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ABSTRACT

Macoma balthica ia a Tellinid bivalve that is common 

to both marine and estuarine soft-bottom habitats of the 

northern hemisphere. To determine if populations on the 

eastern and western North Atlantic are conspecific, the 

labial palp morphology, shell shape and genetic 

composition of these populations were examined.

Previously described differences in the labial palp 

morphology do not occur among the populations 

investigated. Differences in the shell shape and genetic 

composition, determined by enzyme electrophoresis, were 

observed between populations from the eastern and western 

North Atlantic. Allopatric populations of Macoma 

balthica from the eastern and western North Atlantic can 

be considered as separate and sibling species.
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GENETIC AND MORPHOLOGIC COMPARISON OF MACOMA BALTHICA 

FROM THE EASTERN AND WESTERN NORTH ATLANTIC.



INTRODUCTION

This study was initiated to determine if the eastern 

and western North Atlantic populations of Macoma 

balthica exist as morphologically and genetically 

distinct populations. Though population variations of M. 

balthica have been examined by a number of investigators 

this study represents the most comprehensive comparison 

of M. balthica throughout its North Atlantic 

distribution. M. balthica from both the eastern and 

wes tern North Atlantic were examined and compared with 

regard to labial palp morphology, sTiell shape and genetic 

composition.

Macoma balthica is a Tellinid bivalve that is 

common to both marine and estuarine soft-bottom habitats 

of the northern hemisphere (Figure 1). In the Pacific 

ocean M*. balthica occurs along the coast of North America 

from Alaska to San Diego, as well as in Japan, where it 

has been synonymized with M j. takaho koensis. There are no 

reports of Mj. balthica from the coastal waters of

2
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Figure 1 Geographic distribution of Macoma balthica in 

the northern hemisphere, stipled areas.





mainland Asia, but it is likely that it exist there as 

well. In the western North Atlantic this species occurs 

in coastal waters of western Greenland and the lower 

Canadian Artie south to North Carolina. In the eastern 

North Atlantic it occurs from the Bay of Biscay, France, 

to northern Scandinavia (HcErlean, 1967; Castagna and 

Chanley, 1973; Green, 1973; Abbott, 1974; Chambers and 

Milne, 1975; McLusky and Allen, 1976; Ankar, 1977;

Beukema et al., 1978; Lubinsky, 1980; Madsen, 1983;). 

According to Abbott (1974) M̂ . balthica rings the Canadian 

Arctic, thereby connecting Atlantic and Pacific 

populations; however, Lubinsky (1980) clearly indicates 

that Mj. balthica does not make this connection. Such a 

vast geographic range is not unique among marine fauna, 

however, there are differences in M. balthica''s life 

history strategies, morphology and habitat type between 

geographically disjunct locations (Gilman, 1977; Elliot, 

1979; and others). Considering the range of M. b a l t h i c a . 

these differences among geographically disjunct 

populations may indicate that geographically wide spread 

populations are genetically unique.

According to Gilbert (1977), Mj. balthica in New 

England have morphologically distinct labial palps 

relative to populations in Europe (Yonge, 1949). Gilbert 

suggested that because of the anisomorphic palps of



European and New England M_j. balthica the current flow 

through the mantle cavity of New England M. balthica 

occurs in an opposite direction from European M. 

balthica. Also, the morphological differences in the 

labial palps may be indicative of differences in habitats 

and material carried through the incurrent siphon 

(Gilbert, 1977; Reid, 1971). Bivalve labial palps are 

complex feeding structures which often reflect distinct 

feeding niches. For example, Reid and Reid (1969) have 

shown that differences in the feeding apparatus 

apparently restrict eight different species of Macoma to 

specific niches, though M. balthica was not one of the 

species examined. Both feeding structures and digestive 

processes of molluscs have long been recognized as vital 

in the adaptive radiation of the phylum (Purchon, 1977). 

The differences in the labial palp morphology between 

eastern and western North Atlantic balthica may be 

indicative of evolutionarily divergent populations.

Differences have also been reported in growth rate, 

longevity and maximum size among geographic populations 

of Mi. balthica (Green, 1973) and many factors are thought 

to influence these characteristics, including temperature 

(Gilbert, 1973; Green, 1973; Lammens, 1967; Reading, 

1979), food type and availability (Green, 1973; Elliot, 

1979; Hummel, 1983; Nichols and Thompson, 1982), and
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habitat characteristics (Gilman, 1979). Of these 

factors, none acts exclusively to influence life history 

parameters. The environment is the sum total of the 

interaction of many separate factors that act 

synergistically upon organisms (Vernberg, 1975). The 

different life history strategies of M. balthica 

occurring in different geographic sites, could be 

indicative of physiological adaptations to different 

environments. Gilman (1977) found this to be true for M . 

balthica populations from different locations along the 

New England coast. Nicol (1978) found that variations in 

these same life history characteristics occur in many 

groups of molluscs that have a large geographic range.

Growth rate, longevity and maximum size are difficult to 

determine and require long-term field investigations.

Also, each of theBe parameters can be influenced by short 

term environmental variations.

Shell shape has not been previously considered 

within investigations of the growth aspects of M . 

balthica. Investigators generally have assumed a 

constant shell shape among populations, regardless of 

differences in growth rate and size. Holluscan shell 

shapes have a strong genetic component which often 

results in species specific characteristics (Chanley,

1961; Humphrey and Walker, 1982) and variations in shell 

shape can be influenced by external factors. The shell



shape of an individual is therefore a manifestation of 

both genetic and environmental forces (Coe, 1948; Dodd, 

1964, 1966; Kaufman, 1969; Kennedy et al.,1969). In this 

regard distinct shell shapes at different locations may 

reflect different environmental and ecological forces on 

a single genome, or alternatively, different genomes 

between locations, or both. Variation in shell shape can 

present different spatial accommodations for internal 

organs, influence the suitability to a habitat and affect 

predator-prey interactions (Kaufman, 1969; Stanley, 1975; 

Vermeij, 1978; Nicol, 1983). Therefore, different shell 

shapes of M. balthica between locations may be indicative 

of divergence by affecting survivorship at different 

habitats, response to predators and allowing opportunity 

for reorganization of internal organs. Shell shape is 

not necessarily a passive characteristic, but may 

represent a form of adaptive radiation and could be a 

better criteria to distinguish populations than either 

growth rate or maximum size.

Differences in the labial palp structure and 

shell shape of M. balthica between the eastern and 

western North Atlantic populations could indicate genetic 

divergence between two allopatric populations (Mayr,

1970; Bush, 1975). A limited portion of the genome of a 

population can be determined by the examination of



enzymes using electrophoretic techniques (Lewontin,

1974). Because enzymes are immediate products of DNA 

activity direct observation of enzymes provides indirect 

information of genetic structure (Avise, 1975; Markert, 

1974). The genetic population structure of many 

organisms has been determined using this technique (see 

reviews by Ayala, 1975 ; Burton, 1983 ; Gooch, 1975 ; Nevo , 

1978). Reid and Dunnil (1969) have utilized gastric and 

digestive enzymes to distinguish eight Pacific east coast 

Bpecies of M a c o m a . not including M. B a l t h i c a . Green et 

al. (1983) used enzymes to investigate the relationship 

between some life history characteristics and genetic 

population sturcture of an intertidal population of M . 

balthica. If M. balthica populations on the eastern and 

western North Atlantic are represented by distinct gene 

pools, possibly indicated by differences in shell shape 

and labial palp morphology, this may be manifest as 

differences in electrophoretically detectable enzyme 

variat ions.



MATERIALS and METHODS

Specimens of Macoma balthica were sampled from sites 

on both the east and west coasts of the North Atlantic 

(Table 1). Live specimens were transferred to the 

Virginia Institute of Marine Science or the Netherlands 

Institute for Sea Research where they were placed in 

natural sediment or foam rubber in aquaria with flowing 

seawater. No attempt was made to control or monitor 

temperature or salinity in the holding system.

«

Labial palp structure

The labial palps were examined using a dissecting 

microscope and a scanning electron microscope (SEM). The 

dissecting microscope was sufficient for gross 

observation but the SEM was far superior for obtaining 

detailed photographic records. For observations with the 

SEM, labial palps of M̂ . balthica were dissected free and 

washed with a mixture of sputolysin and distilled water

9



Table 1. Geographic location and source of studied 

populations of Macoma balthica.



Population 
Humber_____ L o o t  t o n S o u r c e

Saraha Creek, Tork River 
Virginia, U.S.A.

Bhark River, Rev 
Jeraey, U.S.A.

Hevark Say, Rev 
Jeraey, U.S.A.

Barn Ialand Salt Marah, 
Barn Ialand State Park, 
Connecticutt, U.S.A.

Jackson Marine Lab.
Rev Hampahlre, U.S.A.

Pottery Creek, 
Paaaamaquoddy Bay, 
Rev Brunavick. Can.

Churehil1 
Budaon Bay, Can

Mr. Brian Meehan, Virginia 
Inatitute of Marine Science, 
Glouceater Point, Virginia

H a . Joy Goodaill 
Rutgera Univeraity 
Rutgera Shellfiah Laboratory 
Port Rorria, Rev Jeraey

Dr. Mike M c C o m i c k ,  Montclair 
State College, Upper Montclair, 
Rev Jeraey.

Dr. Bob Uhiltlach, Univeraity 
of Connecticutt, Croton, 
Connect icuet.

Dr. Larry Barrie, Univeraity 
of Rev Hampahire, Durhan,
Rev Banpahire.

Ha. Lealie Linkletter, 
Biological Btation, St. 
Andreve, Rev Brunavick, Can.

Dr. Roger B. Green 
Univeraity of Veetern 
Ontario, Ontario, Can.

10

Diako Fjord 
Greenland

St. Halo Bay,
St. Halo, France

The Vadden Sea, Den 
Helder, The Retherlanda

Dr. C. Hopner Feteraen 
Zooligiak Muaeum 
Kobenhavn, Deniiark

Mr. Francioae Lang 
Laboratorie Maritime, 
Dinard, France.

Dr. Jan J. Beukema, The 
Retherlanda Inatitute for 
Sea Reaearch, Texel, The 
Retherlanda.

11

12

Riva Bay, Oreeund, 
Denmark

Univeraity of Bclainki 
Zoological Station 
Tvaraiinne, Finland

Mr. Paul B. Hadaen, Marine 
Pollution Laboratory, 
Cherlettenlund, Denmark

^Aho-Varvio, Univeraity 
Relainki, Helainki,
Finland
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to remove mucus from the surface tissue. Palps were 

fixed in 0.1M sodium cacocylate with 1.0% gluteraldehyde. 

Conductive properties were imparted upon the tissue using 

a modified osmium tetroxide ~ thiocarbohydrazide ~ osmium 

tetroxide procedure as described by Hyatt (1978) or by 

metal coating with gold-platinurn in a vacuum evaporator.

In both cases tissues were dehydrated using a graded 

alcohol series, stored in acetone, and dried using a 

critical point dryer.

For observations with a standard dissecting 

microscope, labial palps were exposed by removing one 

shell valve and flapping back the mantle and outer palp. 

Representatives from all populations were examined using 

this method. Only specimens from the Wadden Sea and 

Sarah's Creek, locations 10 and 1, respectively, were 

examined and photographed with the SEM.

Shell Shape

Previous investigations of Macoma balthica shell 

variation have dealt primarily or exclusively with shell 

length. For this investigation the height (H), length 

(l ) and width (W) of shells were measured to the nearest 

0.05mm with vernier calipers (Figure 2). Each measure
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Figure 2 Illustration of the heigth(H), length(L) and 

width(tf) dimensions of Macoma balthica used in 

the present investigation.





was standardized against the sum of all three 

measurements. Standardized data from population samples 

were then compared graphically and statistically. 

Statistical comparison among all populations was done 

using a nonparametric Kruskal-Wallis one way analysis of 

variance. Subsequent multiple comparisons between all 

pairwise combinations were done following the procedure 

outlined by Noether (1971). ThiB procedure allows 

multiple comparisons without inflation of the alpha level 

of the overall test. The relative similarity of the 

shell shapes among the studied populations was determined 

using the manahattan distance statistic (Cherry et al., 

1982). This technique is commonly employed in 

anthropological investigations in order to give 

information on the relative difference or similarity of 

shapes (Cherry et al., 1982; Farris, 1972). Height, 

length and width parameters, as well as, H:W, L:W and H:L 

ratios were used to determine the manahattan distance 

values between all pairwise combinations of populations.

Enzyme electrophoresis

Enzyme variation was examined using horizontal 

starch gel electrophoresis (Brewer, 1970). Adductor 

muscle and digestive gland tissue were dissected from 

live individuals and homogenizd in 0.01M Tris with 20%



glycerol, over ice. To remove tissue particulates the 

bomogenates were centrifuged in a refrigerated 

centrifuge. Filter paper wicks (5 x 5mm) were saturated 

with supernant, blotted, and inserted into the starch-gel 

2.2cm from the cathode edge. Starch gels were 

140x140x62mm in dimensions and were made from a mixture 

of 1 8 . 7 g m  of hydrolysed starch (Connaught Laboratories, 

LTD., Canada) and 160ml of gel buffer. Studied enzymes, 

electrophoretic conditions and detection methods are 

given in Table 2. Each electrophoretic run included an 

individual of known genotype as a standard.

After electrophoresis, gels were sliced horizontally 

and the cut surface stained according to methods in Table 

2. The fastest migr ating allele was designated "A" and 

slower alleles "Bm , "C", "D", etc. Photographic records 

were ma d e  of representative runs and those that included 

rare alleles; relative migration distances were not 

determined. Data we r e  analysed using the computer 

software package Biosys-l (Swofford and Selander, 1981). 

For each population allele frequencies and conformity of 

genotype frequencies to the Hardy-Weinberg expectations 

were determined. Comparisons between populations were 

made using Nei's unbiased genetic identity, cluster 

analyses (unweighted pair group method), and chi square 

tests for homogeniety between populations.
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Table 2. Electrophoretic conditions for detection of 

Malate dehydrogenase (MDH), Phosphoglucose 

Isomerase (PGl), Amino Peptidase (AP) and 

Phosphoglucomutase (PGM) in Macoma b a lthica.



Enzymes(voltage/time) Buffer and Staining solutions

MDH-1, MDH-2 
(2 5 0/3hrs.)

P G I , AP 
(250/3hrs.)

PGM
(120/3hrB)

El ecjt.ro d_e. Buffer : 0.135M TriB,
0.0043M Citric Acid. Adjusted to 
pH. 7.3 with NaOH.

G e 1 Buffer: 1:9 dilution of electrode 
b u f f e r .

S t a i n : 25 mg NAD, 10 mg M T T , 1 mg PMS,
5 ml substrate Solution, 20 ml 
0.1M Tris-HCl, pH 7.0. Substrate 
solution: 1 .34g L-malic acid in 50 
ml water, adjusted to pH 7.0 with 
2.0M NaH2C03

4.

Electrode Bu_ffer: Use 100% stock
solution A. Stock solution A; 
0.03M Lithium hydroxide, 0.19M 
boric acid, pH 8.1. Stock 
solution B; 0.05M Tris, 0.008M 
citric acid, pH 8.4.

Gel' Buffer: 1:9 mixture of stock 
solutions A and solution B.

PGI Stain: 5 mg sodium fructose-6-
phosphate, 5 mg N A D P , 5 mg MTT, 2 
mg PMS, 10 units glucose-6- 
phosphate dehydrogenase, 0.5 ml 
0.1M MgClj 25 ml 0.1M Tris pH 7.0

AP St a i n : 25 mg peroxidase, 2 mg amino 
acid oxidase, 25 mg 0-dianis idine 
HC1, 10 mg leucyl-alanine, 25 ml 
0. 1M T r i s , pH 8.0

Electrode Buffer: 0.10M maleic acid, 
0.01m " e DTA, 0.01M MgCl2chloride,
pH 7.4.

G e 1 bu f f e r : 1:9 dilution of electrode 
buffer .

St a i n : 70 mg glucose-l-phosphate, 5mg 
NADP, 5mg MTT, lmg PMS, 10 units 
Gluco6e-6-phosphate dehydrogenase, 
5ml 0.1M MgCl, 20ml 0. 1M Tris pH 
7.



RESULTS

Labial palps

The labial palps of Macoma balthica specimens from 

both Virginia and the Hadden Sea are illustrated in 

Figures 3 and 4. The labial palps at both of these 

locations are alike and are representative of all the 

Hacoma balthica examined. For all of the populations the 

labial palp ridges of Macoma balthica were orientated 

parallel to the oral groove for the entire length of each 

labial palp. Yonge (1949), in an earlier report of 

specimens from Scotland, also reported that the labial 

palp ridges run parallel to the oral groove (Figure 5). 

Gilbert (1977) reported that the palp ridges of New 

England specimens were orientated oblique and 

perpendicular to the oral groove (Figure 6). The 

apparent differences in the labial palp morphology 

reported by Gilbert (1977) cannot be- confirmed and there 

is no evidence to consider the labial palps of eastern 

and western North Atlantic Macoma balthica dissimilar.
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Figure 3. Scanning electron micrograph of the labial 

palp of Macoma balthica from Sarahs Creek, 

Virginia, U.S.A. (opa outer palp, og=oral 

groove, ip=inner palp, pr“ palp ridge).
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Figure 4 Scanning electron micrograph of the labial 

palps of Macoma balthica from the Hadden Sea, 

The Netherlands. See legend of Figure 3.
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Figure 5 Labial palps of Macoma balthica from Glasglow, 

Scotland, redrawn from Yonge (1949). See 

legend of Figure 3.
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Figure 6 Labial palps of Macoma balthica from New 

England, redrawn from Gilbert (1977). See 

legend of Figure 3.
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Shell shape

The average shell shapes of nearly all of the Macoma 

balthica populations investigated were distinctly and 

significantly different from one another and the range of 

shell shapes within each population was slight (Tables 3 

and 4). The most similarly shaped shells occured among 

the Barn Island (4) and Niva hay (11) populations, and 

the New Hampshire (5) and Disko Fjord (9) populations.

The only two populations that have average shell shapes 

that are not significantly different from one another are 

the Barn Island (4) and Neva Bay (11) populations (Table 

3). Other populations had non-significant differences of 

some but not all shell shape parameters. The average 

length and width parameters of the Hadden Sea (10) and 

Barn Island (4) populations, the Hadden Sea (10) and Neva 

Bay (11) populations and the New Hampshire (5) and Disko 

Fjord (8) populations were not significantly different 

from one another, but height was significantly different 

(Table 3). Moreover, the variation of shell shape for 

each population, indicated by the standard deviation of 

the hieght, length and width parameters, is very slight 

(Table 4). The standard deviation of the mean height, 

length and width parameters exceeds 0.009 only for the
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Table 3. Results of Kruskal-Wallis non-parametric one 

way analyses of variance comparing h, 1 and v 

between all pairwise comparisons of populations 

investigated. An h, 1 or w indicate that a 

non-significant difference ( P“ 0.05) occurs at 

these parameters between the populations 

indicated. Area within the dashed lines 

represents comparisons between eastern and 

western North Atlantic populations



Population number

1 2 3  4 5 6 7 8  9 10 11 12

1 * * * * * * * * * * *

2 * * L ;k * * * * * *

3 * * * * * * * * * *

L H
4 H * * * W W L L

i W
L j

5 * * W ! *§1
* H *

6 W * ** * * W
!

Populat ion I!
7 * s * ★ * *

number i
8 I * * * *

I

9 * W *

L
10 W L

11 L
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Table 4. The sample size, mean, standard deviation and 

coefficient of variation of h, 1 and w for 

investigated populations. See Table 1 for 

population locations.
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Wadden Sea (10) and St. Malo (9) populations. This 

sugests that the shell shape of each of the studied 

populations is very consistent through age and size.

There vas a greater range of shell shapes along the 

western North Atlantic than along the eastern North 

Atlantic (Figure 7 and Table 4). The average manahattan 

distance value between western North Atlantic populations 

was 9.5, nearly as great or greater than many of the 

values between eastern and western North Atlantic 

populations (Table 5). Along the western North Atlantic 

there was a tendency for populations that were 

geographically closest together to have the most similar 

shell shapes (Tables 1 and 5, Figure 7). The shell 

shapes of the Disko Fjord (8) and the New Hampshire (5) 

populations were incongruous with this tendency. The two 

populations that have the most dissimilar shapes are the 

Sarah's Creek (1) and the Hudson Bay (7) populations, the 

manahattan distance value between these two populations 

is 24.649. With the exception of the New Hampshire (5) 

and Disko Fjord (8) populations, the western North 

Atlantic populations also tend to follow a north-south 

gradient. That is, the more southerly Macoma balthica 

tend to have a longer and flatter shell shape; both width 

and length vary greater than height (Figures 7, 8 and 9, 

Table 4). The mean length parameter gradually decreases
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Figure 7. Plot of the mean h t 1 and w of Macoma balthica 

from each of the investigated populations. 

Population numbers correspond to those in 

table 1. Figures at the top of the triangle 

indicate the change in shape along each of the 

a x i s .
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Table 5 Manhattan distance values for all pairwise 

comparisons between studied populations.
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Figure 8. Photograph of Macoma bal t h i c a . . lateral view, 

from each of the sudied populations, numbers 

correspond to population numbers given in 

table 1.
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Figure 9. Photograph of Macoma b a lthica.. ventral view, 

from each of the sudied populations, numbers 

correspond to population numbers given in 

table 1.





from 0.483 for the Sarah's Creek Cl) population to 0.439 

for the Hudson Bay (7) population. The mean vidth 

parameter increases from 0.162 for the Sarah's Creek (1) 

population to 0.185 for the Pottery Creek (6) population. 

The actual differnce in shell shapes caused by these 

differences in the length and width parameters is 

illustrated in Figures 8 and 9.

Definitive differences between the average shell 

shapes of Macoma balthica from the eastern and western 

North Atlantic were not very apparent. Generally, the 

shell shapes of Macoma balthica on the eastern North 

Atlantic are wider then the western North Atlantic 

populations (Figures 7, 8 and 9). Other distinctions 

were less apparent. The coefficient of variation values 

(Table 4) are slightly greater for eastern North Atlantic 

populations, indicating that, at a particular location, 

the shell shapes for these populations are slightly more 

variable. Shell shapes of eastern North Atlantic 

populations are also much more similar between 

populations then those for the western North Atlantic.

The average Manhattan distance value between populations 

on the eastern North Atlantic was 2.54. The shell shapes 

of 11*. balthica on the eastern North Atlantic seem less 

related to latitude and there is no obvious relationship 

between similarity of shape and geographic proximity 

between populations.
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Enzyme electrophoresis

The allele frequencies at studied loci for the 

populations examined are given in Table 6 and Figures 10, 

11 and 12. Four enzymes, representing five loci, were 

investigated, three were polymorphic in all of the 

populations, A population is considered polymorphic when 

the frequency of the most common allele does not exceed 

0.95, Because of difficulties in resolving the 

aminopeptidase enzyme, it was not included in the 

analysis of eastern North Atlantic populations.

Variations in allele frequencies did occur among both 

eastern and western North Atlantic populations. The 

allele frequencies of each of the investigated loci are 

presented below.

Halate dehydrogenase-l (MDH-1)

The MDH-1 locus was expressed only by populations 

in the western North Atlantic. Two common alleles and 

one rare allele occured at this locus. The rare allele 

occured only at the Shark River population (2).

Malate dehydrogenase-2 (MDH-2)

MDH-2 was monomorphic at all of the populations 

except the Pottery Creek population, which contained one 

f a 8 1 migrating relatively rare allele (Table 6). Other
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Table 6 Sample sizes (n) and allele frequencies 

at each locus for each population investigated.



Table 6
________________________________ Population_________________________________________

LOCUS______1______ 2______ 3______ 4_______5_______6______ 7______ 8______ 9______10_
HDH-1
(N) 49 35 50 30 30 40 64 30 60 60
A 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B 0.663 0.643 0.660 0.617 0.633 0.650 0.000 0.000 0.000 0,000
C 0.337 0.343 0.340 0.3B3 0.367 0.350 0.000 0.000 0.000 0,000
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000

MDH-2
(N) SO 35 50 30 30 40 64 30 60 60
A 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0,000
B 1.000 1.000 1.000 1.000 1.000 0.975 0.000 0.000 0.000 0.000
C 0.000 0.000 0.000 0.000 O.OOD 0.000 1.000 1.000 1.000 1.000

PCI
(N) 42 35 48 30 30 37 56 30 60 60
A 0.000 0.000 0.000 0.000 0.017 0.027 0.027 0.000 0.000 0.017
B 0.250 0.071 0.031 0.017 0.033 0.027 0.125 0.200 0.150 0.092
C 0.488 0.443 0.583 0.567 0.40D 0.351 0.330 0.683 0.525 0.400
D 0.262 0.486 0.354 0.417 0.483 0.595 0.518 0.117 0.317 0.483
E 0.000 0.000 0.031 0.000 0.050 0.000 0.000 0.000 O.OOB 0.008
F 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000

PCM
<N) 44 35 12 28 30 33 63 30 59 60
A 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.068 0.042
B 0.000 0.000 0.000 0.000 0.000 0.000 0.429 0.200 0.534 0.358
C 0.000 0.000 0.000 0.000 0.000 0.000 0.349 0.4B3 0.280 0.367
D 0.080 0.200 0.167 0.054 0.017 0.045 0.151 0.283 0.093 0.150
E 0.273 0.414 0.667 0.321 0.467 0.439 0.032 0.033 0.017 0.075
F 0.443 0.371 0.125 0.554 0.333 0.500 0.008 0.000 0.008 0.008
G 0.205 0.014 0.042 0.071 0.167 0.015 0.000 0.000 0.000 0.000
H 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000

APP-2
(K>
A
B
C

47
0.170
0.340
0.489

31
0.339
0.403
0.258

46
0.315
0.413
0.272

28
0.250
0.232
0.518

29
0.397
0.397
0.207

24
0.396
0.313
0.292



Figure 10. The cummulative frequency of the PGM alleles 

at each of the populations investigated.
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Figure 11. The cummulative frequency of the PGI alleles 

at each of the populations investigated.
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Figure 12. The cummulative frequency of the AF alleles 

at each of the populations investigated.
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populations contained alleles unique to either the 

eastern or western North Atlantic. The western North 

Atlanic populations are represented by allele "B" and the 

eastern North Atlantic by Allele "C".

Fhosphoglucose Isomerase (PGl)

PG1 was represented by as many as six alleles in any 

one population. All six alleles for this locus were 

present in the New Hampshire population (5). The 

Tvarminne population (12) contained five alleles. Allele 

"F" at the New Hampshire population was the only allele 

unique to the western North Atlantic for this locus.

Comparing eastern and western North Atlantic populations, 

it is difficult to discern any distinct pattern in the 

allele frequencies for this locus. Generally, allele "B" 

was more common on the eastern North Atlantic and allele 

"E" was more common on the western North Atlantic. At 

the Sarah's creek population allele "B" occurs at a much 

higher frequency, seemingly at the expense of allele "D", 

than in other western North Atlantic populations.

Fhosphoglucomutase (PGM)

This locus exhibited more alleles then any of the 

other loci examined. Of the eight alleles representing 

this locus three ("D", "E", "F") were shared among nearly 

all the studied populations. Two distinct alleles ("G",

"h ") occurred in the western North Atlantic populations
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and three distinct alleles ( " A " ,"B","C") occurred in the 

eastern North Atlantic populations. Allele "F" was 

common on the western North Atlantic but it occured at 

very low frequencies on the eastern North Atlantic.

Allele "H" occurred only in the New Hampshire population 

at low frequency. The alleles that are unique to the 

eastern North Atlantic represent 60% or more of all the 

alleles that are present at this locus.

Aminopeptidase (AP)

Because this locus was only scored for the western 

North Atlantic populations a trans-Atlantic comparison 

was not possible. This locus contained three alleles 

shared among all the western North Atlantic populations 

studied.

The allele frequencies at each of the populations 

studied agree with Hardy-Weinberg expectations at each of 

the populations except the Tvarminne (12) and Sarah's 

Creek (l) populations (Table 7). The deviation from 

Hardy-Weinberg equilibrium for the PGI locus at the 

Tvarminne (12) population could be caused by a 

combination of the sample size and the presence of some 

rare alleles (Table 6). When the rare alleles at the PGI 

locus of the Tvarminne (12) population are pooled into a
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Table 7, Chi-square test for deviation from Hardy- 

Weinberg law for the Sarah^s Creek (1) and 

Tvarmine (12) populations, calculated from 

allele frequencies using Biosys-1 (Swofford and 

Selander, 1981), significant deviations occur 

at P < 0.05.



i

LOCUS CLASS
OBSERVED
FREOPEMCY

EXPECTED
FREODEHCT

CBI-
SOUARE DF

Eirih't Crttl. c n r u  1 Jit ion 
MDU-1

B-B
B-C
C-C

PCI

PCM

B-B
B-C
B-D
C-C
C-D
D-D

D-D
D-E
D-F
D-C
B-E
E-F
E-G
F-F
F-C
G-G

TvarminTif pot'll 1 at ion 
PGI

B-B
B-C
B-D
C-C
C-D
D-D

FCH
B-E
B-C
B-D
B-E
C-C
C-D
C-E
D-D
D-E
E-E

15
15
9

63 
6

15
8
4

01
51
5

121
4

141

1
91

15
2
2

21 .556 
21.888 
5.556

2.625
10.250
5.500

10.006
10.738
2.881

0.278
1.909 
3.102 
1.432 
3.273
10.636
4.909 
8.642 
7.977 
1.841

1.200 
8.200 
1 .400 

14.008 
4.783 
0.408

1.200 
5.800 
3.400 
0.400 
7.008 
8.217 
0.967 
2.408 
0.567 
0.033

4.852 0.028

13.138 0.004

13.626 0.034

8.120 0.044

6.500 6 0.370
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single group the allele frequencies are then in strong 

agreement with Hardy-Weinberg expections (Table 8). The 

allele frequencies at all of the polymorphic loci for the 

Sarah's Creek population (1) are in disagreement with 

Hardy-Weinberg expectations. Some allele frequencies at 

the PGM and PG1 loci of the Sarah's Creek population were 

also dissimilar to other western North Atlantic 

populations (Table 6). At the PGI locus allele "G" was 

present at a much higher frequency and allele "D" at a 

lower frequency. At the PGM locus allele "G" occured at 

a much higher frequency and allele allele "C" at a lower 

frequency. Also, the MDH-1 and the PGI loci of the 

Sarah's Creek (1) population show a strong deficiency of 

heterozygotes (Table 9). The Sarah's Creek population is 

located very near the southern limit of Mi balthica's 

range, perhaps the departures from the Hardy-Weinberg 

equilibrium and the heterozygote deficiencies are a 

reflection of this (ie. marginal habitat). As a marginal 

habitat, this population may be partially isolated and it 

may be subject to extraordinary strong selection, perhaps 

at these loci.

With regard to the loci examined, the studied 

populations on each side of the North Atlantic are very 

similar to one another (Table 10), but not homogeneous 

(Table 11). The average genetic identity among western 

North Atlantic populations is 0.973 and among eastern
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Table 8 Chi square test fo deviation from Hardy- 

Weinberg law for the Tvarminne (12) population 

with the rare alleles pooled.
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North Atlantic populations is 0.971. A genetic identity 

of one indicates that the two populations are identical. 

In contrast, eastern and western North Atlantic 

populations are quite different from one another (Figure 

13 and Tables 11 and 12). The average genetic identity 

between eastern and western North Atlantic populations is 

0.169. The most striking difference between eastern and 

western North Atlantic populations occurs at the MDH loci 

(Table 6). Along the western North Atlantic this enzyme 

system is coded for by two loci, MDH-1 and M D H - 2 , and on 

the eastern North Atlantic only the Mdh-2 locus is 

pres e n t .
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Table 9. Observed beterozygotes, heterozygotes expected 

by Hardy-Weinberg law and fixation index (F) 

for the Sarah's Creek (1) population. 

Calculated from allele frequencies in table 1, 

using Biosys-1 (Swofford and Selander, 1981).
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Table 10. Matrix of Nei's unbiased genetic distance and 

similarity coefficients calculated from allele 

frequencies using Biosys-l (Svofford and 

Selander, 1981). Unbiased genetic identity 

above diagonal and unbiased genetic distance 

below diagonal.
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Table 11. Summary tables of chi-square values and 

associated P-values for the analyses of 

heterogeniety of allele frequencies among 

studied populations.
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Table 12. Summary of genetic differences between

populations on the eastern and western North 

Atlantic infered by enzyme electrophoresis



Locu s 

MDH-1

MDH-2

PGI

PGM

Differences between eastern and western 
________North Atlantic populations________________

Unique locus to the western North Atlantic 
popu l a t i o n s .

Alleles are unique to each side of the North 
Atlant ic .

One unique, rare allele and large differences 
in allele frequencies of shared alleles.

Two unique alleles on the western North 
Atlantic and three unique alleles on the 
eastern North Atlantic.
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Figure 13. Population phenogram calculated from

Nei's unbiased genetic identity (1978) using 

Biosys-l (Swofford and Selander (1981).



SIMILARITY

1.000.67 0.830.33 0.500.00 0.17

0.00 0.17 0.33 0.50 0.67 0.83 1.00



DISCUSSION

Labial Palps

The labial palps of Macoma balthica were re-examined 

Co better describe and compare previously reported 

differences between eastern and western North Atlantic 

populations. The differences in the labial palps as 

described by Tonge (1949) and Gilbert (1977) implies 

differences in feeding between the New England and 

Scottish Macoma b a lthica. According to Gilbert (1977), 

this arrangement of the palp ridges accommadated the 

palps for sorting and movement of food particles and 

assisted Macoma balthica as an effective deposit feeder. 

Re-examination of the labial palps of both the eastern 

and western North Atlantic Mj. balthica indicate that 

they were both the same as reported by Yonge (-1949) . In 

the present investigation Macoma balthica specimens were 

not examined from the exact same location that Gilbert 

obtained her specimens. However, they were examined from 

other locations in New England, both north and south of 

Gilbert's. The description of the labial palps given by 

Gilbert (1977) may be erroneous. In any case, the labial 

palps of Mj, balthica cannot be used as a morphological
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character to distinguish between eastern and western 

North Atlantic populations.

Shell Shape

Bivalve shell shape and structure can be influenced 

by both physical and chemical components of a habitat 

(Digby, 1968; Dodd, 1964, 1966; Lutz and Rhoads, 1977).

In particular habitats there are optimum shell shapes 

which are often shared among the bivalves within that 

habitat (Kaufman, 1969; Nicol, 1978; Stanley, 1970, 1975; 

Vermeij, 1978). For example, smooth compressed shells 

with reduced hinges, smooth inner valve margins and 

relatively small adductor muscles are characteristics 

shared among rapid, deep burrowing bivalves. Many 

shallowly buried infaunal bivalves contain radial or 

concentric ribs and complex hinge dentition which 

stabilize the animal in the sediment and prevents the 

valves from shearing upon one another, respectively 

(Vermeij, 1978). Though shell shape and habitat 

characteristics are closely coupled, habitat induced 

variations in shell shape are bounded by the limits 

imposed by the genetic composition of a species. Shell 

shape is genetically restricted (Kennedy, et al., 1969); 

otherwise, bivalve shells would be amorphous, complying 

to the demands dictated by habitat characteristics.



Closely related bivalves living in similar habitats might 

be expected to have similar shell shapes (Nicol, 1983).

A bivalve will possess the most advantageous shell shape 

for survival at a particular habitat within its 

perceptive and genetic capabilities. It is likely that 

the variety of shell shapes of M_j. balthica are habitat 

induced, within the limits of its genetic composition and 

perceptive capabilities. This is best illustrated by the 

different shell shapes between locations and the 

consistency of shell shape of Mi  balthica at each 

specific location.

Depending on scale, habitats can be defined by a few 

broad parameters or a seemingly infinite number of 

specific ones. The essential habitat parameters that are 

percieved by an organism and that might have an effect on 

an organism are difficult to determine, as mentioned 

previously the relationship of M_l balthica to a number of 

habitat parameters has been investigated. Gilman (1979) 

conducted transplant experiments with M_s. balthica in the 

western North Atlantic and concluded that temperature was 

an essential habitat parameter, with respect to growth 

and survival, other factors were not considered. 

Temperature, as an essential habitat parameter might be 

manifest as different shell shapes along a north-south 

gradient, perhaps evidenced within the studied 

populations along the western North Atlantic. The
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maximum surface water temperature gradually decreases

form 30°C at the Sarah's Creek(l) population to 15°C at 

the Pottery Creek populationC6). The maximum surface 

water temperature at the Hudson Bay(7) and Disko Fjord(8)

populations is 5.0°C. However; because the New 

Hampshire(5) and the Disko Fjord(8) populations do not 

agree with this trend, and because they are very similar 

to one another, it is likely that habitat factors other 

than temperature may also be percieved by and have an 

effect on life history aspects of b a lthica. The mean 

surface water temperature of Greenland coastal water is

approximately 0.83°C, the range is approximately -1.6 to

5.0°C. The mean surface water temperature at the New

Hampshire site is 11.0°C, the range is -2.0 to 27°C.

Macoma balthica shell shape appears to be closely 

aligned and sensitive to habitat parameters. For 

example, the habitat parameters might define a frame or 

mold, the mold defines an optimum shape for a bivalve for 

that particular habitat. This of course is not limited 

to bivalve shell shapes but may apply to any direct 

organism-habitat interaction, provided the organism does 

not have the ability to alter the habitat mold. As an 

organism enters a particular habitat its survival is 

related to its ability to conform to the mold of that 

habitat. It is suggested that balthica. especially
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those of the western North Atlantic, conform highly to so 

called "habitat molds", allowing them to become fine 

tuned to a particular habitat.

This does not imply that shell shape cannot be used 

to distinguish genetically distinct populations, but that 

it can be difficult when comparing similar organisms in 

like habitats. Two geographically discrete populations, 

within like habitats, of similar shell shapes, may not be 

genetically alike and equally capable of obtaining the 

most advantageous shell shape for that particular 

habitat. Because western North Atlantic Mj. balthica are 

capable of a wide variety of shell shapes it is not 

unlikely that similarities between some eastern and 

western North Atlantic M^. balthica occur. They are 

closely related bivalves, at the very least members of 

the same genus, occupying similar habitats along 

comparable geographic ranges. The similarity of shell 

shapes between some eastern and western North Atlantic M . 

balthica populations may be more an indicator of 

comparable habitats then of genetic identity.

Perhaps a better indication of discrete populations 

between eastern and western North Atlantic Mj. balthica 

might be the range of available shell shapes. A bivalve 

capable of producing many shell shapes probably contains 

a different genetic composition then one restricted with



respect to shell shape, certianly it is easy to realize 

the advantage of the former. It is difficult to 

determine if eastern North Atlantic H . balthica are 

genetically restricted or restricted by habitat 

characteristics. Specimens were obtained from a number 

of habitats (eelgrass beds, intertidal and shallow water 

subtidal fine sand/mud, and deep water mud) encompassing 

much of its' eastern North Atlantic range. Yet, the 

variety of shapes of specimens from the eastern North 

Atlantic was slight compared to western North Atlantic 

populations. The ability of the western North Atlantic 

M. balthica to produce a variety of shell shapes is a 

distinctive characteristic of western North Atlantic 

populat io n s .

Enzymes

The slight variations in allele frequencies that 

occurred within the studied populations from either the 

eastern or western North Atlantic were not unexpected. 

Other invertebrates whose genetic population structure 

have been determined includes Aurelia aurita (Zubkoff and 

Lin, 1975), Limulua polvphemus (Selander et al., 1970), 

Cvathura s p p . (Parker et al., 1979), Arbacia puntulata 

(Marcus, 1980), Metridium s p p . (Walsh and Somero, 1981; 

Buchlin and Hedgecock, 1982), Goniobasis s p . (chambers,
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1980), Ctenodiscus creaoatus (Schick et al., 1981),

Busvcon bdp. (Edwards and Humphrey, 1981), Hvdrobia spp. 

(Lassen, 1979), Corblcula SPP. (Hillis and Patton, 1982), 

Littorina s p p . (Berger, 1973, 1977; Snyder and Gooch,

1973), Crassostrea s p p . and Saccostrea s p p . (Buroker et 

al., 1975, 1979a, 1979b; Singh and Zouros, 1978; Koehn 

and Sbumway, 1982), Macoma spp. (Reid and Dunnil, 1969; 

Levinton, 1973; Green et al., 1983), Mvtilue edulis 

(Milkman and Beatty, 1970; Koehn et al., 1976; Singh and 

Zouros, 1978; Murdock et al., 1975; Skibinski et 

al.,1980; Beaumont and Beveridge, 1983; Beaumont et al.,

1983; Gartner-Kepkay et al., 1980, 1983) and others 

(Gooch, 1975 ; Burton, 1983). Mvtilus edulis and 

Crassostrea s p p . have probably been the most thoroughly 

investigated of all marine bivalves. Variations in 

allele frequencies along microgeographic and 

macrogeographic ranges are common in marine bivalves and 

are often associated with environmental and habitat 

differences (Koehn and Mitton, 1972; Koehn et al., 1973; 

Levinton, 1973; Mitton et al., 1973; Singh and Zouros,

1978; Theisen, 1978; Koehn, 1983). Because there is such 

a large geographic distance between studied populations 

of Macoma balthica it is difficult to identify any clinal 

variations on a microgeographic or macrogeographic scale. 

Green (1983) found that the genetic heterozygosity of two 

intertidal populations of Mj. balthica increased slightly 

with increased distance above mean low water. It is
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likely that the variations in allele frequencies of the 

studied populations of balthica on each side of the 

North Atlantic are caused by environmental and habitat 

differences. Unique alleles that occur among either 

eastern or western North Atlantic populations are at such 

low frequencies that they do not significantly

differentiate populations and it could be that they have

simply gone undetected in other populations.

Though studied populations on each side of the North 

Atlantic are very similar with respect to the loci 

investigated the eastern and western North Atlantic 

populations are quite different from one another. There 

are no reports of unique alleles fixed at a locus

occurring between populations of a single species. The

presence of the MDH-1 locus only on the western North 

Atlantic represents considerable genetic differentiation 

between eastern and western North Atlantic populations. 

Varvio-Aho and Vainola (1983) have been trying to resolve 

the MDH system of M_s. balthica in the Baltic Sea. Though 

they have had difficulties, they could identify only one 

locus for this system. Fujio et al. (1984) found a 

variable number of MDH loci among 25 different species of 

molluscs; Corbicula ianonica has one MDH locus while 

Crassostrea and Ostrea species each have 5 loci. The 

presence of this unique locus on the western North 

Atlantic, as well as many unshared alleles between
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eastern and western North Atlantic populations, strongly 

indicates that the eastern and western North Atlantic 

populations of Mi balthica are genetically distinct from 

one another. As a general descriptor, genetic similarity 

values indicate that eastern and western North Atlantic 

populations of Mj. balthica are not conspecific. Often, 

genetic similarity values greater than 0.9 are associated 

with conspecifics, and values less than 0.9 occur between 

subspecies or species (Avise, 1975). Skibinski et al. 

(1980) examined the genetic similarity among the mussels 

Mvtilus e d u l i s . Mvtilus pa H o u r o v i n e i a l i s  and Modiolus 

m o d i o l u s . Genetic similarity between the Mvtilus species 

was less than 0.9, and between the genera Mvt ilus and 

Modiolus less than 0.25. Buroker et al. (1979a, 1979b) 

found that the genetic similarity among five species of 

Crassostrea was less than 0.8, and among conspecific 

populations greater than 0.9.

Genetic differentiation, determined by 

electrophoresis of enzymes, between populations only 

implies genetic isolation; post-settling selection can 

create the same differences. However, M_j. balthica has a 

restricted ability to migrate and it is unlikely that 

gene flow occurs between eastern and western North 

Atlantic populations. As a true infaunal bivalve, M . 

balthica is highly adapted to, and dependent upon, its 

habitat. As an adult it has only a limited ability for
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survival out of the sediment. Newly settled spat reside 

approximately 1 mm below the sediment surface and adults 

reside as much as 30 cm below the sediment surface 

(Gilbert, 1973; Schaffner, 1983). While buried, the 

pressure from surrounding sediment assists the adductor 

muscles in maintaining a correct valve position. When 

out of the sediment, the adductor muscles, working as 

antagonists to the elastic shell ligament, become 

fatigued, causing the shell to gape and the organism to 

die. Because of this long range migration by mature M. 

balthica is impossible.

Because Hi. balthica is apparently incapable of 

a sustained migration as an adult, it must depend on a 

passive mode of dispersal of its planktonic larvae to 

maintain range continuity. The planktonic larval period 

of Mjs. balthica is approximately two months long (Lammens, 

1967; Ankar, 1979; Gilbert, 1979). It is generally 

possible for molluscs to postpone metamorphosis from a 

planktonic to a benthic state (Bayne, 1965; Seed, 1976).

There is no indication that Mj. balthica is an exception 

to this phenomenon. Though delayed metamorphosis 

provides more time for encountering an adequate habitat, 

it is not without costs; both viability and survivorship 

decrease (Thorson, 1950, 1961; Bayne, 1965). As absolute 

larval longevity values are unknown, it will be assumed 

that ^  baIthica can delay metamorphosis for as long as
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one month, providing a planktonic larval duration of 90 

days maximum. Laboratory experiments with Mvtilus edulis 

(Bayne, 1965) indicate that metamorphosis can be delayed

up to 40 days at 10°C and 2 days at 20°C.

There are four primary factors for successful 

transoceanic transport of teleplanic larvae: the 

direction and speed of available ocean currents, the 

distance between populations, the maximum duration of 

larval development and larval behavior (Scheltema, 1972, 

1972a, 1978; Colebrook, 1982; Burton and Feldman, 1982;

). The currents that would operate as vectors for 

transoceanic larval transport for M_t balthica are 

illustrated in Figure 14. Using estimates of velocity 

for travel along these currents (Scheltema, 1966) the 

time required for passive travel from the western to 

eastern Nothern Atlantic can be determined (Table 13).

When these estimates are compared with the estimated 

maximum planktonic duration of IjU_ balthica larvae, 

presented above, it is apparent that the North Atlantic 

ocean currents are not suitable as vectors for direct 

exchange of planktonic larvae between eastern and western 

North Atlantic populations.

Another possible mechanism for maintenance of a 

contiguous range is by utilizing Iceland and Greenland as 

stepping stones between opposite sides of the North
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Figure 14. Major ocean currents in the North Atlantic,

stipled areas indicate distribution of Macoma 

ba l t h i c a .
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Table 13. The days required for transAtlantic drift

between the locations indicated. Calculated 

using drift velocity estimates determined by 

Scheltema, 1966.
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Atlantic. This scheme has been proposed by Kraeuter 

(1974) for the colonization of the North American coast 

by Littorina littorea. Kraeuter determined that direct 

larval drift from northern-central Europe is highly 

unlikely, requiring approximately 200 days. Therefore, 

he suggested that Greenland and Iceland operated in the 

past as stepping stones for L_j. littorea and that these 

locations have since become unsuitable for L . littorea 

because of climatic changes and glacial advances. Berger 

(1973, 1977), genetically compared eastern and western 

North Atlantic populations and presented a similar 

hypothesis to explain the present day distribution of 

Lit tor ina littorea. Whether or not M_s. balthica utilized a 

similar mechanism for colonization of North America is 

not certain. It is unlikely that Greenland and Iceland 

operate as stepping stones today, M*. balthica occurs only 

on western Greenland (Madsen, 1983) and it is not 

present in coastal or near shore waters of Iceland 

(Sparck, 1937). A mild modification of this stepping 

stone model invoking continental drift may be the most 

likely manner in which M_^ balthica could have become 

established in its North Atlantic range.

A few sporadic fossil records of M̂ . balthica exist 

for as far back as 60 million years (Moore, 1969). The 

Atlantic ocean is approximately 130 million years old 

(Dietz and Holden, 1970; Sclater and McKenzie, 1979).
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Perhaps Mj_ balthica established its pan-Atlantic 

distribution during post-genesis of the Atlantic basin 

and as the Atlantic broadened by continental drift 

(Hallam, 1983; Kennett, 1982) transoceanic exchange of 

larvae was continually reduced. With this hypothesis, 

also used to describe the distribution of a number of 

other species (Sterrer, 1973; Vermiej, 1978), the 

tectonic plates can be regarded as slow moving biotope 

carrying rafts (Pielou, 1979). Therefore, for a 

considerable length of time, while balthica was 

passively extending its range, it was continually 

inhabiting the same environmental regions and filling the 

same niches. This transition to allopatry would not 

involve the invasion of a "new" habitat, it also would 

not require any change or adaptive radiation (Schvarts,

1977; Stanley, 1977). Although balthica may have 

once existed as contiguous populations throughout the 

North Atlantic, possibly as a result of the phenomenon of 

plate tectonics, it now exists as two allopatric 

populations which are slowly diverging according to the 

potential of each.



Conclusion

The evidence presented here suggests that M. 

balthica on the eastern and western North Atlantic should 

be considered as separate and sibling species (Hayr, 

1970). They are geographically isolated, morphologically 

dissimilar and genetically distinct. It is recommended 

that future research in this direction be applied towards 

interbreeding eastern and western North Atlantic 

populations, determining the extent of M . balthica^s 

presence on Greenland and the Faeroe Islands, and 

extensive genetic analysis of both populations with 

emphasis in the northern reaches of'its range* Also, 

investigations concerning M. balthica should be conducted 

with caution, when utilizing the world wide literature 

concerning this bivalve.

6 1
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