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ABSTRACT

This dissertation presents an investigation on the effects of large scale roughness 
on the properties of giant magnetoresistive multilayers. The large scale roughness (orms > 
5 nm) is introduced into giant magnetoresistive thin films through the substrate. Current- 
in-plane (CIP) and current-perpendicular-to-the-plane (CPP) thin films were deposited by 
dc magnetron and triode sputtering. All films were characterized for roughness, magnetic 
and electronic behavior.

Our research on both pseudo spin valves and exchange-biased spin valves shows 
that long length scale roughness does not have a significant detrimental effect on GMR 
thin films. For the CIP films, we find that a decrease in GMR correlates to an increase in 
minimum film resistivity. As the minimum resistivity increased, the maximum resistivity 
increased linearly with a slope ~1. This suggests that the decrease in GMR may 
primarily be an effect of increased spin-independent scattering resulting from the 
increased film roughness. The CPP films showed a similar relationship between 
minimum and maximum resistance. Studying the effect of such large scale substrate 
roughness is important for applications in which GMR multilayers are deposited on non­
standard substrates and buffer layers including flexible media.

xviii
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Chapter 1 — Introduction

Magnetic multilayer thin films, which consist o f  multiple layers o f  ferromagnetic 

and non-magnetic materials, each on the order o f 1 nm thick, are providing interesting 

opportunities to study the physics o f magnetism and electron transport, as well as being 

useful for applications. The most well known discovery related to magnetic multilayer 

thin films is the property o f giant magnetoresistance (GMR). GM R is the large change in 

resistance induced in multilayer thin films under the influence o f an external magnetic 

field.1'3 Researchers and private industries have explored its potential usage in 

magnetoelectronic devices and sensors, a field known as “spintronics” .4'7 Incorporation 

o f GMR into computers began in 1997 with the first successful fully functioning chip 

produced by Honeywell, and in 1998, IBM introduced the first GMR hard drive read 

sensor. Further development have been pursued by other industries with unique 

applications in m ind.8,9 Scientific interest and commercial applications led to studies o f 

GMR on different structures10' 12 and with various magnetic and non-magnetic metals. As 

the technological interest continues to drive commercial development, researchers strive 

to reach a better understanding o f  the fundamental micromagnetic properties o f magnetic 

multilayers.

Fundamentally, in ferromagnetic materials, GMR arises because o f differences in 

scattering rates, and hence resistivity, o f electrons with up and down spins. The 

resistivity change induced in a magnetic multilayer depends on the details o f the
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magnetization changes in the ferromagnetic layers. The magnitude o f  GM R or resistivity 

change is a sensitive function o f the morphology o f the thin films, the conditions o f the 

interfaces between ferromagnetic and non-magnetic materials, impurities present in thin 

films, etc. Interlayer exchange coupling between ferromagnetic (F) layers through a 

nonmagnetic (N) interlayer is another important player in the physics o f GM R.13’15 In 

fact, GMR was discovered in antiferromagnetically (AF) coupled Fe/Cr superlattices by 

Baibich et al in 1988.16 Moreover, the interlayer exchange coupling oscillates between 

ferromagnetic and antiferromagnetic coupling as a function o f  the nonmagnetic layer

1 7
thickness.

At the Fermi level, spin anisotropy exists between the majority and minority spins 

within ferromagnetic metals. In other words, the scattering probability for up and down 

spin electrons differs in ferromagnetic metals. The most common F metals are the 

transition metals, such as Fe, Co, and Ni. While conductivity takes place in the s/p 

bands, relevant scattering occurs in the d bands. Ferromagnetic transition metals have 

occupied d bands for one or both spin-oriented density-of-states (DOS) at the Fermi 

energy (Ep), allowing for spin-dependent scattering. The number o f  states available for 

both spins, in part, determines the strength o f electron scattering into these states for F 

metals and also the strength o f its magnetic properties. Nonmagnetic metals have no 

such spin asymmetry in the d-bands at Ef. In ferromagnetic metals, it is the spin- 

dependence o f scattering, which creates spin channeling, as electrons o f  one spin transmit 

more easily than the other spin state through the multilayer structure.

Generally, magnetic multilayer thin films are comprised o f at least two 

ferromagnetic layers with an interspacing nonmagnetic layer, though structures with
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more complexity may be used to increase the GMR. Typically, the ferromagnetic layers 

chosen for the multilayer film are different materials but can also be the same material 

with different thicknesses. In an idealized case, the ferromagnetic magnetizations can be 

aligned exactly parallel and antiparallel with each other. W hen the F layers are aligned 

antiparallel to each other, both spin up and spin down electrons experience significant 

scattering, leading to high resistance. When the magnetizations o f the F layers are 

parallel with respect to each other, as would happen when a large external magnetic field 

is applied, only one spin state is strongly scattered, leading to a drop in resistance. It is 

this difference in resistance that is referred to as GMR.

GMR has been a heavily studied field since its discovery in 1988. O f particular 

interest has been the role o f  small-scale interfacial roughness in GMR. Such roughness 

can be introduced and controlled by altering the growth conditions. Very little work, 

however, has been done exploring the effect o f large-scale roughness on GMR. Such 

large-scale roughness can be introduced through the substrate or underlying buffer layer, 

when materials other than the standard silicon wafer are used. The effects o f novel 

substrates and buffer layers on GMR are the topic o f this thesis work. This work is 

important because o f  the increased inclusion o f novel materials, such as polymers and 

carbon thin films, in thin film technology. Industrial and scientific needs continue to 

push for solutions to old and new applications.4,5’9,18,19

This dissertation shows, through a series o f experiments, the effect o f substrate 

roughness on single ferromagnetic thin films and GMR multilayer thin films. It is shown 

that the smoothness o f carbon nitride (CNX) and polymeric materials are comparable to 

traditional buffers, suggesting that they may be utilized in devices that require low
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interface roughness. No degradation o f  GMR or other magnetic properties is observed in 

thin films deposited onto various polymer buffers, as compared to those on traditional 

buffers. On CNX buffers, the degradation o f magnetic properties was apparent on 

amorphous carbon nitride (a-CNx) but not fullerene-like carbon nitride (FL-CNX) buffers. 

On a larger scale, substrate roughness was not found to be so detrimental as to inhibit 

viable GMR or other magnetic properties o f magnetic multilayer thin films. On the 

contrary, it was shown to be beneficial under certain conditions. In short, this thesis 

shows that large-scale substrate roughness plays an important role in the mechanisms o f 

spin transport and can be beneficial or moderately detrimental to magnetic multilayer thin 

films. This scale o f  roughness does not necessarily hinder the development o f spintronic 

devices on non-traditional buffers or buffers with large-scale ( a rms > 5 nm) roughness.

1.1 - Review of Literature

Baibich and Grunberg jointly discovered the magnetic field dependent resistance 

in antiferromagnetically coupled Fe/Cr interlayers in 1988, which Baibich coined “giant 

magnetoresistance” . It was recognized early on that the effect was due to spin-dependent 

scattering in the ferromagnetic layers and at the F/N interfaces. Accordingly, early 

models based on a Boltzmann transport equation were formulated to describe the effect. 

Such models considered spin-dependent and spin-independent scattering from sites in 

both the bulk o f  the layers and at the interfaces between the layers. Soon, researchers 

also realized that roughness in the film, particularly at the interface, could have a strong 

effect on GMR.

• 90In their investigation o f GMR in Fe/Cr multilayers, Binash, et al. proposed that 

the increased resistivity in the anti-parallel alignment was a result o f spin-flip
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* 20scattering. Then, Bamas, et al. discovered large changes in resistance in 

ferromagnetically coupled layers.21 The antiparallel alignment was achieved by using Co 

layers o f different thicknesses and therefore, different coercive fields. These discoveries 

fueled new interest in magneto- and spin-transport through multilayers. Parkin showed 

that magnetic multilayers deposited onto polymeric substrates exhibit GMR and other 

magnetic properties, opening the field to non-traditional substrates and buffers, such as 

polymers and carbon thin films.

It is important to understand how film roughness functions in relation to GMR 

and the mechanism by which roughness affects GMR. W hile some research has 

correlated growth conditions with GMR23'25, there remains less understanding o f the 

mechanisms by which interfacial roughness effects GMR. Levy, et al. measured GMR in 

corrugated materials to study electron transport.26 Several groups have shown that GMR 

ratios change when measuring materials deposited by the current-in-plane (CIP) and

i  1 16 in
current-perpendicular-to-the-plane (CPP) methods. ’ ’ Their initial observations

provide a link between giant magnetoresistance and interfacial roughness at layer 

boundaries but do not offer complete explanations.

Past studies have found that spin dependent scattering at the interface must be 

included in the theory o f  GMR.28 Generally, an increase in interfacial roughness has 

been correlated with a decrease in GMR due to detrimental effects on the spin-dependent 

scattering.28,29 However, previous researchers have studied the effect o f roughness on 

magnetic thin films in the short mean free path limit, where the roughness is smaller than 

the electron mean free path in the material.30,31 Cyrille found an increase in CPP-GMR 

with roughness attributed to an increase in spin-dependent scattering and an increase in
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CIP-GMR due to enhanced current flow across the superlattice. Zambano, under a 

similar experiment found no change in CPP-GMR. More recent studies consider the long 

mean free path limit.32 In this regime, the roughness is comparable to the electron mean 

free path in the magnetic and nonmagnetic materials deposited. The wavelength o f the 

roughness introduces a longer path length for electrons to travel thus increasing their 

scattering probability, which, in turn, increases the GM R o f the multilayer. This thesis 

considers interfacial roughness, introduced through the substrate, on a long length scale 

and attempts to determine the overall effect on GM R and other magnetic properties. In 

doing so, we attempt to control the scale o f roughness introduced through the substrate 

and model the interface roughness based on the measured substrate surface roughness.

There is no single model to predict GMR in magnetic multilayer thin films. 

Bruno and Chapert used a modified Ruderman-Kittel-Kasuya-Yosida (RKKY) model to 

predict interlayer coupling between two magnetic layers separated by a nonmagnetic 

layer by including the oscillatory effect dependent on interlayer thickness.17 This model 

assumes a smooth interface, and the effect is less dominate when the interface becomes 

rough. Bamas, et al. proposed a theory that models GMR using the Boltzmann equation

"7 1with spin-dependent bulk and interfacial scattering. In the limit o f  long mean free path, 

the multilayers can be viewed as resistors in series (CPP) or parallel (CIP). The general 

Boltzmann equation can be tailored to model spin-polarized transport and interfacial 

roughness at long and short mean free path limits.33 For CPP geometry, the Boltzmann 

equation reduces to the two-current series resistor (2CSR) model.34 This model works 

best for structures where the spin diffusion length, 1$f, in the ferromagnetic and 

nonmagnetic layers is larger than the F and N layer thicknesses. It also assumes that
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spin-flipping at the interfaces does not occur or is a weakly allowed approximation. For 

films where Isf is smaller than the F and N  layer thicknesses, a more complicated model, 

the Valet-Fert (VF), provides a more accurate description. The solutions for this model 

are not trivial and only reduce to a 2CSR-like model when Isf is large. Modeling o f CIP- 

M R is even more complicated because o f the increased number o f  parameters and 

researchers are currently developing methods to solve these equations. Despite this, 

there is still no all-encompassing model for GMR.

1.2 - Outline o f Thesis

This dissertation discusses the effects o f long-length scale roughness at the 

interfacial boundaries o f  giant magnetoresistive multilayer films with novel or non- 

traditional buffer materials. Chapter 1 introduces the purpose o f  this thesis and provides 

a review o f the literature. Chapter 2 discusses the general theories o f  magnetism and 

GMR. Chapter 3 discusses the factors that can lead to thin film roughness in the bulk and 

at the interface and describes the effects interfacial roughness may have on magnetic thin 

films and GMR. Chapter 4 describes the deposition processes utilized to fabricate the 

magnetic thin films. Chapter 5 discusses the instruments used for characterization o f the 

thin films and describes the theory behind their operation.

Chapter 6 presents results o f single Nb layers and GM R multilayer thin films 

grown on polymer buffer layers. It is shown that for films deposited on polymer buffers 

the average root-mean-square (arms) roughness is comparable to films deposited on 

silicon substrates. Further, GMR spin-valves are shown to be successfully deposited on 

polymer substrates with little degradation in GMR properties. W e have conducted initial 

annealing experiments on the pseudo spin valves and have found no change in the GMR
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after annealing for one-half hours at 150 °C. We have deposited GMR pseudo-spin 

valves, with GM R > 3%, on a polymer buffer layer and show that this is comparable to 

the same structure on silicon oxide.

Chapter 7 presents a controlled roughness study conducted on glass substrates 

etched with a hydrofluoric (HF) acid prior to deposition o f GM R thin films. A series o f 

pseudo-spin valves (PSV) and exchange bias spin valves (EBSV) (spin valves to be 

defined in experimental chapters) were deposited and the change in GMR and magnetic 

properties measured as a function o f large-scale (cms > 5 nm) substrate roughness. The 

PS Vs were extremely sensitive to any parameter changes making a determination o f the 

effect o f substrate roughness difficult. For the EBSVs, it was found that the effects o f 

growth conditions is somewhat overcome by the exchange bias field allowing for a better 

determination o f effects only due to roughness. It is shown that roughness effects do not 

greatly influence the magnetic properties or GMR o f thin films.

Chapter 8 presents a uniform roughness study conducted largely at Michigan 

State University (MSU) in a facility capable o f depositing both current-in-plane (CIP) 

and current-perpendicular-to-the-plane (CPP) magnetic thin films. The roughness is 

produced by depositing a pattern o f gold nanodots onto a silicon substrate and depositing 

the GMR films onto the nanodots. For the CIP films, it is shown that the decrease in 

GMR corresponds to an increase in minimum resistivity. The resistivity o f the parallel 

electron spin state increases at the same rate as the antiparallel state resistivity, suggesting 

that the major effect o f  the roughness is on the spin-independent scattering rather than the 

spin-dependent scattering that is critical to GMR.
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Chapter 9 presents a study o f single-layer magnetic thin films deposited on 

amorphous carbon nitride (a-CNx) and fullerene-like carbon nitride (FL-CNX) to explore 

the possibility o f incorporating these carbon-based materials into GMR multilayers. 

Films on both carbon based materials decrease in surface roughness with annealing 

although degradation o f  the magnetic properties in the films deposited on a-CNx also 

occurs, which may be linked to water permeation driven from the CN layer into the 

magnetic thin film. This did not occur for magnetic films on the FL-CNX where the 

magnetic properties showed no obvious post-annealing change. Thus, it is possible to 

incorporate this type o f carbon material into magnetic multilayers.

Finally, chapter 10 summarizes results for each chapter o f  the thesis and proposes 

future investigations into the effects o f large-scale substrate roughness on magnetic 

multilayer thin films.
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Chapter 2 — Magnetism and Giant Magnetoresistance

As this thesis discusses the effect o f  interfacial roughness on GM R thin films, this 

chapter describes some basics o f  the theory o f  magnetism and giant magnetoresistance in 

solids. This discussion includes a description o f  current-in-plane (CIP) and current- 

perpendicular-to-the-plane (CPP) GMR as well as a more detailed explanation o f  the 

differences between them and transport o f electrons in both configurations. Since the 

magnetic state o f  the layers is critical for GMR, procedures used to control the magnetic 

state and the magnetic coupling are also described. Effects o f  roughness on magnetic 

behavior and spin-dependent and spin-independent scattering o f  electrons will be 

discussed in Chapter 3.

2.1 - Theory o f Magnetism

Fundamentally, magnetism in materials is a quantum effect arising from the spin 

and orbital momentum o f electrons in atoms. An electron’s orbital angular momentum, 

L , gives rise to a magnetic moment with an associated magnetic field. This can be 

described semiclassically as shown in Figure 2.1 below. The electron orbit produces a 

current, which in turn gives rise to a magnetic field. Consider the current produced from 

an electron, e , with a given velocity, v , orbiting an atom at a given radius, r:

I  = - e
v 2 n r  j

, A - n r  (2.1)
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This gives rise to a magnetic moment, p:

ju = IA = - e
v 2 n r  j

n r  -
-e v r  m _ - e{m vr) _  - eL 

2 m 2m 2m
(2.2)

where A is the area o f  the orbit and the magnetic moment has units o f  emu, typically.

The electron spin angular momentum, S , also has an associated magnetic 

moment. The interaction between the magnetic moment from the spin and the magnetic 

field from the orbital angular momentum is known as spin-orbit coupling and is in 

addition to electron orbital-orbital and spin-spin interactions.

e -

Figure 2.1: M agnetism  arises due to the orbital angular and spin angular m om entum s o f  electrons in atoms.

The total magnetic moment including contributions o f  orbital angular momentum 

and spin is:

M =
- e

2m, ( r + * . s ) (2.3)

where L  is the orbital angular momentum, S  is the spin angular momentum, and g e is 

known as the Lande g-factor or the gyromagnetic ratio and describes the contribution o f  

the magnetic moment from spin versus orbital motion. For electrons, g e is ~2. The g- 

factor associated with the orbital angular momentum in equation 2.3 is equal to 1 and is
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not included in the equation. The nuclear charge determines the magnitude o f  the spin- 

orbit coupling by its dependence on the atomic number, Z. Because o f  this, for lighter

atoms (Z < 49)[, the spin-orbit coupling is negligible. As a result, spin-spin couplings

dominate. For heavier atoms, the contribution o f  the spin-orbit coupling is much more 

significant and must be considered.

As stated above, the spin-orbit coupling interaction contributes weakly to the 

magnetic moment for lighter atoms. Subsequently, the total angular momentum can be 

calculated from the sum o f the total orbital angular m o m en tu m ,/, and the total spin

angular momentum, S . These are the sums o f  the individual orbital angular momenta, /, 

and spin angular momenta, s. Using Hund’s rules, the lowest energy states for the

electrons are found by maximizing first the total spin angular momentum, S , and then the 

total orbital angular momentum, L . The total angular momentum, J , is taken as the 

highest J  for shells more than half-full and the lowest J  for shells less than half-full. The 

atomic magnetic moment is dependent on the total angular momentum, J , o f  the atom:

J  = L + S  (2.4)

This method does not account for a strong contribution from the spin-orbit

coupling in heavier atoms. The total angular momentum must be calculated from the

individual angular momenta, j ,  because S  and L are not conserved but precess around J

which is conserved. Though L and S  are not calculated explicitly, the interaction 

between the orbital and spin angular momenta is taken into account.

j  = 1 = 1 + 1  <2.5)
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In effect, H und’s rules state that electrons assume the states o f  maximum S  and L ,  

therefore minimizing contact with each other and reducing the repulsive Coulomb forces.

The magnetic response o f  atoms in a solid differs greatly from individual atomic 

moments. In a solid, individual atomic moments can align in an external magnetic field 

giving rise to paramagnetism or diamagnetism, or they may give rise to ferromagnetism, 

antiferromagnetism, or ferrimagnetism.

To describe diamagnetism and paramagnetism, we consider the basic Hamiltonian 

o f  atomic electrons in a magnetic field. The unperturbed Hamiltonian is:

H , = ^ - + K ( r )  (2 .6)
2me

where Vc is the atomic potential. In an applied field, the substitution p —> p + eA is 

made. The Hamiltonian becomes

H = ^  + Vc(r) + - A - p  + A - A 1 (2.7)
2 me me 2 me

^ ~ h 0 ^ ~ h C

The first order term, H,, gives rise to paramagnetism, while the second order term, H2, 

gives rise to the weaker diamagnetism affect. We consider only the first order in A 

which can be rewritten in a more familiar form:

Hl = —  ' Z( Hxr T-pl) = — Y l(H-rJx p l) = ^- ( H- L)  (2.8)
M .T  me i  me

with A = H x r  and H is the externally applied magnetic field. This represents the 

interaction o f the applied field with the total orbital angular momentum for many 

electrons. To account for the effect o f  electron spin, additional terms are added to the
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Hamiltonian for spin-orbit coupling and for the interaction o f  the applied field with the 

electron spin moment. This gives:

+ (2.9)
2me 2mec r dr 2me

I f  we ignore the spin-orbit term in equation 2.9, we see that the Hamiltonian

reduces to Hx - - j u - H  with // defined in Equation 2.3. This term, describing

paramagnetism, gives rise simply to an alignment o f  the atomic moments with an applied 

magnetic field.

4 >

%

%  ^  4 ^

Figure 2.2: A n external m agnetic field  g ives rise to paramagnetism resulting from the interaction betw een  
the applied field  and the total angular m om entum  o f  electrons orbiting atoms.

This effect, however, is much weaker than the ferromagnetic behavior which arises 

through another mechanism.

Ferromagnetism and Antiferromagnetism

A material with a net magnetic moment in the ground state (without an applied 

field) is described as ferromagnetic (F). The exchange interaction which gives rise to 

ferromagnetic ordering is similar to the exchange energy that dictates H und’s rules. 

Ferromagnetic alignment results from the interaction o f neighboring atoms and their
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individual spin states. We can describe ferromagnetism in solids in terms o f  only 

electron spins because the contributions due to orbital angular momentum tend to cancel 

out due to the crystalline structure (quenching).

The interaction Hamiltonian for a two-electron system can be written as:

^int — -^1 ' ̂ 2 -  J
f s 2 3h2>y

v 2 4
(2 .10)

The spin interaction parameter, J, (also known as the exchange) is calculated from the 

Coulomb term  in the Hamiltonian and is positive for parallel alignment (ferromagnetism). 

The spins o f  the two electrons are represented by s{ and s2. Thus, it is more energetically 

favorable for a ferromagnetic material to maximize its spin. In contrast, for an 

antiferromagnetic material, J  is negative and it is favorable to have an antiparallel 

alignment o f spins.

W hen considering ferromagnetism in metals, affects o f bandstructure and itinerant 

electrons must be considered. Transferring electrons from lower bands to higher bands to 

minimize the Coulomb energy produces an increase in the band energy that opposes the 

parallel alignment o f  spins. As a result, this prevents simple metals from being 

ferromagnetic. Transition metals are able to overcome this opposition because o f  

overlapping 3d and 4s bands. The 3d band has a higher density-of-states (DOS) and is 

narrower at the Fermi level than the 4s band. For the 4s band, the energy required to 

promote an electron to a vacant site is greater than the energy reduction produced from 

reversing the electron spin. The opposite is true for the 3d band especially when the 

Fermi level lies within the 3d shell. This generates more lower-energy electrons o f  the 

same spin and a corresponding spontaneous magnetic moment in the ground state.
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Figure 2.3: Spin polarized D O S o f  various metals, a) Fe has high density o f  d states available, b) C o has 
high density o f  available d states, c) N i has low  density o f  states available, d) Cu has no d states available  
at the Fermi level and no spin asym metry. Majority and minority spin bands are indicated by arrows. 
Taken from Hartmann, “M agnetic M ultilayers and Giant M agnetoresistance, p. 73.

Due to the exchange interaction, one spin state is favored over the other. Figure

2.3 displays the DOS for the spin orientations o f  several metals in the d-band. The 

ferromagnetic metals have states available above the Fermi energy for these bands. 

Nickel has only a small density o f  states available while cobalt has a higher density o f  d 

states above Ep. The difference between the DOS for up and down spins in the d-band 

accounts for the strength o f  the ferromagnetism in the transition states. In concurrence, 

Co is known to have a stronger ferromagnetism than Ni. In addition, copper, a 

nonmagnetic metal, has no states available above the Fermi energy and no difference in 

population between the two spin states, and thus is not ferromagnetic. In other words, 

metals, typically transition and rare earth metals, with a high density o f  open 3d or 4d
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shells exhibit ferromagnetism. In addition, scattering processes occur from s/p to d states 

due to a high scattering probability into d states.2 This model does not account for s/p/d 

hybridization but provides a foundation for understanding the mechanism behind spin- 

dependent scattering which is the source o f  GMR.

Ferromagnetic bulk materials have a macroscopic magnetization that may be large 

or small but exists without an applied external field, unlike paramagnetism where an 

applied field is needed to induce magnetism. The magnetization is defined as the 

summation o f  the individual electron moments,

M  = X A  (2-11)
i

In summary, net magnetization occurs in ferromagnets because the energy for one spin 

state is lower than for the other and this state is either filled or nearly filled for 

ferromagnetic metals. This imbalance o f  the DOS between the two spins leads to a net 

spin and magnetization o f ferromagnetic metals. I f  a high external field is applied, the 

localized magnetic moments will align with that field. When the field is removed, the 

moments realign such that the bulk material retains much o f its previous magnetization.

In solids, the interaction o f many electrons produces a bulk magnetization as 

electrons attempt to minimize their energy resulting in ferromagnetic ordering o f  the 

bulk. Thermal agitations can destroy this order especially when the interaction between 

moments is weak. The temperature at which the ferromagnetic interaction is overcome is 

known as the Curie Temperature; above this temperature no net ferromagnetic moment 

remains. Also, for antiferromagnets, the alignment disappears above the Neel 

temperature.
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Domains and Hysteresis

In the absence o f  a magnetic field, the parallel alignment o f  all spins in a 

ferromagnetic material is actually energetically unfavorable, due to the production o f  a 

large magnetic field which in turn tends to demagnetize the material. Thus, 

ferromagnetic materials tend to divide up into domains o f aligned magnetizations. The 

bulk magnetization o f  a ferromagnet is a function o f  properties that determine domain 

formation by which a ferromagnet minimizes its total magnetic energy.

First, the material attempts to reduce its magnetostatic energy, which is energy 

that allows the magnet to do work and is geometry dependent. Instead o f  forming one 

domain with a single moment, ferromagnetic materials form multiple domains each with 

its own moment. The progression o f  domain formation as the material continues to 

decrease its magnetostatic energy Figure 2.4 is shown. The domain pattern in figure 2.4c 

is favorable because it eliminates magnetic poles at the block surface.

However, this alone does not determine the domain size formation since 

minimizing the magnetostatic energy does not minimize the total magnetic energy o f  the 

material. Domain formation is a combination o f  various competing magnetoenergies: 

magnetostatic energy, magnetocrystalline energy, and the magnetostrictive energy. The 

result is the minimization o f the total magnetic energy o f  the ferromagnetic material.
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Figure 2.4: D om ain formation to m inim ize m agnetostatic energy o f  the material.

Crystalline ferromagnets have preferred crystallographic directions along which 

the spins tend to align, referred to as the ‘easy’ axes. The other axes are referred to as the 

‘hard’ axes. The magnetocrystalline energy is the difference in energy between 

alignments along the ‘easy’ versus the ‘hard’ axes. Competition between the 

magnetocrystalline energy and the exchange energy determines the width o f  the domain 

walls. The magnetocrystalline energy favors sharp transitions between domains, which 

would require narrow domain walls. A sharp transition between one domain and the next 

produces high exchange energy, which would prefer a thicker domain wall allowing a 

gradual rotation o f the spins from one orientation to the next or “tw ist” . This competition 

forces the domains to find a balance between the two. In magnetic thin films, spins rotate 

around an axis normal to the film surface with their poles at the domain walls. This is

-j

called a Neel Wall and reduces the magnetostatic energy o f the material.
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The magnetostrictive energy is determined by the geometry o f the material. 

W hen magnetized, a ferromagnetic material will change in length as domains elongate. 

Materials exhibiting positive magnetostriction elongate along the direction o f 

magnetization. Negative magnetostriction is displayed on a much smaller scale, on the 

order o f  tens o f  parts per million, but affect domain structure. Inevitably, an elastic strain 

ensues as competing domains try to elongate simultaneously adding a term  to the total 

magnetic energy. Since the strain is dependent on the volume enclosed by individual 

domains, the solution should be to add more domains. However, this increases the 

magnetostatic and exchange energies. Subsequently, the material is forced reach a 

compromise between all competing energies to minimize the total magnetic energy.

Domain alignment influences the magnetizations o f ferromagnetic materials. In 

particular, for the polycrystalline samples such as described in this thesis, it is the domain 

motion which determines the shape o f  the hysteresis loop. Hysteresis is an important 

property o f  ferromagnetic materials and is seen by measuring the magnetization (M) as a 

function o f  applied magnetic field (H). Domain motion describes the hysteresis process, 

as shown in Figure 2.5. In a demagnetized state, the domains are aligned so that the 

magnetization averages to zero. As a field is applied, the domains with spins nearest the 

direction o f  the external field rotate first. Then, the other domains begin to align with the 

field by domain wall motion. As the domain walls move, they encounter imperfections 

or defects in the material forcing the walls to align around them. These imperfections can 

be interstitial atoms, contaminant atoms, vacancies, or other lattice defects. In order to 

reduce the magnetostatic energy around defects, domains may form that are opposed to 

the applied field affecting the magnetic properties o f the material.
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Figure 2.5 is a representative hysteresis o f a ferromagnetic single thin film. As a 

field is applied, the magnetization o f  the film approaches a maximum, referred to as the 

saturation magnetization, Ms. At this point, the domains have all aligned with the 

external field. The width o f the curve is determined by the coercive field required to 

force the magnetization o f  the film back to zero. The coercivity, Hc, is measured at half 

the total width o f the curve. This is influenced by the number o f  imperfections, 

dislocations, and impurities in the film as these hinder the easy alignment o f  the 

individual domains. The remanent magnetization, Mr, is a measure o f  the “memory” o f 

the film. After an initial saturation, the film does not return to zero magnetization at 

zero-field. Instead, the film retains some o f the magnetization as many o f the domains 

remain aligned in an effort to decrease the exchange energy between domains, hence, the 

need to coerce the film to zero magnetization. The squareness o f  the hysteresis indicates 

whether the material is a soft or hard magnet as a hard magnetic material has a larger 

coercivity and a longer transition between saturations.
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Figure 2.5: H ysteresis curve o f  a single ferrom agnetic thin film . Hc the coercivity, is the external field  
required to return film  m agnetization to zero. Saturation magnetization, M s, is the m axim um  m agnetization  
obtained w hen all dom ains are aligned. Remanent m agnetization, M r, is the m agnetization o f  the film  w hen  
the external field  is returned to zero after initial saturation o f  film . B oxes illustrate how  dom ain form ation  
and domain w all m otion affect hysteresis.

As mentioned, the hysteresis is very sensitive to the microstructure o f  the thin 

film. In particular, if  there are a large amount o f defects in the film, domains can form 

around these defects which are difficult to move. Figure 2.6 shows the evolution o f 

domain formation around a defect. Films with large numbers o f  defects require stronger 

applied fields to force the rotation o f  spins around imperfections. The effect o f  these 

imperfections is evidenced, indirectly, in an increased coercivity in the hysteresis.
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Figure 2.6: D om ains align around defects so that the m agnetostatic energy is m inim ized. This can lead to 
large coercivities for film s with a high density o f  defects.

2.2 - Theory o f Giant Magnetoresistance

Giant magnetoresistance is a phenomenon observed in multilayer thin films and 

dominates over the normal magnetoresistance seen in single layer films. GM R is 

described by the two-current model first proposed by N. M ott for electrical conductivity 

in metals. In this model, spin up and spin down electrons scatter by both spin-dependent 

and spin-independent processes. It is the spin-dependent scattering which gives rise to 

GMR. For the majority o f scattering processes, electron spin quantum numbers are 

conserved and therefore, the spin-up and spin-down electrons do not mix over long 

distances. As a result, the total conductivity through the multilayer can be expressed as 

the sum o f the spin up and spin down electron conductivities. The GMR effect is most 

significant when the layer-averaged electron mean-free path (CIP) or the spin diffusion 

length (CPP) for one spin orientation is very different than that for the other spin 

orientation. Electrical conductivity is carried out mainly by electrons in the s/p  bands 

while scattering occurs from the s/p  bands into open d  bands.
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In an applied field, electrons o f one spin orientation are preferentially scattered by 

the ferromagnetic layers, while the nonmagnetic (N) layers show no spin-dependent 

scattering. This leads to a difference in resistance between the antiparallel (AP) and 

parallel (P) states o f the multilayer, where AP and P refer to the alignment o f  the 

magnetizations between layers. The resistance change, due to the alignment o f  the 

ferromagnetic layers relative to each other, is a result o f  the unequal resistivities o f  the 

majority (spin up) and minority (spin down) electrons within the material. This 

inequality may be explained in terms o f  the DOS, as was discussed previously. The 

majority electrons always have less scattering and hence less resistivity than the minority 

due to less available states to scatter into at the Fermi level.

GM R arises due to spin-dependent scattering within the ferromagnetic layers as 

well as at the interfaces with non-ferromagnetic materials. As was discussed previously, 

the spin-dependent d  bands are shifted and not evenly filled. Thus, as scattering occurs 

between the s/p  and d  bands, this scattering is spin-dependent for ferromagnetic materials 

but not for non-ferromagnetic materials, such as Cu. Figure 2.7 demonstrates the density- 

of-states available at the Fermi level. At the interfaces between layers, matching o f  the 

band structure determines the spin-dependent conduction. The difference in DOS for 

different metals produces a potential step at their interface. Transmission o f  electrons 

across the interface will be spin-dependent due to the spin-dependence o f  the 

ferromagnetic layer. Figure 2.3 illustrates this point. The DOS for Cu matches well with 

that for the Co majority spins resulting in good matching o f the band structures. The 

transmission o f majority electrons across the Co/Cu interface is high. In contrast, the 

significant difference in the DOS for Cu and the Co minority spins results in a large

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 8

mismatching o f  the band structure at the interface for those spins. The transmission o f 

minority spins across the interface is low. Diffuse interfaces can have significant 

intermixing o f  atoms at the interface producing a random potential which is also strongly 

spin-dependent due to band matching. The result is an important contribution to the 

GM R effect from interfacial scattering in conjunction with bulk scattering.

D (E )

Co, Ni, Fe

D (E)

Cu

Figure 2.7: a) A  sim plified diagram o f  the density-of-states for the s and d states for a nonferrom agnetic 
material, b) A  diagram o f  the density-of-states for the s and d states for a ferrom agnetic material. The 
density o f  states in b) is also analogous to a nonferrom agnetic material in an extrem ely high external 
m agnetic field.

Figure 2.8 shows the spin-dependent scattering that occurs in magnetic multilayer 

thin films. In the parallel state, the majority electrons conduct through the multilayer 

w ith minimal scattering and the total resistivity, which is determined by the highly 

conductive majority spins, is low. In the antiparallel state, spin up and spin down 

electrons are strongly scattered by one o f  the ferromagnetic layers and the total resistivity 

is high.

The GMR curve in Figure 2.9 is representative o f  a pseudo-spin valve (PSV) thin 

film, consisting o f  two different ferromagnetic layers separated by a nonferromagnetic 

layer. The curve peaks, corresponding to a maximum in resistivity, occur when the
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ferromagnetic layers are aligned antiparallel. The peaks are centered on zero, which 

correlates to the crossing o f the y-axis o f  the film ’s hysteresis loop. In addition, 

saturation for the GMR curve corresponds to saturation o f  the hysteresis loop. Here, the 

resistance is lowest for the film because o f  the parallel alignment o f  the ferromagnetic 

layers. The GM R o f the film can be calculated from the change in resistance or 

resistivity between the two configurations as in equation 2.12:

G M R = Ra,‘ ~ Rf x 100 (2.12)
RP

where RAP is the antiparallel resistance o f  the multilayer and Rp is the parallel resistance.

a) V minority

majority

Lower R

Figure 2.8: Spin-dependent scattering in the CPP direction. Scattering occurs in the bulk and at the 
interfaces, a) Parallel alignm ent o f  F (blue) layers results in scattering o f  the antiparallel aligned spin, b) 
Antiparallel alignm ent o f  F layers results in scattering o f  both spin polarizations.
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Figure 2.9: Representative G M R curve for m ultilayer thin film . Peaks represent antiparallel alignm ent o f  F 
layers resulting in a resistance greater than the parallel alignm ent at saturation.

A simple quantitative expression for CIP-GMR can be written for the case o f  a 

periodic F/N/F multilayer where the mean free path for electrons o f  both spins is much 

larger than the multilayer period. I f  Rt and represent the separate resistances o f  up 

and down spins, then the resistance for parallel and anti-parallel alignment becomes:

and the GM R is

R
1

"» R-AP ~ (2.13)

( R „ - R P) ( ! - « ) ’

R. 4 a
(2.14)

w ith a  = —  
R
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Thus, GMR increases as the asymmetry o f  resistivities (resistances) increases, or 

as spin-dependent scattering increases. This relationship between GM R and resistivity 

can be separated into three simple cases. In the case where both and R^ increase at a

similar rate, the change in a  is negligible and the GMR remains unchanged or changes 

slightly. In the case o f a  « 1 ,  the asymmetry is negligible and the GM R approaches zero 

for the film. In the case where R f » R l , a  -»  0 and the GMR becomes very large as the

asymmetry in resistances increases.

Current-in-Plane (CIP) GMR

This thesis studies two different types o f GMR: current-in-plane and current- 

perpendicular-to-the-plane, as illustrated in Figure 2.10. The first, current-in-plane GMR 

is measured with the direction o f current flow in the plane o f the thin film and parallel to 

the applied magnetic field. Ohms’ Law can be used to find GM R values by the four- 

point probe method to be described in Chapter 4. Typically, measured resistivities for 

thin films are on the order o f  10 O. Subsequently, there is no need for a special structure 

or equipment sensitive to small resistivities. CIP structures are easy to manufacture and 

their resistivities easy to measure. The disadvantage exists in the current sampling. If  

individual layers are too thick, the current may shunt through a less resistive layer, such 

as Cu, and not sample the entire multilayer.
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CPP

CIP

Figure 2.10: Illustration o f  applied current direction for both current-in-plane (CIP) and current- 
perpendicular-to-the-plane (CPP) GMR.

CIP-GMR theory is based on the semi-classical Boltzmann Transport equation 

(also called the Camley-Bamas theory). The semi-classical model assumes point-like 

particles and a polarized free electron gas in each layer o f the film and spin-dependent 

scattering in the bulk, at the interfaces, and the boundaries. The semi-classical model 

includes contributions to the Fermi-Dirac electron distribution function, f  from electron 

drift, external magnetic fields, and electrons scattering:

V _ = V_
dt dt

+
drift dt

+
fie ld dt

(2.15)

This model applies quantum mechanical scattering probabilities and Fermi-Dirac 

statistics, hence the semi-classical label. The first term o f equation 2.15 represents the 

change in the electron distribution with time in an applied field. After a sufficient

amount o f  time, the distribution reaches a steady-state equilibrium and —  = 0 by
dt
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definition. The right-hand side o f  equation 2.15 represents the electron drift and electron 

acceleration due to an applied field, respectively:

£
dt

= - V ' V , / (2.16)
drift

dt field

ty^dk  
dk dt

= e E - V kf (2.17)

where k  is the electron momentum and E  is the applied electric field. The scattering term 

is written as:

&
dt

= £  pkk• [/O'' > *' > 0 -  f ( r >k, o] (2.18)

where Pkk' is the scattering probability between momentum states k  and k \  This 

scattering includes both spin-dependent and spin-independent processes. In the 

relaxation time approximation, this term is simplified:

dt
f  fo  (219)

scatt * C

where fo  is the initial Fermi distribution and rc is the relaxation time, or average time 

between scattering events. The Fermi-Dirac electron distribution is taken as the sum o f 

the initial equilibrium distribution function when no field is applied and a deviation 

function:

f ( v , r )  = f 0(s) + g ( v , r )

f t , 1 (2'20)
f s- ^ lk«T + 1
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where g ( v , r ) describes the deviation from equilibrium. Using these definitions and 

representing electrons by velocity v rather than momentum k, the Boltzmann transport 

equation can be written as:

+ o ■ V J ( o , r ) - e E ■ Vv/ ( f i ,  f )  = r ( / ~ /o ) (2.21)
dt tc

The first left-hand term in steady-state equilibrium is zero. The second and third terms 

describe the change in space and velocity o f  the electrons, respectively. Substituting 

equation 2.20 for all terms to further simplify the Boltzmann transport equation, the 

distribution function is rewritten as

o ■ [V , / 0 (e) + V rg (v , r )] -  eE  • [Vo/ 0 (*) + V„g(u, r )] = (2.22)
Tc

Looking at the left-hand side, first and second terms, respectively:

rd / o ( 0  , d g { u , r \  n dg(5 , r )
o ■ [V r / 0 (e) + V rg(o , r)]  = u  • = 0  ■ .

or or or

-e E  ■ [Vu/ 0 (s )  + V vg (u , r )] = -e E  ■ V „ / 0 (e) = - e E - v dfo(£)
(2.23)

de

The first term simplifies because the gradient o f  the electron distribution with no applied 

field is zero. For the second term, only the lowest order term is retained since the applied 

field is assumed to be small. This gives a Boltzmann transport equation in the time 

relaxation approximation:

-  dg(5,?)_el. - g « £ ) = z g ( g , r )  ( 2 2 4 )

dr de zc

where again v is the velocity o f the electrons, E  is the applied electric field, and rc is the 

relaxation time o f electron scattering. For a two-spin conduction model, Equation 2.24 is 

is rewritten to represent a two distribution functions are used representing each spin state.
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The important parameter for CIP is tc which describes the time between 

scattering events. This determines the length scales for which approximate solutions can 

be found. Alternately, phenomenological or experimental models can be used to describe 

the dependence o f  GMR on the thickness o f magnetic and nonmagnetic layers. 

Current-Perpendicular-to-the-Plane (CPP) GMR

For CPP, the GM R is measured with the current flow perpendicular to the film 

plane which results in the entire area under the electrodes being sampled. Typically, the 

resistivity is lower than CIP-GMR measuring on the order o f 10 nQ and requires a 

measurement system sensitive to small resistivities. Additionally, the geometry o f  the 

film structure requires a specialized growth technique to achieve a CPP multilayer stack 

making the manufacture o f  CPP structures non-trivial. On the other hand, the GMR is 

typically larger than CIP-GMR. The theory o f  CPP-GMR is less complex than CIP- 

GMR because the entire layered structure is sampled and the Boltzmann equation reduces 

to a two-current series resistor (2CSR) model.4 The important length scale in this model 

is the spin diffusion length which is the average distance over which an electron travels 

before it flips spin. The 2CSR model assumes this spin-flip length is very long and thus 

assumes no mixing o f  the majority and minority spin currents. The model depends on 

spin anisotropy parameters P and y, which are independent o f both layer thickness and the 

number o f  layers. Instead, these parameters are material specific and dependent on the 

measured resistivities for spin up and spin down electrons:

a  _  P f P f 
P  ~  I f

P f P f
\  t  <2 -25)_ A R ,,n ARfin

■ARf/n + ARp/M
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where tot and p i are the resistivities o f spin up and spin down electrons in the multilayer,

t  J,and ARfin and ARF/N are the specific resistances o f  the spin up and spin down electrons

at the ferromagnetic/nonmagnetic interface. For an EBSV structure, the 2CSR model 

adds the specific resistances (AR) o f  the bulk materials and the interfaces between layers 

as in a series resistor circuit5:

AR ap = ARs/f + 2 p FtF + p NtN + 2 ARfjn + ARaf/f + p AFtAF + ARSjAF

4(PpFtF + y  ARfin )2 (2.26)
AAR = -

ARap

where the subscripts AF and S represent the antiferromagnetic and superconducting 

layers and the other subscripts are defined above. The superscript * denotes the average 

value for up and down spins. For multilayers comprised o f [F/N],v, GMR can be 

calculated using:

AR af = 2ARs/f + N  p Ft F + 2 N  p Nt N + 2NARf/n

i i b  N 2(PpFtF +2rAR'FIIIf  (2.27)
AAR = --------------------------------

A R aj,

Again, the spin-dependent specific resistances o f each interface as well as the bulk layers 

are added in series. GMR is calculated by dividing the change in specific resistance (AR) 

by the parallel specific resistance. Resistivities and specific resistances are determined 

from a series o f  films comprised o f  the specific ferromagnetic, nonmagnetic, and 

superconducting materials chosen. The parameters /? and y  account for the unequal 

scattering o f  spin up and spin down electrons.
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2.3 - M agnetic Control and Coupling

From the discussion o f  GMR theory, it can be seen that GMR depends primarily 

on two things: the amount o f  spin-dependent scattering and the ability to achieve true 

parallel and antiparallel alignments o f  the F layers. The parallel state is easily achieved 

by applying a large magnetic field, while the antiparallel state is more difficult to achieve. 

Typically, this state is produced experimentally through RKKY coupling or the use o f 

pseudo-spin valve and exchange-biased spin valve structures.

Ruderman. Kittel. Kasuva. and Yosida (RKKY) coupling

RKKY coupling comes from an oscillatory interaction between the ferromagnetic 

layers dependent on the spacer layer thickness. It produces alternating ferromagnetic and 

antiferromagnetic alignment for increased nonmagnetic layer thickness o f  ~ 5 nm. By the 

selection o f  an appropriate thickness, the antiparallel alignment o f  alternating 

ferromagnetic layers is achieved in zero applied field. Figure 2.11 illustrates the periodic 

oscillation o f  the coupling as a function o f interlayer thickness. RKKY coupling is used 

to produce the AP state in many-period multilayers. The Hamiltonian for RKKY 

coupling is expressed as

\  r /

where kF is the radius o f the conduction electron Fermi surface, Rt and RJ are the lattice 

positions for the point moments, s F is the Fermi energy, and

RKKY

j r ( K ) = 9*

(2.28)

(2.29)

F(x) =
jc c o sx -s in x

(2.30)
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is the Fourier transform.

0 +- r

Figure 2.11: Representation o f  RKKY coupling. Exchange parameter, j , oscillates betw een  
antiferromagnetic and ferrom agnetic coupling betw een the ferromagnetic layers as the interlayer thickness 
increases.

The coupling occurs through an indirect exchange between the moments o f  

conduction electrons that propagates through the interlayer separating the ferromagnetic 

layers. As the interlayer thickness becomes large, RKKY coupling decreases to zero. 

The interaction dominates in films with small interfacial roughness but decreases with 

increasing roughness.

The coupling field is expressed as a function o f  the exchange energy and has a 

strong dependence on temperature6:

(2.31)

(2.32)
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ft v
To = - — F—  (2.33)

2 7TKBts

where Eo is the coupling energy, ko is a wave number, M sat is the saturation 

magnetization, t  is layer thickness, A  is the wavelength o f  the oscillating coupling 

pattern, and ^  is a phase shift. To gives the characteristic temperature dependence on the 

Fermi velocity o f  electrons in the spacer layer and the spacer layer thickness. The RKKY 

coupling is dependent on the layer thicknesses o f  the nonmagnetic spacer interlayer and 

the free ferromagnetic layer.

Pseudo-Spin Valve

The second method involves the use o f  a pseudo-spin valve to achieve an AP 

state. The simplest spin valve has a F/N/F structure and can be multilayered with N  

numbers o f  bilayers, [F/N],v. Typically, two different ferromagnetic materials having 

different coercivities are used to achieve the AP state. At high applied magnetic fields, 

both layers are saturated and are aligned parallel to the field. Due to the difference in 

coercivities, at low fields, one F layer begins to realign in the field sooner than the other 

layer. A t a low enough field, the layers are aligned antiparallel. However, a completely 

AP state is hard to achieve experimentally because o f  magnetic coupling between the F 

layers. The dominant coupling is referred to as “orange peel” coupling and will be 

discussed later in the chapter. This difficulty led us to the use o f  exchange-biased spin 

valves.

Exchange-Biased Spin Valves

The third primary method used to produce an AP state is exchange biasing. A 

bilayer comprised o f  an AF/F layers displays an interaction known as exchange bias 

coupling. The spins along the AF/F interface align with the top mom ent o f  the
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antiferromagnetic layer, referred to as the exchange interaction o f  the spins between the 

two layers. This causes the next level o f  spins to align in the same direction as those 

nearest the interface. This alignment propagates through the ferromagnetic layer until all 

the moments are aligned along the preferred direction. A large external field is needed to 

realign the spins o f  the ferromagnetic layer o ff this preferred axis or the “pinned” axis. 

Figure 2.12 illustrates the pinning o f  the ferromagnetic layer due to the exchange biasing 

o f  the antiferromagnetic layer. The pinning direction is usually set by heating and 

cooling the bilayer in an applied magnetic field. The exchange bias interaction leads to 

an effective magnetic field, Heb, which was found to be inversely proportional to the 

pinned ferromagnetic layer thickness7, t pF :

 ►  ►  ►  ►  ►

 ►  ►  ►  ►  ►

 ►  ►  ►  ►  ►

 ►  ►  ►  ►  ►

4-----------  4-----------  4-----------  -4-----------  -4-----------

 ►  ►  ►  ►  ►

4-----------  -4-----------  4-----------  4-----------  4-----------

Figure 2.12: Exchange bias coupling betw een AF/F bilayer. The F layer is pinned by  the AF layer grown  
on adjacent to it. A  high field  is required to flip the orientation o f  the pinned F layer.

This exchange bias field produces a shift in the magnetic hysteresis curve, as shown in 

Figure 2.13.
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Figure 2.13: The exchange bias field  produces a shift from zero in the hysteresis curve. This is a result o f  
the pinning o f  the ferrom agnetic layer by  the antiferromagnetic layer. A  high applied field  is needed to 
realign the ferrom agnetic m om ents aw ay from the pinned axis. A  low  field is sufficient to  realign the spins 
back on their preferred axis. The result is the shift from zero along the x-axis.

Exchange biasing can be used in GMR multilayers to provide better independent 

switching o f  the ferromagnetic layers and a definite antiparallel state. The structure 

usually consists o f  a F/N/F/AF multilayer, known as an EBSV. The antiferromagnetic 

layer pins one ferromagnetic layer while the other layer, referred to as the “free” layer, is 

allowed to rotate freely at low external fields. This means ideally that the free layer can 

be rotated into an antiparallel alignment with the pinned layer. Consequently, GMR 

values for EBSV are typically larger than those for unbiased multilayers.

Neel or “Orange Peel” Coupling

Neel or orange peel coupling8 is another type o f coupling in magnetic multilayers 

which arises due to roughness in the films, particularly at the interfaces. The strength o f
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the scattering throughout the multilayer, in part, is determined by the interaction between 

the ferromagnetic layers. The orange peel effect arises due to the free magnetic poles 

produced at the interfaces as shown in Figure 2.14. “Orange peel” refers to the geometry 

o f  the interface. The coupling field is a function o f the coupling parameter, Jop:

■>or = (2.35)

with the coupling field defined as:

H op = (2.36)
Mo M l J i

where M fsal and M fat are the saturation magnetizations o f the free and pinned layers, L is 

the peak-to-peak wavelength, ts is the nonmagnetic interlayer thickness, t fF is the free 

ferromagnetic layer thickness and h is the peak to peak amplitude or waviness. These 

parameters determine the strength o f the coupling between poles o f  adjacent 

ferromagnetic layers and consequently, the ability o f  a low applied field to align the 

magnetization o f one ferromagnetic layer without significantly affecting the other 

simultaneously. From equation 2.35, it is evident that the coupling may increase or 

decrease w ith increasing peak to peak wavelength, although it always increases with 

increasing roughness amplitude h.

In the case o f  pseudo-spin valves (PSV), F/N/F, orange peel coupling can be 

significant. It is difficult to reverse the moments o f a ferromagnetic layer completely 

independently from adjacent ferromagnetic layers. Even a weak coupling field produces 

some simultaneous realignment o f  moments between adjacent layers.
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Figure 2.14: Coupling at the interface occurs betw een m agnetic poles o f  adjacent F layers. This is referred 
to as the “Orange P eel” Effect.

In addition, it should be mentioned that direct coupling o f  ferromagnetic layers 

can occur if  pinholes form in the nonmagnetic layer, forming a direct material bridge 

between the ferromagnetic layers. This is known as pinhole coupling and can occur for 

highly disordered films.
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Chapter 3 — Roughness Effects on Magnetic Behavior and GMR

As this thesis discusses the effect o f interfacial roughness on GMR thin films, this 

chapter provides an overview o f the effects o f  roughness on the magnetic and the 

electronic behavior o f giant magnetoresistive thin films. M ost previous experiments have 

varied interfacial roughness by changing film growth parameters: electron and ion

|  -j

energies, substrate temperature, deposition pressure, substrate bias, etc. ' Instead o f 

varying growth conditions, this discussion addresses interfacial roughness as applied 

through the substrate and describes effects on magnetic thin films as a function o f 

roughness length scale. This is actually a complex problem as the effects may be 

interrelated. For example, roughness may affect coercivity and scattering, which both 

influence GMR. Changes in GMR may not be solely due to a change in coercivity but 

the underlying effect.

The films discussed in this thesis are polycrystalline in structure. Polycrystalline 

films consist o f  multiple grains, each with crystalline orientation. This produces 

boundaries between grains that consist o f valleys o f various widths and depth. 

Consequently, grains, grain boundaries, and their effect on magnetization and electron 

scattering are o f  great importance when discussing the behavior o f  GMR thin films. 

Substrate roughness effects can cause size variations in grains, increase intermixing at 

interfaces between layers, and reduce the sharpness o f boundaries between grains.
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Interfaces may be more sinusoidal or “wavy” which has implications for both the 

magnetic and electronic behaviors o f thin films. The effect on PSV, EBSV, and 

multilayer spin valves varies. For simplicity, this discussion is categorized into magnetic 

and electronic effects due to interfacial roughness, though both may be affected 

simultaneously.

Figure 3.1: Illustration o f  grains. Grain size and valleys betw een grains are an important type o f  roughness 
and influence the m agnetic behavior o f  film. Each grain has crystalline order, indicated by the arrows 
(show ing a preferential crystal axis).

3.1 - Magnetic Behavior Effects

Effects on magnetic behavior are manifested in several ways. As mentioned 

above, polycrystalline films are comprised o f  grains, which contribute to roughness. In 

fact, the magnetostatic coupling between poles, which is geometry dependent, is 

produced by the transitions between grains or grain “valleys” .4 Increases in valley depth 

or decreases in individual grain diameters can increase the magnetostatic coupling 

strength as the dipolar poles are brought into closer contact. The result for PSV and 

multilayer spin valves is an increase in Neel coupling within the PSV, which is 

undesirable when attempting to achieve an AP state and reduces the thin film GMR.
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For EBSV, there are separate mechanisms that can combine to weaken the AP 

state. W hen the coupling strength is stronger than the coercivity, the free layer can 

become strongly coupled with the pinned layer and the rotation o f moments may be 

explained as a local effect occurring at grain valleys rather than domain wall motion .4 

The free layer becomes effectively pinned as individual moments rotate coherently .4 

Another mechanism occurs as roughness at the AF/F interface increases causing the AF 

layer to break into domains, greatly reducing the pinning strength o f  the AF layer.5 Also, 

roughness may produce pinholes that form a direct bridge between ferromagnetic layers 

through the interlayer, observed in PSV, EBSV, and multilayer SV .6 Pinhole coupling is 

an added detriment towards achieving an antiparallel state.

Changes in coercivity and magnetization o f the individual ferromagnetic layers 

are also observed with increasing roughness. As discussed in chapter 2, coercivity is a 

affected by the number o f defects, such as dislocations and imperfections, present in a 

film .7 Roughness applies added strain to the crystalline structure as domains attempt to 

align around the defects which, in this case, are largely a result o f  grain growth .6 

Typically, small grains have single domains but as grain size increases, multiple domains 

may form within a single large grain .8 An increase in coercivity could be explained by 

domain wall motion within the grains that determines the hysteresis shape .9 Growth o f 

small grain clusters may also increase the coercivity through a reduction in the strength of 

the magnetic exchange coupling . 10

Another consequence o f increasing roughness is the decrease in RKKY 

coupling . 11 For multilayer structures ([F/N]^), RKKY coupling is extremely significant 

as the F layers are coupled either ferromagnetically or antiferromagnetically. As film
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roughness increases, RKKY coupling decreases as the long range interaction o f electrons 

between layers is disrupted by the “waviness” o f  the interface and the short range 

magnetostatic coupling increases.4

The overall change in GM R varies as one or several o f these effects acts to benefit 

or detract from the magnetic behavior o f the thin film. Where the effect is favorable for 

the achievement o f an AP state, the GMR is enhanced. Conversely, if  the increase in 

roughness leads to an increase in magnetic coupling between layers, which hinder the AP 

state, GM R decreases.

3.2 - Electronic Behavior Effects

As magnetic behavior o f films is affected by grain size and formation, there are 

also influences on electronic behavior o f GMR thin films within the bulk o f 

ferromagnetic layers and at the interfaces between layers. Grain formation and 

boundaries have an effect on spin-dependent, spin-independent, and spin-flip scattering. 

Increases in grain size, diffuse grain boundaries, and depth o f  valleys can produce 

significant intermixing o f  layers at the interfaces. For a structure with a Cu interlayer, as 

with our films, the increased intermixing can produce an increase in the resistivity o f the

• 4 8thin film. ’ Pure Cu is highly conductive, but intermixing produces Cu alloys which can 

cause an increase in overall film resistivity.

Spin-independent scattering encompasses scattering processes arising from lattice 

mismatches, dislocations, impurities, and other microstructure effects o f film growth that 

may enhance film disorder.1,12 In addition, all o f these factors influence film resistivity 

and are dependent on the interfacial roughness. As film roughness increases, the 

resistivity increase is related to the larger number o f  defects present in the crystalline
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structure. An increase in the number o f dislocations and imperfections influences the 

mean free paths and spin diffusion lengths o f electrons within the materials used in 

multilayer thin films. The added stress on the structure can lead to an increase in spin- 

independent bulk scattering.6 The increase in spin-independent scattering causes an 

increase in both the parallel and antiparallel resistivities for both CIP and CPP-GMR and 

may have an effect on GMR.

The electron mean free path, spin diffusion length or spin-flip scattering, and 

interfacial diffusion also influence spin-dependent scattering processes.11, 13' 15 The 

effects on electron scattering differ for the majority and minority electrons. For a 

multilayer thin film, the first two properties vary from layer to layer (assuming different 

layer materials) for electrons o f the same polarization. W ithin individual layers, electron 

scattering differs between the majority and minority spins. Interfacial diffusion can 

create a new layer at the interface with properties different from either o f the constituent 

layers. Generally, the effect on GMR is more significant because o f  the disparity 

between spin polarizations. The result, however, is ambiguous. Researchers have 

reported both degradation and enhancement o f GMR.6,15,16 The ambiguity could suggest 

that one than more mechanism is at work and the combination determines the effect on 

GMR.

Short M ean Free Path Limit

The influence o f roughness on GMR can be theoretically discussed in terms o f the 

comparison o f  two length scales: the electron mean free path and the thickness o f the 

individual layers in the multilayer structure. Solutions to the Boltzmann transport 

equation have been found for two limiting cases13. In the short mean free path limit, the
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electron mean free path (~100 nm for Cu and 10-40 nm for Co), Le, is shorter than the

thickness o f the layers. In the CPP structure, the roughness in this limit can result in a

less resistive path o f travel for the electrons, reducing the GM R.13 In effect, a “short

circuit” occurs w ithin the multilayer as electrons are shunted through less resistive layers

o f the film without propagating through the more resistive layers, decreasing the spin-

dependent scattering. In addition, an increase in spin-flip scattering can occur in which

the polarized electron “flips” its original spin before propagating through the entire film.

For the CIP direction, an increase in interfacial roughness can disrupt the path through

the lower resistivity layers and force the electrons to impinge on higher resistivity layers

11which can increase the spin-dependent scattering, beneficial to GMR. Typically,

however, the overall result is not beneficial to the GMR as the spin-independent

scattering may have a greater increase than the spin-dependent scattering.

Long M ean Free Path Limit

In this limit, is longer than the layer thickness. The electron path is longer for

11
the “wavy” interface than for a flat interface. As a result, electrons have a greater 

probability o f  being scattered while traveling the length o f  the film resulting in an 

increase in both spin-independent and more significantly, spin-dependent scattering. In 

this limit, spin diffusion lengths o f electrons are long and they will propagate further 

before switching polarizations. The increase in scattering creates an increase in 

resistivity that affects both CIP-GMR and CPP-GMR. The different length scales just 

discussed have been used to explain why some experiments see an increase in GMR with 

roughness, while some see a decrease or no change13.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



51

This thesis describes experiments designed to explore the effects o f interfacial 

roughness on both CIP and CPP-GMR as applied through the substrate. For Chapters 7 

and 8, we attempt to produce substrate roughness that is on the order o f  the electron mean 

free path in the materials chosen for these studies, although almost all o f the roughness 

we did produce had average wavelengths much larger than electron mean free path. We 

discuss possible mechanisms by which the GMR could be changing due to this roughness 

and attempt to determine whether the primary effect is on spin-independent or spin- 

dependent scattering.
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Chapter 4 — Film Fabrication

This thesis involves the study of metallic thin films produced by sputtering and 

evaporation. This chapter discusses the basic theory behind each deposition process and 

describes the specific experimental configurations employed for this thesis. An overview 

of the film growth procedures and conditions is also provided.

4.1 - Sputtering

Sputtering is a common physical vapor deposition process for magnetic multilayer 

thin film fabrication. Fundamentally, sputtering involves ionized atoms, colliding 

elastically, which transfer energy while conserving momentum.1 The ionized atoms 

impact a target surface causing removal of material, which then assumes vapor form and 

is deposited onto a substrate. Sputtering can have a high deposition rate, allowing for the 

growth of a large volume o f films. The large source area and low energy of the sputtered 

particle yield smooth films with high film uniformity and conformality. The sputtering 

chambers at the College of William & Mary, the National Institute o f Standards & 

Technology (NIST), and Michigan State University have designed systems, which can 

deposit on numerous substrates at the same time under the same growth conditions. The 

experimental setups at W&M and NIST use a dc magnetron configuration while the 

system at MSU is a combination of dc magnetron and triode sputtering.

Sputtering is a low-vacuum process, usually operating at 1 to 100 mtorr. In 

sputtering, an introduction gas is excited to a plasma by producing a potential difference
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between a cathode and an anode and drawing electrons from the cathode. The energetic 

ions from the plasma discharge strike the target, removing atoms from the target. The 

plasma discharge is thus comprised of electrons, ionized gaseous species, and neutral 

atoms from both the introduction gas and the target. Essentially, the glow discharge is 

electrically neutral as the densities of the charged particles are equal. Light emission 

from excited atoms gives the discharge its glow. On either side o f the plasma are located 

electrically charged regions referred to as “sheaths” . The cathode sheath has a positive 

charge density as ions flow through it towards the cathode. The anode sheath is primarily 

comprised of electrons. Since charge is conserved, the ion current density to the cathode 

must equal the electron current density to the anode. Ion movement through the sheath is 

assumed to be collisionless but some collisions may occur as ionized gas species pass 

through the sheath and excite any neutrals that may be present. However, ions arrive at 

the target with enough kinetic energy to “knock out” target atoms, typically 1-3 keV. 

Highly energetic atoms, typically 3-5 eV, are ejected from the target, dispersed into the 

gas phase and conveyed to the substrate, which acts as an anode. Target atoms impinge 

on the substrate surface, condensing into a thin film. Typically, thin film thicknesses 

range from a monolayer to several microns.

The oldest and simplest type of sputtering is dc sputtering. A parallel-plate 

cathode-anode configuration supplied by a high-voltage dc power source on the order of 

3 kV is the most widely used arrangement. Typically, the target area is tens to several 

hundred square centimeters and is spaced several centimeters from the anode. Generally, 

parallel-plate configurations are designed such that the anode has a significantly larger 

area than the cathode. This increases the sputtering rate by increasing the current flow to
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the cathode. Commonly, however, dc sputtering is not used in thin film deposition 

because o f its limitations. Film deposition rates are too low and several types of 

materials cannot be sputtered, such as insulators. With conductive targets, an insulating 

layer o f electrons can form on the target reducing the deposition rate further. There is 

also a considerable probability for secondary electrons to be lost to the chamber wall or 

anode without undergoing ionizing collisions with the sputtering gas. Another 

disadvantage is the inability of dc sputtering to sustain the plasma, as electrons are lost to 

the anode. The magnetron was designed to remove or limit the disadvantages present in 

dc sputtering. Other types of sputtering include but are not limited to radio frequency 

(RF) sputtering, hollow cathode sputtering, and ion beam sputtering. Information 

concerning these types o f sputtering as well as others can be found in Mahan1 and 

Bunshah.2 Detailed information can also be found in Ohring3 and Smith.4

4.2 - DC Magnetron Sputtering

Magnetron sputtering enhances the sputtering process by localizing electrons over 

the cathode to increase the probability of ionization for the introduction gas. A schematic 

of our deposition system is shown in Figure 4.1. In this configuration, the target material 

serves as the cathode with a negative potential, typically 300-500 V, relative to the 

substrate, which has a floating potential. The grounded chamber wall acts as the anode. 

Secondary electrons released from the cathode ionize an introduction gas, usually Ar, 

through collisions with neutral atoms, where imparted energy excites the gas species. 

The ionized gas accelerates towards the cathode by the high negative potential, strikes the 

target surface with enough kinetic energy to eject predominately neutral target atoms 

through secondary backward scattering.
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cathode shield

Al cowling 

Glass Viewport

Al shutter

Pump Exhaust

Al substrate mask
Al substrate holder

Figure 4.1: A  schematic o f  the dc magnetron sputtering system located at W &M  used to fabricate most 
films. Four dc magnetron guns are located ~ 6 ” from the substrate. Multilayer thin film s are grown using 
computer-controlled shutters to expose each gun in succession to the substrates.

Common interpretation holds that this process creates a linear cascade within the target. 

The plasma, localized above the target surface, is sustained by an electric field and a 

confining magnetic field. The flux of the magnetic field lines are shaped by two 

permanent magnets positioned behind the cathode: a ring magnet and a center magnet.
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Initially losing some energy during the first orbit, electrons are trapped by the B-field. In 

a series of orbits with decreasing radii in the - E  x B direction where E and B are the 

electric and magnetic field vectors, respectively1, the electrons continue to collide with 

neutral atoms o f the introduction gas, creating more ions. In this way, the electrons are 

localized over the target and continue to create ions.

b)

Target mount

X racetrack

Figure 4.2: a) Schematic o f  cathode source. The magnetic field lines localize electrons over the target 
surface. The drift is strongest where the magnetic field is parallel to the target surface, b) The drift velocity  
contains the electron density in an annular region.

Secondary electrons gyrate around the magnetic field lines in a helical pattern in 

relation to the Lorentz Force. The plasma drift velocity facilitates electron trapping:

E xB
( 4 . 1 )

The helical motion o f the electrons in conjunction with the drift velocity generates 

an annular erosion outline in the target. (Colloquially, the outline is referred to as the 

“racetrack”.) The speed at which the erosion deepens is determined by numerous factors, 

including the deposition rate, sputtering yield, and particle energies.

The W&M deposition chamber has four sputtering sources each with a computer- 

controlled pneumatic shutter. To prevent cross contamination during deposition, two
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sources are encased in aluminum cowlings and a rectangular aluminum divider is located 

between the top and bottom sources.

4.3 - Triode Sputtering

Triode sputtering, while a form of dc sputtering, employs three electrodes instead 

of two. The hot-cathode triode is the most common configuration. The cathode and 

target are independent o f each other. Instead, a cathode filament and an anode are 

positioned in close proximity to the target with the cathode-anode assembly parallel to 

the target. The filament is heated to a high temperature generating thermionic emission 

of electrons, which is enhanced with an injection of electrons increasing the gas 

ionization probability. A high negative target potential attracts the subsequent ions 

bombarding the surface and ejecting material in the gas phase. The operating pressure 

for this configuration, 0.5 to 1 mTorr2, is lower than magnetron operating pressures. 

While the current is typically higher for a triode system, the potential is lower compared 

to dc magnetron sputtering.

Thermionic 
Emitter Anode

5 0 -  100 V

Target

Substrate

N egative High Voltage

Figure 4.3: Hot cathode sputtering injects electrons into the plasma by thermionic emission increasing the 
ionization probability o f  the carrier gas.
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Triode sputtering provides a higher deposition rate at a lower pressure than dc 

magnetron sputtering. The localization of the carrier gas over the target area in 

conjunction with the use of a filament cathode allows for more efficient sputtering of the 

target without the need for a higher partial pressure of the carrier gas. The disadvantage 

of triode sputtering is an uneven erosion of the target material due to nonuniform plasma 

coverage over the target surface.

4.4 - Boat Evaporation

Evaporation is another common physical vapor deposition process, in which 

atoms obtain energy through thermalization rather than momentum transfer. The kinetic 

energy involved is orders of magnitude smaller than in sputtering. Consequently, 

evaporated atoms have limited mobility over the substrate surface. Evaporation, in 

contrast to sputtering, is a high vacuum process (pressure less than 10'6 torr). It does not 

require a carrier gas to promote deposition. High thermal energies, which are orders of 

magnitude less than the energies involved in sputtering, are imparted to the material, 

which vaporizes or sublimes into the gas phase. The thermalized atoms are transported to 

the substrate and condense on the surface. There lower kinetic energy results in most 

particles remaining where they condense.

A boat evaporator, located at MSU, was used to create the gold nanodots 

discussed in Chapter 8. In boat evaporation, a refractory metal houses the material to be 

evaporated, referred to as the evaporant. A high current, on the order of 100 A 1, is 

applied to the boat, resistively heating it and, eventually, thermalizing the evaporant. The 

vapor pressure above the evaporant is less than the thermal equilibrium vapor pressure. 

Thus, the device achieves a non-equilibrium steady-state. In other words, there is very
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little return flux to the boat. The vaporized material follows a Cosine Law o f Emission 

(to be discussed shortly), somewhat similar to that o f sputtering.

Side View Top View

x  A

{ ]  m
/  '  1

Figure 4.4: Top and side view  o f  boat evaporator with Au charge. The boat evaporator is constructed o f  a 
refractory metal that is resistively heated to thermalize the charge material located within.

Evaporation was used to produce nanodots for the work described in Chapter 8  

because sputtering was too energetic for deposition. The atoms migrated around the 

initial polymer nanosphere template, producing a connected honeycomb pattern rather 

than individual dots.

4.5 - Film Fabrication Conditions

The majority of the films were deposited by the dc magnetron sputtering system 

at W&M. The material is ejected from the target in the shape o f a plume, determined by 

a function o f cos" 0 , known as the Cosine Law of Emission.

0 °

Figure 4.5: The Cosine Emission Law describes the distribution o f  ejected atoms from a point source. The 
shape is dependent on energy and angle o f  incidence.
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The shape and depth of the plume are determined by the projectile or ion energies 

and angle o f incidences. Typically, target or recoil atoms are emitted as neutral atoms 

and leave with an energy dependent on the projectile energy. The distribution of all 

recoil atoms can be described as having a cos 0 , undercosine (n < 1), or overcosine (n > 

1) shape. The cosine emission of atoms can be related to the energy of the incoming 

incident ions. Generally, an overcosine distribution is representative of higher energy 

ions (Eion > 1 0  keV) while an undercosine distribution represents energies lower than 1 

keV. In the former case, incident ions arrive with enough kinetic energy to be implanted 

into the bulk o f the target. Only target atoms within a specific radius are ejected and 

generally with a specific direction. In the undercosine case, not enough kinetic energy is 

available to allow target atoms to break atomic attractions. The energies used for 

sputtering and evaporation, typically produce a cos 0  distribution as this provides good 

coverage and uniformity.

The chamber at W&M is a high vacuum design with an introduction chamber to 

allow for fast loading and unloading of films. The design o f the substrate holder allows 

for deposition onto six V2” x Vi” substrates or smaller under the same growth conditions. 

The mask located in the main deposition chamber can be removed allowing for 

deposition onto one 3” wafer. A cryopump provides the main pumping of the main 

chamber and can achieve a base pressure in the 10' 9 torr range. A turbo pump located on 

the introduction chamber can achieve a pressure in the 1 0 ‘7 torr range minimizing the 

pressure differential between the two chambers. Heaters attached to the exterior chamber 

wall provide a baking temperature of 150 °C to help remove water from the system prior
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to deposition. In effect, this system design allows for the deposition o f GMR multilayer 

thin films and allows us the capability to grow several films in one run.

The sputtering system located at NIST is similar in design to the system at W&M 

with a few exceptions. It is almost entirely computer controlled and can deposit 

multilayer thin films onto several substrates simultaneously. It is also equipped with an 

introduction chamber to provide for the loading and unloading of substrates without 

breaking vacuum in the deposition chamber.

Michigan State’s sputtering system is an ultra-high vacuum chamber and is 

designed to deposit both current-in-plane and current-perpendicular-to-the-plane films. 

The growth o f CIP films is similar to the growth o f films at both W&M and NIST with 

four triode sputtering sources in conjunction with two dc magnetron sources. For CPP 

films, thin films must be deposited so that current flow is perpendicular to the film 

surface. As discussed in chapter 2, the resistance of CPP films is on the order of nQ and 

requires superconducting contacts in order to measure the resistance and resistivity of the 

films. To this end, the system design at MSU uses a rotating mask to deposit niobium 

(Nb) contacts in a cross-linking pattern, illustrated in Figure 4.6.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4.6: Rotating mask for CPP structured thin films seen from substrate side. Courtesy o f  Michigan 
State.5

The strips are deposited as a top and bottom layer so that the overlay o f both Nb 

layers over the thin film defines an area in which the CPP-GMR is measured, illustrated 

in Figure 4.7. The strips are approximately 2 pm thick and due to the superconductivity 

of Nb, are ideal for CPP measurements. With this configuration, both the CIP and CPP- 

GMR can be measured.

Figure 4.7: Top view  (left) o f  CPP thin film structure. Current flow  is applied perpendicular through 
structure by attaching leads to Nb cross strips. Cross-sectional view  (right) illustrates direction o f  current 
through film. Note: GMR only measured over area (A) over overlay. CIP-GMR can also be measured in 
this configuration. Courtesy o f  Michigan State.
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Chapter 5 — Characterization Techniques

As this thesis focuses on the effect roughness has on thin films, we selected 

characterization instruments that would provide information on the scale o f  roughness 

and the resulting magnetic properties o f thin films chosen for our various studies. This 

chapter discusses the primary tools used for this research. The atomic force microscope 

was the primary characterization tool used to quantify surface roughness and topography 

o f our single layer and GMR thin films. Surface morphology was characterized by a 

scanning electron microscope. Magnetic properties o f our thin films were measured with 

several different tools: a vibrating sample magnetometer, a superconducting quantum 

interference device, and magneto optic Kerr effect. Giant magnetoresistance was 

measured with the four-point probe method. These instruments are the traditionally 

accepted characterization tools for thin films research and technology.

5.1 -  Surface Techniques 

Atomic Force Microscopy

Atomic Force Microscopy (AFM), a type o f  scanning probe microscope (SPM), is 

a high-resolution imaging technique that operates by sensing the force between a probe 

tip and a sample surface. It is commonly used by researchers to observe molecular and 

atomic level features in real-space without requiring a vacuum. It can be used to image a 

variety o f  samples because it does not rely on sample conductivity and can be operated in 

gaseous or liquid environments. Under good conditions (sharp probe tips, a stiff
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cantilever, and ultrahigh vacuum), it can resolve surface features as small as an atomic 

lattice in real space . 1 The tip, held at the end o f  a cantilever that acts as a spring, is 

brought into close proximity with the surface to be imaged. The resulting applied force 

to the surface can be calculated from H ooke’s Law2:

F  = -k x  (5.1)

where k  is the spring constant o f the cantilever and x is the deflection o f  the cantilever. 

Interactions arising between the tip and surface include van der W aals’, capillary, and 

electrostatic repulsive forces. These forces are applied to the tip, bending the cantilever 

upwards. Theoretically, this force between the film surface and the tip occurs via a single 

atom, shown in Figure 5.1. The degree o f  tip deflection is measured by a diode laser 

reflected o ff the back o f  the cantilever on to a split or sectioned photodiode. As the 

cantilever is deflected, a photocurrent imbalance between the top and bottom diodes 

produces a signal proportional to the degree o f  cantilever deflection. As the spring 

constant o f the cantilever is known, the force can be calculated using the amount o f 

deflection detected by the photodiode. By keeping the force constant during scanning, 

the vertical movement o f the tip follows the surface profile and is recorded as the surface 

topography by the AFM. A scanner constructed o f  piezo electrodes, attached to the back 

o f  the cantilever, manipulates the motion o f  the tip over the surface. As the tip moves 

across the film surface, a dual trace pseudo-color image o f the scanned area is produced. 

In effect, the tip traces a line along the surface and then retraces the same line. The dual 

trace sweep aids in the alignment o f the tip with the surface and shows the drift o f  the tip 

from the original trace line.
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M ost atomic force microscopes use cantilevers and tips which are microfabricated

■y
from Si3N 4, SiC>2, or Si and are pyramidal in shape. ’ Tip diameter is important as 

features smaller than the tip diameter cannot be accurately imaged. Additionally, 

variations in tips can lead to interactions between several atoms (instead o f  a single atom- 

atom interaction between the probe tip and the sample surface) and can produce 

variations in measurements. Ideally, the same tip or same type o f tip should be used for 

all measurements. The lifetime o f the tip is partially determined by the way, in which the 

sample surface is scanned. There are three primary modes for imaging a surface using 

the AFM: contact, non-contact, and tapping mode.

Contact mode brings the tip and the sample surface into physical contact as the tip

ft 8
is dragged over the surface, generally with forces in the 10' to 10" N  range. The close 

proximity o f  the tip with the surface causes an overlapping o f  electron clouds. As a 

result, the tip is pushed away physically from the surface by electrostatic repulsive 

forces . 1 This mode provides a high resolution o f the sample surface but can be damaging 

to soft surfaces.

In non-contact mode, the tip-sample distances are typically tens to hundreds o f

angstroms apart. 1 The attraction between the tip and sample are the weaker van der

1 1 •  •

W aals’ forces and forces are generally on the order o f 10' N. Typically, the cantilever

oscillates at a frequency between 100 and 400 kHz to detect the small forces involved. 

Changes in surface topography result in changes in the vibrational amplitude o f  the tip. 

As described above, changes in amplitude are detected by the photodiode and converted 

to tip-sample spacings allowing the surface to be imaged. Due to the lack o f  physical
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contact, soft surfaces can be imaged with minimal surface contamination and tip 

degradation.

The final mode, tapping mode, is a combination o f contact and non-contact mode. 

In tapping mode, the cantilever oscillates at or near its resonance frequency, -3 0 0  kHz 

for the tips used to image our films. At the bottom o f its swing, the tip contacts the 

surface lightly tapping it. Constant oscillation amplitude, maintained by a feedback loop, 

sustains a continuous tip-sample interaction during imaging. Generally, the tip contacts 

the surface with a spring constant between 20 and 100 N/m. Tapping mode is designed 

to lessen damage to the film surface by using smaller forces for soft films and minimizing 

lateral forces eliminating scraping o f  the film surface. While tapping mode is less 

capable o f  obtaining atomic resolution images, it has a higher lateral resolution than 

contact and non-contact mode.

Phcrtodetector

Laser Beam

Cantilever 

Line Scan

Tip Atoms 

t  force

Surface Atoms

Figure 5.1: Illustration o f  A FM  scanning film  surface. A  tip attached to a cantilever oscillating at a sp ecific  
frequency m oves across the surface. A  photodiode detector records deflections o f  a reflected laser aligned  
with the back o f  the cantilever. Courtesy o f  M olecular Imaging.
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For this thesis, a Digital Instruments Nanoscope was used in tapping mode to 

obtain the roughness measurements. Analysis o f  image scans provided information 

concerning surface roughness and the measurements were used to quantify roughness. 

Various feature properties were obtained from the image scans, including feature and 

grain sizes, heights, and peak-to-peak lengths. Roughness measurements from AFM 

scans were compared with various magnetic properties in an attempt to find a correlation. 

The AFM used for this thesis has a vertical resolution o f  lA  and noise levels present in 

the image scan o f lA . The lower limit o f  the roughness scale for this thesis is on the 

order o f  nanometers.

The main disadvantage o f  the AFM is the image size, which can only show a 

maximum height on the order o f  microns and a maximum area o f  around 1 0 0  by 1 0 0  pm. 

For our purposes, the measurement o f  heights greater than one pm  is not necessary. 

However, measurable area is limiting considering the size o f the film, 1 2 x 1 2  mm  or 4 x 

12 mm, and the deviation in roughness measurements (discussed in Chapters 6-9). 

Typically, three scans were taken on each sample at a rate o f ~ 0.5 Hz, a rate that 

provided a good dual trace sweep over the film surface. Each scan is comprised o f  a 256 

x 256-line sweep giving a 65536-point resolution. Additionally, each scan represents a 

different location on the same sample providing a survey o f the roughness uniformity. 

This arrangement, while situated on an air stabilization table, is still sensitive to 

extraneous vibrations, which can cause streaks to appear in the scan that are assumed to 

be part o f  the film by the software. In addition, as the tips began to degrade after ~  8  hr, 

the same type o f tip was used for all measurements, but not the exact same tip.
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In tapping mode, the procedure to obtain a scan is as follows. A sample is placed 

onto the sample stage and held in place by a low vacuum. The stage is electronically 

manipulated to position the sample under the tip stage. Then, an optical cam era is used to 

locate the tip, focus the sample surface and position the tip over the sample edge. The tip 

stage is slowly lowered, so as not to bump the surface and damage the tip, until the 

sample edge comes into sharp focus, usually only a few millimeters from the sample 

surface. W hen properly aligned, the tip sum is less than 2 and the vertical deflection is ~ 

0. A red dot, representing the location o f the laser with respect to the tip, is centered on a 

grid on the computer monitor. After alignment, the tip is tuned to insure that resonance 

occurs at ~ 300 Hz, an indication o f  good tip performance. W hen the AFM is within 

these parameters, the tip is lowered into contact with the surface using the Nanoscope 

software. As the surface is scanned, the dual trace can be adjusted to insure overlap o f  

the trace-retrace lines, eliminating drift by the tip.

Analysis o f  AFM  scans was made without flattening the image scan, which the 

software would have included in the roughness measurements. In order to obtain 

accurate measurements, specific criteria for film analysis were followed. First, films 

without streaks or apparent surface contaminants were analyzed for roughness. For films 

with streaking, only the areas without streaking were analyzed for roughness. Scans with 

significant streaking were not used.

Data from the 256 x 256 point scans was digitized and the scans stored on the 

computer. An analysis program provided by Digital Instruments analyzed the digitized 

data and provided numbers such as peak height (Z), average roughness (Ra), and root
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mean square ( a rms) values for roughness. The root mean square roughness was calculated 

according to this formula:

where Z, represents individual peak heights, Z  represents the average peak height for a 

given scan area, and Zcp represents the peak height o f the center plane o f  the scan area. 

Roughness data was taken from unaltered scans using the Nanoscope software. Feature 

height and depth were represented by variations in color. For sloped scans, flattening, 

performed through the software, was used to level the scan image for roughness analysis. 

The error reported for the AFM roughness data was calculated as the standard deviation 

from the mean o f multiple scans. Error in the measurement o f  roughness can be due to 

dust or impurities on the surface, a worn tip or significant vibrations through the floor. 

Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) is also a high-resolution 2-dimensional 

imaging device that uses low and medium-energy electrons to image the surface 

morphology. It is also able to provide information o f the material composition just below 

the surface. Unlike the AFM, the SEM is dependent on the sample conductivity and is 

unable to image nonconductive samples effectively without first coating the sample with 

a conductive material. It is also necessary to operate an SEM in an ultrahigh vacuum

(5.2)

The average roughness was calculated according to this formula:

N
S Z/ - Zcp

£ . = - *   ------ (5.3)
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system. However, sample surfaces can be imaged over a larger scan area with an SEM 

compared to the scan size o f an AFM. An electron microscope is capable o f  scanning at 

near real-time (although at relatively low quality) allowing for faster imaging o f  the 

sample surface. Unlike the AFM, which allows a true three-dimensional surface profile, 

the electron microscope provides a two-dimensional projection or a two-dimensional 

image o f  a sample unable to resolve atomic sizes.

For this research, SEM images were obtained using the Hitachi S-4700 cold field 

emission FE-SEM, located at W&M, which incorporates dual high-resolution secondary 

electron detectors with low-voltage backscattered electron imaging providing information 

about the film surface and the bulk o f the sample. The electron source is provided by 

field emission from a cathode wire made o f  tungsten. The high field (>107 Y/cm) at the 

tip decreases the size o f the potential barrier the electron must overcome for emission 

eliminating the need for any thermal energy to overcome the electron work function. The 

electrons are accelerated through an anode plate, typically with voltages between 1 and 

30 kV .4 After leaving the anode, the electrons are focused into a fine beam by 

condensing lenses. The condensing lenses control the beam spot size on the sample 

surface controlling the resolution o f the image. Scanning coils are used to direct the 

electron beam across the sample surface. The spot beam scanning the sample surface is 

synchronized with the spot display o f a cathode ray tube (CRT). One set o f  detectors 

analyze secondary electrons scattered from the film surface. Image contrasts are a result 

o f  intensity changes in the secondary electron emission scattered from the surface. A 

second detector analyzes the number o f  backscattered electrons, which is linked to atomic 

number, to determine the film composition o f the sample. As stated above, the electrons

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



73

are scattered from the beneath the surface and the depth to which the penetration occurs 

is dependent on the beam energy. Figure 5.2 illustrates the basic components o f  an SEM.

The SEM was used to measure nanodot size and spacings for the films discussed 

in chapter 9 where it was necessary to gain a better observation o f  overall film  uniformity 

but not quantify root-mean-square roughness.

Illuminating Source 
(Electron gun)

Condenser
lens

Scanning coils

Objective lens —i
Objective lens 
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Figure 5.2: Schem atic o f  SEM . The SEM  provides high-resolution 3D  im ages o f  sam ple m orphology

5.2 -  Magnetic Instruments and Techniques

Superconducting Quantum Interference Device

The superconducting quantum interference device (SQUID) measures change in 

magnetic fluxes and has a high sensitivity to small magnetic signals. W hile it is
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commonly used to measure hysteresis and magnetoresistance o f thin films, it is used in a 

wide variety o f  applications, ranging from the biological to the geophysical.5 It is the 

most sensitive o f  the magnetometers, able to detect signals as small as 1 0 ' "  emu using 

sensitive current-to-voltage converters. There are two types o f  SQUIDs: the resonant 

frequency (RF) SQUID and direct current (DC) SQUID. Both types o f  SQUIDs are in 

use today. In most systems in use today, the SQUID sensor is located inside a small 

cylindrical, superconducting magnet which sits inside a liquid He dewar, achieving 

temperatures as low as 4.2K. The SQUID sensor is comprised o f  a superconducting ring 

with one (RF) or two (DC) regions or ‘weak links’ called Josephson junctions. The 

junction length is on the order o f  the penetration depth o f the superconducting material 

and weakens the superconductivity. Typically, the Josephson junction is constructed o f 

an insulating barrier in which the superconductivity is weakened. Below a critical 

temperature (Tc), a supercurrent exists within the superconducting ring as the electrical 

resistivity is eliminated. In a closed loop, the supercurrent, in theory, experiences no loss 

o f  direct current. This creates what is referred to as a persistent current.

I f  a bias current is applied, the initial voltage drop across the junction is zero but a 

phase-shifted current is introduced across the junction between the two superconductors. 

When the bias current reaches a critical limit, the phase difference becomes time- 

dependent and a voltage will appear. The voltage is now measured as a function o f  the 

current. Figure 5.3 shows the superconducting ring with a single Josephson junction.

For this thesis, a DC SQUID located at North Carolina A&T University was used 

to measure the hysteresis o f  the films discussed in Chapter 6 . Generally, the DC SQUID 

has a slightly more complicated design due to the necessity to have two identical
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Josephson junctions within the superconducting ring .5 This is offset by the simpler 

electronics needed for a DC SQUID compared with the RF SQUID . 5

Region of current flow

Weak-link region

Integration path

Penetration depth regions

Figure 5.3: Superconducting ring interrupted by w eak link. Schem atic is typical o f  an RF SQ U ID . A  DC  
SQ U ID  w ould  have tw o w eak links. The w eak link represents a Josephson junction. Im age taken from  
G allop “SQUIDs, the Josephson Effects, and Superconducting Electronics ”.

The device at NC A&T is a DC SQUID able to produce a field o f  ±5 Tesla ,6 

fields as high as 7 Tesla can be produced .6 In standard DC transport, the sample probe is 

centered by stepping the sample through the pickup coils to insure the entire length o f  the 

film is situated within the scan region ( 8  cm ) . 6 The sample is slowly stepped up through 

a set o f  superconducting pickup coils connected in series and referred to as the primary 

and secondary coils. The secondary coil is indirectly coupled to the SQUID sensor via 

superconducting wires. Helium gas drawn from the liquid helium surrounding the 

assembly flows around the sample tube uniformly cooling the sample. As a field is 

applied, one o f  the coils, typically called the primary coil, detects the small magnetic 

signals from the sample. The flux in the primary-secondary combination changes due to
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the sample magnetic moment. The effect is a change in the persistent current w ithin the 

superconducting ring connected to the primary coil. The SQUID sensor outputs voltages 

due to the variations in the persistent current proportional to the magnetic moment o f  the 

sample. M ost SQUIDs in use today employ a gradiometer design instead o f  the basic 

flux transformer circuit described above .5 The primary coil is comprised o f  two or more 

identical coils in series each with n turns. In the case o f two coils, they are wound 

opposite with respect to each other. A uniform external magnetic field will produce 

equal but opposite flux change in the two coils. For spatially uniform background fields, 

the persistent current will not be affected. However, a local magnetic field will produce 

different fluxes in the two primary coils and net change will be detected. This enables 

the SQUID to operate in noisy magnetic environments.

A SQUID’s primary limitation is in the size o f the sample it can measure. The 

width o f  the sample can be no greater than 5 mm. The SQUID’s sensitivity to tiny 

magnetic signals and its ability to make superconductive measurements give it an 

advantage over other magnetic measurement techniques. A simple SQUID design is 

shown in Figure 5.4.
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Figure 5.4: Sim ple schem atic o f  a SQ U ID  magnetometer. The SQ U ID  is sensitive to tiny m agnetic signals 
and is used for hysteresis and m agnetoresistance measurements.

Vibrating Sample Magnetometer

The vibrating sample magnetometer, similar to the SQUID, measures magnetic 

signals. It has a flexible design that allows for easy mounting and exchange o f  samples.

It is sensitive to magnetic moments as small as 10' 5 emu and can be used to measure bulk 

as well as thin films. The VSM was used to measure the hysteresis o f  FL-CNX thin films 

discussed in chapter 9.

The VSM is comprised o f  two electromagnetic coils, capable o f  a combined 2-3 

Tesla, spaced some distance apart. This distance between the coils is adjustable allowing 

for samples o f  various widths to be characterized. The position that provides the 

strongest signal strength, referred to as the saddle point, is determined by aligning the 

sample drive between a set o f  pick-up coils with to an electromechanical transducer. The 

VSM is calibrated with a standard o f  known field before replacing the calibrated sample
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with the film to be measured. A uniform field is applied, and the sample oscillates along 

the z-axis at a fixed frequency between the pick-up coils. This motion produces a flux 

change in the magnetic sample inducing a voltage across the terminals o f  the pick-up 

coils, which is proportional to the sample magnetization:

d<D
V(t) = C —  (5.4)

where O (t) represents the (changing) flux in the pick-up coils caused by the moving 

magnetic sample. The signal from the coils is extremely small, on the order o f  a few 

nanoVolts, making the VSM sensitive to external noises.

Function Audio
G enerator AmDlifirr

Vibrator  
Pick-up ('o ils

Hall Probe 

E lectrom agnet

Reference 
— Signal 

G enerator

Sam plen
Rotating Table Stepping

M otor

Personal
C om puter

System  diagram  o f  
V ibrating Sam ple M agnetom eter

Figure 5.5: Schem atic o f  vibrating sam ple magnetometer. The V SM  is used to measure hysteresis o f  film s. 
The sam ple oscillates betw een to electrom agnetic co ils inducing a voltage proportional to the sam ple 
m agnetization.
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Magneto Optic Kerr Effect

Magneto Optic Kerr Effect (MOKE) is a common technique used to measure the 

hysteresis o f  magnetic thin films through the rotation o f  reflected linearly polarized light 

o ff a sample. It is advantageous in that MOKE operates in ambient conditions and can be 

easily designed in a research lab. MOKE is thickness dependent w ith an effective 

penetration depth o f  approximately 2 0  nm and does not distinguish between individual 

layers.

The light is initially polarized in the transverse direction by the first linear 

polarizer. The polarized light is incident on the sample surface and can be represented by 

components o f  electric field in the plane o f incidence (p) o f the light and perpendicular 

(s) to this plane:

Et = E0 co s9n p  + E0 sin 9n s (5.5)

Here 9n  is the angle o f the first polarizer and E0 is the incident electric field. The 

incident light is reflected o ff the sample and the reflected light is related to the incident 

light by:

Er = SE l (5.6)

where S is a the sum o f the longitudinal and transverse matrices written to represent 

changes in electric field upon reflection:

S  = m?S‘ + m fS l (5.7)

S ‘ and S l are separate matrices for the transverse and longitudinal polarizations, 

respectively. They are given in Equation 5.7, where mt and m, are the transverse, M t ,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



80

and longitudinal, M t ,magnetizations divided by the saturation magnetization, M s . The 

S  matrices are written in terms o f  the Fresnel reflection coefficients (r):

Qtrans _
f trPP ps

r l r l ̂ sp ss )

g lo n g  _
( I  ' A

rpp rps

Krr  rL j
(5.8)

The off-diagonal components are proportional to magnetization and give rise to 

the light rotation. This rotation, known as the Kerr rotation, is proportional to the sample 

magnetization. The rotation is detected by use o f a polarizer. Upon reflection, the light 

passes through a second polarizer. This second polarizer, having a longitudinal 

polarization, cancels the original and only the rotation due to the film magnetization 

remains.

The sample is situated between two electromagnetic coils and an applied external 

magnetic field cycles between negative and positive field. A diode detects the signal and 

data measurement software graphs the change in rotation as a function o f  applied field. 

From the measured hysteresis, film magnetization and coercivity are measured as 

discussed in Chapter 2. The magnetic field strength at the sample location was calibrated 

with a gaussmeter and was assumed to have remained constant for future measurements.
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Figure 5.6: Schem atic o f  M OKE experim ental setup. A  m odulated photon beam  is polarized and reflected  
o f f  a thin film  in an applied field. The m agnetization rotates the incident beam  and a detector m easures the 
rotation due to the film  m agnetization.

The external field was applied by two electromagnets (GMW 3470 Electromagnet), 

driven by a Kepco BOP 50-4D bipolar power supply. A SRS DS345 signal generator 

modulated the laser and synchronized the signal to a SRS 810 DSP lock-in amplifier. 

This was the measurement system for the CIP films discussed in chapter 8 .

Four-point Probe Method

Giant magnetoresistance is measured by the four-point probe method. A 

magnetic thin film is placed in applied external field. Four contacts are attached to the 

film surface. A low direct current, I < 0.01 A, is applied to the film and the voltage is 

measured as the magnetic field cycles from negative to positive. The current must be 

minimized to reduce heating o f the sample. The linear relationship between the applied 

current and measured voltage means that Ohm ’s Law applies:

V
R  =  y  (5-9)

The basic experimental design used a Keithley 2400 Sourcemeter to apply current (10 

mA) through the sample via two o f the four contacts. The voltage drop was measured by
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a HP34401A multimeter through the remaining two contacts. The customized four-point 

contact was designed by Dimitar Vlassarev using POGO-25B-6 gold spring contacts.

Contact
holder

Gold spring contacts

O  ©

A B
\

D C

Side view o f sampleelectromagnet
Film

Figure 5.7: Illustration o f  four-point probe experim ental setup. The film  is situated betw een tw o
electrom agnetic co ils and a field  is applied. Current is applied through tw o contacts on the surface and 
voltage is measured through the other tw o contacts.

The resistance calculated represents the film resistance and resistance from the contacts 

attached to film surface. For the square CIP films, prepared at M SU and NIST, two 

measurements were made for each sample to calculate the resistivity using Labview 

program designed by Dimitar Vlassarev based on the van der Pauw method . 7 In order to 

apply van der Pauw effectively, symmetrically shaped samples were used with small 

contacts. A  homogeneous film thickness is assumed. Under these conditions, the 

resistivity is then given by:

where the function p  is the resistivity, d  is the film thickness, RABjCD is the resistance 

measured with the voltage drop along AB and the current flow along CD, and RCD AB is

(5.10)
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the resistance measured with the voltage drop along CD and the current flow along AB. 

The fu n c tio n ,/ is defined by:

(R-AB,CD R-BC.Da )

(RAB,CD +  R-BC,DA
= f a x  cosh 6

(  * y  \  
e

(5.11)

In the case where RABjCD and RCDAB are nearly equal, a power series expansion o f 

Equation 5.11 for/ provides a good approximation for the van der Pauw measurements:

/ *  1 -
 ̂P D NAB,CD BC,DA 2 I n  2 P D '

-n -AB,CD BC.,DA
4

( l n 2 ) 2 ( l n 2 ) 3

v R-ab,c,d +  R-bc,da , 2 K R-AB.CD +  R-BC,DA , 4  1 2
(5.12)

This method measures ju st the resistivity o f  the film excluding contact resistance from 

the data.

In an attempt to minimize contact and lead resistance, gold contacts, which do not 

oxidize, and thin copper wires were used to construct the four-point probe. To insure 

accurate measurements, a firm contact between the film and the contacts was necessary. 

Typically, this was achieved by checking for drift during a measurement and adjusting 

the contacts until the drift was eliminated. It was determined by repeat measurements o f 

GMR on an individual multilayer that the run-to-run error was less than 1%.

BH Looper

The BH Looper measures both changes in magnetic flux and magnetoresistance 

by monitoring the response o f  a sample to an applied alternating current (AC) 

magnetizing field. A hysteresis loop (B-H curve) is produced showing the response o f 

the sample relative to the applied field. Current flowing through a drive coil(s) creates 

the AC field. A set o f pickup coils are part o f  an assembly, called the pickup assembly, 

in which the sample under test is placed. Since the B field from the sample is much
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smaller than the magnetizing field, the pickup assembly is designed to detect the field 

from the sample only. Typically, a single balance coil is situated along the axial 

centerline o f  the drive coils. The balance coil detects the magnetizing field from the 

drive coils but is not affected by the field from the sample. The signal from the balance 

coil is subtracted from the sample signal detected by the pickup coils. The correction is 

only first-order as the balance coil and pickup coils are not identical and positioned in 

different locations relative to the drive coil.

Initially, the thin films deposited in Chapter 7 were characterized using the BH 

Looper (SHB Instruments) located at the National Institute o f  Standards and Technology 

(NIST). The hysteresis and giant magnetoresistive curves are provided in real-time. 

When a film was measured more than once, it was apparent that a change in the location 

o f  the contacts on the film could produce a change in the measured GM R value o f  ~3%. 

This is due to an intrinsic difference within the film, such as roughness, which differs 

from location to location.
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Chapter 6 — GMR on Polymer Substrates

Traditionally, magnetic multilayers are deposited on semiconductor materials, 

such as silicon and GaAs.1 These materials are engineered for high uniformity, 

smoothness, and conformality. As industrial and scientific needs change1, deposition o f  

GM R thin films on non-traditional substrates and buffers, such as polymers, may be 

required. The effect o f these new materials on magnetic and electronic properties must 

be considered. Through a series o f  investigations, Parkin determined that magnetic 

multilayers could be deposited on non-traditional substrates, specifically polymeric 

substrates, without significant loss o f  GMR or other magnetic properties.2 Subsequently, 

interest in polymeric substrates has grown as researchers explore the viability o f  GMR 

devices constructed with polymer components.2'4

The investigations described in this chapter examined single films and GM R thin 

films deposited onto polymer buffer layers for the purpose o f  inclusion into magnetic 

random access memory (MRAM) chips. A comparison was made between the interfacial 

roughnesses o f  the single films deposited on polymers as opposed to those grown on 

silicon oxide. Subsequently, a process was implemented to determine a PSV structure 

that yielded an optimum GM R value on a polymer. Finally, GM R thin films were 

deposited onto various polymer buffer layers and a comparison was made o f  the GMR 

values. It was determined that thin films deposited on polymer buffer layers had
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roughness comparable to bare silicon wafers and that no loss o f  GM R occurs when the 

polymer buffer layer is used.

6.1 - Polymeric Substrates

Polymer buffer layers on silicon were supplied by the International Technology 

Center (ITC) located in North Carolina. The polymers had a form similar to polyimide, 

but the exact nature is proprietary information and cannot be reported in this thesis. They 

are identified only by reference numbers (e.g., “polymer 13” and “polym er 53”). Each 

polymer was spin-coated over 4” silicon oxide wafers with the intention to create as close 

to a 2-D surface as possible. It was found that depositing polymers with the spin-coater 

running at higher rotational speeds (rpm) produced thinner, more planar surfaces. 

However, since the material must also flow over small surface features present in the 

silicon wafer, there is a challenge to achieve as close to a 2-D surface as possible. This 

challenge o f  achieving "uniformity over topography" is an important step for device 

manufacturing. Therefore, ITC designed a procedure to characterize polymer 

planarization. The thickness uniformity over surface topography is measured by the 

degree o f  planarization (DOP) o f  the spin-on dielectric. The DOP was measured as 

shown in the following Figure 6.1.

Figure 6.1: A  schem atic diagram used to illustrate the measurement for the thickness uniform ity (D O P ) o f  
the polym er over topography.

I
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As shown in Figure 6.1, the thickness o f  the topography is tm and resultant change in 

thickness over the topography is ts. The DOP is then given as a percentage from the 

following relation:

DOP = 1 - ^ - xl00% . (6.1)

Planarization measurements were made using a test reticle that has various sized 

A1 lines on the surface with intervening spacing ranging from 0.2 to 150 pm. The 

thicknesses were measured from cross-sectional SEM micrographs obtained using a 

Hitachi field emission SEM and by profilometry using a Tencor Alpha-Step. The stylus 

on the Alpha-Step had a 1.5 pm  tip radius. One o f  the test wafers is shown in Figure 6.2. 

This test pattern was used for the polymer materials, which planarized very well. This 

pattern is a series o f  lines the length o f  the wafer surface. The line spacing is coarser and 

has intervening spacing o f more than 500pm on some features. ITC was able to 

determine which polymers planarized well over features by using tests patterns such as 

the one in Figure 6.2.

Figure 6.2: Photograph o f  the test pattern used for planarization measurements.
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After testing the planarization o f  each material, ITC separately deposited two bare 

silicon 4” wafers with polymers 13 and 53, one o f  which was spin-coated at 3000 and the 

other at 5000 rpm. The wafers were then shipped to us pre-diced into ‘A” x A” pieces. 

Each wafer was labeled according to polymeric material and rpm coating speed. For 

example, polymer 13 designates a specific polymer grown spin-coated at 3000 rpm onto a 

silicon oxide wafer. The polymers varied in thickness depending on coating speed and 

materials coated but were between 0.5 and 10 pm  thick. The measure o f  planarization is 

proprietary information and the data is internal to ITC. For this thesis work, however, we 

were most concerned about the effect o f  the average surface roughness o f  the polymer, 

which we characterized independently.

6.2 - Roughness Studies

Initially, roughness measurements o f  niobium deposited on polymer substrates 

were compared with roughness values o f  niobium on oxide substrates by depositing 

single films onto each 12 x 12 mm substrate. The <100> silicon oxide wafers were 

provided by Silicon Quest. Single niobium (Nb) layers o f thicknesses 10, 50, 100, and 

150 A were deposited onto substrates from two different polymers. Only the thickest and 

thinnest layers o f Nb were deposited onto the oxide substrates for comparison. 

Topographical measurements from AFM scans allowed for comparison o f root-mean- 

square ( o rms) roughness, average roughness (Ra), and peak height (Z) for the polym er and 

silicon oxide substrates. Films were deposited at a rate o f 0.6 A/s in 4.0 mtorr o f  pure 

(99.999%) Ar. A base pressure o f 6 x 10‘9 torr was achieved after baking the main 

chamber. The main deposition chamber is capable o f depositing onto six substrates under 

the same growth conditions at one time. Due to the number o f  samples, it was necessary
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to deposit the films in several batches. An introduction chamber permitted the loading 

and unloading o f  films without breaking vacuum. To obtain the best vacuum possible, a 

turbo pump backed by a mechanical roughing pump was used to achieve a high vacuum 

within the introduction chamber. This was done to minimize the exposure o f  the main 

deposition chamber to contaminants from the introduction chamber. The main deposition 

chamber was evacuated post deposition and isolated from the introduction chamber 

before samples were unloaded and new samples loaded. Therefore, only the introduction 

chamber was directly exposed to ambient conditions. By this method, we were able to 

compare the effects o f  substrate on the Nb film roughness. AFM  scans o f  the films 

deposited on the oxide substrate and polymer 13 showed smooth, flat surfaces. M ost o f 

the scans taken o f  films on polymer 15 were also smooth and flat but small granular 

features were observed on the surface o f  the 50 nm Nb film. Figure 6.3 shows AFM 

scans o f  the 10 nm Nb film grown on each substrate. Small grains are observed on the 

Figure 6.3c, causing the increase in roughness. However, the surface did not exhibit the 

larger features present on the 50 nm Nb film and can still be characterized as flat.

a) Oxide b) Polymer 13 c) Polymer 53

Figure 6.3: A FM  scans o f  N b 100A  on oxide substrate and polym er buffers show  no significant change in 
feature size for film s on the oxide compared to the polym ers. Surface roughness m easured from A FM  
scans was comparable for film s on all three substrates, a) O xide substrate b) Polym er 13 c) Polym er 53. 
A FM  in Tapping M ode and scan size is 1 pm x  1 pm.
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Table 6.1 compares the Orms, Ra, and Z for the single Nb films deposited on both 

polymers and oxide substrates. When comparing all three roughness parameters for films 

o f  the same thickness on different substrates, films grown on the polymers yielded lower 

arms, Ra, and Z than films on the oxide substrate. The general trend for all three 

substrates was an increase in a rms, Ra, and Z with increased film thickness. This supports 

previous research in which Nb buffers cause an increase in film roughness5 suggesting an 

inherent roughness for a Nb layer that may increase with thickness. Significantly, the 

polymer roughness continued to be less than the oxide substrates. As the polymers tend 

to be hydrophilic, greater surface roughness, attributed to water contamination and 

diffusion o f  oxygen, might be expected as none o f the polymers was baked prior to 

deposition. The data suggest that any contamination by water and oxygen had a 

negligible effect on surface roughness for the polymers.

Substrate tNb (nm) O r m s  (nm) Ra (nm) Z (nm)
1 1.34 ± 0 .58 1.06 ± 0 .44 10.12 ± 3 .2

Polymer 5 2.23 ± 0.82 1.80 ±0.71 2 0 . 6  ± 1 1

13 10 1.47 ± 1.0 1.18 ± 0 .84 11.1 ± 5 .4
15 1.83 ± 0 .77 1.47 ± 0 .67 12.0 ± 4 .0

1 1.48 ± 0 .43 1.20 ± 0 .36 11.8 ± 2.8
Polymer 5 1.92 ± 0 .60 1.47 ±0.43 15.4 ±4 .1

53 10 2.25 ± 1.8 1.65 ± 1.4 14.6 ± 6 .8
15 2.42 ± 1.9 2.07 ± 1.7 19.1 ± 3 .8

Bare 1 2.56 ± 2 .0 2.07 ± 1.7 23.1 ± 7 .6
Oxide 15 3.09 ± 2 .6 2.82 ± 1.7 20.0 ± 13

T able 6.1: Comparison o f  root-mean-square roughness, average roughness, and peak height for polym er  
and bare silicon  oxide wafer substrates.
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In general, this roughness study indicates that the roughness o f  the polym er buffer 

layers is comparable to the bare silicon wafer and we would not expect any detrimental 

effect to the GMR due to roughness o f  the polymer surfaces.

6.3 - GM R Optimization on Polymer Substrates

Our next goal was to produce optimized GMR multilayers on the polymer 

surfaces. We desired a maximum GM R response, but also wanted to select a multilayer 

that was relatively simple and would be able to withstand the processing steps (such as 

heating) necessary for the production o f  an MRAM device. We selected a pseudo-spin 

valve for this purpose, since it requires only two or three ferromagnetic layers and avoids 

the use o f  an antiferromagnetic layer and the exchange bias effect (which is sensitive to 

heating). The PSV had the form o f Nb 30A/Cu 50A/NiFe X/Co lOA/Cu 40 A/Co 40A/Cu 

20A/Nb 20A or Nb 30A/Cu 50A/NiFe 40A /Co lOA/Cu 40A/Co X/Cu 20A/Nb 20A, 

where the thickness X was varied to optimize the GMR response. Samples were 

produced with NiFe and Co layers with X = 20, 30, 40, 50, 100, and 200 A. Figure 6.4 

shows the various layers o f  the PSV and summarizes the role o f  each layer in the 

optimization o f  the GMR. First, 30 A o f Nb and 50 A o f Cu were grown on the polymer 

to provide a good polycrystalline structure for the ferromagnetic layers to grow on. The 

ferromagnetic layers used are NiFe and Co, both with different coercivities. The Cu layer 

separates the two ferromagnetic layers to allow their magnetizations to switch 

independently. A thin layer (10 A) o f Co is inserted between the NiFe and Cu layer to 

prevent Cu atoms from diffusing into the NiFe and reducing the NiFe magnetization. 

Finally, top layers o f  Cu and Nb cap o ff the structure and prevent degradation by 

oxidation.
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GMR multilayers were grown on different polymer surfaces as well as bare 

silicon oxide for comparison. Prior to loading, the silicon substrates were sonically 

cleaned with acetone followed by 2-propanol and dried with compressed (99.999%) N 2 . 

W ith the exception o f one polymer, each polymer substrate was loaded as-prepared 

(without cleaning). One polymer substrate required an acetone bath for removal o f  a 

resist coating. A base pressure o f  5 x 10'8 Torr was attained after a 12-hr bake o f  the 

main deposition chamber. During the deposition, each layer was deposited at a rate o f

1.0 A/s in 2.4 mTorr o f  pure (99.999%) Ar, except for Nb, which was deposited at 0.8 

A/s.

Cap layer: prevent oxidation, but avoid shunting- 

Vary Co layer thickness to find large coercivity

Vary Cu layer thickness to control coupling 

1 nm Co layer here: diffusion barrier 

Vary NiFe thickness to maximize GMR 

Buffer layer for uniform growth

X
Nb (2 nm)kJ Cu (2 nm)

J Cu (4 nm)

mmmm
Ns 1

Cu (5 nm)
Nb (3 nm)

Figure 6.4: Structure o f  PSV  used for this study, w ith summary o f  purpose for each layer.

The GM R effect is a very sensitive function o f  the thicknesses o f  the various 

layers and the mechanism o f the thickness dependence is fairly well known.6 For 

example, for small Cu thicknesses, the two ferromagnetic layers become strongly 

magnetically coupled by the RKKY interaction and pinhole coupling. For the PSV, it is
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desired that the two ferromagnetic layers be uncoupled and have very different 

coercivities. Therefore, a thick Cu layer is needed. However, as the Cu thickness 

increases, the GMR will decrease because the current will be shunted through mainly the 

low resistivity Cu layer rather than through the higher resistivity ferromagnetic layers. 

This shunting effect is phenomenologically described by the following equation:

AR
R

f  'N A.VA/

v R o 1 +  ^ w A o
(6 .2)

where /vwis the Cu layer thickness and Inm is related to the mean free path in the Cu (it is 

estimated that Inm ~  1/2X, where X is the mean free path). Figure 6.5 shows data for three 

Cu thicknesses used as well as a plot o f  Equation 6.2.

£
c2
< 1

0

5

•  GMR 
 Eq 6.2

4

2

1

0
2 6 80 4 10
Cu layer thickness (nm)

Figure 6.5: G M R for P SV  on polym er 13 for three different Cu thicknesses (dots). The C o and N iFe  
layers w ere each fixed  at 4 0 A. Solid  line is from Equation 6.2 in text, assum ing a A ~  32 nm for Cu. 
For Cu thicknesses o f  4  and 5 nm, theory and experim ent do not differ significantly. For thinner Cu 
thicknesses, Eq 6 .2  does not account for a substantial increase in ferrom agnetic coupling. Strong 
ferrom agnetic coupling prevents the film  from achieving a w ell-defined  A P state that is necessary to  
obtain large G M R values.
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Similarly, the GM R will have an optimal value for a particular ferromagnetic 

layer thickness. The ferromagnetic layer thickness determines the am ount o f  spin- 

dependent scattering as well as controls the coercivity (for the Co) and magnetic coupling 

between layers. A phenomenological equation similar to Equation 6.2 has also been used 

by others to describe the dependence o f  GMR on ferromagnetic layer thickness6:

AR 
R R

l - e -If/If

l + t r / t n

(6.3)

From Equation 6.3, we see that very thin ferromagnetic layer thicknesses, GM R is 

correspondingly small due to a decrease in spin-dependent scattering. However, for very 

thick ferromagnetic layers, again the GMR is small because o f  current shunting.

Figure 6.6 shows the GMR values as a function o f Co layer thickness. In this 

figure, it can be seen that the GMR does not continue to increase with increasing Co 

thickness. One o f  the reasons why is, as mentioned above, the shunting effect. Another 

reason is that the thicker Co layers exert significantly stronger coupling to the NiFe layers 

due to the stronger magnetization o f  the thicker Co layers.
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Figure 6.6: G M R for PSV  on polym er 13 (red, c losed  squares) and 53 (blue, c losed  circles) for different 
C o thicknesses. The Cu and N iF e layers were fixed  at 4  nm and 4 nm respectively. The m axim um  
G M R w as obtained at a Co thickness o f  4  nm for film s on both polym er buffers. The decrease in G M R  
occurs as the increasing Co thickness results in increased ferromagnetic layer coupling. The coupling  
lim its the film s ability to achieve a w ell-defined A P state. Dotted lines are to guide the eye.

The effect o f  magnetic coupling between the two ferromagnetic layers can be seen 

in the hysteresis loops o f the PSV, shown in Figure 6.7 for varying Co, NiFe and Cu 

thicknesses. The data were taken using SQUID magnetometry by Jamil W oods at North 

Carolina A&T University. Again, in an ideal PSV, the two ferromagnetic layers should 

switch their magnetizations separately in a changing applied magnetic field. The NiFe 

should have a small coercivity and switch first and the Co should have a larger coercivity 

and switch later. Evidence o f  independent switching is the appearance o f  two loops and a 

“sh e lf’ in the hysteresis. The “sh e lf’ indicates the achievement o f  an antiparallel state.
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Figure 6.7: H ysteresis curves for the optim ization o f  a PSV  on a polym er substrate, a) Increasing C o layer 
thickness b) Increasing N iF e thickness c) Increasing Cu thickness. For Co (a) and N iF e (b), the 
m agnetization increases w ith increasing thickness. For the Cu layer (c), the thinnest layer is red and the 
thickest is black. N otice the tw o loops em erging for the thickest Cu layer.

First, in Figure 6.7a), the dependence on Co thickness is shown. For small Co 

thicknesses, the two independent loops and shelves are seen, but for thicker Co, only one 

loop o f decreased width is observed. The width o f  the loops, an indication o f  the Co 

coercivity, increases with Co thickness except for the 200 A film, where it decreases. 

This indicates that the Co and NiFe layers are becoming coupled and switching together 

for higher Co thicknesses. This correlates with the decrease seen in GMR.
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Figure 6.7b shows the hysteresis curves for films with various NiFe thicknesses. 

In contrast to Figure 6.7a, the width o f  the curves decreases with increasing NiFe 

thickness but the height increases similar to the films with varying Co thicknesses. 

However, the magnetization for the varying NiFe films is smaller than those for the Co 

films. As the NiFe becomes the dominant film in the structure, the independent loops in 

the hysteresis loops become clear. Although some de-coupling is evident, layer 

switching occurs at a much lower field than when the Co film dominates the structure. 

Lastly, Figure 6.4c displays hysteresis curves for films with varying interspacer 

thicknesses. W hen the interspacer layer is thin, no independent switching o f  one layer 

from the other is evident. As the layer thickness increases, the F layers begin to de­

couple as observed in the hysteresis curves. One F layer clearly switches at a lower field 

followed by the other at a higher field. Notice, for the films with no de-coupling, the 

coercivity lies between the switching fields for the de-coupled films further indicating 

simultaneous switching in films with a thin interspacer layer.

Combining the results from the above discussion, it was determined that the 

optimum thicknesses were NiFe 40A/Cu 40A/Co 40A or NiFe 50A/Cu 40A/Co 50A.The 

optimized structure chosen for the MRAM project was a Nb 30A/Cu 30A/NiFe 40A/Co 

lOA/Cu 40A/Co 40A/Cu 20A/Nb 20A pseudo-spin valve. The hysteresis for this PSV is 

shown in Figure 6.8. Although the F layers are not completely de-coupled, there was 

sufficient switching between the parallel and antiparallel states for the initial 

experimentation o f  this project.
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Figure 6.8: Optim ized PSV  chosen for M R AM  project. This PSV  provides adequate sw itching betw een  
parallel and antiparallel states, though the F layers are not com pletely de-coupled from each other.

After optimization, GMR values up to 3.2 %  were measured on the various 

polymer substrates and found to be comparable to the same PSV on an oxide substrate. 

M agnetizations were unchanged whether the multilayers were deposited on silicon oxide 

or polymer substrates suggesting that any o f  these substrates are adequate for this 

application. The GMR responses for the PSV on an oxide and a polymer substrate are 

shown in Figure 6.9. Both GMR curves are similar in shape and size displaying no 

significant difference due to the substrate material. Further, the response o f  the PSV 

occurs within 20 Gauss indicating a fast switching rate between a parallel and antiparallel 

state.
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Figure 6 .9  G M R response for a pseudo spin valve deposited on silicon  oxide (c losed  circles) and polym er 
53 (open squares). Left: Total sw itching behavior. Right: spin valve response.

In fact, both the GMR and magnetic response were similar on a variety o f 

polymer substrates, listed in Table 6.2, displaying flexibility in the buffer layer chosen for 

this project. This can be explained by the small arms roughness o f  the films on the 

polymer substrates, which was typically < 2.5 nm and comparative to the film roughness 

on an oxide substrate. Initial annealing experiments on the pseudo spin valves have 

found that the GMR does not decrease under annealing for one-half hour at 150 °C

Substrate G M R  (% )
Polym er 53 2.9

Polym er B C B 3.1
Polym er 23 3.1
Polym er 43 3.2

O xide 3.1

Table 6.2: A  list o f  the G M R  measured for the sam e P SV  grown on various substrates.

6.4 - Conclusion

In this investigation, a series o f films were deposited to optimize a specific PSV 

maximizing GMR. The optimal ferromagnetic and nonmagnetic layer thicknesses were
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determined and a series o f  GMR pseudo-spin valves were deposited onto polymer buffer 

layers and as a reference, an oxide buffer. Effects o f  buffer layer material on both the 

GM R and magnetic behavior o f  the thin films were studied. No significant difference 

between the films on the polymers when compared to the film on the oxide was found. 

The response and GMR o f films on several different polymers were consistent w ith the 

response and GM R on the oxide. The implications are important for future work on these 

types o f  polymers. The deposition o f  GMR structures on polymeric materials is a viable 

alternative to traditional materials for further development o f M RAM  technology.
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Chapter 7 — Etched Substrate Study

Past studies have shown that interfacial roughness affects the electronic transport 

and magnetic properties o f  multilayer thin films. In the current-in-plane geometry, 

increasing interfacial roughness can either lead to an increase in giant magnetoresistance 

(GMR) through enhanced interfacial and spin-dependent scattering1, or to a decrease in

'y
GM R due to increased magnetic coupling . Recent work has explored the effects o f  long

•5
length scale roughness on GMR , and modeling has shown that such roughness may 

cause the GMR to increase4, decrease, or have no effect. These changes depend on 

several parameters including the roughness amplitude, period and the electron mean free 

path5. M ost o f  the studies carried out have used a change in growth parameters (such as 

sputtering pressure) or annealing to change the roughness1, with root-mean-square (0 ^ )  

roughness values below 5 nm. There has been little work, however, exploring the effect 

o f  large scale roughness, such as introduced through a substrate, on GMR. There are 

important implications for applications in which GMR multilayers are deposited on non­

standard substrates and buffer layers such as flexible media.6 In this chapter, two 

separate but connected studies are described, followed by a discussion o f  the results for 

both studies.

This chapter presents two controlled roughness studies conducted on etched glass 

substrates. The first study was conducted by the College o f W illiam & Mary. Results 

from this study led to a second more detailed investigation carried out at the National
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Institute o f  Standards and Technology (NIST) with the collaboration o f  on-site 

researchers. Both studies explored the effects o f  very large-scale roughness (arms > 5 nm) 

on the properties o f  giant magnetoresistive multilayers in which a somewhat controllable 

but non-uniform amount o f  roughness was introduced through the substrate. For the 

initial study, a pseudo-spin valve (PSV) was chosen for its simple structure and its 

optimal GMR value determined in a previous experiment. In the second study, more 

PSV samples were grown, as well as exchange-biased spin valves (EBSV) which were 

used in an attempt to separate the effects o f  magnetic coupling.

7.1 - PSV study at W illiam & Mary

The first study used 12 mm square glass slides comprised o f  amorphous 

boroaluminosilicate (Coming 1737f) with a 1.1 mm thickness, provided by Precision 

Glass & Optics. Roughness was produced by chemically etching the glass using a paste 

consisting o f  ammonium, sodium bifluoride, and <1% hydrofluoric acid. The etchant 

was applied to one side o f  the slide and left on for a specific time. After etching, each 

slide was then rinsed with water to remove the etchant, and then blown dry. Four etchant 

times were selected: 30s, 60s, 150s, and 300s. The glass substrates were chemically 

etched for different lengths o f time to produce a range o f  lateral and vertical roughness, 

and then GMR multilayers were deposited on them by dc magnetron sputtering. 

Immediately following the etching process, the slides were loaded into the introduction

5 8chamber, which was pumped down to ~ 1 x 10' torr, with a base pressure o f  1 x 10' torr 

in the m ain deposition chamber. The introduction chamber was opened to the deposition 

chamber and the pressure pumped down to ~ 4 x 10'8 torr before introducing ultra high 

purity (99.999%) argon to the system to achieve a pressure o f  2.8 mTorr. The Cu, Co,
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and NigiFei9 targets had 99.95% purity while the Cu target was 99.99%  pure. The GMR 

multilayer studied was a pseudo spin valve o f the form 30A Nb/50A Cu/40A 

N i81Fe19/10A Co/40A Cu/40A Co/20A Cu/20A Nb. Each layer was deposited at a rate o f 

1.0 A/s. As a reference sample, the same GM R spin valve was deposited onto an 

unetched glass slide o f  the same type as the etched slides. All five samples, including the 

unetched slide, were produced in the same deposition run to insure the same vacuum 

conditions. AFM measurements, post deposition, confirmed that roughnesses with lateral 

wavelengths up to ~ 500 nm and Oms amplitudes o f  up to ~ 25 nm were produced.

The M agneto-Optical Kerr Effect (MOKE) was used to measure the magnetization o f 

the films and record hysteresis curves. The GMR was measured by the four-point probe 

method, with a constant current source and voltage measurements provided by a 

multimeter. The MOKE curves and GMR were measured simultaneously with the 

samples mounted between the poles o f an electromagnet. Film roughness was 

characterized by atomic force microscopy (AFM - Digital Instruments Nanoscope IV).

AFM measurements show an increase in Orms roughness o f the films with increased 

etching time. Figure 7.1 shows AFM scans for two o f the etched substrates. The general 

trend is that with increasing etch time, the substrates and films obtain larger peak 

roughness, larger ( w  roughness, and larger lateral dimensions for the roughness. The 

AFM scan on the left has smaller peaks with an average peak height o f  4 nm. The scan 

on the right has fewer individual peaks and instead has several large peaks with an 

average peak height o f  36 nm. Comparing all o f the films, we observe a general increase 

in peak height. The anomaly is the etch time with the film deposited onto the substrate 

etched for 30s which has the lowest value and is discussed below. The wavelength o f the
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roughness, estimated from the AFM scans, also shows a general increase from -7 6  nm  to 

-271 nm.

Figure 7.1: A FM  scans show ing film  surface roughness, (a) 30s etch. Vertical scale is 50  nm. (b) 300s  
etch. V ertical scale is 200  nm. Lateral scale for both is 1 pm x 1 pm. Scans show  an increase in roughness 
feature length and height w ith increasing etch tim e. Scan (a) has sm all granular shaped features w h ile  (b) 
has larger features w ith a sinusoidal shape. A FM  w as in tapping mode.

Table 7.1 shows the etch times for the glass substrates, the arms roughness o f  the 

deposited films, the resistance and GMR (AR/R) values as well as the width o f  the 

hysteresis curves (coercivity) taken from MOKE. As can be seen in the table, there is an 

initial decrease in the a rms roughness and GM R for the glass slide etched for 30s. The 

initial etch resulted in a slight smoothing o f  the glass surface that may be attributed the 

etching away o f existing surface roughness. This is followed by an increase in the GMR 

with each o f  the next three increases in etching time. The slide etched for the longest 

amount o f  time shows a decrease in the giant magnetoresistance value below the 

unetched sample. The GM R somewhat parallels the change in peak-to-peak lengths 

increasing as the peak-to-peak increases. For the last sample, the GMR decreases as X 

continues to increase.
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Etch time (s) ®rms (nm) k  (nm) AR/R (%) R(i2) H c (Oe)

0 8.15 ± 2 .6 124 ± 44 3.28 6.45 26.17

30 4.26 ± 0.7 76 ± 18 2.90 5.78 22.05

60 11.45 ± 11.4 139 ±71 3.36 6.15 30.08

150* 17.3 ± 2 2 165 ± 9 9 3.39 5.06 30.33

300 36.2 ± 5 .8 271 ± 92 3.16 6.05 30.88

Table 7.1: Table o f  data for average (Onus) roughness o f  film s (m easured by A FM ), average peak-to-peak  
(X) lengths, GM R, resistances, and coercivities for film s deposited on substrates etched for different 
durations. (* ) Clean A FM  scans for this film  were not obtained; large error due in part to streaks in scans.

Figure 7.2 shows the GMR (AR/R) curves o f  samples; one on unetched glass, and 

one etched for 150s. For the 150s sample, the GMR is seen to slightly increase and the 

curve is seen to also slightly broaden. This broadening is also seen in the magnetization 

curves taken by MOKE, also shown in Figure 7.2. For the sample etched for 30s, 

however, the GMR curve and coercivity both decrease compared to the unetched sample 

(curves not shown).
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Figure 7.2: M OKE intensity (top) and G M R curves for spin valves on an unetched g lass substrate (0 ) and a 
substrate etched for 150 s (150). N otice the increase in G M R as w ell as the slight broadening o f  the curves.

Both the coercivity o f  the Co (which determines the width o f  M OKE and GMR 

hysteresis loops) and the GMR change slightly as a function o f  substrate etch time and 

roughness. Figure 7.3 shows the dependence o f  the coercivity and GM R on the 

amplitude o f  the roughness. As the arms roughness increases, we observe an increase in 

GMR, which reaches a maximum value and then decreases. A similar trend in coercivity 

is also seen, although the coercivity levels o ff with higher roughness.

Figure 7.3 may indicate a relationship between increasing coercivity and GMR. 

This increase in coercivity could indicate a decreased coupling between the magnetic 

layers in the spin valve, leading to greater GMR, since the coupling o f  the layers hinders 

the achievement o f  the anti-parallel magnetic alignment. The increase in coercivity can 

also be related to the increased roughness since large amounts o f  lateral roughness can
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hinder domain realignment since the walls are forced to shift around these areas. 

Eventually, the roughness becomes detrimental to the GMR, probably as intermixing at 

the interfaces between nonmagnetic and ferromagnetic layers becomes too great.

3.4
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Figure 7.3: Giant m agnetoresistance (AR/R, red, open circles) and coercivity (blue, open squares) as a 

function o f  film  arms roughness. Initially, both AR/R and coercivity increase steep ly  for the first few  data 
points fo llow ed  by  less steep increases in both w ith increasing roughness. Finally, AR/R decreases and the 
coercivity plateaus. The initial increase suggests a decrease in ferromagnetic coupling achieving a more 
defined A P state. The benefit to G M R is lost as the roughness becom es detrimental, probably due to  
interm ixing at the F /N  interfaces. L ines are a guide to the eye.

Initially, it is surprising that such large roughness does not have more o f  a 

detrimental effect on the GMR. The maximum decrease in GMR, compared to an 

unetched substrate, was 11% and occurred for the sample etched only for 30s. The 

samples etched for more than 60s had a roughness easily visible to the eye, and yet the 

GM R curve was only slightly modified from that o f  the unetched substrate. The effect o f 

the substrate, and hence interfacial roughness, on the GMR o f the spin valves can be due 

to several mechanisms. Past studies o f  fine-scale roughness5,7 (arms < 5 nm) have shown 

that increased interfacial roughness can increase GMR due to increased interface 

scattering (for the case o f  CIP) and increased spin-dependent scattering (for the case o f
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CPP). In our case, the roughness could be increasing the GMR through an increase in 

interface scattering, with the effect lessened for the longer wavelength roughness. The 

increase in coercivity also seems to be playing a role. This could indicate a decrease in 

interlayer coupling, which is detrimental to the GMR. Unfortunately, the magnetic 

coupling is difficult to control in PSV. This led to a more comprehensive study at the 

National Institute o f  Standards and Technology (NIST), with the inclusion o f  exchange- 

biased spin valves to lessen the effects o f  magnetic coupling.

7.2 - PSV and EBSV Study at NIST

The second study expanded on the initial W&M study by increasing the sample 

number and depositing one set o f  EBSV. Twenty-seven substrates were prepared: 

eighteen diced 4 x 12 mm and nine, 12 x 12 mm. Each was sonically cleaned with 

acetone followed by 2-propanol and blown dry with ultra high purity (99.999%) N 2 . 

Three substrates were left unetched. Each o f  the remaining twenty-four slides was etched 

with the same paste described above. The substrates were divided into three groups: 12 x 

12 mm and two groups o f  nine 4 x 1 2  mm. The above pseudo-spin valve was deposited 

on one group o f  4 x 12 mm and the 12 x 12 mm substrates at an argon pressure o f  3 x 10'5 

torr after reaching a base pressure o f 5 x 10‘10 torr. An exchange-biased spin valve 

(EBSV) was deposited onto the second group o f 4 x 12 mm substrates. The EBSV 

chosen, 30A Nb/50A Cu/40A N i8iFei9/ 1 0 A Co/40A Cu/40A Co/IOOA Ir5oMnso/2 0 A Nb, 

used IrMn due to its strong pinning properties. The substrates were loaded, nine per run, 

into an introduction chamber. After evacuating the introduction chamber, the substrates 

were introduced into the deposition chamber. Each substrate was sputter cleaned with 

argon at lOOeV for 10 seconds to remove hydrocarbons without significantly changing
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the roughness. The metals were deposited with the following parameters: Nb at 0.86 A/s, 

Cu at 0.66 A/s, NiFe at 0.25 A/s, Co at 0.27 A/s, and IrMn at 0.66 A/s.

A BH looper (ShbWin) was used to measure GMR, saturation magnetization, and 

coercivity. Film roughness was characterized by atomic force microscopy (AFM - 

Digital Instruments Nanoscope IV). Comparison to an unetched 12 x 12 mm substrate 

could not be made since the substrate fell o ff during deposition and was lost inside the 

deposition chamber.

It was found that the PSV were highly susceptible to minor changes in substrate 

parameters and the magnetic data varied in what appeared to be a highly random pattern 

with GMR and coercivity values varying significantly from film to film. It was difficult 

to discern if  a correlation to roughness existed from these films. The EBSV films 

exhibited more consistency as well as larger GM R values attributed to the exchange- 

biasing o f  one ferromagnetic layer resulting in smaller dependence on interlayer magnetic 

coupling. This allowed for a better determination o f substrate roughness effects on the 

electronic mechanisms o f GMR.

For all twenty-seven samples, AFM  measurements show an increase in arms 

roughness o f  the films with increased etching time with values among the three data sets 

ranging from ~2 to 94 nm  but comparable from group to group. Figure 7.4 shows AFM 

scans for two o f  the etched substrates. The general trend is that the substrates and films 

obtain larger peak roughness, larger a rms roughness, and larger lateral dimensions for the 

roughness. Figure 7.4a has small features with an average peak height o f  43.3 nm. 

Figure 7.4b has an increased number o f  individual granular features as well as larger 

feature sizes with an average peak height o f 314.6 nm.
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Figure 7.4: A FM  scans show ing surface roughness for E B SV  substrates, a) unetched, b) 150s etch. 
V ertical scale is 50 nm for both. Lateral scale for both is 1. nm x 1 nm. Scans show  increase in surface 
roughness w ith etch tim e. Scan (a) show s virtually no surface features w hile (b) has a large number o f  
granular features on the surface. A FM  w as in tapping mode.

Comparing all o f  the films, we observe a general increase in average peak height and 

average roughness with etch time. OmiS roughness ranged from ~2 to 87 nm  for the 

substrates post-etching and pre-deposition, shown in Table 7.2. The roughness 

parameters given are averages o f  at least 3 different scans taken on each sample, with a 

total o f ~  100 scans. The error is the standard deviation o f these measurements, which 

for some samples can be quite large. The large standard deviations may be due to two 

roughness scales. There appeared to be both large and small grains on the glass surface. 

As etch time increased, the large features increased in size and number over the substrate 

surface. Several o f  the substrates show a decrease in roughness when compared to the 

glass substrate immediately preceding. Generally, the trend is an increase in root-mean- 

square roughness, average roughness, and peak height with continued etching.
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E tch  T im e (s) ®rms (nm ) R a (nm ) Z  (nm ) k  (nm )
0 2 . 3  ±  1 . 1 1 . 5  ± 0 . 5 4 3 . 3  ± 2 4 . 7 0

3 0 9 . 4  ±  6 . 4 5 . 1  ± 2 . 0 1 7 3 . 7  ±  1 4 9 . 5 1 7 5 8  ± 4 9 7

6 0 1 5 . 8  ±  1 0 . 3 7 . 7  ± 4 . 8 2 8 6 . 8  ±  1 4 9 . 5 5 1 6 6 ± 1 9 0 9

9 0 9 . 9  ±  6 . 2 4 . 0  ± 2 . 1 2 0 0 . 1  ± 1 6 2 . 1 3 2 4 2  ±  4 4 4

1 2 0 1 7 . 0  ±  1 0 . 6 1 0 . 7  ± 5 . 8 2 5 1 . 3  ± 2 5 . 1 1 4 7 3  ±  2 7 9

1 5 0 2 2 . 7  ± 9 . 1 1 0 . 2  ± 3 . 6 3 1 4 . 6  ± 9 7 . 4 2 5 6 5 ± 1 8 6 4

2 1 0 8 6 . 9  ±  4 7 . 9 3 5 . 6  ± 2 8 . 1 1 1 6 0  ±  5 8 1 . 5 1 9 3 4  ± 6 6 0

2 4 0 7 4 . 3  ±  3 2 . 3 2 6 . 3  ±  1 8 . 4 1 2 2 2  ±  2 5 2 . 7 4 6 8 7 ± 1 9 6 4

Table 7.2: List o f  average roughness measurem ents for etched and unetched 4x12  mm glass substrates pre­
deposition. A n E B SV  w as grown on these substrates.

The data for the PSV study is summarized in Table 7.3. There is a similar increase in 

a rms w ith etch time. It was found that the GMR values varied widely from sample to 

sample, as well as the coercivity. This is believed to be due to a high degree o f 

sensitivity o f  the magnetic coupling on growth conditions. We note that in Table 7.3, the 

highest GMR occurs for samples with highest coercivity (Hc). Figure 7.5 shows 

hysteresis loops for two PS Vs and the effect o f magnetic coupling.

E tch  tim e (s) ®rms (nm ) k  (nm ) AR/R (% ) H c (Oe)

0 6 . 8  ± 3 . 6 0 1 . 8 6 1 5 . 9 9

3 0 1 4 . 4  ± 5 . 1 2 9 8 8  ±  2 0 8 8 0 . 7 4 1 3 . 8 3

6 0 8 . 9  ± 6 . 7 1 0 4 2  ±  6 7 1 4 . 4 9 6 8 . 5 4

9 0 1 6 . 4  ±  1 2 . 4 1 3 1 1  ± 6 7 8 1 . 0 8 1 6 . 5 0

1 2 0 1 7 . 8  ± 7 . 1 1 6 0 4  ± 9 4 5 0 . 6 6 1 3 . 1 3

1 5 0 3 4 . 6  ±  1 1 . 9 1 3 5 8  ± 5 3 7 1 . 1 1 2 1 . 0 4

1 8 0 4 8 . 3  ± 2 7 . 9 2 8 6 1 ± 1 9 6 8 0 . 7 3 2 1 . 4 1

2 1 0 5 6 . 9  ±  2 0 . 9 3 9 5 1 ± 1 2 0 2 0 . 7 5 1 2 . 8 2

2 4 0 6 1 . 1  ± 4 9 . 4 1 5 7 2 ± 1 5 4 2 4 . 5 2 7 5 . 3 3

Table 7.3: Comparison o f  average root-mean-square (Onns) roughness o f  glass pre-deposition (m easured by  

A FM ) and average feature peak-to-peak length (A.) w ith GM R, film  resistance and coercivity m easurem ents 
o f  4x12  m m  P SV  films.
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The amount o f  giant magnetoresistance is very sensitive on the degree o f  the 

antiparallel alignment, which in turn is a very sensitive function o f  roughness and also 

grain properties affected by growth conditions. As discussed in Chapter 3, the changes in 

deposition parameters affect the growth o f grains and grain boundaries. These changes 

affect the magnetic and electronic properties o f  the deposited thin film. The data taken 

from the PSV represent changes in crystallinity due to interfacial roughness and variances 

in growth conditions that occur as a result o f  the normal deposition process. The number 

o f  samples was greater than the capacity o f the deposition chamber. As discussed in 

Chapter 6, the necessity o f  loading samples into the system in batches introduces 

variances in growth conditions (water, oxygen, pressure changes) which can produce 

films o f  slightly different properties. For example, changes in the partial pressure o f

9 o
oxygen present in the chamber will have a significant effect on thin film properties. ’ 

Small changes in sputtering pressure, vacuum impurities, and contaminants adsorbed 

onto the chamber wall can all play a role in film impurity and as a result, film magnetic 

and electronic properties.
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Figure 7.5: Comparison o f  hysteresis curves for tw o film s; one with high G M R o f  4.52%  (left) and low  
G M R o f  1.08%  (right). The curve on the left has a slight plateau w hile the curve on the right has no 
apparent plateau, suggesting that the ferrom agnetic layers are strongly coupled.

To further characterize the PSV films, van der Pauw 4-point probe measurements 

were made on the 12x12 mm films (the 4x12 mm films were asymmetric and we were 

not able to use the van der Pauw method with these films) to determine the actual change

in resistivity. (Data taken by Kevin Smith) The data is summarized in Table 7.4.

E tch  tim e
00

A rm s (nm ) k  (nm ) P a p (10 5 
il*cm )

P p Ap/p (%) 
(van d e r Pauw )

AR/Rp
(m eas)

90 31.8 ± 2 .5 2197 ± 613 1.88 1.85 1.6 1.26

120 27.8 ± 13.2 2490 ± 766 1.28 1.25 2.4 2.39

150 46.8 ± 9.4 2771 ± 1186 1.46 1.43 2.1 1.83

210 51.5 ± 17.1 2 8 7 9 ± 1388 1.17 1.14 2.6 2.99

240 94.2 ± 80.2 4 9 5 1 ± 1886 1.23 1.20 2.5 2.28

Table 7.4: Comparison o f  root-mean-square (Orms) roughness (m easured by A FM ) and feature peak-to- 

peak length (k)  w ith resistivity measurements o f  12x12 mm  PSV  films.

From Table 7.4, we observe that the van der Pauw resistivity measurements are 

comparable to the resistance measurements.
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A graph o f  the antiparallel resistance versus the parallel resistance produces a linear 

relationship with a slope o f  ~1. This suggests that the increase in resistivity is due to 

spin-independent scattering since both the antiparallel and parallel states are affected. By 

using Equations 2.13 and 2.14, we can determine that an increase in scattering in both 

spin polarizations, indicating an increase in spin-independent scattering, would produce 

the relationship illustrated in Figures 7.6 and 7.7.
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Figure 7.6: Relationship betw een antiparallel and parallel resistances. The data is fit by  a linear
relationship w ith slope o f  ~  1. The slope is ~1 suggesting that roughness is affecting the spin-independent 
scattering more strongly than the spin-dependent scattering.
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Figure 7.7: Relationship betw een Ap/p and parallel state resistivity. Ap/p show s a near inverse dependence 
w ith pP. W hen the overall film  resistivity increases, the G M R decreases. L ines are a guide to the eye.

Random increases in GMR corresponded to increases in coupling (single 

magnetization loops). For the 240s etched sample (the second roughest), where coupling 

is less significant, large GMR is seen. Unfortunately, we could not find any correlation 

between coupling and roughness. This coupling must be coming from some growth 

conditions at NIST, the source o f which we do not yet know. W hat this data do show, 

however, is again, significant GMR can be obtained on a rough substrate. We turned to 

EBSV for better control over the magnetic state.

Figure 7.8 shows the GMR (AR/R) curves o f  two EBSV samples, one on unetched 

glass and the other on glass etched for 150s. The GMR is seen to increase slightly and 

the curve is seen to also slightly broaden. This broadening is also present in the
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magnetization curves, shown in Figure 7.8. The magnetization hysteresis curve for the 

unetched glass is squarer than for the etched substrate. The free layer loop is also not 

centered at zero for the etched substrate, indicating that roughness is affecting the 

magnetic coupling in the films.

pinned

_ - i  i______________ i______________ i______________ i______________ i___

-200 -100 0 100 200
H (Oe)

Figure 7.8: M agnetization hysteresis (top) and G M R curves (bottom ) for spin valves on an unetched glass  
substrate (blue, circles) and a substrate etched for 150 s (red, circles). The hysteresis for the unetched glass  
is squarer and show s better sw itching than the etched glass. N otice the sm aller minor G M R loop for the 
film  on the etched film  as w ell as the rounded peaks and the broadening o f  the curves. The arrows on the 
top plot indicate the direction o f  the pinning axis relative to the applied field  for each sam ple.
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Table 7.5 shows the etch times for the glass substrates, the OrmS roughness 

(standard deviation o f peak height) o f the deposited films and the GM R values for the 

EBSV films. The GM R in general decreases with etching compared to the unetched 

substrate, but there is no smooth dependence. Rather, the GMR oscillates around 5.0%, 

approximately a 5.3% decrease in the GM R from the film deposited on the unetched 

substrate. The maximum decrease is about 22% for the sample etched for 210s.

E tch  T im e (s) ®rms (nm ) AR/R (% ) Heb (Oe) Hcoupi (Oe) H c (Oe)
0 2.3 ± 1.1 5.28 115 12.22 10.00

30 9.4 ± 6.4 4.84 135 15.83 32.22
60 15.8 ± 10.3 5.00 103 25.00 18.61
90 9.9 ± 6.2 5.22 140 13.33 12.22
120 17.0 ± 10.6 4.67 127 11.67 10.42
150 22.7 ±9 .1 5.30 98 26.67 27.22
210 86.9 ± 47.9 4.14 112 18.33 9.72
240 74.3 ± 32.3 4.70 142 17.78 0.875

Table 7.5: R oot-m ean-square ( o ms) roughness o f  film s (m easured by A FM ) and AR/R for substrates 
etched for different durations for E B SV  films.

Figure 7.9 is a graph o f  GMR, HC0Upi and Heb versus arms roughness. H C0Upi is the 

strength o f  the coupling between the ferromagnetic layers and is measured as the offset o f 

the free layer curve from zero. This is a function o f the saturation magnetization for the 

free layer and the roughness parameters: peak height and lateral length. The exchange 

bias field, Heb, is measured from the shift o f the center o f the hysteresis curve for the 

pinned layer from zero. As the o rms roughness increases, the GM R fluctuates but shows 

no significant degradation with the exception o f  one film. Rather, the GM R appears to 

fluctuate w ith the Heb, exhibiting a weak 1/Heb dependence. The exchange bias and 

coupling fields also appear to be weakly correlated, where the increase in exchange bias
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field corresponds to a decrease in coupling field, though not significantly large. The 

exchange bias field remains noticeably larger than the coupling field suggesting weak 

ferromagnetic coupling. This can be caused by a decrease in the strength o f  the 

magnetostatic coupling between the ferromagnetic layers; an effect which benefits the 

achievement o f  the antiparallel magnetic alignment and thus the GM R ratio.
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Figure 7.9: Giant m agnetoresistance (AR/R, dark red, circles), ferrom agnetic coupling (green, 

diam onds), and exchange bias field  (blue, triangles) as a function o f  film  Orms roughness. The G M R  
varies around 5.0%  without significantly decreasing. This m ay be linked to the ratio o f  exchange bias 
fie ld  to coupling field  w hich is much greater than 1. There appears to be a w eak 1/Heb dependence but 
no obvious direct correlation to roughness. L ines are a guide to the eye.

Previous research has shown that large coupling indicates that the ferromagnetic 

layers do not switch independently o f  each other.9 The increase in the exchange biasing 

is noteworthy, since large amounts o f  lateral roughness can hinder the growth o f  the
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antiferromagnetic layer, which is sensitive to roughness. Roughness at the AF/F interface 

can cause the AF layer to break into domains.10 W ith increasing roughness, the domain 

formation should increase. This would prevent the effective pinning o f  the top 

ferromagnetic layer. Yet, the decrease in GMR is not significantly large, especially 

considering the size o f  the roughness and its nonuniformity over the entire substrate. The 

oscillation in the GM R could indicate that the grain size oscillates between large and 

small as the roughness increases, affecting coherent rotation o f  magnetization.

Figure 7.10 compares Heb/Hc and GMR with oms roughness. The ratio o f 

exchange bias field to coercivity, with the exception o f  the second-to-last point, fluctuates 

between 2 and 13 Oe. Correspondingly, the GMR for those points oscillates around 

5.0%. The second-to-last point has a value o f  -1 6 2  Oe but also the lowest GMR. 

Ideally, the Heb/Hc should be large, indicating a strong exchange interaction. However, 

this point is misleading. The large ratio stems from the extremely low coercivity (-0 .9  

Oe) which suggests strong coupling between the ferromagnetic layers that may override a 

weaker exchange interaction due to the interface roughness. Fluctuations in the 

coercivity could also be a reflection o f the changing domain size and their effect on the 

ease o f alignment o f  spins.
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Figure 7.10: Ratio o f  exchange bias field  to coercivity (red, open circles) and G M R (blue, c losed  circles) 

as a function o f  arms roughness. There is no obvious correlation betw een roughness and GM R. A  
significant increase in the ratio o f  Heb/H c does not result in a significant change in G M R  though it does 
correspond to the low est value. This could be due to the low  coercivity (~ 0 .9  O e) suggesting significant 
coupling betw een the F layers. Lines are a guide to the eye.

Hysteresis and GMR curves are shown for the film deposited on the substrate 

etched for 240s in Figure 7.11. The free layer coercivity for this film is extremely small 

as evidenced by the small width o f  the free layer loop. Correspondingly, the free layer 

loop in the GMR curve has no apparent width with the free layer transitioning from 

saturation to an antiparallel state easily. Also, the plateau present in the hysteresis loop 

would indicate that a definite antiparallel state is achieved. However, the narrowing o f 

the free layer hysteresis loop could indicate that the magnetization o f  the sample is 

changing with the cycling applied magnetic field (training). This could be the result o f  

the roughness or induced stress in the film.
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Figure 7.11: H ysteresis (top) and G M R (bottom ) curves for E B SV  film  deposited on substrate etched for 
240s. The low  coercivity could be a result o f  significant intermixing o f  layers resulting in increased  
ferrom agnetic coupling. H ow ever, the G M R is on ly  11% low er than the reference value.

7.3 - Conclusions

Initially, it is surprising that such large roughness does not have more o f  a 

detrimental effect on the GMR. All samples etched for more than 60s had a roughness 

easily visible to the eye, and yet the GMR curve was only slightly modified from that o f 

the unetched substrate. The effect o f  the substrate, and hence interfacial roughness, on 

the GM R o f the spin valves can be due to several mechanisms. Past studies o f  fine-scale
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roughness (arms < 5 nm) have shown that increased interfacial roughness can increase 

GMR due to increased interface scattering (for the case o f  CIP)5 and increased spin- 

dependent scattering (for the case o f  CPP).7 For our EBSV films, roughness could be 

decreasing the GMR through a decrease in the effective pinning o f  the top ferromagnetic 

layer by the antiferromagnetic layer. An increase in interface roughness may prevent 

domains in the antiferromagnet from aligning properly. The decrease in coercivity also 

seems to be playing a role. This could indicate an increase in interlayer coupling, which 

is detrimental to the GMR. The roles o f  each o f  these mechanisms needs to be further 

explored.

In summary, the results show that very large-scale macroscopic roughness does 

not have to have a large detrimental effect on GMR. Our first results even showed a 

slight increase in GMR. These results indicate that GMR multilayers may be 

successfully deposited on a variety o f  non-traditional buffer layers and substrates even if  

their roughness is not comparable to silicon wafers. To further the understanding o f  the 

effects o f  roughness, we desire to study a system with much more control over roughened 

features than provided by chemical etching. For this, we turn to the use o f  nanodots, 

which will be described in the following chapter. By varying the length scale o f  the 

roughness, laterally and vertically, in a uniform manner, perhaps a more detailed 

understanding o f the relationship between GMR and roughness can be found.
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Chapter 8 — Nanodot Controlled Roughness Study

In order to gain insight into the effects o f substrate roughness, we desire to 

produce controllable, periodic roughness that will correlate with the type o f  roughness 

that has been modeled theoretically. As was shown in last chapter, etching can produce 

roughness with average height and wavelengths that do increase with etching time. We 

desire, however, a much more controllable system, particularly one in which we can 

achieve a wavelength comparable to the mean free path o f  the electrons in the 

multilayers. Etching with hydrofluoric acid did not allow sufficient control over the size 

o f  the longitudinal and vertical roughness parameters to provide either long range order 

or the length scale desired.

To this end, we explored the use o f  metal nanodots to produce a periodic pattern 

o f  roughness in the GMR multilayers. The general idea is illustrated in Figure 8.1. In 

this study, GM R multilayers were deposited on a pattern o f pre-deposited gold nanodots 

w ith varying widths and separations. W hen a multilayer is deposited onto these dots, 

roughness is induced in the multilayer as illustrated in Figure 8.1.

nanodots

Figure 8.1: Cartoon illustrating the use o f  nanodots to produce roughness in the thin film  multilayers.
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This chapter presents an initial study o f  GMR in multi-period multilayers and 

exchange biased spin valve films in the both current-in-plane and current-perpendicular- 

to-the-plane geometries. The CPP geometry is explored because GMR depends on a 

different length scale than CIP and may be affected differently by the roughness. In the 

current-perpendicular-to-the-plane geometry, the finite spin diffusion length has greater 

importance than the mean-free path in the limit where tN, tF «  1 In this limit, the

distance before a spin flips is the important length scale. Spin-dependent scattering along 

the interface does not dominate as the A.mfp/ /sf«  1.

W e find that the addition o f  substrate roughness for GMR thin films has a 

noticeable affect on CIP and CPP-GMR. For the CIP films, GMR was shown to decrease 

with increasing parallel state resistivity while the antiparallel state resistivity increased 

linearly (slope ~ 1) with increasing parallel resistivity. This suggests that substrate 

roughness has a significant effect on spin-independent scattering but less so on spin- 

dependent scattering. For the CPP films, a similar increase was observed in antiparallel 

resistance with increasing parallel resistance though resistivity measurements are not 

available. For both systems, the effect on GMR is not as large as might be expected due 

to the large scale o f roughness. The CIP-GMR is observed to have a large decrease in 

GMR but with a recovery o f 80% compared to the reference film which has no nanodots. 

Initially, the decrease in CPP-GMR with roughness is small but recovers to w ithin 97% 

o f the reference value for an exchange biased spin valve and 99% for a multilayer spin 

valve.
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8.1 -  Roughness from Nanodots

Metal nanodots were first deposited onto the silicon substrates using polystyrene 

spheres o f  various sizes. The procedure for the nanodot production was modeled after 

reports from Holloway’s group.3'5 First, polystyrene spheres were spin-coated onto the 

silicon wafers, forming ideally a single layer. Approximately 15 nm o f  metal is then 

evaporated onto the spheres. The metal deposits in between the spheres, and when the 

spheres are washed away, a pattern o f  nanodots is left behind, as shown in Figure 8.2.

Figure 8.2: Left: SEM  im age o f  nanospheres spin-coated onto silicon. Right: Pattern o f  metal 
nanodots left behind after evaporation and rem oval o f  nanospheres. Im ages courtesy o f  
M ingyao Zhu.

For this thesis work, polystyrene spheres from Bang Laboratories were used in 

diameters o f  20, 50, 160, 190, 250, 320, 460 and 560 nm and were spin-coated onto 2” 

silicon wafers with a rotational rate o f approximately 3000-5500 rpms. The wafers were 

shipped to Lebow Company for evaporation o f  15 nm o f Au. Upon their return to W&M, 

each wafer was sonicated in dichloromethane for removal o f  the polyspheres. 

Considering the geometry o f  a single-layer o f packed spheres, the separation between the 

deposited metal dots and their diameter can be estimated. The average separation, dr, is 

given by d T = D l 4 3 ~ 0.577D  while the length o f the edge o f  a dot is <j>T ~  0.23D ,
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where D is the diameter o f  the dots.3 Table 8.1 summarizes the theoretical values for dr,  

and fa , as well as average measurements from SEM photos taken after deposition o f  the 

nanodots (data taken by Kevin Smith).

Sphere 
d iam ete r D

d r  (calculated) d r (m easured) fa  (calculated) fa  (m easured)

20 12 - 5 -

50 29 - 12 -

160 93 9 0 ±  11 37 27 ± 3
190 110 103 ± 7 44 38 ± 10
250 145 179 ± 2 0 58 45 ± 1
320 186 175 ± 17 74 61 ± 17
460 267 228 ± 20 106 68 ± 16
560 325 515 ± 8 129 222 ± 25

Table 8.1: Calculated and average measured separations, dT, and sizes, fa o f  nanodots deposited using  
polystyrene spheres. Data courtesy o f  Kevin Smith. A ll dim ensions are in nm. For tw o dot sizes, the sizes  
could not be resolved.

As the height o f the nanodots should be uniform (15 nm o f material was 

evaporated), the Table shows that using the nanodots allows us to control in general the 

wavelength o f  the roughness (determined by the distance between dots, d j ) .  The 

measured separation between dots does match the calculated values within error except 

for the largest dots (could not be measured for smallest dot patterns).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



130

Figure 8.3: SEM  scans o f  nanodots. Left: A u deposited onto 190 diameter nanospheres. Right: A u  
deposited onto 320  diameter nanospheres. The degree o f  uniform ity over the surface w as inconsistent from  
film  to film . Courtesy o f  K evin Smith.

8.2 - CIP and CPP Multilayers on Nanodot Patterns

Multilayers were deposited onto the nanodot patterns using the magnetron 

sputtering chamber at M ichigan State University with the aid o f  Dr. Reza Loloee. The 

M SU chamber was used because it was equipped to produce exchange-biased spin valves 

as well as samples in the CPP geometry with Nb superconducting contacts.

For the CIP samples, an exchange biased spin valve o f  form Nb 30A/Cu 50A/Co 

40A/Cu 40A/Co 40A/FeM n lOOA/Cu 30A/Nb 20A was used, as well as a multilayer o f  

the form Nb 30A/[Cu 50A/Co 40A]io/Cu 30A/Nb 20A. At MSU, each wafer with the 

nanodot pattern was sonicated in toluene to insure complete removal o f  the polyspheres. 

Each coated wafer, along with an uncoated wafer, was diced into ~ ‘A” x A” substrates 

and then sonicated in acetone and 2-propanol before deposition. Three substrates from 

each wafer were randomly loaded into the sample holder tray which was then loaded into 

the deposition chamber. The number o f substrates required two separate runs to deposit 

all films. Prior to sealing the system, two pieces o f  copper were compressed together on 

the end o f  the sample holder rod to provide good thermal contact allowing for sufficient
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heat transfer to cool the entire substrate holder. The chamber was sealed and pumped 

overnight with a cryopump to a base pressure o f  4 x 10'8 Torr. A cold trap was cooled to 

— 190 °C with liquid nitrogen, producing an ultimate base pressure o f  3 x 10'8 Torr. 

Additionally, pure (99.99%) nitrogen gas was released into the system via a capillary 

tube, quickly pressurizing and cooling the nitrogen. The pressurized nitrogen was used to 

cool the sample holder tray to ~ -20 °C and maintain a temperature reading between -30 

°C and 30 °C during deposition. In this temperature range, island formation is minimized 

due to lack o f  atom mobility along the surface. Then, the cryopump was isolated from 

the deposition chamber by a gate valve and pure (99.99%) Ar was released into the 

chamber. The pressure was allowed to rise by gradually opening the gate valve until the

-3
deposition chamber reached ~ 2.5 x 10' Torr. The magnetron sources and filaments 

were turned on and the filaments’ voltages and currents were increased slowly. The films 

deposited in this experiment were grown with sputtering rates: Nb at 4.9A /s, Co at

5.3 A/s, Cu at 7.1 A /s and FeMn at 5.3 A/s. At this point, deposition rates were monitored 

through a Labview program designed by Dr. Loloee. This program determines the 

deposition time for each layer, opens and closes shutters, as well as aligning individual 

substrates over each target.

For the CPP samples, the nanodot patterns had to be produced at MSU on top o f 

the first superconducting Nb contact used for measurement o f  the CPP. I f  the ~ 2 pm 

thick contact had been deposited on top o f the nanodots instead o f  the other way around, 

the roughness would have been averaged over and would have no affect on the GM R 

multilayers. First, the bottom Nb contacts were deposited onto bare silicon wafers, in 

conditions similar to those for the CIP samples. The Nb contacts were coated with 10 A
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o f Au to prevent oxidation. Then, the substrates were removed from the deposition 

chamber and polystyrene spheres o f four sizes (20, 50, 99 and 130 nm) were spin-coated 

onto the silicon and Nb with a rate o f  ~ 5000 rpm. Then, Au was evaporated onto the 

spheres with a thickness o f -  150 A. The spheres were then washed off, the substrates 

cleaned in the procedure outlined above, and then placed back into the deposition 

chamber where the GMR spin valves and multilayers (described above) were grown onto 

the nanodots, as well as the top Nb superconducting contacts.

Initially, sixteen substrates were prepared, but only eleven films were actually 

grown. Three were misaligned during sputtering and resulted in an improper overlap o f 

the masks. The last two films were not deposited as a result o f  a malfunction with the 

mask rotation. O f the eleven remaining films, three were reference films; no additional 

substrate roughness was added.

Note that while initial conditions for all depositions, both CPP- and CIP-GMR, 

were similar, they were not exact due to the number o f prepared substrates and the need 

to return to atmosphere to load and unload new substrates.

For both the CIP and CPP films, Magneto-Optical Kerr Effect (MOKE) was used 

to measure the magnetization o f the [Cu/Co]io multilayer films. The magnetization o f  the 

EBSV films was measured using a BH Looper at NIST. CIP-GMR was measured by the 

four-point probe method, with a constant current source and voltage measurements 

provided by a multimeter. CPP-GMR was measured at MSU using the SQUID design 

described in chapter 4. Film roughness, for all films, was characterized by atomic force 

microscopy (AFM - Digital Instruments Nanoscope IV) at the Applied Research Center
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located at the Jefferson Lab. A scanning electron microscope (SEM - Hitachi), located at 

W&M, was used to measure the surface morphology.

8.3 - C IP  Results and Discussion

The CIP films were analyzed at W illiam and Mary by Dimitar Vlassarev and were 

the basis for his senior thesis.6 To summarize Dimitar’s findings, he found for the m ulti­

period GMR multilayers a general decrease in GM R with increasing nanodot size which 

he attributed to a decrease in RKKY coupling. For the EBSVs, he found that there was 

significant ferromagnetic layer coupling that seemed to follow the dependence on 

nanodot separation (or wavelength) expected from orange peel coupling (see Equations 

2.31 and 2.32). The GMR did not show a trend with increasing nanodot size. The AP 

and P state resistivity were greater for the films with nanodots versus a reference film 

without nanodots, and the GMR was always much less than the 6.0% value measured for 

the reference film. The data are summarized in Table 8.2. With increasing nanodot size, 

the GM R (%) decreases by almost 80% to a minimum o f 1.2%, but also obtains values to

within 75% o f the control sample value.

Nanosphere size (nm) AR/R (% ) Pp (pQcm) Pap (pficm) Ap (pftcm)
Reference 6.0116 5.985 6.3448 0.35976

50 2.3295 13.864 14.184 0.32017
99 2.2773 16.714 17.096 0.38259
160 2.1381 19.27 19.682 0.41178
190 1.8277 14.318 14.579 0.26079
250 3.4077 9.8973 10.234 0.33716
320 1.1771 18.15 18.362 0.21283
460 4.3341 7.7223 8.0561 0.33376
560 4.4752 8.3776 8.7504 0.37278

Table 8.2: N anosphere size, P and AP resistivity and G M R  percent o f  CIP data. N o  obvious direct 
correlation betw een nanosphere diameter and G M R or film  resistivity. Data and analysis by  Dimitar 
V lassarev.
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Although there was no consistent increase or decrease with nanodot size, Dimitar 

did find that the GMR (%) did decrease in general with increasing parallel state 

resistivity. This data is summarized in Figure 8.3. This seems to correspond to what was 

seen for the series o f  PS V discussed in the previous chapter. W hat this implies is that the 

increasing wavelength roughness only increases the spin-independent scattering and does 

not greatly affect the spin-dependent scattering.
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Figure 8.4: Left: CIP-GM R (%) on nanodot patterns as dependent on parallel state resistivity. Fit show s 
the pp'1 dependence expected i f  only spin-independent scattering were increasing. Right: P lot o f  
M easured pAp versus p P> with a fit to a linear dependence. Data courtesy o f  Dimitar V lassarev.

Figure 8.4 shows that the antiparallel state resistivity, pap, increases with the same 

rate as pp. Using the simplified model o f CIP-GMR presented in Chapter 2 (see 

Equations 2.13 and 2.14), we argue that such a linear increase with slope o f  ~ 1 indicates 

that only spin-independent scattering is being increased by the roughness, and spin- 

dependent scattering is not being greatly affected.
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8.4 - CPP Results and Discussion

Exchange Biased Spin Valves

AFM  measurements before deposition o f Au nanodots show varying success at 

achieving uniform wafer coverage with the spin-coating technique. Nanosphere 

diameters greater than 300 nm produced better uniformity than smaller diameters. 

However, the long range order for the spin-coatings degraded above 1 pm  for all 

diameters, resulting in non-uniformity over the substrate area covered by the thin films. 

The AFM scans o f Figure 8.5 illustrate the change in coating uniformity with area size. 

Root-mean-square roughness and peak-to-peak measurements were taken on the AFM 

and SEM to provide some correlation between substrate roughness and magnetic thin 

film properties.

Figure 8.5: A FM  scans in Tapping M ode o f  S i0 2 w afer spin-coated with 320  nm diam eter polym er spheres, 
a) Scan size is 1 pm x 1 pm. b) Scan size is 10 um x  10 um. Long range order decreases above 1 um.

Figure 8.6 shows representative GMR curves for a CPP-EBSV without and with a 

nanodot pattern. Giant magnetoresistance curves for all films exhibit moderately sharp 

rises in resistances when the films switch from parallel to antiparallel states. Saturation
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loops do not overlay when cycling from high field to low field and vice versa. The curve 

has a lower resistance when going to high negative field and a higher resistance on the 

return loop. W hen cycling to high positive field, this pattern is reversed and occurs for 

the film without nandots as well as those with nanodots. This could be explained by a 

lower resistive state existing between 0° and 90°. The resistance difference between the 

outgoing and ingoing saturation loops is approximately 0.1 nQ for both high negative and 

high positive fields. The measurement was repeated one day later w ithout any change. 

Repeating the loop several times during the same measurement cycle also produced no 

change in the curves. This was the case for all o f  the measured films.
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Figure 8.6: G M R curve o f  E B SV  with no nanodots and with nanodots deposited on 99  diameter 
polyspheres. O utgoing and ingoing saturation loops do not overlap suggesting a low  resistance state 
betw een 0° and 90°.

Comparatively, thin film magnetic properties, shown in Table 8.3, are somewhat 

ambiguous. In this table, the exchange bias field, the coercive field o f  the m inor loop 

(the free layer), the coupling field, and the GM R values are given. For the films with 

nanodots, there is an increase in the exchange bias with increasing nanodot diameter.
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The exchange bias remained within 20% o f the reference film value. Still, the exchange 

bias varied randomly from sample to sample with a minimum corresponding to the 

reference film and a maximum for films deposited on the 20 nm nanodots. The 

remaining values show no clear increase or decrease in value with increasing diameter. 

N or do the coercivities show a definitive pattern. The coercive fields, except for the film 

grown on 20 nm, were within -10%  o f the reference o f  78.75 Oe. The coercivities do not 

appear to change significantly from film to film and none o f  the loops exhibit definitive 

square loops, suggesting that some switching is taking place before the AP state. The 

saturation loops would seem to support this somewhat by the significant gap between the 

outgoing and incoming scans. There is evidence o f orange peel coupling in the films 

with nandots. The coupling does not appear significant relative to the exchange bias field 

and does not show a definitive increase or decrease with nanosphere size, coercivity, or 

exchange bias field.

Diam (nm) H c (Oe) Hex (Oe) Hcouoi (Oe) Rp (nft) Rap AR GM R (%)
Reference 78.75 533 0 17.85 18.17 0.32 1.79

20 43.75 633 44.4 30.48 30.98 0.51 1.66
50 74.166 600 26.7 23.00 23.30 0.30 1.3
99 78.75 550 30.6 25.80 26.18 0.38 1.45
130 70.14 558 53.3 20.25 20.60 0.35 1.73

Table 8.3: E B SV  film s with and without A u nanodots. The coercivity, exchange field , coupling field , P 
and AP resistivity and G M R (%) vary without displaying any particular trend with nanodot diameter.

All o f  the films with nanodot roughness exhibited an increase in both parallel and 

antiparallel specific resistance compared to the reference film. This may be explained by 

the increased roughness introduced at the interface through the substrate. A t first glance, 

the changes in both the parallel and antiparallel resistances, listed in Table 8.3, do not
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appear to increase or decrease with interfacial roughness but seems somewhat random. 

Moreover, the change in resistance, AR, varies similarly. Interestingly, the GM R (%) 

decreases and then increases with the polysphere diameter as though passing through a 

local minimum. The maximum decrease in GMR compared to the reference sample is 

27%, but for the larger nanodot pattern, the GM R recovers to within 97% o f the reference 

value.

Figure 8.7 shows the variation o f  coercivity and exchange bias field as a function 

o f  nanosphere size. As can be seen, there is no general increasing or decreasing trend, 

although for the smallest nanosphere (nanodot) size, there is both a dramatic decrease in 

coercivity as well as an increase in Heb-
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Figure 8.7: C oercivity (red, c losed  circles) and exchange bias field  (blue, c losed  squares) for CPP- 
E B SV  as a function o f  nanosphere size used to produce the nanodots. “0” indicates no nanospheres. 
Lines are guide to eye.
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Figure 8.8 (left) shows the relationship between the GMR (%) and the nanosphere 

size. As mentioned, it seems like the GMR goes through a minimum and then recovers 

close to its original value. Figure 8 .8  (right) shows the antiparallel state resistance ( R a p ) 

versus parallel resistance (R p ) .  Actual film resistances are shown here, since the contact 

resistance is zero (superconducting contacts). The values can be directly converted to 

resistivities since the area and length o f  the sample is known. Surprisingly, the 

relationship is exactly linear, again with a slope o f  1.0, like the CIP data shown in Figure 

8.4. Again, this indicates that the only effect the large-scale roughness is having is 

increasing the spin-independent resistivities, since R a p  and R p  are increasing with the 

same rate.
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Figure 8.8: Left: G M R (%) for C PP-E B SV  as a function o f  nanosphere size used to produce the nanodots. 
Line is guide to eye. Right: antiparallel state resistance (R ap) versus parallel resistance (R P). Line is a 
linear fit, w ith slope o f  1.0.

Multilayers: TCu 50A/Co 40A ll0

The same coating technique was used to prepare substrates for the [Cu/Co]io 

multilayer films. As discussed above, scans o f  the substrate surface prior to deposition 

show a non-uniform coverage above 1 pm  that increases with smaller diameter spheres. 

We observe a significant increase in the film with 20 nm nanospheres followed by a
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decrease in resistance for the 71 nm spheres, as summarized in Table 8.4. This parallels 

the change in resistance observed in the EBSV where the film with 20 nm  spheres 

exhibits a significant increase in resistance when compared to all other films. I f  Rap is 

plotted as a function o f  Rp, these three points do fall on a line with slope ~1, again similar 

to the EBSV data. However, since this is only three points, this data is not shown. It 

should be pointed out that the GMR (%) value for the 71 nm nanosphere sample is 99% 

o f the reference value.

Diameter (nm) Rp (n il) Rap (nfl) AR (n il) AR/Rp
Reference 19.00 20.81 1.81 0.0952

20 37.55 39.03 1.48 0.0395
71 20.15 22.05 1.90 0.0943

Table 8.4: M ultilayer thin film s, [Cu 50A/Co 40A], with and without Au nanodots. R esistances are listed  
for parallel and antiparallel states.

8.5 Summary

This work was a preliminary study showing the promise o f  using nanodots 

deposited using polystyrene nanospheres to produce controllable, large-scale roughness. 

Producing uniform roughness over a 2” wafer was a challenge, believed to be due to the 

difficulties in spin-coating a uniform, single-layer film o f nanospheres. Primarily, the 

difficulty lay in determining an initial speed which produce uniform coverage followed 

by a sharp increase in speed at which the spheres would coat the wafer (within a 12 mm 

sq. area) without leaving gaps or without producing multilayers. As a secondary issue, 

the spheres were diluted to decrease conglomeration without reducing the number o f 

spheres per mole too greatly to hinder uniform coverage. In order to spin-coat layers o f 

various sizes, we experimented with different solutions for each polysphere diameter and
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various speeds for each solution. AFM measurements were taken after spin-coating to 

determine the coating uniformity and adjustments were made either in the dilution step or 

the coating speed and then scanned again with the AFM. Removal o f  the polymer 

nanospheres after evaporation o f  Au nanodots on the wafer was also a concern. It was 

not immediately clear that the removal had been completely successful. Consequently, 

various solvents were experimented with to insure removal o f the spheres followed by 

AFM measurements o f the surface when possible. It was discovered that some non­

uniformity existed in the form o f gaps and multilayers over the wafer surfaces.

However, analysis o f these films shows that viable GM R films can be produced 

on these roughened surfaces. Again, the only detriment appears to be an increase in spin- 

independent scattering, with little or no change in the spin-dependent scattering which is 

the critical mechanism for GMR. The CPP films appeared to suffer less loss to GMR 

than the CIP films, reaching nearly the reference sample values for larger nanosphere 

(nanodot) sizes. This could be due to the dependence o f  CPP on spin flip length, which is 

longer than mean free path. It could also be due to the CPP current flowing through less 

resistive pathways through the stack o f  layers, which means that roughness would have 

less o f an effect in this geometry. Consideration o f  CIP and CPP theory to explain these 

effects in detailed are being undertaken.
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Chapter 9 — Carbon Nitride Based Thin Films

This thesis work has explored the use o f  non-traditional buffer layers and 

intentionally roughened substrates for GMR multilayers. One class o f  materials which is 

important to explore are carbon-based materials, because o f their beneficial qualities. 

Incorporation o f carbon-based materials in magnetic multilayers may enhance their 

properties and behavior. This chapter presents a study o f  the effects on magnetization o f 

magnetic films deposited on hard and elastic carbon nitride. Analysis o f  the films is 

compared with similar films deposited on traditional buffer materials.

Carbon nitride (CNXj o.i<x<o.3) has generated interest because o f  its unique 

combination o f  hardness and compliance. Its physical properties: high hardness, low 

friction coefficient, good chemical inertness, thermal stability and low w ear rates make it 

a suitable choice for many applications.1'3 Depending on the desired properties, carbon 

thin films can be tailored as graphitic or fullerene-like. Carbon forms four bonds with its

2 3 3s and p orbitals that can be sp, sp , or sp hybridized. Further, cross-linking between sp 

orbitals causes buckling o f  the graphitic planes, which is responsible for the high 

hardness o f  carbon-based materials. These variations in atomic hybridization allow for a 

spectrum o f physical properties based on growth conditions, from the “soft” amorphous- 

like material to a “hard” diamond-like or fullerene-like structure.4,5
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Amorphous carbon nitride describes the lack o f  long-range-order (LRO) o f the

• 2carbon film. The short-range-order, however, may be graphitic and dominated by sp 

hybridization o f  the orbitals or a fullerene-like CN structure with cross-linked sp orbitals 

as well as sp3 hybridization. Amorphous CNX strongly bonds to ordinary Si <100> 

wafers forming a hard coating,4 which, along with its band gap structure, might make 

amorphous carbon nitride (a-CNx) useful in electronic and computer applications.4 

Currently, some hard drive media use a-CNx as a protective coating but coating 

applications have not been extensively studied.4,6 Nonetheless, a-CN has been shown to 

have a wear rate lower than that o f diamond-like-carbon (DLC), currently, the industry 

standard for magnetic media coating. As it has a lower wear rate, a thin layer o f  a-CN 

could replace the thicker DLC leading to a reduction in the read head-to-hard drive 

distance.

Both a-CNx and fullerene-like carbon nitride (FL-CNX) may also be useful when 

incorporated directly into ferromagnetic multilayer structures (such as those displaying 

giant or tunneling magnetoresistance) as a buffer, capping or active electronic layer. Its 

properties may enhance the robustness o f  the ferromagnetic structure and prevent 

deterioration due to chemical corrosion or thermal annealing. In addition, its excellent 

thermal properties and varying impedance (based on growth conditions) make it useful 

for microelectronic devices.

Before incorporation into magnetic thin film devices, researchers must determine 

how  CNX will affect magnetic properties o f devices utilizing giant magnetoresistive 

structures. This chapter discusses the effects o f  substrate roughness on the magnetic
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properties o f  magnetic thin films and the implications for giant magnetoresistive thin 

films.

In this chapter, we show that both a-CNx and FL-CNX buffer layers have 

comparable smoothness to traditional buffers. While, a-CNx has a detrimental effect on 

magnetic properties, films deposited on FL- CNX show minimal or no degradation o f  

magnetic mechanisms.

9.1 - Preparation o f Magnetic Thin Films

Esteban Broitman at W&M prepared amorphous carbon nitride as a buffer material 

prior to the deposition o f  magnetic thin films. The a-CNx films were deposited in a high- 

vacuum dc magnetron sputtering system after reaching a base pressure o f  2 X 1 O'7 torr. 

Pure nitrogen (99.998%) was released into the vacuum chamber through a mass flow 

controller which, combined with turbo pump throttling, maintained a constant chamber 

pressure o f  8 mTorr during deposition. Carbon was sputtered from a high-purity 

(99.99%) graphite target, 2” in diameter, positioned 10 cm from the substrate holder. The 

film s were deposited onto grounded 4” diameter single-crystal <100> Si substrate wafers 

heated to 300 °C. The wafers were cleaned in a sonic bath o f acetone followed by 

isopropanol prior to loading into the chamber. The magnetron typical discharge current 

and voltage were 0.3 A and ~ 615 V, respectively. The deposition rate o f  CNX was 

determined to be 9-10 nm/min, as measured by surface profilometry. The thicknesses 

ranged from 180 to 220 nm across the wafer. Prior to the NiFe deposition, % cm by % 

cm square cuts were made from the center o f  the CNX coated wafer. Center cuts were 

taken in order to obtain more graphitic CNX instead o f fullerene-like CNX that begins to 

form more than one inch from the center.
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Characterization o f  the CNX films was conducted by the same collaborator to 

determine properties o f the films before depositing the magnetic thin films. High- 

resolution transmission electron microscopy (HRTEM) has shown that the films were 

amorphous and not crystalline. Nanoindentation experiments carried out with a 

Triboscope (Hysitron Inc.), using a cube com er diamond tip with an indentation load o f  

40 pN, have shown a hardness o f ~ 8 GPa and an elastic recovery o f  60%.

After characterization o f  the a-CNx films, in a separate 2-gun sputtering chamber, 

NiFe was deposited at room temperature onto the CNX film by dc magnetron sputtering. 

The CNX films were placed in the sputtering chamber two days after their growth and 

were not pre-treated in any way. The chamber base pressure (roughing and cryo- 

pumped) was 5 x 10'8 Torr. Pure argon (99.998%) was introduced into the chamber 

through a mass-flow controller maintaining a sputtering pressure o f  2 mTorr. Substrate- 

to-target distance was 6” along the center line at angle 0 = 17.5° from each gun. NiFe 

layers with thicknesses o f  1, 2, 3, 5, and 10 nm were sputtered from a target o f  81% Ni 

and 19% Fe at a deposition rate o f  1.0 A/s. As reference samples, NiFe films with 10 nm 

Cu and Ta buffer layers (at 1.0 A/s) were also deposited under the same vacuum 

conditions. Capping layers were not deposited on any o f  the samples. After depositing 

each Si/buffer/NiFe film, the ten films, two for each thickness, were divided into two 

groups. One group was annealed for four hours in an argon environment at 

approximately 200 °C in a controlled ambient oven. The oven was evacuated followed 

by an argon purge to minimize contamination to atmospheric gases during annealing. For 

consistency, each set o f  Si/x/NiFe films was annealed the day after deposition.
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Unannealed films were kept in vacuum desiccators to hinder oxidation and water 

absorption.

For comparison purposes, single Co films deposited at MSU, on fullerene-like

CNX substrates prepared by contributors in Sweden, will be discussed in this chapter as

well. Growth parameters o f  the FL-CNX films included a substrate temperature o f  450 °C

with a substrate bias o f -  40V. One film was deposited in a 50-50% N 2/Ar mixture

discharge gas while the other was grown in 100% N 2. Growth o f  FL-CNX was facilitated

by dc reactive sputtering using unbalanced magnetron sources. After achieving a base

pressure o f  1 x 10'7 torr, deposition o f  the single Co thin films was carried out at 1.2 x 10'

2 torr in an environment o f  pure (99.99%) Ar. A thickness o f  100 A was deposited on

each substrate at a rate o f 4.0 A/s. Following the initial surface and magnetic

£
characterizations, both films were annealed four hours at 300 °C at a pressure o f  4 x 10' 

Torr without a carrier gas. The annealing process was conducted by resistive heating o f  a 

tungsten (W) box covered to prevent contamination from gases desorbed o ff the chamber 

walls. The films were isolated from the box by ceramic discs placed underneath to 

prevent the diffusion o f W  into the Si.

The prepared films were characterized for roughness and magnetic properties. 

Surface topography was characterized by Atomic Force Microscopy in order to correlate 

roughness with magnetic properties for all films. Magnetic properties o f  the a-CNx were 

characterized with a SQUID at NC A&T by Jamil Woods. A  Vibrating Sample 

M agnetometer (VSM -  Lake Shore Cryotronics, Inc) at NASA-Langley characterized 

films deposited on FL-CNX buffers.
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9.2 - Results on: a-CNx

Figure 9.1 shows AFM scans o f  a 3-nm NiFe film on a-CNx buffer layer, before (la )  

and after ( lb )  annealing. The surface for both films is observed to be smooth. Whereas, 

it was difficult to resolve the grains o f  the NiFe films on the Ta or Cu, the larger grain 

pattern o f  the NiFe on the a-CNx is obvious. As seen in Figure 9.1, the grain structure o f  

the a-CNx/NiFe does not appear to be significantly altered upon annealing.

al bf

Figure 9.1: A FM  scans in Tapping M ode, 2.5 pm x 2.5 pm a) A FM  scan o f  unannealed a-C N x/N iF e 30A 
film , b) A FM  scan o f  annealed a-CNx/N iF e 30A film . There are no changes in surface features.

Table 9.1 compares AFM roughness measurements taken prior to and post­

annealing. It was found that, before annealing, the NiFe films deposited on the CNX are 

only slightly rougher with larger peak heights than those on the Ta but less rough than 

those on the Cu buffer layers. After annealing, the roughness o f the CNx/NiFe actually 

decreases unlike the Cu and Ta buffer layers, where the roughness increases.
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Substrate
Unannealed

Ta 1.9 ± 0 .6 2.4 ± 0 .6 21.7 ± 6 .8
Cu 2.4 ± 1.4 2.9 ± 1.8 20.9 ± 15.2

a-CNx 2.2 ± 0.5 2.8 ± 0 .6 24.8 ± 4.4
Annealed

Ta 4, 104.7 ± 3 0 .7
Cu 4.5 ± 2 .7 3.8 ± 2 .4 28.9 ± 17.8

a-CNx 1.4 ± 0 .06 1.8 ± 0 .07 14.2 ± 1.7

Table 9.1: A FM  measured average roughness, root-mean-square roughness, and peak height for
unannealed and annealed film s.

Figure 9.2 shows the magnetization o f  a 10 nm NiFe film on both a Ta and a-CNx 

buffer layer. The coercivity for the Ta buffer layer is ~  4 Oe and is thickness- 

independent within ± 1 Oe. As seen in Figure 9.2, annealing at 200 °C for 4 hours has 

little change on the hysteresis loop o f  the NiFe on the Ta buffer layers. Similar results 

were seen with Cu. In contrast, the NiFe film on the a-CNx initially has a larger, 

thickness-dependent coercivity (Hc = 36 Oe for 10 nm o f NiFe). Upon annealing, both 

the saturation magnetization and the coercivity o f  the NiFe film decrease dramatically 

(Hc = 11 Oe for 10 nm o f NiFe).
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Figure 9.2: Comparison o f  Ta/N iFe annealed and unannealed film s w ith a-C N x/N iF e annealed and 
unannealed film s. The unannealed film s are represented by open circles, the annealed film s by closed  
circles.

Figure 9.3 shows the saturation magnetization o f  the NiFe films on the various 

buffer layers as a function o f  NiFe film thickness. As the film thickness decreases, the 

magnetization decreases until it becomes negative. This negative value represents a layer 

o f  no magnetic contributon or a “dead” layer. From this data, the thickness o f  the dead 

layer can be estimated. The bulk magnetization is measured from the hysteresis curves 

for each sample. The total film and dead layer thicknesses are represented by /total and 

(dead? respectively.

M  =  M b u l k * ( L la , - t J e a d )  C9 ’1)

For the unannealed NiFe films on Ta and Cu, a dead layer o f  -  1 nm is estimated, 

which is slightly larger but comparable to that seen with other Ta/NiFe systems.7 Films 

with a NiFe thickness o f  1 nm on Ta or Cu showed no evidence o f  hysteresis loops, but
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only a diamagnetic response. Upon annealing at 200 °C for 4 hours, the dead layer does 

not increase for these buffer layers, indicating that significant interfacial mixing is not 

occurring. For the a-CNx buffer layer, the unannealed films showed a larger “dead” layer 

o f  at least 2 nm. Upon annealing, it is clear that the total magnetization is decreasing, but 

we do not have enough data points to determine if  this is due to an increase in the dead 

layer. For the NiFe films on a-CNx, the unannealed and annealed films with thickness 2 

nm and less were diamagnetic.

0 .0 0 0 6 8 - o CN/NiFe annealed

• CN/NiFe unannealed

-T a /N iF e  annealed
0 .0 0 0 5 1 - -T a /N iF e  unannealed

A Cu/NiFe annealed

E
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thickness of NiFe (nm)
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Figure 9.3: A  com parison o f  film  m agnetization with film  thickness. M agnetization decreased with N iFe  
thickness for both annealed and unannealed film s. M agnetization is negative for a C u/N iFe 10A and 
Ta/N iFe 10A and a-C N x/N iF e 20A suggesting a diam agnetic film  for these thicknesses. The lines are fits 
to  M  — Mbu,k * (t”t(jea(i).

The bulk saturation magnetization o f the NiFe, calculated from linear fits in 

Figure 9.3, is highest on the unannealed Ta buffer layer (Mbuik = 796 emu/cm ) and 

decreases with annealing (Mbuik = 628 emu/cm3). The magnetization o f  the NiFe films on 

the a-CNx can be estimated from a linear fit (not shown) if  a 2 nm  dead layer is assumed.
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From this, we find MbUik = 593 emu/cm3 for the unannealed a-CNx/NiFe films and Mbuik = 

371 emu/cm3 for the annealed films. W ith an accepted value o f  Mbuik = 800 emu/cm3 for 

bulk NiFe, the a-CNx/NiFe film displays the lowest saturation value. Some o f  the 

decrease in magnetization can be attributed to oxidation o f  the surface o f  the NiFe, since 

the films were uncapped. However, it is obvious that the a-CNx buffer layer is causing a 

further decrease in the NiFe magnetization that worsens upon annealing.

Preliminary x-ray diffraction measurements show a strong fee < 111> ordering for 

the 10 nm  NiFe films on the Ta buffer layers. The 10 nm NiFe film on the a-CNx 

however, showed no strong ordering peaks. TEM measurements indicate an amorphous 

structure for this film in contrast to the film on a Ta buffer. The electron diffraction 

analysis scan in Figure 9.4 exhibits a wide diffuse ring pattern. The width o f  the ring 

indicates either very small grain sizes or no grains at all. Very small grains would denote 

some crystallinity but no long range order.

Figure 9.4: TEM  scan o f  a-C N x/N iF e 100A show s N iF e islands (dark spots) grow ing on the a-C N  matrix. 
Electron diffraction analysis o f  the film  show ed no strong ordering peaks and suggests an amorphous 
structure.
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The decrease in magnetization and change in coercivity for the a-CNx buffer layer 

are undesirable results for producing a stable magnetic multiplayer structure. One 

possible cause is that the a-CNx structure is not stable upon annealing; however, studies 

have shown that a-CNx is stable at this annealing temperature since it is below the growth 

temperature.8 Results from AFM and TEM appear to confirm that no structure change is 

occurring. Instead, annealing the NiFe film could cause interdiffusion into the a-CNx 

layer, forming a granular structure. In this case, an increase in coercivity may be 

expected. Another possibility is a combination o f intermixing or the formation o f  nitrides 

or carbides at the interface. Studies o f Ni/C and Fe/C multilayers (where C is amorphous 

carbon) have shown the formation o f Ni3C and Fe3C at the interface (Ni3C decomposes 

upon heating while Fe3C is formed with heating).9 Recent NM R studies10 o f  a-CNx have 

shown that these films are hydrophilic and that the water is released upon annealing at 

150 °C. Given this, a reaction could be occurring in the NiFe film from the released 

water, which reduces the magnetization. Preliminary data on a-CNx/NiFe films has 

shown that the magnetic properties improve and become more stable when the a-CNx is 

grown at higher temperatures. This could be due to the higher temperature films having 

less nitrogen content and being less hydrophilic, or the interface bonding may be more 

stable.

9.3 - Results on FL-CNX

For the purposes o f the experiment, CN1 refers to the FL-CNX grown in the 50- 

50% mixture while CN2 refers to that grown in 100% N 2 and refers to the entire film 

after deposition o f  the Co layer. AFM scans o f CN1 and CN2, prior to and post­

annealing, are shown in Figure 9.4. CN1 has numerous large granular features on its
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surface before and after annealing at 300 °C. However, the feature size appears slightly 

smaller with an increase in the number and size o f  the clusters visible after annealing. No 

features are observed on CN2 either before or after annealing.

Figure 9.5: a) CN1 unannealed film , b) C N2 unannealed film , c) CN1 annealed film , d) C N 2 annealed  
film . ColOO A  w as deposited on C N  buffers. A FM  scan in Tapping M ode, lp m  x  1pm.

Table 9.2 displays the roughness and magnetic properties o f  both films as 

measured by AFM  and VSM. Roughness values for CN1 are larger than those for CN2. 

M ore significantly, CN2 has a smoother topography exhibiting no large features. In
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contrast, CN1 has features o f  significant size both in height and length. Post annealing, 

CN2 remains smooth showing no apparent grain or feature growth. W hile a small 

increase in arms roughness, Ra roughness, and peak height (Z) are observed, the increase 

is slight and suggests that annealing o f  the film did not produce a significant structural 

change in the film. The small changes in features length and height further support this 

observation. In comparison, the coercivity and saturation magnetization display minor 

changes for both films. A decrease in the coercivity for CN 1 corresponds to an increase 

in the film susceptibility, while the opposite is observed for CN2. There is a significant 

decrease in roughness for CN2.

R a (nm) Hc (Oe)
emu/cm

Unannealed
8.5 ± 2 .9 10.9 ± 2 .4 64.1 ± 1.4 130 ± 15 39.1 ± 6 .7 1383 ± 8

5.9 ± 0 .2  6.8 ± 0 .2  31.5 ± 0 .4 1367 ± 8

Annealed
9.2 ± 1.7 11.6 ± 1.2 67.3 ± 8.7 110 ± 2 6 39.6 ± 11.6 1395 ± 8

1350 ± 80.8 ± 0.2 1.2 ± 0 .3 17.8 ± 6 .5

Table 9.2: Com parison o f  surface and m agnetic properties for film s prior to and post-annealing. Both  
film s were deposited at 450  °C with a substrate bias o f  -40V . CN1 w as grown in 50-50%  N 2/Ar. C N 2 w as  
grow n in 100 N 2.

The magnetic properties as compared to the roughness measurements are listed in 

Table 9.2 and illustrated in Figure 9.6 where open circles represent CN1 and closed 

circles represent CN2. The data in the table again shows a contrast between the two films 

on the FL-CNX. CN1 slightly increases in saturation magnetization corresponding to a 

small decrease in coercivity post annealing, possibly indicating a minor increase in film 

magnetization. The data for CN2 displays the opposite relationship where an increase in
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the coercivity coincides with a decrease in film magnetization. Further, CN2 has a 

saturation magnetization similar to that o f  CN1 but coercivity one third the value 

measured for CN1. Also, the shapes o f the hystereses are markedly different between 

films but maintain their shape for the same film before and after annealing. The steeper 

slope for CN2 can be correlated to the smoothness o f  the film providing an easy 

switching layer contrasted by the much rougher film surface o f  CN1. Both films exhibit 

saturation magnetizations near the accepted value o f  1422 emu/cm3 for bulk Co.
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Figure 9.6: Comparison o f  norm alized hysteresis loops for prior to and post annealing. N o  significant 
change in saturation m agnetization or coercivity is observed. Open circles represent C N  1. C losed  circles 
represent C N2.

W hen comparing roughness measurements from both experiments as in Table 9.3, 

the films deposited onto FL-CNX substrates have the largest roughness prior to annealing. 

Interestingly, CN2 measurements are the smoothest o f  all four films post-annealing and 

within one standard deviation, are equivalent to the measurements o f  the NiFe film on a-
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CNX. Though, CN1 increases in roughness with annealing, the change is significantly 

less than that o f  CN2, well within one standard deviation o f the unannealed root-mean- 

square value. This further supports previous research on the effect that growth conditions 

o f  carbon-like materials have on film properties. Equally significant are the differing 

results o f  single films deposited on a-CNx as compared to FL-CNX. While films on a-CNx 

substrates exhibited obvious degradations in magnetic properties with annealing, films on 

FL-CNX displayed no significant changes.

Substrate Ra (nm)

Unannealed

Cu

a-CNx

FL-CN1

FL-CN2

1.9 ± 0 .6

2.4 ± 1.4
2.2 ± 0 .5

8.5 ± 2 .9

Annealed

Ta

Cu

a-CNx

FL-CN1

FL-CN2

5.9 ± 0 .2

4.4 ± 3 .4

2.4 ± 0.6

2.9 ± 1.8
2.8 ± 0.6

10.9 ± 2 .4

4.5 ± 2 .7

1.4 ± 0 .06

9.2 ± 1.7

0.8 ± 0.2

6.8 ± 0.2

5.9 ± 4 .2

21.7 ± 6 .8

20.9 ± 15.2
24.8 ± 4.4

64.1 ± 1.4

3.8 ± 2 .4

1.8 ± 0 .07

11.6 ± 1.2

1.2 ± 0 .3

31.5 ± 0 .4

104.7 ± 3 0 .7

28.9 ± 17.8

14.2 ± 1.7

67.3 ± 8.7

17.8 ± 6 .5

Table 9.3: A  com parison o f  roughness measurement for film s deposited on four different substrates. Film s 
on both fullerene-like C N X substrates exhibit the largest roughness prior to annealing. Post-annealing, CN1 
has the roughest surface w hile C N2 has the sm oothest surface o f  all four film s.

9.4 - Conclusions

Surface roughness o f  films deposited on a-CNx buffer layers is comparable to 

films on Ta or Cu buffers and is stable with annealing up to 200 °C. However, 

amorphous CNX has a detrimental effect on the magnetization and coercivity o f  the NiFe 

films. This may be due to chemical reactions at the interface or interdiffusion creating
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diamagnetic impurities or a thin diamagnetic layer. In contrast, Co films grown on hard 

CNX showed no degradation in their magnetic properties up to an annealing temperature 

o f  300 °C while the root-mean-square roughness, average roughness, and peak height 

remained comparable to roughness o f  films deposited onto traditional buffers. In fact, a 

Co film grown on FL-CNX displayed a significant decrease in roughness while exhibiting 

no significant change in magnetic properties. It was expected that the FL-CNX substrate 

would be stable in structure below its growth temperature. However, the substrate 

exposure to atmosphere does not appear to have had a noticeable effect on the magnetic 

film deposited on top. Atmospheric contaminants, such as water, should have been 

present at the FL-CN/Co interface. Contrary to the a-CN/NiFe films, annealing did not 

appear to drive these contaminants into the magnetic thin film due the cross-linking o f  the 

sp2 orbitals, which actually benefits the FL-CNX film .11

In conclusion, this chapter explored the effect o f  a-CNx and FL-CNX buffers on 

magnetic thin films. While the smoothness o f  films grown on a-CNx is comparable to 

films on traditional buffers, there is a detrimental effect on the magnetic properties o f  the 

films. In contrast, films on FL-CNX have a larger roughness before annealing but are 

noticeably smoother post-annealing with no significant loss in magnetization or 

coercivity. Both carbon-like materials may useful in applications involving magnetic thin 

films.
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Chapter 10 — Summary

10.1 Summary

The primary focus o f this research was to investigate the impact o f large scale 

roughness on giant magnetoresistive (GMR) thin films. Secondary studies investigated 

the viability o f  depositing GMR on polymeric substrates and the inclusion o f carbon 

nitride buffers in thin films. For all o f these investigations, DC magnetron sputtering was 

the primary deposition process used to fabricate GMR and single thin films. For the 

controlled, roughness study, current-perpendicular-to-the-plane (CPP) and current-in- 

plane (CIP) GMR thin films were deposited at Michigan State University using triode 

sputtering. Polymer nanospheres were used to introduce controlled roughness onto 

silicon oxide substrates1. After removal o f  the polymer spheres, gold nanodots remained 

on the silicon surface. For the etched substrate study, current-in-plane films were 

deposited at W illiam & Mary and the National Institute o f  Standards and Technology 

(NIST) on etched boroaluminasilicate glass. Glass substrates were prepared by etching 

with hydrofluoric (HF) acid for various lengths o f  time, again introducing roughness at 

the substrate but in a less controllable fashion. For the secondary studies, thin films were 

deposited on as-prepared polymeric substrates provided by the International Technology 

Center (ITC) and CN buffers were provided by Esteban Broitman and contributors in 

Sweden at Linkoping University.
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From the data in chapters 7 and 8, a correlation between parallel state (minimum) 

film resistance and antiparallel state (maximum) film resistance has shown a linear 

relationship with a slope o f ~1. This indicates an increase in spin-independent scattering 

that may be connected to increases in roughness, which influence grains and grain 

boundaries. For the CIP films deposited at MSU, it was found that GM R decreased with 

minimum film resistivity. Substrate roughness appears to have a significant effect on 

spin-independent scattering but less so on spin-dependent scattering which is the 

dominant factor in determination o f the GMR value o f thin films. In both o f these 

studies, the increase in antiparallel resistivity is matched by an increase in parallel 

resistivity. However, the long length scale appears not have a large detrimental on the 

GMR as theorized by Alicea and Hershfield.2 The preliminary research conducted in 

chapter 8 has demonstrated the potential for further study o f  systems o f controlled 

roughness using polym er nanospheres.

Results for chapter 6 demonstrate that GMR thin films can be deposited onto 

polymeric substrates and achieve GMR values comparable to those measured on silicon 

substrates. A comparison o f  GMR values for thin films deposited on polymers produced 

GMR equal to or slightly higher than the values measured on silicon. In chapter 9, the 

inclusion o f CN thin films as buffer layers was explored. Significant decreases in 

magnetic response and coercivity were observed in amorphous-carbon nitride (a-CNx) 

with annealing, while film root-mean-square roughness decreased. Data for fullerene- 

like carbon nitride showed small changes in magnetic response and coercivity and a 

similar decrease in root-mean-square roughness.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



162

In summary, series o f  studies exploring the impact o f  roughness introduced 

through the substrate has demonstrated that long length scale roughness does not 

necessarily produce a large degradation o f GMR behavior. For these systems, a decrease 

in GMR can be correlated with an increase in parallel state resistivity. Further, the 

antiparallel state resistivity increases linearly (slope ~1) with parallel state resistivity 

suggesting that spin-independent scattering is significantly affected by the increase in 

roughness while spin-dependent scattering is less effected. In addition, the potential o f 

novel materials as substrates and buffers was illustrated in separate studies.

10.2 Future W ork

There are several considerations for future work. This research has demonstrated 

some o f the difficulty in introducing controlled uniform roughness over wafer-sized 

substrates. In regards to the nanodot deposition, researchers at Northwestern3, 4 have 

achieved a monolayer o f  coverage with good uniformity over smaller areas using a 

chemical stabilizer (hexadecanethiol) to prevent nanosphere aggregation. Using a drop- 

coat method, they are able to achieve monolayer coverage. Incorporation o f a smaller 

substrate size with the chemical stabilizer used by the researchers at Northwestern could 

produce more favorable uniformity. Alternatively, depositing thin films directly onto a 

uniform multilayer o f polymer nanospheres is another technique. Again, spin or drop- 

coating a small substrate ~ lm m 2 may produce better results than attempting to coat an 

entire wafer. A third technique involving holographic gratings can also be explored. Pre­

fabricated gratings with uniform spacing and height can be obtained from ThorLabs, for 

example. As substrates, these would provide uniform controllable roughness at the 

substrate.
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Continued investigation o f large scale roughness effects on GMR thin films 

would benefit from a more comprehensive characterization o f the films. A cross- 

sectional analysis o f the multilayer, such as that achieved with focused ion beam (FIB) 

characterization, would allow us to quantify the interfacial roughness directly and not 

simply from AFM surface scans. It would be possible to observe and measure the change 

in roughness from layer to layer. This may be possible with low angle x-ray diffraction 

(LAXRD) where the grazing angle would provide information about the film structure. 

Because it is a comprehensive measurement, depositing a series o f  films where the 

multilayer is deposited one layer at a time would allow for the quantification o f the 

interfacial roughness.
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