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ABSTRACT 
 

Understanding charge dynamics and the origin of superconductivity in iron-
based materials is one of the most important topics in condensed matter 
physics. Among different structures of iron-based materials, 122-type iron 
arsenides are of considerable interest due to their diverse phase diagrams, 
relatively high superconducting transition temperatures, and the availability of 
high quality single crystals. In this dissertation, we study temperature and 
frequency dependence of charge dynamics of the electron-doped 122-type 
iron arsenides in the metallic and superconducting states using broadband 
infrared spectroscopy at cryogenic temperatures.  
 
We have investigated the charge dynamics and the nature of many-body 
interactions in metallic La- and Pr- doped CaFe2As2. From the infrared part of 
the optical conductivity, we discover that the scattering rate of mobile carriers 
above 200 K exhibits saturation at the Mott-Ioffe-Regel limit of metallic 
transport. However, the dc resistivity continues to increase with temperature 
above 200 K due to the loss of Drude spectral weight. The loss of Drude 
spectral weight with increasing temperature is seen in a wide temperature 
range in the uncollapsed tetragonal phase, and this spectral weight is 
recovered at energy scales about one order of magnitude larger than the 
Fermi energy scale in these semimetals. The phenomena noted above have 
been observed previously in other correlated metals in which the dominant 
interactions are electronic in origin. Further evidence of significant electron-
electron interactions is obtained from the presence of quadratic temperature 
and frequency-dependence scattering rate at low temperatures and 
frequencies in the uncollapsed tetragonal structures of La- and Pr-doped 
CaFe2As2. We also observe weakening of electronic correlations and a 
decrease of Drude spectral weight upon the transition to the collapsed 
tetragonal phase in Pr-doped CaFe2As2.  
 
We have measured infrared reflectance spectra of BaFe1.9Pt0.1As2 in the 
normal and superconducting states. We find that this superconductor has fully 
gapped Fermi surfaces. Importantly, we observe strong-coupling electron-
boson interaction features in the infrared absorption spectra. By using two 
modeling methods which include strong-coupling effects via the Eliashberg 
function, we obtain a good quantitative description of the energy gaps and the 
temperature dependent strong-coupling features. Our experimental data and 
analysis provide compelling evidence that superconductivity in BaFe1.9Pt0.1As2 
is induced by the coupling of electrons to a low energy bosonic mode.  
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CHAPTER 1 

 

Introduction 

 

Since its discovery in 1911 by H. Kamerlingh Onnes, superconductivity has 

been one of most important topics and among the most exciting phenomena in 

condensed matter physics. The two necessary and extraordinary properties of a 

superconductor are zero electrical resistance and expulsion of magnetic field 

below a well-defined transition temperature Tc. From a microscopic view, in the 

superconducting state, electrons form bound pairs through an attractive interaction. 

The bound electron pairs are called Cooper pairs. In conventional superconductors, 

the attractive interaction between electrons is mediated by phonons. However, in 

unconventional high-temperature superconductors, the pairing mechanism can be 

different, and phonons alone may not provide the “glue” to form Cooper pairs. 

Instead, the pairing glue may have a magnetic origin. A thorough understanding of 



2 

the charge dynamics as well as the pairing mechanism in iron-based materials 

(one family of unconventional high temperature superconductors) is a significant 

intellectual contribution. In this chapter, I will briefly introduce conventional 

superconductivity and unconventional high temperature superconductors, and 

then provide the scope of this dissertation. 

 

1.1 Conventional superconductivity 

For conventional superconductors, phonons are the key virtual excitations that 

turn the repulsive Coulomb interaction into a weak attraction that binds the 

electrons in Cooper pairs. The energy gap has s-wave symmetry without nodes. 

Based on the coupling strength between the electrons and phonons, conventional 

superconductors can be divided into weak-coupling and strong-coupling 

superconductors. In 1957, a detailed microscopic picture was established by 

Bardeen, Copper and Schrieffer (BCS) [1], which describes weak-coupling 

traditional superconductors very well. In BCS theory, the electron-phonon 

interactions are assumed to be small, instantaneous and nonlocal, which is a good 

approximation for weak-coupling superconductors. However, when the electron-
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phonon interaction becomes large, a more realistic model than BCS theory has to 

be applied.  

Strong electron-phonon interactions have been first studied by Migdal [2] in a 

normal metal and by Eliashberg [3] in superconductors. In their model, the effective 

interaction between electrons is retarded in time and local in space, in contrast to 

the BCS model. The strong coupling Eliashberg function 𝛼2(𝜔)𝐹(ω) (the electron-

ion coupling times the phonon density of states) is introduced in the gap equations 

(Eliashberg equations). The experimental results on strong-coupling 

superconductors, like lead (Pb), including the phonon density of states from 

neutron scattering, tunneling experiments, and infrared absorption, provide 

consistent evidence for the validity of the Eliashberg theory. 

 

1.2 Unconventional high-temperature 

superconductors 

 In 1986 and soon thereafter, a family of copper-oxide materials (cuprates) 

with high transition temperature (Tc) were discovered with Tc reaching as high as 

133 K [4]. Since then, a number of different materials, named unconventional 

superconductors, have been subsequently discovered, whose superconducting 
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behavior cannot be solely understood within the electron-phonon interaction 

pairing mechanism. Other possible mechanisms for electron pairing in high-Tc 

superconductivity, such as spin fluctuations mediated pairing, have been proposed. 

However, no consensus has been reached yet. 

 An important discovery of 26 K superconductivity in fluorine-doped 

LaFeAsO [5] was made in 2008. Shortly after that, the record Tc of 55 K in bulk 

iron-based superconductors was attained [6]. Compared to cuprates, key 

differences have been found in the crystal structure of iron-based 

superconductors [7]: 1) the tetrahedral FeAs-type layer as opposed to the planar 

copper-oxygen structure of the cuprates; 2) the ability of doping directly into the 

active pairing layer; and 3) the metallic (rather than insulating) multiband nature of 

the parent compounds. The detailed properties of iron arsenides will be discussed 

in Chapter 2. Several crucial questions need to be stressed: what is the pairing 

mechanism in iron-based superconductors, and is it similar or different compared 

to other unconventional superconductor families like the cuprates? What can be 

deduced about interactions from the charge dynamics of iron arsenides in the 

normal (metallic) state? These questions will be discussed in the body of the 

dissertation. 
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1.3 Scope of the dissertation 

In this dissertation, I report temperature-dependent infrared and optical 

spectroscopy data on three distinct electron-doped 122-type iron arsenide 

compounds: the rare-earth doped Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2, and 

platinum doped BaFe1.9Pt0.1As2. Out of these three materials, only the last one 

exhibits bulk superconductivity. By carefully analyzing the data, we study the 

electron-electron and electron-boson interactions in the metallic and 

superconducting states of the materials. 

In Chapter 2, I first introduce the basic properties of iron-based 

superconductors, especially the 122-type iron arsenides. I give a brief discussion 

of the possible key factors (As-Fe-As bonds and the anion height from Fe layers) 

that affect Tc; the primitive unit cell, electronic band structure and Fermi surface of 

122-type iron arsenides; and the magnetism of iron arsenides. Due to the unique 

collapsed tetragonal phase of CaFe2As2 system, I discuss the phase diagrams of 

BaFe2As2 and CaFe2As2 separately. By applying pressure and/or doping chemical 

elements, the structural and magnetic phase transition of the parent compounds, 

BaFe2As2 and CaFe2As2, can be suppressed and superconductivity may occur. In 

the last section of this chapter, I introduce the superconducting pairing symmetry, 

possible pairing mechanisms and multi-band nature of the iron arsenides. 
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Infrared spectroscopy is one of the most important techniques for studying 

metallic and superconducting properties. I introduce two experimental 

spectroscopic techniques in Chapter 3, Fourier transform infrared (FTIR) 

spectroscopy and spectroscopic ellipsometry, which are the main experimental 

probes used in this dissertation. I discuss the principles of the techniques, the 

detailed experimental set-up including cryogenic instrumentation, measurement 

strategies, and data analysis procedures. 

In Chapter 4, we report infrared and optical spectroscopy data on two rare-

earth doped CaFe2As2 materials, Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 single 

crystals. These materials are not bulk superconductors even through the 

antiferromagnetic phase has been totally suppressed by the rare-earth (La and Pr) 

dopants. We focus on the temperature-dependent charge dynamics in the metallic 

phases (uncollapsed and collapsed tetragonal phases). We find that although the 

resistivity continues to increase above 200 K, the scattering rate saturates above 

200 K. The scattering rate in uncollapsed tetragonal phase is dominated by a 

quadratic temperature dependent and frequency dependent term ascribed to 

significant electron-electron interactions. We also observe that the scattering rate 

of free carriers, optical interband transitions, and infrared-active phonons are 

affected across the collapsed tetragonal phase transition. 
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In Chapter 5, studies on superconducting BaFe1.9Pt0.1As2 using infrared 

spectroscopy are reported. We observe strong-coupling electron-boson interaction 

features in the infrared absorption spectra directly. The infrared data is consistent 

with multi-band superconductivity with isotropic gaps. By employing two theoretical 

models based on the Eliashberg theory to quantitatively explain our absorption 

spectra, we identify a bosonic mode centered at 5.1 ± 0.6 meV (41 ± 5 cm-1) that 

provides the pairing glue in superconducting BaFe1.9Pt0.1As2. The bosonic mode 

cannot be due to phonons due to its low frequency, and it is likely to originate from 

spin fluctuations. 

Finally, in Chapter 6, I record the conclusions and discuss possible future work. 
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CHAPTER 2 

 

Iron-based superconductors 

 

2.1 Basic structures 

  Since the discovery of LaFeAsO1-xFx [5], so-called ‘1111’ structure, with a 

superconducting transition temperature (Tc) of 26 K in 2008, a series of different 

iron-based structures exhibiting superconductivity have been discovered in the 

past decade. Fig. 2.1, taken from Ref. [8], shows some representative iron-based 

superconducting structures. Each has a distinct layered arrangement with active 

Fe2As2-type layers, as shown in the gray areas in Fig. 2.1. The key ingredient is a 

quasi-two-dimensional layer consisting of a square lattice of four iron atoms with 

tetrahedral coordinated bonds to the atoms above and below the iron lattice. The 

atoms could either be pnictogen (phosphorus, arsenic) or chalcogen (selenium or 
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tellurium) anions. This unique structure can be either simply stacked together or 

separated by spacer layers formed by alkali metals (such as Na), alkaline-earth 

metals (such as Ba) or more complicated combinations. It is worth noting that two 

recently discovered structures, ‘112’ and ‘1144’, also share similar stacking 

arrangement and have a bulk Tc of 47 K [9] and 36 K [10]. It will not be too 

surprising if new structures of iron-based superconductors are discovered in the 

future and thereby further enrich the family of these high-temperature 

superconductors. 

 

 

FIG. 2.1. Structures of several types of iron-based superconductors [8]. The temperature 

below each type is the highest Tc achieved in the structure. 
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2.1.1 Structures and Tc 

 To study the connection between transition temperatures and the structural 

properties, researchers first noticed that Tc is dependent on the angle between As-

Fe-As bonds (where two arsenic atoms are located within the same plane), as 

shown in Fig. 2.2. Tc reaches the highest value at the As-Fe-As bond angle of 

109.47° [11], corresponding to an undistorted pnictogen tetrahedron with the iron  

 

 

Fig. 2.2. From Ref. [11]. Tc versus Pn–M–Pn type bonding angle at the room 

temperature among different species of iron-based superconductors, where Pn is P or 

As, and M is transition metal, such as Fe. Tc is maximum at an angle close to 109.47°. 
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Fig. 2.3. From Ref. [12]. Anion height dependence of Tc for the several typical Fe-based 

superconductors. Large symbols indicate the onset transition temperature while small 

light-blue circles represent the zero-resistivity temperatures at ambient pressure.  

 

(Fe) ion in the center. This suggests that the potential for high Tc is greatest for 

undistorted FeAs4 tetrahedra (although no universal successful explanation has 

been developed yet). Although K-doped BaFe2As2 shows clear trend, there are 

some materials that do not follow this trend, like BaCo2As2 and LaFePO. 

Another correlation between the structure parameter and Tc is the anion 

height from Fe layers. The dependence of maximum Tc in a given system and 

anion height are summarized in Fig. 2.3 [12]. The figure shows a symmetric curve 

with a peak around 1.38 Å. Both data at ambient pressure and under high pressure 

obeys this unique curve. However, there are also some unusual cases, like 

BaFe1.9Pt0.1As2 and LaFe0.89Co0.11AsO, that have to be considered separately. 
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2.1.2 Crystal structure, electronic band structure and Fermi 

surface of the 122 iron-based arsenides 

In this section, we will focus on the iron-based arsenides with the “122” 

structure. The 122 iron based arsenides are the main topic of this dissertation. For 

a typical 122 ThCr2Si2-type structure, Fig. 2.4 (a) shows a body-centered 

tetragonal unit cell with the lattice space group I4/mmm. This unit cell is not a 

primitive unit cell, and it contains two formula units. Due to the simplicity and 

convenience of this unit cell, it is widely used in experimental studies. The lattice 

parameters of the parent compound of the 122 structure iron-based arsenides are 

a = b ≈ 4 Å and c ≈ 13 Å. One primitive unit cell is shown in Fig. 2.4 (b), with lattice 

height equal to half of the “c” parameter of the tetragonal unit cell.  

 

 

Fig. 2.4. (a) Tetragonal unit cell of 122 type iron-based material [13]. (b)A primitive unit 

cell containing one formula unit. 

 

a

b

c
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 The first-principles density functional theory calculated band structure is 

shown in Fig. 2.5 (a) [13]. There are five Fe-3d bands which are close to each 

other and at least four cross the Fermi level. This indicates the multi-band nature 

of iron-based materials. At the Γ and Z points, there are two bands (another one is 

slightly below the Fermi level) crossing the Fermi level and form hole-like Fermi 

surface sheets. At the X point, there are also two bands crossing the Fermi level 

and form electron-like Fermi surface sheets. The corresponding 3D Fermi surfaces 

are plotted in Fig. 2.5 (b). Both hole and electron Fermi surfaces are formed by dxz, 

dyz and dxy orbitals [14]. Again, two semi-cylindrical hole Fermi surface pockets are 

centered at Brillouin zone center (Γ) point and at the Z point), and another two even 

more cylindrical electron pockets are centered at the X point (zone corner). We 

can see that a magnetic ordering vector Q= (π, π) that spans from the center of 

the Brillouin zone at Γ point to the corner at X point will easily nest a circle of points 

on each of two different Fermi sheets (for example, purple and yellow sheets), 

which could possible result in a long-range spin-density wave order that is driven 

by properties of the band structure. There are other possible origins of the spin-

density wave order phase, like antiferromagnetic exchange between localized 

electrons and Hund’s coupling due to multiple orbitals, and this will be discussed 

in more details in the next section. 
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Fig. 2.5. (a) First-principles density functional theory calculated band structure of 

BaFe2As2 [13]. Lines of different colors indicates different bands. (b) The Fermi surfaces 

and their sectional views through symmetrical k-points (c) Z and (d) Γ parallel to (001) 

plane. 

 

 

Fig. 2.6. ARPES kz dispersion data of tetragonal CaFe2As2 at T = 200 K [15]. The plot is 

kz dispersion data parallel to Γ-M. The right panel is the Fermi crossing momenta 

extracted from the left panel. 
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 Experimental results like angle-resolved photoemission spectroscopy 

(ARPES) match the theoretical predictions well [15–18]. Fig. 2.6 [15] shows the 

ARPES result of parent compound tetragonal CaFe2As2. Both the electron and 

hole pockets are quasi-2D cylindrical with little kz dependence. The effect of hole 

or electron doping on the electronic structure is fairly well captured by a rigid-band 

picture: the basic Fermi surface topology is kept with both electron [19,20] (BaFe2-

xCoxAs2) and hole [21] (Ba1-xKxFe2As2) doping, with the size of Fermi pockets 

changing accordingly and with reasonable continuity observed when crossing 

between each case. 

 

2.1.3 Magnetism 

 At room temperature, the parent compounds of 122 iron-based materials 

like BaFe2As2 and CaFe2As2 are in the tetragonal paramagnetic phase. The 

resistivity is 0.3 - 0.4 mΩ cm [22,23], which is much higher than conventional 

metals, so they are relatively poor conductors.  

 Upon decreasing temperature, the tetragonal paramagnetic metal will 

undergo a structural (TS) and magnetic (TN) phase transition at low temperature. 

Unlike 1111-type iron-based materials, in which TS and TN are usually not the same 
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temperatures, in 122-type materials, the structural and magnetic phase transition 

are coupled and occur at the same temperature. The phase transition temperature 

TN (TS) is approximately 173 K for CaFe2As2 [24], 140 K for BaFe2As2 [25] and 

198K for SrFe2As2 [26]. Across the phase transition, the lattice structure becomes 

orthorhombic phase Fmmm face-centered from high temperature body-centered 

space group I4/mmm. The unit cell rotates 45° with respect to the tetragonal basal 

plane axes and the lattice constant a is slightly larger than b. The transition is first 

ordered, and appears discontinuous and often hysteretic [24]. At the same 

temperature, the parent compounds transition from a paramagnetic to an 

antiferromagnetic phase forming a stripe-type spin-density-wave phase. The 

magnetic unit cell is the same as the orthorhombic chemical unit cell. Fe moments 

are oriented along the orthorhombic a axis, arranged antiferromagnetically along 

a and ferromagnetically along b. Neighboring layers are stacked antiparallel to one 

another along the c-axis, as shown in Fig. 2.7. Neutron diffraction experiments on 

the 122 materials find fairly consistent magnetic moments for different members of 

the 122 family (CaFe2As2, BaFe2As2 and SrFe2As2) with 0.8 - 1 μB [27], comparing 

to 2.2 μB of metallic iron. 

 There are three broad classes of explanation for antiferromagnetism:  

a. In the ‘local moment’ picture, appropriate for the insulating copper oxides, AFM 
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Fig. 2.7. From Ref. [24]. Illustration of the antiferromagnetic structure of CaFe2As2 below 

the magnetic transition temperature. The Fe magnetic moments are aligned 

antiferromagnetically along the a and c axes and ferromagnetically along the shorter b 

axis. 

 

interactions are well described by a Heisenberg-like Hamiltonian, which indicates 

nearest-neighbor interactions and significant next-nearest-neighbor interactions. 

For the 122 materials, the Hamiltonian is usually written in the form [27,28]: 𝐻 =

∑ 𝐽𝑗𝑘𝑆𝑗 ∙ 𝑆𝑘〈𝑗𝑘〉 , where Jjk are exchange constants. The magnetic excitations can be 

described using two in-plane exchange constants; the near-neighbor interactions 

J1 and the next-near-neighbor interaction J2. Once J2>J1/2 condition is satisfied, 

stripe AFM order can be constructed [27,28]. And this condition is always satisfied 

for 122 iron arsenides [27–29]. 
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b. Whereas in the ‘itinerant model’, suitable for metallic chromium, AFM order 

arises from quasiparticle excitations of a nested Fermi surface [30,31]. The nesting 

is intra-orbital, between the inner hole-like sheet at the Γ point and the inner 

electron-like sheet at the X point that is commensurate with the structure spanned 

with a wavevector Q = (π, π), as shown in Fig. 2.5. 

As the nature of the magnetic interactions (i.e. local versus itinerant) is still a 

topic of considerable debate, there is also possibility that magnetism in the parent 

compounds of iron arsenide superconductors is neither purely local nor purely 

itinerant, rather it is a complicated mix of the two [32]. 

c. Due to the multiorbital nature of iron-based materials, it is becoming clear that 

Hund’s coupling plays a key role on the correlations of these materials and may 

explain the magnetism in the iron-based materials. A different strength of the 

Hund's rule coupling at different energy scales has been observed. At high energy, 

Hund's rule coupling is very strong, whereas it fades away at low energy but gives 

an imprint on the massive and anisotropic low-energy quasiparticles [33]. Ref. [34] 

and the references therein also conclude that in the strong Hund’s coupling metal 

the local moment fluctuates very fast and the time-average moment is reduced. 

The screened moment is the one which can be magnetically ordered at low 

temperatures. 
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2.2 Phase diagrams 

 The 122 iron-based arsenides have rich phase diagrams. The parent 

compounds are not superconductors, but are in the paramagnetic metallic phase 

at high temperature and undergo a structural and magnetic phase transition at low 

temperatures. By applying pressure and/or doping chemical elements (electron 

doping, hole doping and isovalent doping), the structural and magnetic phase 

transition can be suppressed and the superconductivity may occur. CaFe2As2 

system also exhibits a unique phase, called the collapsed tetragonal phase (CT 

phase), in which the c lattice constant shrinks 10%. In this section, we will focus 

on the diverse phase diagrams of 122 iron-based materials. Since the phase 

diagrams of BaFe2As2 and CaFe2As2 systems have some differences, we will 

discuss them separately. 

 

2.2.1 Pressure and doping effects in BaFe2As2 system 

 The antiferromagnetic order (or spin-density-wave phase) can be 

suppressed when applying pressure or doping. The phase diagrams are shown in 

Fig. 2.7 from Ref. [7]. When the applied pressure is large enough, the 

superconducting phase emerges. However, continually increase the pressure will 
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suppress the superconducting phase eventually. The phase diagram is similar for 

chemical doping of appropriate elements. Doping can be either electron doping 

(like Co, Ni), hole doping (like K, Na), or iso-valent doping (like P). The 

superconducting transition temperature reaches the highest value at similar doping 

level for these cases. The highest transition temperature is 38 K with substitution 

of 40 % of K for Ba, which is also the highest bulk Tc among all the 122 structures. 

Increasing doping percentage will usually suppress superconductivity, except 

hole-doping with K, which can be substituted completely, and become 

superconducting KFe2As2 (Tc is 4 K) at ambient pressure [35]. It is obvious that the 

two phase diagrams (under pressure and chemical doping) are quite similar, which 

implies the similarity between structural distortions under pressure and chemical 

doping. In fact, the electronic structure is quite similar in both cases [30]. 

 

 

Fig. 2.7. Experimental phase diagrams of the BaFe2As2 system [7]. 
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2.2.2 Pressure and doping effects in CaFe2As2 system 

 In contrast to the phase diagram of BaFe2As2, the CaFe2As2 has an even 

richer phase diagram, as shown in Fig. 2.8. In CaFe2As2, the antiferromagnetic 

spin-density-wave phase can be suppressed totally by applying pressure and 

pressure-induced superconductivity emerges only under non-hydrostatic 

experimental conditions [36,37]. The unique collapsed tetragonal (CT) non-

magnetic phase appears when applying hydrostatic pressure up to 0.35 GPa at 

low temperature. The unit cell collapses in a way that both the unit-cell volume and 

the c lattice constant have dramatic decreases of 5 % and 10 %, respectively, and 

the ab lattice constants undergo an expansion of 2.5 % [38]. In the CT phase, Fe 

local moments are quenched [38], spin fluctuations are suppressed [39], and 

electron correlations are reduced [40]. There is also a reconstruction of the Fermi 

surface in the CT phase, including the complete disappearance of the hole pocket 

at the zone center [41]. Later on, researchers found that in the BaFe2As2 system, 

the CT phase may occur at much higher pressure compared to CaFe2As2 [42]. 

Doping holes (Na) in Ca site and electrons (Co) in Fe site in CaFe2As2 lead 

to very similar outcomes compared with BaFe2As2 system [43,44], as shown in Fig. 

2.9. The highest superconducting transition temperature is in the range 20 – 30 K. 

Note that isovalent P doping at an As site is different compared to the BaFe2As2 
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system. As seen in Fig. 2.10, superconductivity only appears in a small limited 

range at x < 0.05, with Tc at 15 K. Further increase of P doping will suppress 

superconductivity and induce CT phase [45]. Also, in the CT phase, the system is 

more like a Fermi liquid, with resistivity proportional to T2 [45]. 

 

 

Fig. 2.8. Phase diagram of CaFe2As2 parent compound, from Ref. [41]. The blue dashed 

curve indicates the superconducting phase under a non-hydrostatic pressure 

condition [36,37]. 

 

 Aliovalent rare-earth substitution into the alkaline-earth site of CaFe2As2 

single crystals can be used to fine tune structural, magnetic, and electronic proper- 
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Fig. 2.9. Phase diagram of Ca1-xNaxFe2As2 (left) [43], and Ca(Fe1-xCox)2As2 (right) [44]. 

 

 

Fig. 2.10. Phase diagram of CaFe2(As1-xPx)2 [45]. 

 

ties of this iron-based superconducting system. Substitution of trivalent R3+ (R 

represents La, Ce, Pr and Nd) ions for divalent Ca2+ tunes the electronic structure 

by doping extra electrons, which could suppress the antiferromagnetic phase and 

induce superconductivity. Fig. 2.11 is the phase diagram of Ca1-xRxFe2As2 (where 

R3+ is the rare-earth substitution) [46]. Surprisingly, the superconducting transition 
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Fig. 2.11. Phase diagram of rare-earth (La, Ce, Pr and Nd) doped CaFe2As2 [46]. 

The symbols’ meanings are as following: antiferromagnetic (AF) transitions (solid 

symbols), structural collapse transitions (half triangles), and small volume fraction 

superconducting transitions (no bulk superconductivity) (open symbols), CT phase 

transition on warming (right-pointing half triangles) and cooling (left-pointing half 

triangles) for Nd (open symbol) and Pr (closed symbol). Inset: scaling of the resultant 

critical concentration xc with ionic radii of each rare-earth species. 

 

 

Fig. 2.12. From Ref. [46].The relationship between CT phase and interlayer As-As anion 

separation. 
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Fig. 2.13. Phase diagram of the Ca1−xRxFe2As2 series showing the relationship of 

antiferromagnetic phase (AF), small volume fraction superconducting phase (SC), and 

collapsed tetragonal phase (CT) with electron doping (x) and effective chemical pressure 

(Δc) [46]. 

 

temperature is very high (as high as 47 K), and actually it is among the highest Tc 

in all the 122 system. However, the superconducting phase shown in the Fig. 2.11 

is not the bulk phase, but only occurs in a small volume fractions (less than 

10 %) [46]. The superconductivity has been shown to be intrinsic [47] and not due 

to impurity phase. Another interesting fact is that the CT phase occurs in the rare-

earth doped 122 system at ambient pressure in some of the rare-earth doping (Pr 

and Nd), but not the others (La and Ce). The key factor is the interlayer As-As 

anion separation. Both high pressure (0.6 GPa) CaFe2As2 and Pr- or Nd-doped 

CaFe2As2 crystals collapse once the interlayer As-As distance reaches a critical 
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value of ∼ 3.0 Å. In fact, the strong c-axis collapse is driven by an increasing 

overlap of interlayer As orbitals [46,48]. Fig. 2.13 [46] shows a universal phase 

diagram for Ca1−xRxFe2As2, which extends the charge doping-temperature phase 

diagram along a third effective chemical pressure axis. Note that the paramagnetic 

phases that arise upon substitution of the rare-earth dopants do not exhibit bulk 

superconductivity.  

 

2.3 Superconductivity 

 Understanding the nature of superconductivity in iron-based 

superconductors is one of the most important topics in condensed matter physics. 

It is thought that iron-based superconductors may not be conventional 

superconductors, such that the electron-phonon pairing mechanism may not be 

applicable in this family of materials. Hence, alternative microscopic mechanisms 

for iron-based superconductors have been proposed such as magnetically 

mediated Cooper-pairs, even though a final consensus still has not been achieved 

so far. In this section, we will discuss the pairing symmetry, promising pairing 

mechanism candidates and multi-gap superconductivity of iron-based 

superconductors. 
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2.3.1 Pairing symmetry 

 Understanding the pairing symmetry may help us to understand the pairing 

mechanism in iron-based superconductors. Although the exact nature of pairing is 

still under debate, there have been many theoretical and experimental approaches 

to unveil the pairing symmetry. The gap symmetry was in fact predicted 

theoretically to have s-wave symmetry, but with a sign change that occurs between 

different bands in the complex multiband electronic structure. This is the so-called 

s± state, calculated before experiments [49]. Later on, the sign unchanged s++ 

symmetry has been proposed as another promising candidate [50]. 

 On the experimental side, first of all, NMR experiments from Knight shift 

measurements of Co-doped BaFe2As2 [51] shows that 75As Knight shift decreases 

below Tc both along the crystal c-axis and the ab-plane. This finding is consistent 

with the singlet pairing of superconducting Cooper pairs (implying an even gap 

symmetry (that is, s-wave, d-wave and so on)), but in conflict with the p-wave triplet 

pairing symmetry.  

 Determining the nature of the orbital order parameter symmetry, however, 

is much more complex. This is because the s± and s++ share the same symmetry, 

and due to the nested multi-orbital nature, both s± and d-wave are nearly 

degenerate [52] making it difficult to distinguish the two different symmetries in 
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phase-sensitive experiments. To distinguish the above three pairing states: s±, s++ 

and d-wave, several experiments on selected samples have been carried out, for 

example: Scanning tunneling microscopy first on Fe(Se,Te) single crystals [53] 

and then on Co-doped BaFe2As2 122 materials [54] observes that the sign is 

reversed between the hole and the electron Fermi-surface pockets (s± -wave). 

ARPES measurements on optimal K-doped BaFe2As2 clearly shows nearly 

isotropic energy gaps and no sign of nodes [55], as shown in Fig. 2.14, which 

provides strong evidence for an s-wave symmetry. The observation of a collective 

magnetic-resonance mode in various materials [56,57] that appears below the SC 

transition temperature supports the sign change on different (or different part of) 

Fermi sheets. Scanning superconducting quantum interference device (SQUID) 

measurement on 1111 structure material found no evidence of half-integer flux 

quantum [58], and another experiment found substantial c-axis Josephson 

tunneling between Pb and Ba1−xKxFe2As2 [59], which suggests nonzero angular-

momentum pairing, such as d-wave, unlikely. Another experiment observed 

electromagnetic pulse-induced half-flux quantum jumps in a loop formed by Nb 

and polycrystalline 1111 structure superconducting sample [60]. This suggests 

that there are “π junctions” along the current path resulting from Cooper pairs 

tunneling between opposite-sign superconducting regions. And it could not occur 
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in d-wave symmetry since there would be many more jumps expected for a d-wave 

symmetry [7,61]. All of these experiments are consistent with the proposed s±-

wave pairing. 

 

 

Fig. 2.14. From Ref. [55]. ARPES measurements of superconducting Ba0.6K0.4Fe2As2. 

Left: superconducting-gap values at 15K shown on polar plot for the three Fermi 

surfaces as a function the of the Fermi surface angle θ (zero degree is along Γ-M). 

Right: three-dimensional plot of the superconducting-gap size (Δ) measured at 15 K on 

the three observed Fermi sheets (shown at the bottom as an intensity plot) and their 

temperature evolutions (inset). 

 

 Even though the s± symmetry seems more reasonable, we cannot conclude 

all the iron-based superconductors share the same pairing symmetry. In fact, there 

is compelling evidence that superconductor KFe2As2 has d-wave symmetry [62,63], 

and from theoretical predictions, some researchers believe that LiFeAs is possibly 

a spin-triplet p-wave superconductor [64]. 
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2.3.2 Pairing mechanism 

 Understanding the formation of Cooper pairs in iron-based superconductors 

is a hotly debated topic. For conventional superconductors (BCS superconductors), 

phonons are the key virtual excitations that turn the repulsive Coulomb interaction 

into a weak attraction to form Cooper pairs. The Cooper pairs then condense in 

the superconducting state. However, this phonon-mediated mechanism alone has 

been ruled out at the beginning, since electron-phonon coupling of 1111 [65] and 

122 [66] structure λ = 0.2 – 0.3 cannot explain the transition temperature Tc as high 

as 55 K and 38 K for the 1111 structure and the 122 structure, respectively. Also 

the phase competition between long-range antiferromagnetism and 

superconductivity suggests that magnetic fluctuations play a role in the Cooper 

pairing in the iron-based superconductors. The promising candidates for mediating 

Cooper pairing are spin and orbital fluctuations.  

 Following Ref. [67,68], we summarize the spin and orbital (charge) 

fluctuation pairing in a general case (considering a single band for simplicity). The 

gap equation for superconductivity can be written in the form (analogous to BCS 

gap equation): 

 ∆(𝒌) = −∑ 𝑉(𝒌 − 𝒌′)
tanh[𝐸(𝒌′)/2𝑘𝐵𝑇]

2𝐸(𝒌′)
∆(𝒌′)𝑘′  (2.1) 
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where E(k) is the quasiparticle excitation spectrum and V(q = k’ - k) is the pairing 

interaction. When the pairing is mediated by phonons, V(q) is negative (attractive) 

and this requires a constant sign of the gap Δ(k). When the pairing is mediated by 

spin or orbital (charge) fluctuations, on the other hand, the pairing interaction can 

in general take the form, 

 𝑉(𝒒) =
3

2
𝑉𝑠𝑝(𝒒) −

1

2
𝑉𝑐ℎ(𝒒) + (first order terms) (2.2) 

where Vsp and Vch (both positive) are contributions from spin and orbital (or charge) 

fluctuations, respectively. When 𝑉𝑠𝑝 ≫ 𝑉𝑐ℎ, which means spin fluctuation strongly 

dominate over (orbital) charge fluctuations, V(q) is positive, then the gap on the 

Fermi surface has to change its sign across the wave vector Q, which means either 

d-wave or s± symmetry. So, in the singlet channel, spin fluctuations exchange 

always leads to a repulsive interaction, and therefore can only realize sign-

changing superconducting states [49,69]. If this interaction is sufficiently strong at 

some particular momentum it will necessarily result in superconductivity. In the 

case of a single Fermi surface this superconductivity will necessarily be nodal, 

usually of a d-wave symmetry, like high-Tc cuprates [61,70,71]. On the other hand, 

in a multiband system there may be a possibility to avoid nodes, while still 

preserving a sign-changing structure [67]. 
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 Another approach as described in Ref. [50] using a five-orbital Hubbard-

Holstein model, moderate electron-phonon interaction, which is found in iron 

pnictides due to the relatively small Fe-ion oscillation (electron-phonon interaction), 

can induce the critical d-orbital fluctuations, without being prohibited by the 

Coulomb interaction. And the orbital fluctuations are enhanced by Coulomb 

interaction. These fluctuations give rise to the strong pairing interaction for the s-

wave superconducting state without sign reversal (s++ wave state), which is 

consistent with experimentally observed robustness of superconductivity against 

impurities [72]. 

 

2.3.3 Energy gaps 

 Since multiple 3d bands cross the Fermi level and form multiple Fermi 

sheets in iron-based materials, one could expect more than one superconducting 

gap in the superconducting state. And indeed, there are many electron- and hole-

doped 122 iron-based superconductors in which multiple superconducting gaps 

have been observed in experiments, for example, infrared spectroscopy [73–75], 

ARPES [55,76], point-contact Andreev-reflection spectroscopy [77,78] and 

scanning tunneling spectroscopy [79,80]. The ratio of 2Δ/kBTc is usually about 1 – 
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3 for the smaller gap(s) and 4 – 9 for the largest ones for a number of iron-based 

superconductors, as summarized in Ref. [81] (shown in Fig. 2.15), compared to 

the weak-coupling limit of 3.53 predicted by the BCS theory. 

 

 

Fig. 2.15. From Ref. [81]. The gap ratios, 2Δ/kBTc, for different families of single- and 

two-gap superconductors vs their superconducting transition temperatures (Tc) at 

ambient pressure. The ratio 2Δ/kBTc of iron-based superconductors (122, 1111, 111 and 

11 structures) is usually about 1 – 3 for the smaller gaps and 4 – 9 for the larger ones. 
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CHAPTER 3 

 

Experimental methods 

 

3.1 Fourier transform infrared (FTIR) spectroscopy 

3.1.1 Introduction 

Fourier transform infrared (FTIR) spectroscopy is a powerful technique and 

one of the most widely applied analysis methods for studying the interaction of 

infrared light with matter. The infrared region generally covers frequencies from 10 

cm-1 to 13000 cm-1. Based on the energy (or frequency), the infrared region is 

approximately divided into near-infrared (7000 cm-1 – 13000 cm-1), mid-infrared 

(600 cm-1 – 7000 cm-1) and far-infrared (10 cm-1 – 600 cm-1) regions. For 

superconductivity, magnetic and structural transitions in iron-based materials, the 

far-infrared and mid-infrared region are more important. FTIR spectroscopy can be 
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used to measure infrared properties of samples in the reflectance or transmission 

geometry. Clearly, for opaque bulk crystals, we obtain FTIR spectroscopy data in 

the reflectance geometry. 

The basic concept of a symmetric Fourier transform infrared spectrometer is 

based on Michelson’s design of an interferometer. The Michelson interferometer 

is a device that divides a beam of radiation into two paths and then recombines 

the two beams after a path difference has been introduced. So that interference 

between the two beams occurs. The variation of intensity of the beam emerging 

from the interferometer is measured as a function of path difference by a detector. 

Figure 3.1 shows a common form of Michelson interferometer. It consists of a light 

source, a beamsplitter, a detector and two mutually perpendicular plane mirrors, 

one of which is fixed and the other can move along an axis that is perpendicular to 

its plane. When a collimated beam is incident on the beamsplitter, the beam can 

be partially reflected to the fixed mirror and partially transmitted to the movable 

mirror. Ideally, the portion of both transmission and reflectance is 50%. When the 

beams return to the beamsplitter, they interfere and are again partially reflected 

and partially transmitted. Because of the effect of interference, the intensity of the 

beam passing to the detector depends on the difference in path of the beams (δ) 

in the two arms of the interferometer. The variation in the intensity of the beams 
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into the detector as a function of the path difference ultimately yields the spectral 

information in the Fourier Transform spectrometer. 

 

 

FIG. 3.1. Basic outline of a Michelson interferometer [82]. 

 

For monochromatic radiation, the interferogram can be expressed as [83]: 

 𝑆(𝛿) = 𝐵(𝜈0) cos 2𝜋𝜈0𝛿 (3.1) 

The 𝑆(𝛿) represents the ac signal measured by the detector, 𝐵(𝜈0) is the single 

beam spectral intensity, and 𝜈0 (cm-1) is the wavenumber (or inverse wavelength) 

of the monochromatic radiation, 𝜈0 = 1 𝜆0⁄ . Mathematically, 𝑆(𝛿)  is the cosine 

Fourier transform of 𝐵(𝜈0). 

In common rapid-scanning Michelson interferometers, the movable mirror is 

moved at a constant velocity 𝑉′(cm ∙ s−1) (a continuous-scan interferometer). So, 
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𝛿 = 2𝑉′𝑡, the actual interferogram is measured as a function of time 𝑆(𝑡), rather 

than a function of retardation 𝑆(𝛿). 

For broadband spectral sources, the interferogram can be represented by the 

integral [83]: 

 𝑆(𝛿) = ∫ 𝐵(𝜈) 𝑐𝑜𝑠 2𝜋𝜈𝛿 𝑑𝜈
∞

−∞
 (3.2) 

So that the other Fourier transform pair is 

 𝐵(𝜈) = ∫ 𝑆(𝛿) 𝑐𝑜𝑠 2𝜋𝜈𝛿 𝑑𝛿
∞

−∞
 (3.3) 

Where 𝑆(𝛿) is an even function, so Eq. (3.3) can be rewritten as 

 𝐵(𝜈) = 2∫ 𝑆(𝛿) 𝑐𝑜𝑠 2𝜋𝜈𝛿 𝑑𝛿
∞

0
 (3.4) 

The integral in Eq. (3.4) is infinite, but obviously, the interferogram is measured 

only over a finite mirror displacement  𝛿/2 ≤ 𝛿𝑚𝑎𝑥/2 . So that the maximum 

resolution will be ∆𝜈 = 1/𝛿𝑚𝑎𝑥 [84]. Instead of truncating the interferogram directly, 

the problem is solved using an appropriate apodization, an extrapolation applied 

to 𝑆(𝛿) . In the real measurement, several steps are usually taken from 

interferogram to spectrum: apodization, phase computation, zerofilling, Fourier 

transformation of the interferogram, and phase correction. The parameters in these 

steps should be well chosen and these steps are usually implemented by FTIR 

spectrometer software like OPUS. 
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3.1.2 Experimental equipment and technique 

A Bruker Vertex 80v vacuum spectrometer is a symmetric FTIR spectrometer 

as described in the previous section. This commercial instrument is designed for 

transmission measurements. An ultra-high vacuum chamber attached to the 

Bruker spectrometer and a reflectance unit (Fig. 3.2), both designed and 

constructed in-house, allow near-normal incidence reflectance measurements. A 

vertical translator was used to move the sample and a reference gold mirror into 

the beam path. A cryostat was used for low temperature measurements, and the 

sample and reference mirror were mounted on the cold finger. The vacuum 

obtained at room temperature is 2.8 × 10−8 mbar. The temperature range can be 

measured is 4.2 K – 400 K. An in situ gold evaporator is equipped for evaporating 

a thin gold layer (about 150 nm thickness) on the sample surface to eliminate 

systematic uncertainties due to the effect of beam path difference of sample and 

reference mirror, slow drifts in the intensity of the light source, and the geometry 

and roughness effect of the sample. 

The experimental steps include: 

1. Mount a sample on to a sample holder. 

2. Mount sample and reference mirror on the cold finger of the cryostat, and align 

sample and reference so that they have same tilt and same height. 
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FIG. 3.2. Optical design of reflectance unit (left) and arrangement of mirrors (right). 

 

3. Attach cryostat to the vacuum chamber and align the reflectance beam path on 

the center of the sample. 

4. Attach gold evaporator (with gold on tungsten wire) to the vacuum chamber. 

5. Pump the chamber to ultra-high vacuum. 

6. Measure the spectrum of the sample with respect to the gold reference from 

room temperature to lowest temperature 4.2 K. Then heat up back to room 

temperature. 

7. Evaporate gold on the surface of sample. Then measure spectrum from gold-

coated sample with respect to the reference from room temperature to 4.2 K. 

By dividing the ratios of the two reflectance spectra obtained in steps 6 and 7, 

we can get very accurate reflectance spectrum over the measured frequencies. 

With a combination of different light sources, beamsplitters, and infrared detectors, 

we measured spectra in a wide frequency range of 20 – 8000 cm-1.  
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3.1.3 Data analysis 

Reflectance itself is very useful information to study the optical phonons, 

superconducting gap energies, and electron-bosonic interactions. However, the 

optical constants cannot be read directly from reflectance spectrum. We usually 

need to perform Kramers-Kronig transformation to obtain the phase 𝜃(𝜔) 

(imaginary part of the complex reflectance), then we can calculate the optical 

constants, e.g. complex optical conductivity and complex dielectric functions. 

The complex reflectance is defined by  

 𝑟̃(𝜔) = 𝑟(𝜔)𝑒𝑖𝜃(𝜔) (3.5) 

The measured reflectance amplitude is 𝑅(𝜔) = 𝑟(𝜔)2. The dispersion relation for 

the reflectance and the phase is [85]: 

 𝜃(𝜔) =
𝜔

𝜋
𝑃 ∫

ln𝑅(𝜔′)𝑑𝜔′

𝜔2−𝜔′2

∞

0
 (3.6) 

Clearly, we don’t have spectrum of all the frequencies needed in the Kramers-

Kronig transformation to calculate the phase 𝜃(𝜔), and we need to do reasonable 

extrapolations. 

 For a typical metal, at low frequencies, Hagen-Rubens extrapolations can 

be applied. Hagen-Rubens regime is defined by the condition 𝜔𝜏 ≪ 1 (τ is the 

relaxation time), which means the optical properties are mainly determined by the 

dc conductivity, and the real part of conductivity 𝜎1 is frequency independent: 𝜎𝑑𝑐 ≈
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𝜎1 ≫ 𝜎2 . Then reflectance R can be written as 𝑅(𝜔) ≈ 1 − (
2𝜔

𝜋𝜎𝑑𝑐
)
1/2

. Since 

temperature dependent dc conductivity can be measured from resistivity data, this 

extrapolation can be done very accurately. For a full-gap superconductor, at zero 

temperature, the reflectance is 1 below the energy gap. At finite temperature below 

Tc, the low frequency extrapolation 𝑅(𝜔) ≈ 1 − 𝐴(𝜔)4  [86] or 𝑅(𝜔) ≈ 1 −

𝐴(𝜔)2 [87] can be used. Since the data is obtained down to very low frequencies, 

the extrapolation towards zero frequency doesn’t play an important role and hardly 

changes the optical conductivity. This is not the case for the high frequency end. 

Typically, beyond the measurement range, the extrapolation of 𝑅(𝜔) usually has 

a transparent regime 𝑅(𝜔) ∝ 𝜔−2, then followed by free electron behavior 𝑅(𝜔) ∝

𝜔−4  [84,88]. However, depending on the exact details of the how high frequency 

extrapolation is applied, the infrared conductivity could change by about 10%. In 

order to get more accurate infrared reflectance phase, we combine the results of 

higher frequency ellipsometry data (see section 3.2) and the infrared reflectance 

measurements. We use ellipsometry results as wide-range anchor points, and thus 

do not rely on the details of high frequency extrapolation of measured reflectance. 

By combining reflectance and ellipsometry data we obtain very accurate infrared 

optical conductivity [89,90]. The numerical calculation was implemented in 

MATLAB. 
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 After calculating the phase 𝜃(𝜔), optical constants can be obtained. The 

complex refractive index 𝑁̃(𝜔) = 𝑛(𝜔) + i𝜅(𝜔) can be expressed in terms of 𝑟(𝜔) 

and 𝜃(𝜔): 

 𝑛(𝜔) =
1−𝑟(𝜔)2

1−2𝑟(𝜔) cos𝜃(𝜔)+𝑟(𝜔)2
 (3.7) 

 𝜅(𝜔) =
2𝑟(𝜔) sin𝜃(𝜔)

1−2𝑟(𝜔) cos𝜃(𝜔)+𝑟(𝜔)2
 (3.8) 

And the complex optical conductivity 𝜎̃(𝜔) = 𝜎1(𝜔) + i𝜎2(𝜔) is: 

 𝜎1(𝜔) =
𝑛(𝜔)𝜅(𝜔)𝜔

2𝜋𝜇1
 (3.9) 

 𝜎2(𝜔) = (1 −
𝑛(𝜔)2−𝜅(𝜔)2

𝜇1
)

𝜔

4𝜋
 (3.10) 

the complex dielectric function 𝜀̃(𝜔) = 𝜀1(𝜔) + i𝜀2(𝜔) is: 

 𝜀1(𝜔) =
𝑛(𝜔)2−𝜅(𝜔)2

𝜇1
 (3.11) 

 𝜀2(𝜔) =
2𝑛(𝜔)𝜅(𝜔)

𝜇1
 (3.12) 

 

3.2 Spectroscopic ellipsometry  

3.2.1 Introduction 

Ellipsometry is a very sensitive measurement technique that uses polarized 

light to characterize bulk materials, thin films, surfaces, and material microstructure. 

Ellipsometry measures the change in polarization state of an electromagnetic wave 

reflected from (or transmitted through) the surface of a sample. In contrast to 
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standard reflectivity studies which only record the power reflectance, two 

independent parameters (usually expressed as Ψ  and Δ ) are measured, thus 

allowing a direct evaluation of the complex optical constants. Furthermore, as the 

magnitude of the reflected light does not enter the analysis, ellipsometric studies 

do not require reference measurements and thus have higher accuracy. 

The wavelengths used in ellipsometry measurements usually cover the near-

infrared, visible and ultra-violet spectral ranges. During a measurement, a single 

wavelength is selected by a monochromator. Other wavelengths are selected as 

the measurement proceeds in time. 

 Fig. 3.3 shows the geometry of an ellipsometric reflectance experiment. A 

linearly polarized light beam reflects from a sample surface, and produces an ellip- 

 

 

FIG. 3.3. Geometry of an ellipsometric reflectance experiment [91]. 
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FIG. 3.4. Reflection and transmission of a plane wave at the planar interface [92]. 

 

tically polarized light. Electric fields parallel and perpendicular to the plane of 

incidence are considered p- and s- polarized, respectively. The measured 

ellipsometric coefficients are expressed as Ψ and Δ. They are related to the ratio 

of Fresnel reflectance coefficients for p- and s- polarized light 𝑅̃𝑝 and 𝑅̃𝑠: 

 𝜌̃ =
𝑅̃𝑝

𝑅̃𝑠
= tanΨ𝑒𝑖Δ (3.13) 

where 𝑅̃𝑝 and 𝑅̃𝑠 are expressed: 

 𝑅̃𝑝 =
𝑁̃1 cos𝜑2−𝑁̃2 cos𝜑1

𝑁̃1 cos𝜑2+𝑁̃2 cos𝜑1
 (3.14) 

 𝑅̃𝑠 =
𝑁̃1 cos𝜑1−𝑁̃2 cos𝜑2

𝑁̃1 cos𝜑1+𝑁̃2 cos𝜑2
 (3.15) 

As indicated in Fig. 3.4, for an optical plane wave incident on the planar interface 

between two media (𝑁̃ = 𝑛 + i𝑘), Snell’s law gives: 

 𝑁̃1 sin 𝜑1 = 𝑁̃2 sin 𝜑2 (3.16) 
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For a typical measurement, medium 1 is air, medium 2 is a sample. The information 

of optical constants of the sample are related to Ψ and Δ in this way. 

Fig. 3.5 shows a ellipsometer configuration with a rotating analyzer. Unpolarized 

light is produced by a light source and then sent through a polarizer. The polarizer 

chooses a preferred electric field orientation to pass through. The polarizer axis is 

oriented between the p- and s- planes. The linearly polarized light reflects from the 

sample surface and becomes elliptically polarized, then travels through a 

continuously rotating analyzer. Depending on the analyzer orientation relative to 

the elliptical polarized state coming from the sample, the transmitted light goes into 

the detector. The detector then converts light to electronic voltage, and determines 

the reflected polarization. This information is compared to the known input 

polarization to determine the polarization change caused by the sample reflection. 

Then the two important parameters Ψ and Δ will be obtained. This is typically how 

the ellipsometry measures Ψ and Δ. 

 

FIG. 3.5. Common ellipsometer configuration with rotating analyzer and the signal 

received from the detector [91]. 
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To determine the sample material’s properties of interest, such as film 

thickness and optical constants, a model is usually needed. The model is used to 

calculate the predicted response from Fresnel’s equations which describe each 

material with thickness and optical constants. Through the fitting procedure, the 

unknown optical constants are determined from experimental data sets.  

 

3.2.2 Experimental equipment and techniques 

A Woollam variable-angle spectroscopic ellipsometer (VASE) was used for the 

ellipsometry measurements. The ellipsometer consists of a light source (with a 

monochromator), input unit (including a polarizer stage and an AutoRetarder), 

sample stage (on the top of goniometer), and a detector (mounted on a rotational 

arm). The measured photon energies are in the range 0.6 eV – 6 eV. 

For cryogenic measurements, an ultra-high vacuum chamber is needed to 

prevent ice formation on the surface of a sample. We built an ultra-high vacuum 

chamber to enable cryogenic ellipsometry measurements. The experimental setup 

is shown in Fig. 3.6. We used a custom-made UV quartz tube, which has high UV 

and visible transmission, that is fused to a stainless steel conflat flange. The 

cylindrical symmetry of the quartz tube allows us to choose a wide range of angles 
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of incidence for ellipsometry measurement. The quartz tube is attached to the 

bottom of the stainless-steel vacuum chamber. We use a vertical translation stage 

to select the vertical height of the sample on the cryostat. This setup sits on top of 

a horizontal translation and tilt stage, so that the sample can be tilted and 

translated horizontally, and in the end the sample surface is aligned with the 

rotational axis of the goniometer (rotation stage).  

The quartz tube has anisotropic strain on the surface when the tube is in 

vacuum. The retardance effect of the quartz tube is significant. In order to quantify 

the retardance effect of the quartz tube, we measure a known SiO2/Si reference 

sample inside the tube to account for the change of polarization state due to the 

quartz tube. 

 This experiment needs accurate optical alignment: 

a. The rotation axis of manual goniometer has to be perfectly aligned with the 

rotation axis of auto goniometer of the ellipsometer. 

b. The surface plane of a sample needs to be perfectly aligned with the surface 

of known reference SiO2/Si wafer in 3-D space (the surface planes needs to be 

parallel and have same height on cryostat). 

c. The sample surface should be aligned with rotation axis of goniometer. 
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With this setup, we achieved a vacuum of 1.2 × 10−8 mbar at room temperature 

and the temperature range that can be measured is 4.2 K – 400 K. 

 

 

FIG. 3.6. Up: cryogenic ellipsometry setup 3-D model [93]. Down: the lab built setup. The 

rotation stage, horizontal translation and tilt stage, vacuum chamber and the vertical 

translation stage (vacuum gauge, turbo pump, cryostat) are designed and built for 

cryogenic measurements. 
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3.2.3 Data analysis 

We use WVASE32 software to analyze the ellipsometry data and obtain optical 

constants. For a typical real material, an exact equation of optical constants cannot 

be written and the answer is over-determined with hundreds of experimental data 

points for a few unknowns. 

 

 

FIG. 3.7. Flow chart of ellipsometry data analysis using WVASE32 [91]. 

 

Fig. 3.7 shows the flow chart of data analysis using WVASE32. The procedure 

is as follows: After the spectroscopic ellipsometry data is acquired, a layered model 

is constructed to describe the sample. The model is used to calculate the predicted 

response from Fresnel’s equations which describe each layer of material with 

thickness and optical constants. Unknown quantities will be given an initial 
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estimate for calculation. Then the calculated values are compared to experimental 

data set. Any unknown material properties can then be varied to improve the match 

between experimental data and calculation. Through multiple iterations, one can 

find the best match between the model and the experiment. Usually, the mean 

squared error will be used as an indicator to quantify the difference between 

experimental data and the model. In the end, the best fit is achieved with least 

mean squared error.  

For a special case like a bulk isotropic material, the pseudo-dielectric function 

has an exact solution [92]: 

 〈𝜀̃〉 = 〈𝜀1〉 + 𝑖〈𝜀2〉 = sin2 𝜑 {1 + [
1−𝜌̃

1+𝜌̃
]
2

} tan2 𝜑 (3.17) 

For a uniaxial crystal (for example 122 iron-based materials in the tetragonal 

crystal structure) the formulas relating the complex dielectric function to the 

measured ellipsometric coefficients are more complicated. The detailed discussion 

of these formulas is deferred to appendix A. 
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CHAPTER 4 

 

Rare-earth doped CaFe2As2 

 

4.1 Introduction 

The investigation of magnetic, structural, transport, and superconducting 

properties of pure and doped crystals of the 122 family of iron arsenides AFe2As2 

(A = Ba, Ca, Sr) has played a pivotal role in furthering our understanding of the 

fascinating many-body interactions and phase transitions observed in the iron 

pnictides and iron chalcogenides [94–96]. The parent compounds in the 122 family 

go through a tetragonal-to-orthorhombic structural transition coupled with 

antiferromagnetic spin-density-wave (SDW) order at low temperatures [94–96]. In 

CaFe2As2, pressure-induced superconductivity only emerges under non-

hydrostatic experimental conditions [36,37,97]. Under hydrostatic pressure, 
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instead of superconductivity, a so-called collapsed tetragonal (CT) phase occurs 

resulting in a dramatic c-axis reduction (about 10%) without breaking 

symmetry [38,98]. CaFe2As2 is much more sensitive to stress anisotropy 

compared to BaFe2As2 and SrFe2As2 which also show pressure-induced 

superconductivity and CT phase but at much higher pressure [42,99–101]. 

The CT phase, which is driven by interlayer As-As separation [46,48], can also 

be stabilized by chemical substitution in CaFe2As2 at ambient pressure. The 

antiferromagnetism in CaFe2As2 is suppressed by appropriate doping, for example, 

by substituting rare-earth Pr and Nd on the Ca site [46], Rh on the iron site [102] 

or phosphorus on the As site, [103] leading to the emergence of the CT phase. 

Depending upon the trivalent rare-earth ion substitution in the system [46], 

CaFe2As2 can maintain either the uncollapsed tetragonal (UT) structure with La 

substituent, or undergoes a phase transition at low temperature from the UT 

structure to the CT structure with Nd or Pr substituents. Hence, rare-earth doped 

CaFe2As2 crystals provide us the chance to study (in a controlled manner) the UT 

and CT phases at ambient pressure [104–108]. The rare-earth substituents are 

believed to dope electrons into the system in addition to varying the chemical 

pressure due to their different ionic radii compared to the calcium ion. In the CT 

phase, Fe local moments are quenched [38,105], spin fluctuations are 
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suppressed [39], and electron correlations are believed to be reduced [40]. Angle-

resolved photoemission spectroscopy (ARPES) results show that there is 

reconstruction of the Fermi surface in the CT structure in strained crystals of 

CaFe2As2, including the complete disappearance of the hole pocket at the zone 

center (Г point) [41,109], consistent with theoretical expectation [48,110]. However, 

very recent ARPES experiments on Pr-doped CaFe2As2 show that across the CT 

phase transition, the hole pocket at Г point does not disappear completely [111], 

which is different from the CT phase in the parent compound under internal 

strain [41,109]. The added diversity in the rare-earth doped CaFe2As2 system 

provides us the opportunity to study with optical spectroscopy the nature of many-

body interactions. Unlike previous infrared work [112], we investigate both 

Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 crystals to compare the properties of the 

UT phase of the former material with the UT and CT phases of the latter material.    

 In this chapter [90], the frequency and temperature dependent ab-plane 

optical constants of Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 crystals are obtained 

through optical spectroscopy. An interesting finding is that the scattering rate 

saturates above ~ 200 K in the UT structure in La-doped and Pr-doped CaFe2As2. 

However, the resistivity continues to increase above 200 K which we find to be a 

consequence of the loss of mobile carriers. The loss of Drude spectral weight of 
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mobile carriers with increasing temperature is seen in a wide temperature range in 

the uncollapsed tetragonal phase, and this spectral weight is recovered about 0.5 

eV, much larger than the Fermi energy scale in these semi-metals. The scattering 

rate in La-doped CaFe2As2 between 5 K and 150 K is dominated by a quadratic 

temperature dependent term ascribed to significant electron-electron interactions. 

The frequency dependence of the scattering rate obtained from the extended 

Drude analysis is in accord with its temperature dependence. We document the 

impact of the structure collapse transition on the infrared properties of the Pr doped 

system, and also compare these properties with those of the UT phase of La doped 

CaFe2As2. We find that the plasma frequency and scattering rate of free carriers 

decrease across the CT phase transition. Optical interband transitions are also 

affected by electronic structure reconstruction across CT phase transition. 

 

4.2 Samples and experiments 

Single crystals of Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 were grown using the 

FeAs self-flux method [46]. At these rare-earth doping levels, the spin density wave 

transition is suppressed. The temperature-dependent resistivity data for 

Ca0.8La0.2Fe2As2 shows metallic behavior with no signs of a magnetic or structural 
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phase transition. In Pr-doped sample, the CT phase occurs below 70 K with a 

subtle kink in the resistivity curve and a dramatic change in the Hall coefficient [46]. 

The size of Ca0.8La0.2Fe2As2 crystals is as large as 10×10×2 mm3, and the size of 

Ca0.85Pr0.15Fe2As2 crystals is as large as 5×5×1 mm3. It is easy to obtain relatively 

flat and shiny ab-plane surfaces by cleaving.  

Near-normal incidence reflectance measurements on the ab-plane surfaces 

were performed with the Bruker Vertex 80v Fourier Transform Infrared (FTIR) 

spectrometer in the frequency range 60 cm-1 - 8000 cm-1 and temperature range 5 

K – 300 K (Appendix A). An in situ gold evaporation method similar to that 

described in Ref. [113] was used to obtain absolute reflectance. Ellipsometry 

measurements were performed with a Woollam variable-angle spectroscopic 

ellipsometer (VASE) in the frequency range 4800 cm-1 - 40000 cm-1 and 

temperature range 5 K – 300 K (Appendix A). In this frequency range, the complex 

optical conductivity was obtained directly from the measured ellipsometric 

coefficients. The infrared conductivity at lower frequencies is obtained by Kramers-

Kronig (KK) transformation on reflectance constrained by ellipsometry results [89]. 

Both Hagen-Rubens and Drude extrapolations [84] constrained by dc conductivity 

of the crystals were employed at very low frequencies in order to perform KK 
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transformations. The optical constants obtained in the frequency range of interest 

are hardly affected by the choice of the very low frequency extrapolation function. 

 

4.3 Results and discussion 

4.3.1 Optical conductivity and spectral weight 

The real part (σ1) of the optical conductivity is shown in Fig. 4.1. The 

Ca0.8La0.2Fe2As2 crystal shows metallic behavior at low temperatures with a clear 

Drude-like feature at low frequencies. However, at higher temperatures, there is a 

non-monotonic frequency dependence that appears to depart from Drude-like 

conductivity. For the Pr-doped CaFe2As2 crystal, spectra have been measured 

between 300 K and 100 K in the UT phase, and at 40 K and 5 K in the CT phase. 

The optical conductivity in both phases is consistent with metallic behavior. The 

occurrence of the CT phase transition is apparent in the shift of the infrared-active, 

Fe-As phonon center frequency (Appendix B).  

We calculate the spectral weight (SW) as a function of frequency via the 

integral of σ1 for both materials:  

 SW(𝜔) = ∫ 𝜎1(𝜔′)𝑑𝜔′
𝜔

0
 (4.1) 
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This integral is calculated for optical conductivities at different temperatures. For 

conducting materials at low frequencies, the spectral weight is proportional to the 

square of the plasma frequency, and hence the number of charge carriers in the 

material [84]. If we assume the charge carriers have masses equal to the free 

electron mass, we may rewrite the spectral weight in terms of an effective number 

of carriers 𝑁𝑒𝑓𝑓 per formula unit in a primitive cell V0:  

 𝑁𝑒𝑓𝑓(𝜔) =
2𝑚𝑒𝑉0

𝜋𝑒2 ∫ 𝜎1(𝜔′)𝑑𝜔′
𝜔

0
 (4.2) 

The effective number of carriers are shown in Fig. 4.2. It is clear that at lower 

frequencies, the spectral weight decreases with increasing temperature. Phase 

space restrictions for the hole-like bands in these semi-metals due to the Pauli 

exclusion principle may contribute to spectral weight redistribution on the order of 

the Fermi energy (~ 0.05 eV or 400 cm-1). However, we note that the total spectral 

weight is conserved about 4000 cm-1 (~ 0.5 eV) for the data in the UT phase. This 

spectral weight recovery energy scale is about one order of magnitude larger than 

the Fermi energy scales (~ 0.02 eV to 0.07 eV) of the electron and hole carriers in 

the rare-earth doped CaFe2As2. Interactions between charge carriers redistribute 

the spectral weight to energies much higher than the Fermi energies. We also note 

that the energy scale over which the spectral weight is recovered is not too different 

from that seen in the cuprates (~ 2 eV) [114]. In our work, the Fermi energy is 
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defined from the Fermi level to the bottom of the electron-like bands (for electron 

pockets) or the top of the hole-like bands (for hole pockets). In other words, the 

Fermi energy is either the occupied bandwidth of the electron-like bands or the 

unoccupied bandwidth of the hole-like bands. 

 

 
FIG. 4.1. The real part of the ab-plane optical conductivity σ1 is plotted as a function of 

frequency at different temperatures for (a) Ca0.8La0.2Fe2As2 and (b) Ca0.85Pr0.15Fe2As2. 
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FIG. 4.2. Effective number of carriers Neff at different temperatures for (a) 

Ca0.8La0.2Fe2As2 and (b) Ca0.85Pr0.15Fe2As2. 

 

We fit the complex conductivity with the Drude-Lorentz model: [84] 
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where the first term is the Drude component which represents free-carrier 
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associated with localized charges and/or optical interband transitions. In the UT 

structures of both samples, we find that only one Drude term and one overdamped, 

mid-infrared Lorentz oscillator is sufficient for a very good low-frequency fit 

(Appendix C). This fitting procedure for the infrared conductivity has been used 

previously in the literature [115,116]. Due to the multiband nature of iron-based 

materials [95,96], it is usually more difficult to interpret the infrared conductivity. 

Other researchers have fit their data with two Drude terms in which one is narrow 

and the other is very broad [117–119]. However, the two Drude model does not 

provide satisfactory fits to our infrared data at higher temperatures as we show in 

Appendix C. Moreover, the scattering rate parameter of the broad Drude appears 

to be unphysical [116] because it is several times the value of the Fermi energies 

of the electron and hole carriers.  

4.3.2 Free carrier response 

We first focus on the Drude component which represents the free-carrier 

response. The square of the plasma frequency 𝜔𝑝
2 and scattering rate 1/(2𝜋𝑐𝜏) 

normalized to the respective values at 300 K are shown in Figs. 4.3(a) and (b) as 

a function of temperature. A discontinuity in the magnitude of the plasma frequency 

occurs below CT transition temperature of Pr-doped CaFe2As2, which implies a 
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discontinuous reduction of carrier density. This is consistent with the ARPES 

results on Ca0.85Pr0.15Fe2As2 which show a significant reduction of a large hole 

pocket and the disappearance of the small hole pocket after structure 

collapse [111]. Recently, another structure collapse material CaFe2(As0.935P0.065)2 

has been studied, as described in Ref. [120]. In CaFe2(As0.935P0.065)2, a noticeable 

suppression of reflectance occurs between 1000 cm-1 and 3500 cm-1, resulting in 

a deeper valley about 1500 cm-1 in σ1 in the CT phase. This behavior is nominally 

different from that observed in Ca0.85Pr0.15Fe2As2 in our work, probably due to 

differences in details of the electronic structure. However, similar to 

Ca0.85Pr0.15Fe2As2, in CaFe2(As0.935P0.065)2 the (total) plasma frequency of Drude 

contribution decreases across CT phase transition. 

Remarkably, scattering rate of both La- and Pr-doped CaFe2As2 shows 

saturation above 200 K clearly indicating the attainment of the Mott-Ioffe-Regel 

limit of metallic transport. However, the resistivity continues to increase above 200 

K as shown in Ref. [46]. We find this to be a consequence of the decrease in 

number density of mobile carriers and is directly seen in the decrease of the Drude 

spectral weight (square of the plasma frequency) in Fig. 4.3(a). The decrease of 

the Drude spectral weight with increasing temperature is consistent with the model 
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independent analysis shown in Figs. 4.2(a), (b) and discussed in the preceding 

section. 

 

 

 
FIG. 4.3. Temperature dependence of the parameters of the Drude term (a) 𝜔𝑝

2 and (b) 

1/(2πc𝜏) normalized to the respective values at 300 K for Ca0.8La0.2Fe2As2 (blue 

squares) and Ca0.85Pr0.15Fe2As2 (red circles). Dashed lines are guides to the eye. 
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systems: [121] 

 𝜌2𝐷 =
2𝜋ℏ𝑐0

𝑒2𝑘𝐹𝑙

1

𝑀
 (4.4) 

We find that kFl ~ 1 for Ca0.8La0.2Fe2As2 at 300 K, given 𝜌2𝐷 = 330μΩ cm obtained 

from the dc limit of σ1, c0 ~ 5.8 Å is the separation of Fe-As layers, and M is the 

number of Fermi surface sheets (which is 4 here). These materials can be 

considered quasi-two dimensional systems with nearly cylindrical Fermi surfaces 

based on the photoemission data of Ref. [111] and Ref. [122]. Hence eq. (4.4) can 

be used to analyze charge transport in these materials. Yet another criterion for 

the Mott-Ioffe-Regel limit is that the mean free path becomes comparable to the 

lattice constant. One can estimate the mean free path (l) of the charge carriers 

from 𝑙 = 𝑣𝐹𝜏. The average Fermi velocity estimated from ARPES in La-doped 

CaFe2As2 is ~ 2×106 cm/s which translates to a mean free path of 2.7 Å. This mean 

free path is smaller than the a-axis lattice constant of 3.92 Å. For the Pr-doped 

sample, similar calculations to those given above yield kFl ~ 2, and a mean free 

path of 3.5 Å which is comparable to the lattice constant of 3.91 Å [46]. From 

ARPES results [111,122], the Fermi energy of the mobile carriers i.e. occupied 

(unoccupied) bandwidths for electrons (holes) are between 0.02 eV and 0.07 eV 

in UT La- and Pr- doped CaFe2As2 which are comparable to the saturated 

scattering rate ℏ/𝜏 of 0.05 eV for the former and 0.035 eV for the latter material. It 
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is generally understood that for the quasiparticle picture in Fermi liquid theory to 

be applicable, ℏ/𝜏 should be much smaller than the Fermi energy. Since ℏ/𝜏 is 

similar to the Fermi energy of the carriers in the various bands, the quasiparticle 

picture is hardly valid for transport above 200 K. 

Our observations of scattering rate saturation near the Mott-Ioffe-Regel limit 

that is not directly apparent in the dc resistivity in rare-earth doped CaFe2As2 are 

reminiscent of the findings of Hussey et al in the cuprate La2-xSrxCuO4 [123]. These 

authors suggest that resistivity continues to increase with increasing temperature 

beyond the Mott-Ioffe-Regel limit because of the loss of Drude spectral weight due 

to dominance of electronic correlations in charge transport. It therefore follows that 

the iron arsenides may be considered as “bad metals”. This does not contradict 

the observation of resistivity saturation about 600 K in the SrFe2As2 system 

because this phenomenon occurs at resistivities that are beyond the Mott-Ioffe-

Regel limit of metallic transport [124]. 

The temperature dependence of the scattering rate of Ca0.8La0.2Fe2As2 and 

Ca0.85Pr0.15Fe2As2 is shown in Fig. 4.4. We fit the UT Ca0.8La0.2Fe2As2 scattering 

rate to the form a+bT+dT2. Even though the quadratic term dominates, the fit can 

be improved with the addition of a linear temperature dependent term. The 

coefficient of the linear term “b” is 0.56 K-1cm-1. If we assume that the linear term 
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arises from electron-phonon scattering, then the dimensionless electron-phonon 

coupling constant λ can be calculated from the equation [125]: 

 
ℏ

𝜏
= 2𝜋𝜆𝑘𝐵𝑇 (4.5) 

This gives λ = 0.13 remarkably consistent with previous results that show weak 

electron-phonon coupling for ab-plane transport in the 122-iron arsenides [124].  

 

 

FIG. 4.4. Temperature dependence of the scattering rate 1/(2πc𝜏) of the Drude term of 

Ca0.8La0.2Fe2As2 (blue squares) and Ca0.85Pr0.15Fe2As2 (red circles), and fit 

Ca0.8La0.2Fe2As2 scattering rate to the form a+bT+dT2 (green line). 
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La0.67Sr0.33MnO3, and CaRuO3 [127,128]. The CT phase transition in Pr-doped 

CaFe2As2 at ~ 70 K with a hysteresis of ~ 30 K [46] precludes the preceding 

quantitative analysis, but we note that the temperature dependence of the 

scattering rate above 70 K closely resembles the data for La-doped CaFe2As2. 

However, below the CT phase transition, the normalized scattering rate of Pr-

doped CaFe2As2 is relatively lower compared to that of the UT La-doped CaFe2As2. 

We attribute this to decreased electronic scattering upon reduction of the Fe 

magnetic moment in the CT phase [105]. 

We analyze the quadratic temperature dependence of the scattering rate with 

the Umklapp electron-electron scattering model of Fermi liquid theory [129]:  

 
ℏ

𝜏
= 𝐴

(𝑘𝐵𝑇)2

𝐸𝐹
 (4.6) 

We estimate the dimensionless constant A ~ 4 assuming an average Fermi energy 

EF ~ 30 meV in La-doped CaFe2As2. This value of A is somewhat larger than that 

obtained for Co-doped BaFe2As2 in Ref. [129] indicating comparatively enhanced 

effective Umklapp scattering in rare-earth doped CaFe2As2. A quadratic 

temperature dependence of the scattering rate has been seen before in Co-doped 

BaFe2As2 up to room temperature without saturation [129,130] and this is likely 

due to its larger Fermi energy. We expect the scattering rate to saturate in Co-

doped BaFe2As2 if heated above room temperature. Clearly, even higher 
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temperatures are required for attaining the Mott-Ioffe-Regel limit in conventional 

metals that possess larger Fermi energy [121]. Saturation of scattering rate has 

been observed by infrared spectroscopy in the iron chalcogenide FeTe0.55Se0.45, a 

system with a low Fermi energy and strong electronic correlations [131]. In the La-

doped CaFe2As2 we see a crossover from a predominantly quadratic temperature 

dependent scattering rate below 150 K indicating the presence of coherent, mobile 

charges to saturation of the scattering rate above 200 K associated with incoherent 

transport. It appears that the main reason for the saturation of the scattering rate 

in the rare-earth doped CaFe2As2 systems is enhanced electron-electron 

scattering that increases with temperature leading to a breakdown of the 

quasiparticle picture. The large scattering rate is due to a combination of reasons: 

low Fermi energy of charge carriers; both normal and Umklapp scattering events 

between electrons and holes contributing to enhanced dissipation; and coherent 

carriers scattering off incoherent charges. At low temperatures, where the 

quasiparticle concept may be valid as exemplified by eq. (4.6), there is significant 

spectral weight in the over-damped Lorentz oscillator (see the oscillators labeled 

Lorentzian 1 in Appendix C). Some of this spectral weight is due to incoherent and 

localized charges that coexist with mobile charges. Moreover, an increasing 

number of mobile charges become incoherent with increasing temperature as seen 
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by the decrease of Drude spectral weight with increasing temperature, and that 

this spectral weight is recovered at an energy scale of ~ 0.5 eV which is much 

larger than the Fermi energies of the electrons and holes. Taken together, the 

observations in our work make it difficult to classify the rare-earth CaFe2As2 system 

as a conventional Fermi liquid. 

 In order to confirm the results of the preceding analysis based on fits to the 

Drude-Lorentz model, we perform the extended Drude model analysis to examine 

the frequency dependence of scattering rate. Here we use the form [132]: 

 
1

𝜏(𝜔)
= −

𝜔𝑝
2

𝜔
𝐼𝑚 (

1

𝜀̃(𝜔)−𝜀𝐻
) (4.7) 

where 𝜔𝑝
2 is calculated from the integral of σ1 up to 500 cm-1, 𝜀̃(𝜔) is the complex 

dielectric function and 𝜀𝐻 represents the contribution of higher energy interband 

transitions. Note that the choice of upper frequency cutoff in the integral used for 

calculating 𝜔𝑝
2 does not affect the frequency dependence of the scattering rate. Fig. 

4.5(a) and (b) show frequency dependent scattering rate of La- and Pr-doped 

CaFe2As2 respectively for representative temperatures. At high temperatures (like 

200 K for Ca0.8La0.2Fe2As2 shown in Fig. 4.5(a)), the scattering rate hardly shows 

frequency dependence, which is consistent with saturation of scattering rate as a 

function of temperature that is extracted from fits of the conductivity to a one Drude-

one Lorentz model. Low temperature scattering rate follows a quadratic form 
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C+Bω2 [133], which gives similar coefficient B for both samples. A linear frequency 

dependent term is not included because it does not improve the fits. Such a term 

may be relevant at frequencies below the 60 cm-1 lower cutoff of our data. 

According to Ref. [133], the upper cutoff frequency for the quadratic fit at each 

temperature is determined by noting that ℏ𝜔 should be smaller or comparable to 

2𝜋𝑘𝐵𝑇. We also note that the temperature dependence of the low frequency limit 

for 1/𝜏(𝜔, 𝑇) based on the extended Drude model is essentially the same as the 

temperature dependence of the scattering rate obtained from the Drude-Lorentz 

model and plotted in Fig. 4.4. If we compare the coefficients of the temperature 

dependent quadratic term (from Drude-Lorentz analysis and extended Drude 

analysis) and the frequency dependent quadratic term (from extended Drude 

analysis) of the scattering rate in La-doped CaFe2As2, and use the scattering rate 

form [133,134]: 

 
1

𝜏
(𝜔, 𝑇) ∝ 𝐴0[(ℏ𝜔)2 + (𝑝𝜋𝑘𝐵𝑇)2] (4.8) 

we get p = 1.53. This value of p is very close to the value obtained in 

BaFe1.8Co0.2As2 and  underdoped cuprates [134,135]. The value of p should be 2 

for a conventional Fermi liquid. 
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FIG. 4.5. Frequency dependent scattering rate of (a) La- and (b) Pr-doped CaFe2As2. 

Scattering rate of both samples shows saturation at high temperatures (scattering rate is 

flat and frequency independent). For temperatures ≤ 100 K, the quadratic term 

coefficient B is temperature independent in La-doped CaFe2As2, and is similar in 

magnitude to that in the Pr-doped sample in the UT phase at 100 K. However, in the Pr-

doped sample in the CT phase (40 K), the scattering rate curve is clearly different from 

that in the UT phase (100 K), which indicates reconstruction of the Fermi surface. 
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4.3.3 Interband transitions 

Next we discuss the physical interpretation of the Lorentz oscillators that 

represent interband transitions. Unlike the UT phase, a Lorentz oscillator is 

required to fit the hump in σ1 about 400 cm-1 in the CT phase in Ca0.85Pr0.15Fe2As2 

as shown in Fig. A5 in Appendix C. According to Ref. [111], at zone center, the β 

band shifts down below Fermi energy across CT phase transition, leaving the α 

band still above the Fermi energy. The gap between the top of the two bands is 

about 30 meV (240 cm-1) at the Γ point and the gap increases at larger wavevectors. 

So we may conclude that the hump in conductivity 400 cm-1 is from the interband 

transition between α and β band in the CT phase. The optical transition between 

the weakly hybridized Fe-d and As-p band to an unoccupied Fe-d band [136] is 

centered about 7000 cm-1 for Pr-doped CaFe2As2 (see Fig. 4.1(b)). The center 

frequency of this interband transition after structure collapse increases by about 

500 cm-1 which we also attribute primarily to the downward shift of the β band. 

4.4 Summary  

In summary, we have obtained the frequency and temperature dependent ab-

plane optical conductivity of crystals of rare-earth-doped CaFe2As2. For UT La-

doped and Pr-doped CaFe2As2, the scattering rate reveals a dominant scattering 
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channel quadratic in temperature and frequency. We also find saturation of the 

scattering rate above 200 K near the Mott-Ioffe-Regel limit in UT La-doped and Pr-

doped CaFe2As2. The spectral weight of free charge carriers in the UT phase 

decreases with increasing temperature in a broad temperature range and is 

recovered at an energy scale of ~ 0.5 eV which is much larger than the Fermi 

energy scale. Given that the phenomena we observe in rare-earth doped 

CaFe2As2 are similar to that seen in other correlated metals, we are forced to 

conclude that the dominant scattering mechanism is of electronic origin, and these 

materials are not canonical Fermi liquids. Below the CT phase transition in Pr-

doped CaFe2As2, we observe a decrease of the scattering rate due to weakening 

of electronic correlations, and a decrease in mobile carrier density which is 

consistent with the partial loss of the hole Fermi surfaces.  
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CHAPTER 5 

 

Strong electron-boson interaction in 

superconducting BaFe1.9Pt0.1As2 

 

5.1 Introduction 

Nearly half-a-century after the experimental discovery of superconductivity, 

Bardeen, Cooper and Schrieffer (BCS) developed a model to explain this 

phenomenon [1]. Their model consisted of an electron gas with attractive 

interactions (mediated by phonons) that lead to the formation of electron pairs (or 

Cooper pairs) whose overlapping wavefunctions underlie the superconducting 

condensate. The BCS mechanism provides a microscopic description of weak-

coupling superconductivity in conventional phonon-mediated superconductors. In 

the BCS theory, the ratio of the energy gap to Tc, Δ(T=0)/kBTc = 1.764 and this has 
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been observed in a number of conventional phonon-mediated superconductors in 

the weak-coupling limit. For strong-coupling superconductors like lead (Pb) and 

mercury (Hg) in which the gap to Tc ratio is more than 2, Eliashberg [3] provided 

a more realistic model of the superconducting state that includes the retarded 

nature of the phonon induced interaction. Apart from the energy gap which is a 

complex quantity in the Eliashberg equations, a central parameter is the electron-

phonon spectral density function (or Eliashberg function) 𝛼2𝐹(𝜔), a quantitative 

measure of the electron-phonon coupling and the phonon density of states [137]. 

The agreement of the parameters in the self-consistent solutions of the Eliashberg 

equations, for example in Pb, with experimental results like phonon density of 

states from inelastic neutron scattering [138], electronic density of states from 

tunneling experiments [137], electronic heat capacity enhancement [137], and 

infrared absorption [139], provide strong evidence for the electron-phonon 

mechanism of superconductivity in conventional superconductors. 

For the high-temperature iron-based superconductors, the mechanism of 

superconductivity has been debated for the past decade since their experimental 

discovery [67,140]. It has been argued that phonons alone cannot explain the high 

transition temperatures [67,140]. Spin and orbital fluctuations are currently the 

promising candidates for mediating the formation of Cooper pairs. Spin fluctuations 
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(corresponding to s± pairing state) are the leading candidate [140]. An alternative 

theory suggests that moderate electron-phonon interaction due to Fe-ion 

oscillation (Eg phonon) can induce critical orbital fluctuations (corresponding to s++ 

pairing state), making orbital-fluctuation mediated high temperature 

superconductivity possible [141]. Regardless of the origin of the bosonic mode(s) 

that could induce superconductivity, the characteristic strong-coupling electron-

boson interaction features should be detectable by spectroscopy methods in fully 

gapped iron pnictide superconductors. 

Different experimental techniques have been used to study the pairing 

mechanism in the iron pnictide superconductors and have provided some evidence 

that collective spin fluctuations may be the bosons that mediate the formation of 

Cooper pairs. Inelastic neutron scattering studies on both electron- and hole-doped 

iron pnictides observe a spin resonance mode [57,142–144], which is similar to 

that seen in cuprates [145], indicating the importance of spin correlations. 

Scanning tunneling spectroscopy of hole (K) -doped BaFe2As2 [146] also observes 

a bosonic mode which is consistent with the spin resonance mode from inelastic 

neutron scattering experiments. Specific heat experiments on Ba0.68K0.32Fe2As2 

single crystals [147] can be modeled within a framework of four-band Eliashberg 

approach using a spin-fluctuation coupling function whose center frequency also 
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matches the spin excitation resonance from inelastic neutron scattering 

experiments. Quasiparticle interference imaging techniques have identified 

antiferromagnetic spin fluctuations as the predominant electron-boson interactions 

in the LiFeAs superconductor [148]. 

Infrared spectroscopy is a powerful tool to study the energy gaps below Tc, the 

strong-coupling electron-boson features of superconductivity, and the interplay 

between energy gaps and the strong-coupling features. Previous infrared studies 

on iron-based superconductors focus on the occurrence of multiple gaps and fit 

the optical conductivity and/or reflectance with the Mattis-Bardeen framework 

within the weak-coupling BCS theory [73,74,149–153]. Since the larger gap(s) in 

the iron-based superconductors are in the strong-coupling limit, some researchers 

have turned towards the strong-coupling Eliashberg formalism. The strong-

coupling methods were originally developed for strong electron-phonon 

interactions but they are widely used to describe the coupling of electrons to any 

bosonic spectrum. Unlike the cuprates [154,155], the multiple-gap nature of the 

iron-based superconductors is an obstacle for using inversion techniques to extract 

the electron-boson spectral density. In a few studies, researchers have tried to 

obtain the electron-boson spectral density from the scattering rate in the normal 

state [156–159]. This presents a problem in that one cannot check self-consistency 
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of the Eliashberg equations in the superconducting state. One recent 

approach [160] provides a method to find the electron-boson interaction both in the 

normal and superconducting states from the infrared scattering rate (or self-

energy). However, this work does not check if the electron-boson spectral density 

function is self-consistent with the energy gap by solving the full Eliashberg 

equations. Charnukha et al [75] pointed out the limitation of the Mattis-Bardeen 

theory and have used a multiband Eliashberg theory to fit the optical conductivity 

to support the spin-fluctuation mechanism. The fits only qualitatively describe the 

real part of the optical conductivity in the superconducting state. To summarize, 

previous infrared experiments have not directly observed the electron-boson 

coupling features expected in the absorption spectra of strong-coupling, fully-

gapped iron based superconductors. Such features are expected to occur because 

they have been seen in the infrared absorption data in lead (Pb), a fully-gapped, 

phonon-mediated strong-coupling superconductor [139].  

Previous spectroscopy and thermal transport experiments on high quality 

single crystals of superconducting BaFe1.9Pt0.1As2 reveal two isotropic gaps, one 

2-3 meV and the other 5-7 meV [161]. Here we report infrared spectroscopy data 

on superconducting BaFe1.9Pt0.1As2 that is consistent with multi-band 

superconductivity with isotropic gaps. The important new finding is that we observe 
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strong-coupling electron-boson interaction features in the infrared absorption 

spectra. The frequency dependent infrared absorption (A) is simply 𝐴 = 1 − 𝑅 

where the frequency dependent infrared reflectance (R) is directly measured in the 

experiments. We identify a bosonic mode centered at 5.1 ± 0.6 meV (41 ± 5 cm-1) 

that provides the pairing glue in superconducting BaFe1.9Pt0.1As2. We employ two 

theoretical models to quantitatively describe our absorption spectra. The first 

model is the Allen formalism based on the scattering rate (or optical self-energy) 

method which includes the contribution of the electron-boson spectral density 

function [160,162]. After obtaining the electron-boson spectral density function 

from the Allen formalism, we solve the full isotropic Eliashberg equations to check 

the self-consistency of the electron-boson coupling spectrum with the largest 

energy gap and Tc. The second model starts from solving the full isotropic 

Eliashberg equations by assuming a reasonable electron-boson spectral density 

function (Eliashberg function). Then complex far-infrared optical conductivity in 

both the normal and superconducting states can be calculated which includes the 

Holstein mechanism induced by strong electron-boson coupling [163]. Absorption 

spectra can then be obtained and compared to the experimental data. The second 

formalism for modeling the spectra of strong-coupling superconductors is derived 

by Zimmermann et al., and we call it Zimmermann formalism.  
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5.2 Sample and measurements 

Single crystals of BaFe1.9Pt0.1As2 were grown using FeAs self-flux method, 

which is described in Ref. [161,164] along with x-ray, transport, magnetic and 

thermodynamic measurements. The dc resistivity data shows the onset of 

superconductivity at Tc = 23 K [161,164]. The resistivity data of BaFe1.9Pt0.1As2 is 

shown in Fig. 5.1. The sample is metallic at higher temperature and becomes 

superconducting with the onset of the transition at Tc = 23 K. Magnetic 

susceptibility measurements show bulk superconductivity with full volume 

fraction [161,164]. BaFe2As2 doped with 5-d transition metal element Pt2+, is 

believed to be electron-doped, since Pt2+ doping shares similarity to Ni2+ doping, 

which introduces more d- electrons than Fe2+ [164–166]. Besides, negative Hall 

coefficients provide evidence of charge transport dominated by  electron 

carriers [167]. 

A high quality large single crystal with a freshly cleaved shiny flat surface of 5 

× 4 mm2 is measured in this work. The large shiny surface is important for specular 

reflectance and ensures good signal-to-noise ratio in our measurements. 

The ab-plane reflectance at various temperatures from 300 K to 5 K was 

obtained in a cryogenic setup with a Bruker Vertex 80v Fourier transform infrared 

(FTIR) spectrometer in the frequency range 20 cm-1 − 8000 cm-1 using the 
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technique of in situ gold evaporation. Cryogenic ellipsometry was performed in a 

homebuilt quartz-tube vacuum chamber with a Woollam variable-angle 

spectroscopic ellipsometer in the energy range 0.6 eV – 6 eV. Further details of 

the cryogenic infrared reflectance and cryogenic ellipsometry set-ups are 

discussed in Chapter 3 and Ref. [90].  

 

 
FIG. 5.1. The resistivity of BaFe1.9Pt0.1As2, with on-set Tc ~ 23 K. Inset: zoom in at 

temperatures near Tc. 

 

5.3 Results and discussions 
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5.3.1 Reflectance, optical conductivity and normalized 

absorption 

The ab-plane infrared reflectance of a BaFe1.9Pt0.1As2 crystal is shown in Fig. 

5.2. In the normal state at T = 25 K, BaFe1.9Pt0.1As2 shows metallic behavior like 

many other iron-based materials [75,90,151]. At T = 5 K, well below Tc, 

superconductivity is observed directly from perfect reflectance at frequencies 

below 31.5 cm-1. The data are consistent with a fully gapped (nodeless) 

superconductor close to the dirty limit [73,74,151,168,169].  

Fig. 5.3 is the real part optical conductivity σ1 with temperature dependence 

 

 

FIG. 5.2. Infrared reflectance of BaFe1.9Pt0.1As2 at various temperatures. Inset: 

comparison of far infrared reflectance far below Tc and just above Tc (Tc = 23 K). 
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FIG. 5.3. The real part of the ab-plane optical conductivity σ1 is plotted as a function of 

frequency at different temperatures. Inset: the “missing area” between normal and 

superconducting state real conductivity calculated from the Ferrell-Glover-Tinkham sum 

rule is shown as shade area. 
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between normal state and superconducting state which is condensed into the delta 

function at zero frequency in the superconducting state. The missing area of 

spectral weight is proportional to the superfluid density, 𝜔𝑝𝑠
2 = ∫ 𝑑𝜔[𝜎1(𝜔, 𝑇 =

𝜔𝑐

0

25𝐾) − 𝜎1(𝜔, 𝑇 = 5𝐾)] = 1.9 × 107 cm−2, which is consistent with low frequency 

limit 𝜔𝑝𝑠
2 = −𝜔2ε1 (𝜔 → 0) [151]. 

The absorption in the superconducting state 𝐴𝑆(𝑇) for 𝑇 < 𝑇𝐶 is obtained from 

the equation 𝐴𝑆(𝑇) = 1 − 𝑅𝑆(𝑇) , where 𝑅𝑆(𝑇) is the reflectance in the 

superconducting state. The normal state absorption 𝐴𝑁(𝑇 = 25 K) is obtained from 

𝐴𝑁(25 K) = 1 − 𝑅𝑁(25 K) where 𝑅𝑁(25 K) is the reflectance in the normal state at 

T = 25 K. The ratio 𝐴𝑆(5 𝐾)/𝐴𝑁(25 K) is the absorption in the superconducting 

state at T = 5 K normalized to the absorption in the normal state at T = 25 K and 

is plotted as a function of frequency in Fig. 5.4. We plot this way to show strong 

features. There are clear features at 80−200 cm-1 which are larger than the error 

bars (see Fig. 5.4). The sharp peak at 87 cm-1 is due to the largest gap. Above this 

gap feature, we observe a ‘valley-peak-valley’ structure, which is not obvious from 

unnormalized reflectance or optical conductivity in either superconducting state or 

normal state. When we compare our normalized infrared absorption data of 

BaFe1.9Pt0.1As2 to the normalized infrared absorption data of the well-known 

conventional strong-coupling superconductor lead (Pb) (see inset of Fig. 5.4, data 
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taken from Ref. [139,162]), we see they are remarkably similar. In Pb, acoustic 

phonons are the bosonic modes which mediate the formation of Cooper pairs, and 

the valleys in the absorption data are due to the peaks in the phonon density of 

states shifted by 2Δ. Hence, the valleys in the absorption data of BaFe1.9Pt0.1As2 

roughly correspond to peaks in the density of states of bosonic modes shifted by 

the largest gap 2Δ3.  

In the following sections 5.3.2 and 5.3.3, two different formalisms have been 

applied to model the normalized absorption of BaFe1.9Pt0.1As2, in order to 

quantitatively determine the bosonic mode coupled to the electrons. 

 

 

FIG. 5.4. Infrared absorption in superconducting state (5 K) normalized to infrared 

absorption in normal state (25 K). It clearly shows a ‘valley-peak-valley’ region (~ 

80−200 cm-1) in the normalized absorption spectrum. Error bars at representative 

frequencies are also shown. Inset: normalized infrared absorption of Pb. 
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5.3.2 Modeling with Allen’s formalism 

Following Ref. [160], imaginary part of optical self-energy is: 

 𝛴2
𝑜𝑝(𝜔, 𝑇) = −

1

2
[∫ 𝑑𝛺𝐼2𝜒(𝛺, 𝑇)𝐾(𝜔, 𝛺, 𝑇) +

1

𝜏
𝑖𝑚𝑝
𝑜𝑝 (𝜔)

∞

0
] (5.1) 

where 𝐼2𝜒 is the electron-boson spectral density function, 𝐾(𝜔,𝛺, 𝑇) is the kernel 

of Allen’s integral equation, and 1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄  is the impurity scattering rate [160]. Eq. 

5.1 is applicable to both the normal phase and the superconducting phase but 

𝐾(𝜔,𝛺, 𝑇) and 1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄  are different for the two phases. 

𝐾(𝜔,𝛺, 𝑇) =
𝜋

𝜔
[2𝜔 coth (

Ω

2𝑇
) − (𝜔 + Ω) coth (

ω+Ω

2𝑇
) + (𝜔 − Ω) coth (

ω−Ω

2𝑇
)]  

(for normal state) 

=
2𝜋

𝜔
(𝜔 − Ω)Θ(𝜔 − 2Δ − Ω) × 𝐸 (

√(𝜔−Ω)2−(2Δ)2

𝜔−Ω
)  

(for superconducting state)                                                  (5.2) 

where Θ(x)  represents the Heaviside step function, and E(x) represents the 

complete elliptic integral of the second kind. The impurity scattering rate: 

1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄ = 370 cm−1 (for normal state 25 K) 

                                           = 370 cm−1 × 𝐸 (
√𝜔2−(2Δ)2

𝜔
)  

(for superconducting state 5K)                   (5.3) 

Then the real part can be obtained by Kramers-Kronig transformation: 

 𝛴1
𝑜𝑝(𝜔) = −

2𝜔

𝜋
𝑃 ∫ 𝑑𝛺

𝛴2
𝑜𝑝(𝜔)

𝛺2−𝜔2

∞

0
 (5.4) 

The complex optical conductivity for one channel is: 
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 𝜎̃(𝜔) =
𝜔𝑝

2

8𝜋𝑖

1

𝛴̃𝑜𝑝(𝜔)−𝜔/2
 (5.5) 

where 𝛴̃𝑜𝑝(𝜔) = 𝛴1
𝑜𝑝(𝜔) + 𝑖𝛴2

𝑜𝑝(𝜔, 𝑇). The total conductivity is the sum of different 

channels (here we have 3 channels due to the multi-band nature of this material): 

 𝜎̃𝑡𝑜𝑡𝑎𝑙(𝜔) = 𝜎̃𝑐ℎ1(𝜔) + 𝜎̃𝑐ℎ2(𝜔) + 𝜎̃𝑐ℎ3(𝜔) (5.6) 

We then add the contributions of the evident interband transitions from the data at 

higher frequencies to the low-frequency conductivity calculated from the model. 

The parameters in the model are as follows: the normal state impurity 

scattering rate is a constant 370 cm-1, the normal state plasma frequency ωp = 

1.45 ± 0.2 eV, and the three energy gaps in the superconducting state are 

discussed below. Our best fit and the corresponding electron-boson density 

function 𝐼2𝜒  are shown in Fig. 5.5(a), (b). The smallest gap 2Δ1 = 31.5 cm-1 

corresponds to the onset of absorption and the largest gap 2Δ3 = 87 cm-1 

corresponds to the peak at 87 cm-1 in the normalized absorption data. A third gap 

with energy 2Δ2 = 58 cm-1 is required to fit the shoulder around 60 cm-1. However, 

Δ2 is associated with the Fermi surface with a small spectral weight (10% of the 

square of the normal state plasma frequency). The gaps Δ1 and Δ3 are associated 

with Fermi surfaces that respectively represent 55% and 35% of the square of the 

normal state plasma frequency. The smallest gap Δ1 that we observe in 

BaFe1.9Pt0.1As2 is consistent with four different experiments reported in Ref. [161].  
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FIG. 5.5. Infrared absorption in superconducting state (5 K) normalized to infrared 

absorption in normal state (25 K), and the fits to different models. (a) The following three 

models are used while keeping the same energy gap magnitudes: weak-coupling multi-

gap Mattis-Bardeen theory, the multi-band Allen formalism (optical self-energy method) 

with only impurity scattering, and the multi-band Allen formalism with both electron-

boson interaction and impurity scattering. The electron-boson spectral density function 

𝐼2𝜒 consists of one sharp large peak and one smaller broad peak. (b) Zoomed in view of 

the ‘valley-peak-valley’ region (~ 90 − 200 cm-1) in the normalized absorption spectrum 

shown in (a). Error bars at representative frequencies are also shown in (b). 
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with several earlier studies of other types of iron-based 

superconductors [75,81,151]. For electron-doped Ba-122 system, ARPES data 

shows that a small gap occurs on two electron pockets γ and δ, while a larger gap 

is on the outer hole pocket (β band) [76]. The inner hole pockets are hard to 

observe [19,76] due to their small spectral weight. Hence Δ2 could be the gap on 

the inner hole pockets.  

The ratio 2Δ3/kBTc = 5.44 is clearly in the strong-coupling limit compared to the 

BCS weak-coupling value of 3.53. The ratios of the other two gaps to Tc are either 

smaller than (2Δ1/kBTc = 1.97) or close to (2Δ2/kBTc = 3.63) the BCS weak-coupling 

value. This justifies using the electron-boson spectral density function only in the 

conductivity channel associated with the largest energy gap Δ3. In order to fit the 

two valleys in the experimental normalized absorption spectrum, the electron-

boson spectral density function in the superconducting state consists of two 

Gaussian peaks: one large and sharp mode centered at frequency Ω1 = 46 cm-1 

and one broad, weaker mode centered at frequency Ω2 = 121 cm-1. These two 

peaks approximately correspond to the two valleys respectively centered at 

frequencies 115 cm-1 (≈ Ω1 + 2Δ3) and 180 cm-1 (≈ Ω2 + 2Δ3) in the calculated 

normalized absorption spectrum. In order to obtain the correct absolute value of 

normalized absorption, only the weak, broad peak is necessary in the normal state. 
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Here we discuss the calculated normalized absorption using three methods while 

keeping the same energy gaps: the multi-band Allen formalism (optical self-energy 

method) including both electron-boson interaction and impurity scattering 

1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄ ; the multi-band Allen formalism with only impurity scattering; and multi-

band Mattis-Bardeen theory. The model fits are compared in Fig. 5.5. Neither 

multiple band Mattis-Bardeen formalism [170] nor the optical self-energy method 

with only impurity scattering capture the “valley-peak-valley” features in the 

normalized absorption data above the peak feature of the largest gap. Introducing 

electron-boson interaction to the optical self-energy is required to fit the ‘valley-

peak-valley’ features between 80 cm-1 and 200 cm-1.  

The model results for the complex optical conductivity are shown in Fig. 5.6. 

In Fig. 5.6, we also compare three different models: multiple band Mattis-Bardeen 

theory, optical self-energy model which only contains impurity scattering, and 

optical self-energy which includes both electron-boson interaction and impurity 

scattering rate. It is clear that Mattis-Bardeen theory doesn’t give us a good low 

frequency fit (<100 cm-1) for σ1 and misses the fine features in the data. The model 

for optical self-energy method which only contains impurity scattering is not a good 

description for σ2 and there is a clear discrepancy at all frequencies. While the 

model for optical self-energy method which includes both electron-boson 
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interaction and impurity scattering rate captures the features in the data at low 

frequencies very well (though there is some discrepancy with σ1 data at 

frequencies higher than 100 cm-1). The average error between the model and the 

data is around 10%. The corresponding model results for reflectance and 

absorption are shown in Fig. 5.7, and provide a good quantitative fit. 

 

  

FIG 5.6. Model fits for low frequency complex optical conductivity in the superconducting 

state (5 K). Comparing fitting results of superconducting complex optical conductivity of 

Mattis-Bardeen theory, optical self-energy method which only contains impurity 

scattering and optical self-energy method which includes both electron-boson interaction 

and impurity scattering rate. The fitting of optical self-energy method which includes both 

electron-boson interaction and impurity scattering rate are clearly better than the other 

two fittings (both qualitatively and quantitatively).  
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FIG. 5.7 Model fits of low frequency (a) reflectance and (b) absorption in the 

superconducting state (5 K) and the normal state (25 K). 
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Since the Allen formalism is expected to provide only an approximate 

quantitative description of strong-coupling superconductors [160,162], we take the 

important step to check the self-consistency of the energy gap, transition 

temperature, and the electron-boson spectral density function 𝐼2𝜒(Ω) by solving 

the full Eliashberg equations. Here we use an isotropic energy gap consistent with 

experiments [161] and the effective Coulomb pseudo-potential μ* = 0.1 [171]. The 

Eliashberg equations are solved using EPW4.2 as described in the Ref. [171] and 

Appendix D. EPW is an open source software which can be used to compute 

electron–phonon (boson) couplings and related properties in solids accurately and 

efficiently. We use EPW 4.2 to solve electron-phonon coupling strengths, 

superconducting gaps and renormalization function within the Migdal–Eliashberg 

theory. Renormalization function Z(ω) and the superconducting gap Δ(ω) are first 

solved on imaginary energy axis and then an analytic continuation is performed to 

the real axis. The solutions of Eliashberg equations are shown in Fig. 5.8. The 

solved gap function is 2Δ (ω=0) = 85 cm-1, which is almost identical to the largest 

gap 2Δ3. The lower limit of Tc can be estimated from McMillan’s formula [172]: 

 𝑇c,min =
〈𝜔〉

1.20
exp[−1.04 (1 + 𝜆) (𝜆 − 𝜇∗ − 0.62𝜆𝜇∗)⁄ ] (5.7) 

where 𝜇∗assumed to be 0.1, and  

 𝜆 = 2∫ dΩ 𝐼2𝜒(Ω)
∞

0
/Ω (5.8) 
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FIG. 5.8 Complex superconducting gap Δ(ω) and the renormalization function Z(ω) 

obtained by solving Eliashberg equations. 
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and we obtain Tc,min = 17.1 K. An upper limit of Tc is given by the generalized 

McMillan equation [160,172]:  

 𝑘B𝑇c,max ≅ 1.13ℏ𝜔𝑙𝑛exp[− (1 + 𝜆) 𝜆⁄ ] (5.10) 
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where  

 𝜔𝑙𝑛 = exp[(2/𝜆)∫ dΩ lnΩ 𝐼2𝜒(Ω)
∞

0
/Ω] (5.11) 

and this gives Tc,max = 24.6 K. The estimates of Tc are consistent with the 

experimental transition temperature of 23 K. 

 

5.3.3 Modeling with Zimmermann’s approach 

Since the largest gap is in the strong-coupling limit, we apply the formalism of 

Zimmermann et al. [163] for calculating the optical conductivity in the strong-

coupling regime. The temperature dependent complex conductivity in the 

superconducting state takes following form [163,173]: 

σ(𝜔, 𝑇) =
𝜔𝑝

2

16𝜋3𝜔
∫ 𝑑𝜀 {tanh (

𝜀

2𝑘𝐵𝑇
)𝑀(𝜀, 𝜔)[𝑔(𝜀)𝑔(𝜀 + 𝜔) + ℎ(𝜀)ℎ(𝜀 + 𝜔) + 𝜋2] −

+∞

−∞

tanh (
𝜀+𝜔

2𝑘𝐵𝑇
)𝑀∗(𝜀, 𝜔)[𝑔∗(𝜀)𝑔∗(𝜀 + 𝜔) + ℎ∗(𝜀)ℎ∗(𝜀 + 𝜔) + 𝜋2] + [tanh(

𝜀+𝜔

2𝑘𝐵𝑇
) −

tanh (
𝜀

2𝑘𝐵𝑇
)] 𝐿(𝜀, 𝜔)[𝑔∗(𝜀)𝑔(𝜀 + 𝜔) + ℎ∗(𝜀)ℎ(𝜀 + 𝜔) + 𝜋2]} (5.12) 

where 𝜔𝑝 is plasma frequency and 

 𝑔(𝜀) =
−𝜋𝜀̃(𝜀)

√Δ̃2(𝜀)−ε̃2(𝜀)
 (5.13) 

 ℎ(𝜀) =
−𝜋Δ̃(𝜀)

√Δ̃2(𝜀)−ε̃2(𝜀)
 (5.14) 

 𝑀(𝜀,𝜔) = [√Δ̃2(𝜀 + 𝜔) − ε̃2(𝜀 + 𝜔) + √Δ̃2(𝜀) − ε̃2(𝜀) + 1/𝜏]
−1

 (5.15) 

 𝐿(𝜀, 𝜔) = [√Δ̃2(𝜀 + 𝜔) − ε̃2(𝜀 + 𝜔) + √Δ̃∗2(𝜀) − ε̃∗2(𝜀) + 1/𝜏]
−1

 (5.16) 
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where 1/𝜏 is the impurity scattering rate. The quantities Δ̃ and ε̃ depend on energy 

𝜀, ε̃(𝜀) = 𝜀𝑍(𝜀) and Δ̃ = 𝑍(𝜀)Δ(𝜀). And complex renormalization function 𝑍(𝜀) and 

superconducting gap Δ(𝜀)  are obtained by solving the standard Eliashberg 

equations for isotropic systems at real energies. In eq. 5.12, since integral is 

implemented on the energy axis from negative infinity to positive infinity, 

extrapolations are needed to get negative energy dependence of 𝑍(𝜀) and Δ(𝜀). 

Note that the real part of both 𝑍(𝜀) and Δ(𝜀) are even functions, and the imaginary 

part of both 𝑍(𝜀) and Δ(𝜀) are odd functions. 

 For the normal state, the conductivity can be expressed as: 

 σ𝑁(𝜔, 𝑇) =
𝜔𝑝

2

8𝜋𝜔
∫ 𝑑𝜀 [tanh (

𝜀+𝜔

2𝑘𝐵𝑇
) − tanh (

𝜀

2𝑘𝐵𝑇
)]

+∞

−∞
𝑀𝑁(𝜀, 𝜔) (5.17) 

where 

 𝑀𝑁(𝜀, 𝜔) = [−𝑖𝜀𝑁̃(𝜀 + 𝜔) + 𝑖𝜀𝑁̃
∗ (𝜀) + 1/𝜏]−1 (5.18) 

 𝜀𝑁̃(𝜀) = 𝜀 + ∫ 𝑑Ω 𝛼2𝐹(Ω) [𝑖𝜋 coth (
Ω

2𝑘𝐵𝑇
)−𝛹 (

1

2
+ 𝑖

−𝜀+Ω

2𝜋𝑘𝐵𝑇
)+𝛹 (

1

2
+ 𝑖

−𝜀−Ω

2𝜋𝑘𝐵𝑇
)]

+∞

−∞
 

 (5.19) 

where  𝛼2𝐹(Ω) is Eliashberg coupling function and 𝛹(𝑥) is the digamma function. 

Similar to eq. 5.12, extrapolations needed to get negative energy dependent 

𝛼2𝐹(Ω). Note that 𝛼2𝐹(Ω) is an odd function. 

The parameters in the simulation are plasma frequency 𝜔𝑝 is 1.43 eV, and 

impurity scattering rate in the normal state is 370 cm-1, and in the superconducting 



96 

state is 160 cm-1. For weak-coupling channel Δ1 and Δ2, we used Mattis-Bardeen 

theory. The spectral weight (square of the plasma frequency) ratio for the three 

conductivity channels for the best fit is the same as in Allen’s formalism in 5.3.2, 

which is 55%, 10% and 35% for the gaps Δ1, Δ2 and Δ3. The best fit and 

corresponding Eliashberg function are shown in Fig. 5.9. 

 

 

FIG. 5.9 Infrared absorption in superconducting state (5 K) normalized to infrared 

absorption in normal state (25 K), and the results from the model using Zimmermann’s 

formalism. The Eliashberg function 𝛼2𝐹(Ω) consists of one sharp large peak and one 

smaller broad peak. 
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those in the experimental data. Similar to Allen’s method, the Eliashberg function 

in the superconducting state still consists of two peaks, one large sharp peak 

centered at 36.3 cm-1 (4.5 meV), and one small broad peak centered 121 cm-1 (15 

meV). The coupling constant is λ = 4.27, and corresponding upper limit transition 

temperature Tc (similar in 5.3.2) is 20.5 K. Analogous with the results of Allen’s 

formalism, in the normal state, only small broad peak is included in the Eliashberg 

function. Result of solving Eliashberg equations at 5 K gives gap function is 2Δ 

(ω=0) = 81.24 cm-1, which is not very different from the result using Allen’s 

formalism. 

Through comparing the results of Allen’s formalism and Zimmermann’s 

formalism, we find that: 

1. ‘valley-peak-valley’ features between 80 cm-1 and 200 cm-1 are a result of two 

peaks in the electron-boson spectral density function (Eliashberg function). And 

the large narrow peak Ω1 is responsible for first valley, while the small broad 

peak Ω2 is responsible for the weaker second valley. 

2. low frequency large narrow peak Ω1 only appears in the superconducting state. 

The center frequencies of Ω1 from two methods are not exactly the same, giving 

us a range of Ω1 in the 5.1 ± 0.6 meV (41 ± 5 cm-1). 

3. High frequency small broad peak Ω2 appears both in the superconducting state 
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and the normal state. The center frequencies of Ω2 is exactly the same in the 

two methods with 121 cm-1 (15 meV). 

 

5.3.4 Origin of the two modes in the electron-boson spectral 

density function 

Next we discuss the origin of the two peaks in the electron-boson spectral 

density function (Eliashberg function). The two promising candidates for bosons 

which mediate the formation of Cooper pairs are either spin fluctuations or orbital 

fluctuations (induced by Fe phonons). Spin resonance modes have been 

determined by inelastic neutron scattering experiments [57,142–144]. The spin 

resonance, which is observed only in the superconducting state in cuprates, 

heavy-fermion and iron-based superconductors, is generally considered a 

feedback effect from superconductivity. Despite some theoretical controversies, 

the resonance is viewed as a spin-exciton bound state in the particle-hole channel. 

The appearance of the resonance implies a sign change of superconducting gap(s) 

between either different patches of the Fermi surface or different Fermi pockets 

connected by a resonance mode at momentum q (see Ref. [174] and references 

therein). In our infrared experiments, the large sharp peak in the electron-boson 
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spectral density function of BaFe1.9Pt0.1As2 is centered at 5.1 ± 0.6 meV (41 ± 5 

cm-1), with a full-width at half-maximum of 1 meV, and is only present in the 

superconducting state. We note that the spin resonance mode at 3D 

antiferromagnetic ordering wave vector Q = (1, 0, -1) occurs in BaFe1.9Ni0.1As2 (a 

superconductor with Tc = 20 K and similar to BaFe1.9Pt0.1As2), with resonance 

energy ℏωres = 7 ± 0.5 meV, and width d = 1.9 ± 0.7 meV [142].Inelastic neutron 

scattering experiments on BaFe1.9Pt0.1As2 are not available at present. If the 

bosonic mode we have observed is due to spin fluctuations, then we expect that a 

spin resonance mode about 5 meV will be observed in future inelastic neutron 

scattering experiments. The center frequency of the bosonic mode in our infrared 

experiments is also not that different from the spin resonance mode of another 

electron-doped material Ba(Fe1-xCox)2As2 which is ~ 8 – 9 meV [143,144]. Note 

that the bosonic mode observed in the optical response is the q averaged (all 

momenta in the Brillouin zone) local susceptibility. From the above discussion, we 

infer that the sharp peak at 5.1 ± 0.6 meV in the electron-boson spectral density 

function of BaFe1.9Pt0.1As2 possibly represents the spin resonance in the 

superconducting state. The 5.1 meV peak cannot be due to phonons because it is 

lower in energy compared to the energy of the lowest peak in the phonon density 

of states in the parent compound BaFe2As2 [175,176]. Moreover, since phonons 
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are present in both the normal and superconducting states, the sharp peak cannot 

be due to phonons because it is only required in the superconducting state and not 

in the normal state for the best description of the data. 

The broad, weak peak is centered at 15 meV (121 cm-1), with a width of 5 meV, 

and is required in the models for both the superconducting and normal states. 

Inelastic X-ray scattering experiments have measured the lowest energy peak in 

the Fe phonon density of states centered at 13 meV, with width approximately 5 

meV. The phonon density of states are nearly temperature independent [177]. 

Phonons are likely the origin of the weak, broad mode. Actually, the position and 

the width of the broad peak is also very similar to the prediction of the resonance 

peak of s++ wave pairing state [178]. Possible explanations are that the weak, 

broad mode is either due to electron-phonon interaction or due to phonon induced 

orbital fluctuations. Note that the total electron-boson coupling constant λ = 3.5–

4.3 contains a significant contribution from the sharp peak of 2.8–3.6, and a minor  

contribution from the broad peak of only 0.7. If the sharp peak in the Eliashberg 

function is due to spin fluctuations, this means spin-fluctuations play the dominant 

role in superconductivity in BaFe1.9Pt0.1As2. It would also support the presence of 

a predominant s± gap in superconducting BaFe1.9Pt0.1As2 [67]. 
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5.3.5 Temperature dependent normalized absorption and 

superconducting gaps 

Finally, we study the temperature dependence of the normalized absorption 

spectra. The absorption spectra in the superconducting state at T = 5 K, 10 K, 15 

K, and 20 K, are normalized to the normal state absorption data (T = 25 K) and 

plotted in Fig. 5.10(a). It is clear that the amplitude of the strong-coupling features 

due to electron-boson interaction decreases when temperature increases toward 

Tc. However, there is little frequency dependence of these features for 

temperatures at and below 15 K. At T = 20 K, still below Tc, the strong-coupling 

features weaken further and move to lower frequencies. This may be caused by 

the reduction of energy gap Δ3(T) and a downward shift in center frequency Ω1 of 

the bosonic peak as the temperature approaches Tc from below. The Allen 

formalism for the superconducting state is meant for T = 0 K and works well for 

temperatures well below Tc. We cannot quantitatively model the temperature 

dependence of the bosonic modes with the Allen formalism because the Allen 

formalism for the superconducting state at higher temperatures does not exist and 

will need to be developed. We first attempt to follow the temperature dependence 

of the energy gaps using alternative means based on the Mattis-Bardeen theory. 

The temperature dependent energy gap 2Δ3(T) is estimated directly from the nor- 
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FIG. 5.10. (a) Solid lines are temperature dependent infrared absorption in the 

superconducting state normalized to infrared absorption in the normal state at T = 25 K. 

Dashed lines are Mattis-Bardeen fits to the normalized infrared absorption data (b) 

Zoomed in view of the spectra showing the peak associated with the largest gap 2Δ3 and 

the “valley-peak-valley” strong-coupling features at different temperatures in the 

superconducting state. Arrows indicate the frequency of the first prominent peak in the 

normalized absorption spectrum due to the energy gap 2Δ3 in the presence of impurity 

scattering. (c) Plot of the temperature dependence of the three energy gaps (filled 

symbols). The dashed lines are the BCS prediction of the temperature dependence of 

the energy gaps with Δ1, Δ2 and Δ3 as 15.75 cm-1, 29 cm-1 and 43.5 cm-1 respectively at 

T = 0 K. The vertical dotted line represents Tc = 23 K. 

 

malized absorption because it corresponds to the first prominent peak position 

(shown by arrows in Fig. 5.10(b)) and is plotted in Fig. 5.10(c). The temperature 
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dependence of Δ1 and Δ2 cannot be obtained directly from the data. However, 

since the ratio 2Δ/kBTc for the smaller two gaps shows they are in the weak-

coupling regime, we have modeled the normalized absorption using three-band 

Mattis-Bardeen formalism. The results are shown in Fig. 5.10(c). The largest and 

smallest gaps appear to deviate from the BCS prediction close to Tc. 

 Next, we attempt to fit the temperature dependent normalized absorption 

using Zimmermann’s formalism for the largest gap, while keeping the two smaller 

gaps in the weak-coupling regime using Mattis-Bardeen theory. In the modeling, 

we use temperature dependent bosonic mode following temperature dependent 

spin resonance experimental result. As Ref. [56] shows, the resonance frequency 

follows the similar functional dependence of energy gap. Temperature dependent 

complex renormalization function 𝑍(𝜀)  and superconducting gap Δ(𝜀)  are 

obtained by solving the standard Eliashberg equations for isotropic systems at real 

energies, then the Zimmermann’s formalism is applied in the largest energy gap. 

The simulation results are shown in the Fig. 5.11. The theoretical model captures 

the temperature-dependent trend of the ‘valley-peak-valley’ features well. At 

temperature T = 10 K and 15 K, the ‘valley-peak-valley’ features become weaker 

at higher temperatures compared to T = 5 K data, while there is little frequency 

dependence. At T = 20 K, a temperature close to Tc, the ‘valley-peak-valley’ 
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features are nearly washed out, and the frequency of the peak due to the largest 

gap and bosonic mode clearly shifts down (shown in Fig. 5.12) and aligns well the 

experimental data. 

Temperature dependent energy gaps and bosonic mode in the model are 

shown in Fig. 5.12. There are larger error bars at higher temperature due to the 

larger uncertainty solution of the EPW software while temperature is close to Tc. 

 

 

FIG. 5.11. Zimmermann’s formalism for modeling the temperature dependent normalized 

absorption. Solid lines are temperature dependent infrared absorption in the 

superconducting state normalized to infrared absorption in the normal state at T = 25 K. 

Dashed lines are fits to the normalized infrared absorption data, using Zimmermann’s 

formalism for the largest energy gap, and Mattis-Bardeen formalism for the two smaller 

energy gaps. 
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FIG. 5.12. Plot of the temperature dependence of the three energy gaps (filled symbols), 

and bosonic mode Ω1 (half hollow symbols). The two smaller gaps are the same in Fig. 

5.10(c), and the largest energy gap is derived from Zimmermann’s model (gray square 

symbols). Note that there is a large error bar when temperature is high and close to Tc. 

The dashed lines are the BCS prediction of the temperature dependence of the energy 

gaps. 
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formalism that relies on the optical self-energy method. The self-consistency of the 

largest gap, the Tc, and the electron-boson spectral density function was verified 

by solving the full Eliashberg equations. We then used Zimmermann’s formalism 

in the strong-coupling regime and got comparable results with the Eliashberg 

function corresponding to the bosonic modes. We find that superconductivity in 

BaFe1.9Pt0.1As2 arises primarily due to pairing of electrons induced by a bosonic 

mode centered at 5.1 ± 0.6 meV. This bosonic mode may originate from spin 

fluctuations and requires further investigation.  
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CHAPTER 6 

 

Conclusion and outlook 

 

In this work, we have studied charge dynamics in the metallic and 

superconducting states of the electron-doped 122-type iron arsenides using 

infrared and optical spectroscopy at cryogenic temperatures. We obtained detailed 

optical measurements on three different electron-doped 122-type iron arsenide 

samples: Ca0.8La0.2Fe2As2, Ca0.85Pr0.15Fe2As2 and BaFe1.9Pt0.1As2 single crystals.  

Here we summarize the role of doping in the rare-earth (La and Pr) doped and 

Pt-doped systems. Besides suppressing the spin density wave phase and doping 

extra electrons, the rare-earth elements La and Pr have similar ionic radii to Ca 

and are doped on the Ca site, so they don’t increase impurity scattering. In fact, 

compared to the parent compound UT CaFe2As2 [179], the scattering rate 

decreases upon rare-earth doping and so does the resistivity (the plasma 
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frequency remains nearly the same). The decrease of scattering rate may be due 

to a decrease in electron-electron interactions. Pt has a huge ionic radius and is 

directly doped into the conducting FeAs4 layer, and therefore it increases impurity 

scattering compared to the parent compound BaFe2As2. Doping Pt suppresses the 

spin-density-wave phase transition, and increases the scattering rate and the 

plasma frequency. Similar to Co-doped BaFe2As2 [20,76], the chemical potential 

increases, and as a consequence the electron Fermi surfaces grow and the hole 

Fermi surfaces shrink. 

We observed UT-CT phase transition in Ca0.85Pr0.15Fe2As2 and the metallic-to-

superconducting phase transition in BaFe1.9Pt0.1As2. Through careful 

measurements and data analysis, we studied in detail the electron-electron 

interactions in the rare-earth doped CaFe2As2 and electron-boson interactions in 

Pt-doped BaFe2As2.  

In Chapter 4, using cryogenic FTIR spectroscopy and spectroscopic 

ellipsometry, we have obtained the frequency and temperature dependent ab-

plane optical conductivity of crystals of rare-earth-doped CaFe2As2. In the UT La-

doped and Pr-doped CaFe2As2, we found that these materials are not canonical 

Fermi liquids, and the dominant scattering mechanism is of electronic origin. We 

observed that the scattering rate reveals a dominant scattering channel quadratic 
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in temperature and frequency. We also find saturation of the scattering rate above 

200 K near the Mott-Ioffe-Regel limit in UT La-doped and Pr-doped CaFe2As2. The 

spectral weight of free charge carriers in the UT phase decreases with increasing 

temperature in a broad temperature range and is recovered at an energy scale of 

~ 0.5 eV which is much larger than the Fermi energy scale. In the CT phase of Pr-

doped CaFe2As2, due to weakening of electronic correlations, we observe a 

decrease of the scattering rate and a decrease in mobile carrier density which is 

consistent with partial loss of the hole Fermi surfaces. 

In Chapter 5, we report temperature dependent features directly in the infrared 

absorption spectra arising from the energy gaps and strong electron-boson 

interaction in the superconductor BaFe1.9Pt0.1As2. This was enabled by careful, 

systematic cryogenic infrared reflectance measurements. This is an important 

achievement, since it is the first report on strong-coupling features directly 

observed in infrared absorption spectra without applying complicated analyses like 

Kramers-Kronig transformations. The data is consistent with three nodeless 

energy gaps in the superconducting state, out of which only the largest gap is in 

the strong-coupling regime. We applied both the Allen formalism and Zimmermann 

formalism (quantitative approaches) based on the Eliashberg theory, and modeled 

the temperature dependent, normalized infrared absorption in the superconducting 
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state. The largest energy gap, the Tc, and the electron-boson spectral density 

function (Eliashberg function) from both models are found to be self-consistent 

within Eliashberg theory. We find that superconductivity in BaFe1.9Pt0.1As2 arises 

primarily due to pairing of electrons induced by a bosonic mode centered at 5.1 ± 

0.6 meV. The frequency of this bosonic mode is too low for it to be of phonon origin, 

so we rule out the possibility of primary phonon-mediated pairing in this material. 

The bosonic mode may originate from spin fluctuations although we cannot rule 

out the role of orbital fluctuations or another mechanism. 

In the future, more 122-type superconducting materials need to be studied. 

Careful and very accurate infrared experiments will be needed to uncover the 

electron-boson interaction features. The Allen formalism and Zimmermann 

formalism would be very helpful to identify the frequency of bosonic modes in 122-

type iron arsenides. Also, in recent years, new types of iron arsenides have been 

discovered, for example, 112 type and 1144 type materials. These materials can 

also be studied using the methods discussed in this dissertation. Other 

experimental techniques, like inelastic neutron scattering on BaFe1.9Pt0.1As2 to 

detect the spin resonance frequency would also be very useful for shedding light 

on the origin of the bosonic mode identified using infrared spectroscopy . 
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Appendices 

 

Appendix A: Reflectance, ellipsometry, and data 

analysis to obtain ab-plane optical constants of 

Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 

Fig. A1(a) and (b) show ab-plane reflectance spectra of Ca0.8La0.2Fe2As2 and 

Ca0.85Pr0.15Fe2As2 respectively. The rather high reflectance at low frequencies is 

clearly indicative of metallicity. There is no evidence of bulk superconductivity in 

the infrared reflectance. This is consistent with the report of very low volume 

fraction superconductivity in these materials [46]. The reflectance of the 

Ca0.85Pr0.15Fe2As2 crystal in the far- and mid- infrared region shows subtle changes 

across the structure collapse transition which are more obvious in the optical 

conductivity, as discussed in the main text. The reflectance spectra were obtained 

in the Bruker Vertex 80v FTIR spectrometer that is fitted with an ultra-high vacuum 

chamber designed in-house for use with a continuous flow liquid helium cryostat.   
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In single crystal samples, the absolute value of the dc resistivity has a 

systematic error due to the difficulty in precise measurements of the geometry of 

the crystals. We use Hagen-Rubens extrapolation of room temperature infrared 

reflectance to determine the absolute value of the room temperature dc 

conductivity (in Hagen-Rubens extrapolation, dc conductivity is the only fit 

parameter). Then relative dc resistivity data measured at lower temperatures (in 

Ref. [46]) are used to find absolute temperature dependent dc conductivities which 

are employed in Hagen-Rubens extrapolations of temperature dependent infrared 

reflectance for Kramers-Kronig analysis. Hence, the dc extension of the optical 

conductivity agrees well with measured dc conductivity. 

 

 

FIG. A1. Frequency dependence of absolute reflectance at representative 

temperatures for (a) Ca0.8La0.2Fe2As2 and (b) Ca0.85Pr0.15Fe2As2. 
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Frequency and temperature dependence of the ellipsometric coefficients Ψ 

and Δ for Ca0.8La0.2Fe2As2 and Ca0.85Pr0.15Fe2As2 are shown in Fig. A2. 

 

 

FIG. A2. (a) and (b) show frequency and temperature dependent ellipsometric 

coefficients Ψ and Δ for Ca0.8La0.2Fe2As2; (c) and (d) show frequency and temperature 

dependent ellipsometric coefficients Ψ and Δ for Ca0.85Pr0.15Fe2As2. 
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the ellipsometric coefficients of the rare-earth doped CaFe2As2 crystals with the c-

axis normal to the crystal surface is nearly the same as the ab-plane optical 

constants. This is unlike the superconducting cuprates in which c-axis optical 

constants are quite different from ab-plane ones [180,181], and the 

pseudodielectric function for crystals with c-axis normal to the sample surface has 

to be corrected to obtain the ab-plane optical constants. In the 122 iron arsenides 

the ab-plane and c-axis optical conductivities differ by 20%-30% [182,183]. In the 

absence of c-axis optical spectroscopy data, it is reasonable for us to assume a 

similar level of anisotropy in the rare-earth doped CaFe2As2. According to G. E. 

Jellison and J. S. Baba [184], for the special case like the measurements in 

principle symmetry directions (optical axis i.e. c-axis is perpendicular to the sample 

surface), the complex pseudodielectric function 〈𝜀〉 = 〈𝜀1〉 − 𝑖〈𝜀2〉  measured 

directly from ellipsometry data can be expressed in terms of εab and εc: 

 〈𝜀〉 = 𝑠𝑖𝑛2𝜑

[
 
 
 

1 + 𝑠𝑖𝑛2𝜑 (
𝜀𝑎𝑏(𝜀𝑎𝑏−𝑠𝑖𝑛2𝜑)

1
2−[

𝜀𝑎𝑏(𝜀𝑐−𝑠𝑖𝑛2𝜑)

𝜀𝑐
]

1
2

𝜀𝑎𝑏(1−𝑠𝑖𝑛2𝜑)−(𝜀𝑎𝑏−𝑠𝑖𝑛2𝜑)
1
2[

𝜀𝑎𝑏(𝜀𝑐−𝑠𝑖𝑛2𝜑)

𝜀𝑐
]

1
2

)

2

]
 
 
 

 (A1) 

where 𝜑 is the angle between beam and surface normal, εab and εc are the ab-

plane and c-axis complex dielectric functions respectively. The pseudodielectric 

function can be expressed by Taylor expansion in powers of Δε = εc - εab (we keep 

three terms here): 
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 〈ε〉 ≈ εab −
∆ε

εab−1
+

∆ε2

4εab(εab−1)2
4εab

2 −εab−3εabsin2φ+sin2φ

εab−sin2φ
 (A2) 

According to our assumption, Δε / (εab -1) ~ 20%-30% i.e. 0.2-0.3, so the third term 

of eq. (A2) which depends on the angle of incidence should be quite small (less 

than 1% for 〈𝜀2〉 ), and this is confirmed from our multiple angle of incidence 

ellipsometry measurements (as shown in Fig. A3). The pseudodielectric function 

we measured hardly shows any angle of incidence dependence. At 15000 cm-1, 

〈𝜀2〉 is about 10, which makes the contribution to |〈𝜀〉| of the term Δε / (εab -1) about 

2-3% at most. Also when 〈𝜀1〉  is small, both reflectance and phase used in 

Kramers-Kronig analysis based on Ref. [89] are mainly determined by 〈𝜀2〉. Above 

15000 cm-1 to highest measured frequencies, the uncertainty in ab-plane ε2 may 

be between 2% and 10% due to possible contribution to 〈𝜀2〉 from c-axis optical 

properties. However, this has negligibly small effect on calculations of ab-plane 

optical constants below 6000 cm-1. Thus we can say  〈𝜀〉 ≈ 𝜀𝑎𝑏  i.e. the 

pseudodielectric function is the ab-plane dielectric function within the uncertainties 

stated above. In fact, the larger εab the smaller the influence of the c-axis optical 

constants on the pseudodielectric function. So below 20,000 cm-1 (where 〈𝜀2〉 is 

quite large), the pseudodielectric function we get directly from ellipsometry data is 

an accurate representation of the ab-plane dielectric function (within 3% 

uncertainty for ε2), and correction due to c-axis optical properties is not necessary.  
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FIG. A3. (a) and (b) show the real and imaginary parts (〈𝜀1〉 and 〈𝜀2〉) of the pseudo-

dielectric function of Ca0.8La0.2Fe2As2 at room temperature for different angles of 

incidence. 
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constrained by ellipsometry data, we assume the reflectance generated from the 

ellipsometry data is more reliable (random uncertainty in reflectance generated 

from ellipsometric coefficients is about 0.2%). Next we adjust the ab-plane infrared 

reflectance in the range 4800-6000 cm-1 to match the reflectance generated from 

ellipsometric coefficients. The reflectance uncertainty in the range 4800-6000 cm-

1 is around 0.5%, which leads to 1.5% uncertainty in conductivity in the same 

frequency range and even lower uncertainty of about 1% in the far infrared region. 

To summarize, the ab-plane optical conductivity below 6000 cm-1 we obtain from 

this method has a few percent systematic error at most, and the relative uncertainty 

for different temperatures is much smaller. 

 

Appendix B: Phonon shift across CT phase transition 

in Ca0.85Pr0.15Fe2As2 

Here we discuss the effect of the CT phase transition in Ca0.85Pr0.15Fe2As2 on 

the optical phonons. For the parent compound (space-group I4/mmm) CaFe2As2, 

there are two ab-plane infrared-active Eu modes [185,186]. Both phonons have 

been observed in Pr-doped CaFe2As2 although the impact of the structural 
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transition is more clearly evident in the behavior of the higher frequency Fe-As 

vibration.  

 

 

 

FIG. A4: Temperature dependence of the Fe-

As phonon feature in the optical conductivity of 

Ca0.85Pr0.15Fe2As2. Arrows indicate the center 

frequencies of the phonon. 
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phonon mode associated primarily with vibrations of the Ca ion. [186] We do not 

expect Pr doping to significantly affect this phonon feature because the ionic radius 

of the Pr ion is nearly the same as that of the Ca ion. Also, this phonon feature 

becomes weaker and possibly moves to ≈ 175 cm-1 across the structural collapse 

into the CT phase (Fig. 4.1(b)). This phonon feature is much weaker in the 

conductivity data on Ca0.8La0.2Fe2As2. It is likely broadened out due to the lower 

concentration of Ca and the significant difference in the ionic radii of the Ca and 

La ions [46]. 

 

Appendix C: Representative fits of rare-earth doped 

CaFe2As2 

 Both the real and imaginary parts of the conductivity are fit well to the Drude-

Lorentz model. Here we show and discuss the fits to the real part of the conductivity 

(σ1). Fig. A5 shows a comparison of the fits to σ1 at 40 K for Ca0.8La0.2Fe2As2 (UT 

phase) and Ca0.85Pr0.15Fe2As2 (CT phase). In the UT phase, one Drude mode and 

one Lorentz oscillator is sufficient for a good fit to the low frequency optical 

conductivity. Unlike the UT phase, another Lorentz oscillator (Lorentzian 2) is 

required to fit the hump in σ1 around 400 cm-1 in the CT phase. The error bars of 
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Drude parameters plotted in Fig. 3 and Fig. 4 in the main text are calculated as 

follows. We manually vary each Drude parameter, while fitting the other 

parameters of the Drude and Lorentz modes, until the sum of the squared error 

between data and model increases by 10% of the best fit value. 

 

 

FIG. A5. Oscillator fits to the measured σ1 at 40 K for (a) Ca0.8La0.2Fe2As2 and (b) 

Ca0.85Pr0.15Fe2As2. The thick solid line (red) is the data and the black dashed line is the 

sum of the Drude-Lorentz oscillators. The Drude and Lorentz oscillators used in the fits 

are shown as thin solid lines. 

0 2000 4000 6000 8000
0

2000

4000

6000

(a)
Ca

0.8
La

0.2
Fe

2
As

2

 

 



 (




c
m

-1
)

Frequency (cm
-1
)

 40 K data

 oscillator fit

 Drude

 Lorentzian 1

0 2000 4000 6000 8000
0

2000

4000

6000

(b)
Ca

0.85
Pr

0.15
Fe

2
As

2

 

 



 (




c
m

-1
)

Frequency (cm
-1
)

 40 K data

 oscillator fit

 Drude

 Lorentzian 1

 Lorentzian 2



121 

 
FIG. A6. (a) One Drude and one Lorentzian fit and (b) two-Drude fit to room temperature 

infrared conductivity of Ca0.8La0.2Fe2As2; (c) One Drude and one Lorentzian fit and (d) 

two-Drude fit to room temperature infrared conductivity of Ca0.85Pr0.15Fe2As2. 
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one Lorentzian fits work well for the infrared data in the UT phase at room 

temperature and at all measured cryogenic temperatures. 

 

Appendix D: Validation of the EPW 4.2 software 

In order to make sure the EPW 4.2 software works properly when solving 

the isotropic Eliashberg equations, we run a test calculation to obtain results that 

can be compared to published work. The isotropic Eliashberg functions on the 

imaginary energy axis can be written as: 

 

 

FIG. A7. Eliashberg function 𝛼2𝐹(Ω) of lead (Pb) used in the EPW to solve the isotropic 

Eliashberg equations. Data are taken from Ref. [187]. 
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FIG. A8. Energy dependent complex superconducting energy gap function of lead 

calculated using EPW. The gap is obtained by solving the isotropic Eliashberg equations 

with μ* = 0.1 at T = 0.3 K. The superconducting gap is first solved on the imaginary 

energy axis and then iterative analytic continuation applied to obtain the solutions on the 

real energy axis. 

 

 𝑍(𝑖𝜔𝑛) = 1 +
𝜋𝑇

𝜔𝑛
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𝜔
𝑛′
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𝑛′
2 +∆2(𝑖𝜔𝑛′)

𝑛′ 𝜆(𝑛 − 𝑛′) (A1) 

 𝑍(𝑖𝜔𝑛)∆(𝑖𝜔𝑛) = 𝜋𝑇 ∑
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where 𝑖𝜔𝑛 = 𝑖(2𝑛 + 1)𝑇  (n is integer) stands for the fermion Matsubara 

frequencies, and T is the absolute temperature. 𝛼2𝐹(ω) is the Eliashberg spectral 

function. 
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We follow Ref. [187] to repeat the calculations on superconducting lead (Pb). 

Fig. A7 shows the Eliashberg function 𝛼2𝐹(ω)  used in solving the Eliashberg 

equations. Data are digitized from Fig. 1 of Ref. [187]. The isotropic Eliashberg 

equations are solved at T = 0.3 K, with effective Coulomb pseudo-potential μ* = 

0.1. The superconducting gap is first solved on the imaginary energy axis, then 

iterative analytic continuation applied to obtain the solutions on the real energy 

axis. The energy dependent complex superconducting gap function is shown in 

Fig. A8, which is identical with Fig. 2(b) in Ref. [187]. Hence, we have validated 

the EPW 4.2 software. 
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