL). Authors in [24]

explore nonlinear array layout functions to improve reference locality, and show high

perform ance benefits on a benchmark suite w ith dense m atrix kernels. Papers [57]

and [146] provide cache-optimal m ethods for bit-reversals. Paper [87] evaluates the

im pact of d a ta and computation reordering using space-filling curves, and introduces a

multi-level blocking technique as a new com putation reordering strategy for irregular

applications.

The first three techniques provide autom atic services to users. But generally one spe

cific technique can only benefit, several classes of applications and may not be beneficial

to perform ance of some applications. For exam ple, an improperly selected tile size can

degrade performance of applications and the technique proposed in [.‘52] has the side ef

fect of improving TLB performance. In contrast, techniques at the programming design

level using application-specific knowledge of the d a ta structures can be highly effective,

and are expected to outperform optim izations using the first three system m ethods. This

chapter presents our work on improving memory perform ance of sorting algorithm s a t the

program m ing design level. This work was in collaboration with Stefan Kubricht.

2.2 Improving Memory Performance of Sorting Algorithm s

Sorting operations are fundamental and are often repeatedly used in many large-scale scien

tific and commercial applications. Because of this prominence, any effort to maximize the

efficiency in these programs requires ensuring th a t the sorting algorithms used have been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management of memory system s 11

correctly selected and are precisely im plem ented. Restructuring standard efficient sorting

algorithm s (such as niergesort and quicksort) to exploit cache locality has proven to be?

an effective approach for improving perform ance on high-end systems. Since sorting algo

rithm s are highly sensitive to both the memory hierarchy of the com puter architecture and

the types of da ta sets, care must be taken when choosing an algorithm to fully optimize

the performance for a specific sorting operation. Existing restructured algorithm s (e.g..

[78]) mainly attem pt to reduce capacity misses on direct-mapped caches. In this chapter,

we present several restructured m ergesort and quicksort algorithms th a t exhibit substantial

performance improvements by further increasing the locality of the memory references to

reduce other types of cache misses, such as conflict misses and TLB misses. These new

algorithm s utilize both tiling and padd ing techniques, data set repartitioning, and knowl

edge of the processor hardware (such as cache and TLB associativity) to fully optimize

the performance. Thus, in order to maximize efficiency, it is necessary to implement the

cache-effective algorithms carefully and precisely a t the algorithm design and program ming

levels.

O ur efforts focus chiefly on restructu ring mergesort and quicksort, algorithm s to more

effectively utilize the cache. O ur results and contributions are summ arized below:

• By applying padding techniques we are able to reduce significantly cache conflict

misses and TLB misses, which are not fully addressed in the algorithm designs of

tiled mergesort and m ultim ergcsort [78]. For our two mergesort alternatives, the opti

mizations improve both cache and overall performance. O ur experim ents on different

high-end workstations show th a t our algorithms achieve up to a 70% reduction in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 12

execution time compared w ith the base mergesort. and up to a 54% reduction versus

the fastest of the tiled and m ultim ergesort algorithms.

• By partitioning the d a ta set based on d a ta ranges, we are ab le to improve the cache

locality of quicksort on unbalanced d a ta sets. O ur two quicksort alternatives signifi

cantly outperform the m em ory-tuned quicksort [78] and flashsort [92] on imbalanced

da ta sets.

• Cache-effective sorting algorithm design depends on the com puter architecture as well

as the type of d a ta set. The algorithm design should include param eters such as the

size and associativity of bo th the da ta cache and TLB. th e ratio between the data

set size and the cache size, and possibly other factors. Using our measurements and

simulations, we show the im portance of considering these factors by dem onstrating

how machines interact differently w ith the various algorithm s.

• A m ajor issue tha t must be considered when designing a so rting algorithm for practical

use concerns the trade-offs resulting from increasing the instruction count in order to

reduce cache misses and o ther high-latency memory operations. To address this,

we give an execution timing model to quantitatively predict the performance of an

algorithm . We also give analytical predictions of the num ber of cache misses for the

sorting algorithms before and after the cache optim izations. We show th a t cycles lost

from increasing the instruction count to maximize cache reuse can be a negligible price

to pay when compared to the m any cycles that would otherw ise be lost, from different

types of cache misses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 13

2.3 Architectural and Algorithmic Parameters and Evalua

tion M ethodology

In th is section, we first list and describe the architectural-dependent param eters we used in

designing the algorithms. We then introduce the perform ance evaluation methodology and

present the da ta sets used in the experiments.

2 .3 .1 A rch itec tu ra l a n d a lg o r ith m ic p a ra m eters

A d a ta set consists of a num ber of elements. One elem ent may be a 4-byte integer, an

8-byte integer, a 4-byte floating point number, or an 8-byte double floating point number.

We use the same generic un it, an element, to specify the cache capacity. Because the size

of caches and cache lines are always a multiple of an element in practice, a general unit is

practically meaningful to bo th architects and application programmers. The algorithm ic

and architectural param eters we will use to describe cache-effective sorting algorithm s are

as follows: N: the size of the d a ta set. C: the d a ta cache size. L: the size of a cache

line. K: the cache associativity. T ,: the number of entries in a TLB set. K t l h '■ die TLB

associativity, and Ps : the size of a memory page.

2 .3 .2 P erform an ce e v a lu a tio n m e th o d o lo g y

Directly monitoring and m easuring a program 's cache behavior is an im portant task for

providing insights and guidance for optim izing the m emory performance of an algorithm.

Since current systems are not able to directly report m emory related performance statistics

(such as the number of cache hits or misses) during program execution, users must use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 14

tools to gather these statistics. ATOM [118] is a system utility for DEC Alpha m achines for

instrum enting and analyzing program executables. The ATOM analysis tool accepts the

results of an instrum ented program and presents the cache perform ance statistics. Using

the ATOM utility, users can directly m onitor and measure the cache performance on DEC

Alpha machines. The analysis of sorting algorithms in [78] uses the ATOM tool. Due to its

platform dependence, memory performance studies using ATOM are not feasible on other

types of machines.

The need for studying a broad range of platforms necessitates an alternative approach.

We conducted our performance evaluation in two steps: (1) com pleting algorithm analysis

and measuring performance on different high-end workstations, and (2) utilizing execution-

driven sim ulations to gather insight into the memory performance of the algorithm s on these

machines. Employing the first step, we are able to measure the algorithm perform ance on a

wide variety of machines. From the second step we arc able to gather a deeper understanding

of how the cache behavior affects the execution performance.

For our sim ulation environm ent, we \ised the SimpleScalar tool set [15]. a fam ily of sim

ulators for studying interactions between application program s and com puter architectures.

The sim ulation tools take an application program’s binaries compiled for the SimpleScalar

Instruction Set A rchitecture (a close derivative of the MIPS instruction set) and generate

statistics during the execution of the program on the sim ulated architecture. T he statistics

generated include many detailed execution traces that are not available from m easurem ents

on a computer, such as the num ber of cache misses in the LI. L2 and TLB caches.

We ran the compared sorting algorithm s on different sim ulated memory architectures

with memory hierarchies sim ilar to those on typical high-end w orkstations to observe the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 15

following performance factors:

• L l or L2 cache misses per element: to compare the num ber of da ta cache misses.

• TLB misses per element: to compare the number of TLB misses.

• Instruction count per element: to compare the algorithm ic complexities.

• Reduction rate o f total execution cycles: to compare the percentage of cycles saved in

comparison to the base mergesort or the inoinory-tuned quicksort.

2 .3 .3 D a ta se ts

The algorithms are com pared and evaluated experim entally and analytically. We tested

the sorting algorithm s on a variety of data sets consisting of 8-byte integer elements. The

9 da ta sets we used are enum erated below. (Probability Density Functions and Inverse

Distribution Functions of some of the number generators used can be found in [95].)

1. Random: the d a ta set is obtained by calling the random num ber generator random O

from the C library, which returns integers in the range of 0 to 2'!1 - 1.

2. Equilikely: function E q u i l ik e ly (a .b) returns integers in the range a to b.

3. Bernoulli: function B e rn o u ll i(p) returns integers 0 or 1.

4. Geometric: function G eom etric (p) returns integers 0. 1 .2

5. Pascal: function P a s c a l(N ,p) returns integers 0. 1. 2. ...

G. Binomial: function B inom ial(N ,p) returns integers 0. 1 .2 N'.

7. Potsson: function P o isso n Q i) returns integers 0. 1 .2

8. Zero: the da ta set consists entirely of Os.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory systems 16

9. Unbalanced: function returns integers in the range of 0 to 2*° - 1 for i = 0 to N - 1.

by calling ra n d O from the C library, where i is the d a ta element index and N is da ta

set size: and returns integers M A X /100 + i for i = to N . where M A X = 2 n - 1.

2.4 Cache-Effective Mergesort Algorithm s

In this section, we first briefly evaluate the two existing mergesort algorithms on th e ir cache

locality, as well as their merits and limits. We present two new mergesort a lte rnatives to

address these limits. The experimental performance evaluation done through m easurem ents

will be presented in Section 2.6.

2 .4 .1 T ile d m erg eso rt and m u ltim e r g e so r t

LaM arca and Ladner [78] present two mergesort algorithm s to effectively utilize th e da ta

cache. The first one is called tiled mergesort. T he basic idea is to partition the d a ta set

into subarrays th a t are sorted individually. This is m ainly done for two reasons: to avoid

capacity misses and to fully use the da ta loaded in the cache before it must be replaced.

The algorithm is divided into two phases. In the first phase, subarrays of length C /2 (half

the cache size) are sorted by the base mergesort algorithm to exploit tem poral locality. The

algorithm returns to the base mergesort w ithout considering cache locality in th e second

phase to complete the sorting of the entire da ta set.

The second mergesort. called multimergesort. addresses the limits of the tiled m ergesort.

In this algorithm , the first phase is the same as the first phase of the tiled m ergesort. In the1

second phase, a multiway merge method is used to merge all the sorted subarrays together

in a single pass. A priority queue is used to hold the heads of the lists (the sorted subarrays

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 17

from the first phase) to be merged. This algorithm exploits cache locality well when the

number of subarrays in the second phase is less than C /2 (half the cache size). However,

the instruction count is significantly increased in th is algorithm .

O ur analysis of the two mergesort algorithm s shows two areas for improvement. First,

both algorithms significantly reduce capacity misses, but do not sufficiently reduce conflict

misses. In m ergesort. the basic idea is to merge two sorted subarrays to a destination array.

In a cache with low associativity, mapping conflicts occur frequently among the elements in

the three subarrays. Also, reducing TLB misses is not considered in the algorithm designs.

Even when the d a ta set is only moderately large. TLB misses may severely degrade execu

tion performance, com pounding the effect of norm al d a ta cache misses. O ur experiments

show that the perform ance improvement of the m ultiinerge algorithm on several machines

is m odest—although it decreases the num ber of d a ta cache misses, the heap structure sig

nificantly increases the num ber of TLB misses.

2 .4 .2 N ew m e r g e so r t a ltern a tiv es

We present two new restructured mergesort alternatives for reducing conflict misses and

TLB misses w ith a minimized instruction count increase: tiled mergesort with padding and

multimergesort with TLB padding.

2.4.2.1 T iled m ergesort w ith padding

Padding is a technique th a t modifies the da ta layout of a program so th a t conflict misses

arc reduced or elim inated. The data layout modification can be done at run-tim e by system

software [9. 140] o r a t compile-time by compiler optim ization [103]. However, padding done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 18

a t the algorithm design level using a full understanding of the d a ta structures is expected

to outperform optim izations using the two methods above [146].

In the second phase of the tiled mergesort. pairs of sorted subarrays are sorted and

merged into a destination array. One element from each of the two subarrays is selected at

a tim e for a sorting comparison in sequence. These three d a ta elem ents in the two different

subarrays and the destination array can potentially be in conflicting cache blocks because

they may be mapped to the same block in a direct-m apped cache and in a 2-way associative

cache. This phenomenon occurs most often when the source array (containing the two

subarrays) and the destination array are allocated contiguously in memory.

On a direct-m apped cache, the total num ber of conflict misses for the tiled mergesort

in the worst case is approxim ately

(1 + 2^7)A^ log2 (2J)

where log2 is the num ber of passes in the second phase o f the sorting and 1 -f ̂ represents

1 conflict miss per comparison and ^ conflict misses for every tim e an element is placed

into the destination array following a comparison, respectively.

In order to change the base addresses of these potentially conflicting cache blocks, we

insert L elements (or a spacing the size of a cache line) to separate every section of C

elements in the da ta set in the second phase of the tiled mergesort. These padding elements

can significantly reduce the cache conflicts in the second phase of the mergesort. The

memory used by the padding elements is trivial when compared to the size of the data

set. The increase in the instruction count (resulting from having to move each element in

a subarray to its new position for the padding) is also minor. We call this m ethod as till’d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 19

mergesort with padding.

On a d irect-m apped cache, the to tal num ber of conflict misses for the tiled mergesort

w ith padding is a t most

:i 2 N
-V r io g 2 — 1. (2.2)

where log2 is the number of passes in the second phase of the sorting and | represents

the num ber of conflict misses per element. After the padding is added, the one conflict

miss per comparison is reduced to and the ^ conflict misses from tin* placement in

(2.1) are elim inated. Comparing the two approxim ations in (2.1) and (2.2). we see that

tiled mergesort w ith padding reduces the conflict misses of tiled mergesort by about 25%.

(O ur experim ental results on the Sun U ltra 5. a workstation with a direct-m apped cache,

show th a t execution times of tiled mergesort were reduced 23% to 68% by tiled mergesort

w ith padding. These execution tim e reductions mainly come from the abatem ent of conflict

misses.)

Figure 2.1 shows an example of how the d a ta layout of two subarrays in the second

phase of tiled mergesort is modified by padding to reduce conflict misses. In this example,

a d irect-m apped cache holds 4 elem ents. In the figure, identical lines represent a pair

com parison and the corresponding action to store the selected element in the destination

array. T he letter “in” in the figure represents a cache miss. W ithout padding, there are 8

conflict misses when merging the two sorted subarrays into the destination array: there are

only 4 after padding is added.

Figure 2.2 shows the LI misses (see the left figure) and the L2 misses (see the right figure)

of the base m ergesort. tiled mergesort. and tiled mergesort with padding on a sim ulated

machine w ith the cache architecture of a Sun U ltra 5 using SimpleScalar. On this machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 20

Before paddm;
i0 4 ft

nun

0
T—*—7—V 7 V / V

: detfmaiior
i 1 jrrr.

i0 11 i - 0 i4 i t i* |4 \

Figure 2.1: Data layout of subarrays is modified by padding to reduce the conflict misses.

the LI cache is direct-m apped and contains 16 KBytes, and the L2 cache is 2-way associative

holding 256 KBytes. The experim ents show that the padding reduces the LI cache misses

by about 23% com pared w ith the base mergesort and tiled mergesort. These misses are

conflict misses th a t cannot be reduced through tiling. The L2 cache miss reduction by

tiled mergesort w ith padding is alm ost the same as that by tiled mergesort. which shows

th a t the padding is not very effective in reducing L2 conflict misses on this machine. This

is because the 2-way associativity in the L2 cache significantly reduces the percentage of

conflict misses, in comparison to the direct-m apped LI cache.

Capacity misses in the second phase of the tiled mergesort are unavoidable without a

complex data struc tu re , because the size of the working set (two subarrays and a destination

array) is normally larger than the cache size. As we have shown, conflict misses can he

reduced by padding in this phase. However, the padding may not completely eliminate

all conflict misses due to the random ness of the order in the da ta sets. Nevertheless, our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 21

Li M isses Per Element 12 M isses Per Element

20
Base m ergesort ---------
tiled m ergesort

tiled mergesort with padding

15
c
9
Ee
9

« 10
a
01
9

5

0
IK 4K 16K 64K 256K 1M 4M

S
Pase m ergesort ---------
tiled m ergesort

tiled mergesort with padding7

6
c9
E 59
9

01
01 3
01

2
2

0
256K 1M 4M4K 16K 64KIK

Data se t s ize (m elem ents) Data set s ize {in elem ents)

Figure 2.2: Simulation comparisons of the LI cache misses (left figure) and L2 misses (right figure)
of the mergesort algorithms on the Random data set on the simulated Sun Ultra 3. The LI cache
miss curves (left figure) of the base mergesort and tiled-mergesort are overlapped.

experim ental results presented in Section 2.6 using the 9 different d a ta sets consistently

show the effectiveness of the tiled mergesort with padding on the Sun U ltra 5.

2.4.2.2 M ultim ergesort w ith TLB padding

In the second phase of the m ultimergesort algorithm , the m ultiple subarrays are completely

sorted in a single pass. M ultiple subarrays are used only once to complete the sorting

of the en tire da ta set to effectively use the cache. This single pass makes use of a heap

structure to hold the head elements of the m ultiple subarrays. (Because of this structure,

we will often refer to these subarrays as lists.) However, since the heads come from all the

lists being m ultim erged, the working set is much larger than th a t of the base mergesort

(where only three subarrays are involved at a tim e). This large working set causes TLB

misses th a t degrade performance. (We will explain the TLB structu re in the following

paragraph.) O ur experim ents indicate that m ultim ergesort docs significantly decrease the

number of d a ta cache misses: however, it also increases the TLB misses, which offsets the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 22

performance gain. Although a rise in the instruction count leads to additional CPU cycles

in m ultim ergesort. this has a minimal effect. The performance o f the algorithm is degraded

mainly from the high number of TLB misses—memory accesses are far more expensive than

CPU cycles.

The TLB (Translation-Lookaside Buffer) is a special cache th a t stores the most recently

used virtual-physical page translations for memory accesses. T he TLB is generally a small

fully associative or set-associative cache. Each entry points to a memory page of 4 to

64Kbytes. depending on the architecture. A TLB cache miss forces the system to retrieve

the missing translation from the page table in memory, and then to replace an existing

TLB entry w ith this translation. The TLB can hold a lim ited am ount of da ta for sorting.

W hen the d a ta to be accessed spans more memory pages m apping to the same TLB set

than the TLB can hold. TLB misses will occur. For example, the TLB cache of the Sun

UltraSparc-IIi processor holds 64 fully associative entries (Ts = 64). each of which points

to a page of 8 KBytes (P, = 1024 8-byte elements). The 64 pages in the TLB of the Sun

UltraSparc-IIi processor hold 64 x 1024 = 65536 elements, which represents a small-sized

d a ta set for sorting. Furthermore, in practice we often have m ore than one da ta array being

operated on a t a time. Some processors' TLBs are not fully associative, but set-associative.

For example, the TLBs in the Pentium II and Pentium III processors are 4-way associative

{K t l b = 4).

In the second phase of multimergesort. we insert Ps elem ents (or a page space) to

separate every sorted subarray in the da ta set in order to reduce or eliminate the TLB

cache conflict misses. The padding changes the base addresses of these lists in page units

to avoid potential TLB conflict misses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 23

Figure 2.3 exemplifies how padding for the TLB works: in this case the TLB is a direct-

m apped cache of 8 entries, and the num ber of elem ents in each list is a multiple of 8 page

elements. Before padding, each of the lists in the da ta set is m apped to the same TLB entry.

Figure 2.3: Padding for TLB: the data layout is modified by inserting a page space at multiple
locations, where K tlb — 1. and T, - 8.

After padding, these lists are m apped to different TLB entries. W hen nmltimcrgesort is run

on a large da ta set and the size of each list is a m ultiple of Ts. the num ber of TLB misses

per clement is close to 1. After the TLB padding, the average num ber of TLB misses per

element for the multimergesort algorithm becomes approximately

.4
.4 + K t l b

(2.3)

where A = ^ is the number of average misses for each TLB set entry. The above approxi

m ation is further derived to

C
(2.4)

C + K t l b x Ts

Figure 2.4 shows the number of L2 misses and TLB misses for the five mergesort algorithms

on the Pentium II memory architecture as sim ulated using SimpleScalar. where the Ll

cache is 4-way set-associative with 16 KBytes, the L2 cache is 4-way set-associative w ith

256 KBytes, and the TLB is a 4-way set-associative cache with 64 entries. The simulation

shows th a t multimergesort and m ultim ergesort w ith TLB padding have the lowest L2 cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 24

L2 M isses Per Element TLB M isses Per Element

12
b ase mergesort —
tiled m ergesort —

tiled mergesort witti padding
muDi-mergesort

multHnergeson with TLB padding - -

10

8

6

4

2

0
1K 4K 4M 8M16K 64K 256K 1M

0 8

c
i 0 6e
«a
tn _ _
s 0.4 -tnt«
s

0 2

i I i I i i i
b ase mergesort -
tiled m ergeson -

tiled mergesort with padding
multi-mergesort

muni-mergesort with TLB padding -

Data set s u e (in elem ents)

1K 4K 16K 64K 2S6K 1M

Data set s u e (in elem ents)

4M BM

Figure 2.4: Simulation comparisons of the L2 cache misses (left figure) and TLB misses (right
figure) of the mergesort algorithms on the Random data set on the simulated Pentium II.

misses among the different algorithm s (see the left figure in Figure 2.4). M ultimergesort

also had the highest num ber of TLB misses, but these misses are considerably reduced by

the TLB padding (see the right figure in Figure 2.4).

Here is an exam ple verifying the approxim ation in (2.4) of TLB misses of multimergesort,.

Substituting the param eters o f Pentium II to the approxim ation. C — 256. K j m = 4. and

T, = 64. we get 0.5 TLB misses per element for m ultim ergesort with TLB padding, which is

very close to our experim ental result. 0.47 (in the right figure of Figure 2.4). We will show

in Section 2.6 th a t m ultim ergesort with TLB padding significantly reduces TLB misses and

improves overall execution performance.

2 .4 .3 Trade-ofFs r e la t in g to an in stru ctio n c o u n t in crease and th e p erfor

m ance ga in

Figure 2.5 shows the instruction counts of the five m ergesort algorithm s and the percentage

of total cycles saved by the four improved mergesort algorithm s compared to the base

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In
st

ru
ct

io
ns

pe

r
el

em
en

t

Chapter 2. Application level resource management o f m em ory system s 25

mergesort on the sim ulated Pentium II. The sim ulation shows th a t multimergesort had the

Instructions Per Element Cycles Saved vs Base Mergesort

800
base m ergesort ---------
tiled mergesort ---------

bled mergesort with padding
multi-mergeson

"multwnergeson with TIB p a d d in g --------

700

600

500

400 -

300

200

100 -

1K 4K 64K 256K

tiled m ergeson --------
tiled m ergesort with padding

multMnergesort
6 0 -multi-mergesort with TLB padding

aato
9o
>(J

•20
64KIK 4K 16K 256K 4M 6M1M

Data set size (m elem ents) Data set size im elements)

Figure 2.5: Simulation comparisons of the instruction counts (loft figure*) and saved cycles in
percentage (right figure) of the mergesort algorithms on the Random data set on the simulated
Pentium II. The instruction count curves (left figure) of the base mergesort and the tiled mergesort
are overlapped.

highest instruction count, while tiled mergesort had the lowest instruction count. Taking

advantage of the low num ber of L2 cache misses in m ultim ergesort and by reducing the

TLB misses through padding, multimergesort with TLB padding saved cycles by about

40% on large data sets com pared to the base m ergesort even though it has a relatively

high instruction count. Tiled mergesort with padding did not improve performance on the

Pentium II. This is because th is machine has a 4-way set associative cache where conflict

misses arc not m ajor concerns.

2.5 Cache-Effective Quicksort

We first briefly assess the m erits and limits of the two existing quicksort algorithms, es

pecially considering their cache locality. We present two new quicksort alternatives for

improving memory performance further. Experim ental results will be reported in the next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2. Application level resource management o f m em ory system s

section.

26

2 .5 .1 M em o r y -tu n ed q u ick so rt an d m u ltiq u ick so rt

LaM arca and Ladner in the same paper [78] present two quicksort algorithms for cache

optim ization. The first one is called m em ory-tuned quicksort, which is a modification of the

base quicksort [110]. Instead of saving small subarrays to sort in the end. the mem ory-tuned

quicksort sorts these subarrays when they are first encountered in order to reuse* the da ta

elem ents in the cache.

The second algorithm is called multiquicksort. This algorithm applies a single pass to

divide the full da ta set into m ultiple subarrays, w ith the hope th a t each subarray will be

sm aller than the cache capacity.

The performance gain of these two algorithm s from experim ents reported in [78] is

m odest. We implemented the two algorithm s on sim ulated machines and on various high-

end workstations and obtained consistent performance. We also found that the performance

o f quicksort and its cache-optimized alternatives are very sensitive to the types of the da ta

set being used. These algorithms were not efficient on unbalanced da ta sets.

2 .5 .2 N e w q u ick sort a lte r n a tiv e s

In practice, the quicksort algorithm s exploit cache locality well on balanced data. A chal

lenge is to make the quicksort perform well on unbalanced da ta sets. We present two

cache-optimized quicksort alternatives that work well on both balanced and unbalanced

d a ta sets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 27

2.5.2.1 Flash Quicksort

Flashsort [92] is extremely fast for sorting balanced d a ta sets. T he maximum and minimum

values are first identified in the d a ta set to identify the d a ta range. The data range is

then evenly divided into classes to form subarrays. T he algorithm consists of three steps:

“classification" to determ ine the size of each class, “perm utation" to move each element into

its class by using a single tem porary variable to hold the replaced element, and "straight

insertion" to sort elements in each class by using Sedgewick's insertion sort [110]. This

algorithm works very well on balanced da ta sets because the sizes of the subarrays after the

first two steps are sim ilar and are small enough to fit in the cache. This makes flashsort

highly effective (0 { N)). However, when the data set is not balanced, the sizes of the

generated subarrays are disproportionate, causing ineffective usage of the cache, and making

flashsort as slow as insertion sort (0 (N 2)) in the worst case.

In comparison with the pivoting process of quicksort, the classification step of flashsort

is more likely to generate balanced subarrays, which favors be tte r cache utilization. On the

other hand, quicksort outperform s insertion sort on unbalanced subarrays. By combining

the advantages of flashsort and quicksort, we present a new quicksort alternative, flash

quicksort, where the first two steps are the same as in flashsort and the last step uses

quicksort to sort the elements in each class.

2.5.2.2 Inplaced flash quicksort

To further improve overall perform ance, we employ another cache optim ization to improve'

tem poral locality in flash quicksort. We call this alternative inplaced flash quicksort. In

this algorithm , the first and th ird steps are the same as in flash quicksort. In the second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 28

step, an additional array is used as a buffer to hold the perm uted elements. In the original

flashsort. a single tem porary variable is used to hold the replaced element. A cache line

normally holds more th an one element. The da ta s truc tu re of the single variable minimizes

the chance of d a ta rcusage. Using the additional array, we a ttem p t to reuse elements in

a cache line before their replacement and to reduce the instruction count for copying da ta

elements. Although this approach increases the required memory space, it improves both

cache and overall performance.

2 .5 .3 S im u la tio n re su lts

Figure 2.6 shows the instruction counts (left figure) and the LI misses (right figure) of

memory-tuned quicksort, flashsort. flash quicksort, and inplaced flash quicksort, on the

Unbalanced d a ta set on the sim ulated Pentium III memory architecture, which has a higher

memory latency and a larger L2 cache (512 KBytes) than the Pentium II. The instruction

Instructions Per Element (Unbalanced data s e t) Li M isses Per Element (Unbalanced data s e t)

tOOO
memory-tuned quicksort ---------

flashsort
flash quicksort

- mplaced flash quicksort800
C

E
©

® 600«a
<0c
o 400u2
c

200

IK 16K 256K4K 64K 1M 4M

6
memory-tuned quicksort ---------

flashsort
flash quicksort

mplaced flash quicksort

7

6
c
®
6 5
9
9

®4
a
tn
©2 3(A

2
2

0
64 K4K 16K 256K 1M 4M

Data set size (m elem ents) Data set size (m elements)

Figure 2.6: Simulation comparisons of the instruction counts (left figure) and the LI misses (right
figure) of the quicksort algorithms on the Unbalanced data set on the simulated Pentium III. The
instruction count curve of the flashsort was too high to be presented in the left figure.

count curve of flashsort was too high to be presented in the left figure of Figure 2.6. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 29

same figure shows th a t the instruction count o f m em ory-tuned quicksort also increases

rapidly as the d a ta set size grows. In contrast, the instruction counts of flash quicksort

and inplaced flash quicksort change little as the d a ta set size increases. The sim ulation also

shows th a t the num ber of LI misses increases much more rapidly as the size of the d a ta

set grows in the memory-tuned quicksort and flashsort than in the flashsort and inplaced

flashsort algorithm s. The simulation results are consistent with our algorithm analysis, and

show the effectiveness of our new quicksort alternatives on unbalanced data sets.

2.6 M easurement Results and Performance Evaluation

We have implemented and tested all the sorting algorithm s discussed in the previous sections

on all the d a ta sets described in Section 2.3 on a SGI 0 2 workstation, a Sun Ultra-5

w orkstation, a Pentium II PC. and a Pentium III PC . T he da ta sizes we used for experim ents

arc lim ited by the memory size available on the experim ental machines since we focus on

cache-effective m ethods. We used "Imbench" [86] to m easure the latencies of the memory

hierarchy at its different levels on each machine. The architectural param eters of the four

machines are listed in Table 2.1. where all the LI cache specifications refer to the LI d a ta

cache: all the L2 caches are uniform. The hit tim es of the LI and L2 caches and the m ain

memory m easured by Imbench have been converted to the corresponding num ber of CPU

cycles.

We com pared all our algorithms witli the algorithm s in [78] and [92], The execution

tim es were collected by ■‘gettim eofday()'\ a s tan d ard Unix tim ing function. The reported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 30

Table 2.1: Architectural parameters of the 4 machines we have used for the experiments.

W orkstations SGI 0 2 Sun U ltra 5 Pentium Pentium
Processor type R 10000 U ltraSparc-IIi Pentium II 400 Pentium III Xeon 500

clock ra te (MHz) 150 270 400 500
LI cache (KBytes) 32 16 16 16

LI block size (Bytes) 32 32 32 32
LI associativity 2 1 4 4

LI h it tim e (cycles) 2 2 2 3
L2 cache (KBytes) 64 256 256 512

L2 associativity 2 2 4 4
L2 h it tim e (cycles) 13 14 21 24 1
TLB size (entries) 64 64 64 64 !
TLB associativity 64 | 64 4 •* !

Memory latency (cycles) 208
. 76 68 67 !

time unit is cycle per element (CPE) :

execution tim e x clock rate

where execution time is the measured time in seconds, clock rate is the CPU speed (in cycles

per second) of the machine w lie re the program is run. and N is the num ber of elem ents in

the da ta set.

Each execution tim e reported in this chapter represents the mean of 20 runs. The

variances range from 0.096 to 23.72 cycles2 (corresponding to standard deviations ranging

from 0.31 to 4.87 cycles). As a result, the coefficients of variation calculated by the ratio of

the standard deviation to the mean is in a range of 0.00035 to 0.01.

The perform ance results on all the da ta sets are fairly consistent. Because of this, we

only present the performance results of the mergesort algorithms using the Random data

set on the four machines (plus performance results of the other d a ta sets on the U ltra 5 to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 31

show the effectiveness of the tiled mergesort with padding). We present the performance

results of the quicksort algorithm s using the Random and the Unbalanced d a ta sets on the

four machines.

2 .6 .1 M er g eso r t p erform an ce co m p a r iso n s

We com pared five mergesort algorithms: the base mergesort. tiled mergesort. m ultim erge

sort. tiled mergesort with padding, and m ultim ergesort with TLB padding. Proportional

to each machine s memory capacity, we scaled the mergesort algorithm s from .V = 1K up to

jV=16M elements. All our algorithms dem onstrated their effectiveness as the d a ta set size

grew. Figure 2.7 shows comparisons of cycles spent per element for the five algorithm s on

the SGI 0 2 and the Sun Ultra 5. M ultimergesort w ith TLB padding performed the best

M ergesorts on 0 2 I Random dala s e t) Mergesorts on Ultra 5 I Random data s e t)

1600
b a se mergesort --------
tiled mergesort

tiled mergesort with padding
multMnergesort

"multi-mergesort with TLB p a d d in g --------

1400

1200

800

400 -

200

1K 16K4K 64K 256K

2000
b ase mergesort --------
tiled mergesort

tiled mergesort with padding
multi-mergesort

- multi-mergesort with TLB p a d d in g -------1500

«cea
1000a

a
I/I
®u>.o

500 -

1K 4K 16K 64K 256K 1M 4M

aata set size m elem ents data set si2e m elem ents

F igure 2.7: Execution comparisons of the mergesort algorithms on SGI 02 and on Sun Ultra o.

on the 0 2 . with execution times reduced 0 0 % compared to the base sort. 35% com pared to

tiled mergesort. and 31% compared to multimergesort. on 2M elements. On the o ther hand,

tiled mergesort with padding performed the best on the Ultra 5. reducing execution times

45%) com pared to m ultimergesort. 26% to the base mergesort. and 23%) to tiled mergesort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 32

on 4M elements. M ultimergesort with TLB padding on U ltra 5 also did well, with a 35%

improvement over m ultimergesort. 13% over the base mergesort. and 9% over tiled merge

sort on 4M elements. The reason for the incredible performance improvements on the 0 2

is its long memory latency (208 cycles): th is makes the cache miss reduction techniques

very effective in improving the overall perform ance of the sorting algorithms. T h e L2 cache

size of the SGI is relatively small (64 KBytes) and the TLB is frequently used for memory

accesses. Thus. TLB padding is very effective. In addition, both LI and L2 caches are

2-way set associative, where the padding is not as effective as on a direct-m apped cache. In

contrast, the U ltra 5's LI cache is direct-m apped and the L2 cache is 4 tim es larger than

th a t of the 0 2 . On this platform data cache padding is more effective than TLB padding.

In order to show the effectiveness of tiled-m ergesort with padding on a cache system

with a low associativity, the performance curves of the five mergesort algorithm s from the

Sun U ltra 5 on the other 8 d a ta sets are provided in Figure 2.8 - 2.11. O ur experim ents

M ergesorts on Ultra 5 (Equilikely Oata set I Mergesorts on Ultra 5 (Bernoulli data set I

2000
b a se mergesort ---------
tiled mergesort

tiled mergesort with padding
multi-mergesort

- multi-mergesorl with TLB p a d d in g --------1500

1000

500

0
IK 4K 64K 256K IM 4M

2000
b ase mergesort —
tiled mergesort ---

tiled mergesort with padding
multi-mergesort

- multi-mergesort with TLB padding - -1500
c
©
E«a

1000©a
0)
©
u
>o

500

IK 4K 16K 64 K 1M256K 4M

data set size m elem ents data set size m elem ents

Figure 2.8: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Equilikely
data set (left figure) and the Bernoulli data set (right figure).

show th a t tiled-mergesort with padding consistently and significantly outperform s the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 33

Mergesorts on Ultra 5 (Geometric data set I Mergesorts on Ultra S (P asca l data se t |

2000
b a se mergesort ---------
tiled mergesort

tiled mergesort with padding
multi-mergesort

- multi-mergesort witti TLB p a d d in g --------1500

5 1000

500 -

256K 4M4K 64K

2000
b ase m ergesort ---------
tiled m ergesort

tiled mergesort witn padding
multi-mergesort

- multimergesort with TLB p a d d in g --------1500
c
0
E
0a
a.
0
0

>.U
500

IK 4K 64K 256K 4M16K

data set s iz e in elem ents data set size in elem ents

Figure 2.9: Execution comparisons of the mergesort algorithms on Sun L’ltra 5 using the Geometric
data set (left figure) and the Pascal data set (right figure).

mergesort algorithms on the U ltra 5. For example, tiled mergesort w ith padding achieved

70%. 6 8 %. and 54% reductions in execution time on the Zero d a ta set com pared with the

base mergesort. tiled m ergesort. and m ultimergesort. respectively. Using o ther da ta sets,

tiled mergesort with padding achieved 24% to 53% reductions in execution tim e compared

with the base mergesort. 23% to 52% reductions compared with tiled mergesort. and 23%

to 44% reductions com pared w ith m ultimergesort.

Figure 2.12 shows the comparisons of cycles per clement between the five mergesort

algorithm s on the Pentium II 400 and the Pentium III 500. The m easurem ents on both

machines show that m ultim ergesort w ith TLB padding performed the best, reducing execu

tion tim es 41% com pared with m ultim ergesort. 40% compared with the base mergesort. and

26% compared with tiled sort on 16M elements. The LI and L2 caches of both machines are

4-way set. associative so the issue of da ta cache conflict misses is not a concern (as discussed

in Section 2.4.1). Since TLB misses are the main source of inefficiency in the multimergesort

algorithm , padding for the TLB is very effective in improving the performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 34

M ergesorts on Ultra S (Bnomial data set I Mergesorts on Ultra S (P o sso n data set |

2 0 0 0 r— i 1 ■ ■ r i------ 1------ 1 i i i
b ase m ergesort ---------

2000 ----- ,----- ,------,------1----- 1----- ,------<----- r
B ase m ergesort ---------

tiled m ergesort
tiled mergesort with padding

multi-mergesort
1500 - m ulti-mergeson with TLB padding

tiled mergesort
tiled mergesort with padding

multi-mergesort
1500 - multi-mergesort with TLB paddingc c

0 0
IK 4K 16K 64K 256K 1M

data set size in elem ents

4M 1K 4K 16K 64K 256K 1M

data set size m elem ents

Figure 2.10: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Binomial
data set (left figure) and the Poisson data set (right figure).

In sum m ary, tiled mergesort with padding is highly effective in reducing conflict misses

on machines w ith direct-m apped caches and multimergesort w ith TLB padding performs

very well on all types of architectures.

2 .6 .2 Q u ick so rt p erfo rm a n ce com p arison s

We present the results of quicksort algorithm s on the 4 machines using the Random da ta set

and the Unbalanced d a ta set. The 4 quicksort, algorithms are: the m em ory-tuned quicksort,

flashsort. flash quicksort, and the inplaced flash quicksort.

Figure 2.13 shows the comparisons of cycles per element between the four quicksort

algorithm s on the Random d a ta set (left) and the Unbalanced d a ta set (right) on the SGI 0 2

machine. T he performance results of the four quicksort algorithm s using the Random data

set are com parable, with the mem ory-tuned algorithm slightly outperform ing the others.

The perform ance results using the Unbalanced data set are much different. As we expected,

the num ber of cycles spent to sort each element is relatively stable for flash quicksort and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory system s 35

M ergesorts on Ultra 5 (Unbalanced data s e t) M ergesorts on Ultra 5 I Zero data set I

2 000 -------1— i--------1------- 1 i i i 1-------i— r
b a se m ergesort ---------

3000 | i i i I I t ~ i i
b a se mergesort --------

tiled mergesort
tiled m ergesort with padding

multi-mergesort
1500 - multimergesort with TLB padding

| 2000 -

tiled mergesort
2500 - tiled mergesort with padding

multi-mergesort
mum-mergesort wim i l b paoamg

o

f . 1000 -

s 1500 -
a
in

500

0 0
1K 4K 16K 64K 256K IM

data set size m elem ents

IK 4K 16K 54K 256K 1M

data set s u e m elem ents

Figure 2.11: Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Unbal
anced data set (left figure) and the Zero data set (right figure).

the inplaced flash quicksort as the size of the d a ta set increases, while the performance of

m em ory-tuned quicksort and flashsort greatly diminishes. The tim ing curves of flashsort

are even too high to be shown in the right figure in Figure 2.13.

Figure 2.14 shows the comparisons of cycles per element among the four quicksort a lg o

ritlm is on the Random d a ta set (left) and the Unbalanced d a ta set (right) on the Sun U ltra

5 machine. On the U ltra 5. all four algorithms showed little difference in their execution

times on the Random d a ta set. On the other hand, the flash and inplaced flash quicksorts

exhibited much better performance' on the Unbalanced d a ta set. For example, when the

d a ta set increased to 128K elements, the execution tim e of flashsort is more than 10 tim es

higher than th a t of the o ther three algorithms (the curve is too high to be plotted in the

figure). W hen the d a ta set is increased to 4M elements, the execution time of the memory-

tuned quicksort is more than 3 times higher than that of the flash quicksort and inplaced

flash quicksort, and the execution time of the flashsort is more than 1 0 0 times higher th an

th a t of the others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 36

Mergesorts or Pentium tl 400 (Random data s e t ; Mergesorts on Pentium III 500 I Random data s e t)

1600
Base mergesort ---------
tiled mergesort

tiled mergesort with padding
multi-mergesort

multemergeson with TLB p a d d in g --------

1400

1200 -

E 1000

800

400

200

1K 64K 256K 4M4K 16K

1600
Base m ergesort ---------
tiled m ergesort

tiled mergesort with paddsig
multi-mergesort

multi-mergesort with TLB p a d d in g --------

1400

1200

E 1000

800 -

400

200

1K 4K 64K 256K 4M 16M

data set s ize n e lem en ts data set size m elem ents

Figure 2.12: Execution comparisons of the mergesort algorithms on Pentium II and on Pentium
III.

Figure 2.15 and Figure 2.16 show the comparisons of cycles per element between the

four quicksort algorithm s on the Random d a ta set (left) and the Unbalanced d a ta set (right)

on the Pentium II and the Pentium III machine respectively. On both Pentium s using

the Random d a ta set. flashsort. flash quicksort, and inplaced flashsort displayed similar

execution performance and reduced execution tim es around 2 0 % compared to the memory-

tuned quicksort on large d a ta sets. Again, flash quicksort and inplaced flash quicksort

significantly outperform ed the m em ory-turned quicksort algorithm on the Unbalanced data

sets on the two Pentium machines.

2.7 A Prediction M odel of Performance Trade-Offs

The essential issue th a t m ust be considered when designing an algorithm that lias an ef

ficient memory access p a tte rn is the trade-off between the optim ization achievement the

reduction of cache misses, and the optim ization effort the increment in the instruction

count. The optim ization objective is to improve overall performance to reduce the ex-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory systems 37

Quicksorts on 0 2 (Random data set I Quicksorts on 0 2 (Unoalanced data set I

1400

memory-tuned quicksort ---------
flashsort

flash quicksort
nplaced flash quicksort

1200

1000co
E

800

a
0)
9

600 •

u
& 400

200

IK 16K 64K 256K4K 4M

1400

memory-tuned quicksort —
flashsort -

flash quicksort
n q laced flash quicksort

1200

1000c9
E9 800 -
9

60 0 -

u>.u 400

200 r

IK 16K4K 64K 2S6K 4M

data set s iz e in elem ents data set size in elem ents

Figure 2.13: Execution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set (right figure) on the SGI 02. (The timing curve of the
flashsort is too high to be presented in the right figure).

ecution time of a base algorithm . This trade-off and the objective can be quantitatively

predicted through an execution timing model. T he execution time of an algorithm on a

com puter system based on Amdahl's Law [67] is expressed as

T - C P U clock cycles -I- mem ory stall cycles — I C x C P I + C A x M R x M P. (2.5)

where I C is the instruction count of the algorithm . C P I is the number of CPU cycles per

instruction for the algorithm . C A is the num ber of cache accesses of during the algorithm 's

execution. M R is the cache miss rate of the algorithm , and M P is the miss penalty in cycles

of the system. The execution time for a base algorithm . 7},av,.. is expressed as

Tlmse = I X C P I ■+- CAba sr x MRba.sc x M P. (2.6)

and the execution tim e for an optimized algorithm . T„p(. is expressed as

Topt = ICop, x C P I + C A opl x M R„pi x M P . (2.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory systems 38

Quicksorts on Ultra 5 I Random data s e t } Quicksorts on Ultra 5 (Unbalanced data s e t)

1400

memory-tuned quicksort ---------
tlasn sort

Nash quicksort
npfaced tlasn quicksort

1200

H 1000
9
E
9
9 800

9o.
6 0 0 -

9O>u 400

200 -

IK 4K 1EK 64K 2S6K 1M

1400

m emoiy-tuned quickson --------
tlasn sort

tlasn quickson
mplaced tlasn quicksort

1200

H 1000 -
9
E
I 80 0 -

9a
6 0 0

9u
>u

200

4K 16K 256KIK 64K !M 4M

data set size m elements data set size m elem ents

Figure 2.14: Execution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set (right figure) on the Ultra 5. (The timing curve of the
flashsort is too high to be presented in the right figure).

where ICbase and IC opt are the instruction counts for the base algorithm and the optimized

algorithm . CAbase and C A opt are the num bers of cache accesses of the base algorithm and

the optim ized algorithm , and MRbase and M R opt are the cache miss rates of the base

algorithm and the optimized algorithm, respectively.

In some optim ized algorithms such as tiled mergesort and tiled mergesort with padding,

the to ta l num ber of cache accesses may be nearly the same as for the base algorithm. For

this type o f algorithm s, we combine equations (2.6) and (2.7) with CAbase = C A npt = C A

to predict the execution time reduction rate of an optim ized algorithm as follows:

R = T b a s e ~ T opt

T b a s e

A M R x C A x M P - A /C x C P I
I C h a s e x C P I + C A b a s e x M R b a s e x M P '

(2 .8)

where A M R - MRbase ~ M R npt represents the miss rate reduction, and A /C = IC„pt -

/ Chase represents the instruction count increm ent. In order to obtain a positive reduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2. Application level resource management o f memory system s 39

Quicksorts on Pentium II400 | Random data set | Quicksorts on Pentium II 4 00 I Unbalanced data set I

memory-iuned quicksort ---------
tlashsort

tlasn quicksort
•tplaced tlasn quicksort

1200

1000c
£o

600

9
a

60001eo>o 400

200

1K 4K 16K 64K 2S6K 16M4M

1400

memory-tuned quicksort ---------
flash sort

flash quickson
mplaced flash quickson

1200

E 1000
«
Eo
» 800

ea
600

u
u

200 -

64K 256K 1M 4M1K 1EK4K
data set s u e n elem ents data set s u e m elem ents

Figure 2.15: Execution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set on the Pentium II. (The timing curve of the flashsort is too
high to be presented in the right figure).

in execution time, the following must hold true:

A M R x C A x M P > A I C x C P I .

This model describes the quantitative trade-off between instruction count increase; and

miss rate reduction, and gives the condition for an optimized algorithm to improve the

perform ance of a base algorithm:

A I C C A x M P
<

A M R C P I
(2.9)

For m ultiphase optimized algorithm s which have different cache access pa tte rn s in each

phase, such as multimergesort and m ultim ergesort with TLB padding, we combine equations

(2.6) and (2.7) with CAt,asr ^ C A opt to ob tain the condition for an optim ized algorithm to

improve the performance of a base algorithm :

A I C < M P
A (M R x C A) C P I

(2 . 10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 40

Quicksorts on Pentium III 500 I Random data s e t) Quicksorts on Pentium III 500 (Unbalanced data set I

memory-tuned quicksort ---------
Hash sort

tlasn quicksort
mplaced flash quicksort

1200

1000

800

600

<00

200

0
4K 16M1K 4M16K 64K 256K 1M

’400

memory-luned quicksort ---------
flashsort

flash quicksort
mplaced flash quicksort

1200

E 1000 -0
6
1 800 -

9a
600tA«

y>.u 400

200 -

64K 256K 1M4K 16K 4M1K

data set size m elem ents data set s ize m elem ents

Figure 2.16: Execution comparisons of the quicksort algorithms on the Random data set (left
figure) and on the Unbalanced data set on the Pentium III. (The timing curve of the flashsort is too
high to be presented in the right figure).

where A (M R x CA) = MRbas, x CAimsr - M R op, x CA„pt.

There are architecture related and algorithm related param eters in this prediction model.

The architecture related param eters are C P I and M P . which are machine-dependent and

can be easily obtained. The algorithm related param eters are IC . C A . and M R . which

can be either predicted from algorithm analysis or obtained from running the program on

a sim ulated architecture, such as SimpleScalar. The algorithm related param eters can also

be predicted by running the algorithm s on relatively small d a ta sets th a t are larger than

the cache capacity on a target machine.

Using the prediction model and the param eters from the Sim pleScalar simulation, we

are able to predict the execution tim e rate of reduction for the optim ized algorithms. Our

study shows that the predicted results using the model are close to the mcuisurement results,

with a 6 .8 % error rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f m em ory systems 41

2.8 Chapter Conclusion

We have examined and developed cache-effective algorithm s for both mergesort and quick

sort. These algorithms have been tested on four representative processors dating from 1995

to 1999 to show their effectiveness. We also use sim ulations to provide additional evalua

tion of performance. We have shown that the memory architecture plays the largest role in

affecting the performance of various mergesort algorithm s, while the type of da ta set used

affects quicksort algorithm s the most.

O ur techniques of padding, partitioning, and buffering can also be used for o th e r al

gorithm s for optimizations directed a t the cache. W henever a program regularly accesses

a large d a ta set tha t cannot be entirely stored in the cache, the danger of conflict misses

exists, particularly when the algorithm partitions the d a ta sets in sizes that are a power

of 2. Padding is effective for th is type of program to elim inate or reduce conflict misses.

Examples include m atrix accesses and m anipulations and d a ta reordering and swapping

between d a ta sets. W hen a program sequentially and repeatedly scans a large d a ta set that

cannot be stored in the cache in its entirety, the program will suffer capacity cache misses.

Partition ing the da ta set based on the cache size to localize the memory used by a stage in

execution is effective for this type o f program. Tiling for mergesort is one example where

this is used: other tasks where th is optim ization approach can be used include da ta accesses

by loops and data m anipulations of a large data file in a sequential order. The buffering

technique is effective to reduce or elim inate conflict misses by using an additional buffer to

tem porarily hold da ta elements for later reuse that would otherwise be swapped out o f the

cache. Examples where this can be employed include program s m anipulating d a ta in an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2. Application level resource management o f memory system s 42

inplaced fashion and program s where da ta accesses easily cause conflict cache misses.

The only m achine-dependent architecture param eters for im plem enting the four m eth

ods we presented in this chapter are the cache size (C). the cache line size (L). cache

associativity (K). the num ber of entries in the TLB cache, and a memory page size (Ps).

These param eters are becoming increasingly known to users. They can be defined as vari

ables in the programs, making m igration from one platform to another easy for a user. In

th is way. the program s are easily portab le—all th a t is required is the knowledge of the four

required param eters.

There are several ways to provide sorting algorithms with architecture-dependent pa

ram eters. One approach leaves the work to an informed user who is familiar w ith the

machine architecture: this user could simply input the required param eters into the pro

grams. A second possibility: users could conduct some brief executions using a runtim e

library to obtain estim ated architectural param eters for the program optim izations. The

overhead caused by this approach is normally acceptable [140]. ATLAS [129] uses a tool to

first autom atically determ ine architectural param eters by extensive tests on the target ma

chine. The program is then recompiled with these param eters included. A th ird possibility

would be to utilize the ATLAS approach to support our sorting program optim izations,

easing the burden on an end-user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Load Sharing for G lobal M em ory

System M anagem ent

3.1 Literature overview on load sharing for global memory

in distributed system s

A m ajor performance objective of implem enting a load sharing policy in a d istributed

system is to minimize execution tim e of each individual job. and to maximize the system

throughput by effectively using the d istribu ted resources, such as CPUs, memory modules,

and I/O s.

C P U -based Policy:

Most load sharing schemes (e.g.. [36]. [38]. [41]. [6 6]. [6 8]. [74]. [149]) mainly consider

CPU load balancing by assuming each com puter node in the system has a sufficient amount

of memory space. These schemes have proved to be effective on overall performance im

provement of d istributed systems. However, with the rapid developm ent of CPU chips

and the increasing demand of d a ta accesses in applications, the memory resources in a

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 44

distribu ted system become more and more expensive relative to CPU cycles. We believe

th a t the overheads of da ta accesses and movement, such as page faults, have grown to the

point where the overall performance of d istribu ted system s would be considerably degraded

w ithout serious considerations concerning m em ory resources in the design of load sharing

policies. We have following reasons to support ou r claim. F irst, with the rapid development

of RISC and VLSI technology, the speed of processors has increased dram atically in the past

decade. We have seen an increasing gap in speed between processor and memory, and this

gap makes performance of application program s on uniprocessor, multiprocessor and dis

tribu ted system s rely more and more on effective usage of their entire memory hierarchies.

In addition, the memory and I/O com ponents have a dom inant portion in the total cost

of a com puter system. Second, the dem and for d a ta accesses in applications running on

d istribu ted systems has significantly increased accordingly with the rapid establishm ent of

local and wide-area Internet infrastructure. T h ird , the latency of a memory miss or a page

fault is about 1000 times higher than th a t of a memory hit. Therefore, minimizing page

faults through memory load sharing has a great potential to significantly improve overall

perform ance of distributed systems. Finally, it has been shown that memory utilizations

among the different nodes in a distributed system are highly unbalanced in practice, where

page faults frequently occur in some heavily loaded nodes bu t a few memory accesses or no

memory accesses are requested on some lightly loaded nodes or idle nodes [2].

M em ory-based Policy:

Some work has been reported on memory resource considerations of load sharing. Using

analytical models, researchers have studied perform ance im pact of memory allocations in

scheduling parallel jobs on both shared-m einory multiprocessors and d istribu ted memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M em ory System Management 45

system s, (e.g.. see [96] and [98]). T he im pact of the memory demands in parallel scientific

workloads on different parallel m achines are also studied in [112] and [113]. However,

mem ory demands of workloads on d istribu ted systems could be much higher and more

random th an many parallel scientific program s running on M PPs. Basically, there are two

m ajor approaches to more effectively use global memory resources in a w orkstation duste r:

(1) joh-migration-based load sharing schemes and (2) network RAM. A job-m igration-based

load sharing system attem pts to m igrate jobs from a workstation without sufficient memory

space to a lightly loaded workstation w ith large idle memory space for the m igrated jobs.

W hen a job migration is necessary, th e m igration can be either a remote execution (where

a job is initiated on a remote w orkstation), or a preemptive migration which suspends the

selected job and moves it to a remote w orkstation where it is restarted. In a network RAM

system [48]. if a job cannot find sufficient memory space for its working sets, it will utilize

idle memory space from other w orkstations in the cluster through remote paging. Since

accessing remote memory is slower th an accessing local memory but much faster than local

disk access, the idle global memory space or the network RAM can be considered ;is another

layer between the local memory and the local disk in the memory hierarchy o f a workstation.

Regarding network RAM im plem entations, the Global Memory System (GM S) [44] [124]

and the Remote Memory Pager [84] a tte m p ts to reduce the page fault overhead by remote

paging techniques. Although the page fault cost is reduced, remote paging may also increase

network contention. DoDo [2] is designed to improve system throughput by harvesting idle

m emory space in a d istributed system . T he owner processes have the highest priority for

their CPU s and memory allocations in their nodes, which divides the global m em ory system

into different local regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 46

Regarding job-m igration-based load sharing systems, an early study in [74] considers

using the free memory size in each node as an index for load sharing. Com pared with CPU-

based policies, this study did not find the memory-based policy particu larly effective. This

is because the workloads were CPU intensive, and the processors then were much slower

than what we are using today. In the MOSIX load sharing system , a memory ushering

algorithm is used when the free memory of a node is lower than a certain am ount (e.g. 1/4

MBytes) [5]. A preem ptive m igration is then applied to the sm allest running job in the

node by moving it to a rem ote node with the largest free memory. A load sharing policy

th a t only considers memory resource w ithout considering CPU resource is very likely to

cause uneven job distribu tions among workstations, which is not favorable for optimizing

the average job queuing tim e.

We propose C P U -M em ory-based load sharing policies [133] th a t will be presented

in the next Section. These policies are job-m igration-based. T hey share both CPU and

memory services among the nodes in order to minimize both C PU idle times and the

num ber of page faults caused by unbalanced memory allocations o f d istribu ted jobs in dis

tribu ted system s so th a t overall performance can be significantly improved. The new load

sharing policies not only improve performance of memory-bound jobs, but also maintain

the same load sharing quality as the CPU-based policies for C PU -bound jobs. The load

sharing design is extender! on heterogeneous distributed systems [137]. Performance results

show th a t the CPU-based load sharing policy is not robust in a heterogeneous system, and

performs poorly for m emory-intensive workloads. The perform ance of the memory-based

and CPU-M emory-based load sharing policies are quite independent of system hetcrogene-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 47

ity changes for memory-intensive workloads and independent on several different memory

demand distribu tions.

Effective usage of global memory resources is an im portan t consideration in the design

of load sharing policies for cluster computing. W hen a workstation does not have suffi

cient memory space for its assigned jobs, the system will experience a large num ber of page

faults, resulting in long delays for each job. In this case, job-m igration-based load sharing

approach is not sufficient. Section 3.3 presents how we optim ize designs of cluster resource

management system s by effectively combining the job-m igration-based load sharing sys

tem approach and network RAM system approach. We also propose a software method

incorporating w ith dynam ic load sharing, which adaptively reserves a small num ber set of

workstations through virtual cluster reconfiguration to provide special services to the jobs

demanding large memory allocations. This study can be found in [28].

3.2 CPU-m em ory-based Load Sharing

Aiming at reducing the memory resource contention caused by page faults and I/O activities,

we have developed and examined load sharing policies by considering effective utilization

of global memory in addition to CPU load balancing in clusters. Our study consists of

two parts: load sharing policies dealing w ith known memory demands, and with unknown

memory workloads.

For the first part of the study, we use1 real-world application traces obtained from the

public domain, which contain average requested and used CPU times, and average requested

and used m emory space for each job. Relying on the knowledge of memory dem ands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 48

we develop several load sharing policies w ith coordinated utilizations of both CPU and

memory resources. Trace-driven sim ulations are conducted for performance comparison and

evaluation. The practical basis of this p a rt is th a t memory dem ands of some applications

can be known or can be predicted based on users' hints.

Since memory demands of many o ther applications may not be known in advance or

may be hard to predict, and memory accesses and allocations can be dynamically changed,

it is highly desirable to develop load sharing schemes w ith unknown memory demands.

We have addressed this issue in the second part of this study. This investigation requires

workloads with dynamic memory access and allocation traces. To our knowledge, there

have not been workload traces with dynam ic memory information available in the public

domaiu. Thus, we have conducted kernel instrum entation to collect application workload

execution traces to capture dynamic m emory access patterns, and have proposed load shar

ing schemes dynamically monitoring the jobs sta tus of resource utilizations, and making

resource allocation decisions timely and adaptively.

A detailed study with unknown memory demands can be found in [27], in which we

present three new results and contributions in the study. (1) Conducting Linux kernel

instrum entation, we have collected different types of workload execution traces to quanti

tatively characterize job interactions, and have modeled page fault behavior as a function

of the overloaded memory sizes and the am ount of jobs' I /O activities. (2) Based on ex

perim ental results and collected dynam ic system information, we have built a simulation

model th a t accurately emulates the memory system operations and job migrations with vir

tual memory considerations. (3) We have proposed a memory-centric load sharing scheme?

and its variations to effectively process dynam ic memory allocation demands, aiming at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 49

minimizing execution tim e of each individual job by dynam ically m igrating and remotely

subm itting jobs to elim inate or reduce page faults and to reduce the queuing tim e for CPU

services. Conducting trace-driven sim ulations, we have exam ined these load sharing policies

to show their effectiveness.

We focus on presenting the load sharing study with known memory dem ands in this

dissertation, where the perform ance evaluation methodologies are described, and the per

formance results arc reported. In practice, some jobs’ memory dem ands are known in

advance or predictable based on users' hints [7]. In this part of our study, the jo b ’s memory

dem and is assumed to be known, and the memory allocation for this job is done at the

arrival of the job. A jo b ’s working set size is assumed to be stab le during its execution.

This part of the work was in collaboration with Yanxia Qu.

3 .2 .1 C P U -M e m o r y -B a se d L oad Sharing P o lic ie s

In a multiprogram ming environm ent, m ultiple jobs share a node for both its CPU and

memory space. There arc two types of page replacement policies in a m ultiprogram m ing

environment: global replacem ent and local replacement. A global replacem ent allows the

paging system to select a memory page for replacement th roughout the memory space

of a node. A local replacem ent requires th a t the paging system select a page for a job

only from its allocated memory space. Most time-sharing operating systems use a global

LRU replacement policy. We use node index j to represent one node a d u s te r , and use

variable P to represent the to tal num ber of nodes in the d u s te r. We give the following

memory related characterizations in a multiprogramming environm ent using a global LRU

replacement policy on a single node:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 50

• RAMj-. the am ount of user available memory space on node j for j = 1 P.

• U y th e memory usage is the to tal amount of requested memory space accum ulated

from jobs the node j . This requested or declared am ount of space reflects the m axi

m um am ount of the working set. but not the real memory load in executions.

• MLj-. the memory load in bytes is the to tal am ount of memory loads accum ulated

from running jobs on node j . (After a job is in its stable stage, its working set size

should also be stable [116]. We call the memory space for the stable working set the

m em ory load of the job. If R A M } > M L }. page faults would rarely occur, otherwise,

paging would be frequently conducted during the executions of jobs in node j .)

• (T} : th e average page fault rate caused by all jobs on a node is measured by the num ber

of page faults per million instructions when the allocated memory space equals the

m em ory load.

W hen a job m igration is necessary in load sharing, the m igration can be either a remote

execution, which makes jobs be executed on remote nodes in a non-preemptive way. or a

preem ptive m igration, which may suspend the selected jobs, move them to a remote node,

then re s ta rt them . We have compared the perform ance of the remote executions w ith

preem ptive m igrations for load sharing in a homogeneous environm ent [145], O ur study

indicates th a t an effective preem ptive migration for a m emory-intensive workload is not

only affected by the workload's lifetime, but also by its d a ta access patterns. W ithout a

thorough understanding of workloads' execution pa tte rn s interleaving among the CPU. the

memory an d the I/O . it is difficult to effectively use preem ptive m igrations in load sharing

policies. For this reason, we have decided to only use the rem ote execution strategy in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 51

p art. This part focuses on the three policies using remote executions: the first one is based

on C PU resource information, the second one uses information on memory usage, and the

th ird one is based on da ta concerning both CPU and memory resources. Descriptions of

the three policies are given as follows.

C P U -based load sharing. The load index in each node is represented by the length of

the CPU waiting queue. L j . A CPU threshold on node j . denoted as C T r is the maximum

num ber of jobs the CPU is willing to take, which is set based on the CPU com puting

capability. For a new arriving job in a node, if the waiting queue is shorter than the CPU

threshold (L } < C T }) . the job is executed locally. Otherwise, the load sharing system tries

to find the rem ote node with the shortest waiting queue to remotely execute this job. This

policy is denoted as CPU in performance figures.

m em ory-based load sharing. Instead of using L } . we propose to use the memory load.

M L j to represent the load index. For a new arriving job. if the memory load is smaller

th an the user memory space (M L } < R A M j) . the job is executed locally. Otherwise, the

load sharing system tries to find the rem ote node with the lightest memory load to remotely

execute this job. This policy is denoted as MEM.

C P U -m em ory-based load sharing. We have proposed a load index that considers both

C PU and memory resources. The basic principle is as follows. W hen a node has sufficient

memory space for both running and requesting jobs, the load sharing decision is made by a

CPU -based policy. When the node does not have sufficient memory space for the jobs, the

system will experience a large num ber of page faults, resulting in long delays for each job

in the node. In this case, a m emory-based policy makes the load sharing decision to either

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3. Load Sharing for Global M emory System Management 52

subm it jobs to suitable nodes or to hold the jobs in a waiting queue if necessary.

T he load index of node j (j = 1 P) combining the resources of CPU cycles and

m emory space is defined as

W hen M L j < R A M j . CPU-based load sharing is used. W hen M L } > R A M }. the CPU

queue length (the load index) is set to CT} as if the CPU is overloaded so that the system

refuses to accept jobs. In our im plem entation, when M L } > R A M j . the local scheduler

im m ediately searches for the most lightly loaded node in the system as the job 's destination.

Since the load index of node j is set to C T } when M L } > R A M j . it may not allow a node

w ith the overloaded memory to accept additional jobs. This approach a ttem pts to minimize

the num ber of page faults in each node. This load index option is in favor of making each

job execute as fast as possible, which is a principle of high performance computing. T hat is

the reason we define this option as an high performance com puting load index, defined as

Indexhp.

However, this policy may not be in favor of high throughput computing which emphasizes

on effective management and exploitation of all available nodes. For example, when M L j >

R A M j on one node, this condition may be true in several nodes. If the load indices in many

nodes have been set to C T and consequently they may refuse to accept jobs, the amount of

node resources accessible to users would be low. For this reason, we design an alternative'

load index for high-throughput-com puting. Instead of aggressively setting the load index

to C T j. we conservatively adjust the load index by a memory utilization sta tu s param eter

when M L j > R A M j . The memory utilization param eter is defined as 7 j = . When

Indexhp(j) (Lj . M L j)
MLj < RAMj .
ML j > RAMj .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 53

~fj < 1. the memory space of the node is sufficiently large for jobs. When 7 } > 1. the

memory system is overloaded. T h is option is designed for high throughput com puting, and

its load index is defined as follows:

Memory utilization param eter 7 } is used to proportionally adjust the load index. When

M L } > R AMj . the CPU queue length is enlarged by a factor of 7 } as if the C PU were

being selected soon for a new job assignment.

Both load index options have their merits and limits, and they are workload and system

dependent. The load sharing policy based on above two load indices can be expressed as

follows:

where Index is either Indexf ip or I n d e x This policy is denoted as CPU -M EM .H P or

CPU_MEM_HT.

3 .2 .2 P erform an ce E v a lu a tio n M eth o d o lo g y

O ur performance evaluation is sim ulation-based, consisting of two major components: a

simulated cluster and workloads 1.

‘The simulator ran he accessed at http://www cs wm.cdu/hpcs/WWW/HTML/publications/absOO-

Indexht (j) (Lj . M L j)
M L j < R A M j .
M L j > R A M j .

increasingly loaded. The increase of the load index would reduce the chance of th is node

LS(I nde x (j)) I ndex (j) < CTj.
I ndex(j) > CTj.

l.httnl.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

Chapter 3. Load Sharing for Global M emory System Management 54

3.2.2.1 A sim ulated cluster

W orkstations in a cluster could be heterogeneous w ith different CPU powers and memory

capacities. In a heterogeneous system, load indices of a node can be adjusted based on the

node's relative com puting capability and memory capacity in this system [137]. In order to

simplify the description. We focus on presenting our study on a homogeneous system and

give a brief sum m ary of our study on heterogeneous system a t the end of Section 3.2.

We sim ulated a homogeneous cluster w ith 32 nodes, where each local scheduler holds

all the load-sharing policies we just discussed: CPU-based. Memory-based. CPU-M emory-

based and their variations. The sim ulated system is configured with workstations of 800

MHZ CPU s and lG B ytes Memory each. T he memory page size is 4Kbytes. T he Ethernet,

connection is 1 0 0 M bps. Each page fault service tim e is 1 0 m.s. and the context switch time

is 0.1 ms. The overhead of a remote execution is 0.05 second.

The w idening speed gap between CPU and memory makes memory accesses and page

faults increasingly expensive. Using SPEC CPU 1995 and SPEC CPU 2000 benchmark

programs, and execution-driven sim ulations of modern com puter architectures, researchers

have quantitatively evaluated their execution tim e portions for CPU operations and memory

accesses [79] and [148]. For example, using the SPEC CPU 2000 benchmarks on a simulated

1.6 GHz. 4-way issue, out-of-order core with 64 KB split LI caches, a 1 MB on-chip L2 cache,

and an infinitely large main memory, in average, the system spends 57% to ta l execution

time serving m emory accesses (L2 misses). 12% of its time serving LI misses, and only 31%

of its time for C PU operations. If we consider a small percentage of the memory accesses

experiences page faults in a system with limited m ain memory space, the percentage of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 55

execution tim e spent for CPU operations can be significantly low. O ur cluster simulation

environment is consistent w ith reported results.

The CPU local scheduling uses the round-robin policy. Each job is in one of the following

states: “ready*, "execution", “paging", “d a ta transferring", or “finish". W hen a page fault

happens in the middle of a job execution, the job is suspended from the CPU during the

paging service. The CPU service is switched to a different job. W hen page faults happen in

executions of several jobs, they will be served in FIFO order. The page faults in each node

are sim ulated as follows. W hen the memory load of jobs in a node is equal to or larger than

the available memory space (M L ; > R A M j) . each job in the node will cause page faults at

ML1a given page fault rate. x where A /L‘ is the memory load of job t in node j . and

M A lj is the allocated memory space for job i in node j .

In practice, application jobs have page fault rates from 1 to 10.

3.2.2.2 W orkload Traces

We select a workload from the Los Alamos National Lab. which contains detailed informa

tion about resource requests and usage including memory. This workload was collected from

a 1024-node Connection Machine CM-5 during October 1994 through Septem ber 1996. This

workload can be downloaded from Feitelson's Workload Archive [45]. We extract 4 traces

from this workload, which are sum m arized in Table 3.1. Trace “MAY". “JU N E". "JULY"

and "AUGUST" include jobs subm itted in May 1996. June 1996. Ju ly 1996 and August

1996. respectively. The parallel workloads have been converted to sequential workloads by

accum ulating CPU and memory dem ands of all parallel tasks of each job to a sequential job.

Each job in our trace has 4 items: (1) arrival time. (2) arrival node. (3) requested memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 56

size, and (4) requested CPU time. Item 1 can be obtained from the original CM-5 workload

directly. Item 3 and 4 are the total amount of requested CPU tim e and memory size of a

job. Item 2 is assigned to a node whose num ber is the same as the jo b 's submission date.

For example, if a jo b is subm itted on May 16. 1996. this job is assum ed to be subm itted

to node 16. We specially assign jobs to node 31 a n d /o r 32 as follows. Node 32 in trace

"MAY". "JULY" and "AUGUST" contains all jobs subm itted on Ju n e 1. 1996. August 1 .

1996 and Septem ber 1. 1996. respectively. Node 31 and node 32 in trace "June" include

all jobs subm itted on June 1. 1996 and June 2. 1996. respectively. We converted the job

duration time into Million Instructions according to the CPU speed.

trace name duration | # jobs avg. CPU dem and avg. memory demand
MAY May. 1996: June 1. 1996 [4177 10166236 MIPS 1006 MB
JUNE June. 1996: July 1-2. 1996 3738 9783912 MIPS 735 MB
JULY July. 1996: Aug. 1 . 1996 8639 5121149 MIPS 552 MB

AUGUST Aug.. 1996: Sept. 1 . 1996 3209 11428627 MIPS 901 MB

Table 3.1: Trace Description

3.2.2.3 System conditions

We have following conditions and assum ptions for evaluating the load sharing policies in

the cluster:

• Each node m aintains a global load index file which contains bo th CPU and memory

load status inform ation of other nodes. The load sharing system periodically collects

and distributes the load information among all nodes.

• The location policy determines which node to be selected for a job execution. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 57

policy wo use is to find the most lightly loaded node in the cluster.

• Similar to assum ptions in [59] and [124]. we assum e th a t page faults are uniformly

d istribu ted during job executions.

• We assume th a t the memory load of a job is 40% of its requested memory size. The

practical value of this assumption lias also been confirmed by the studies in [59] and

[124],

3 .2 .3 P er fo rm a n ce R esu lts and A n a ly s is

Slowdown is the ratio between the wall clock execution tim e and the CPU execution tim e

of a job. A m ajor tim ing measurement we have used is the mean slowdown, which is the

average of each program s slowdown in a trace. In the rest of the chapter, "slowdown" means

the "mean slowdown". Major contributions to the slowdown come from the delays of page

faults, waiting time for CPU service, and the overhead of remote execution. T he mean

slowdown m easurem ent can determine the overall perform ance of a load sharing policy, but

may not be sufficient to provide performance insights. We have also looked into the total

execution tim e and its breakdowns. For a given workload scheduled by a load sharing policy

(or w ithout load sharing), we have measured the to ta l execution time. The execution tim e

is further broken into CPU service time, queuing tim e, paging time, and m igration tim e.

3.2.3.1 O verall Perform ance C om parisons

We have experim entally evaluated the 4 load sharing policies, and present performance

comparisons of all the traces. Figure 3.1 and 3.2 present the mean slowdowns of 4 traces

scheduled by different load sharing policies. The average memory demand of a job is known

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 58

in advance, b u t memory access interactions of m ultiple running jobs are unknown. We

use different page fault rates to characterize different interactions. Intensive interactions

mean th a t memory accesses of m ultiple running jobs happened at the sam e tim e, which

could cause more page faults than those in less intensive interactions. Before getting into

details, we present two general observations based on the results in the figures. First,

the slowdown are proportionally increased as the page fault rate increases. Second, when

average page fault rates are low. the perform ance differences among the load sharing policies

are insignificant. However, when average page fault rates are high, the CPU-M emory based

load sharing policies significantly outperform both CPU-based and M emory-based policies.

Trace MAY Trace JUNE

180
CPU —

MEM «
CPU.M EM .H P
CPU MEM.HT a

160

140

* '00

2 3 4 65

CPU —
MEM —

CPU MEM HP «
CPU MEM HT a

500

400

o 300

S 200

100

32 54 6
Average Page Faun Rale Average P a g e Faults Rale

F igure 3.1: Mean slowdowns of the 4 load sharing policies as the page fault rate increases on traces
MAY and JUNE.

Policy CPU does reasonably well when the page fault rate is low. but does poorly when

the rate is high. Policy MEM performs slightly better than CPU. but it still far below the

performance of CPU.M EM based policies. Policies CPU-M EM .H P and C PU .M EM .H T

perform well under all conditions, and do show their effectiveness. Here is an example on

trace AUGUST. When the page fault ra te is 4. the slowdowns of the last three policies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 59

Trace JULY Trace AUGUST

180
CPU — -

MEM
CPUJUEM HP *
CPU.MEM HT Q140

I '20
I 100
in
c4
4

6 72 3 5 e4

CPU —
MEM

CPU.M EM .HP «
CPU.MEM HT -Q

200

c 100

2 3 54 6
Average P age Faults Rate Average P age Faults Rale

F igure 3.2: Mean slowdowns of the 4 load sharing policies as t he page fault rate increases on traces
JULY and AUGUST.

are about 1.04 tim es lower. 1.84 times lower. 1.62 tim es lower than th a t of CPU policy,

respectively. W hen the page fault rate is increased to 8 . the slowdowns of these three

policies are about 1.09 tim es lower. 2.03 times lower. 1.75 tim es lower than th a t of CPU

policy, respectively.

3.2.3.2 Paging and Q ueuing

O ur simulator also records execution breakdowns. O ur experim ents confirm th a t in different

load sharing policies the CPU service tim e is not changed. The m igration tim e spending

on remote execution is neglected. So paging time and queuing tim e become the major

parts to evaluate perform ance of load sharing policies. Figure 3.3 presents the paging time

reduction and queuing tim e reduction of policies MEM. CPU.M EM JHP and CPU.M EM .HT

over policy CPU for different traces when the average page fault rate is 6 .

Surprisingly, the paging time reduction of policy MEM is very small. This is because

policy MEM does not consider CPU load balancing a t all so th a t some nodes may hold

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 60

MAY JUNE JULY AUGUST MAY JUNE JULY AUGUST

Figure 3.3: Paging time reduction (left figure) and queuing time reduction (right figure) of policies
MEM. CPU_MEM_HP and CPU_MEM_HT over policy CPU.

a large num ber of running jobs. However, these nodes could be viewed as lightly loaded

because idle memory may still be available there. The heavy CPU load tends to make

these running jobs stay longer, and cause more page faults in these nodes when more jobs

have to move in. which offsets the page fault reduction gained from other nodes holding

fewer running jobs. In contrast, the paging tim e reductions of policies CPU-M EM .HP and

CPU-M EM _HT are significant. For example, in trace AUGUST, the paging time reduction

of policy MEM is only 3.88%. T he reductions of CPU -M EM -H P and CPU.M EM -HT are

24.-13% and 24.27%. respectively.

Queuing tim e reductions for different policies follow the same trend. The reduction of

MEM is very small. O n one hand, some nodes hold a small num ber of running jobs with

large memory dem ands. The queuing tim e could be significantly reduced in these nodes.

On the other hand, it's very likely th a t a large num ber of jobs running in the same node

in a tim e-sharing mode because these jobs dem and small memory space. The queuing tim e

in these nodes significantly increases. The right figure of Figure 3.3 clearly shows th a t the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 61

two parts arc comparable so th a t the queuing tim e reduction of MEM is only m odest. The

queuing tim e reductions of Policies CPU_MEM_HP and CPU_MEM_HT balancing both

CPU and memory loads are very effective. For example. In trace AUGUST when page fault

rate is 6 , the queuing tim e reduction of MEM is 7.25%. while reductions of CPU-M EM -H P

and CPU -M EM .H T are 44.16% and 42.43%. respectively.

3.2 .3 .3 H igh Perform ance and H igh T hroughput

We have further compared the high performance (HP) approach and the high throughput

(HT) approach in our load sharing policies (see Figure 3.1 and 3.2) Generally, the high

performance approach is comparable with, but is slightly more effective than, the high

throughput approach for all cases. This is because the high throughput approach tends to

encourage more jobs to be executed in a tim e-sharing mode in a cluster so th a t it could cause

slightly more page faults compared w ith the high performance approach. Occasionally, the

high throughput approach outperform s the high performance approach. A cluster m anaged

by CPU_MEM-HP refuses to accept jobs when either CPU or memory is overloaded. This

approach attem pts to make each running job execute as fast as possible. But if m any jobs

are refused or some jobs are delayed for a very long period of time, the overall performance

could be affected. In these cases, the high throughput approach can outperform the high

performance approach. For example (see Figure 3.1 and 3.2). the performance results in

trace JULY with page fault rate of 5 and 6 . in trace JUNE with page fault rate of 4. and

in trace AUGUST with page fault rate of 7 give such examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 62

3 .2 .4 S u m m a ry

We summarize our study on load sharing with known job memory dem ands as follows.

• The performance of a load sharing policy considering both CPU or memory resources is

robust for all traces in this part of the study, and is much be tte r than the perform ance

of a load sharing policy considering only CPU or only memory resource, particularly

when the memory access interactions are intensive.

• The reason that CPU-M EM -based policies perform well is th a t these policies effec

tively reduce the paging tim e and queuing time. Meanwhile. CPU policy suffers large

paging overhead, and MEM policy could not reduce queuing time.

• The high performance approach is slightly more effective than the high throughput

approach for all traces in this part.

3 .2 .5 B r ie f d esc r ip tio n o f our s tu d y on h e te r o g e n e o u s sy ste m s

Practical systems are often heterogeneous with a large variation in the computing power and

memory capacities of different workstations. We have designed and evaluated load sharing

policies by considering both system heterogeneity and effective usage of CPU and memory

resources. The detailed study can be found in [137]. We first present how we characterize

heterogeneity, then give a brief summary of our study on Heterogeneous Systems in this

Subsection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 63

3.2 .5 .1 C P U /M em o ry W eights and H eterogen eity

In th is study, heterogeneity only refers to the variations of CPU powers and mem ory capaci

ties. b u t not the variations of operating system s, network interfaces and hardw are organiza

tions am ong the workstations. In this section, we quantitatively characterize heterogeneous

C PU powers and memory capacities in a network of workstations. The simple models to

be discussed here have been used in the designs and evaluation of load sharing policies. We

use node index j to represent one of the nodes in a heterogeneous network of workstations.

We also use variable P to represent the to ta l num ber of nodes in the system.

T he CPU weight of a workstation refers to its com puting capability relative to the fastest

w orkstation in a d istributed system. The value of the C PU weight is less than or equal to

1. Since the CPU weight is a relative ratio , it can also be represented by the C PU speed of

each node m easured by millions of instructions per second (MIPS). If VcpU(j) is the speed

of w orkstation M } in MIPS, j = 1 P. the CPU weight can be expressed as follows:

T he to ta l CPU power of a system is defined as the sum of the CPU speeds of each

w orkstation, which represents the accum ulated com puting capability of the system:

Similarly, the memory weight is calculated by com paring the memory sizes among the

r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 64

com puting nodes:

w mem(j) = M - <3-3>m ax;=[RA M ,

where R A M j is the am ount of user available memory space on node j for j — 1 P.

The to tal memory capacity of a system is defined as

p

T P m,m =] T M S }. (3.4)

where M S j is the memory size of node j .

The system heterogeneity can be quantified as the variance of com puting powers and

memory capacities among the workstations. Using standard deviation and CPU weights,

we define the CPU heterogeneity as follows:

„ . £ = , (w w w w i)) 2Hcpu = W — ------------ p ---------------- . (3.0)

where W js t j10 average CPU weight. Similarly, we define memory

heterogeneity as follows:

U _ , j'52] = l ^ mern Wmem(j))2 ^
"rnrm — W ~p « (^-6)

where W mem = j s fj(p a v e r a g 0 memory weight in the system . Higher val

ues of H(-pU and H mrm in a distributed system correspond with a higher variation in the

CPU capability and memory capacity am ong different nodes. A homogeneous system is

characterized by HrpU = Hmrin = 0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M em ory System Management 65

3.2.5.2 Sum m ary o f Our H eterogeneous Study

We have experim entally examined and com pared CPU-based, m emory-based and CPU-

Memory-based load sharing policies on heterogeneous networks of workstations. Based on

our experiments and analysis we have following observations and conclusions:

• The CPU and memory weights of w orkstations can be effectively used to characterize

heterogeneity of a distributed system for designs of load sharing policies. For given

total CPU power and total memory capacity, we can have different homogeneous and

heterogeneous configurations with a roughly equivalent purchase cost. Under such a

condition, the performance evaluation and comparisons are meaningful and useful.

• The CPU-based load sharing policy is not robust in a heterogeneous system, and

performs poorly for memory-intensive workloads.

• The performance of the memory-based and CPU-Mcmory-bascd load sharing policies

are quite independent of system heterogeneity changes for memory-intensive work

loads. This is because the job m igrations considering both memory and CPU resources

offset the negative effects of the system heterogeneity. As the system heterogeneity

increases to a certain degree, the rem ote executions and page faults also increase pro

portionally for the two policies, resulting a m oderate degradation of the performance.

However, our experiments also show th a t changes of the heterogeneity do not affect

the functionality and nature of the two policies.

• An initial job pool assignment, which uses information regarding system heterogeneity

can allocate system resources effectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 66

• We also show th a t the CPU -based, memory-based and CPU-M em ory-based load shar

ing policies are independent on several different memory dem and distributions.

3.3 Incorporation job migration and network RAM to share

memory resource

3 .3 .1 O b jec tiv es o f th e s tu d y

The job-migration-based load sharing system approach and the network RAM system ap

proach share the same objective of reducing page faults in each local workstation. The two

approaches have another common technical feature in their im plem entations. Both sys

tems m aintain a global load index record for each workstation ab o u t how its CPU and /o r

memory resources are being utilized. This record is either stored in a m aster workstation or

distributed among the workstations, and is updated periodically by the cluster workstations.

There are several major differences between the two approaches in the ways that the

global memory resources are shared. Because of these differences, each approach has its own

m erits and limits. First, in a network RAM cluster system, a w orkstation is provided with a

huge global memory space for its jobs. The global memory space could be even larger than

its local disk space. Thus, it is possible to eliminate accesses to local disks due to page faults

in a network RAM cluster. In contrast, memory allocations of a jo b could be limited by the

local memory size of a workstation in a migration-based load sharing cluster system where

local memory modules are not shared by other workstations. A network RAM cluster system

could be more beneficial to large or non-migratable data-intensive jobs than a migration-

based load sharing cluster system . Second, the effectiveness of global paging operations in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 67

a network RAM cluster system is heavily dependent the cluster network speed. In contrast,

the network, in general, is less frequently used in a rernote-exccution-based load sharing

cluster system. In o ther words, a remote-execution-based load sharing system relies less on

network speed than a network RAM system. Finally, a m igration-based load sharing system

is able to balance the workloads among workstations by sharing both CPU and memory

resources, while a network RAM system only considers global memory resources for load

sharing. W ithout job m igrations, job executions may not be evenly distributed in a cluster

-- some workstations can be more heavily loaded than others. Although the lightly loaded

workstations in a network RAM cluster system can be used as memory servers for heavily

loaded workstations, their CPU resources arc not fully utilized by the cluster.

Conducting trace-driven sim ulations, we have compared the performance and trade-offs

of job-m igration-based load sharing policies and Network RAM. and their impact on job

execution tim e and cluster scalability. In this study, we quantitatively address the following

three questions: (1) Under what cluster and workload conditions is a migration-based load

sharing policy or the network RAM beneficial for perform ance improvement? (2) What, are

the performance effects of lim ited network bandw idths and d u s te r size to the two system

approaches? (3) How do we optim ize designs of cluster resource management systems by

effectively integrating and combining the two system approaches?

The rest of the section is organized as follows. We describe the job-migration-based

load sharing policies and the network RAM im plem entations we have used in this study

in Section 3.3.2. We present the performance evaluation m ethodology and experimental

environments in Section 3.3.3. The performance comparisons and analyses are presented in

Section 3.3.4. We propose an improved load sharing policy supported by network RAM in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 68

Section 3.3.5. Finally, we sum m arize the work in Subsection 3.3.6.

3 .3 .2 J o b -m ig ra tio n -b a sed load sh arin g v s . n e tw o rk R A M

Network RAM and job-m igration-based load sharing related operations on workstation j .

for j = 1 P. are characterized by the following variables:

• RPji the am ount of remote paging in Mbytes from the workstation.

• F M }: the idle memory space in Mbytes of the workstation.

3.3 .2 .1 N etw ork R A M organizations

A network RAM organization makes each workstation not only have its own local memory,

but also be able to access idle memory space of other w orkstations through remote paging

in a cluster. The memory allocation decision for a job on w orkstation j is made by

where the global memory allocation is implemented by finding the most lightly loaded

w orkstation one by one for remote paging based on the following search algorithm:

Allocate the idle local memory space to the arrival job:
M D j = M L j ;
W h ile (M D } > R A M j) and (idle memory space is available elsewhere)

allocate R P t = m i n { M D } - R A M j . FA/,} MBytes from node i to the job in node j :

where M D j represents the current local memory dem and on workstation j . T he while

loop continues until the memory demand is met or no idle m emory available in the system.

local mem ory
global memory

m e m ory allocation local m em ory if M L j < R A M j
global mem ory if M L j > R A M j .

do
find node i with the largest idle memory space am ong P — 1 nodes (excluding node j)

F M , = FA/, - RP,.
M D j = M D j - RP,:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 69

If MLj > RAMj after the global allocations, disk accesses due to page faults will occur

in workstation j . In order to minimize the global paging, we give local memory accesses

the highest priority. The global paging is only conducted when the remote w orkstation has

additional idle memory space. Therefore, when a new local job arrives, the network RAM

paging services for remote jobs will be transferred to o ther workstations if any memory

space occupied by remote pages is needed for th is new job.

3.3.2.2 C PU -M em ory-based load sharing

The job-m igration-based load policy we have selected for this comparative study is the

CPU-M emory-based load sharing scheme previously described, which makes a job migra

tion decision by considering both CPU and memory resources. The basic principle of this

scheme is as follows. When a workstation has sufficient memory space for both running

and requesting jobs (M L } < RAMj) . the load sharing decision is made by a CPU-based

policy where the load index in each workstation is represented by the length of th e CPU

waiting queue. As long as the CPU waiting queue is not larger than the threshold which is

set based on the CPU capability, the requesting jobs will be locally executed in the work

station. Otherwise, the load sharing system finds the remote workstation with the shortest

waiting queue to either remotely execute this job or to preemptively m igrate an eligible job

from the local workstation to the remote workstation. W hen the workstation does not have

sufficient memory space for the jobs (M L S > RAMj) . the load sharing scheme a ttem p ts to

m igrate jobs to suitable workstations or even to hold the jobs in a waiting pool if necessary.

Again, the m igration can be cither remote execution or preemptive migration.

During an execution of a memory-intensive job. page faults may occur periodically. Each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 70

such period is called a transition, where page faults are conducted to bring a working set

into memory. The d a ta references will then be memory hits for a while before the working

set changes and page faults are conducted in the next transition period. T he local reference

period is called a phase. I f the phases of a job are disjoint, or almost disjoint, the best tim e

to do a preemptive m igration is a t the end of a phase and before starting ano ther transition

period for a new working set. The migrated job would carry no data or a sm all da ta set to

a rem ote workstation. However, in practice, it may be difficult to predict the da ta access

phase and transition p a tte rn s of so many different jobs. If this prediction is impossible,

rem ote executions should be a practically optim al solution for load sharing of memory-

intensive jobs [145], For th is reason, remote executions are used in our CPU-M em ory-based

load sharing policy.

3 .3 .3 P er fo rm a n ce E v a lu a tio n M e th o d o lo g y

O ur performance evaluation is simulation-based. We discuss performance evaluation m et

rics. the simulation model, and the workloads in th is subsection.

3.3 .3 .1 Perform ance m etrics

For a given workload scheduled by a job-m igration-based load sharing policy, supported by

network RAM. or w ithout load sharing and network RAM. we target evaluating and com

paring their performance m erits and limits under various system and workload conditions.

T he following perform ance metrics are used in our evaluation:

y n *• average execution t ime per job is defined as t. — . where t, is the m easured

execution time of an individual job. and n is the number of jobs in a given workload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 71

• execution time breakdowns: The average execution time is further broken into CPU

service tim e, queuing time, disk access tim e due to page faults, and netw orking time

for job migrations or remote pagings including network contention tim e.

3.3 .3 .2 A sim ulated w orkstation c lu ster

We have developed a simulator for a bus-based workstation cluster th a t has m ultiple func

tions by: (1) supporting different job-m igration-based load sharing policies including the

CPU-M em ory-based policy. (2) sim ulating a rem ote paging system for a network RAM in

the cluster. (3) simulating bus contention, and (4) having system heterogeneity. The simu

lated cluster is scalable and is configured by 6 to 18 workstations of 300 MHz CPU s with

local memory of 128 MBytes. The cluster network is an Ethernet bus of 10 M bps and 100

Mbps. Each disk access time due to a page fault is 10 ms. The size of a m em ory page is 4

KBytes. The CPU local scheduling uses the round-robin policy.

W hen a page fault happens during job execution, the job is suspended from the CPU

during the paging service. The CPU service is switched to a different job. W hen page faults

happen in the executions of several jobs, they will be served in FIFO order. T he overhead

of a rem ote execution is 0 .1 second.

The bus service and contention arc sim ulated as follows. Each w orkstation is given a

sequence number, which also represents its priority rank to access the bus. The priority

increases as the sequence number decreases. As m ultiple requests for bus services arrive in

sequence, the requests will be served in FIFO order. If the requests arrive* simultaneously,

they will be served in an order b;ised on the ir workstations’ bus access priorities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M em ory System Management 72

3.3 .3 .3 W orkloads

The workloads we have used are the 8 traces from [6 6]. Each trace was collected from one

workstation on different daytim e intervals. The jobs in each trace were d istribu ted among

6 homogeneous workstations. Each job has the following three m ajor param eters:

< arrival time, arrival workstation, duration time>

The 8 traces have different inter-arrival d istributions and different Pareto service time dis

tributions.

We have made the following m odifications of the traces for our study. We converted the

job duration tim e into Million Instructions according to CPU speed. The memory demand

of each job in the traces is generated from a Pareto distribution with the mean sizes of 1

MBytes. Each job has the following 4 items:

< arrival time, arrival workstation, requested memory size, duration time>

The number of jobs is doubled and trip led in each trace as the num ber of workstations

is scaled from 6 to 1 2 . and scaled from 1 2 to 18. respectively.

For the job-m igration-bascd load sharing system, the page faults in each workstation

are conducted in our simulation as follows. W hen the memory load of jobs in a workstation

is equal to or larger than the available memory space (ML j > R A M j) . each job in the

workstation will cause page faults at a page fault rate that is proportional to the memory

usage of this workstation. In practice, application jobs have page* fault rates from 1 to 10

per million instructions. We set the ra te in the same range in our experim ents.

For the network RAM system, when M L } > R A M } in a workstation, rem ote paging is

conducted as described in Subsection 3.3.2.1. The remote paging rate of a job is proportional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 73

to the size of the global memory space allocated to this job. If the aggregate global memory

space in the cluster is not sufficient for the job. the job in the w orkstation will cause page

faults to access the local disk a t a page fault rate.

3 .3 .4 S im u la tio n R e su lts a n d A n a ly s is

O ur performance evaluation targets understanding the effects of netw ork bandw idth changes

to both the job-m igration-based load sharing scheme and network RAM supported by re

mote paging. We have also quantita tively evaluated two perform ance trade-offs for com

paring the two schemes: (1) the trade-off between reducing local disk accesses due to page

faults and increasing network contention and delay due to rem ote paging: (2) the trade-off

between reducing more local disk accesses by network RAM and balancing job execution

among workstations by job m igrations.

3.3.4.1 Im pact o f lim ited netw ork bandwidths

It is widely known th a t CPU speeds are increasing much more rapidly than network speeds.

For example, the 10 Mbits per second (M bps) Ethernet has been a common network infras

tructu re for many years, while the CPU speed of w orkstations/PC s connected to networks

of this speed has been updating every year. Both job m igrations and rem ote paging rely on

the cluster network for da ta transfers. However, the performance o f each scheme is affected

differently by changes of the network speed.

Figure 3.4 presents the average execution times per job (the left figure) and the network

contention portions in the execution tim es (right figure) of "trace ()’ running on clusters

of 6 , 1 2 and 18 workstations, where the jobs are executed w ithout load sharing (denoted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 74

as ‘‘Base"). scheduled by CPU-M emory-based load sharing policy with remote executions

(denoted as "LS-RE"). and executed on a network RAM system (denoted as “Nct_RAM").

The bus speed varies from 10 Mbps to 100 Mbps. The m ean memory demand of jobs is 1

MBytes.

T he page fault rates was set to 5.96 per million instructions for all the experim ents on

"trace 0". Since the num ber of jobs proportionally increases as the num ber of workstations

increases in the cluster, the average execution times per job of "trace 0" by "Base" are

identical on clusters of 6 . 12. and 18 workstations. Using the same page fault rate, we

conducted the experim ents to com pare the execution tim e performance between “LS-RE"

and “Net-RAM" for the sam e workload of "trace 0 ".

We have the following observations based on the experim ental results in Figure 3.4.

F irst, the performance of "LS_RE" is not significantly affected as the cluster is scaled from

6 to 12. and from 12 to 18 workstations. The performance improves only slightly as the bus

speed increases from 10 M bps to 100 Mbps. This is because da ta communication via the

network by remote executions is a small portion in the to tal execution time (0% to 0.005%.

see the right figure in Figure 3.4). Second, the performance of “Net-RAM" supported by

rem ote paging is highly sensitive to the network speed and the num ber of workstations in

the cluster. For example, the average execution time of "Nct_RAM" is 46% lower than that

of ‘‘LS-RE" on the cluster o f 6 workstations where the bus speed is 1 0 Mbps. As the bus

speed increases to 100 Mbps, the average execution tim e of “Net_RAM" is further reduced

45%. However, as the d u s te r of 10 Mbps increases to 12 workstations, the average execution

tim e of "Net.RAM " sharply increases (about 3.6 times higher than th a t of “LS-RE"). As

the cluster speed increases to 100 Mbps, the execution tim e is significantly reduced, and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 75

69% lower than th a t of "L S -R E ". Similar performance d a ta are collected as the num ber

of workstations increases to 18. O ur experiments show th a t the cluster scalability and

workload performance when using network RAM are highly dependent on the speed of the

cluster, because the network latency due to d a ta transfer and contention is a significant

portion in the total execution tim e (0.05% to 46.03%. see the right figure in Figure 3.4).

Finally, in the workload o f “trace 0". some jobs arc marked as non-migratable. Therefore,

the power and benefits of job migrations may be limited.

Some Jobs are Non-migratable in TraceO

e

BB ase

- •• a iS _ R E •

| j ; . ONet RAM.

I >
!»

i l l (I II
6 woftatations 12 Mxfcsatnns IB ararfcstatens

Some Jobs are Non-migratable in TraceO

I
Sa
9e' 3 5 |
z

x

: mc - ~

6 worksahons 12 workslahons 18 worksaiions

Figure 3.4: The average execution times per job (the left figure) and the networking portions in
the execution times (right figure) of "trace 0 " with job migration restrictions running on clusters of
6 . 12 and 18 workstations.

In order to fully take advantage of job migrations, we released the restrictions on the non-

m igratable jobs so that rem ote executions can be applied to all the jobs in "trace 0” . Figure

3.5 presents the average execution tim e per job (left figure) and the networking portions

in the execution times (right figure) of the modified "trace 0 “ scheduled by "LS.RE" in

comparisons with "Base" and "NET-RAM" on the clusters of 6 . 12 and 18 workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 76

We show th a t the performance of “LS_RE" is significantly improved. The execution times of

•‘LS.RE" using a 10 Mbps cluster are slightly lower than the execution times of “Net.RAM "

using 100 Mbps clusters of 6 . 12. and 18 workstations. In th is case, the remotc-execution-

based load sharing policy not only outperform s the network RAM. but is also more cost-

effective.

From the scalability point of view. ‘LS_RE~ demands less network bandw idth in order

to scale the cluster by connecting more workstations than ■‘Net.RA M " does. For example.

■‘LS_RE’’ is scalable from 6 to 18 workstations for both 10 and 100 Mbps buses, while

•‘Net.RAM " is only scalable for the 100 Mbps bus.

All Jobs are Migratable in TraceO

■ B a se

■ L S .R E

□ Net.RAM

6 wor*Satons
'»H 'XMCpt
12 workstations

'XUtw
18 wortaations

All Jobs are Migratable in TraceO

/•c
I -

CSr.
t 0 .«a. * ■

■ L S .R E

■Net.RAM.

:
'Mgs 'impi
6 workstations

I

12 worKstatofts 18 workstations

F igure 3.5: The average execution times per job (the left figure) and the networking portions in
the execution times (right figure) of "trace 0 " without job migration restrictions running on clusters
of 6 . 12 and 18 workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 77

3.3.4.2 Trade-offs b e tw een page fault reductions and load sharing

Page faults in the network RAM are reduced at the cost of additional network contention

and delay. Although page fau lt reductions may he lim ited by the rem ote-execution-based

load sharing scheme for large data-intensive jobs, the scheme requires less additional network

support compared with the netw ork RAM. In order to provide insights into the trade-offs

between the two schemes, we present the execution tim e breakdowns of "trace 0 " where

all jobs are m igratable in F igures 3.6 and 3.7. The execution tim e of a workload consists

of “CPU", “networking", “page faults", and “queuing" portions. “CPU" is the execution

tim e by the CPU for the workload. "Networking" is the tim e spent on the cluster network,

which is used for remote pagings by the network RAM. or for remote executions by the load

sharing scheme (including netw ork contention time). “Page faults" is the local disk delay

time for both schemes. “Q ueu ing” is the average w aiting time for a job to be executed on

a workstation.

When the workload is executed on a 1 0 Mbps cluster of 6 and 12 workstations, the

networking tim e for rem ote pagings by the network RAM is one of the m ajor portions in

the execution time. For exam ple, the networking tim es contribute 15.5%. and 23.08% to

the execution times on the 6 w orkstation cluster, and the 1 2 workstation cluster (see the

left figures in Figures 3.6 and 3.7). respectively. In con trast, the networking tim e for remote?

executions by the load sharing scheme is insignificant (0.06% and 0 . 1 1 %). Consequently,

the queuing time for each jo b in the network RAM is significantly increased by networking

delay, causing much longer execution times than for the remote-execution-based load sharing

scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 78

We have also shown th a t the networking tim e portions in the exectitions of the workload

by the network RAM are significantly reduced by increasing the bus speed from 10 Mbps

to 100 Mbps. Consequently, the queuing tim e for each job is also significantly reduced (see

the right figures in Figures 3.6 and 3.7).

F igure 3.6: The average execution times per job of •'trace 0" without job migration restrictions
running on a 10 Mbps cluster (the left figure), and a 100 Mbps cluster (the right figure) of G
workstations.

Another trade-off of the two schemes is between page fault reductions and load sharing.

W ithout job migrations, job executions may not be evenly d istribu ted among the work

stations by the network RAM although page faults can be significantly reduced through

remote pagings. The unbalanced loads among workstations in network RAM is another

reason for the long queuing times for the workload executed on the 10 Mbps clusters of 6

and 1 2 workstations.

10Mbps Cluster of 6 Workstations 100Mbps Cluster of 6 Workstations

j
022* □networking «
1315 ® i < •

□ p a g e faults ’

■C PU

■ queuing | _

... B : r Ioooto

 M - m s ■

□networking

□ p ag e faults

■CPU

■queuing

0 0001
.00 1 1 9
p u i s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 79

lOMbpt Cluster of 12 Workstations

^ , . □networiong

-> O p ag e faults

V s ' BCPU
e 3 - ■ queuing

8
fi».
P
| ’ '

g o s • I
BASE

00000QQQB
1315

00004
00111putsp m

l s . re Net RAM

100Mbps Cluster of 12 Workstations

* 1 5 .
a.

1 1
%2S ■ M
I 2 -

□ networking

G pagelau lts

■C PU

■queuing

I
BASE

3 0000
0B26
13tS

0 0002 30110
■) 1315 P2C60

10040
3 0 1 Z
' 1315

2ZT
lS.BE Net.RAM

Figure 3.7: T he average execution times per job o f “trace 0" w ithout job migration restrictions
running on a 10 Mbps cluster (the left figure), and a 100 Mbps cluster (the right figure) o f 12
workstations.

3 .3 .5 A n im p roved lo a d sharing sch em e

O ur experim ents show advantages and limits of the network RAM and the remote-execution-

based load sharing scheme. A natural optim ization step for overcoming the lim its of each

scheme is to combine them . Here is the basic idea of this improved load sharing scheme.

W hen a workstation has sufficient space for both current and requesting jobs, the job ex

ecution location will be determ ined by the CPU-based policy. When a w orkstation runs

out of memory space for bo th current and requesting jobs, we first attem pt to m igrate the

new arrival job to the m ost lightly loaded workstation. If the workstation does not have

sufficient memory space for the job. the network RAM will be used to satisfy the memory

allocation of the job through remote paging. The memory allocation combing bo th remote

executions and network RAM of the scheme is outlined as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global M emory System Management 80

If (M L j > R A M j)
find w orkstation i with the largest idle memory space among P workstations:
If i * J

rem otely execute the job at w orkstation i:
If (M L , > R A M ,) and (Qnet < N T)

allocate global memory by using network RAM:
else

execute the job locally:

Variable Q nrt is the number of jobs waiting for network access, and N T is the network

threshold, which functions to allow only a lim ited number of network accesses a t a time.

The purpose of setting N T is to prevent a large num ber of bus requests during a small time

interval. Such bursty bus requests will cause network contention to sharply increase.

T he improved load sharing scheme is denoted as “LS_Net_RAM". Each workload trace

is fu rther divided into two types: (1) some jobs are restricted for migrations in a trace and

(2) all th e jobs in a trace are m igratable. Figures 3.8 and 3.9 present the average execution

times o f all the 8 traces of both type 1 (left figure) and type 2 (right figure) executed on

the 10 M bps and 100 Mbps clusters of 6 workstations, respectively.

O ur experim ents show that “LS_Net.RAM r performs well for all the 8 traces of both

types, while "LS_RE" or “Net.RAM '' only perform s well on one type of traces. We obtained

consistent results on clusters of 12 and 18 workstations.

3 .3 .6 S u m m a r y

We have experim entally examined and com pared job migrations and network RAM for

sharing global cluster memory resources. Based on our experiments and analysis we have

the following observations and conclusions:

• Providing a large memory space through remote paging, the network RAM is par-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 81

Some Jobs art NorwnkjrataMt in All Traces

■LS RE
QNtf RAM
DLS.Nel RAM

*w J t n S m t
10 H bpi C lu r tr of t W ortm uon*

All Jobs a n MigrataUa in All Tracts

1

imUl
J
i

«

4

■ BASE
■LS.RE
□ Net.RAM
OLS.Net.RAM

i
i

tOMbpe C luM r of S W oftoM ont

F igu re 3.8: The average execution times per job of all the 8 traces (the left figure for the 8 traces
where some jobs are non-migratable, and the right figure for the 8 traces where all the jobs are
migratable), running on a 10 Mbps cluster of 6 workstations.

ticularly beneficial to large or data-intensive workloads where some jobs may not be

m igratable. However, the network RAM performance is heavily dependent on the

cluster speed and the availability of the idle memory space in the cluster. Since

load balancing is not considered, uneven job distributions may degrade the overall

performance of cluster computing using network RAM.

• Dynamically m igrating jobs by considering both the CPU and memory resources of

the d u s te r, the load sharing policy using rem ote executions is particularly beneficial

to data-intensive workloads where most jobs are m igratable, and where each job fits

in a memory space of a single workstation. The requirem ent of network speed by

the rcmote-execution-bascd load sharing scheme is not as high as the network RAM.

However, if the memory allocation of a job docs not fit in any single w orkstation in the

cluster, the additional memory requirement has to be satisfied by local disks, causing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3. Load Sharing for Global Memory System Management 82

Som* Job* are Non-migratabte in All Tracts

t

2

01

U 3 f

>

V ,

|7

100Mbps Ouaiar of S Workstations

All Jobs art Migratable in All Tracts

j
— B BASE

slb.be
_ □ Net.RAM

□ LS.Net.RAM

■

M :i
I . .
t
><

»v»(raaZ

100Mbps ClutMr «f € WortuMtions

Figure 3.9: The average execution times per job of all the 8 traces (the left figure for the 8 traces
where some jobs are non-migratable. and the right figure for the 8 traces where all the jobs are
migratable), running on a 100 Mbps cluster of 6 workstations.

longer execution time.

• The improved load sharing scheme overcomes the lim its and combines the advantages

of the both schemes. We have shown that this scheme is effective for scalable cluster

computing.

The impact of the 4 schemes ("Base". “Net.RAM"’. "LS_RE“ . and "LS.N et.R A M ") on

conditions/requirem ents of clusters and workloads such as CPU sharing, memory sharing,

non-migratable jobs, network usage demand, and network speed dem and, are summarized

in Table 3.2. In the table, the relationship between a scheme and each type of system and

workload condition/requirem ent is represented by symbol “+ " (beneficial). "+ + " (highly

beneficial), and " (non-beneficial). A blank represents m inor or no effects.

Memory allocations of jobs are generated by a Pareto d istribu tion in the experiments

presented in this subsection. We have also run the sim ulations on the workloads with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3. Load Sharing for Global Memory System Management 83

Base Net .RAM LS.RE LS_Nct_RAM
CPU sharing - - + +

memory sharing - -t—t- + + +
non-m igratable jobs + + - +

lightly loaded cluster + + +
heavily loaded cluster - + + + + +
large individual jobs - + + + + +

network speed demand high m oderate m oderate
network usage demand high m oderate m oderate

Table 3.2: Summary of the 4 schemes and their impact on different system and workload condi
tions/requirements.

different memory demand distributions, and observed consistent performance results with

th a t o f the workloads by the Pareto memory dem and distributions. The o ther d istribu tions

we have used for comparisons are uniform distribution, exponential d istribu tion , and erlang

d istribu tion .

T his study also has two limits. First, we assume that the memory requirem ent is known

in the beginning of the execution. Workloads with dynamic memory allocations may not be

accurately handled by our memory-based policies. Second, there is only one working set in

each job . Although the simulated memory access patterns in our workloads could sufficiently

show the performance impact of the memory dem and, the memory access pa tterns may not

be the same as those of some practical jobs.

In order to address these limits and to scale the trace-driven sim ulations, we have col

lected large real-world traces for experiments, and have investigated the effects of more

dynam ic memory and I/O related activities to global memory resource management, for

cluster com puting in [133].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Resource M anagem ent in Internet

Caching System s

4.1 Overview of existing caching system structures

Web caching, that is. the tem porary storage of Web objects, is an effective solution to

reduce bandw idth consumption, reduce server load, and reduce latency [128]. Much work

has been done on Web caching at different levels.

Caching can be performed on the server side to reduce the num ber of requests that the

server m ust handle. The caching issues on the server side are representatively discussed in

[10] and [93]. These m ethods aim a t improving server caching perform ance by balancing

load and reusing requested documents.

Caching can be used in the m iddle of the client and the server as part of a proxy. Proxy

caches are often located near network gateways to reduce the bandw idth required over ex

pensive dedicated Internet connections. Proxy caches can be organized in a hierarchy for

greater performance, e.g. the caching scheme in Harvest [31]. This is a very similar organi

zation to the memory hierarchy in a com puter system. Proxy caches can also cooperate to

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 85

achieve b e tte r performance. Cooperative proxy caches are discussed in papers [43]. [83]. and

[56]. [141]. They use different approaches to improve cache performance and reduce collab

orative overhead. In adaptive Web caching schemes [144], cache servers are self-organizing

and form a tight mesh of overlapping m ulticast groups and ad ap t as necessary to changing

conditions.

Caching can also be performed by the client application, and is built into most Web

browsers. Designs and im plem entations of browsers have been studied in papers [80]. [101].

[109], and [127]. The work in [142] a ttem p ts to transfer the server's functions to clients.

They aim at larger storage, more features and better performance.

Client access patterns are characterized by several research groups (see e.g. [6]. [39].

[63]. and [131]). The hit ratios to proxy caches have been observed in a decreasing trend in

practice for a few years. There are two m ajor reasons for the decrease. First, e-coinmence

and personalized services have increased the percentage of dynam ic documents. Dynamic

docum ents are usually noncachable. Many recent studies (e.g. [22]. [20], [35]. [117]) have

shown th a t requests for dynam ic Web content also contain substan tial locality for identical

requests, and have provided several m ethods to cache dynamic Web contents. Second, the

increase of proxy cache size has not been sufficient to keep up w ith the rapid increase in

the num bers and types of Web servers and clients' diverse interests. For example, paper

[6] gives a comprehensive study of the changes in Web client access patterns based on

the traces collected from the same com puting facility and the same nature of the user

population separated by three years. T heir experim ents show th a t, compared with the da ta

three years ago. the hit ratios are reduced and the most popular docum ents arc less popular

in the transfer dataset. T ha t means accesses to different types of Web servers have become

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 86

more evenly d istributed. O ne reason for this, we believe, is th a t the access variations have

increased as more and more Web servers are emerging. T he num ber and types of Web

servers have increased and will continue to increase dram atically, providing services to a

wider range of clients with more diverse interests. Thus, the num ber of unique documents

has increased and will continue to increase. It will be more difficult to retain an optim al

hit ratio by only increasing proxy cache size. Cache size enlargem ent will be expensive and

may not be cost-effective.

Therefore, in such a trend we should consider effective resource management methods

to well utilize the limited caching space.

4.2 Changes in B oth Workload and Internet Technologies

4 .2 .1 W orkload C h a n g es

4.2.1.1 TVend in N L A N R Workload

In order to further understand and confirm the changes in Web access patterns, we have

analyzed proxy access pa ttern statistics of National Lab of Applied Network Research avail

able in public dom ain [91]. T he "Status of NLANR Caches" report indicates that a lot of

system upgrade work had been done from the summ er o f 1997 to the summer of 1998.

1 In order to m aintain the fairness of comparisons, we decided to compare the caching

patterns between year 1998 and year 2000 when there were no m ajor upgrade events. We

1 All of their proxies have been upgraded. For example, the old proxy “sd" DEC alpha has been replaced
with a new Pentinum-II with 512MB RAM and 36GB of disks on July 27. 1998. Proxy “pa" has been
replaced with a Digital AlphaStation 500/500 with 512MB of RAM and 60GB of disk on October 23. 1997.
They also upgraded the software. They upgraded caches to Squid-1.1.16 on August 22.1997 and begin
running Squid-1.2.betal7 on March 20. 1998. All caches have been converted over to unicast ICP on April
2. 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 87

random ly selected days in both 1998 and 2000 to do the comparisons. Since most results

arc consistent, we only present representative com parisons of two days here.

Metrics August 17 First Wednesday of O ctober
1998 2 0 0 0 r e d u c t io n 1998 2 0 0 0 r e d u c t io n

average hit ratio 27.60% 18.40% 3 3 .3 3 % 24.50% 21.40% 12.65%
coverage of top 2 0 servers 14.02% 13.33% 4.92% 13.68% 1 2 .0 0 % 12.28%

Table 4.1: Average Hit ratio and coverage comparisons of year 1998 and 2000. where the average
hit ratio is calculated from proxy "pb". “bol". "bo2 ". “sv" and "sd". which have their statistical
reports in both years, and the coverage of top 2 0 servers is the percentage of the number of requests
to top 2 0 servers over the total number of requests.

August 17 First Wednesday of OctoOer
33

1998 ------ -
2000

1998 ------
2000

®E
a
oH
C
0

2.5

2Cl!
10
3O'9
Ot 1.5
9
9ID
otM
aot- 0.50.5 -o
a
Sc

0o
c0 5 10

Servers
15 20 0 5 10

Servers
15 209

Figure 4.1: The percentage of the requests to each of the top 20 servers over the total number of
requests versus each rank of servers.

Based on the hit ratio for each proxy, the num ber o f requests to the top 20 requested

servers, and other statistics reported in [91]. we present, com parisons of proxy access pa tte rn

changes between 1998 and 2000. Table 4.1 compares the average hit ratio per proxy and the

percentage of accesses to the top 2 0 servers over the to ta l num ber of accesses (coverage) on

August 17 and the first Wednesday of October between 1998 and 2000. We show th a t the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 88

hit ratios have decreased by 33.33% and 12.65%. respectively, and the coverage percentage

of the top 20 servers was reduced by 4.92% and 12.28%. respectively.

In Figure 4.1. we plot the percentage of the requests to each of the top 20 servers over

the to tal num ber of requests versus each server rank by sorting the num bers of accesses

to the top 20 servers in decreasing order. The tail distributions of requesting accesses and

server accesses of most traces (only one exception) in the study of [14] were reported to fit

the Zipf-like d istribu tion f l / i n . We also roughly fit the curves in Figure 4.1 into Zipf-like

distributions.

In order to estim ate the cache size requirement difference between 1998 and 2000 for a

given hit ratio, we assum e th a t the request distributions are identical to the server access

distributions, and the file size w ith the same rank in 1998 is the same as th a t in 2000. We

also assume th a t the priority of caching a docum ent is based on the docum ent popularity.

Thus, for a 20 G Byte proxy cache on August 17. 1998. in order to keep the same the hit

ratio in 2000. the cache size needs to be enlarged to 37.29 GBytes (a 8 6 % increase). A

20 GByte proxy cache on the first Wednesday of October in 1998 needs to be enlarged to

107.58 GByte (an increase of 5 times) in order to keep) the same hit ratio in 2000.

4.2.1.2 TVend in B U W orkload

Boston University collected traces from the sim ilar computing facility and user population

in 1995 and 1998. which can be found in [13]. We select the traces in a period of two

months of the two years, which are denoted as BU-95 and BU-98. respectively. We have

also analyzed the browser access pa ttern of BU traces. The difference between the total

number of requests of BU-95 trace anti that of BU-98 trace is very big. In order to make fair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching Systems 89

comparisons, we compare request ratios instead of the numbers of requests between these

two traces. We compare two sta tistical results: (1) the percentages of requests to different

servers over the total requests, and (2) the percentages of requests to different documents

over the to ta l requests, both reflecting access distributions.

BU Traces BU Traces

BU-95
BU-98 ------ :

° 0.01

100 1000

Server Ranking

3U9X
m
o

10

S o.i t
3 U
9
I

I 0.01 L
E3 Oo O
o 0-001 t
o
c»
S c g o
9
CL

■"t— ----^-n-
BU-95 -
BU-98 -

10

a-
100 1000 10000

Document Ranking

Figure 4.2: The percentage of the requests to each server or document over the total requests
versus server ranking or document ranking.

In the left figure of Figure 4.2. we plot the percentage of the requests to each server over

the to tal requests versus server ranks. The ranks are obtained by sorting the percentages

of accesses to servers in decreasing order. In the right figure of Figure 4.2. we plot the

percentage of the requests to each docum ent over the total requests versus document ranks

by sorting the percentages of accesses to docum ents in decreasing order. We have two

observations. F irst, the access d istribu tions presented in the two figures are consistent with

an observation reported in [14] — the d istribu tions of requesting accesses and server accesses

follow the Zipf-like distribution i ' l / in . Second, the accesses had been changed to be more

evenly d istribu ted during the 3 year period. Specifically, the request percentages of BU-95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 90

trace are higher than those of BU-98 for very high rank servers an d docum ents. But for

lower rank servers and documents, th e request percentages of BU-98 exceed those of BU-95.

So for the same cache size. BU-95 could get higher hit ratio than th a t BU-98. However,

the hit ratios of BU-98 can be increased in a faster pace than th a t o f BU-95 if the cache is

larger than a certain size.

This type of access pattern change dem ands progressive increase o f the cache size in order

to reta in a fixed hit ratio during a period of time. To estim ate the cache size requirement

difference between BU-95 and BU-98 for a given hit ratio, we fit th e curves in Figure 4.2

into Zipf-like distributions. We assum e th a t the file size with the sam e rank in BU-95 is the

same as th a t in BU-98. and the priority o f caching a document is based on the document

popularity. From the fit Zipf-like d is tribu tion curves, we estim ate th a t a 12.7 times larger

cache is needed for BU-98 to achieve a given hit ratio in BU-95. (In fact, we obtained a

num ber o f 10 that is smaller than 12.7 from simulation results. T his is because the average

docum ent size in BU-98 is smaller th a n th a t in BU-95.)

Both workloads show the same tren d . T he assumptions and num bers may not be directly

used to guide the proxy cache design, bu t we attem pt to show the trends of decreasing

hit ratios in proxies and the d iversity of the Web contents. We envision th a t the access

d istribu tion is becoming more evenly d istribu ted . Thus, in order to reta in the proxy cache

hit ratios, we have to enlarge the cache size as time passes. However, the proxy cache size

enlargem ent will be no longer sufficient. Therefore, we should consider a lternative methods

to effectively utilize the limited caching space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 91

4 .2 .2 T ech n ology C h a n g es

A browser cache was initially developed as a small da ta buffer w ith a few simple data

m anipulation operations. Users may not effectively retain the cached da ta w ith a high

quality of spatial and tem poral locality.

There are two types of browser caches: persistent and non-persistent. A persistent

cache retains the cached docum ent unless a user manually deletes it. A non-persistent

cache deallocates the cached docum ent when a user quits the browser. Persistent caches

are commonly used in alm ost all the commercial browsers, such as AOL. Communicator.

Internet Explorer, and Netscape browsers.

Current technologies have improved browsers in the following three areas. First, browsers

provide a function for users to set the browser cache size. W ith the rapid increase of memory

and disk capacity in w orkstations and PCs. and with the rapid growth of Web applications,

user browser cache size will tend to increase as time passes. In addition, several new soft

ware techniques are introduced for users to effectively increase the browser cache size. For

example, "browser cache switch" [49]. allows users to set m ultiple browser caches in one

machine, and to switch them from one to another during Web browsing. Thus, different

caches can be used for different contents and for different tim e periods. This technique

significantly increases the size of a browser cache for an effective m anagem ent of multiple

d a ta types. However, the larger the browser cache size is set. the more spatial locality will

be neglected by the proxy cache server.

Secondly, in order to help Web users to effectively use and m anage large browser cache

data , browser software has boon upgraded to include several sophisticated database func-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 92

tions. such as file searching, folding, and grouping. W ith the aid of these functions, users

will pay more atten tion to the organized browser cache d a ta objects, and tend to keep them

in the cache much longer than to keep the unorganized d a ta objects. However, the longer

the cached d a ta is retained, the more temporal browser cache locality will be neglected bv

a proxy cache server.

Thirdly, in order to improve the browsing speed, a large m em ory drive can be configured

to store the entire browser cache. This technique of "browser cache in memory", has been

implemented in several commercial browsers, such as In ternet Explore and Netscape. This

technique can be further extended to periodically save the cached da ta objects in a special

directory in the disk. T he d a ta will be brought back from the disk to the special memory

drive whenever the system is restarted or rebooted. Several studies (see e.g. [44], [93].

and [135]) have shown th a t transferring data through a m oderate speed network will be

significantly faster than obtain ing the same amount of d a ta from a local disk through page

faults. The high speed m em ory access is not only beneficial to a local user, but also speeds

up d a ta accesses for rem ote users to share browser caches.

Therefore, the browsers are becoming more powerful and the more powerful resources

are not fully utilized.

4.3 Overview o f the Limits on Existing Caching System Struc

tures

The configuration of a proxy-browser system is a comm only used infrastructure for Web

caching, where a group of networked clients connects to a proxy cache server and each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource Management in Internet Caching System s 93

client has a browser cache. A standard Web caching model built on a proxy-browser system

has the following da ta flows. Upon a Web request of a client, the browser first checks if

the requested docum ent exists in the local browser cache. If so. the request will be served

by its own browser cache. Otherwise the request will be sent to the proxy cache. If the

requested docum ent is not found in the proxy cache, the proxy server will imm ediately send

the request to its cooperative caches, if any. or to an upper level proxy cache, or to the Web

server, w ithout considering if the document exists in o ther browsers' caches.

This model has two features th a t prevent it from effectively utilizing the rapid improve

ment in Internet technologies and from adapting in a timely m anner the changes of the

supply and dem and of Web contents. First, with a significant increase of memory and disk

capacity in workstations and PCs. and with the fine improvement of Web browser caching

capability, users are able to enlarge browser cache size for more frequent accesses to cached

documents and to retain the docum ents in an organized m anner for a longer period o f time.

Furtherm ore, there exist some documents which are already replaced in the proxy cache

but still retained in one or more browser caches, because the request rates to the proxy and

to browsers are different, causing the replacement in the proxy and browsers at a different

pace. However, the browser caches are not shared am ong the browsers and the available

locality in browsers is neglected in Web proxy caching. W hen a requested document misses

in a local browser cache and the proxy cache, it may have been cached in other browser

caches. Second, with the rapid increase of Web servers and the huge growth of Web client

populations in both numbers and types, the requested Web contents have become, and will

continue to be, more diverse, causing a decrease of proxy hit ratios and an increase in the

am ount of docum ent duplications among the proxy cache and the browser caches. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4. Resource M anagement in Internet Caching Systems 94

two limits prevent clients from effectively utilizing the increasingly lim ited caching space.

We will focus on the resource m anagement of a proxy-browser system to address the

lim its of existing caching system s, aiming a t adapting the changes of bo th workload ami

technologies (e.g. peer-to-peer). C hapter 5 presents how we address the neglected locality in

browsers using the peer-to -peer model. C hap ter 6 presents how we address the duplications

among the proxy cache a n d browser caches. C hapter 7 handles the new problem s caused

by sharing browser caches. C hap ter 8 presents a prototype im plem entation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Locality and Information Sharing

among Browsers

We will first address the first limit in current proxy-browser system, the neglected locality

in browsers. We believe there are three practical reasons for a proxy server to exclude the

consideration of neglected locality in browsers. F irs t, the browser caches are not shared

for software sim plicity and user privacy reasons: and the dynamic s ta tu s in each cache

is unknown to the proxy server. Second, the possibility of a proxy cache miss that is a

browser cache hit may have been considered low. although no such a study has been found

in literature. Finally, a browser cache was initially developed as a small d a ta buffer with a

few simple d a ta m anipulation operations. Users m ay not effectively retain the cached data

with a high quality of spatial and tem poral locality. But changes in workload and tech

nology show th a t potential benefit gain in caching perform ance by exploiting the neglected

locality is increasing. The quality of spatial and tem poral locality in browser caches has

been and will continue to be improved, inevitably providing a rich and commonly sharable

P2P storage among trusted Internet peers. In th is study, we introduce a P2P technique

to fully utilize browser caches, called "browsers-aware proxy server". C onducting trace-

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 96

driven sim ulations, we quantitatively evaluate its potential benefits for fu rther improving

proxy caching performance. O ur effort shares the same objective of building effective P2P

infrastructure th a t lets users easily and reliably share files and processing power over the

Internet.

5.1 Browsers-Aware Proxy Server

In the design of the browsers-aware proxy server, the proxy server connecting to a group

of networked clients maintains an index file of d a ta objects of all clients’ browser caches.

If a user request misses in its local browser cache and the proxy cache, the browsers-aware

proxy server will search an index file a ttem p ting to find it in a client’s browser cache before

sending the request to an upper level server. If such a hit is found in a client, we propose

two alternative implementations to let the requesting client access the d a ta object. First,

the proxy server will inform this client to directly forward the data object to the requesting

client. In order to retain user browsers’ privacy, the message passing from the source client

to the requesting client should be anonymous to each other. The second im plem entation

alternative is to make the proxy server provide the d a ta by loading the d a ta object from

the source client and then storing it to the requesting client.

In order to implement the browsers-aware concept in a proxy server, we create a browser

index file in the proxy server. This index file records a directory of cached file objects in

each client machine. Each item of the index file includes the ID number of a client machine,

the URL including the full path name of the cached file object, and. if any. a tim e stam p of

the file or the T T L (Time To Live) provided by the d a ta source. Since the dynam ic changes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 97

in browser caches are only partially visible to the proxy server (when a file object is sent

from the proxy cache to the browser), the browser index file will be updated periodically

by each browser cache. Here is another alternative. After a file object is sent from the

proxy server to a client's browser cache, its index item is added to the browser index file.

W henever this file object is replaced or deleted from the browser cache, the client sends an

invalidation message to the proxy server. After tha t, the proxy deletes the corresponding

index item.

Figure 5.1 presents the organization of the browsers-aware proxy server by an example.

A group of client machines is connected by a local area network. For a given Web service

request with a specific URL in client machine i. the browser cache is first searched a ttem p t

ing to satisfy the request. After the request misses in the browser cache, client i sends the

request to the proxy server, where the proxy cache is searched for the same purpose. After

the request misses again in the proxy cache, the browser index file is searched, where the

URL is matched in client machine j . The proxy server informs client machine j to forward

the cached file object to client t. or fetches the cached object from machine j and then

forwards it to client i.

5.2 Simulation Environment

The browsers-aware proxy server and related performance issues are evaluated by trace-

driven simulations. The evaluation environm ent consists of different Web traces, simulated

clustered client machines, and a proxy server having aware or unaware browser caches. We

will discuss the selected Web traces and our sim ulation model in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 98

Proxy
Server proxy

cache proxy
| miss

browser
index

browser
miss

browser
index hit

browser
cache forward requested docum ent:

or load/store by the proxy server

client i Client j client nclient /

LAN

Figure 5.1: Organizations of the browsers-aware proxy server.

5 .2 .1 Traces

Table 5.1 lists the Web traces we have used for performance evaluation, where "Inf. Cache"

denotes infinite cache size th a t is the total size storing all the unique requested documents,

and "Max HR" and "Max BHR" denote maximal hit ratio and maximal byte hit ration,

respectively.

1. NLANR traces: NLANR (N ational Lab of Applied Network Research) provides san

itized cache access logs for the past, seven days in the public domain [91]. NLANR

takes special steps to pro tec t the privacy of those participa ting in their cache mesh.

Client IP addresses are random ized from day-to-day. b u t consistent within a single log

file. Client IP addresses are very important in our study, so we use traces based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 99

one day's log file. NLANR provides about ten proxies' traces. We have used one day’s

trace of July 14. 2000 from the “uc" proxy and one day s trace of August 29. 2000

from the “b o l“ proxy and "pa" proxy, which a re denoted as NLANR-uc. N LANR-bol

and NLANR-pa.

2. Boeing traces: The Boeing Company collected anonymized logs from Boeing's Puget

Sound perim eter (firewall) proxies by using an anonym izer tool (log2anon) and made

these logs available in [12]. For privacy reasons, client IP addresses are not identical

between two different days, so we use traces based on one day's log file. We have used

one day’s trace on M arch 4. 1999. and one day s trace on March 5. 1999. which are

the most recent traces in this site and denoted as Boeing-4 and Boeing-5.

3. BU traces: Boston University collected traces from the similar computing facility and

user population in 1995 and 1998. which can be found in [13]. We select the traces

in a period of two m onths of the two years, which are denoted as BU-95 and BU-98.

respectively.

4. CA*nctII traces: The CA *netII (C anada's coast to coast broadband research network)

parent cache provides sanitized log files in [16]. The client IDs are consistent from

day to day. so we concatenate two days' logs together as our trace. The two logs we

used are the traces collected on September 19. 1999 and September 2 0 . 1999. which

are the most recent traces in this site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 100

Traces Period # Requests Total GB Inf. Cache # Clients Max HR Max BHR
NLANR-uc 7/14/00 360806 4.36 3.72 GB 95 19.11% 14.80%

NLANR-bol 8/29/00 263942 1.71 1.22 GB 115 21.32% 28.79%
NLANR-pa 8/29/00 310939 2.52 1.85 GB 145 22.78% 26.71%

Boeing-4 3/4 /99 219951 7.54 6.21 GB 3996 44.91% 17.69%
Boeing-5 3/5 /99 184476 7.00 5.50 GB 3659 45.07% 21.63%

BU-95 Jan.95-Feb.95 502424 131 0.90 GB 591 64.14% 31.37%
BU-98 Apr.98-May 98 72626 0.45 0.29 GB 306 40.62% 35.94 %

CA*nctII 9 /19-/9 /20 /99 745943 0.089 0.062 GB 3 34.20% 29.84%

Table 5.1: Selected Web Traces.

5 .2 .2 A b ro w sers-p ro x y ca ch in g en v iro n m en t

Wo have built a sim ulator to construct a system with a group of clustered clients connecting

to a proxy server. The cache replacement algorithm used in our sim ulator is LRU. Wo do

not simulate document aging. However, all the traces have the size of a docum ent for

each request. If a user request hits on a document whose size has been changed, we count

it as a cache miss. We have implem ented and com pared the following five Web caching

organizations using the trace-driven simulations:

1 . Proxy-cache-only: Each client does not have a browser cache. Every client request is

sent directly to the proxy cache server.

2 . Local-browser-cache-only: Each client has a private browser cache, but there is no

proxy cache server for client machines.

3. Global-browsers-cache-only: Each client has a browser cache that is globally shared

among all the clients by m aintaining an index file in each client machine. T he index

file records a directory of cache documents of all clients. A browser does not cache

documents fetched from another browser cache. If a request is a miss in its local

browser, the client will check the index file to see if the requested file is stored in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 101

other browser caches before sending the request to a Web server. T here is no proxy

cache server for the group of client machines.

4. Proxy-and-local-browser: Each client has a private browser cache, and there is a proxy

cache server for the group of client machines. If a request misses in its local browser,

it will be sent to the proxy to check if the requested document is cached there. If it

misses again, the proxy will send the request to an upper level server.

5. browsers-aware-proxy-semer. This is the enhanced proxy caching technique presented

in section 5.1.

We have validated our sim ulator motivated by the m ethod in [39]. We sim ulated each

NLANR trace with an infinite proxy cache size, which is the to ta l size storing all the unique

requested docum ents. We compared the simulated and actual daily hit ratios in the public

dom ain [91]. The reason we use an infinite cache size for comparisons is as follows. All

the proxies of NLANR allocate about 16 GB of the disk for caching. But. for privacy and

protection reasons, we are only able to use one day's log file, whose total requested document

size is less than 16 GB. O ur experim ents show that the average hit ratio difference is about

6 % for six NLANR traces. In the actual daily statistics of NLANR traces, some of today’s

requests hit the docum ents cached ''yesterday" The sim ulation docs not reflect this small

num ber of special hits. This is a major reason for the 6 % error. We also validated our

sim ulator by com paring the hit ratios and byte hit ratios of above schemes 4 and 5 with

infinite cache proxy cache and browser cache. They all jo in to the same point.

We use two perform ance metrics. Hit ratio is the ratio between the num ber of requests

th a t hit in browser caches or in the proxy cache and the to ta l number of requests. Byte hit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 102

ratio is the ratio between the number of bytes th a t hit in browser caches or in the proxy

cache and the to ta l num ber of bytes requested.

5.3 Performance Evaluation

Before presenting performance results, we will first look into a browser and proxy cache

size related issue to provide a basis and a rationale for us to configure our sim ulated Web

caching system.

5.3.1 S ize s o f b ro w ser and proxy c a ch es

Rousskov and Soloviev [105] have studied seven Squid proxies covering several levels of the

caching hierarchy from leaf university proxies, to top level proxies for large country-wide

networks, and to the international root proxy located at NLANR. Three of them are leaf

proxies which are related to our study: m u from Netherlands, uit from Norway, and ad fa

from Australia. T heir proxy cache related configurations are listed in the second to fourth

columns of Table 5.2. Squid uses a two level cache. The first level is a small and hot memory

in which very popular and recently requested docum ents are kept. The second level is a

disk cache where th e m ajority of documents reside. The second and th ird columns in Table

5.2 are the sizes of the hot memory and disk caches. The last two columns arc the average

proxy cache size in hot memory per client and the average proxy cache size in disk per client.

We assume each client's browser has a cache. If we use the average proxy cache size per

client in Table 5.2 as the browser cache size of each client, the memory space ranging from

0.04 MB to 0.08 MB is certainly too small, and the total cache size ranging from 7.34 MB

to 10.86 MB is also not large enough in practice for today's computer systems. Therefore.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 103

Proxies hot memory disk cache # clients m em ory cach e/clien t disk cache/client
run 32MB 5.6GB 518 0.0618MB 10.8MB
uit 32MB 3.8GB 378 0.0847MB 10.1MB

adfa 32MB 5.8GB 798 0.0401MB 7.3MB

T able 5.2: Representative proxy cache configurations reported in [105].

in our study we define a m inim um browser cache size as

M in(C achebrowser) = ^ achePTnzy (5.1)
m

where Cache browser *s the size of a client browser cache, m is the num ber of clients, and

Cacheproxy is the size of the proxy cache responsible for the m clients. We also conservatively

define an average browser cache size as —r/“ i'r,l'ri' .

Averagc(Cachcbrowser) = - - -ncflCproTy (5 2)
m

where 0 is in a range of 2 to 10. Since the accumulated browser cache size increases faster

than the increase of the proxy cache size, the value of 0 tends to increase if both clients

and the proxy server are upgraded as tim e passes.

5 .3 .2 H ow m u ch is b row ser ca ch e d a ta sharable?

To answer this question, we have operated the five caching policies with different traces on

a simulated Web caching environm ent where the browser cache size of each client is set to

minimum by (5.1). Performance results of all the traces we have used are quite consistent.

We only representatively present the results of hit ratios and byte ratios from the NLANR-

uc trace in Figure 5.2. where the size of the proxy cache is scaled from 0.5%. 5%. 10%. and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 104

to 2 0 % of the infinite proxy cache size, the browser cache size is also scaled up accordingly

by (5.1).

NLANR-uc Trace NLANR-uc T race
20

15

10

Proxy-cactie-only — -
Locat-browser-cacne-only —

Proxy-anfl-loca (-browser «
Glotal-browsers-cact>e-only -3

Browsers-aware-proxy-server
Maximal h i ratio

5

0
0 5 10 15 20

14

12

100

O
0
I

8

I Proxy-cacne-onty-- - - - -
Local-browser-cactie-oniy ---«—

Proxy-anb-locat-browser
Glooal-browsers-cacne-cniy

Browsers-aware-proxy-server
Maximal byte h i ratio

• 6

4

2

0
0 5 10 15 20

Relative Cache Sire (% Infinite Cache Size) Relative Cache Size (% Infinite C ache Size)

Figure 5.2: The hit ratios and byte hit ratios of the five caching policies using NLANR-uc trace,
where the browser cache size is set minimum.

Figure 5.2 shows th a t the hit ratios (left) and byte hit ratios (right) of the browsers-

aware-proxy-server are the highest, particularly, the h it ratios arc up to 5.94% higher and

the byte hit ratios are 9.34% higher than those of the proxy-and-local-browser. even when

the browser cache size is set to minimum. This means th a t sharable data locality does exist,

even for a small browser cache size. The sharable d a ta locality proportionally increases as

browser cache size increases and as the num ber of unique file objects cached in browsers

increases, bo th of which are the trends in Web com puting. In next subsection, we will show

that significant proxy cache performance improvement can be achieved by the proposed

browsers-aware proxy server to exploit sharable d a ta locality.

We also show th a t methods of proxy-cache-only, local-browser-cache-only, and global-

browsers-c.ache-only are not as effective as the m ethod of proxy-and-local-browser. Local-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 105

browser-cache-only had the lowest hit and byte hit ratios due to the minimum caching

space, proxy-and-local-browser only slightly outperform s proxy-cache-only, which implies

th a t performance gain from a local browser cache is limited. Another observation worth

mentioning is th a t proxy-and-local-browser and ylobal-browsers-cache-only had lower hit and

byte hit ratios than browsers-aware-proxy-server. This observation confirms the existence

of two types of misses. First, there exist some docum ents that are already replaced in the

proxy cache but still retained in one or more browser caches, because the request rates to

the proxy and to browsers are different, causing the replacement in the proxy and browsers

a t a different pace. Second, there are some docum ents th a t are already replaced in browser

caches but still retained in the proxy cache, because a browser cache is much sm aller than

the proxy cache. T he browsers-aware-proxy-server effectively addresses these two types of

misses.

Figure 5.3 presents the breakdowns of the hit ratios and the byte hit ratios of the

browsers-aware-proxy-server using NLANR-uc trace. There are three types of hits: hits in

the local browser cache, hits in the proxy cache, and hits in remote browser caches. We

show th a t the hit ra tio and byte hit ratio in rem ote browser caches should not be neglected

even when the browser cache size is very small.

The browsers-aware-proxy-server has another advantage over the proxy-and-local-browser

policy in terms of •‘memory" byte hit ratios. In o ther words, for the same byte h it ratio, a

higher percentage of requests will hit in the main memory of browser caches and the proxy

cache provided by the browsers-aware-proxy-server. To quantitatively justify this claim , we

have compared the memory byte hit ratios of the two policies for an equivalent byte hit

ratio.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 106

NLANR-uc Trace Hit Ratio Breakdowns NLANR-uc Trace Byte Hit Ratio Breakdowns

£ .10 -

□mnoiMmwMfs
•proxy

□refflote-PKNrsers

■proxy

Relative Caoie Size l \ infante Cacne Sizel

■KxaHxowsei x 6 ikx^O fow sef

>
O 4 •

0.50% 5% 10% 20%

Relative Cacne Size (% imm e Cacne size)

Figure 5.3: The breakdowns of the hit ratios and bvte hit ratios o f the browsers-aware proxy using
NLANR-uc trace, where the browser cache size is set minimum.

In our simulation, we set the memory cache size in the proxy as 1/150 of the proxy

cache size based on the memory ratio reported in Table 5.2. We also set the memory size

of a browser cache as 1/150 of the browser cache size, which is not in favor of the browsers-

aware-proxy-server because the memory cache portion in a browser can be much larger than

that for the proxy cache in practice. We also conservatively assume that one memory access

of one cache block of 16 Bytes spends 200 n.s (the memory access time is lower than th is in

many advanced workstations), and one disk access of one page of 4 KBytes is 10 m s.

Figure 5.2 shows th a t the h it and byte hit ratios of the browsers-aware-proxy-server at

5% of the infinite cache size are very close to those of the proxy-and-local-browser policy at

10% of the infinite cache size (the hit ratio comparison is 15.3 v.s. 15.7. and byte hit ratio

comparison is 13.06 v.s. 12.91). However, the memory byte hit ratios of the two schemes

are quite different under the same condition, which are 3.5% for the browsers-aware-proxy-

server. and 1.9% for the proxy-and-local-browser policy, respectively. The larger memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 107

byte hit ratio of the browsers-aware-proxy-server in this case would reduce 15.2% of the

to ta l hit latency com pared w ith the proxy-and-local-browser. T he latency reduction due to

the higher percentage m em ory accesses will be larger in practice because the memory cache

size of each browser is m uch larger than the assumed size.

5 .3 .3 P er fo rm a n ce o f b row sers-aw are p roxy server

We have evaluated and com pared the performance of the browsers-aware-proxy-server and

proxy-and-local-browser schemes using the NLANR-bol trace and two BU traces. For ex

perim ents of each trace, the proxy cache size is set to 0.5%. 5%. 10%. and 20% of the infinite

proxy cache size. Accordingly, each browser cache is also set to 0.5%. 5%. 10%. and 20% of

the average infinite browser cache size calculated from all the browsers. The infinite cache

size of a browser is the to ta l size of all uniquely requested docum ents in this client. For

example, if the proxy cache is set to 0.5% of the infinite proxy cache, all browsers' caches

will also be set to 0.5% of the average size of the infinite browser size of all browsers. The

value of /i calculated from each trace falls into the average range o f 2 to 1 0 .

Figures 5.4 - 5.10 present the hit ratios (left) and byte hit ratios (right) of the two policies

on NLANR-uc trace. N LA N R -bol trace. NLANR-pa trace. Boeing-4 trace. Boeing-5 trace.

BU-95 trace, and the BU-98 trace, respectively. Compared w ith th e proxy-and-local-browser

scheme, browsers-aware-proxy-server consistently and significantly increases both hit ratios

and byte hit ratios on all the traces.

T he lim it o f the B row sers-A w are Proxy Server

W hen the number of clients is small, and their accum ulated size of the browser caches

is much smaller or not com parable to the proxy cache size, the cache locality inherent in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 108

NLANR-uc T race NLANR-uc T race
20

15

10

5 proxy & Brow ser------
browser-aware — «—

Max. hit ram

0
0 5 10 15 20

14

12

10

8

6

proxy & Browser -
Browser-aware -

Max hit ratio

4

2

0
5 10 15 200

Relative Cache Size (% Infinite Cache Sizei Relative Cache Size (“i Infinite C ache Size)

Figure 5.4: T he hit rates and byte hit rates of the browsers-aware-proxy-serrer and proxy-and-
local-browser schem e using NLANR-uc trace, where the browser cache size is set average.

browsers is low. so the performance gain from the browsers-aware proxy cache will also be

insignificant. Figure 5.11 presents such an example, where the total num ber of clients of

the CA *netII trace is only 3. the accumulated size of th ree browser caches is small. The

increases of bo th average hit ratio and byte hit ratio of th is trace by the browsers-nwarc-

proxy-cache are below 1%. compared with the proxy-and-local-browser scheme.

5 .3 .4 P er fo rm a n ce Im p a ct o f S ca lin g th e N u m b e r o f C lien ts

We have also evaluated the effects of scaling the num ber of clients to browsers-aware proxy

servers. For each trace, we observe its hit ratio (or byte hit ratio) increment changes by

increasing the num ber of clients from 25%. to 50%. to 75%. and to 100% of the to ta l num ber

of clients. We also regard each percentage as a relative num ber of clients. For all relative

num bers of clients of each trace, the proxy cache size is fixed to 1 0 % of the infinite proxy

cache size when the relative number of clients is 100%. T he byte hit ratio increm ent or the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality arid Information Sharing among Browsers 109

NLANR-bol Trace NLANR-ool Trace

20 ■

?
o
a

I

Proxy-and-local-browser —
Browsers-aware-proxy-server —«•

Maxrnal hit ratio

0 5 1510 20

30

25

20

15

10
Proxy-and-local-browser —

Browsers-aware-proxy-server ---<
Maxxnal byte hit ratio5

0
0 5 1510 20

Relative Cache Size (% Infinite Cache Size) Relative Cache Size (S Infinite Cache Size)

Figure 5.5: The hit rates and byte hit rates o f the browsers-aware-proxy-server and proxy-and-
local-browser scheme using N L A N R -bol trace, where the browser cache size is set average.

hit ratio increment of the browsers-aware proxy server for a given trace is defined as

(Injte) hit ra tio o f browse-aware — (byte) h it ratio o f proxxj-and-local-browscr
(byte) h it ratio ofproxy-and4ocal-brm vscr

Figure 5.12 presents the hit ratio increment curves (left figure) and the byte hit ratio

increment curves (right figure) of the three traces as the relative num ber of clients changes

from 25% to 100%. O ur trace-driven sim ulation results show th a t both hit ratio increment

and byte hit ratio increment of the browsers-aware proxy server proportionally increases as

the num ber of clients increases. For some traces, the increments are significant. For example,

the hit ratio increment of BU-98 trace increases from 10.70%) to 13.35%). to 16.87%. and to

19.35%. as the relative number of clients increases from 25% to 50%. to 75%. and to 100%.

respectively. The byte hit ratio increment of BU-95 trace increases from 4.33% to 20.17%.

to 24.82%. and to 28.08%.

The performance results indicate that a browsers-aware proxy server is performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 110

NLANR-pa Trace NLANR-pa Trace

25

20

15

10

proxy 4 browser — —
browser-aware ---«—

Max hit ratio
5

0
0 205 10 15

30

25

20

15

10
proxy 4 browser —

browser-aware
Max. hit ratio5

0
15 200 5 10

Relative Cache Size (% Infinite Cache Size) Relative Cache Size (% infinite Cache Size)

Figure 5.6: The hit rates and byte hit rates of the browsers-aware-proxy-server and proxy-and-
local-browser schem e using NLANR-pa trace, where the browser cache size is set average.

beneficial to client c luster scalability because it exploits more browser locality and utilizes

more memory space as the number of clients increases.

5.4 Overhead Estim ation

The additional overhead of the browsers-aware proxy cache comes from the da ta transferring

time for the hits in rem ote browsers. The sim ulator estim ates the d a ta transferring time

based on the num ber of remote browser hits and their da ta sizes on a 10 Mbps Ethernet.

The browser access contention is handled as follows. If multiple requests hit documents

in a remote browser simultaneously, the bus will transfer the hit docum ents one by one in

the FIFO order distinguished by each request’s arrival time. Our experim ents using the

ping facility show th a t the startup tim e of da ta communications am ong the clients in our

local area university network is less than 0.01 second. Setting 0 .0 1 second as the network

connection time, we show that the am ounts of d a ta transferring tim e and the bus contention

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5. Locality and Information Sharing among Browsers 111

Boemg-4 Trace Boemg-4 Trace

= 20

10 - proxy 4 b ro w se r ------
Browser-aware

Max. nit ratio

0 5 10 15 20

20

15

10

proxy 4 browser — —
browser-aware

Max. hit ratio

5

0
200 5 10 15

Relative Cache Size (% Infinite Cache Size) Relative Cache Size (°i Infinite Cache Size)

F ig u re 5.7: T he hit rates and byte hit rates of the brow.scrs- aware-proxy-scri'rr and proxy-and-
local-browser schem e using Boeing-4 trace, where the browser cache size is set avcraye.

tim e spent for communication am ong browser caches of the browsers-aware proxy server on

all th e traces is very low. For exam ple, the largest accum ulated comm unication and network

contention portion out of the to tal workload service tim e for all the traces is less than 1.25%.

In addition , the contention time only contributes up to 0.12% of the to ta l communication

tim e, which implies that the hrowsers-aware proxy server docs not cause bursty hits to

rem ote browser caches.

A nother potential overhead is the update of the browser index file if the update is not

conducted at a suitable time or conducted too frequently. There have been some solutions

to address this concern. For exam ple, the browser could send its update information when

the p a th between the browser and the proxy' is free to avoid contention. The study in [43]

shows th a t the update of URL indices among cooperative caches can be delayed until a

fixed percentage of cached docum ents are new. The delay threshold of 1% to 10% (which

corresponds to an update frequency of roughly every 5 m inutes to an hour in their exper-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5. Locality and Information Sharing among Browsers 112

Boang-5 Trace Boeng-5 Trace

= 20 ■

proxy 4 browser —
browser-aware-pb — >

Max. hit ratio

0 5 10 15 20

25

20

15

10
>•

proxy 4 browser —
browser-aware —

Max. hit ratio
5

0
0 5 10 15 20

Relative Cache Size (% Infinite Cache Size] Relative Cache Size (% Infinite Cache Size)

F igure 5.8: The hit rates and byte hit rates of the browsers-aware-proxy-server and proxy-and-
local-browser schem e using Boeing-5 trace, where the browser cache size is set average.

intents) results in a tolerable degradation of the cache hit ratios. In their experiments,

the degradation is between 0.02% to 1.7% for the 1% choice. O ur concerns should be less

serious because the updates are only conducted between browsers and the proxy without

broadcasting. Thus, the index file update overhead between browsers and proxy is very low.

The last potential concern is the space requirement of the proxy cache to store the

browser index. We address this concern by an example. Each URL is represented by

a 16-byte MD5 signature [8 8]. Assume there are 1000 clients connected to one proxy.

Each client has a browser w ith a SMB cache. We assume that an average document size

is 8 KB. Each browser has about 1 K Web pages. The proxy server only needs about.

1 0 0 0 x (8 M B / 8 K B) x 16 = 16AfZ? to store the whole browser index file for the 1 0 0 0

browsers. If wo apply the compression m ethods presented in [43] or [89], the browsers-

aware proxy server requires even less space to store the index file. (e.g. a storage of 2 MB

is sufficient for the 1 0 0 0 browsers with a tolerant inaccuracy).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 113

BU-95 Trace BU-95 Trace
40

35

30

25

20

15

10
Proxy-and-local-browser —

Browsers-aware-proxy-server — '
Maximal byte hit ratio5

0
0 5 10 15 20

^ 50 -

Proxy-and-local-browser —
Browsers-aware-proxy-server — '

Maximal hit ratio

0 205 10 15
Relative Proxy Cache Size (% infinite cacne size) Relative Proxy Cache Size (% infinite cacne size)

F igure 5.9: The hit rates and byte hit rates of the browsers-aware-proxy-server and the proxy-and-
local-browser scheme using the BU-95 trace, where the browser cache size is set average.

We can also take advantage of a Bloom filter that is used to keep URL indices of

cooperative caches in [43]. Assume that there are 1000 clients connected to one proxy.

Each client has a browser in which has a 8 MB cache. Similar to [43]. we also assume that

an average document size is 8 KB. Each browser has about IK Web pages. The Bloom filter

needs 2KB to represent IK pages of each browser. The proxy needs only about 2000KB ~

2MB to store the whole browser index file.

5.5 Chapter Conclusion

We have proposed and evaluated a browsers-aware proxy server to provide a distributed P2P

Web docum ent sharing service. We have also quantitatively answered two questions: how

much browser da ta is sharable? and how much proxy caching performance improvement

can we gain by this P2P approach? Could the browsers-aware proxy server be scalable and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 114

BU-98 Trace BU-98 Trace

0
5
II
1

50

45

40

35

30

25

20

15
Proxy-and-loeaW>rowser — —

Browsers-aware-proxy-server
Maximal hit ratio

10

5

0
0 5 10 15 20

Proxy-and-local-Urowser -
Browsers-aware-proxy-server -

Maximal byte hit rain

0 5 10 15 20
Relative Proxy Cache Size (% infinite cache size) Relative Proxy Cache Size (% infinite cache size)

F igure 5.10: The hit rates and byte hit rates of the browsers-aware-proxy-server and the proxy-
and-local-browser scheme using the BU-98 trace, where the browser cache size is set average.

reliable? O ur study shows that the am ount of sharable d a ta is significant and shou ld be

utilized and the proxy caching performance can be significantly improved by the proposed

browsers-aware s truc tu re that is scalable and reliable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5. Locality and Information Sharing among Browsers 115

CA'nedl Trace CA’nedl Trace
40

35

30

I 25
0
S 20 z
I 15

10

5

0

Proxy-and-local-browser — -
Browsers-aware-proxy-server — « -

Maximal hit ra te

5 10 15
Relative Cache Size (% Infinite Cache Size)

20

a
tr

35

30

25

20

15

Proxy-and-local-browser
Browsers-aware-proxy-server

Maximal byte hit ratio

10

5

0
50 10 15 20

Relative Cache Size (“i Infinite Cache Size)

F igure 5.11: The hit ratios and byte hit ratios of the browsers-aware-proxy-server and proxy-and-
local-browser scheme using the CA*netII trace.

Hit Ratio Increment vs Number of Clients Byte Hit Ratio Increment vs Number of Clients

ca
E
5u
c

0
a
tr

20

15

10

NLANR-bol —
BU-95 ---«-
BU-98 «

5

0
20 30 40 50 60 70 80 90 100

ca
E
so
c
o
a
tr

X
os.m

30

20 NLANR-bol —
BU-95 --»•
BU-98 «

15

10

5

0
20 30 40 50 60 70 80 90 100

Relative Number of Clients (% Total Number of Clients) Relative Number of Clients (% Total Number of Clients)

F igure 5.12: The hit ratio and byte hit ratio increments of the browsers-aware-proxy-server over
the proxy-and-local-browser.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Reducing D uplications in a Proxy

and Its Browsers

6.1 Background and R elated Work

This chapter focuses on addressing the second limit in current proxy-browser system, the

duplications among the proxy cache and the browser caches. The amount, of docum ent du

plication between the proxy and browser caches is generally very large because the requested

docum ent is cached in both the proxy and a requesting client browser in most cases. It is

also highly possible to generate a large am ount of document duplication among browsers for

two reasons. First, multiple clients request some popular documents cached in the proxy.

Each requesting client will duplicate these docum ents in its local browser cache. Second,

when a request from a client is missed in the proxy cache but is a hit in another client's

browser cache, the requesting client will duplicate the document in its own browser cache.

Envisioning the rapid advancement of networking technology, we argue th a t the dupli

cation issue can seriously limit potential benefits to be gained from the current structure of

Web caching systems. Here are the reasons. F irst, high speed networking technology will

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 117

soon close the speed gap between local and remote accesses. Therefore, da ta duplications

over the In ternet will tru ly not necessary. Second, data duplications will significantly cause

additional overhead, such as global da ta invalidations and broadcasting. Minimizing the

num ber o f owners for a da ta document also strengthens security and privacy protections.

Finally, unnecessary d a ta duplications over the Internet can widely waste storage space.

Both th e additional operation and space overheads will certainly lim it the scalability of

Internet com puting.

n<P>

n< bn SKb2\ Q(b3)

(a) (b)

F igure 6.1: Duplication among a proxy and its client browsers.

Figure 6.1 (a) is a duplication caching scenario among the browsers and the proxy.

We use fl(p) to represent the set of docum ents cached in the proxy. fi(6,) to represent

the set o f docum ents cached in the tth browser of P browsers, where i = 1 .2 P.

We also use U(p) to represent the set of documents o n ly cached in the proxy. U(bt) to

represent the set of docum ents o n ly cached in the tth browser. We aim at minimizing

f i(p)P |n (6 ,) (the dark overlapped part in Figure 6.1 (a)), and m inim izing 12(6,) p) Q(6j)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 118

(the lightly dark overlapped part in Figure 6.1 (a)), where i . j = 1.2 P. i / j such

th a t U(p) (J U(b\) (J [7 (6 2)-.• U U(bp) is maximized. Figure 6.1 (b) is an ideal case after the

duplicated docum ents among the proxy and its browsers have been eliminated.

Num erous studies focus on local caching replacem ent policies. For example, papers

[4] and [69] provide theoretical bases for approxim ate optim al performance and designing

effective online algorithm s. Papers [19] and [70] propose practical caching replacem ent

strategies and showed promising experimental performance results. However, cooperative

caching can significantly improve performance com pared to local replacement [75]. and has

been studied in both horizontal and vertical directions.

In the horizontal direction, cooperative proxy caches are studied in many papers (e.g.

[43]. [56], [83], [141]). which focus on the proxies a t the same level. These papers provided

different approaches a ttem pting to effectively sharing files among same level proxies, such

as how to locate a file cached in another cache precisely and quickly, and how to place a

file as close as possible to a proxy requesting the file w ith highest probability. None of

these studies consider the file duplications among same level proxies. A practical reason for

allowing file duplications among proxies is because proxies are normally far from each o ther

in locations. Emphasizing elim inating file duplications too highly could cause too m any re

quests to rem ote proxies so th a t the overall response tim e might be hurt. However, browsers

connecting to the same proxy arc usually located nearby, thus, reducing file duplications

among browsers enables more files to be shared to improve overall performance.

In vertical direction. Web proxy workloads from different levels of a caching hierarchy

are studied in [82]. Paper [76] develops an optim al algorithm for hierarchical placement

problem. Papers [75] [123] propose practical schemes to cooperate hierarchical proxies by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 119

hierarchical GreedyDual replacem ent algorithm and placement algorithm th a t can cache

file close to clients. They conclude th a t hierarchical cooperative caching can significantly

improve performance. The study in [40] is not so optim istic about hierarchical cooperative

caching, and concludes that the perform ance in terms of response tim e can not be improved

w ithout paying careful a tten tion to details of cooperation design to eliminate overhead,

such as better distributing network traffic and avoiding congested routes. Two previous

studies a ttem pt to reduce file duplications in hierarchical cooperative caching. Paper [26]

proposes a hierarchical cooperative caching architecture to avoid a requested file cached iti

each interm ediate cache. A cache is viewed as a filter with its cutoff frequency equal to

the inverse of the characteristic time. Files with access frequencies lower than this cutoff

frequency have a good chance to pass through the cache without cache hits. A collaborative

m ethod is proposed in [143] for hierarchical caching in proxy servers to reduce duplicate

caching between a proxy and its parent or higher level proxies in the hierarchy. In particular,

a collaboration protocol passes caching decision information along w ith the document to the

next lower level proxy to facilitate its caching decision. O ur work focuses on a proxy-browser

system , which is a different issue of reducing duplication in the different level proxies. Our

proposed scheme not only reduces the duplications between different level caches (between

proxy and browsers), but also reduces the duplications at the sam e level caches (among

brow sers).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 120

6.2 A simulated proxy-browser caching environment

The cooperatively shared proxy-browser caching scheme is evaluated by trace-driven simu

lations. We use the traces of Boeing-4. Boeing-5. BU-95 and BU-98 that are described in

C hapter 5. We have implem ented and compared the following four Web caching organiza

tions using the trace-driven sim ulations in this chapter:

1. Proxy-and-local-browser. If a request misses in its local browser, it will be sent to the

proxy to check if the requested document is cached there. If the request is a hit in the

proxy, the hit docum ent will be cached in the browser cache of the requesting client.

If the request misses in the proxy, the proxy will send the request to an upper level

server. The docum ent fetched outside the proxy-browser system will be cached both

in the proxy and the browser of the requesting client.

2. Browser-aware-proxy-server. This is browser-aware-proxy caching technique w ithout

duplication reduction consideration, which is discussed in C hapter 5.

3. Cooperatively shared proxy-browser caching server. This is the cooperative caching

technique proposed in this chapter, which will be discussed in Section 6.4.

4. Offline-algorithm: These are the offline algorithm s close to optim al performance for

comparisons w ith our proposed schemes, which will be discussed in Section 6.4.

6.3 Case Studies o f Duplications in Web Caching

We have analyzed the 4 different Web traces: BU-95. BU-98. Boeing-4 and Boeing-5. These

traces have been operated in a sim ulated system w ith an infinite proxy cache and infinite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 121

Traces Bll-95 BU-98 boeing-4 boeing-5 average
hit ratio (%) 64.14 40.62 44.91 45.07 48.69

intra-sharing (%) 27.64 35.18 39.55 42.42 36.20
inter-sharing (%) 72.36 64.82 60.45 57.58 63.80

Table 6.1: Trace analysis on docum ent duplications and sharing based on the proxy-browser system
hit ratios, intra-sharing ratios, and inter-sharing ratios.

browser caches. There are two types of da ta sharing in Web surfing: individually requested

docum ents by a single client, and commonly requested documents by m ultiple clients. We

define •‘intra-sharing7’ ratio as the percentage o f the requests only hit in local browsers

for individual usage of clients out of the to tal h it requests in the proxy-browser system .

We further define the "inter-sharing" ratio as the percentage of the requests coining from

m ultiple clients but h itting the same docum ents ou t of the to tal hit requests in th e proxy-

browser system.

We have three observations based on the trace analysis results reported in Table 6.1.

F irst, the average hit ratio of the 4 traces is 48.69%. which means that 51.31% of requested

docum ents are only accessed once and remained in bo th proxy and browser caches. Second,

among the to ta l hit requests in the proxy-browser system , the average in tra-sharing ratio

is 36.20%. Since this large portion of documents is only for individual usage, the docum ents

do not need to be cached in the proxy, but only need to be cached in the requesting local

browser caches. U nfortunately, the standard Web caching model stores this high percentage

of documents in the proxy. Finally, the hits for in ter-sharing by multiple clients th a t need

to be cached in the proxy is 63.80%. However, docum ents of this type are duplicated in the

proxy cache and m ultiple browser caches.

O ur analysis and case studies show th a t a significant am ount of document duplication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a P roxy and Its Browsers 122

exists in commonly used Web caching m odels. If supply and demand of diverse Web contents

are continually increased, this duplication will soon limit the effective u tilization o f caching

space. In addition, current Web caching m odels lack da ta sharing mechanism between the

proxy and browsers with which to fu rther exploit da ta locality and utilize caching space.

This preliminary trace analysis m otivates us to propose new caching m anagem ent schemes

for reducing the document duplications am ong a proxy and its browsers for performance

improvement by utilizing more caching space.

Using the browser-aware caching model as a framework, we propose a new Web caching

management model, called cooperatively shared proxy-browser caching, where the proxy

cache is managed mainly to store the shared documents requested by m ultiple clients, and

browsers are managed mainly to store th e individually used documents. T he objective of

this caching management scheme is to effectively enlarge the caching space for clients by

significantly reducing the document duplications among a proxy and its client browsers,

and to significantly reduce the traffic to W eb servers.

6.4 Cooperatively Shared Proxy-Browser Caching Scheme

6 .4 .1 A n o u tlin e o f th e sch em e

Upon a client request, the cooperatively shared proxy-browser caching scheme provides the

following da ta flows for document service an d storage management:

1. If the request is a hit in the local browser, the document will be read from the browser

cache.

2. If the request misses in its local browser cache but hits in the proxy, then , in addition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 123

to providing the docum ent, the proxy will increment the counter of the number of

rem ote accesses to th is document from this requesting client. T he proxy will inform

the requesting client to cache this document only if the value of this counter is larger

than a pre-deterinined threshold. TH-BROW SER.

3. If the request is a miss in the local browser and the proxy, the index file (which

m aintains the records o f all documents cached in client browsers) in the proxy will be

searched to see if the docum ent is cached in another browser cache. If the request is

a hit in another client's browser cache, then the hit browser will do two bookkeeping

operations besides providing the document: (1) increment the counter of the total

num ber of d istinct rem ote requesting clients to this docum ent if the requesting client

accesses this docum ent for the first time, and (2) increment the counter of the number

of rem ote accesses to th is document from this client. If the first counter is larger

than a pre-dcterm ined threshold. TH-PROXY. it means th is docum ent is shared by

a sufficient num ber of clients so that the hit browser will transfer and cache the

docum ent to the proxy. The requesting browser is informed to cache this document

only if the value of the second counter is larger than TH -BROW SER.

4. W hen the request is missed in the entire proxy-browser system , the requested docu

ment will be provided by an upper lever proxy or a Web server. The initial document

coming externally will be cached only in the requesting browser. However, if the proxy

cache has enough free cache space for the* document, it can be cached in the proxy at

the same time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 124

In the above items 2. 3. and 4. the document may be cached in either a browser cache or

the proxy. When the browser cache or the proxy cache does not have sufficient space

to store the docum ent, one or more currently cached documents have to be replaced.

LRU-Threshold (which does not cache a docum ent larger than a threshold size) is used

as the basic replacement policy for our scheme. (M ost practical systems use algorithm s

sim ilar to LRU-Threshold [105]). For a document larger than the threshold, our scheme

also caches it as long as the cache has enough free space, but it is marked as an LRU doc

um ent. The cache size threshold used in LRU .T hreshold in the proxy and a browser cache

is different due to significant difference of their cache sizes.

6 .4 .2 D a ta s tr u c tu r e s an d o p era tio n s

Two structures are m aintained to facilitate this scheme. One structure allocated in each

browser is used to m anage cached documents in it. A nother structure allocated in the proxy

is used to manage all docum ents cached there.

6.4.2.1 The structure in each browser

A counter and an array is allocated for each cached docum ent that has been requested

by other clients. T he counter C C keeps the num ber o f other clients that have accessed

the document. Its value will be used to check if th is docum ent should be cached in the

proxy. Each element of the array .4(7 has two fields: C lien t .A lias ami A ceess.C oun t.

An A C .C lien t-A lias records a client who has accessed the document. A C .C lient..A lias

is produced by the proxy to hide the true identity of the requesting client. The aliases

are consistent and untraceable as in LPWA [54]. A C .A ccess.C oun t records the num ber

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 125

of accesses from the corresponding client. The array is of size TH -PR O X Y . of which C C

elements are in use. It is allocated for a docum ent only if there is a rem ote client requesting

this document. W hen a docum ent is replaced, the counter and array for this document are

also replaced.

I Begin

A request from client j(a lia s) fo r a docum ent

I
(Is this the first rem ote c lien t to request this c lien t’’ >

INo
I Search fo r all elem ents in th e arrav fo r this docum entI -----------

- Y e s
! Allocate C C and A C IT H _PR O X Y |. Set C O I
i A Q O |.CIient_alias=j. A C [0 |. A ccess _count= 1.
A Q i|.C Iien t a l ia s = - l . A C[i|.A ccess_count=fl

i for 1=1.2 TH PR O X Y

Y e s / Exist an elem ent 11 '■ N o
\ s u c h that A C .C Iie n t_ a lia s= j/

k=i2

k=0

C C =TH PR O X Y

A C | i I l.Access_count'H-1

i Search fo r the first elem ent i2 in the
array such that A C [i2].C lien t_a lias= -I
Set A C[i21-Client_alias=j.
A C [i2].A ccess c o u n t= l.
CC±±____________ _____________

k=il

Y es
Sent the docum ent along w ith the array
to the proxy and inform the proxy
to cache the docum ent

C |k |.A ccess_coun t= T H _B R O W S E R ’

Inform client j to 1
cache this docum ent j

‘ Inform client j not to 1
! cache th is docum ent !

' Send the docum ent to clien t j to disp lay and /o r cache

1 End j

Figure 6.2: The m anagem ent operations in each browser when a rem ote client request hits in it.

Figure 6.2 presents the m anagem ent operations when a rem ote c lient requests a doc

ument cached in this browser. W hen a browser is informed to cache a document sent by

another client, it will cache th is docum ent.

6.4 .2 .2 The structure in th e proxy

Each cached document in the proxy needs to count the number of accesses to this document,

from different requesting clients. This is used to check if this docum ent should be duplicated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 126

in a requesting client browser. We use a linked list for each docum ent. Each element of

the list L L includes three fields: (1) C lien t J D : the ID num ber of a requesting client; (2)

Access-Count: the num ber of requests from this client: and (3)P oin ter: a pointer to link

to the next element. A new element is allocated to the linked list of a document oidy if

this docum ent is requested by a client for the first time. W hen a docum ent is replaced, its

linked list is also replaced.

Begin;

A request from client j for a document i

I Search for all elements in the linked list for this client

1 ~
Yes / Exist an element LL1 \ No

\su ch that LL1 .CIient_lD=j? /

I Build an element LL2.
j Set LLZ.Client J D = j.
; LL2.Access_count=l.
[LL2.pointer=NULL.
| Link it to the end o f the list]

LL=LL2

| LL.Access_ci

Inform client j to , ,-------------------------------.
cache this document. j ! Inform client j not to
Delete this element from the list ' ! cache this document ;

1------------- 1 H

j Send the document to client j to display and/or cache 1

j End j

Figure 6.3: The M anagem ent operations in the proxy when a client request hits in the proxy.

Figure 6.3 presents the m anagement operations when a client request hits in the proxy.

W hen the proxy is informed to store a document sent by a client, the proxy first caches

the document, and then copies the necessary elements of the array sent by the client to

the corresponding fields in the newly created linked list. The necessary elements are those

it=TH_BROWSER? x 1

I LL 1. Access_count++!

LL=LLI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 127

with A C .C lie n tJ D / - 1 and A C .Access.C ount < T H .B R O W S E R . When the proxy

has to fetch a docum ent outside the proxy-browser system , it will pass the docum ent to the

requesting client and inform the client to cache it. T h e proxy will not cache a new arrival

docum ent.

6 .4 .3 O ffline A lg o r ith m s for P erform an ce C o m p a r iso n s

The goal of obtaining optim al hit ratio and byte h it ratio in a proxy-browser system is

equivalent to finding optim al replacement algorithm s for objects with different sizes in a

single cache whose size is the accumulated size of the proxy and all browsers. S tudies in

[69] provide two offline algorithm s that are close to the optim al replacement algorithm s.

These offline algorithm s are not viable in practice due to their requirement of knowing

future requests. However, in order to evaluate the effectiveness of the proposed schemes,

we com pare their performance with that of the offline algorithm s. This section gives an

overview of two models of cost measurement for offline W eb caching algorithm s and discusses

the respective approaches. They both follow [69]. and are also discussed in [4],

1. The Fault M odel, where the cost of an algorithm for a request sequence n equals

the num ber of cache misses.

2. The B it M odel, where we sum up the sizes o f the docum ents each time they are

brought into cache.

Both models do not discrim inate whether a docum ent is stored in a proxy or in a browser

cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 128

If all documents have the same size and same costs of bringing them into cache, the

Belady's Rule [8] is known to be optim al strategy for evicting pages from the cache: on

a fault evict the most distant page th a t is the page whose next request is farthest in the

future. However, for caching of Web docum ents with different sizes these assum ptions are

not appropriate. We consider therefore for each of the above models a separa te offline

algorithm .

For the Fault Model, we use the Offline Fault Model Algorithm (OFM A) [69], which

is shown in Algorithm 1. It guarantees th a t for any request sequence a the num ber of

cache misses is within the factor 2 log k of the num ber of cache misses for an op tim al offline

algorithm . Here k is the ratio between the largest and the smallest docum ent in a.

A lgorithm 1 Offline Fault Model Algorithm [69]
Divide the documents into a t most [log A:J + 1 I-classes C[.
where C/ holds the docum ents of sizes [2*.........2<'rl — 1].
for each request to a docum ent d in a /-class:

if d is not in the cache:
bring it in.
if size of the cache is exceeded:

for all j . do twice:
if Cj is not em pty:

evict the m ost d istan t docum ent in C} .

As for the BIT Model, we use the Offline Bit Model Algorithm (OBM A) from [69].

The cost of this algorithm is essentially within the factor 5(logfc -I- 4) of the op tim al offline

algorithm . As in OFMA. the docum ents are first divided into /-classes. If the cache capacity

is exceeded by h when a new object is cached. OBMA evicts from every class most d istant

objects until there is enough room or there are no objects in that class. In order to avoiding

evicting a large page when the cache is only exceeded by a small am ount. OBM A m aintains

a counter for each class. If h is smaller than the most distant object in a class, it is added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 129

to the counter of th is class. W hen the counter is larger than the size of the object. OBMA

evicts the object and sub trac ts the size of the object from the counter.

The goals of the Fault Model and the Bit Model are to maximize hit ratios and byte hit

ratios, respectively. In order to show how close the performance of the proposed caching

scheme is to the optim al one. we compare the performance of our scheme with tha t of the

two offline algorithm s.

6.5 Performance Evaluation

We have evaluated and compared the performance of the proxy-and-local-browser. browscr-

aware-proxy-server. cooperatively shared proxy-browser caching (which will be simplified as

cooperative-caching in the rest of the chapter) schemes, and the offlinr-algorithm using the

two BU browser traces and two Boeing traces. In the comparisons of hit ratios, the offline

Fault Model A lgorithm is used, while in the comparisons of byte hit ratios, the offline BIT

Model Algorithm is used. We will discuss the performance sensitivity to four im portant

param eters: proxy cache size, browser cache size, cache size threshold for replacement,

and the number o f clients. We use p.s to denote proxy cache size, which is based on the

percentage of infinite proxy cache size. We use bs to denote browser cache size1, which is

based on the value of ft. We assume that all browsers have the same size. We use* th to

denote cache size threshold used in LRU .Threshold cache replacement policy, which is a

ratio of a given cacheable document threshold size over the proxy (or browser) cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 130

6 .5 .1 E v a lu a tio n o f th e se n sit iv ity to th e p ro x y cache s ize

We have exam ined how sensitive the hit ratios and byte hit ratios are to the changes of the

proxy cache size. For the experiments of each input trace, we set ps to 1%. 2%. 3%. 5% and

10% of the infinite proxy cache size. We set 0 = 10. We also choose th = 0.5. which means

the proxy size threshold is half of the proxy cache size, and the browser size threshold is also

half of browser cache size. O ur trace-driven sim ulations show that our cooperative-caching

consistently outperform s browser-aware-proxy-semer and proxy-and-local-browser for all the

traces m easured by hit ratios and byte hit ratios, in Figures 6.4 - 6.7. respectively.

BU-95 Trace BU-95 Trace
80

70

60

50

40

30

20 proxy 4 browser — ■— ■
browser-aware — «---

cooperative caching
offline algorithm e

10

0
20 4 6 8 10

40

35

30

25

20

15

10
proxy 4 browser — ■—

browser-aware —
cooperative caching •«

offline algorithm -3
5

0
2 E0 a 104

Relative Proxy Cache Size (% infinite cache size) Relative Proxy Cache Size (*4 infinite cache sizel

Figure 6.4: Hit ratio and byte hit ratio of the three caching schemes versus relative proxy cache
sizes using BU-95 trace (,3=10. th — 0.5).

We first compare the performance of browser traces BU-95 and BU-98 (sec Figures 6.4

and 6.5). For proxy-and-local-browser. BU-98's hit ratio is much lower than BU-95's hit

ratio, bu t is also much lower than BU-98's hit ratio of offline-algorithm, which means that

the hit ratio of the BU-98 trace has much more potential for improvement, while the hit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 131

8U-98 Trace BU-98 Trace

S 25
= 20

proxy 4 browser — —
browser-aware — «—

cooperative caching
offline algorithm a

10 -

0 2 4 6 8 10

40

35

30

| 25

m
c 20
f
2 15>a

proxy 4 browser — '—
browser-aware —

cooperative caching «
offline algorithm a

10

5

0
0 2 6 8 104

Relative Proxy Cache Size (% infinite cache size) Relative Proxy Cache Size (% infinite cache size)

Figure 6.5: Hit ratio and bvto hit. ratio of the three caching schemes versus relative proxy cache
sizes using BU-98 trace (J=10. tli=0.5).

ratio of BU-95 trace has almost no room for improvement because it is so close to offline-

algorithm. Both traces' byte hit ratios of proxy-and-local-browser have sim ilar performance

gaps w ith offline-algorithm. O ur scheme of cooperative-caching improves hit ratios and

byte hit ratios of both traces, which are very close to offline-algorithm. As an exam ple of

p.s = 5%. the offline-algorithm outperform s cooperative-caching by only 3.03% .and 4.26%

measured by hit ratio and byte hit ratio for BU-98. So cooperative-caching is more promising

to improve year 1998's trace than the trace three years before, because requests in the year

1998's trace are more evenly distributed.

Boeing-4 and boeing-5 are proxies traces, but we still see a big perform ance gain from

cooperative-caching. The intra-network overhead sim ulation for these two traces in Section

6.6.1 shows that the increase of intra-netw ork overhead of cooperative-caching is trivial,

which does not offset the (byte) hit ratio gain from this scheme. So reducing document

duplications among cooperative proxies in the same organization is still prom ising for per-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 132

boeng-4 Trace M e mg-4 Trace
50

45

40

35

30

25

20

15
proxy 4 b ro w se r -----

browser-aware —
cooperative caching *

offline algorithm a

10

5

0
0 2 6 S 104

25

20

o 15
5
X

I
s 10

proxy 4 browser — '—
browser-aware — »—

cooperative caching «
offline algorithm -a

5

0
0 6 8 102 4

Relative Proxy Cache Size (% infinite cache sizei Relative Proxy Cache Size Co infinite cache sizei

Figure 6.6: Hit ratio and bvto hit ratio o f the three caching schemes versus relative proxy cache
sizes using Boeing-4 trace (J = 1 0 . f /i= 0 .5) .

formancc. But it is not desirable for higher level proxies, which are closer to servers and

farther to clients, because long distances among these proxies and poten tial networking

congestion may offset (byte) hit ratio gains so that response tim e can not be improved [-10].

The percentage (p.s) reflects the ratio between the actual proxy cache size and the

accumulated size of unique docum ents. If the increase of the num bers of servers and of the

diverse client populations is faster than the increase of the proxy cache size, the relative

proxy cache size (p.s) will continue to decrease. In other words, our cooperative-caching

scheme will be more performance-beneficial as Web servers and Web client populations

continue to increase in both num bers and types.

6 .5 .2 E v a lu a tio n o f th e s e n s it iv ity to a brow ser ca ch e s iz e

We have exam ined how sensitive the hit ratios and hyte hit ratios are to the changes of a

browser cache size. For the experim ents of each input trace, we set d to 0.1. 1. 5. 10. 15. 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 133

boeng-5 Trace boang-5 Trace

35 -

S 20 -

15 -
proxy 4 Browser —

browser-aware —
cooperative caching

offline algorithm a

0 2 i 6 e 10

25

20

15

10

proxy 4 browser — '—
browser-aware —

cooperative caching
offline algorithm a

5

0
2 6 eo 10

Relative Proxy Cache Size To infinite cacne sizei Relative Proxy Cache Size l% infinite cache size)

Figure 6.7: Hit ratio and byte hit ratio of the three caching, schemes versus relative proxy cache
sizes using Boeing-5 trace (.2=10. </r=0.5).

and 50. respectively. We set p.s to 1% of the infinite proxy cache size, and choose t.h=0.5.

O ur trace-driven simulations show th a t our cooperative-caching consistently outperforms

browser-aware-proxy-scrvcr and proxy-and-local-browser for all the traces with all the given

ft values measured by hit ratios and byte hit ratios in Figures 6.8 - 6.11. respectively. The

performance gain of all the schemes is improved slowly after ft reaches a certain value. The

best performance gain was achieved for id in the range of 1 to 15. If ft is too small, such

as less than 0.1. the accum ulated browser cache is not large enough to be effective for both

cooperative-caching and browser-aware-proxy-scrvcr. It is also not desirable to increase ft

to a very large value. (The paper in [131] also points out this). For the examples in section

5.3.1. the range of 1 to 15 of ft corresponds a browser cache size in the range of 10 MBytes

to 150 MBytes, which is a reasonable range of browser cache size in current disk storage

capacity of workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 134

BU-95 Trace BU-95 Trace

c 2 0-f£ 40

f 30

proxy 4 browser —
browser-aware ---«■

cooperative caching *
offline algorithm c

proxy 4 browser — -
browser-aware ---«■

cooperative caching «
offline algorithm o

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Relative Browser Cache Size (% nfmite cache size) Relative Browser Cache Size (“i infinite cache size)

F igure 6 .8 : Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using BU-95 trace (ps= IVc. th=Q.o).

6 .5 .3 E v a lu a tio n o f th e s e n s it iv ity to th e rep la cem en t th resh o ld

We use the basic LRU-threshold cache replacem ent policy in both proxy-and-local-browser

and browser- aware-proxy-server. We have revised the LRU-Threshold policy for cooperative-

caching. where a docum ent larger than the threshold could be cached as long as enough

free caching space is available bu t is marked as an LRU document. We have exam ined how

sensitive the hit ratios and byte h it ratios are to changes of the replacement threshold. For

experim ents of each trace, the th variable is set to j . j . | . and 1 . respectively.

We set p.s to 1% of the infinite proxy cache size, and choose 0 = 10.

O ur trace-driven sim ulations show th a t cooperative-caching consistently outperform s

browser-aware-proxy-server and proxy-and-local-browser for all the traces with all th e given

relative thresholds m easured by hit ratios and byte hit ratios in Figures G.12 - 6.15.

O ur experim ents show th a t in general small cache threshold values are more effective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 135

BU-98 Trace BU-98 Trace

proxy i browser — -
browser-aware —

cooperative caching «
offline algorithm e

0 5 10 15 20 25 30 35 40 45 50

o
Z

I

proxy & browser — ■—
browser-aware — «—

cooperative caching
offline algorithm c

0 5 10 15 20 25 30 35 40 45 50
Relative Browser Cache Size (% infinite cache size) Relative Browser Cache Size (% infinite cache size)

Figure 6.9: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using BU-98 trace (/«=1%. </i=0.o).

for cooperative-caching th an large threshold values m easured by the hit ratios. This is

because file size d istribu tion is heavy-tailed [6]. The average size of popular docum ents is

smaller than that of unpopular documents. But a very small threshold is not beneficial

to performance measured by byte hit ratios. Com paring hit ratios of cooperative-caching

for trace BU-95 and BU-98. we show that small cache threshold values are more effective

for BU-98 trace. This can be explained by the findings in [6]: BU-98 trace shows a shift

toward smaller sizes overall than BU-95 trace. The threshold impact to (byte) hit ratios

of cooperative-caching is much less sensitive than those of browser-awarc-proxy-server and

proxy-and-local-browser for browser traces.

6 .5 .4 P erform an ce Im p a c t o f S caling th e N u m b e r o f C lien ts

We have also evaluated the effects of scaling the num ber of clients to cooperative-caching.

Figure G.1G presents the hit ratio increment curves (left figure) and the byte hit ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 136

D oerg-4 Trace boemg-4 Trace

= 20 i

proxy 4 browser — —
browser-aware — »—

cooperative cachmg *
offline algorithm c

0 5 10 15 20 25 30 35 40 45 50

25

20

I
o 15
eC
X

>
31

I 1 1------ 1— i i - t i i

- a - ° °
S I - • « ■

o>-' "

-
proxy 4 browser — —

browser-aware
cooperative caching •

offline algorithm e

------ 1------ 1------ 1----- j i i i i i —

Relative Browser Cache Size (beta)
10 15 20 25 30 35 40 45 50

Relative Browser Cache Size (betai

Figure 6.10: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using Boeing-4 trace (p:s=l% . th=0.b).

increment curves (right figure) of the five traces as the relative number of clients changes

from 25% to 100%. O ur trace-driven simulation results show that both hit ratio increment

and byte hit ratio increm ent of the browser-aware proxy server proportionally increases as

the number of clients increases. For some traces, the increments are significant. For example,

the hit ratio increment of BU-98 trace increases from 16-89% to 23.85%. to 28.13%. and

to 34.13%. as the relative number of clients increases from 25% to 50%. to 75%. and to

100%, respectively. T he byte hit ratio increment of Boeing-5 trace increases from 36.35%

to 46.34%. to 52.92%. and to 66.02%.

The performance results indicate that cooperative-caching scales very well for the traces

with up to 3996 clients because it will exploit more browser locality and utilize m ore space

as the number of clients increases in the cluster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 137

boeing-5 Trace boemg-5 Trace

■1:

= 20

proxy & b ro w se r------
browser-aware

cooperative caching
offline algorithm c

0 5 10 15 20 25 30 35 10 45 50

25

20
p

7 >■-t
o 15

10
>I

5 -

“i 1 i

a

proxy & browser
browser-aware

cooperative caching
offline algorithm

Relative Browse' Cache Size (beta)
10 15 20 25 30 35 40

Relative Browser Cache Size (beta)
45 50

F igu re 6.11: Hit ratio and byte hit ratio of the three caching schemes versus relative browser cache
sizes using Boeing-5 trace (;>.s=l%. f/i=0.5).

6 .5 .5 L a ten cy R e d u c tio n

The access delay for fetching a missed docum ent in the proxy cache from a rem ote server

can be estim ated by the summ ing the network connection time and the da ta transferring

tim e in the Internet. We estim ated connection tim es and data transferring tim es by using

the m ethod presented in [70]. where the connection time and the da ta transferring time

are obtained by applying a least squares fit to measured latency in traces versus the size

variations of documents fetched from different rem ote servers. The access latency to rem ote

servers reduced by the cooperative-caching can be further estimated by accum ulating the

latency times used to access remote servers for those requests missed in browser-aware

proxy server or proxy-and-local-browser. but hit in cooperative-caching. Our experim ents

show th a t the cooperative-caching achieves average latency reduction of 21.25%. com pared

w ith the browser-aware-proxy-server scheme, and about 56.61%, compared w ith the proxy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 138

BU-95 Trace BU-95 Trace

proxy & browser — 1— -
browser-aware

cooperative caching ■•■«■■■10 -

0 0.2 0.4 0.6 0.6

5 25

proxy & browser — ■—
browser-aware

cooperative caching «

0.80 0.2 0.60.4
Relative Threshold (% cache size) Relative Threshold (% cache size)

Figure 6.12: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using BU-95 trace (p.s=l%. d=10).

and-local-browser scheme.

6.6 Overhead Analysis

The overhead associated w ith the cooperative-caching comes from com m unications among

the proxy and its client browsers (intra-network overhead), the additional space for building

m anagem ent d a ta structures, and the CPU time spent on the m anagement operations. Wo

will discuss these three types of the overhead in this section.

6 .6 .1 In tra -n etw o rk O v erh ea d

The additional overhead of cooperative-carking comes from (1) the tim e spent 011 data

transferring between two browsers for hits in remote browsers. (2) the tim e spent on data

transferring from the proxy to a browser for hits in the proxy cache (these hit docum ents

might be hit in requesting browsers by proxy-and-local-browser but not by the Cooperative-

R e p ro d u ce d with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 139

BU-98 Trace BU-98 Trace
50

45

40

35

30 HI
tr 2025

= 20

15
proxy S browser — —

browser-aware
cooperative caching *

proxy S browser — 1—
browser-aware —

cooperative caching
10

5

0
0 0.2 0 4 0.6 0.8 0 0.6 000.2 0.4

Relative Threshold (% cache sizei Relative Threshold (% cache size)

Figure 6.13: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using BU-98 trace (ps=l%. .?=10).

caching scheme). (3) the tim e spent to transfer documents from a client browser to the

proxy due to requests by m ultiple clients.

We estim ated the d a ta transferring times from the above three sources on a 1 0 Mbps

Ethernet in ou r sim ulation. The browser access contention is handled as follows. If multiple

requests ask for bus service simultaneously, the bus will transfer docum ents one by one in

FIFO order distinguished by each request's arrival time. O ur experim ents based on the

ping facility show th a t the s ta rtu p tim e of d a ta communications among the clients in our

local area netw ork is less than 0.01 second. Setting 0 .0 1 second as the network connection

time. Table 6.2 presents the maximal intra-network overhead for each trace with different

param eters in sim ulations. Column "Time" is the total workload service time. Column

"communication" shows the additional intra-network latency time and the percentage of

this latency ou t of the to tal workload service time. Column "contention" is the waiting

tim e due to the additional intra-network communication contention for the bus and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 140

Doemg-4 Trace boemg-4 Trace

40 -

o
a
CC
I

proxy 4 browser
browser-aware —

cooperative caching <

0 0.6 0.80 2 0 4 t

20 -

£
0 15
E1

! io

5 -

proxy 4 browser
browser-aware

cooperative caching

l

Relative Threshold (% cache size)
0.2 0.4 0.6 0.8

Relative Threshold (% cache size)

F igure 6.14: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using Boeing-4 trace (ps=\%. J=10).

percentage of the waiting tim e out of the “communication" time. In this table, we also

present the intra-network overhead of browser-aware-proxy-server th a t comes from the tim e

spent on data transferring between two browsers for the hits in remote browsers.

We show that the am ounts of da ta transferring times and the bus contention times spent

for communications among the proxy and clients of the cooperative-caching scheme on all

traces are very low. For exam ple, the largest accum ulated comm unication and network

contention portion out of th e to tal workload service time for all traces, is less than 1.51%.

In addition, the largest contention tim e of cooperative-caching is 0.01 seconds, which only

contributes up to 0.004% of the total communication time. T his implies that cooperative-

caching does not cause bursty communications in a proxy-browser system. Notice th a t

"communication " times of cooperative-caching are even smaller than th a t of browser-aware-

proxy-server for browser traces BU-95 and BU-98. which shows tha t cooperative-caching

can place documents in more suitable places for these two traces than browscr-aware-proxy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 141

aC

boemg-5 Trace

SO
45

40

35

30

25

20

15

10 proxy 4 browser —
browser-aware — «—

cooperative caching ■■■«•••5

0
0 0.2 0.6 0.80.4

Relative Threshold (% cache size)

25

20 -

0 15
81

3 10

5 -

boexig-5 Trace

V - - . « ...»-»—*.......

proxy 4 browser —
browser-aware

cooperative caching <

0.2 0.4 0.6 0.8

Relative Threshold (% cache size)

Figure 6.15: Hit ratio and byte hit ratio of the three caching schemes versus the replacement
threshold using Boeing-5 trace (p.s=17. .i=10).

server.

Traces Time (s) Browser-aware-proxy-server Cooperative-Caching
communication contention communication contention

BU-95 3668313 2501s (0.068%) 0 .0 1 s (0.00047) 232s (0.0067c) 0.01s (0.004%)
BU-98 4164302 167s (0.0057c) 0 .0 1 s (0.0067c) 43s (0.0017c) 0 .0 1 s (0.0037c)

Boeing-4 86382 6 6 8 s (0.777c) 0 .0 0 2 2 s (0.00047) 1304s (1.51%) 0.0004s (0.000037)
Boeing-5 86176 741s (0.867c) 0.011s (0.00177) 1255s (1.467) 0.0052s (0.00057)

Table 6.2: Intra-network Overhead

6 .6 .2 S p ace O v e rh ea d

The additional space of cooperative-caching is allocated for two da ta structures keeping

track of reference counts to m anage data placement.

First, linked lists are used in the proxy to count the num ber of accesses to the same doc

uments from different requesting browsers. The size of this space requirem ent depends

on TH-BROW SER and the num ber of clients to access this document. T he value of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 142

Hit Ratio Increment vs Number ot Clients Byte Hit Ratio Increment vs Number of Clients

5 30

BU-95 —
BU-98

Boeng-4 «•
Boemg-5 - o

20 30 40 50 60 70 80 90 100

70

60

50

40

30

20

' '*"BU-95 —
BU-98 —

Boeing-4 ■•■■«-
Boeing-5 a

10

0
20 30 40 50 60 80 90 10070

Relative Number ot Clients (% Total Number ot Clients) Relative Number of Clients (% Total Number of Clients)

Figure 6.16: The hit ratio and byte hit ratio increments of the r.ooperative-mchmg over the proxy-
and-local-browser.

TH J3R O W SER reflects the trade-off between the am ount of document duplications and

intra-netw ork comm unication overhead. O ur sim ulation results show that an optim al range

of TH .B R O W SER is 3 to 5. We use 5 to estim ate the space requirement. O ur simulation

results also show th a t the average number of clients to access one docum ent is less than 6 .

For each element in the list, we use 2 bytes for L L .C lien t.-ID . 1 byte for LL.Access.C ount..

and 5 bytes for L L .P o in ter. The 2 bytes can record up to 65.536 different clients. The 1

byte can represent up to 256 accesses which is much larger than the optim al TH .BROW SER

we used. The 5 bytes could represent up to 1024 G address space. We assume that the

proxy has a 32 G B yte cache, and an average document size is 8 KByte. The proxy lias

about 4 M Web pages. The proxy needs to allocate (32GB / S K B) x (2 + 1 + 5) x 6 = 192

MBytes for the linked lists, which only occupies 0.59% of the proxy cache, and can be easily

placed in the m ain memory of a proxy server.

Second, a counter and a structure array is allocated for each cached docum ent th a t has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 143

been requested by other clients. The array size is TH_PROXY. The value of TH-PROXY

also reflects the trade-off between the am ount of document duplications and intra-network

com m unication overhead. O ur sim ulation results show that an optim al range of TH-PROXY

is 3 to 7. We use 7 in our calculation, which will overestimate the space requirement.

For each element of the array, we allocate 2 bytes for A C .C lien t J D . and L byte for

A C .A ccess.C oun t. One byte is also enough for the counter because we use TKLPROXY=7

here. We assume that each client has a large browser cache with a 80 M Byte cache, and an

average docum ent size is 8 KByte. Each browser has about 10 K Web pages. The browser

needs to allocate about (80A/B / 8 K B) x (7 x (2 + 1) + 1) = 220 KBytes, which only oc

cupies 0.27% of a browser cache. This requirem ent is overestimated because the array and

the counter are allocated to a document only if this document is accessed by other clients.

6 .6 .3 C P U O verhead

In a browser, the additional CPU overhead comes from searching s truc tu re arrays. The size

of each array is TH_PROXY. As we m entioned previously, an optim al range of TH_PROXY

is 3 to 7. So handling such a search for each request from a rem ote client requires 0(1)

time.

In the proxy, the additional CPU overhead comes from searching a linked list for a hit

request. T he CPU time requirement for handling such a search for a docum ent from a

rem ote client depends on the number of clients th a t have requested the* document. As we

m entioned previously, the average num ber of clients to access one docum ent is less than 6 .

Thus, handling such a search requires 0 (1) tim e in average. But it is possible th a t there

is a long list for one document. The following strategies have been applied to alleviate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6. Reducing Duplications in a Proxy and Its Browsers 144

th is possible delay. First, an element for a client will be deleted from the list when the

docum ent has been requested as many times as T H J3R O W SE R because the client has

been informed to cache this document. Second, the list search can be overlapped with

passing the document to a client. In detail, when a client request hits in the proxy, the

proxy first sends the requested document to the client. The client will spend some tim e to

view the docum ent. At the same time, the proxy searches for th e list of this document to

check how many times this client has requested this docum ent. Afterwards, the proxy will

inform the client whether to cache this document or not depending on the searching result.

T he searching process will not delay response times to the clients.

6.7 Chapter Conclusion

We have dem onstrated trends of decreasing proxy hit ratios and increasing access diversity,

and significant document duplications in Web caching systems. In order to effectively utilize

the increasingly proxy and browser caching space, we propose a peer-to-peer Web caching

m anagem ent scheme, called cooperatively shared proxy-browser caching. We show th a t the

perform ance of our scheme compares very favorably w ith the perform ance of near-optimal

offline Web caching algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

D ata Integrity and Comm unication

Anonym ity

7.1 Introduction

In order to make the browsers-aware proxy server feasible in practice, the reliability and

security of the browser da ta must be seriously considered [134]. For example, the browser

d a ta files th a t have been modified by an owner client are not reliable for sharing among

clients. In addition, the identities of a requesting browser and a hit browser, and the hit

docum ent should not be visible am ong clients to preserve the privacy of each client. These

concerns can be addressed by ensuring da ta integrity and making anonymous communica

tions between clients.

We have proposed protocols to enforce data integrity and communication anonym ity

[139]. This part of the work was in collaboration with Zhichen Xu at Hewlett Packard

Laboratories. Our study shows th a t the associated overheads are trivial. These protocols

are based on symmetric and public key encryptions [88]. In a sym m etric key system, two

comm unicating parties share an identical secret, the sym m etric key. used for encryption

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 146

and decryption. DES (D ata Encryption Standard) is such an example. In a public key

system (e.g. RSA). such party has a public/private key pair. A public key can be accessed

by everyone. A sender encrypts an outgoing message using a receiver's public key. and the

receiver uses its private key to decrypt this ciphertext. DES is much faster than RSA. A

practical way is to combine DES and RSA. for example, to use DES to encrypt a large

message and use RSA to encrypt the DES key.

7.2 D ata Integrity

To ensure th a t a document received by a client is tam per-proof, we need to find a way for

a requesting browser to check whether the content it receives is intact. For this purpose,

we use the proxy server to produce a digital water mark in the following manner: for a

docum ent / . the digital water m ark is produced by first generating a message digest using

MD5 [104], and then encrypt the message digest, with the proxy server's private key. (We

assume th a t the private key o f the proxy is x . the corresponding public key is y. and the

public keys of the browser caches are known to all peer clients. We use K (M) to represent

either (i) the message M being encrypted with the key K. or (ii) the ciphered message M

being decrypted with decryption key K.)

Figure 7.1 shows the integrity protocol. Initially, when a client c,. sends a request to

the proxy for a document, the proxy obtains the requested docum ent, denoted as / . either

from the server or an upper level proxy. The proxy generates a MD5 message digest. h(f) .

of the document. It then encrypts h(f) with its private key x to produce x(h(f)) . The

message { /. x(h(f)) } is sent to the client c, and stored in its local cache. If another client Cj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 147

i O)(3)

(5 > (4)

< 6 >

h (f ’)

Figure 7.1: Integrity Protocol

requests the same docum ent, and this document has been replaced in the proxy cache and

is found to be in c ,'s cache, the proxy will instruct c, to send the message {(h(/)) . / } to Cj.

On receiving the message. c} will produce a message digest of the document using MD5.

and compare the message digest with y(x(h(f))) . No client can tam per with the docum ent

/ and produce a m atching digital water mark, because no client but the proxy server knows

the private key of the proxy server.

7.3 Anonym ity Issue

One im portant problem in peer-to-peer (P2P) system s is to enforce the tru st of the da ta

stored in the system and the security of the peers. So we extend our study on anonym ity to

generalized peer-to-peer systems. In a P2P system, each peer can play three different roles:

as a publisher to produce documents: as a provider (or a responder) to host and deliver

documents upon requests: as a requester (or an initiator) to request documents. In some

systems, a provider and a publisher can be the same peer for the same document. In some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 148

other systems, a provider and a publisher are different peers for the same docum ent for

various reasons. For exam ple, a publisher can d istribu te its docum ents to o ther provider

peers in order to resist censorship: and docum ents can also be cached in some non-producer

peers.

Depending on circum stances, applications and users of a system may require different

levels of anonymity. It is desirable in practice th a t the identity of a publisher be hidden

to resist censorship (publisher anonymity), o r th a t either a responder or an in itiator be

anonymous (responder or in itiator anonym ity), or th a t both responder and in itiator be

anonymous (mutual anonym ity). In the most, stringen t version, achieving m utual anonym ity

requires that neither the initiator, nor the responder can identify each other, and no other

peers can identify the two communicating parties w ith certainty. This is also the goal of

our browser sharing system .

P2P systems can be classified into two classes: pure P2P systems, where peers share d a ta

without a centralized coordination: and hybrid P2P. where some operations are intentionally

centralized, such as indexing of peers' files. W hich form the system takes makes a difference.

For instance, in a hybrid P2P. whether the indexing servers can be tru sted or not has a

critical implication on how anonymity is enforced.

In the next section (Section 7.4). we will overview the existing anonym ity protocols, and

present our m otivation and objectives of the work.

Our goal is to achieve m utual anonymity between the initiator and responder with high

efficiency. We consider two cases. In the first case, we assume the existence of trusted

index servers (e.g.. Napster[90]. and browser-aware proxies [138]). In our work, instead of

having both the in itia to r and responder each prepare their own covert pa th , we rely on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 149

index server to prepare a covert path for bo th of them , significantly reducing operations and

com m unication overhead. We have proposed two new techniques: center-directing, where

encryption cost is independent of the length of the covert path, and label-switching that

elim inates potentially excessive messages in center-directing (Section 7.5).

In the second case, we assume a pure P 2P setting. We propose an anonymity protocol

called shortcut-responding that can greatly reduce communication overhead while preserving

m utual anonym ity (Section 7.6).

We analyze our proposed protocols in Section 7.7. We present our empirical experience

of the techniques in a browser-sharing environm ent in Section 7.8. We discuss how to select

the protocols based on their merits and lim its from different aspects in Section 7.9. We

conclude in Section 7.10.

7.4 R elated Work on Anonym ity Studies

The related work includes existing protocols for the three types of anonymity. We have

paid special a tten tion to the work on m utual anonymity, which has m otivated us to develop

new protocols.

7 .4 .1 P u b lish e r and S en d er A n o n y m ity

P ublisher A nonym ity: In order to protect a publisher peer, many systems provide cen

sorship resistance facility. In Frecnet [29]. each node in the response path may cache the

reply locally, which can supply further requests and achieve publisher anonymity. Publius

[126] splits the symm etric key used to encrypt and decrypt a docum ent into n shares using

Sham ir secret sharing and store the n shares on various peers. Any k of the n peers must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 150

be available to reproduce the key. Instead of splitting keys. FreeHaven[33] and [111] split

a docum ent into n shares and store them in multiple peers. Any k of the n peers must be

available to reproduce the document. Tangier [125] and Dagster[120] make newly published

docum ents depend on previously published documents. A group of files can be published

together and named in a host-independent maimer.

In itiator/responder A nonym ity: Most existing anonym ity techniques are for client/server

models, which only hide the identities of the initiator (clients) from the responder (the

server), but not vice versa. Anonymizer [55] and Lucent Personalized Web Assistant

(LPW A) [54] act as an anonymizing proxy between a user and a server to generate an

alias for a user, which does not reveal the true identity of the user. Many system s achieve

sender anonym ity by having messages go through a num ber of middle nodes to form a

covert pa th . In Mix [25] and Onion [121]. the sender p a rt determ ines the covert pa th , and

a message is encrypted in a layered m anner starting from the last stop of the path . Instead

of having the initiator select the path . Crowds [102] forms a covert path in such a way that

the next node is randomly selected by its previous node. Hordes [115] applies a similar

technique used in Crowd, bu t it uses m ulticast services to anonymously route the reply to

the in itiator. Freedom [51] and Tarzan [50] are similar to Onion Routing, bu t they are

implem ented a t IP layer and transport layer rather than the application layer.

7 .4 .2 E x is t in g m u tu a l a n o n y m ity p rotoco ls: th e ir m er its and lim its

O ur study targets mutual anonym ity between an in itiator and a responder. There are

two most related and recent papers aim ing at achieving m utual anonymity: Peer-to-Peer

Personal Privacy Protocol (P 1) [114], and Anonymous Peer-to-peer File Sharing (APFS)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 151

[108],

Paper [114] first proposes to use a global broadcast channel to achieve m utual anonymity,

where all participan ts in the anonymous comm unication send fixed length packets onto this

channel at a fixed rate . Noise packets can be used to m aintain a fixed com m unication

rate. Besides enforcing both in itia to r and responder anonymity, this protocol pays a special

attention to elim inate the possibility of determ ining the comm unication linkability between

two specific peer nodes by providing equal and regular broadcast activities among the entire

peer group. The broadcast nature of this framework can limit the size of the comm unication

group. To address th is limit, the authors further propose the P ' scheme that creates a

hierarchy of broadcast channels to make the system scalable. Different levels of the hierarchy

provide different levels of anonym ity a t the cost of communication bandw idth and reliability.

As authors sta ted in th is paper. P ° will not provide high bandw idth efficiency. But P n allows

an individual peer to trade-off anonymity degree and comm unication efficiency.

In the APFS system , a coordinator node is set to organize P2P operations. A lthough

this node is not considered as a highly centralized and trusted server, it should be in

service all the tim e, and it plays an im portant role to coordinate peers for file sharing.

APFS allows new peers to join and leave the system periodically by sending a message

to the coordinator. W illing peers begin anonymously announcing themselves as servers to

the coordinator. A fter contacting the coordinator, peers anonymously and periodically send

lists of files using alias names to those servers. An in itiator peer s ta rts to request docum ents

by anonymously querying the coordinator for available servers. The coordinator responds

with a list of current servers. A peer then anonymously sends queries to some servers. Upon

requests, these servers will send back N matches to the initiator peer. The in itia to r sends

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 152

the m atch request to a path , where the tail node is the last member. The tail node then

forwards the request to the responder and returns the reply back to the initiator. APFS

uses Onion as the base to build their protocol. There are two advantages of APFS. First, all

the comm unications in the system are mutual anonymous. Even the coordinator does not

know the physical identities of the peers. Second, the anonym ous protocols are designed

for a pure P2P where the trusted centralized servers may not be available.

However, there are also several disadvantages associated with APFS solely relying 011

volunteering. F irst, the suitability of a volunteering peer needs to be taken into account,,

which can significantly affect the performance of P2P system s. To do so. the coordinator

needs to examine each volunteering peer before possibly assigning a task, such as peer

indexing. The background checking of peers has to be done anonymously, increasing the

communication overhead. Second, the number of servers can be dynamically changed. I11

the worst scenario. 110 qualified peers are available for a period of time, causing the P2P

system to be in a weak condition. Thirdly, since any peer can be a server, a malicious node

can easily become a server. Although the peer identities are hidden from a server, a server

has the power to provide wrong indexing information to mislead the initiators. Finally,

since no trusted servers are available, the anonymous com m unications have to be highly

complicated.

Both P •’ and APFS provide unique solutions to achieve m utual anonymity in pure

P2P systems w ithout any trusted central controls. We believe that limited trusted and

centralized services in decentralized distributed systems are desirable and necessary. In

practice, trusted central parties exist and effectively function, such as proxies and firewalls

in Internet and d istribu ted systems. Utilizing these tru sted parties and aiming at both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 153

reliability and low-cost, we propose a group of m utual anonymity protocols. We show th a t

w ith some limited central support, our protocols can accomplish the goals of anonym ity,

efficiency, and reliability. We have also proposed a m utual anonymity protocol solely relying

on self-organizations among peers w ithout any trusted central controls. In this protocol, the

return ing path can be shorter than the requesting path . Com paring with P 5. this protocol

does not need to broadcast the requested file back to the requester so th a t bandw id th is

saved and efficiency is improved. Com paring with A PFS. this protocol does not need special

nodes to keep indices of sharing files, thus, elim inating the index maintenance overhead,

and the potential problem of inconsistency between index records and peer file contents.

7.5 Anonymity w ith Trusted Third Parties

We present our techniques for achieving m utual anonym ity of the initiator and responder

w ith the help of trusted index servers that keep (bu t do not publicize) the w hereabouts of

the contents that are stored in the peers. Each peer sends an index of files they arc willing

to share with others peers to selected index servers periodically or when the percentage

of updated files reaches to a certain threshold. We use / to represent the in itiator. R to

represent the responder. S to represent the index server tha t I contacts, and p, (i = 1,2, ■)

to represent a peer. For conciseness of the presentation, we assume there is only one index

server. Section 7.5.4 discusses how multiple index servers will be involved in order to scale

a P2P system.

A simple solution is to have an index server act as an anonyinizing proxy hiding the

identities of I and R from each other and other peers. But this index server may becom e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r i ty a n d C o m m u n ic a tio n A n o n y m ity 154

a bottleneck making the system not scalable. Instead, we have the index server random ly

select several peers to act as middlemen. These middle nodes form a covert path for the

peer th a t possesses the content to send the content to the peer th a t requests the content.

We describe one intuitive protocol using m ix. and two new protocols, center-directing

and label-switching, which are advanced alternatives. In the rest of the chapter, we use

X —> Y : M to represent X sending a message AI to Y . We use K \ to denote the public

key of X . and { M } K to represent encrypting the message M with the key K.

7 .5 .1 A M ix -b a sed P ro to co l: an in tu it iv e so lu tio n

T he detail of the mix-based protocol is shown below:

Step 1: The initiator sends a request to 5 . The request is encrypted w ith S 's public

key.

/ -v S : { f i l c J D } K s

Step 2: S finds out that the file is possessed by R. it selects a list of peers p o .p i p/t

a t random , and builds a m ix w ith R as the first member of the path . I as the last

m ember, and with pt in the middle. We call this path mix. A m ix is of the form

{pe-{p\ -{ I- fa .hem ix)K Pk...)KPa)K[i. The item fakem ix . is introduced to confuse the last

node in the m ix . p*. so tha t the form at of a message passing through the middle nodes are

the same. So p*. cannot be sure th a t she is the last stop. In addition, it generates a DES

key K . It then sends a message? to R. The message includes K encrypted w ith R 's public

key. { f i l e J D } encrypted with the DES key K. K encrypted with / ' s public key. and the

m ix .

S -> R . { K } K n . { J i l e J D } K . { K } K , . m i x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 155

S tep 3: R ob tains K using its private key to decrypt { K } K r : it uses K to decrypt

the portion o f the message { f i l e J D } K and gets the file / based on the f i l e J D : it

uses its private key to peel mix to obtain po. and also the rest of the path . m ix ', i.e.

(p i...(/ . f a k e m i x) K Pk...)Kpn. It. encrypts the file / w ith K and sends a message to po:

R P o ’■ { f } K - \ K } K l - m i x '

Step 4: p, decrypts m ix ' using its private key to ob tain the address of the next member

in the m ix paths, and this also produces the rest of the path . m ix" . It then sends a message

to p,+ i. For pk . p it-i is I.

p, -+ p ,- i : { J } K. { K } K [. m i x "

S tep 5: I ob tains K using its private key. and uses K to decrypt the encrypted file.

We om itted the details on how the in itiator knows th a t the content is destined to it.

This m ust be done efficiently. There are three alternatives: (i) to have S also encrypt

f i le -1 D w ith the l a public key and have R send th is along with the content: (ii) to encrypt

a magic num ber and the DES key with / ' s public key: (iii) to encrypt f i l e J D in fa k c in ix

using the / ' s public key. In the remainder of the chapter, we assume that our protocols

choose one of the above alternatives.

The anonym izing path is selected by the trusted index server, and the mix routers are

selected am ong the peers. Having the index server perform a path selection, this scheme

becomes less vulnerable to traffic analysis since the peers’ public keys need only be exposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 156

to the index server. Otherwise, an eavesdropper who knows the peers' public keys may

reconstruct the p a th by applying the public keys in a reverse order. Furtherm ore, the index

server has the opportun ity to balance the load of th e peers that act as mix routers. In

this protocol, only the path is encrypted with an expensive public key encryption, and

the content is encrypted with a less expensive DES key. This arrangem ent makes the

scheme efficient. This scheme can be made more efficient by encrypting the mix path using

secret keys th a t are shared between the index server and each of the peers. The content is

encrypted by a key th a t is generated by the index server and is only known to I and R.

This hides the content from anybody except I and R.

To well defend against traffic analysis. 5 can have the responder pad the contents,

and the middle nodes can encrypt the DES-encrypted message pair-wise so th a t a message

appears different along the path. These enhancem ents can be done to all our protocols.

Figure 7.2 shows an example with two middle nodes.

Index Server

2: ({ K | K j j . (f i l c J D I K . | K | K X
ltfr (P | - U . f akemixIKp^Kpj jKj j |

l : | f i l c _ I D | K s

5 : | (l ' | K . { K) K . . f akcmix (Pi .{I . f a k c m i x | K p | | K p (J
Initiator Responder

Figure 7.2: An exam ple o f the M ix-B ased Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 157

7 .5 .2 C e n te r -D ir e c tin g

Alternatively. S can be used to reduce the num ber of encryption/decryption operations.

We describe two new protocols: center-directing and label-switching.

Instead of passing the m ix through the whole covert path in mix-based protocol, the

center-directing protocol has the index server send each node in the covert path its next hop

individually. The basic idea of the center-directing protocol is as follows. The index server

5 selects several peers to form a covert path. It directs the content through the path by

sending each middle node p, a pair < lal>cl{pl) .p l^\ > th a t is encrypted with p,'s public key.

The labels can be generated such th a t label(p,+\) = {label(pt) }KP] . T he labels uniquely

identify a message, and p ,^i is the next member in the covert path. W hen the peer p, sees

a message from a peer labeled T . it will change the label to {1}KP] ^ and forward the

message to p ,* j. Each p, keeps a hash table to synchronize between the message from the

index server and the message from its previous hop. The ph + x is a random generated node

number. Using the random node's public key to encrypt the request label each tim e, we

can defend against traffic analysis in the sense th a t (1) labels for the same request appear

differently along the covert path, and (2) the random generated node has no correlation with

the nodes in the covert path . This protocol takes advantage of the fact th a t encryption cost

is much lower than decryption cost in public key encryption. In contrast to the mix-based

scheme, this protocol uses messages to set up the path . Although th is incurs additional

cost in hashing, setting up the path can be done in parallel. The big difference lies in the

size of items being encrypted and decrypted. The server needs to encrypt k < label, p, >

pairs. Each peer decrypts once to reveal the next hop. and encrypts once to produce a label

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 158

for the next hop. Therefore, th e sizes of items th a t need to be encrypted by public key

encryption are independent of th e path length.

The details of the protocol are shown below:

Step 1: T he initiator I sends a request to S.

r - * S : { f i l c J D } K s

Step 2: S first generates k th a t is the number of middle nodes in the covert path. S

then generates a unique label for the request, n. and the first middle node in a covert path.

Po- S also generates a DES key K . In addition, it random ly generates ano ther node num ber

used to convert the request label in node R. p}q. S then sends the following message to R:

S -> R : { K } K H. { n . f i l e J D . p 0. pJn} K . { K } K ,

S tep 3: S generates the next stop of po. p\. and another random node num ber pJx. It

converts the request label n to {n }K Pjn ■ S then sends a message to node po:

S -> po : { n \ K Pjn. {pi-pj, }KPn

S tep 4: R obtains K using its private key to decrypt { K } K r : it uses K to decrypt the

portion of the message { f i l e J D } K and gets the file / based on the f i l e J D : it converts

the request label n to { n } K p . It encrypts the file / with K and sends a message to po:

R ^ p Q : { n } K Pi(i. { f } K . \ K } K ,

S tep 5: 5 generates the next stop of p,. p |4.i. and another random node num ber Pj,_r

It converts the request label { . . . { n } K Pj<) . . . }KPj ^ to { ... { n } KP]o . . . } K Ph . For pk. pk+,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 159

is I. S then sends a message to node p,:

S - r p , : { . . . { ti} KPjo . . . } K Pjt. {p t* \ . ph+l } K Pl

S tep 6: pi first matches the request label coming from the index server and the request la

bel coming from last stop. { ... { n \ K P](j . .. } K Pi . so th a t it finds the next stop for the request.

p,+1 . It then converts the request label { ... {n } K Pifj . . . } K Pi to { . . . {n } K Pin . ..} K Pi> (. and

sends a message to p, + |. For p*. pt^-i is / .

R -> po : {• • - { n } K Pjo . . . } K Pj^ . { f } K . { K } K ,

Step 7: I obtains K using its private key. and uses K to decrypt the encrypted fill?.

Figure 7.3 illustrates this protocol w ith two middle nodes. Each middle node uses

an encryption operation to compute the label for setting up the path instead of using a

decryption operation.

Index Server; 2 I I KI K, , . | n . f i l e J D . p () . P j0IK. I KI K
I I f i l e J D I K*

Initiator Responder

7

f> II I n | K | K . I f IK. | K] K ,|

Figure 7.3: An example of the Center-Directing Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7. Data Integrity and Communication Anonym ity 160

7 .5 .3 L ab el-S w itch in g

T he label-switching protocol further reduces the messaging overhead of center-directing by

pu tting more sta tes on the peers. R ather th an sending the middle nodes labels and next

hop addresses on-the-fly. the index server produces a path table beforehand. The table is

produced such th a t each peer p,. as a destination, is associated w ith several path options.

The path is of the form pz — py — ■■■ p, (L). This table is broken into sub-tables and

d istribu ted to peers (encrypted with their public keys). The sub-table of p} consists of

a list of pairs of the form (L .nexthop). For every appearance of pj in the path table.

. . . — Pj — pu. — . (L). the pair (L . p ,L.) is added to p}'s sub-table.

Table7.1 shows an example path table w ith -1 options for each peer. Table?.2 shows

some sub-tables derived from Table?. 1. In th is example, each path option has two middle

nodes. The num ber of middle nodes is not fixed in our design. It has already been shown

th a t variable path-length strategies perform b e tte r than fix-length strategies[64]. Assuming

th a t the index server needs to prepare a pa th from node 5 to 0. it can select am ong 4

paths from entry for node 0: 2-.'1-0(L8). 4-G-0(L-i). :i-4-0(L4). and I-7-0(LI) . Suppose LA

is picked. The message will route to node 3. 4 and finally to 0. w ith each peer using their

own sub-tables.

Table 7.1: Path Table
Peers path

0 2-3-0(L8) 4-6-0-(L3) | 3-4-0(L4) !-?-()(LI)
1 j
2

The detail of the protocol is shown below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 161

Peerl
Table 7.2: Sub-Tables
Peer2 Peer3

LI 7 L8 3
Peer4

L8 0
L4 4

L3
L4 0

Step 1: The initiator I sends a request to S.

/ -> 5 : { f i l e J D } K s

Step 2: 5 randomly selects a p a th in the entry for I in the pa th table (say po —p\ . . . p/t -

I), and a key K . Assuming that th is pa th has a label I. It sends the following message to

R :

5 - > R : { l . pQ} K . { K } K R. { K } K ,

Here po is the first middle node in the path .

Step 3: R sends a message (the label) to po:

R - f po : /

A persistent connection will be established between R and po if the connection does not

already exist. This connection is bound to the label I. Each p, sends a message to p.^i that

is obtained from the sub-table of p , .

p, -> p.^i : I

A persistent connection is set between p, and p ,- i .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity

Step 4: A message is sent along the persistent connections from R to I.

162

R - l -> / : { f } K . { K } K [

We use —I —> to represent the persistent connection identified by the label I.

S tep 5: I ob tains K using its private key. and uses K to decrypt the encrypted file.

This protocol does not need the synchronization associated with center-directing pro

tocol: it does not need as much encryption/decryption operations compared with the mix-

based protocol: the only encryption and decryption occurs during the sub-table distribution.

The overhead conies from the spaces for storing the path table and sub-tables and the time

spending on table look-ups. Even though the path table kept in the trusted index may be

a target of attack , m ultiple paths for a given source-destination pair adds one additional

level of defense.

To simplify our presentation, we have assumed th a t we use a single label for the entire

path. This protocol can be improved for stronger anonym ity by introducing a pair of labels

(like the center-directing protocol) for each hop rather than using a single label for the

entire path, so th a t a label appears differently along the covert path.

7 .5 .4 M u lt ip le T ru sted In d ex Servers

In order to scale a P2P system to a large size, we will use m ultiple trusted index servers.

Since m ultiple proxy servers are always available in an Internet region, this arrangement can

be easily set up in practice. Besides scalability, the arrangem ent of multiple index servers

will improve the reliability of a P2P system. As a peer node joins a P2P system, it will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 163

register itself in m ultiple index servers. Servers may be down sometimes but unlikely at the

same time. Thus, the indexing service is fault tolerant and much more reliable than the

system with a single index server. However, use of m ultiple index servers also raises a load

balancing issue. W ithout proper scheduling and redirection of peer requests, the workloads

among the index servers can be unbalanced, generating some hot spot servers and leaving

some others idle or lightly loaded.

We will adap t our own load sharing schemes [133] to make resource allocations in the

P2P system. Each index server node m aintains a current load index of its own a n d /o r a

global load index file th a t contains load s ta tu s information of other index server nodes. The*

load sta tus can be the number of registered peers, the average number of handled requests,

storage for index of files to be shared, and so on. There are two alternatives to balance the

workloads among the indexing servers w hen a peer wants to join the system .

• index-server-based selections. W hen a peer node joins the system and asks for an

indexing service, it first random ly selects an index server. The load sharing system

may periodically collect and d istribu te the load information among all index server

nodes. Based on the load information of all index server nodes, the selected server

will then suggest a list of lightly loaded index servers, including or excluding itself, for

the peer node to be registered. One advantage of this approach is reliability. W hen

a peer node leaves the system, it will inform one of the index nodes. This node will

carry this message when it broadcasts its load sta tus to other index server nodes.

Since all index servers are trusted , a selection of most lightly servers is guaranteed.

One disadvantage of this approach is th a t the global load statuses have to be updated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 164

frequently among all the index servers to keep each node informed.

• peer-node-based selections. When a peer node joins the system and asks for an indexing

service, it first broadcasts its request to all the index servers. Each index server will

then retu rn its s ta tus back to the peer node. The peer node will select a list of index

servers to be the hosts, which are hopefully the most lightly loaded. W hen a peer node

leaves the system, it will broadcast this s ta tu s change message to all the index server

nodes. In contrast to the alternative of index-server-based selections, this alternative

does not require updating the load statuses globally among the index servers because

a peer node will collect them each time it needs them . However, reliability is not

guaranteed because peer nodes are not trusted , and they may not follow the load

balancing principle when they select index server nodes.

There are also two alternatives when a peer node requests a file. The first a lte r

native is stra igh t forward. The peer node simply sends the request to index servers one by

one. W hen it reaches the index server that, has the index of the requested file, the file will

be anonymously delivered to the peer node from a path arranged by the index server. The

second approach involves two steps. The peer node first, broadcasts a query message to all

the index servers. The index servers that have the indices of the requested file will inform

the peer node about their service availability. The peer node will then send the request to

the index server that has responded earliest,, for an anonymous file delivery. If the index

server does not deliver the file for some reason, the peer node will try to send the request

to other index servers th a t responded later than the first one. Although broadcast is not

involved in the first alternative, the search is not as objective as the second alternative. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity

general, we have no strong reasons favoring one approach over another.

165

7.6 Anonym ity in Pure P2P

We now describe a technique to achieve m utual anonym ity in a pure P 2P setting without

any trusted th ird party. We call it .shortcut-responding protocol. In th is protocol, a peer

along the requesting p a th can elect itself to receive document on behalf of the initiator,

thereby shortening the returning path.

We describe the details below:

Step 1: T he in itiator I randomly selects a list o f peers, r o . n r/tr . and builds a one

time replyblock with / as the last member of the path , and with r, in the middle. The

remailer replyblock is of the form (r t r . (r^T- i ■■■(ro-(I- f a k e m ix)K rQ) K rx . . .)K ricr). Then I

random ly selects a peer. ;>q. sends it the message:

I Po '■ {r. replyblock. K i }

where r encodes the request.

Step 2: A peer p, can elect itself to act as a re lay o f the returning p a th w ith a probability

pv. We call pv the shortcut probability. If p, has not elected itself, the request remains as

{r. replyblock. Kt) . l i p , has self-elected, the replyblock and the request will be left in this

node and the request form at is changed to { r .r e la y : p , . Ki } . It then decides whether to

select p,+1 or broadcast the request with probability pb. If p, has decided to broadcast the

message, it will m ark the message to avoid broadcasting it multiple tim es. Therefore, for

p,. the requests it can receive is one of the two form ats: f o r m a t 1 : {r. replyblock. K /} or

fo rm a t2 : {r. relay : p,, K/ } .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 166

S tep 3: If p, can not find the content in local storage, it will save the request. We call

p, as R if p, finds the content in local storage. R encrypts the found file content using K /.

If R has the request format of f o r m a t 1. R contacts the first node in the replyblock. rj.r .

then sends the encrypted file th rough the replyblock to / .

^ r e p l y b l o c k ' I • r A f } K i

If R has the request with the fo rm at.2. it selects a list of peers o o -° i ° k o at random.

and builds an Onion with oo as the first member of the path , relay as the last member, and

w itho , in the middle. The O nion is of the form {oq. (o\ ...(ok„. (re lay . f a k e m i x) K 0kn)K0t,ii_l ...)K0,)).

The R first sends the encrypted file through the Onion to the relay. If the request has not

been discarded in the relay, the relay then sends the encrypted file through the replyblock

to I. It discards the request so th a t duplicated responses can be dropped.

R —?-------> relay —- • / : r. { f) K iO n io n '* replyblock VJ 1

S tep 4: I uses her private key to decrypt the encrypted file.

Figure 7.4 illustrates the protocol with an example. Peer p% elects itself as a relay

to receive the content on behalf of I. T he peer tha t possesses the content R sends the

response to p% through the O nion. The peer p^ further sends the response to I through the

replyblock.

This protocol has several advantages: (1) The response path can be shorter than the

requesting path because a peer who receives the request and has the content will send the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 167

Replyblock

r. relays — J r. relays

Relay
Initiator

r. rclavr

Onion
Responder

Figure 7.4: Ail example of the shortcut-responding Protocol

content, through an O nion and a replyblock instead of going through the requesting path

to the initiator. (2) D uplicated responses can be discarded earlier. (3) The protocol does

not need special nodes to keep indices of sharing files like A PFS. thus eliminating the index

maintenance overhead and the potential problem of inconsistency between index records

and peer file contents. (4) T he protocol does not need to broadcast the requested file like

P ’ while it still keeps m utual anonymity, so the efficiency is improved compared with P ’.

(5) The protocol uses replyblock th a t is also used in FrecHaven [33]. where the responder

contacts directly to the replyblock so that the first stop in the replyblock knows who the

responder is. In contrast, shortcut-responding protocol has the responder send the requested

file to a relay through an O nion, and then has the relay send the file back to the initiator

through the replyblock so th a t nobody in the requesting path and responding path can

guess the identity of in itia to r and responder with certainty. The initiator and responder

also can not guess each o ther with certainty. Here is a related question to ask. If a node'

with a request of f o r m a t 1 finds the requested file, it then contacts the replyblock and sends

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 168

back the file. In this case, can the first stop in the replyblock guess the one who contacts

her is the responder? The answer is no. because the first stop in the replyblock can not

distinguish w hether the one who contacts her is the responder or a relay. Here is another

proposed alternative. Upon receiving a request w ith f o r m a t 1. if a peer node realizes that

the requested file is locally allocated, she will not send the file through the relay because the

first stop in the relay can guess that the one who has ju st been connected is the responder.

Instead of im m ediately providing the file, this peer forwards the request again. But this

particular request is marked by her so that she will accepts a later broadcast request. As

soon as she receives th is request again from a broadcast, she sends the file back through

the O noin and replyblock.

7.7 Analysis

We analyze the degree of anonymity each protocol can achieve, and compare their costs in

term s of num bers of encryption/decryption operations.

7 .7 .1 S e c u r ity A n a ly s is

We analyze how the different protocols can defend against a ttacks from the various parties in

the P2P networks. Because the situations for the in itia to r and the responder are sym m etric,

we consider only how different parties can guess the identity of the initiator.

The responder: To the responder, all o ther peers have the same likelihood of being

the in itia tor. The probability that the responder correctly guess the identity of the in itiator

is (n is the to ta l num ber of peers). Instead of m aking a random guess, the responder

can bet th a t the peer to whom she sends the message is the initiator. She is only able to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 169

make the right bet if there is 110 middle node selected. We assume th a t probability that

there are k middlemen is p(k). the probability th a t the responder makes the right bet is

p(0).

A m iddle node: We consider two cases: In the first case the m iddlem an makes a

random guess, because the only thing she can be sure about is tha t she is not the initiator.

In this case, the probability it makes a correct guess is ^ y . In the second case, the

middlem an bets th a t the peer to which it sends the message is the in itia tor. If there are

k m iddlemen, only one of the k m iddlemen will make a correct bet. The probability that

a m iddlem an can make the correct bet is 5Z/t=f H F - anc ̂ P(^) *s ^ 10 probability that

there are k middlemen.

In both cases, the probability will become sm aller if multiple peers com m unicate simul

taneously. For the protocols with the index server, even if a middle node can figure out who

is com m unicating w ith whom, it still cannot figure out what is comm unicated.

A local eavesdropper: An eavesdropper is an entity that can m onitor all local traf

fic. The worst case is when there is only one pair communicating (or the messages being

com m unicated are so distinctive such th a t the eavesdropper is able to figure o u t who is com

m unicating w ith whom). Even in this worst case, the eavesdropper still cannot figure out

the content w ithout the cooperation either from the responder or initiator (for the protocols

with the index server) or one of the m iddlem en (for the shortcut-responding protocol).

C ooperating Peers: We consider cases where a t least two middle nodes cooperate,

and assum e th a t neither the responder nor the in itiator is involved. Two things make it

hard for cooperating nodes to guess the identity of the initiator: (1) the m iddlem en do not

know for sure how many communications are proceeding simultaneously, and (2) the format

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonymity 170

of a message passing through the m iddle nodes is the same. If k collaborating peers were

to make a random guess, the probability th a t they make the right guess is . because all

peers other than the k peers can be th e initiator. If the collaborating peers were to make

a bet. they can first eliminate all the peers th a t are communicating w ith peers th a t they

know for sure is not the initiator. T he worst scenario is when at least m — I out of all m

m iddle nodes are involved. Even in th is case, these middle nodes only have ^ probability

of correctly guessing that there is only one communication is conducted. T he probability

for them to correctly bet the identity o f the initiator is Table 7.3 sum m arizes the results

and compares them with P n and APFS.

Table 7.3: Degree of Anonymity

O ur Protocols P 7 A P F S
Guess Bet Guess B et

Initiator l
n - l P (0) 1

n - 1 pi o)
Responder ' 1

n - l P (0)
1

n -l p(o)
Middle node 1

n - l
1 ^ n - 2 p(k)

n—2 k— 1 k
1

n -l
J v->n-2 p(k)
ti — 2 2-*e k= I k

Cooperating
Peers

1
n-k < 7 . if they are not certain that

there are multiple messages

1
n-k < :j. if they are not certain that

there are multiple messages

For all protocols, we can add the following operations to increase the anonym ity degree

by introducing more confusion. The protocols prepare multiple covert pa th s for each request.

The responder splits the requested file in m ultiple parts. The parts o f the file can be sent,

back to the in itiator through different covert paths. The different parts of the file can be

easily combined, based on sequence num bers given by the responder. T he Sham ir algorithm

can also be borrowed to split and combine files. W ith this algorithm , a file can be split into

n parts and any k parts of them can reproduce the original file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r ity a n d C o m m u n ic a tio n A n o n y m ity 171

7 .7 .2 C o st o f th e D ifferen t P r o to c o ls

In Table 7.4. we summarize and com pare the costs of the protocols in term s of num bers of

encrypt ion / decrypt ion operat ions.

For the center-directing protocol, the tim e spent on RSA for se tting up the anonymizing

paths can be less than th a t of mix-based protocol for two reasons. F irst. RSA encryption is

much faster than RSA decryption. Center-directing uses more encryption than decryption

operations. Second, some steps are parallelizable. For the exam ple in Figure 7.3. steps 3

and 4. and stops 5 and 6. The messages transferred in steps 3 and 5 are smaller than those

in steps 4 and 6. so steps 3 and 5 may be finished before steps 4 and C.

Table 7.4: Comparison of Protocols with k middle nodes in each covert path

Protocols Mix-based Center-directing Label-switching Shortcut
MD5 2 2 2 N /A
DES

(Encrypt. Decrypt)
path 1. 1 1.1 1. 1 0.0

content 1. 1 1.1 1. 1 0.0
RSA

(Encrypt. Decrypt)
path 4 *4— At. 4 —t— At 4 + 3 fc. 3 + k 3.3 2k

content 0 .0 0.0 0 .0 1.1

7.8 Performance Evaluation

We estim ate the additional overhead incurred in the protocols for achieving m utual com

munication anonymity. O ur testbed is the browser-sharing environment, where clients share

cached Web contents [138]. The clients are the peers, and the proxy server is the index

server. The proxy m aintains an index of all files that are possibly cached in its clients'

browser caches. If a user request misses both in the client's local cache and in the proxy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r i ty a n d C o m m u n ic a tio n A n o n y m it y 172

cache, the proxy will search the index file in an a ttem p t to find the file in another client's

browser cache. If the file is found in a client's cache, the proxy can then instruct this browser

to forward the file to the requesting client. O ur m etric is the additional response tim e for

each request hit in a rem ote browser cache compared w ith the response time of a request

hit in the local browser cache. The increment comes from two m ajor sources: tim e spent

on transferring the requested d a ta from the remote cache to the local cache, and tim e spent

on the protocols.1

We use trace-driven sim ulations and the Boeing traces [12] for the evaluation. We

selected two days' traces (March 4 and March 5. 1999). There are 3996 and 3659 clients

involved in these two days' traces, representing the to ta l numbers of requests of 219.951

and 184.476. respectively. The to tal requested file sizes for the two traces are 7.54 and 7.00

Gbytes.

The results show th a t the average increment of the response time caused by the protocols

is trivial. We present detailed performance results in the subsections that follow.

7 .8 .1 D a ta T ransfer T im e th rou gh P ee r N o d e s

We estim ate the da ta transfer tim e through peer nodes based on a 100 Mbps E thernet in our

sim ulation. The bus contention is handled as follows. If m ultiple clients request bus service

simultaneously, the bus will transfer documents one by one in FIFO order distinguished

by each request's arrival tim e. O ur experiments based on the ping facility show that the

s ta rtu p time of da ta com m unications among the clients in our local area network is less

‘We have neglected the costs foT building and looking up the hash tables because the hashing cost is
insignificant comparing with the other costs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r i ty a n d C o m m u n ic a tio n A n o n y m ity 173

th an 0.01 second. Setting 0.01 second as the network connection time. Table 7.5 presents

the intra-network da ta transfer tim e for each trace. We can see tha t the am ounts of d a ta

transfer times and the bus contention tim es spent for communications am ong clients on

bo th traces are very low.

T r a c e s T o t a l W o r k lo a d

S e r v i c e T im r

F i l r s T r a n s fr r r r d

a m o n g p e e r s

S iz e o f a i l f i l e s

m C o l u m n .1

D a t a T r a n s fr r T im r v ia 2

m id d le m e n o f C o lu m n 2)

D a t a T r a n s f r r C’o n t r n t i o n T im e

fo r B u s o f C o lu m n V

B o r in g . 3 / 4 86.398.9 s 12.647 612 MB 177.82 s (.21%) 0.00003 s (.00002%)
B o r in g . .1 / 5 86.175.8 s 9.868 607 MB 149.64 s (.17%) 0.005 s (.0034%)

Table 7.5: Latency

7 .8 .2 O verh ead o f M D 5 , D E S and R S A

T he source programs of MD5. DES and RSA are obtained from [104] [106]. T he machine

we used for the experiments is a PC with a 1000 MHz Pentium III CPU and 128 M bytes of

memory. We used a large num ber of cached files in Microsoft's IE5 browsers as the input

files for the tests. We ran each test 10 times. T he average of 10 m easurem ents is used.

The running times of MD5 and DES are proportional to the sizes of the input files.

O ur measurement results show that MD5 perform s at 419 Mbps and DES’s speed is 43.3

Mbps. The ratio of the RSA's running tim e to the input file size is not linear. RSA can

encryp t/decryp t at a speed of 543/45.4 Kbps witli a 512-bit value. 384/24.8 Kbps with

a 768-bit value, and 275/14.6 Kbps with a 1024-bit value. It should be noted th a t the

decryption speed of RSA is 12-19 times slower than the encryption speed. T hese measured

results and the results in Tables7.4 and 7.5 are used in our simulations to calculate the

overheads of MD5. DES and RSA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r i ty a n d C o m m u n ic a tio n A n o n y m ity 174

7 .8 .3 A d d it io n a l S to ra g e

The label-switching protocol requires additional storage to keep the path table in the index

server and sub-tables in the peers. We allocate 2 bytes for each peer identification and 2

bytes for each p a th identification. The 2 bytes can represent up to 65536 different identifi

cations. For each en try of destination described in Figure7.1. 26 bytes are required in the

index server. For the trace with 3996 peers, the total storage for the path table is 26*3996.

which equals to 101 Kbytes. There are a to tal of 3996*4 paths, and 4 bytes are needed for

each entry of a p a th in a sub-table (see Figure7.2). The storage needed for each peer is

less than 3996*4*4. which equals to 62Kbytes. These storage requirem ents are sufficiently

small for the path table and sub-tables to be held in memory for quick accesses.

7 .8 .4 C o m p a r iso n s o f P ro to c o ls

We have shown the d a ta transfer times and the costs of MD5. DES and RSA operations.

Here we compare the accum ulated overheads of the protocols. Figure 7.5 compares the total

increased response times and their breakdowns for the protocols using the "Boeing March

4 trace" and ‘‘Boeing March 5 trace" with 2 and 5 clients acting as middle nodes.

The perform ance results in Figure 7.5 show th a t center-directing and label-switching

protocols generate very low overhead, while the other two have relatively higher overhead.

The label-switching protocol shows its best performance. It is not desirable if the response

time of a request h it in a rem ote browser cache is larger than th a t of the sam e request to

the server. This is not a concern because our experim ents show that the average response

time increment is less than 8.4 m.s when we use 5 middle nodes for both traces. The two

protocols with lower overhead only increase the response time to about 3.4 m.s when 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r i ty an d C o m m u n ic a tio n A n o n y m ity 175

middle nodes are used.

Boeing March 4 Trace

□ Transfer

c cm : coi«i lS J I lS .I i

_ 9

la
! 7 ■
I® •
t>E 5 ■

Boeing March 5 Trace

□ Transfer
□ RSA
■ DES
■ MOS

if .. 8
-S.V M r M S .

Figure 7.5: Breakdown of data transfer and protocol overhead with 2 and 5 middle nodes for Boeing
March 4 trace (left) and Boeing March 5 Trace (right). MB(k) represent mix-based protocol with
k middle nodes. Similarly. CD. LS and SR represent center-directing, label-switching, shortcut-
responding. respectively.

The tim e spen t on RSA for the m ix-based protocol increases as the num ber of middle

nodes increases. In contrast, the times spent on DES and RSA for the center-directing and

label-switching protocols arc independent o f the num ber of middle nodes. The number of

RSA operations of center-directing protocol is the highest (see Table 7.4). However, most

of them are low-cost encryption operations for small messages (such as a request, labels,

node IDs), which are parallclizable. Both center-directing and label-switching protocols

show very good scalability.

Com pared w ith o ther three protocols, the tim e spent on RSA is considerably high for the

shortcut-responding protocol. This is because we use a public key to encrypt the response

content th a t is usually much larger than a message like a request, a label or a path. The

efficiency can be improved if we encrypt the response content with DES keys that are

encrypted using public keys in a pair-wise fashion. The traffic analysis can be defended.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta In te g r ity a n d C o m m u n ic a tio n A n o n y m ity 176

but the content will be exposed to all middle nodes in a covert p a th .2 The RSA cost is

high, bu t it is a constant. So the shortcut-responding protocol scales well.

The d a ta transfer tim e increases proportionally to the increase of the num ber of middle

nodes. The transfer time of label-switching is lower than that of o ther protocols because

it uses a persistent channel for continuous da ta transfers between the the same pairs of

sending and receiving nodes. T he d a ta transfer time is still a dom inant portion of the

to ta l overhead. We should limit the num ber of middle nodes to balance the two basic

goals: achieving mutual anonym ity and quick response time. P aper [64] shows that the

anonym ity degree may not always monotom cally increase as the length of communication

path increases.

7.9 Discussion

We have analyzed a mix-based scheme and several new protocols along with our empirical

experience. Wo now discuss how to select the protocols based on the ir m erits and limits.

How to select protocols by considering both efficiency and anonym ity degree!

For a pure P2P system, the shortcut-responding protocol can be a good candidate, and

its cost can be controlled by properly selecting the number of m iddle nodes in covert paths.

For a system with a trusted th ird party, such as a proxy and a firewall, this party can

be utilized to provide some centralized support. W ith such limited support, both reliability

and efficiency of mutual anonym ity protocols can be significantly improved.

"In all of our protocols, the response content is only visible to the initiator and responder, but is not to
any other nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 7. D a ta I n te g r i ty a n d C o m m u n ic a tio n A n o n y m ity 177

If storage space is not a concern, the label-switching protocol is the best choice in terms

of efficiency. In fact, the storage requirem ent of this protocol can be acceptable for systems

of m oderate size (thousands o f nodes). The other advantages of this protocol are: it uses

minimal numbers of encryption/decryption operations: it does not need to keep all private

keys in the third party, which can be vulnerable if the th ird p a rty is attacked. Although the

th ird party keeps a path tab le , there are multiple options for each destination. Therefore,

even if the path table is exposed, it can still be very hard for an attacker to figure out which

path is used for a specific d a ta transfer.

If storage space is lim ited, the center-directing protocol is a good candidate. The mix-

based protocol can be used if the RSA costs are tolerable.

Unlike the mix-based protocol, the cipher costs of center-directing and label-switching

protocols are independent of th e path length. In the case th a t a large number of middle

nodes are required to enforce s trong anonymity, center-directing and label-switching are the

best choices.

What if a node in a covert path is down ?

All covert-path based protocols can have this problem. T he center-directing protocol

could handle this case very well. Since the trusted index server dynam ically generates the

next node in a covert path, it is easy for the index server to generate another node when it

finds th a t the node it ju st generated is down.

APFS. shortcut-responding and mix-based protocols share the same concern for this

problem. APFS and shortcut-responding protocol uses Onion as the base. A selected

Onion passes through a whole covert path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 178

In the mix-based protocol, the trusted index server generates a m ix that also needs

to pass through the whole covert path . W hen a node in the covert path is down, the

communication path needs to be recovered. One solution for th is is to let the in itiator send

the request again when it can not get response w ith in a certain period of time. A nother

covert path will be selected, in which all middle nodes are alive hopefully.

In the shortcut-responding protocol, if the relay can not get response within a certain

period of time, it will send back a message of "NO R E SPO N SE ” . W hen the initiator receives

a message of "NO RESPO N SE", it means that the O nion p a rt is down and the replyblock

part works. If the in itia to r can not get anything w ith in a certain period of time, she can

not judge which path is down (maybe both are down). The request has to be sent again.

Because the replyblock and O nion are one-time paths, hopefully all the selected nodes for

the new request to form these paths are alive.

In APFS. for some initial requests, such as a request to volunteer to be a server, a

request to ask for servers, or a request to update index, the requests will be resent if they

can not get response w ithin a certain period of time. For an in itiator who already gets N

m atches for its request, there are also two covert pa ths betw een the initiator and responder.

One is a path between the responder to its tail node, and another one is a path between

the tail node and in itiator. Because the comm unications are two-directional, the in itia to r

can not judge which path is down if she can not get response, even with the help of the

tail node. So the in itia tor has to send the same m atch request or another match request

again. But the initiator will not need to start from the very beginning to request volunteer

servers. APFS is more advanced than the shortcut-responding protocol in the sense th a t it

will not sacrifice too much efficiency when a node in a covert pa th is down. But APFS still

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7. Data Integrity and Communication Anonym ity 179

can not compete with the center-directing protocol, because only one covert pa th needs to

be handled in center-directing protocol.

T he label-switching protocol generates a pa th -tab le in a trusted index server beforehand,

and peers keep relevant portions of the path tab le as subtables. Although the p a th table

and subtables are updated periodically for security reasons, the protocol has to trade-off

efficiency if a middle node is down. One solution for this is to let the in itiator send the

request again with a note to the trusted index server th a t its first request for the sam e file

not been responded to. when the initiator can not get response within a certain period of

tim e. The index server will select a different covert pa th in the path table. Hopefully all

m iddle nodes in this covert path are alive.

W hat i f a file can not be found due to an obsolete index ?

All index-based protocols, such as m ix-based, center-directing, label-switching, and

A PFS. can have this problem. The index servers keep an index of files that peers are

willing to share. The indices are updated by th e peers periodically. It is possible th a t the

file has already been replaced in a peer, but the index still shows its existence.

W hen this happens in the mix-based, center-directing, label-switching protocols, the

responder just informs the trusted index server that she can not find the file. T he index

server then will contact another peer who has the file or send back a message of "NO FILE

FOUND" to the initiator. Another alternative is th a t the responder sends the message of

"NO FILE FOUND” to the initiator through the covert path as usual. Then the in itia tor

sends the request again to the index server w ith a note that the responder can not find the

file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication Anonym ity 180

In APFS, the responder reply a message of “NO FILE FOUND" to in itia to r. Since the

in itia tor was responded N matches for her request, she will ju s t try to get the file from

another match if she can not get the file from the first match.

Comprehensively considering all factors, the center-directing protocol is the best. If

efficiency has a high priority over reliability, the label-switching and shortcut-responding

protocols work well for a system w ith a trusted third party, and a system w ithout any

central controls, respectively.

7.10 Chapter Conclusion

Providing a reliable and efficient anonym ity protection among peers is highly desirable in

order to build a scalable and secured P2P system. In this chapter, we have presented several

protocols to achieve m utual anonymity in a P2P file-sharing environment. O ur first group of

protocols take advantage of the existence of trusted third parties to improve efficiency and

reliability, and use them to prepare the covert paths for anonymous com m unications. The

o ther proposed protocol, shortcut-responding, combines both broadcast and self-organizing

covert path techniques to achieve m utual anonymity in pure P2P system s w ithout any

trusted central controls. After several hop-to-hop requests, this protocol broadcasts the

request that is normally a small message. It then sends back the requested file back to the

in itia tor through a dynamically created covert path instead of broadcasting, achieving both

comm unication anonymity and efficiency.

The protocols utilizing trusted th ird parties may have three potential lim its. F irst, these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. Data Integrity and Communication A nonym ity 181

trusted th ird parties may become single points o f failure. This potential problem can be

addressed by our proposed methods of m ultiple index servers. In addition, we can enforce

anonymous comm unications between any peer to the trusted servers, hiding their identities

and locations.

Second, one may have a concern about scalability of P2P system with the involvement

of trusted parties. Specifically, we may not have enough trusted parties to handle the

increasingly growing Internet user community. We believe this is not a necessary concern.

The client/server model will continue to play its im portan t roles and continue to co-exist

with the P2P model. Thus, the number of tru sted servers will proportionally increase as

the num ber of peers increases.

Finally, a P2P system with the involvement of trusted parties may not be completely

open and free, but may put some restrictions on peers. For example, a peer has the freedom

to join and leave a pure P2P system any time. A lthough a peer still has this freedom in our

system, she needs to do registration to a pre-defined index server(s). In fact, we view the

involvement of the trusted parties for this respect positively. Researchers in the distributed

system com m unity have made a long-term effort to a ttem p t to build trustw orthy systems

out of un trusted peers. We believe that this principle applies to P2P systems.

The performance and robustness of a P2P system to a great extent depend on the

capacity of trusted servers, and the suitability of peers to act as middle nodes. A strong

P2P system should be self-organizing, and adaptive to dynamic application dem ands and

network condition changes. When a peer is used for some centralized function (e.g.. index

servers), some reputation system must be used to regulate their use. We a ttem p t to follow

these principles in designing our protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Prototype Im plem entations and

Initial R esults

In order to implement the ad d itio n a l comm unication and computing functions in each client,

the security and integrity pro tocols between clients, and the data management schemes for

browsers-awarc caching, we have bu ilt a system infrastructure based on existing client and

proxy servers. The in frastructu re consists of two parts: a client daemon to interface its

browser and to communicate w ith the proxy, and a browsers-aware proxy server. Coordi

nating the operations between th e two sites, we are able to build a secured browsers-aware

caching system. The system is s till in its prototype stage. Songqing Chen was involved in

part of the design and im plem entation.

8.1 A client daemon to interface the browser and com m uni

cate with the proxy

We have selected the mozilla (h ttp ://w w w .inozilla .o rg . or netscape) software as the working

browser system since it is widely used in applications. Instead of revising the browser source

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.inozilla.org

Chapter 8. Prototype Implementations and Initial Results 183

code, we have built a client daemon interfacing the browser and com m unicating with the

proxy. This approach makes the commercial browser software still portab le, and keeps its

independent functions. T he client daem on consists of a pair of parent-child processes at

the user level. The child process serves as a receptionist th a t “listens" a t a reserved port

to incoming messages of requesting d a ta files from the proxy. If such a message is received,

the receptionist searches and fetches the file from the client browser and sends it back to

the proxy or sends it to a target client. The parent process serves as browser file index

manager. T h is manager periodically checks the status of file changes in the browser, and

timely sends the index updates to the proxy. Three major da ta m anagem ent functions are

implemented to coordinate caching activ ities between browsers and the proxy.

• make.a.browser.caching.decAsion. T his function decides w hether the arriving docu

ment should be cached in the local disk. The decision is m ade based on a threshold

value of the local requesting counter.

• makc-a-proxy-cachmg-decAsion. T his function decides whether a docum ent requested

by ano ther client should be cached as a shared document in the proxy. The decision

is m ade based on a threshold value o f the global requesting counter. For this purpose,

a port is reserved for a dedicated communication between a browser and the proxy.

W hen a client sends back a docum ent th a t proxy requests, it will use the same reserved

port.

• index.file .management. This user function dynamically m onitors the sta tus of the

local browser docum ent index files. Whenever sufficient am ount of local files are

replaced (for example, a 1 0 % change) and the network is not busy, it will send the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. P roto type Implementations and Initial Results 184

related item s based on replaced files to the proxy for updating its browser index file.

W ith these three functions, the client daemon adds simple and sufficient functions to

a client browser so th a t it is able to actively communicate w ith o ther clients directly or

through the proxy. T he client daemon is activated at the tim e when the system is booted.

Figure8 .1 illustrates the organization of the client daemon and its interface with the netscape

browser.

Send a request

Receive requsted data

Receive a request from proxy
(a reserved port)

Send data & decisons to proxy
* — — --- O

via the same socket

Send updated index information to proxy

Figure 8.1: T h e organization o f client daemon to interface with a client browser and the proxy.

8.2 A browsers-aware proxy server

We have selected the Squid proxy server (http://w w w .squid-caclie.org) as the working sys

tem. Besides creating a global browser index file in the proxy, throe additional functions

make_a_
browser
caching,
decision

proxy_
caching.
decision

index_file_
management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.squid-caclie.org

Chapter 8. Prototype Implementations and Initial Results 185

are added to the proxy server:

• check-index.file. This function checks the global browser index file after a miss occurs

in the proxy. If the index file search is successful, it sends a d a ta request to the target

client.

• cache.datajn.proxy. This function caches the da ta after receiving a positive decision

from a client.

• globaLindex.file.management. This user function m aintains and updates the global

browser index file upon receiving a new file from an upper level server or updated

browser file status from a client. For this purpose, a port is reserved for a dedicated

comm unication between a browser and the proxy.

Figure 8.2 illustrates the organization of the proxy daemon and its interface w ith the

Squid proxy.

8.3 Overhead M easurem ent and Analysis

There are three major item s of additional operations involved in browsers and proxy if an

object can be provided by another browser instead of going to a Web server.

• browscr-index file searching: Tin* searching is done in the proxy after a request miss

in the proxy. The browser index file consists of all the active URL's MD5 digests of

browsers. We have used the searching facility for m anaging the cached docum ents in

the Squid proxy. A hash function is used for the search, thus the search time is index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. Prototype Implementations and Initial Results 186

Receive a request

Request data from a client check
index_file

Receive requested data
-- O cache_data_

in_proxy

Receive updated index information global_
index_file_

management(a reserved port)

Figure 8.2: The organization o f proxy daem on to interface with a client browser and the proxy.

file size independent. Specifically, function storeGETPublic is used, where function

hashJookup is called.

The searching tim e is denoted as Ttndex. Running the Squid proxy on a Pentinum III

of 1000 MHz machine, we obtained the average searching tim e. T,luy,.x = 0.0076 m s.

• requesting sennce from a client: If the requested docum ent is found in a browser

cache after the index file searching, the proxy sends a request to the identified client.

A requesting message is always 256 bytes. The com m unication tim e is denoted as

Trrq. and is dependent on a local area network speed.

• data delivering between a client and the proxy: The browser fetches the requested

document and sends it back to the proxy that delivers it to the requesting client. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8. P ro to type Implementations and Initial Results 187

d a ta transferring tim e is denoted as T,/ala. and is dependent on the local area speed

and size of the docum ent.

The additional browsers-aware service time is Toverhead = Tmdex + T rcq -4- T,iala. We m easured

this service tim e by varying the size of the requested docum ent from browsers on a 100 Mb

E thernet, and obtained Tnrrriirad = n + ^D . where n = 2.05 m s. is the startup time including

both Timiex and Trtq. and 7 = 1.10 is the data transferring rate (m .s/Kbytes). and D is the

size in Kbytes of the docum ent transferred between a browser and the proxy. Considering

8 Kbytes as the average size of a Web document, we ob tain T0,.cr/„.arf = 10.85 m s from the

model, which is very close to the measurement result.

There are also other types of unique operations in browsers-aware proxy. For example,

the user daemon in each browser periodically sends the updated browser content inform ation

to proxy, and the proxy updates its index file accordingly. However, these operations are

not in the critical pa th of the browsers-aware caching system , and can he done when the

browser, proxy and networks are not in a heavy dem and.

One im portan t question we want to ask is how m uch latency tim e we can reduce with

the support of the browsers-aware service. W ithout such a service, a proxy miss will conse

quently cause a request to a Web server and a da ta delivering from the server to the proxy.

The average sta tic HTML service time from a Web server is over 50 m s without considering

the network congestion [150]. In contrast, our m easurem ents show th a t the browsers-aware

service can reduce this tim e to 10.85 ms. a reduction o f more than 78%. if the document

exists in one of the clients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Final Conclusions and Future Work

9.1 Summary

Effective resource m anagement and its security issues have become crucial for the applica

tions in d istribu ted and Internet systems. Resource m anagem ent covers a wide spectrum

ranging from resource management in uniprocessor system s, to resource m anagem ent on

d istribu ted and Internet systems. None of them can be ignored in order to significantly

improve overall performance. An effective resource m anagem ent must he adaptive to the

changes of workload and technology. We have seen the rapid advancement of technology:

the uniprocessor becomes increasingly fast, but the access speeds of memory and s to r

age continue to lag behind. The high speed cluster and Internet technology have m ade

the com puting and information sharing widely decentralized and globalized. We have also

observed several m ajor changes of human demands. F irst, application workloads become

increasingly data-intensive. relying on fast and efficient d a ta accesses. Second, "com puting"

(including all the com puter and Internet activities) has become an indispensable part, of our

daily life. Effective resource management directly improves the quality of life. F inally and

most im portantly, high performance is no longer the only resource management objective.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 189

The objectives of security, availability, and reliability of the systems have become equally

important!

We first study m em ory system utilization in centralized servers by im proving mem

ory performance of sorting algorithms. Memory hierarchy considerations during sorting

algorithm design and implem entation play an im portan t role in significantly improving

execution performance. Existing algorithms m ainly a ttem p t to reduce capacity misses on

direct-m apped caches. To reduce other types of cache misses that occur in the more common

set-associative caches and the TLB. we restructure the mergcsort and quicksort algorithms

further by integrating tiling, padding, and buffering techniques and bv repartition ing the

d a ta set. O ur study shows th a t substantial perform ance improvements can be obtained

using our new m ethods.

After considering memory system utilization in centralized servers, we have further

extended our study on load sharing for global memory utilization in d istribu ted systems.

The cluster system we consider for load sharing is a compute farm, which is a pool of

networked server nodes providing high performance com puting for CPU-intensive, memory-

intensive. and I/O active jobs in a batch mode. Existing resource m anagem ent systems

mainly target balancing the usage of CPU loads am ong server nodes. Aim ing a t reducing

the memory resource contention caused by page; faults and I/O activities, we have developed

and examined load sharing policies by considering effective usage of global memory in

addition to CPU load balancing m both homogeneous and heterogeneous clusters. There

are two major approaches to more effectively use global memory resources in a workstation

cluster, aiming at minimizing page faults in each local workstation and im proving overall

performance of cluster computing: (1) job-m igration-based load sharing schemes and (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 190

network RAM. scalability. We also propose an improved load sharing scheme by combining

job migrations w ith the network RAM for cluster computing. T he improved scheme has the

m erits of both job migrations and network RAM. Our experim ents show its effectiveness

and scalability for cluster computing.

The Internet system is another branch of distributed systems. W ith the foundation of

our load sharing study, we have further investigated memory and storage utilizations in

Internet caching systems. Internet workload shows the trends of decreasing hit ratios in

proxies and the diversity of the Web contents. Some limits of the existing caching sys

tem structure prevent them from effectively utilizing the rapidly improvement in Internet

technologies and from adapting in a timely m anner the changes of the supply and de

m and of Web contents. We propose a peer-to-peer Web docum ent sharing technique, called

Browsers-Aware Proxy Server that makes the browsers and their proxy share the contents

to fully utilize the Web contents and network bandw idth among clients. O ur study show

th a t the amount of sharable da ta in browser caches is significant and can be utilized for

peer-to-peer docum ent sharing to improve Web caching performance and scalability.

In order to further improve the performance, a peer-to-peer Web caching management

scheme, called cooperatively shared proxy-hrowser caching is proposed to reduce document

duplications among a proxy and its client browsers. To evaluate th is approach, we conduct

trace-driven sim ulations with Web traces and compare the h it ratio, the byte hit ratio

and the Web server access latency of the proposed Web caching m anagement scheme with

the values for the traditional approach and "Browsers-A ware Proxy Server". As a result,

we show th a t both the hit ratio and byte hit ratio of this scheme are indeed significantly

higher, and the Web server access latency is reduced substantially. Finally, we empirically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 191

show th a t the performance of our scheme compares very favorably w ith the performance of

near-optim al offline Web caching algorithms.

New concerns are raised in the P2P browser sharing system s. D ata integrity may not be

trusted because a user is eligible to modify cached docum ents in the local browser cache. For

security and privacy protections, our browsers-aware proxy system should hide the identities

of bo th browser senders and receivers. General P2P system s also share the same concerns

of d a ta integrity and comm unication anonymity. We propose an an integrity protocol to

ensure da ta integrity in browser-aware systems. We also present several protocols to achieve

m utual communication anonymity between an information requester and a provider in a

P2P information-sharing environm ent such that neither the requester, nor the provider

can identify each other, and no other peers can identify the two communicating parties

with certainty. O ur study shows th a t the average increase in response time caused by our

protocols is trivial, and these protocols show both security and performance advantages

over existing protocols in a P2P system.

We have built a system infrastructure based on existing client and proxy servers. The

infrastructure consists of two parts: a client daemon to interface its browser and to com

m unicate with the proxy, and a browsers-aware proxy server. Coordinating the operations

between the two sites, we are able to build a secured browsers-aware caching system.

9.2 Future Work: Balancing the Power between Centralized

and Decentralized Resources in D istributed Computing

We will discuss future work in the following three directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 192

9 .2 .1 N on -u n iform p a ra lle l co m p u tin g

For a large scale application job dem anding a huge m em ory space and and I/O accesses, a

single node server can not produce the results in a to lerant tim e period, or can not produce

the correct results. If the CPU power in a single node is sufficient. m em ory/IO is the

fatal bottleneck. Here are two technical approaches to resolve th is problem and to scale the

application job for more com puting power and space: (1) single job using global m em ory /IO

in a cluster, and (2) parallelizing the job.

O ur studies presented in C hap ter 3 belong to the first approach. Using m igration-based

load sharing schemes, we can try to migrate the job to a node with enough m em ory/IO

resources. Using network RAM. we can also utilize global m em ory/IO resources from o ther

nodes. Using our proposed scheme by combining job-m igration and network RAM. we

can further effectively utilize global m em ory/IO resources. T he single node service in this

approach limits the scalability of com puting power. In add ition , the single node can easily

become the hot spot slowing down the communication and com putation.

The second approach is to let m ultiple nodes run th is job . where the CPU and memory

resources arc evenly d istribu ted and used. Local accesses or the da ta accesses between a

CPU and its memory and disk are maximized. A nother advantage is the nature of load

balancing in parallel computing. However, these two advantages may not serve the best

perform ance interests of parallel jobs because the balanced workload distribution am ong

the nodes may result in a different unbalanced resource u tilization in a cluster. Specifically,

in a tim e-sharing environment, m ultiple parallel jobs may not have enough memory space,

using local disk as the swapping site. But the CPU in each node may be under-utilized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 193

If we further increase the num ber of nodes for th e parallel job, the memory space may be

satisfied, but the C PU s am ong the nodes become even more under-utilized.

Having examined th e lim its of the two approaches, we propose a new approach called

non-uniform parallel com puting to better utilize the resources of both CPU and memory.

Instead of evenly allocating parallel tasks among the nodes, we consider CPU and memory

resource allocations separately. Under this non-uniform scheme, the num ber of CPU s to

be assigned to a parallel job will be minimized in order to better utilize the increasingly

powerful CPU cycles. Since a single job or a sm all num ber of jobs will be assigned in each

node, the context switch overhead is also reduced. Regarding the memory resources, each

job can not only utilize the local memory space from the assigned CPUs, but also remote

memory space in o ther nodes. We do not limit the num ber of nodes for a job. but cautiously

increase it so th a t the C PU of each node is fully utilized. In summary, the CPU cycles will

be provided by a sm all num ber of nodes, while the global memory space of a cluster is

open to the memory dem and of the job. Since the speed gap between accessing a local

memory and a rem ote memory is shrinking, and the speed gap between accessing a local

disk and a remote m em ory continues to enlarge, the proposed scheme is expected to be

highly performance beneficial.

9 .2 .2 R eso u rce In d e x in g on G rid S y s te m s

A Grid is a global cluster of clusters, which is a platform for large scale problems unsolvable

by a single cluster. Resource management on G rids has several challenges because it needs

to address more complex m anagement issues.

Identifying and allocating available resources among the Grids is a challenge. Keeping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 194

index of all nodes in a Grid system is not practical because updating index among different

domain's clusters causes a high index m aintenance overhead both in space and time. In

addition, some G rids may not want to globally share the sta tus inform ation for security

reasons. We propose solutions for this problem.

The first proposal is to create some special nodes in each Grid with the privilege of

knowing resource availability of local cluster and its neighbor Grids. The advantage of this

method is th a t the available resources can he quickly identified a t an affordable expense.

A future study will take the security in to the consideration, and tradeoff the overhead and

the performance.

The second proposal is related to allocating resources adaptively based on more dynamic

changes of resource availability among different dom ain's Grids. The resources include CPU.

memory. 10. network bandw idth, and others. In order to allocate resources among different

domain's Grids, we need to predict available network bandwidths among different domains.

But this prediction requires additional system effort. We will utilize the power of network

bandwidth m onitoring and measurement to collect the dynamic inform ation for effectively

allocating resources from different dom ains.

Reliability becomes more im portant for Grid com puting and harder to handle than in a

single cluster. W ithout enough reliability guarantee, the overall performance improvement

is also hard to guaranteed. We plan to look into several reliability issues.

9 .2 .3 R eso u r ce M a n a g em en t o n P e e r -to -p e e r sy ste m s

P2P has recently a ttrac ted a lot of a tten tion in the Internet community, and it represents

a computing model th a t advocates decentralization. It also raises many new issues to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9. Final Conclusions and Future Work 195

addressed on resource management.

A pure P2P can be classified into S truc tu red and U nstructured P2P [81]. S tructured

Pure P 2P m eans th a t files are placed a t some locations with specific rules, such as hash-table

so th a t the queries can also follow corresponding rules for fast retrieval. Studying effective

rules to place and retrieve a file is one topic for S tructured P2P systems. An unstructured

P2P m eans th a t nodes can join a peer group with its own files. The file location has no

correlation w ith a node. Querying a file in an unstructured P2P system is quite different

from th a t in a structured P2P system. A study for fast and scalable searching techniques

is one topic for unstructured P2P system s.

In unstructu red P2P systems, searching is not as effective as in structured systems

because o f the uncertainty of file locations. A nother assistant technique for fast searching

is to make certain replicas of files, such as caching a file in o ther nodes. Several related

perform ance issues will be studied in unstruc tu red systems.

Security is an im portant issue to be strongly addressed in P2P systems. We will continue

our study in this direction based on o u r current work of com m unication anonymity. We

are looking into combining different approaches to further and synergistically achieve the

goal for bo th strong anonymity and high comm unication efficiency, as well as to adapt to

application needs and network conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] \1. Abrams. C. R. S tandridge. G. Abdulla. S. W illiams, and E. A. Fox. "Caching
proxies: lim itations and potentials". Proceedings o f the Fourth International World
Wide Web Conference. December. 1995.

[2] A. Acharya and S. Setia. "Availability and utility of idle memory in workstation d u s
ters". Proceedings of A C M SIG M E TR IC S Conference on Measuring arid Modeling of
Computer Systems. May 1999. pp. 35-46.

[3] A. Agarwal and S. D. P udar. “Column-associative caches: a technique for reducing
the misses rate of d irect-m apped cache". Proceedings o f the 20th Annual International
Symposium on Computer Architecture. 21 (2): 179-190. May 1993.

[4] S. Albers. S. Arora. and S. K hanna. "Page replacement for general caching problem s".
Proceedings o f 10th Annual A C M -SIA M Symposium Discrete Algorithms. (SODA’99).
1999. pp.31-40.

[5] A. Barak and A. Braverm an. “Memory ushering in a scalable com puting cluster".
Journal o f Microprocessors and Microsystems. Vol. 22. No. 3-4. A ugust 1998. pp. 175-
182.

[6] P. Barford. A. Bestavros. A. Bradley, and M. Crovella. “Changes in Web client access
patterns: characteristics and caching implications". World Wide Web Journal. 2(1): 15-
28. January. 1999.

[7] A. Batat and D. G. Feitelson. “Gang scheduling with memory considerations". Proceed
ings of 14th International Parallel & Distributed Processing Symposium (IPDPS'2000).
May 2000. pp. 109-114.

[8] L. A. Belady. "A study o f replacem ent algorithms for virtual storage C om puters". IBM
Systems Journal. 5:78-101. 1966.

[9] B. Bershad. D. Leo. T. Rom er and B. Chen. "Avoiding conflict misses dynam ically in
large direct-mapped cache" Proceedings of the 6th International Conference on Archi
tectural Support fo r Programming Languages and Operating Systems. O ctober. 1994.

[10] R. Bianchini and E. V. C arrera. "Analytical and experim ental evaluation of cluster-
based network servers". World Wide Web Journal, volume 3. num ber 4. December
2000.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 197

[11] J . Bilmes. K. Asanovic, C. W. Chin, and J. Demmel. “O ptim izing m atrix multiply
using PHiPAC: a portable, high-performance, ANSI coding methodology". Proceedings
o f International Conference on Supercomputing. Vienna. A ustria. Ju ly 1997. pp.340-
347.

[12] Boeing log files, ftp ://researchsm p2.cc .v t.edu /pub /boeing /

[13] BU traces, ftp://cs-ftp.bu.edu/techreports/1995-010-w w w .client-traces.tar.gz
ftp ://cs-ftp .bu.edu/techreports/1999-01 l-usertrace-98.gz

[14] L. Breslau. P. Cao. L. Fan. G. Phillips, and S. Shenker. “Web caching and zipf-like
distributions: evidence and implications". Proceedings o f IE E E INFOCOM. 1999.

[15] D. Burger and T. M. Austin. The simplescalar tool set. version 2.0. T R 1342. Depart
ment of C om puter Sciences. University of W isconsin. M adison. June 1997.

[16] Canada's coast to coast broadband research network: h ttp ://a rd n o c4 1 .can e t2 .n e t/:
Sanitized log files: h ttp ://a rdnoc41 .canet2 .net/cache/squ id /raw logs/

[17] B. Calder. D .Grunwald. and J.Em er. “Predictive sequential associative cache". Pro
ceedings o f the Second International Symposium on High-Performance Computer ,4r-
chitecture. February 1996.

[18] B. Calder. C. Krintz. S. John, and T. Austin. “Cache-conscious da ta placement". In
8th International Conference on Architectural Support fo r Programming Languages and
Operating Systems. O ctober. 1998.

[19] P. Cao and S. Irani. “Cost-aware WWW proxy caching algorithm s". Proceedings of
the USENIX Symposium on Internet Technologies and System s. December 1997.

[20] P. Cao. J . Zhang, and K. Beach. "Active cache: caching dynam ic contents on the
Web". Proceedings o f Middleware'98. 1998. pp. 373-388.

[21] S. Carr. K. S. McKinley, and C. W. Tseng. "Compiler optim izations for improving data
locality". In Proceedings o f the 6th International Conference on Architectural Support
fo r Programming Languages and Operating Systems. O ctober 1994. 28(5):252-262.

[22] J. Challenger. P. Dantzig. and A. Iyengar. “A scalable and highly available system
for serving dynam ic d a ta a t frequently accessed Web sites". Proceedings o f S C '98.
November. 1998.

[23] J. Chame and S. Moon. “A tile selection algorithm for d a ta locality and cache inter
ference". Proceedings o f International Conference o f Supercomputing. Rhodes Greece.
June 1999. pp.492-499.

[24] S. Chatterjec. V. V. Ja in . A. R. Lcbeck, S. M undhra and M. T hottc thodi. "Nonlinear
array layouts for hierarchical memory systems". Proceedings o f International Confer
ence of Supercomputing. Rhodes Greece. June 1999. p p .444-453.

[25] D. Chaum. “Untraceable electronic mail return addresses, and digital pseudonyms".
Communications o f the ACM . 24. 2. Feb. 1981. pp.84-88.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://researchsmp2.cc.vt.edu/pub/boeing/
ftp://cs-ftp.bu.edu/techreports/1995-010-www.client-traces.tar.gz
ftp://cs-ftp.bu.edu/techreports/1999-01
http://ardnoc41.canet2.net/
http://ardnoc41.canet2.net/cache/squid/rawlogs/

BIBLIOGRAPHY 198

[26] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical Web caching
systems’*. Proceedings o f IEEE INFOCOM 2001. April 2001.

[27] S. Chen. L. Xiao, and X. Zhang. “Dynamic load sharing with unknown m emory de
mands of jobs in clusters’*. Proceedings o f the 21st International Conference on Dis
tributed Computing Systems, (ICDCS’2001). Phoenix. Arizona. April 16-19. 2001. pp.
109-118.

[28] S. Chen. L. Xiao, and X. Zhang. “Adaptive and virtual reconfigurations for effective
dynamic resource allocations in cluster systems” . Proceedings o f the 22nd International
Conference on Distributed Computing Systems. (ICDCS'2002). Vienna. A ustria. July
2-5. 2002. pp.35-42.

[29] I. Clarke. O. Sandberg. B. Wiley, and T. W. Hong. “Freenet: a d istribu ted anonymous
information storage and retrieval system. Design Privacy Enhancing Technologies'*.
Workshop on Design Issues in Anonym ity and Unobservability. LNCS 2009. ed. by H.
Federrath. Springer-Verlag (2001). pp.46-66.

[30] S. Coleman and K. S. McKinley. "Tile size selection using cache organization and
da ta layout*. In Proceedings o f the AC M SIG P LA N '95 Conference on Programming
Language Design and Implementation. Lajolla. California. June 1995. pp .279-290.

[31] P. Danzig, R. Hall, and M. Schwartz. "A case for caching file objects inside in ternet
works” . Proceedings o f AC M Conference on Communications Architectures. Protocols
and Applications (SIG COM M). 1993. pp.239-248.

[32] C. Ding and K. Kennedy. "Improving cache performance of dynamic applications with
com putation and d a ta layout transform ations’*. Proceedings o f the A C M S IG P L A N ’99
Conference on Programming Language Design and Implementation. May 1999.

[33] R. Dingledine. M. J. Freedman, and D. Molnar. “T he Free Haven project: d istribu ted
anonymous storage service". Workshop on Design Issues in Anonym ity and Unobserv
ability. LNCS 2009. ed. by H. Federrath. Springer-Verlag (2001). pp.67-95.

[34] J. J. Dongarra. J. D. Croz. I. S. Duff, and S. Haminarling. “A set of level 3 basic
linear algebra subprogram s". A C M Transactions on Mathematical Software.. 16(1): 1-
17. Ja n .1990.

[35] F. Doughs. A. Haro, and M. Rabinovich. “H PP: HTML macro-preprocessing to sup
port dynamic docum ent caching". Proceedings o f the USENIX Symposium on Internet
Technologies and System s. December. 1997. pp. 83-94.

[36] F. Douglis and J. O usterhout. “Transparent process migration: design alternatives and
the sprite im plem entation". Software Practice and Experience. Vol. 21. No. 8 . 1991.
pp. 757-785.

[37] P. Druschcland A. Rowstron. “PAST: a large-scale, persistent P2P storage utility".
Proceedings o f 8tli workshop on Hot Topics in Operating Systems. 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 199

[38] X. Du and X. Zhang, “C oordinating parallel processes on networks of workstations".
Journal o f Parallel and Distributed Computing. Vol. 46. No. 2. 1997. pp. 125-135.

[39] B. M. Duska. D. M arwood. and M. J. Feeley. “The measured access characteristics
of world-wide-web client proxy caches". Proceedings o f the U SENIX Symposium on
Internet Technologies and Systems. December. 1997.

[40] S. G. Dykes and K. A. Robbins. “A viability analysis of cooperative proxy caching".
Proceedings o f IE E E IN FO C O M 2001.

[41] D. L. Eager. E. D. Lazowska. and .J. Zahorjan. “The limited perform ance benefits
of migrating active processes for load sharing". Proceedings of AC M SIG M E T R IC S
Conference on M easuring and Modeling o f Computer Systems. May 1988. pp. 63-72.

[42] J. H. Edmondson. P. I. Rubinfeld. P. J. Bannon. etc. “Internal organization of the
Alpha 21164. a 300-Mhz 64-bit quad-issue CMOS RISC microprocessor". Digital Tech
nical Journal o f Digital Equipment Corporation. 7(1): 119-135. winter 1995.

[43] L. Fan. P. Cao. J . Alm eida, and A. Z. Brodcr. “Summary cache: a scalable wide-area
web cache sharing protocol". Proceedings o f 1998 SIG CO M M Conference, pp. 254-265.

[44] M. J. Feeley. et. al.. “Im plem enting global memory management system s". Proceedings
o f the 15th AC M Sym posium on Operating System Principles. December 1995. pp. 201-
21 2 .

[45] Dror Feitelson. T he Parallel Workload Archive.
h ttp://w w w .cs.huji.ac.i1 /labs/parallel/w orkload/logs.litm l#lanlcm 5. 1998.

[46] J. Fcrrantc. V. Sarkar. and W. th rash . “On estim ating and enhancing cache effec
tiveness". In Proceedings o f the Fourth International Workshop on Languages and
Compilers fo r Parallel Computing. Santa Clara. California. August 1991. pp .328-343.

[47] R. A. Finkel. "O perating system s". A C M Computing Surveys. Vol.28. No. 1. March
1996. pp.201-203.

[48] M. D. Flouris and E. P. M arkatos. "Network RAM". C hapter 16. High Performance
Cluster Computing. Vol. 1. Edited by R. Buyya. Prentice Hall. New Jersey. 1999. pp.
383-508.

[49] J. Fox. "Browser cache switch for in ternet explorer". WebDeveloper Conference 2000.
San Francisco. California. Septem ber 2000).

[50] M. J. Freedman. E. Sit. J . Cates, and R. Morris. "Introducing Tarzan. a peer-to-
peer anonymizing network layer". Proceedings o f the 1st International Workshop on
Peer-to-peer Systems. M arch. 2002. M IT Faculty Club. Cambridge. MA. USA.

[51] Freedom, h ttp ://w w w .freedom .net/

[52] Freenct. h ttp ://frcenet.sou rcefo rge .ne t/. 2 0 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.huji.ac.i1/labs/parallel/workload/logs.litml%23lanlcm5
http://www.freedom.net/
http://frcenet.sourceforge.net/

BIBLIOGRAPH Y 200

[53] J. D. Frens and D. S. Wise. "Auto-blocking m atrix-m ultiplication or tracking BLAS3
performance w ith source code". In Proceedings o f the Sixth A C M S IG P L A N Sympo
sium on Principles and Practice of Parallel Programming, Las Vegas. NV. June 1997.
pp.206-216.

[54] E. G abber. P. Gibbons. D. Kristol. Y. M atias. and A. Mayer. "Consistent, yet anony
mous. Web access with LPWA~. Communications o f the .4CA/. Vol. 42 No. 2. February
1999. pp.42-47.

[55] E. G abber. P. Gibbons. Y. M atias. and A. Mayer. "How to make personalized Web
browsing simple, secure, and anonym ous". Proceedings of Conference on Financial
Cryptography, 1997.

[56] S. Gadde. M. Rabinovich. .1. Chase. "Reduce, reuse, recycle: an approach to building
large internet caches". Proceedings o f the sixth Workshop on Hot Topics in Operating
Systems. May. 1997.

[57] K. S. G atlin and L. Carter. "Memory hierarchy considerations for fast transpose and
bit-reversals". Proceedings o f 5th International Symposium on High-Performance Com
puter Architecture. January 1999.

[58] Pat Gclsingle. "Building the peer-to-peer community". Intel Developer
Forum Conference. Spring 2001. Keynote Presentations. February 2001.
h ttp ://developer.in te l.com /idf

[59] G. Glass and P. Cao. "Adaptive page replacem ent based on memory reference behav
ior". Proceedings o f ACM S IG M E T R IC S Conference on Measuring and Modeling of
Computer Systems. May 1997. pp. 115-126.

[60] Gnutella, http://gnutella.w ego.com . 2001.

[61] G. Gonnet and R. Baeza-Yates. Handbook o f Algorithms and Date Structures in Pascal
and C. Addison-Wesley. 1991.

[62] Li Gong. "JXTA: a network program m ing environm ent". IEEE Internet Computing.
5 3. M ay/June 2001. pp. 88-95.

[63] S. D. Gribble. E. A. Brewer. ‘System design issues for Internet m iddleware services:
deductions from a large client trace". Proceedings o f the 19!)7 Usenix Symposium on
Internet Technologies and Systems. December 1997.

[64] Y. Guan. X. Fu. R. Bettati. and W. Zhao. "An optim al strategy for anonym ous commu
nication protocols". Proceedings o f the 22nd International Conference on Distributed
Computing Systems. (ICDCS'2002). Ju ly 2002.

[65] F. G. G ustavson. “Recursion leads to autom atic variable blocking for dense linear -
algebra algorithm s". IBM Journal o f Research and development. 41(6):737-755.
Nov. 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://developer.intel.com/idf
http://gnutella.wego.com

BIBLIOGRAPH Y 201

[66] M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime distributions for
dynam ic load balancing^. A C M Transactions on Computer Systems. Vol. 15. No. 3.
1997. pp. 253-285.

[67] J . Hennessy and D. Patterson. “Com puter architecture: a quantita tive approach". 2nd
ed., Morgan Kaufmann Publishers. Inc.. 1996.

[68] C.-C. Hui and S. T. Chanson. "Improved strategies for dynamic load sharing". IEEE
Concurrency. Vol. 7. No. 3. 1999. pp. 58-67.

[69] Sandy Irani. "Page replacement with multi-size pages and applications to Web
caching". Proceedings of the twenty-ninth annual ACM Symposium on Theory o f Com
puting 1997. (STOC'97). pp.701-710.

[70] S. Jin and A. Bestavros. “Popularity-aware greedydual-size Web proxy caching al
gorithm s". Proceedings of 20th International Conference on Distributed Computing
System s. (ICDCS'2000). April 2000.

[71] T..Johnson. M.Merten, and W .Hwu. "Run-tim e spatial locality detection and optim iza
tion". In 30th International Symposium on Microarchitecture. December 1997.

[72] N. P. Jouppi. "Improving direct-m apped cache performance by the addition of a small
fully-associative cache and prefetch buffers". Proceedings of 17th Annual International
Symposium on Computer Architecture. May 1990. pp.364-373.

[73] R. E. Kessler. R. Jooss. A. Lebeck. and M. D. Hill. "Inexpensive im plem entations of set-
associativity". Proceedings o f the 16th Annual International Symposium on Computer
Architecture. 17(3): 131-139. 1989.

[74] T. Kunz. "The influence of different workload descriptions on a heuristic load balancing
scheme". IEEE Transactions on Software Engineering. Vol. 17. No. 7. 1991. pp. 725-
730.

[75] M. R. Korupolu and M. Dahlin. "Coordinated placement and replacem ent for large-
scale distributed cached". IE E E Transactions on Knowledge and Data Engineering.
2001 .

[76] M. R. Korupolu, C. G. Plaxton and R. R ajaram an. "Placement algorithm s for hierar
chical cooperative caching". Proceedings o f the 10th Annual A C M -SIA M Symposium
on Discrete Algorithms. (SODA’99). January 1999. pp.586-595.

[77] M. S. Lam. E. E. Rothberg, and M. E. Wolf. “The cache performance and optim ization
of blocked algorithms". In Proceedings o f the Fourth International Conference on ,4r-
chitectural Support fo r Programming Languages and Operating Systems. Santa Clara.
California. April 1991. pp.228-239.

[78] A. LaM arca and R. E. Ladner. “The influence of caches on the performance of sorting".
Proceedings of the 8th Annual A C M -SIA M Symposium on Discrete Algorithms. 1997.
pp .370-379.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 202

[79] W. Lin. S. K. R einhardt, and D. Burger. "Reducing DRAM latencies with an integrated
memory hierarchy design” . Proceedings o f the 7th International Symposium on High-
Performance Com puter Architecture, (HPCA-7) Nuevo Leon. Mexico. January 20-24
2001. pp.301-312.

[80] T. S. Loon and V. Bharghavan. “Alleviating the latency and bandw idth problems in
W W W browsing” . Proceedings o f the 1997 Usenix Symposium on Internet Technologies
and Systems. December 1997.

[81] Qin Lv. Pei Cao. E dith Cohen. Kai Li. Scott Shenker. "Search and replication in
unstructured peer-to-peer networks” . Proceedings o f the 16th A C M International Con
ference on Supercomputing. (ICS'02). New York. USA. June 2002.

[82] A. M ahanti. C. W illiamson and D. Eager. “Traffic analysis of a Web proxy caching hi
erarchy” . IEEE Network. Special Issue on Web Performance. Vol. 14. No.3. M ay/June
2000. pp. 16-23.

[83] R. Malpani. J. Lorch. D. Berger. "Making world wide web caching servers coopera te '.
Proceedings o f the 4th International World Wide Web Conference. December. 1995.

[84] E. P. Markatos and G. D ram itinos. “Im plem entation of a reliable remote memory
pager". Proceedings o f the 1996 Usenix Technical Conference. January. 1996. p p .177-
190.

[85] K. S. McKinley. S. C arr, and C. W. Tseng. "Improving d a ta locality w ith loop trans
formations". Transactions on Programming Languages and Systems. 18(4). Ju ly 1996.

[86] L. McVoy and C. Staelin. "lmbcnch: portable tools for performance analysis." Pro
ceedings o U SENIX Technical Conference. San Diego. California. 1996. 279 295.

[87] J . Mellor-Crummey, D. W halley and K . Kennedy. "Improving memory hierarchy per
formance for irregular applications". Proceedings o f International Conference on Su
percomputing. June. 1999.

[88] A. J. Menezcs. P. C. Van Oorschot. and S. A. Vanstone. Handbook o f Applied Cryp
tography. CRC Press. 1996.

[89] B. S. Michel. K. Nikoloudakis. P. Reiher. and L. Zhang. “URL forwarding and com
pression In adaptive Web caching". Proceedings o f IEEE INFO COM 2000. March.
2000.

[90] Napster, h ttp ://w w w .napster.com .

[91] National Lab of Applied Network Research, h ttp ://w w w .ircaclie .net/
Sanitized access logs: f tp ://ircache .n lan r.ne t/T races/
Statistics: h ttp ://w w w .ircache.ne t/C ache /S ta tis tics/

[92] K.-D. Ncubcrt. "The F lashso rtl algorithm ". Dr. Dobb’s Journal. February 1998.
pp. 123-125.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.napster.com
http://www.ircaclie.net/
ftp://ircache.nlanr.net/Traces/
http://www.ircache.net/Cache/Statistics/

BIBLIOGRAPH Y 203

[93] V. S. Pai. M. Aron. G. Banga. M. Svendsen. P. Druschel. W. Zwaenepoel. and E.
Nahum. "Locality-aware request distribution in cluster-based network servers". Pro
ceedings o f the Eighth Sym posium on Architectural Support fo r Programming Languages
and Operating Systems. (ASPLOS-8). pp.205-216. O ctober 1998.

[94] A. Oram . Peer-to-Peer Harnessing the Benefits o f a Disruptive Technology. O'Reilly.
March 2001.

[95] S. Park and L. Leemis. Discrete-event simulation: a first course. Lecture Notes. College
of W illiam Mary. Revised Version. January 1999. P reprin t of a Prentice-Hall book.
August. 1999.

[96] E. W. Parsons and K. C. Sevcik. "Coordinated allocation of memory and processors in
multiprocessors". Proceedings o f the ACM S IG M E T R IC S Conference on Measurement
and Modeling o f Com puter Systems. May 1996. pp .57-67.

[97] J. Peir. Y. Lee. and W. Hsu. "Capturing dynam ic memory reference behavior with
adaptive cache topology^. In Eighth International Conference on Architectural Support,
fo r Programming Languages and Operating Systems. O ctober 1998.

[98] V. G. Peris. M. S. Squillante. and V. K. Naik. "Analysis of the impact of memory
in d istributed parallel processing systems". Proceedings o f the AC M SIG M E T R IC S
Conference on M easurement and Modeling o f Com puter Systems. May 1994. pp. 5-18.

[99] K. Psounis and B. Prabhakar. "A randomized W eb-cache replacement scheme". Pro
ceedings o f IE E E INFO CO M 2001.

[100] S. Ratnasamy. P. Francis. M. Handley. R. Karp, and S. Shenker. "A scalable content-
addressable network". ACM SIGCOMM 2001.

[101] M. Reddy and G. P. Fletcher. "An adaptive mechanism for Web browser cache m an
agement". IE E E Internet Computing. 2(1). January 1998.

[102] M. K. Reiter, and A. D. Rubin. "Crowds: anonym ity for Web transactions". AC M
Transactions on Inform ation and System Security. 1.1. November 1998. pp. 66-92.

[103] G. Rivera and C. W. Tseng. "D ata transform ations for elim inating conflict misses".
In Proceedings o f the S IG P L A N '98 Conference on Programming Language Design and
Implementation. June 1998.

[104] R. Rivest. “The MD5 message-digest, algorithm ". Internet
R F C /S T D /F Y I/B C P Archives. Request for Comments: 1321. April 1992.
(h ttp ://w w w .faqs.o rg /rfcs/rfc l321 .h tm l).

[105] A. Rousskov and V. Soloviev. “ A performance study of the Squid proxy on
H T T P /1.0". World Wide Web. 2(1-2):47-67. January 1999. "on Performance of
Caching Proxies” . S IG M E T R IC S '98. pp.272-273.

[106] RSAREF20. h ttp ://tirnanog.ls.fi.upm .es/Serv icios/softw are/ap /crypt/d isk3/rsaref20 .zip

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.faqs.org/rfcs/rfcl321.html
http://tirnanog.ls.fi.upm.es/Servicios/software/ap/crypt/disk3/rsaref20.zip

BIBLIOGRAPH Y 204

[107] Stefan Saroiu. P. K rishna Guinmadi. and Steven D. Gribble. “A measurement study
of peer-to-peer file sharing system s". Proceedings o f M ultimedia Computing and N et
working 2002 (M M CN‘02).

[1081 V. Scarlata. B. N. Levine and C. Shields. “Responder anonymity and anonymous
peer-to-peer file sharing". Proceedings o f the 9th International Conference on Network
Protocols (ICNP 2001). November. 2001.

1091 R. C. Seacord and S. A. Hissam. “Browsers for d istribu ted systems: universal
paradigm or siren's songr . World Wide Web Journal. 1998. pp. 181-191.

1101 R. Sedgewick. “Implementing quicksort program s". Communications of the ACM .
Vol. 21. No. 10. 1978. pp. 847-857.

111! A. Serjantov. " Anonymizing censorship resistant system s". Proceedings of the 1st In
ternational Workshop on Peer-to-peer Systems. March. 2002. MIT Faculty Club. Cam
bridge. MA. USA.

1121 S. Setia. “The interaction between memory allocation and adaptive partitioning in
message-passing m ulticom puters". Proceedings of the IP P S Workshop on Job Schedul
ing Strategies fo r Parallel Processing. 1995. pp. 146-164.

1131 S. Setia. M. S. Squillante. and V. K. Naik. “The im pact of job memory requirem ents
on gang-scheduling performance". Performance Evaluation Review. March 1999.

1141 R- Sherwood. B. Bhattacharjee. and A. Srinivasan. " / ” : A protocol for scalable
anonymous comm unication". Proceedings o f 2002 IE E E Symposium on Security and
Privacy, May 2002.

1151 C. Shields and B. N. Levine. “A protocol for anonymous communication over the inter
net". Proceedings o f 7th AC M Conference on Computer and Communication Security
(ACM CCS 2000). November 2000. pp.33-42.

1161 A. Silberschatz and P. B. Galvin. Operating system s concepts. 4th Edition. Addison-
Weslcy. 1994.

1171 B. Sm ith. A. Acharya. T. Yang, and H. Zhti. “Exploiting result equivalence in caching
dynam ic Web content". Proceedings o f the 2nd U SE N IX Symposium on Internet Tech
nologies and Systems. October. 1999.

1181 A. Srivastava and A. Eustace. “ATOM: a system for building customized program
analysis tool." Proceedings of ACM Symposium on Programming Languages Design
and Implementation. 1994. pp. 196-205.

1191 L Stoica. R. Morris. D. Karger. M. F. Kasshoek. H. Balakrishnan. “Chord: A scalable
peer-to-peer lookup service for internet, applications". ACM SIGCOMM 2001.

1201 A. B. Stubblefield and D. S. Wallach. "D agster: censorship-resistant publishing w ith
out replication". Technical Report T R 0 1-380. D epartm ent of Com puter Science. Rice
University. Ju ly 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPH Y 205

[121] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. “Anonymous connections and
onion routing” . 1997 IE E E Symposium on Security and Privacy (S&P'97). pp.44-53.

[122] A. S. Tanenbaum and R. Van Rencsse., “D istributed operating system s". A C M Com
puting Surveys. Vol.17. No.4. December. 1985. pp.419-470.

[123] R. Tewari. M. Dahlin. H. M. Vin and J. S. Kay. "Design considerations for d istribu ted
caching on the In ternet", Proceedings o f the 19th IEEE International Conference on
Distributed Computing Systems, (ICDCS). May 1999.

[124] G. M. Voelker. H. A. Jam rozik. M. K. Vernon. H. M. Levy, and E. D. Lazowska.
"M anaging server load in global memory system s". Proceedings o f A C M S IG M E T R IC S
Conference on Measuring and Modeling o f Computer Systems. May 1997. pp. 127-138.

[125] M. W aldm an. D. Mazi. "Tangier: a censorship-resistant publishing system based on
docum ent entanglem ents". Proceedings o f the 8th AC M conference on Com puter and
Communications Security. 2001. p p .126-135.

[126] M. W aldm an. A. D. Rubin, and L.F. C ranor. "Publius: A robust, tam per-evident,
censorship-resistant web-publishing system ". Proceedings of the 9th U SE N IX Security
Symposium. August 2000. pp.59-72.

[127] W. Wang and M. W. Mutka. "Intelligent browser initiated server pushing". Proceed
ings o f the IE E E International Performance. Computing and Com munications Con
ference. February 2000.

[128] Web-caching site: http://w w w .w eb-caching.com .

[129] R. C. W haley and J. J. Dongarra. "A utom atically tuned linear algebra software."
Proceedings o f Supercomputing'98. November 1998.

[130] M. E. Wolf. “Improving locality and parallelism in nested loops". PhD thesis. Dept,
of C om puter Science. Stanford University. August 1992.

[131] A. W olman. G. Voelker. N. Sharm a. N. Cardwell. M. Brown. T. Landray. D. P iunel. A.
Karlin, and H. Levy. “O rganization-based analysis of Web-object sharing and caching".
Proceedings o f the 2nd U SENIX Symposium on Internet Technologies and Systems.
O ctober. 1999.

[132] W orking Group on Peer-to-Peer Com puting, http://w w w .peer-to-peerw g.org

[133] L. Xiao. S. Chen, and X. Zhang "Dynamic cluster resource allocations for jobs w ith
known and unknown memory demands" IE E E Transactions on Parallel and Dis
tributed Systems. Vol. 13. No.3. 2000. pp .223-240.

[134] L. Xiao and X. Zhang. "Exploiting neglected da ta locality in browsers". Proceedings
of the 10th International World Wide Web Conference (WWW-10). Hong Kong. May
1-5. 2001 (an extended abstract).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.web-caching.com
http://www.peer-to-peerwg.org

BIBLIOGRAPH Y 206

135] L. Xiao. X. Zhang, and S. A. Kubricht. “Incorporating job m igration and network
RAM to share cluster memory resources". Proceedings o f the 9th IEEE International
Symposium on High Performance Distributed Computing (HPDC-9). P ittsburgh . Penn
sylvania. August 1-4. 2000. pp. 71-78.

136] L. Xiao. X. Zhang, and S. A. Kubricht. “Improving memory performance of sorting
algorithm s". A C M Journal on Experimental Algorithmics. Vol. 5. No. 3. 2000. pp.
1-23..

137] L. Xiao. X. Zhang, and Y. Qu, “Effective load sharing on heterogeneous networks
of workstations" Proceedings o f 2000 International Parallel and Distributed Processing
Symposium . (IPD PS’2000). Cancun. Mexico. May 1-5. 2000.

138] L. Xiao. X. Zhang, and Z. Xu. “A reliable and scalable peer-to-peer Web document
sharing system ". Proceedings o f 2002 International Parallel and Distributed Processing
Symposium. (IPD PS‘2002). Fort Lauderdale. Florida. April 15-19. 2002.

139] Z. Xu. L. Xiao, and X. Zhang. “D ata integrity and communication anonymity in
peer-to-peer networks". Hewlett Packard Laboratories. Technical Report HPL-2001-
204. August 2001.

140] Y. Yan. X. Zhang, and Z. Zhang. “Cacheminer: a runtim e approach to exploit cache
locality on SM P". IE E E Transactions on Parallel and Distributed Systems. Vol.ll.
No.4. 2000. pp.357-374.

141] J. Yang. W. Wang. R. Muntz. “Collaborative web caching based on Proxy affinities".
Proceedings o f AC M SIG M E TR IC S 2000. Santa Clara, .lime. 2000. pp.78-89.

142] C. Yoshikawa, B. C hun. P. Eastham . A. Vahdat. T. Anderson. D. Culler. “Using smart
clients to build scalable services". Proceedings o f the U SENIX 1997 Annual Technical
Conference. January. 1997.

143] P. S. Yu and E. A. MacNair. “Perform ance study of a collaborative m ethod for hier
archical caching in proxy servers". Proceeding o f the seventh International World Wide
Web Conference. April. 1998.

144] L. Zhang. S. Michel. K. Nguyen. A. Roscnstein. S. Floyd, and V. Jacobson. "Adaptive
web caching: towards a new global caching arch itecture". Proceedings o f 3rd Interna
tional W W W Caching Workshop. M anchester. England. June. 1998.

145] X. Zhang. Y. Qu. and L. Xiao. “Improving d istributed workload performance by shar
ing bo th C PU and memory resources". Proceedings of 20th International Conference
on Distributed Computing Systems. (ICDCS'2000). Taipei. Taiwan. April 10-13. 2000.

146] Z. Zhang and X. Zhang. “Fast bit-revorsals on uniprocessors and shared-memory
m ultiprocessors". S IA M Journal on Scientific Computing. Vrol.22. No.6. 2001.

147] C. Zhang. X. Zhang, and Y. Yan. "Two fast and high-associativity cache schemes".
IEEE Micro. Vol. 17. No. 5. 1997. pp.40-49.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPH Y 207

[148] Z. Zhang. Z. Zhu. and X. Zhang. “Cached DRAM for ILP processor memory access
latency reduction". IEEE Micro. Vol. 21. No. 4. Ju ly/A ugust. 2001. pp.22-32.

[149] S. Zhou. “A trace-driven sim ulation study of load balancing". IE E E Transactions on
Software Engineering. Vol. 14. No. 9. 1988. pp.1327-1341.

[150] H. Zhu and T. Yang. "Class-based cache management for dynam ic Web content".
Proceeding o f IE E E INFOCOM 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Li Xiao

Li Xiao received her BS and MS degrees in Com puter Science from the Northwestern Poly

technic University. China. She was enrolled the Ph.D. program of C om puter Science at the

College of W illiam and Mary in the Fall semester of 1998. She has been a teaching assistant

and a research assistant in the departm ent since then. She was a research intern at the

Hewlett Packard Labs in the summer of 2001. She is a recipient of USENIX Fellowship for

Ph.D. d issertation research in her last year of graduate study. Her research interests are

in the areas of d istribu ted and Internet systems, system resource m anagem ent, and designs

and im plem entation of experim ental algorithms. She is a member of the IEEE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Adaptive and secured resource management in distributed and Internet systems
	Recommended Citation

	tmp.1539734415.pdf.oD2q7

