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Abstract

Trends in nutrient limitation and use of intracellular, new and recycled extracellular 

pools for phytoplankton growth were examined at tidal freshwater and estuarine sites on 

the York R iver, a temperate, tidally mixed river of the Chesapeake Bay, during the 1990 

summer to winter seasonal transition. Eight twenty-four hour batch culture dilution 

incubations were selectively nutrient enriched to assess short term phytoplankton growth 

dependencies on three qualitatively different pools of N and P: 1) intracellular, 2) new 

extracellular and 3) recycled extracellular. These experiments showed a relaxation of N- 

limitation at both sites and a shift to P-limitation in the tidal freshwater region over the 

seasonal transition. The tidal freshwater phytoplankton community shifted from 

dependency on intracellular pools in the summer to recycled and new extracellular pools in 

the winter, while the estuarine phytoplankton reduced their reliance on recycled and new 

extracellular pools and shifted to intracellular pools. Differences between use of N and P 

pools were small. During late summer and fall, phytoplankton in the tidal freshwater 

region are N-limited possibly as a result of low ambient ammonium levels and low cellular 

nitrate reduction. The unexpected dominance of intracellular pools in the tidal freshwater 

region is likely the consequence of uncoupled nitrate uptake and assimilation plus low 

grazing pressure on the phytoplankton. By early winter, N-limitation relaxes as river 

discharge and grazing pressure increase leading to rising ambient levels of ammonium and 

nitrate. Increased grazing pressure and ammonium levels may have also influenced the 

switch from intracellular to recycled extracellular pools. By contrast, the estuarine 

phytoplankton community enjoys a more stable nutrient environment which is highly 

dependent on the recycled nutrients during the late summer. In the estuary low winter 

temperatures cause low growth and grazing rates. The reduction in these rates likely cause 

the switch in growth dependency from recycled to intracellular pools and the relaxation of 

N-limitation.



Contrasts between tidal freshwater and estuarine phytoplankton growth on 

intracellular and recycled nutrient pools over a summer-winter seasonal

transition.
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Introduction

Phytoplankton growth is traditionally considered to be under nitrogen control (N- 

limited) in marine systems and phosphorus control (P-limited) in freshwater systems (e.g. 

Hecky and Kilham 1988). This dogma offers little insight into the dynamic regime of an 

estuary, which is neither completely marine nor fresh (Boynton et al. 1980, Schindler

1981). It remains a subject of debate as to whether, when, and where estuarine 

phytoplankton become either N or P-limited (Caraco 1988, Webb 1988). Recent studies 

have demonstrated both N and P-limitation in some estuaries and brackish lakes (D’Elia et 

al. 1986, Caraco et al. 1987, Webb and Eldridge 1988, Eldridge 1989). Two of these 

studies (D’Elia et al. 1986; and Webb and Eldridge 1988, Eldridge 1989) found a seasonal 

pattern of nutrient limitation where P-limitation dominated during the winter, and N- 

limitation dominated during the summer.

Recent research has demonstrated that phytoplankton communities may utilize N and P 

for growth from three distinct pools, intracellular, new and recycled extracellular 

(Demanche et al. 1979, Dortch 1982, Dortch et al. 1984, Dortch et al. 1985, Andersen et 

al. 1991). Dortch et al. (1984) and Miyata et al. (1986) show that intracellular amino acids 

and orthophosphate represent readily available sources of N and P for phytoplankton 

growth and the intracellular concentrations of these compounds predict the nutrient status of 

the cells. Field studies using such indices for determining nutrient limitation require 

involved procedures and are difficult to interpret due to species specific variations in 

biological storage forms (Dortch et al. 1985, Miyata and Hattori 1986, Dortch and Postel 

1989).

The intracellular pool represents organic and inorganic nutrients in the cell (Demanche 

et al. 1979, Dortch 1982, Andersen et al. 1991). Phytoplankton that experience short term 

fluctuations in extracellular nutrient concentrations may, to some degree, sequester 

nutrients intracellularly, in excess of their short term growth needs (Dortch et al. 1985,



3

Dortch et al. 1990, Andersen et al. 1991). The recycled pool represents those extracellular 

nutrients resulting from water column processes, such as grazer remineralization (Eppley 

and Peterson 1979). The new extracellular nutrients result from advective inputs into a 

water column system and are not of recent biomass origin within that system (Eppley and 

Peterson 1979). Nutrient limitation is linked to how biological and physical conditions; 

such as, uptake and assimilation physiology, grazing pressure, light, temperature, and 

advection, affect the nutrient concentrations in the three nutrient pools and the ability of the 

phytoplankton to use those nutrients (Elser et al. 1988, Dortch and Postel 1989, Vanni and 

Temte 1990, Moegenburg and Vanni 1991). Consequently, phytoplankton use of specific 

nutrient pools directly relates to the dominant biological and physical processes in their 

environment (Dortch 1982).

Andersen et al. (1991) develop a modification the dilution technique described by 

Landry and Hassett (1982) to quantify phytoplankton growth dependency on these three 

pools. Their modification builds on the different and distinguishable effects dilution has on 

the concentration of nutrients in the three pools (Andersen et al. 1991). In their study on 

the Oslofjord, Norway, they found that certain pools of N and P dominate the nutrient 

supply for phytoplankton growth and the magnitude of the supply, as well as the dominant 

supply pool, differs between the several sites, depths, and dates sampled (see Fig. 7, 

Andersen et al. 1991). The differences in pools use between the sites, depths, and dates 

appear to relate to differences in nutrient supply and help explain nutrient limiting 

conditions during their sampling period on the Oslofjord (Andersen et al. 1991).

This study uses Andersen et al.’s (1991) dilution technique to compare the importance 

of the three nutrient pools in the tidal freshwater and the estuarine region of the York River 

system, Virginia, in an attempt to explain the summer to winter seasonal patterns of nutrient 

limitation. The tidal freshwater is an important but understudied region of river-estuary 

systems (Schuchardt and Schimer 1991). High concentrations of nutrients and
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phytoplankton biomass occur in this region (Filardo and Dunstan 1985, Anderson 1986, 

Schuchardt and Schimer 1991). The physiology of tidal freshwater phytoplankton is 

expected to exploit the large available store of dissolved N and P compounds and growth 

and nutrient limitation patterns should be tied to both short and long term fluctuations in the 

concentrations of the new extracellular pool. However, results from this study show a 

growth reliance by tidal freshwater phytoplankton on intracellular pools of N  and P in late 

summer and a switch to recycled extracellular N and P pools in early winter. Interestingly, 

the expected switch from N to P-limitation was concurrent with the change in pool reliance. 

The seaward, more saline, region of the xiver-estuaiy system by contrast receives decreased 

new nutrient inputs from upstream advection (Filardo and Dunstan 1985, Anderson 1986, 

Fisher et al. 1988, Schuchardt and Schimer 1991). Consequently, within this region, 

phytoplankton are expected to have mostly recycled extracellular nutrient pools available, 

with new extracellular nutrient pools possibly available from periodic vertical mixing 

(Webb and Haas 1976, Webb and D ’Elia 1980, Webb and Eldridge 1988, Eldridge 1989). 

Results from this study show a switch from recycled extracellular pools to intracellular 

pools o f N and P. Although the magnitude of N-limitation was reduced, no seasonal 

switch to P-limitation was observed in the estuarine region of the river-estuary system.

Background

The conventional concept of estuaries is that they form in semi-enclosed coastal bodies 

of water which have free connection to the open sea and entering sea water is measurably 

diluted by freshwater (Cameron and Pritchard 1963). In estuaries, a range of salinity and 

nutrient concentrations occur based on the relative tidal and river flows. A variety of 

factors influence phytoplankton growth and biomass in the estuary. The availability of 

light and nutrients, the rate of grazing, and the extent of advection due to river flow all 

effect how successful phytoplankton populations are in the estuary (Ketchum 1954, Filardo 

and Dunstan 1985, Harding et al. 1986, Fisher et al. 1988).
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The abundances of the macro-nutrients N and P play a dominant role in determining the 

growth rates for both marine and freshwater phytoplankton communities (e.g. Hecky and 

Kilham 1988). The N to P molar ratio of 16:1 represents the optimal nutrient supply rate 

for phytoplankton (Redfield 1958). Under Redfield’s condition phytoplankton which have 

the proper molar ratio of N to P in their cellular composition are healthy (Parsons et al. 

1984). Conditions of N and P limitation occur when either N or P are in large excess of 

the other, relative to Redfield’s ratio. Under these conditions growth is limited by the 

nutrient present in lower than optimal concentration (Ryther and Dunstan 1971).

The concept of nutrient limitation is somewhat confusing and complicated. Liebiz 

(1840) originated the concept of nutrient limitation of primary production by stating, 

“growth of a plant is dependent on the minimum amount of food stuff.” Unclear for 

marine systems, in which phytoplankton share a dynamic and common medium, is whether 

nutrients control phytoplankton growth on strictly the cellular scale or, rather, on a 

community scale by limiting total biomass production. For example, nutrient limitation 

may represent a physiological condition where the concentration of the one or more 

nutrients is below a threshold concentration, on a per cell basis, necessary for cellular 

growth. Thus, individual phytoplankters are physiologically impaired, lacking sufficient 

nutrients to grow. The existence of “physiological nutrient limitation” in commonly 

considered nutrient enriched systems, such as rivers and estuaries, is paradoxical since 

such systems have, by definition, an excess of nutrients necessary for phytoplankton 

cellular growth. There is, in fact, little evidence that natural phytoplankton populations 

experience “physiological nutrient limitation” in either nutrient rich or poor environments 

(e.g. Hecky and Kilham 1988).

The concept of nutrient limitation of biomass offers an alternative understanding of the 

nutrient-to-growth relationship. “Biomass nutrient limitation” results from a phytoplankton
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community’s inability to increase its biomass due to an insufficient supply ratio of one 

nutrient as compared to another. The limiting nutrient’s concentration determines the 

community’s realized size (Ryther and Dunstan 1971). Therefore, it makes more sense to 

consider nutrient limitation of biomass in aquatic systems. Using Redfield’s ratio to 

describe the optimal supply ratio for phytoplankton growth, a condition where the ratio is 

greater than 16:1 represents P-limitation and less than 16:1, N-limitation. Although supply 

ratios of N to P affect algal growth, Hecky and Kilham (1988) suggest that the traditionally 

considered dissolved inorganic nutrient supply ratios do not accurately reflect the nutritional 

state of the phytoplankton community. Rather, they argue that physiological indices, such 

as elemental ratios of N and P in biomass, provide more realistic predictions of 

phytoplankton nutrient limitation (Hecky and Kilham 1988).

From a community perspective, the physiological aspect of nutrient limitation relates to 

how phytoplankton respond, through uptake and assimilation of nutrients, to their 

extracellular nutrient environment. Phytoplankton which experience unbalanced nutrient 

concentrations often reflect the imbalance in cellular nutrient to carbon ratios (Goldman et 

al. 1979, Dortch et al. 1985, Miyata et al. 1986). For example, intracellular pools have 

been shown to develop in cultured populations of diatoms and dinoflagellates that are 

nutrient starved and then placed in nutrient rich environments (Demanche et al. 1979,

Collos 1982, Dortch et al. 1984, Miyata and Hattori 1986). Nutrients are generally used 

by phytoplankton cells in an energy dependent two step process starting with uptake, often 

represented by Michaelis-Menten kinetics, and ending with assimilation, the process of 

incorporating those nutrients into biomass (Droop 1983). Highly oxidized nutrients such 

as nitrate require an additional energy dependent intermediate step of reduction.

Sequestering of N or P likely results when phytoplankton have discontinuous uptake, 

reduction or assimilation rates or when reduction or assimilation are the rate limiting steps 

(Demanche et al. 1979, Collos 1982, Dortch 1982, Droop 1983, Dortch et al. 1984,
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Martinez 1991). The phytoplankton community’s intracellular nutrient pool represents 

nutrients contained cumulatively in the phytoplankton cells. Dortch et al. (1985) and 

Miyata and Hattori (1986) hypothesized that intracellular nutrient pools allow communities 

to maintain stable growth rates during periods of nutrient deprivation through the 

mobilization of nutrients incorporated in ancillary compounds. Chemical analysis of 

cultured marine diatoms and dinoflagellates under nutrient deprivation show that 

intracellular N to P ratios may change drastically, either increasing or decreasing depending 

on whether N or P is being used, indicating depletion of intracellular pools (Harrison et al. 

1977, Sakshaug et al. 1984, Miyata et al. 1986). In nature, phytoplankton which 

experience short term fluctuations in extracellular nutrient levels may develop intracellular 

pools to maintain stable growth rates (Dortch 1982, Dortch et al. 1985, Andersen et al. 

1991).

Extracellular dissolved inorganic nutrients come from two sources (pools), new and 

recycled (Eppley and Peterson 1979). Dissolved extracellular N and P are normally 

considered to be in the ion forms of NH4+, NO3 -, P Q ^- (Valiela 1984). Traditionally, 

ammonium represented recycled N and nitrate, new N (Eppley and Peterson 1979). More 

generally, N and P allochthonous to the system being considered can be termed new 

nutrients. New nutrients may constitute the majority of extracellular nutrients available to 

the phytoplankton community. In such communities, grazing pressure is less significant to 

phytoplankton growth. Nutrient enriched and upwelling communities are examples of 

phytoplankton dependent on new nutrients. When these communities lack sufficient 

biomass exports or sinks, the biomass accumulates in the water column leading to blooms 

and possibly, over longer periods of time, to eutrophication (Paerl 1988). Phytoplankton 

communities that utilize new extracellular pools exclusive of recycled ones may be 

ultimately limited by light, temperature, or trace minerals.
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The recycled pool develops out of the collective activities o f phytoplankton, bacteria, 

and grazers in what has been termed the “microbial loop” (Azam et al. 1983). Bacteria 

scavenge dissolved organic material (DOM) released by phytoplankton, sloppy feeding of 

grazers, and lysis of organisms. In turn, heterotrophic flagellates graze the bacteria as well 

as phytoplankton, and remineralize N and P (Caron et al. 1985, Gude 1985, Goldman et 

al. 1987, Bloem et al. 1989). For the microbial loop to efficiently remineralize nutrients, 

heterotrophic protozoa must first graze the majority of the bacterial and phytoplankton 

biomass (Lehman 1980, Lehman 1984). The release of nutrients occurs when grazers 

possess different N:P ratios than their prey or demonstrate a low trophic transfer efficiency 

during digestion and assimilation (Lehman 1980, Lehman 1984, Goldman et al. 1987, 

Bloem et al. 1989, Eldridge 1989, Tranvik 1989). Phytoplankton communities that are 

highly dependent on remineralization for N and P must show a tight coupling between 

growth and grazing (Lehman 1980, Lehman 1984). Furthermore, such communities are 

conservative, tending to have neither significant biomass exports nor allochthonous nutrient 

inputs.

In estuaries, phytoplankton communities in regions of high river flow primarily use 

intracellular and new extracellular pools for growth. Such communities experience net 

down river advection which results in short residence times in the freshwater region and a 

rapid and consistent loss of biomass out of the freshwater (Ketchum 1951, Ketehum 

1954). These freshwater communities cannot remineralize those nutrients which were tied 

up in the lost biomass. Consequently, if the freshwater population maintains a stable 

standing stock, the nutrients lost due to advected biomass must be replaced by some new 

source. Also, river flow provides a constant source of nutrients with the transport of 

dissolved nutrients from upstream and non-point source land runoff (Filardo and Dunstan 

1985, Anderson 1986, Fisher et al. 1988). Light may also limit phytoplankton growth in 

turbid rivers and in the oligohaline (very low salt) regions of some coastal plain estuaries. 

This especially likely near the freshwater-saltwater interface where the landward bottom
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current and the seaward river current m eet The convergence of the two currents results in 

a cycle o f deposition and resuspension riverbome and sedimentary particles and may 

concentrate the suspended load to serveral orders of magnitude higher than regions either 

further up or down stream (Schubel 1968, Schubel and Biggs 1969). High turbidity 

zones, turbidity maxima, and resulting chlorophyll minima have been observed to be a 

general feature of coastal plain estuaries (Schubel 1968, Schubel and Biggs 1969, Morris et 

al. 1978, Morris et al. 1982, Anderson 1986, Harding et al. 1986, Owens 1986, Fisher et 

al. 1988). Light-limited phytoplankton may never effectively exhaust the extracellular 

pools in the freshwater regions of the estuary and accordingly their growth should not 

depend on the quick turnover of biomass to liberate nutrients. Lastly, the nutrient 

environment of the upper estuary is expectedly variable, changing temporally with the 

intensity of river discharge and land runoff and spatially with changes in river morphology 

and circulation.

In contrast to the high flow regions of the upper estuary, the lower estuary experiences 

lower turbidity and a higher intensity and quality of light which allows for higher growth 

rates (Harding et al. 1986). However, lower allochthonous nutrient input rates, and overall 

lower concentrations of dissolved nutrients (Filardo and Dunstan 1985, Anderson 1986, 

Fisher et al. 1988) makes efficient recycling of nutrients necessary during high growth rate 

periods. In such regions, recycled nutrient pools should dominate phytoplankton growth. 

The lower York River, Virginia, undergoes periods of stratification and destratification tied 

to the spring-neap tidal cycle (Haas 1977). The vertical mixing of the water column during 

destratification enriches the surface water by reintroducing nutrients previously trapped 

below the pycnocline (Webb and D ’Elia 1980).
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Dilution Theory

Landry & Hassett (1982) developed a technique to quantify grazing and growth rates of 

phytoplankton by diluting natural water (whole water-WW) with filtered, cell-free natural 

water (dilution water-DW). This “dilution technique” depends on three pivotal 

assumptions: (1) The growth of an individual phytoplankter is not affected by the 

concentration of phytoplankton (Le. growth rate of the individual does not change with 

dilution); (2 ) the consumption of a phytoplankton cell is simply a function of the encounter 

probability o f a grazer to its prey (grazing is a linear function of dilution); and (3) 

phytoplankton biomass is a product of its initial value and the exponential function of its 

growth ra te , grazing rate , and time.

The standard equation for calculating phytoplankton growth rates from chlorophyll-a 

concentration (Chl-a) measurements is:

where the apparent growth rate (r) is calculated from the exponential change in Chl-a from 

its initial (Po) to final value (Pt) over some time interval (t), and represents the difference 

between the optimal or gross growth rate of the phytoplankton (k) and the grazing rate (g). 

Therefore, based on this relationship of r  to k and the assumptions given for dilution 

experiments, r  should approach the value of k in a linear fashion with progressively more 

dilute incubated mixtures of WW and DW. Thus, r  is negatively correlated to the fraction 

of WW (x) which represents the reduction of grazer abundance and overall grazing rate. 

Statistically then, a simple linear regression of r  (dependent variable) against x (independent 

variable) predicts g, the negative slope of the regression line, and k, the y-intercept of the 

regression line where g is theoretically equal to 0. At an infinite dilution the predator is 

absent from the prey and, thus, the prey growth rate is maximal for its environmental

(1)
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conditions. Non-optimal environmental conditions, such as nutrient limitation, and non­

linear grazing may lead to violations of these assumptions and require special consideration 

(Burkill et al. 1987, Paranjape 1987, Gifford 1988, Gallegos 1989, Andersen et al. 1991).

Dilution of low-nutrient natural water may induce a condition of artificial nutrient 

limitation because the nutrients that support the algal cell are supplied through grazing and 

the grazer concentration is decreased as a linear function of dilution (Landry and Hassett

1982). To avoid this confounding complication, dilution experiments traditionally require 

the addition of nutrients sufficient to support phytoplankton growth independent of grazer 

remineralization over the time course of the experiment (Landry and Hassett 1982, Burkill 

et al. 1987, Paranjape 1987, Gifford 1988, Gallegos 1989). Andersen et al. (1991) take an 

opposite approach from Landry and Hassett (1982) and explore how dilution actually 

affects nutrient concentrations and phytoplankton growth rate independent of grazing. So, 

whereas Landry and Hassett (1982) originally intended to control for the impact of 

nutrients on phytoplankton growth in order to quantify the impact of grazing, Andersen et 

al (1991) attempt to control for grazing so that they can quantify the impact of intracellular, 

new and recycled extracellular pools of N and P on phytoplankton growth.

The first step for Andersen et aL (1991) is to quantify the grazing rate present in the 

natural water. If dilution assumptions about grazing hold true (Landry and Hassett 1982), 

then grazing remains constant in nutrient enriched and non-enriched dilutions (Andersen et 

al. 1991). Since g can only be accurately estimated when nutrient concentrations are 

controlled, Anderson et al.’s (1991) technique requires one fully nutrient enriched dilution 

series. The grazing and gross growth rates are calculated for the WW as described 

previously. Next, dilution series are selectively enriched with all necessary growth 

nutrients except for either N or P. This allows changes in phytoplankton growth rates over 

the incubation period to depend only on the natural pools of the nutrient not added. Since 

g calculated for the fully nutrient enriched dilution series is an estimate of the WW grazing
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rate, the apparent growth rates for the selectively enriched dilution incubations are corrected 

for grazing by adding the fraction of g corresponding to the fraction of WW in each 

dilution:

M-x = rx+gx, (2 )

where the grazing corrected growth rate (|i) equals the apparent growth rate (r) of some 

dilution x (fraction of WW) plus the proportional fraction of the WW grazing rate (g). 

Grazing is corrected for in this manner because the grazing pressure in each dilution is 

directly proportional to the number of grazers present in the dilution which is directly 

proportional to the fraction of whole water present The manner by which [i changes as a 

function of dilution reflects the phytoplankton community’s dependency on intracellular, 

new and recycled extracellular nutrient pools.

The interpretation of how changes in jt with dilution relate to N and P pool 

dependencies is based on how dilution affects the concentrations of the three pools. 

Recycled extracellular nutrient pool concentrations depend on the concentrations of both 

phytoplankton, the ultimate source of nutrients, and the grazers which actually recycle 

nutrients by grazing the phytoplankton. Since dilution lessens both phytoplankton and 

grazer concentrations by x, then the concentration of the recycled pool is reduced by x2:

Rx = R ix2 (3)

In this equation the concentration of recycled extracellular nutrients (R), for some fraction 

of WW (x), is the initial concentration of the WW recycled pool (Ri) times the square of the 

dilution.

Intracellular pools are contained within individual phytoplankters so concentrations of 

both correspond directly to dilution. Consequently, the magnitude of intracellular pools in 

a dilution mixture decreases linearly as dilution increases:
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Ix=IlX.

MARINE SCIENCE

(4)

In this equation the concentration of intracellular nutrients (I) for a given fraction of WW 

(x) equals the initial WW intracellular nutrient concentration (Ij) multiplied by the fraction 

of WW present in the dilution.

New extracellular pool concentrations are assumed to be the same in WW and DW 

since effective filtering only removes cells and particulate material. Consequently, new 

extracellular nutrient pool concentrations remain constant with dilution:

In this equation the concentration of new extracellular nutrients (E), for some fraction of 

WW (x), equals the initial WW new extracellular nutrient concentration (Ej).

Since apparent growth rates in the selective nutrient enriched dilutions are corrected for 

grazing, growth rate is proportional (oc) to the sum of the nutrient concentrations in the 

three pools at a given irradiance and temperature:

combined nutrient concentrations in the intracellular, new and recycled extracellular pools. 

Therefore, if growth rate is measured as Chl-a production over some time interval, then the 

growth rate in a given fraction of WW is the sum of the Chl-a production resulting from the 

intracellular, new and recycled extracellular pools:

Equation 7 shows that Chl-a production, as a change in Chl-a concentration (AP) over the 

time period t for some fraction of WW (x), is the sum of the Chl-a production supported by

Ex =  E i. (5)

|Ixoc [Rx2+ Ix + E]. (6)

Equation 6  simply demonstrates that p, for some fraction of WW (x), is proportional to the

(7)
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the recycled (R), intracellular (I), and new (E) pools of nutrients. Equation 7 also defines 

the proportional relationship of p., in terms of AP for some t, to the three pools outlined in 

equation 6 . It is important to note, that the contribution to AP of each pool changes 

differently with dilution (x). This differential relationship of each pool to AP with dilution 

allows for the inferences about growth dependency on each pool made by this technique.

Returning to equation 1, apparent growth rate equals the natural logarithm of the final 

Chl-a concentration (Pt) divided by the initial Chl-a concentration (Po) over some time 

interval (t). The initial Chl-a concentration for each dilution is actually the initial Chl-a 

concentration of the WW multiplied by the fraction of WW present in that dilution (xPo). It 

also follows that during the incubation the final Chl-a concentration for each dilution equals 

the initial Chl-a concentration plus the increase in the Chl-a concentration (Pt = xPo + AP). 

Thus, for the selectively nutrient enriched dilutions, values of p  (equation 2) for each 

fraction of WW (x) can be estimated from a modification equation 1:

Equation 8, by substituting (xPo+ AP) for (Pt) and (xP q) for (Po), demonstrates the 

relationship of p  for each dilution to the change of Chl-a per the initial Chl-a concentration 

in the dilution. Equation 8  can be expanded to describe the contribution of the three pools 

(R,I, and E) to p  for each dilution:

Equation 9 is the substitution of Equation 7 into Equation 8  and further defines the 

proportional relationship of p  to the three pools as described in Equation 6 .

(8)

(9)

(10)
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Equation 10 shows the reduction of the numerator in Equation 9 by x. The reduction is a

result of the fact that growth rates are cell specific and, consequently, a reduction by x in

nutrient concentration within the three pools is offset by the concurrent x decrease in

demand for the nutrients as phytoplankton concentrations are reduced by x. Growth

coefficients (Kn, where n is I, E or R) can be substituted for the change in Chl-a divided by 

the initial Chl-a hi each pool growth term in Equation 10. The substitution produces

the following equation and is the nutrient growth model developed by Andersen et al. 

(1991):

H x = j t a ( l  + K r x  +  K i + K E x -1 ) .  (11)

Values for \i are calculated from the actual dilution incubations as described in Equation 2. 

Thus, to estimate the three pool growth coefficients, Equation 11 can be rearranged to yield 

a relationship of the growth coefficients to a transformed |x:

y = eM- 1 = Ktft + Ki+ Kex"1. (12)

In Equation 12 the time (t) present in equation 11 is equal to 1 d (incubations took 24 h) 

and y  equals the transformation of \i which allows for the removal of the natural logarithm 

and constant from the growth coefficients. Therefore values of y  are calculated from values 

of |X and a multiple linear regression of y  (dependent variable) against dilution (x) and the 

inverse of dilution ( x 1) (independent variables) estimates the growth coefficients for each 

pool.

To understand how the model and multiple linear regression of y against x work, 

consider Equation 11. For example, when intracellular nutrient pools support growth, 

calculated p ’s for all the dilutions would cluster fairly closely to some common value. The 

multiple linear regression of these y ’s against x should only give a intercept value (Ki) and 

the regression line is a straight line with a slope equal to 0. Differently, when new
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extracellular pools dominate nutrient supplies, the values of y increase by the inverse of 

dilution (x_1) because the concentration of nutrients per cell increase exponentially with 

increasing dilution. The multiple linear regression of these y ’s against x will generate only 

a coefficient for x_1 variable (Kr ) and the regression line will show an exponential and 

asymptotic increase as dilution increases. Finally, when recycled nutrient pools dominate 

growth, the multiple linear regression will show a coefficient for the x variable (Kr) and 

the regression line shows a negative linear relationship between y and dilution. Natural 

populations are likely intermediate between these three conditions and their functions 

should be weighted towards the most significant pool. The extent to which each pool 

affects the growth rate of the phytoplankton differently with dilution will influence the 

magnitude of the coefficients predicted by the multiple linear regression. Thus, for 

example, the Kr  predicted for a system which is highly dependent on recycled nutrients for 

phytoplankton growth would be greater than the KRfor a population less dependent on the 

recycled pool. In this case the regression line for the highly dependent population will be 

steeper than that for the less dependent one. The multiple linear regression technique used 

should be able to distinguish between significant and non-significant coefficients in order to 

more accurately estimate the growth parameters of that population.

Objectives

1. To evaluate the appropriateness of the dilution technique outlined in Andersen et al. 

(1991) for nutrient limitation studies in an estuarine river.

2. To monitor changes in N and P-limitation and dominant pools in the the tidal freshwater 

and estuarine regions of the York River system during the 1990 summer to winter 

seasonal transition.
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Hypotheses

1. During the 1990 summer to winter seasonal transition, the tidal freshwater and estuarine 

phytoplankton of the York River system will shift from a N-limited (summer) to a P- 

limited (winter) growth condition.

2. Tidal freshwater phytoplankton, as a result of river flow, experience high new nutrient 

concentrations and therefore show a dominant growth dependency on new extracellular 

N and P  pools.

3. Estuarine phytoplankton, as a result of lower new nutrient input and higher 

phytoplankton growth rates, experience low ambient nutrient concentrations and rely 

heavily on recycled N and P pools for growth.

Materials and Methods

The York River system, Virginia, encompasses three rivers, the York, Pamunkey, and 

Mattaponi. Its streams flow southeasterly from the foothills of the Blue Ridge Mountains 

in Virginia to the Chesapeake Bay near Yorktown, Virginia. The York river itself is 

formed by the confluence of the Pamunkey and Mattaponi rivers 48 kilometers from its 

mouth at West Point, Virginia (Hyer et al. 1972, Haas 1977). The Pamunkey is tidal 90 

km upstream of West Point (Division of Water Resources, 1970) and drains an area of 

1,005 km2  (361 mi2). The non-tidal river, the upper 47 km, drains an additional 2,776 

km2  area (999 mi2). The surface area of the tidal Pamunkey is 29.28 km2  and the water 

volume is 1.098 x 108  m3  at mean low water (Brooks 1983b). The average tidal range 

varies from 0.90 m at West Point to 1.18 m 87 km upstream (Brooks 1983b). The 39 year 

average discharge for the Pamunkey near Hanover, Virginia is 28.74 m3  s_1, ranging from 

0.34 to 1,140 m3  s_1 over the 39 years (USGS 1982).
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The York River is tidal for its entire length which extends 48 km from the river mouth 

near Yorktown, Virginia to its bifurcation at West Point The York basin alone drains an 

area of 598 km2  (215 mi2) The water surface area of the York is 210.92 km2  (127 mi2) 

and its water volume is 9.09 x 108  m 3 at mean low water (Brooks 1983a). The tidal range 

for the York varies form 0.70 m at the mouth to 0.90 m at West Point (Brooks 1983a).

The 39 year average discharge for the York is 45.82 m 3 s"1, ranging from 0.51 to 1,619 

m 3  s' 1 over the 39 years (USGS 1982).

This study compared a tidal freshwater site (salinity < 1.0  psu) and an estuarine site 

(~20.0 psu) on the York River system (Fig. 1). The freshwater site (Pamunkey) was 

located off a Virginia public pier on the Pamunkey River approximately 81 kilometers from 

the mouth of the York River. The estuarine site (York) was located at the old Gloucester 

Point ferry pier approximately 10 kilometers from the mouth of the York River.

Eight dilution experiments (4 per site) were performed during the 1990 summer-winter 

seasonal transition using a modification of the design described by Anderson et al (1991). 

The Pamunkey experiments commenced on 27 August, 1 October, 6  November, and 16 

December. The York experiments commenced on 30 August, 4 October, 8  November, and 

19 December. One other dilution experiment was conducted with York water from 27-30 

November to assess growth lag periods at lower ambient water temperatures. During 

sampling, surface water temperature and salinity were measured using a mercury 

thermometer and a refractometer. Water column light attenuation data was collected using a 

4 k subaqueous light meter interfaced with a LICOR model LI-1000 data logger (August, 

October and November) or a Secchi disk (December). Sufficient surface water was 

collected at each station to fill three 2 0  liter carboys using a clean and rinsed plastic bucket 

Sampling occurred in the mid-aftemoon and in the case of the Pamunkey sampling, water 

was immediately transported to the Virginia Institute of Marine Science (VIMS).
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After collection, 20 liters of sample water was filtered by gravity through a 73 |im  

Nitex® mesh filter to remove large zooplankton; this water was the whole water (WW) 

used in making the dilutions. Thirty liters of sample water was filtered through Whatman® 

GF/A™ (August) or sequentially through GF/A™ and GF/F™ (October, November and 

December) glass fiber filters by vacuum (<100 mm Hg) to produce dilution water (DW) 

free of phytoplankton and grazers. Approximately 125 ml of DW was collected and stored 

frozen for inorganic N and P analysis (no samples taken in August) using Technicon 

Autoanalyzer. During the August and October experiments dilutions were immediately 

mixed following filtering of the sample water and incubations began that evening. For the 

November and December experiments WW and DW were stored seperately overnight in 20 

liter carboys at near ambient temperatures in the dark and incubations commencing before 

09:00 the next morning.

Dilutions were mixed to provide the following fractions of WW: 0.05, 0.10,0.20, 

0.40,0.60,1.00. Replicate one liter polycarbonate bottles were filled with the mixed 

dilutions. Each dilution series received either: 1) NH4 + and P O ^ "  (+NP), 2) NH4 +

(+N), or 3) P 0 4 ^ ' (+P) to achieve N and P concentrations of 25 jiM and 5 |iM, 

respectively. Trace minerals and other nutrients were assumed not to be limiting to 

phytoplankton growth over the incubation period. Replicate bottles containing only DW 

and +NP were incubated as controls.

Bottles were incubated for 24 h (August, October and November) or 48 h (December) 

in a 1.2 x 3.0 m flow-through water bath on the VIMS ferry pier (except August).

Window screening was used to mimic average ambient light intensity. Incident and 

incubator light levels were monitored using 2k deck cell and 4k subaqueous sensors, 

respectively, with hourly averages stored on the data logger. During the August 

experiments, as the result of water pump failure, bottles were incubated in situ off the end
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of the VIMS feny pier at a depth equivalent to average light levels. The depth of the bottles 

was periodically adjusted for changes in tide height.

The phytoplankton community in the WW at 0 h was assessed by epifluorescence 

microscopy. For eukaryote enumeration, 2-8 ml of sample were fixed with 0.3% 

glutaraldehyde (final concentration) and stained with 7.5 pg ml'l (final concentration) 4 \6 ’- 

diamidino-2-phenyl-indole (DAPI) (Porter & Feig 1980) and then with 3.0 fig ml4  (final 

concentration) 3,6 -diaminoacridine (Proflavin) (Haas 1982). For bacterial enumeration in 

the October, November and December experiments, 2 ml of sample were stained with 

0.01% (final concentration) acridine orange (Hobbie 1977). The stained samples were 

filtered under vacuum (<150 mm Hg) onto 0.2 or 0.8 pm pore black stained Nuclepore® 

filters. The 0.2 pm  pore filters were used in the August experiments and for all o f the 

acridine orange stained samples. The 0.8 pm filters were used for DAPI/Proflavin slides in 

the October, November and December experiments. The filters were mounted onto breath- 

dampened slides, with a drop of immersion oil and a cover slip placed on the slide-mounted 

filter, and stored frozen until analysis. Slides were analyzed for cell types, concentrations, 

and biovolume on the computer assisted image analysis system developed by Sieracki et al. 

(1989) and Sieracki and Webb (1991). Biomass was estimated for eukaryotes using the 

biovolume to biomass conversion factor of 220 pg l' 1 (Bratback and Dundas 1984) and, 

for prokaryotes, the conversion factor of 300 pg l ' 1 (Fry 1988).

Chl-a samples were taken in triplicate at 0 h from each prepared dilution and in 

duplicate at 24 h from each sample bottle (also at 48 h for the December experiment). Five 

to 15 ml of sample were filtered onto 25 mm Whatman® GF/F™ glass fiber filters. The 

filters were placed in dark test tubes pre-filled with 8  ml dimethyl sulfoxide and acetone 

extraction solution (Webb & Hayward unpubl.). Fluorescence was read the following day 

on a Turner Designs Fluorometer, calibrated with a spinach standard (Ray et al. 1989). 

Replicate Chl-a readings were reduced using simple descriptive statistics; mean, standard
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deviation and coefficient of variance. Since Chl-a was measured in the control DW bottles, 

Chl-a concentrations measured in the experimental bottles were corrected for Chl-a added 

with the DW  as follows:

P c = P m - ( 1  - x)Pd w , (13)

where P c  represents the corrected Chl-a concentration, Pm is the measured (unconected) 

Chl-a concentration, P d w  is the mean DW Chl-a concentration, x is fraction of WW 

present in the dilution. Corrections done for initial Chl-a measurements used the mean of 

the initial DW Chl-a values and corrections done for final Chl-a measurements used the 

mean of the final DW Chl-a values obtained from the incubated control bottles (DW + NP).

Because it was believed that the volume fraction WW to the total volume of each 

dilution did not accurately reflect the dilution of the photo- and heterotrophic micro-, nano- 

and picoplankton, the dilution series was measured as the fraction of WW Chl-a. It was 

assumed that the initial proportions of photo- to heterotrophs in the dilutions did not change 

with respect to the WW and, therefore, the dilution of WW Chl-a directly corresponded to 

the dilution of WW heterotrophs. In order for this assumption to hold true, only corrected 

Chl-a values for each dilution were used. Unconected values would underestimate the 

dilution of heterotrophs by measuring Chl-a added with the DW during mixing (see 

Discussion for further consideration of the effects of DW Chl-a on the effectiveness of this 

technique). Dilutions were calculated using the following equation:

In the above equation, dilutions were measured by the fraction of initial WW Chl-a (x^) 

present at time 0 in the WW/DW mixture. The mean of the initial Pc values for each 

dilution (x) was divided by the mean of initial Chl-a values of the WW (Pi).
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In November an additional dilution experiment was conducted to investigate if falling 

water temperatures were increasing the time lag between the nutrient addition and growth 

response of the phytoplankton. In this experiment the dilution series was only enriched 

with +NP. Consequently only 14 bottles were incubated (two per dilution plus two 

DW ’s). The incubation lasted a total of 72 h and Chl-a samples were taken at time 0, 24, 

48, and 72 h and apparent growth was calculated for each 24 h interval. The Chl-a 

concentrations and r ’s for each dilution were plotted against time to determine growth lags.

Apparent growth rates (r) were derived from changes in corrected Chl-a over 24 h time 

intervals (t = 1 d). Because both December experiments showed a significant growth lag 

during the first 24 h, the 24 h sample was considered the initial and the 48 h, the final Chl-a 

concentration. In all incubations r was calculated using the following equation:

In the above equation t is the time ( 1  d for all incubations), Pcf is the final, and Pco is the 

initial, corrected Chl-a value. The +NP treatments were assumed to follow Landry and 

Hassett's parameters (1982) and r was regressed against the fraction of WW Chl-a (x) as a 

simple linear function to provide estimates of the gross growth rate (k, the y-intercept) and 

the WW grazing rate (g, the negative of the slope) for the phytoplankton (Andersen et al. 

1991). Grazing was considered significant at p < 0.15 and when not significant it was 

assumed to equal zero. When g = 0, k was assumed to equal the mean of the r for the 

dilution series. Using initial W W  Chl-a concentrations and the calculated values of k and 

g, estimates were made for the 24 h gross and real production of the phytoplankton 

community at each site for every experiment. The two productions were compared to 

provide estimates on the percentage of potential production and standing stock grazed over 

the 24 h incubation.

(15)
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Grazing was assumed to be the same linear function of dilution for all three treatments. 

Grazing-corrected growth rates (p) were calculated for the +N and +P selectively treated 

dilution series by using +NP grazing rate (see Equation 2). Growth coefficients for 

intracellular (Kr), recycled (Ki) and new (Ke) extracellular pools of the limiting nutrient 

were estimated by using a multiple regression of values for p  in the +N and +P selectively 

nutrient treated dilution series against x and x 1 (see Equation 12). Coefficients below the 

F-value significant at p = 0.05 were removed from the solution and significant negative 

coefficients were ignored (Andersen et al. 1991). Daily production estimates for 

intracellular, new and old extracellular N and P were calculated by multiplying the initial 

WW Chl-a by the corresponding pool coefficient.

Results

The ambient physical conditions, chlorophyll and nutrients at the Pamunkey and York 

sampling sites from July 1990 to January 1991 are given in Table 1 and Figure 2. Surface 

water temperature was similar at the two sites, falling from 30 to 5°C during the summer- 

winter seasonal transition (Fig. 2A). Pamunkey surface salinity was consistently below 

detection (< 1 psu) while York salinity averaged 20 (± 3) psu. Light attenuation at the two 

sites also differed, averaging 3.8 (± 1.3) m and 1.7 (± 1.0) m at the Pamunkey and York, 

respectively (Table 1).

The York generally had greater concentrations of Chl-a than the Pamunkey (Fig. 2A). 

Both sites showed a generally decreasing Chl-a with time. Pamunkey Chl-a fell from a 

July high of 15 pg H to a December low of 3.1 pg H (Fig. 2A). York Chl-a fell from a 

July high of 35 pg H to a December low of 4.5 pg H, but rebounded in January to 17 pg 1“ 

l (Fig. 2A). On all sampling dates Chl-a was present in the DW and ranged from <1 

(November and December) to 10% (August and October) of WW Chl-a concentration. The 

level o f DW Chl-a was similar in both the Pamunkey and York waters.



24

Phosphate concentrations varied little between sites and between samplings (Table 1). 

The average Pamunkey and York phosphate concentrations were 0.14 (± 0.02) and 0.17 (±

0.05) |iM, respectively. Dissolved inorganic N concentrations varied much more with the 

transition of the seasons and between sites (Table 1). Since P concentrations varied little, 

inorganic N  to P supply ratios show a rise in N concentration after a small initial decrease 

in the Pamunkey, and two peaks for N in the York (Fig. 2B). Nitrate was the dominant 

form of dissolved inorganic N (DIN) in the Pamunkey, comprising 69.5 (± 12.2) % of the 

sum of ammonium and nitrate, while ammonium was the dominant species in the York, 

comprising 87.5 (± 7.6) % of the DIN. At both sites nitrite was present in only trace 

amounts. Changes in the ratio of dissolved ammonium to phosphate concentrations (Fig. 

2C) show a similar pattern for the York, owing to the overriding dominance of ammonium 

species there. For the Pamunkey, however, the pattern for the DIN:P ratio (Fig. 2B) is 

distinctly different than the NH4 +:P ratio (Fig. 2C), where 6  of the 8  samples have supply 

ratios below 16:1.

Table 2 shows the phototrophic and heterotrophic abundances of micro-, nano-, and 

picoplankton sampled at the two sites. In the Pamunkey, cyanobacteria and phototrophic 

dinoflagellate abundances decreased dramatically during the study period while 

phototrophic flagellate, cryptophyte, and diatom abundances fluctuated gready between 

samplings. The Pamunkey’s heterotrophic plankton abundances were relatively constant 

between the August and November experiments but in December the bacterial population 

decreased and the flagellate population increased. In the York water cyanobacteria, 

phototrophic flagellates, and diatom abundances sharply declined from August to December 

while phototrophic dinoflagellate and cryptophyte abundances varied widely between 

samplings. After an initial drop between August and October, bacterial abundance 

remained constant The heterotrophic flagellate abundance declined after October. Trends 

in biomass (Table 3) mirror the trends for cell abundances. The heterotroph to phototroph
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biomass ratio (Table 3) shows that the Pamunkey community was generally more 

heterotrophic and heterotrophy generally increased from summer to winter at the York site.

Figure 3 shows results of the 72 h dilution experiment done with York water in late 

November. In situ water temperature was 11°C and salinity was 18 psu. A delayed 

growth response to the added N and P was observed in the low dilutions (0.24 fraction of 

WW Chl-a and greater) and negative growth occurred in the highest dilution during the first 

24 h. Chl-a in all dilutions increased logarithmically after 24 h. Based on these results, the 

December incubations were extended to 48 h for both sites.

The apparent growth rate vs. dilution plots for the +NP treatments for each of the eight 

experiments are shown in Figure 4. Generally there was more variation between replicate 

bottles in the Pamunkey experiments than in the York. Simple linear regressions results 

(Table 4) indicate that both growth and grazing rates of phytoplankton at both sites 

generally declined from August to December. Because the model requires an estimate of 

the grazing impact on the phytoplankton community if it exists, I reduced my type II error 

(P) by allowing my type I error (a) to equal up to 0.15. Consequently the goodness of fits 

(R2) for the Pamunkey regressions are rather weak, but all four Pamunkey regressions do 

describe a trend (slope > 0) at a p < 0.15.

Table 5 displays initial whole water Chl-a concentrations and the rates of potential and 

real primary production based on the +NP growth and grazing results for the eight 

experiments. Both sites showed a decline in potential and real production from August to 

December. At the Pamunkey site grazing reduced potential production by more than 50% 

in August and October, 30% in November and 77% in December. The amount of standing 

stock grazed showed a similar trend with a decline August to November and a resurgence 

in December. Grazing impact was also reflected by changes in the growth efficiency. The 

York water showed a decrease in potential and real production between August and October
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as well as a decrease in grazing pressure and an increase in growth efficiency. Only 

potential production could be estimated for the November and December experiments since 

no grazing was detected.

The observed values of p., grazing corrected growth rates, for the +N and +P 

treatments are shown in Figures 5 and 6  respectively along with the curve resulting from 

the multiple regression model. Generally the responses of the +N and +P treatments were 

very similar at each site but differed between sites. The sites also showed different trends 

over the seasonal transition (Figures 5 and 6 ). Table 6  shows the numeric results of the 

model calculations for growth coefficients (d*1) as determined by backwards multiple 

regression. The multiple regression gave significant but negative values for the intracellular 

pool coefficients for both N and P in the Pamunkey December and York August 

experiments. These occurred when there was a pronounced shift from recycled to new 

extracellular pool dependency at the high dilutions (Figures 5 and 6 ). Since negative values 

cannot translate into real rates they were ignored and were set equal to 0 in Figure 7. 

Andersen et al. (1990) treated negative values similarly. In the August York experiment, 

the highest dilution is omitted because the Chl-a for the dilution was not different than the 

Chl-a for the controls at both time 0 and time 24 and, consequently, was corrected to equal 

zero and was ignored (see Material and Methods). In the November Pamunkey 

experiment, the highest dilution series for both +N and +P were lost and the next highest 

dilution is shown in Figures 5 and 6  but due to its extremely low value it was not used in 

the multiple regression. In the December Pamunkey experiment, two replicates in the +N 

and +P treatments showed negative growth throughout the 48h incubation and were 

considered lost, but all dilutions were represented.

The Pamunkey community showed an exclusive growth dependency on intracellular 

pools for both N and P in the August, October, and November experiments (Figures 7A 

and C). In these three experiments the P  pool growth coefficient was greater than the N
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coefficient, though the difference declined to a point in November where both were 

basically equal (Table 6 ). In December, the Pamunkey community shifted its reliance from 

intracellular to extracellular pools for both N and P  (Figures 7 A and Q . In the extracellular 

pool both new and recycled N and P were used with more growth occurring from recycled 

nutrients (Table 6 ). The combined growth from the new and recycled nutrients showed 

slighdy greater growth in the N pool (Table 7).

The York community, by contrast, relied exclusively on extracellular nutrients in 

August (Figures 7B and D). In August the recycled pool dominated both N and P growth 

while the new pool was rather small but more important for N growth (Table 6 ). In the 

October experiment the intracellular pool emerged to dominate both N and P growth (Table

6 ). The extracellular pool was also present with recycled dominating new nutrients for 

growth (Table 6 ). In November the community shifted to exclusively intracellular pools 

for growth for both N and P (Table 6 ). For the December experiment intracellular pools 

dominated, exclusively in the P pool and with a small input from new extracellular in the N 

pool (Table 6 ). In August and November P growth was greatest while in October and 

December N growth was greatest (Table 7).

In August and October for both P and N the combined growth coefficients in the York 

exceeded those for the Pamunkey. In November the two site showed nearly even combined 

growth coefficients while in December they shifted with higher growth coefficients seen in 

the Pamunkey than in the York for both for N and P. These trends are further highlighted 

by Chl-a (jig H) production estimates for the 24 h incubation compiled in Table 7.
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Discussion

I. The Dilution Technique:

Some modifications of Andersen et al.’s (1991) technique were necessary for use on 

the York River system. The first modification was that dilutions were measured as the 

fraction of WW Chl-a and not simply the physical mixture of WW and DW. It was 

assumed that dilution of Chl-a was proportional to dilution of grazers and reflected the true 

effectiveness of the physical dilution. Unfortunately, DW produced in all eight 

experiments contained measurable Chl-a. Likely, the ineffectiveness of the filtering to 

produce Chl-a free DW resulted from the usage of Whatman GF/A and GF/F filters. 

Taguchi and Laws (1988) found that up to 35% of picoplankton Chl-a present in coastal 

and open water samples passed through Whatman GF/F filters. Both river sites had high 

concentrations of cyanobacteria in August and October (Table 2) and a significant 

percentage of these cyanobacteria and other picoplankton passed through the filters into the 

DW (10% of WW Chl-a for both sites during both experiments). Therefore, bulk Chl-a 

measurements of the dilutions did not directly correspond to the concentration of grazers 

and larger phytoplankton but included picoplankton populations added with the DW. 

Consequently, bulk Chl-a measurements overestimated the abundance of grazers by 

underestimating the dilution. The presence of Chl-a in the DW necessitated the second 

modification which corrected all bulk Chl-a measurements for the Chl-a added with the DW 

and allowed for accurate calculation of dilutions (see Materials and Methods).

Cyano- and heterotrophic bacteria are significant food sources for heterotrophic 

nanoplankton and ciliates (Borsheim 1984, Anderson and Fenchel 1985, Sherr and Sherr 

1987, Gonzalez et al 1990). In higher dilutions, the addition of picoplankton present in the 

DW likely cause the initial ratio of prey to grazers to be significantly higher than the ratio in



29

the WW. The ratio of phytoplankton to grazers (rp;g) in a given dilution can be described 

by the following equation:

(xPww + (1 - x)P(hv) n r v
rp : g - ----------

XvJw W

In the above equation the phytoplankton to grazer ratio (rp:g) equals the sum of the fraction 

of WW (x) times the WW concentration of phytoplankton (Pww) and one minus the fraction 

of WW times the DW concentration of phytoplankton (Pdw); the sum is then divided by the 

fraction of WW times the WW concentration of grazers (Gw ). Thus, if the DW is cell- 

free then the rp;g for each dilution equals the rp:g for the WW, while if the DW contains 

picoplankton then the ratio will be greater for the dilutions than for the WW. The highest 

dilutions will have the most significandy greater rp:g than the WW rp;g, because in these 

dilutions the most picoplankton are added and concentration of grazers is the lowest For 

example, given: 1) Pw  equals 1 x 106  cells ml-1 , 2) Pdw equals 1 x 105  cells ml" 1 (DW 

contains 10% of the WW Chl-a in the form of phototrophic picoplankton, as was true in the 

August and October experiments), and 3) Hw  equals 1 x 105  cells ml-1; a 0.1 fraction 

WW dilution would increase the rp:g from 10:1 in the WW to 19:1 in the dilution:

0.1 ( l  x 106  cells m l~l) + 0 . 9 ( l  x 105  cells ml~l)
^  0 . 1  ( l  x 1 0  ̂ cells ml“l )

rp:g = 19. (17)

This diluting inequity between phytoplankton and grazer violates one basic assumption of 

the technique which, because both populations should be reduced proportionally with 

dilution, expects the encounter rate of grazers to phytoplankton to decrease linearly with 

dilution (Landry and Hassett 1982).

The consequence of this violation leads to a non-linear reduction in the grazing rate with 

dilution during the incubations (Gallegos 1989), such as saturated grazing noted in dilution
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experiments by Gallegos (1989) and Falkenhayn (1990). The grazing rate in the dilution 

(gx) may be described as follows (from Equation 7c, Gallegos 1989):

In Equation 18, grazing rate in the dilution (x) is the product of the grazing rate in the WW 

(gl) and the quotient of the phytoplankton concentration function in the dilution and in the

picoplankton in the DW leads to a lower than expected reduction in grazing pressure:

In the above example, the grazing rate when the grazer concentration is reduced to 10% is 

actually 19% of the original grazing rate. Thus under conditions of picoplankton 

enrichment, grazing rate would not be linearly related to the dilution of the grazer. The 

non-linearity would change if grazing also became saturated or the grazer population grew 

significantly over the incubation period (Gallegos 1989). Picoplankton enrichment may 

also favor the growth of a specific grazer which flourishes in the bacteria enriched 

environment.

With respect to the accuracy of Andersen et al.’s (1991) technique in these experiments, 

phytoplankton growth dependencies on recycled extracellular and intracellular nutrient 

pools were likely overestimated while growth dependencies on new extracellular nutrient 

pools were underestimated. The estimate errors occurred because the total phytoplankton 

abundances were not proportionally reduced with physical fraction of WW, leading to

(18)

WW [ fe p * l  Using Equation 18 in the above example, it can be seen that the addition of

go.l = gl
rfx( l .9  x 105  cells ml"!)^  ̂

f l ( l  x 1 0 6  cells m l-1)

go.l ^  0.19 gi. (19)
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smaller than predicted reduction in phytoplankton competition for extracellular dissolved 

nutrients and subsequently, lower growth rates in the highest dilutions. In order to 

minimize the estimate errors, final Chl-a measurements were corrected for the amount of 

Chl-a resulting from the Chl-a originally added with the DW. The amount of Chl-a in each 

measurement resulting from the DW was obtained from the incubated control bottles.

Since the incubated control bottles lacked grazers and the picoplankton present grew 

uncropped and picoplankton added with the DW to the dilution bottles did experience 

grazing over the incubation period; it followed that Chl-a values for DW obtained from the 

controls would be higher than the corresponding Chl-a values for DW in the dilution 

bottles. Consequently, subtracting out the control Chl-a values from each dilution bottle's 

Chl-a measurement, proportional to the original volume of DW added, removed the 

maximum possible Chl-a due to DW picoplankton growth and, therefore, over-corrected 

for the actual DW Chl-a present in each bottle. In this way, any changes which occurred to 

the DW Chl-a in the experimental bottles were translated into changes in the corrected Chl- 

a. It was assumed that changes in the DW Chl-a concentration would reflect changes 

which would normally occurred to the diluted WW Chl-a had no DW Chl-a been present 

Thus, reasonable grazing rate estimates in the +NP treatments and pool dependency and 

nutrient limitation predictions in the +N and +P treatments could be made using the 

corrected values.

Because cyanobacteria are known to be ubiquitous in aquatic systems (Johnson and 

Sieburth 1979, Waterbury et al. 1979), GF/A, C, F filtered water used in dilution 

experiments must be assumed to contain viable Chl-a (Taguchi and Laws 1988). In 

systems such as the Chesapeake Bay and its tributaries cyanobacteria can comprise a 

considerable percentage of the phototrophic biomass (Table 3, Haas unpubl. data, Ray et 

al. 1989, Falkenhayn 1990, Webb, Sieracki and Kindler, unpubl. data). Dilution 

experiments conducted on such systems need to account for and minimize DW Chl-a.
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Corrections for the added cells, such as described in this paper, may reduce the estimating 

errors of the technique. Nevertheless, the best solution to these problems is to filter WW 

with a smaller pore-sized filter, such as a Nuclepore 0.22 pm  membrane. Unfortunately, 

smaller pore-sized filters may increase the already lengthy time required for producing DW. 

Andersen et al. (1991) used GF/C filters and consequently, their DW likely contained 

picoplankton Chl-a. However, by also using GF/C filters for Chl-a measurement it is 

likely that they never observed Chl-a in their DW and made no provisions for its presence.

Another complication of implementing Andersen et al.’s (1991) technique to the York 

River system was the high turbidity in the Pamunkey water (Table 1). The turbidity largely 

resulted from a high particulate load in the form of plant material, silts and clays (personal 

observations). Much of this material passed the 73 pm screen and quickly settled when 

place in carboys and incubation bottles. Tranvik (1989) describes the importance of 

attached bacteria and flagellates to production, grazing, and nutrient remineralization in a 

humic lake. It is possible that the settling of these particles and their diluting may have 

impacted growth and grazing in these bottles in a non-linear fashion and lead to the 

dispersion of data points. As discussed previously, Gallegos (1989) shows non-linear 

grazing to particularly confound a linear relationship between apparent growth rates and 

dilution. The Pamunkey regressions of +NP treatment apparent growth rates against 

dilution proved to be highly scattered and showed low correlation coefficients (Fig. 4 and 

Table 4). Slopes, however, were significant in all four experiments at p < 0.15 (Table 4). 

Since the model required an estimate of a maximal grazing rate if any rate was detectable 

(Andersen et al. 1991), I allowed a larger chance of a type I error in order to reduce the 

likelihood of committing a type II error. My intent was not to arrive at some highly precise 

estimate of grazing but, rather, to be sensitive to any trend which showed grazing and, 

thereby, achieve a rough approximation of grazing impact on the Pamunkey community.



33

Filtering also removed the suspended particles from the DW. Dilutions of Pamunkey 

water not only reduced the concentrations of cells but also changed the environment by 

greatly reducing the surface area for biological and chemical reactions to occur. The 

removal of physical forces in the polycarbonate bottles also compounded the reduction of 

surface area by allowing particles to settle. This complicates interpretation of the results 

because the technique is built on the assumption that only grazing and nutrients ultimately 

affect the growth rate. Unfortunately, my experimental design allowed me no avenue by 

which to address or quantify the impact of these suspended particle complications. Future 

dilution experiments using turbid waters should estimate the total surface area of the 

suspended particles in the WW and each dilution to determine the actual dilution of 

suspended particles. By doing so, changes in growth rates between the dilutions could be 

related to the reduction in surface area to see if the reduction significantly affected growth in 

the system. Gentle agitation or rotation of the batch culture bottles might supply sufficient 

energy to maintain the particles in suspension during the incubation of the samples.

The final complication resulted from declining ambient temperatures during the 

summer-winter seasonal transition. Duarte (1990) discussed the effect of time lags on 

growth estimates in algal cultures. Low temperatures, by slowing growth rates, increased 

lag responses to nutrient treatments enough to require longer incubations in order to 

observe real growth responses to the nutrient addition (Duarte 1990). Results from the 

November lag growth dilution experiment (Fig. 3) demonstrated long growth lags, 

especially pronounced in the two highest dilutions, over the first 24 h of incubation. 

Although some growth lag probably occurred in all experiments, they were not large 

enough to adversely affect the growth estimates in the first three (August, October, and 

November). However, to ensure accurate growth estimates in the December experiments, 

the incubations were extend for both the Pamunkey and York from 24 to 48 h. Because
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both December incubations showed negative or no growth during the first 24 h, growth 

estimates were made from Chl-a changes over the final 24 h.

II. Phvtoplankton Growth in the York River system:

The major conclusion from this study supports one theme Hecky and Kilham (1988) 

built with their discussion on supply ratios: biological conditions rather than physical or 

chemical conditions directly affect growth. This is not meant to dismiss the important roles 

which physical and chemical environmental parameters, such as light, temperature, and 

nutrient concentrations, play in setting upper limits to growth. Rather, it is to show that the 

manner by which an environment is used by phytoplankton is more clearly the result of the 

physiological traits of the population and the ecological processes within the system. For 

example, the results for the Pamunkey site showed decreasing short term N-limitation and a 

switch to P-limitation while results for the York showed alternating N- and non-limitation 

from August to December (Table 7). A concurrent study (Webb, Sieracki and Kindler, 

unpubl. data) found no P-limitation of long term growth in the tidal fresh and estuarine 

phytoplankton of the York River system during the autumn and winter of 1990-91. 

However, the supply ratios (Table 1) predict P-limitation in the York and Pamunkey sites 

in all but the September (York) and October (Pamunkey) sampling during the 1990 

autumn. These results again confirm the conclusion of Hecky and Kilham (1988): supply 

ratios often do not predict nutrient limitation.

The patterns of dominance for the three nutrient pools over the study period helps to 

explain the conditions which affected phytoplankton growth. Intracellular nutrient pools 

dominated growth when physiological and ecological processes prevented phytoplankton 

cells from using either new or recycled extracellular nutrients or both. Intracellular pools 

for both N and P dominated supply to phytoplankton growth in the Pamunkey during the 

August, October and November experiments. During December pool dependence switched
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so that new and recycled extracellular pools supplied the nutrients for growth. In the 

lowest salinity regions of estuaries and tidal freshwater regions of rivers, nutrient supplies 

are generally considered to be under hydrodynamic control (Filardo and Dunstan 1985, 

Schuchardt and Schirmer 1991). New nutrients resulting from land runoff dominate the 

dissolved pool (Anderson 1986, Fisher et al. 1988). Generally, river flow increases 

during late winter and spring months and decreases during summer months. River 

discharge was lowest during September and steadily increased from October through 

December 1990 (Fig. 8 ). The expectation is that during higher discharge in the winter and 

spring months, phytoplankton growth in the tidal freshwater regions should be dependent 

primarily on new extracellular nutrient pools. During lower discharge periods (summer 

and early fall), lower new nutrient supplies and higher temperatures should lead to a 

shifting of phytoplankton growth dependency from new to recycled extracellular nutrient 

pools as increased growth rates deplete the poorly replenished extracellular supplies. This 

pattern was not seen in the Pamunkey, during the low discharge period of the late summer 

intracellular, instead of recycled extracellular, pools dominated growth and as discharge 

increased during the seasonal transition growth shifted to recycled, and not new, 

extracellular nutrients. Possible explanations for these discrepancies are examined below.

Experiments with cultured dinoflagellates and diatoms have demonstrated that 

uncoupling of uptake and assimilation leads to the formation of intracellular nutrient pools 

(Collos 1980, Collos 1982, McCarthy 1980, Nalewajko and Lean 1980, Droop 1983). 

During uncoupling, assimilation is the rate limiting step for growth. The environmental 

impetus for this uncoupling is related to nutrient deprivation or starvation of the 

phytoplankton. Cultured diatoms, for example, first subjected to nutrient starvation, have 

shown "luxury uptake" and formation of intracellular pools when placed in nutrient 

enriched media (Demanche et al 1979, Dortch 1982, Dortch et al. 1982, Dortch et al.

1984). It is speculated that in natural systems growth reliance by phytoplankton on



36

intracellular nutrient pools reflects an environment where extracellular nutrient supply is 

sporadic on temporal and spatial scales significant to the phytoplankton (Dortch et al. 1985, 

Miyata et al. 1986, Dortch and Postel 1989).

The Pamunkey phytoplankton, upon first inspection, appear to be neither nutrient 

deprived nor starved, the dissolved ambient nutrient concentrations appear high (Table 1), 

but growth is dependent on intracellular pools. However, the phytoplankton experience 

NH4 + concentrations < lpM , which is considered low (McCarthy 1980), in all four 

Pamunkey experiments (Table 1). Ammonium and urea are normally the preferred forms 

of dissolved N  for natural phytoplankton. Many phytoplankton populations will take up 

NH4 + even at very low concentrations instead of nitrate which may be present at much 

higher concentrations (McCarthy 1980). Garside (1981) found that N-uptake was limited 

by light during the fall and winter in the New York Bight, and the type of N-uptake was 

controlled by the presence or absence of NH4+. High NH4 + concentrations inhibited 

phytoplankton uptake of nitrate, while nitrate was taken up when NH4 + levels were low 

(Garside 1981). Webb and Haas (1976) found that urea, as well as NH4 +, is an important 

N  source for phytoplankton growth in the York River. McCarthy et al. (1977) also found 

NH4 + and urea to be the major N sources for Chesapeake Bay phytoplankton and that 

NO3 - uptake only occurred when NH4 + levels were low. Berman et al. (1984) observed 

the same N uptake preference in lake phytoplankton. They also noted that when NO3 - use 

did occur, its uptake and assimilation were slower than for NH4 + (Berman et al. 1984). If 

the Pamunkey phytoplankton depended on NH4+ for growth, then the supply ration of 

NH4 +:P, which was below Redfield’s N:P ratio of 16:1, would have explained the 

occurrence of N-limitation even though the combined N concentrations were high enough 

to predict P-limitation in the August, October, and November experiments (see Figures 2B 

+ C). However, if  NH4 + was primarily used by the Pamunkey phytoplankton, then their 

growth dependency should have been on the recycled extracellular pool. If  the NH4 +
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supply was not sufficient for phytoplankton growth, then the NO3 - which was present in 

higher concentrations should have been utilized and the pool dominance would have been 

for the new extracellular pool and no N-limitation should have been observed.

Examination of the cell abundances in the Pamunkey (Table 2) shows that the 

concentration of grazers (h-flags) remained stable in the first three experiments but doubled 

in the December experiment while abundances of the other cell types declined in December, 

presumably due to declining ambient water temperatures (Table 1). Also the biomass of the 

grazers remained constant in all four experiments while the biomass of all other cell types 

declined (Table 3). It, therefore, makes sense that the Pamunkey phytoplankton did not 

depend on a recycled extracellular nutrient pool in August, October, and November because 

the grazing community was not large enough to provide sufficient remineralization of N 

and P. In fact, production and grazing estimations for the Pamunkey (Table 5) show that 

the percentage of potential primary production grazed does not increase until December. 

Owens (1986) concluded that high turbidity regions of an estuary near the freshwater- 

saltwater interface provide the low light levels necessary for enhanced nitrification by 

chemoautotrophic bacteria. This may serve to further reduce NH4 + available for 

phytoplankton use. Add to this the high abundances and biomass of heterotrophic bacteria 

in the Pamunkey (Tables 2 and 3) and phytoplankton are subjected to increased competition 

for low available NH4 +. In December, when the grazer population doubles (Table 2) and 

its biomass increases nine times in proportion to the phototrophic biomass (Table 3), the 

concentration and biomass of heterotrophic bacteria decline (Tables 2 and 3), the 

concentration of NH4 + doubles (Table 1), and recycled extracellular N  and P pools 

dominate growth (Table 7 and Fig. 7). The increased river discharge in December (Fig. 8 ) 

explains the increase in NO3- concentration and the occurrence of extracellular pools (Table

7). Why available new extracellular pools of NO3 - were not used by the Pamunkey 

phytoplankton in August, October, and November is less clear.
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A possible explanation relates to the recent work of Martinez (1991), who observed the 

formation of N intracellular pools in the diatom Skeletonema costatum when an N starved 

culture was placed in a nitrate enriched medium and subjected to low irradiance. She 

postulated that the intracellular pools resulted as excess nitrate built up within the cells 

(Martinez 1991). The nitrate was in excess because NO3 - reduction requires light and 

under the low irradiance conditions, the diatoms were unable to reduce the NO3- (Martinez 

1991). Under conditions of light limitation the diatoms might also release nitrite, a product 

of incomplete reduction (Martinez 1991). In these experiments, the diatoms responded to 

recent N deprivation by rapidly taking up the newly abundant N in the form of NO3 -; 

however, the cells were unable to fully reduce and use much of the NO3 -, and the NO3 - 

accrued within the cell (Martinez 1991). Under such light limiting conditions in a natural 

setting, phytoplankton whose growth ultimately depends on an oxidized new nutrient 

source, such as NO3 -, will develop and depend on intracellular pools for growth over short 

periods of time. Since the Pamunkey river tends to be very turbid (see Secchi depths in 

Table 1), phytoplankton growth reliance on intracellular pools and the development of N- 

limited growth is explainable by this theory. However, it is important not to mistakenly 

consider the August, October, November phytoplankton to be highly nutrient stressed.

The gross growth rate of the Pamunkey phytoplankton was highest in August and declined 

through November, stabilizing in December (Table 4). Likely, the late summer and early 

fall Pamunkey phytoplankton, due to: lower discharge (Fig. 8 ), greater proportional size 

of phytoplankton to grazer populations (Tables 2 and 3), low ambient NH4 + levels, high 

turbidity, and high temperatures (Table 1), took up NO3 - faster than they were able to 

internally reduce and assimilate it, leading to the intracellular pool dependence and N- 

limitation.

As Figure 7 demonstrates, the pool dominance pattern for P was similar to that of N at 

each site. At the Pamunkey site, P concentrations remained constant throughout the study
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(Table 1). As with N, P uptake largely follows Michaelis-Menten kinetics and increases 

with temperature (Nalewajko and Lean 1980). During the August, October, and November 

experiments, when N was limiting, P could have been taken up by the cells in excess of 

their need because insufficient N was available. Excess P is stored in intracellular pools as 

orthophosphate (Miyata and Hattoii 1986). Eldridge (1989) demonstrated that 

phytoplankton will store P intracellularly under conditions of N-limitation. By December 

when river discharge increased (Fig. 8 ), increased levels of both NH4 + and NO3 -, along 

with the other ecological changes described previously, led to P-limited growth. This 

observation is consistent with past seasonal observations made by Webb and Eldridge 

(1988) and Eldridge (1989) for the York river. Since P was limiting in December, 

intracellular stores depleted and growth became dependent on recycled and new 

extracellular P pools.

In contrast to the Pamunkey, grazing in the York consumed nearly all of the potential 

primary production (> 90%, compared to 50% in the Pamunkey) during August (Table 5).

It follows that in the York, during the late summer, ammonium dominated the extracellular 

inorganic N (Table 1) and growth relied on recycled pools (Figure 7). Phosphorus 

recycles in an aquatic system more quickly than N, largely through remineralization by 

grazers (Lehman 1980, Lehman 1984, Eldridge 1989, Bloem et al. 1990, Moegenburg and 

Vanni 1991). King (1987) predicted that in steady-state ocean systems N released through 

grazing remineralization does not balance the actual algal losses incurred as a result of 

grazing. Consequently, in a stable community the growth needs for N must be augmented 

by periodic increases in algal nitrate uptake (Eppley and Peterson 1979, Eppley et al.

1983). Also, phytoplankton normally take up phosphate more quickly than they do N 

species (McCarthy 1980, Nalewajko and Lean 1980). In fact, a strong grazing 

community, by supplying more P than N, can relax P-limitation (Moegenburg and Vanni 

1991). In systems which normally deplete dissolved N and P stores, a close coupling of
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growth and grazing develops allowing for the transfer of N and P  back into the dissolved 

pool (Eppley and Person 1979, Azam et al 1983, Caron et al. 1985, Gude 1985).

In the York, growth was N-limited during August, supporting King's (1987) 

conclusions that grazing does not return sufficient N to the system to meet growth needs. 

Also supporting this contention was that N dependent growth in August used new 

extracellular pools to a greater extent than did phosphorus dependent growth (Table 7). In 

the York, phototrophic biomass (Table 3) and growth rates (Table 4) in the late summer 

allowed an active grazing community to exist which severely cropped primary production 

and supplied the majority of N and P necessary to maintain the system. York River 

undergoes regular periods of stratification and destratification coupled with spring-neap 

tidal cycle (Haas 1977). In the warm summer months periods of destratification allow for 

the mixing of sub-pycnocline water and provides nutrients necessary to maintain the 

recycling dominated system (Webb and D'Elia 1980). However, in contrast to the 

Pamunkey, intracellular P pools did not develop concurrent with the N-limitation in August 

(Fig. 7). likely , the temperature and light regimes were better for uptake and assimilation 

of both N and P and no detectable transient intracellular pools developed. That is, all 

nutrients available to the phytoplankton were taken up and assimilated into biomass, which 

may explain the high Chl-a concentrations (Table 5) and biomass (Table 3) in the York 

during A ugust It is also possible that the high grazing pressure made growth on 

intracellular nutrient pools unnecessary or quickly converted the intracellular nutrients to 

recycled ones through rapid biomass turnover.

Beginning in October experiment in the York, phytoplankton shifted their dominant 

nutrient pool dependency for both N and P from recycled extracellular to intracellular pools 

(Fig. 7). Decreases in temperature and light during October, November, and December 

caused declines in growth and grazing rates (Table 4) along with phytoplankton and grazer 

abundances and biomass (Tables 2 and 3). By November, grazing did not crop a
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detectable percentage of the primary production (Table 5). The absence of gracing pressure 

by November meant biomass was not turned over and nutrient residence time within 

phytoplankton cells increased Consequendy, nutrients were not quickly returned to the 

dissolved pool but remained within cells forming intracellular pools. In fact, N and P 

intracellular pools were the sole nutrient supply for phytoplankton growth in November. 

Dissolved N and P  levels in the York, however, remained roughly the same in all four 

experiments (Table 1) and with the lower growth rates (Table 4) and cell abundances (Table 

2) extracellular N and P pools could have adequately supported growth in November and 

December. This was not seen, however, probably because uptake at lower temperatures 

was in excess of assimilation and phytoplankton growth, therefore, was buffered from 

short-term changes in the extracellular nutrient environment Formation of intracellular 

pools allows phytoplankton to grow rapidly once the physical environment improves in the 

late winter or early spring (McCarthy 1980, Nalewajko and Lean 1980, Eldridge 1989). 

This also helps explain why the York, incontrast to the Pamunkey, never shifted from N- 

limitation to P-limitation, but rather, N-limitation reduced to a conditon of no limitation in 

December (Table 7). Because of low temperatures and growth rates, intracellular stores of 

both N and P were sufficient for balanced growth over the incubation period.

Overall, the results from this study demonstrate the importance of viewing the 

significant differences which exist between tidal freshwater and estuarine environments in 

terms of phytoplankton physiology and ecology and not simply in terms of chemical and 

physical characteristics. The tidal freshwater region of rivers experience complex physical, 

chemical and biological conditions and the success of phytoplankton in this region is 

fundamentally related to how the ecology of the system and the physiology of species 

diminish or enhance their ability to adapt to seasonal and annual changes in their physical 

and chemical environment. Complex aquatic systems, such as the tidal freshwater region 

of rivers, are understudied (Schuchardt and Schirmer 1991) but future studies of such
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systems and their comparison to simpler systems, such as the lower estuarine region of the 

York, may serve to yield valuable information as to how ecology and physiology affect 

conditions of nutrient limitation, blooms, and eutrophication.
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Figure Legends

Figure 1. Locations of the Pamunkey (A) and York (B) study sites on the York River 

System, Virginia, USA.

Figure 2. Changes in A) average temperature (♦ ) and chlorophyll-a, B) total dissolved 

inorganic N:P supply ratio, and C) NH4 + : PO4 - supply ratio of surface water collected at 

the Pamunkey (o) and York (•) sampling sites from July 1990 to January 1991. These 

data were compiled from the 8  samplings of this study and 5 from a related project (Webb, 

Sieradd and Kindler, VIMS, ongoing). Curves depict general trends and dashed lines in B 

and C show the 16:1 N:P ratio.

Figure 3. Chlorophyll-a concentrations and apparent growth rates for surface water 

collected from the York site plotted against time. Data were compliled from a 72 h dilution 

incubation in late November 1990 and show a distinct lag period for phytoplankton growth 

between 0 and 24 h with a maximal growth rate between 24 and 48 h. Note that each 

growth rate represents the integrated change in cholorphyll-a concentration over the 

previous 24 h and is not an instantaneous growth rate.

Figure 4. Apparent growth rates as a function of dilution (fraction of whole water 

chlorophyll-a) for the fully nutrient enriched treatments (+NP) in the Pamunkey (P) and 

York (Y) water. Lines show simple linear regressions and each box represents one of eight 

dilution experiments. Horizontal series of four graphs show the seasonal progression from 

August to December.

Figure 5. Grazing corrected growth rates as a function of dilution for phosphorus 

dependent growth (+N) in the Pamunkey (P) and York (Y) water. Lines represent the 

growth model determined by backwards multiple regression, circled data were not used in 

the regression. Graphs arranged as in Figure 4.
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Figure 6 . Grazing corrected growth rates as a function of dilution for nitrogen dependent 

growth (+P) in the Pamunkey (P) and York (Y) water. Lines represent the growth model 

determined by backwards multiple regression, circled data were not used in the regression. 

Graphs arranged as in Figure 4.

Figure 7. Proportions of growth as rate coefficients due to intracellular (white), new 

(black) and and recycled (grey) extracellular pools of phosphorus at the A) Pamunkey and 

B) York, and nitrogen at C) Pamunkey and D) York study sites.

F igure 8 . Pamunkey River discharge data compiled by the U.S. Geological Survey, 

Richmond, Virginia, for water years 1990 and 1991. Units are in m3  s_1 and data is from 

March 1990 to February 1991. Data provided by the USGS for October 1990 to February 

1991 are provisional and have not been officially released.
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Table 1. Physical and nutrient characteristics of the Pamunkey (Pam) and York sampling 

sites from July 1990 to January 1991. These data were compiled from the 8  samplings of 

this study and 5 from a related project (Webb, Sieradd and Kindler, VIMS, ongoing).

Sampling Temperature Salinity Light PO4 NO3 NH4 %NH4 Inorganic

site date (degrees C) (%o)

•rS.c1

UM UM UM N:P

Pam 23 Jul 29.8 <1 5.7 0 .1 2 2.76 0.24 7.8 25.9

27 Augt 28.0 < 1 2 .8 * * * * *

05 Sept 27 < 1 2 .8 0 .1 2 1.15 0.72 38.6 16.0

01 Octt 22.5 < 1 2.4 0.11 0.56 0.51 47.7 9.50

25 Oct 18.2 < 1 2 .8 0.15 2.72 1.25 31.5 27.4

06N ovt 17.0 <1 3.9 0.15 2.64 0.83 23.9 23.9

05 Dec 9.5 <1 * 0.17 4.18 2.82 40.3 41.7

16 Dect 8 .0 <1 4.3 0.18 4.34 2.35 35.1 38.0

29 Jan 5.2 < 1 5.7 0.13 5.99 2 .2 2 27 63.2

York 25 Jul 29.0 * * 0.14 0 .1 0 2.24 95.8 17.1

30 Augt 28.0 2 2 2 .2 * * * * *

05 Sept 27.0 * * 0.19 0 .21 1.67 88 .8 9.70

04 Octt 22.5 21 2 .8 0.11 0.26 4.32 94.4 42.0

25 Oct 19.0 * * 0.26 0.61 7.35 92.3 31.1

08 Novt 15.5 19 * 0.17 0.41 2.35 85.1 16.3

05 Dec 10 .0 21 * 0.14 0.47 3.32 87.5 27.9

19 Dect 9.0 23 0 .8 0 .11 0 .6 8 3.61 84.2 38.6

29 Jan 5.5 15 1 .0 0.16 0 .1 1 0.28 71.8 2.44

*no measurement taken

"̂ experiment dates
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T a b le  2 . Phototrophic and heterotrophic plankton cell abundances as determined by 

image analyzed fluorescence microscopy at the Pamunkey (Pam) and York sampling sites 

for the eight experiments.

Experiment cell type classification (# ml-1)

  ________ Phototrophs______ __________  Heterotrophs

site month cyano1 p-flag2 p-dino3 p-crypt4 diatoms h-bact5 h-flag**

Pam Aug 2.97x10s 9,369 1,036 1,864 <69 5.57xl06 4,833

Oct 2 .11x 10s 5,745 <130 370 2,867 4.44x10** 4,624

Nov 2.68X104 8,044 <99 1,679 3,259 5.05x10** 3,456

Dec 3.02xl03 2,226 <32 191 803 l.OlxlO6 6,164

York Aug 1.48xl06 21,197 1,839 2,574 18,756 4.47xl06 8,827

Oct 6.89X104 18,554 <248 990 4,703 2.45xl06 8,664

Nov 1.40X104 11,209 1,931 2,727 <113 2.61xl06 3,181

Dec 1.80X104 .. 1,202 234 473 156 2.09xl06 2,322

Icyano: chroococcoid cyanobacteria 

2pflag: phototrophic flagellates

3pdino: phototrophic dinoflagellate 

4pcrypt: phototrophic cryptophyte 

shbacC heterotrophic bacteria

**hflag: heterotrophic flagellates (includes all counted micro- and nano- sized heterotrophs)
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Table 3. Phototrophic and heterotrophic plankton biomass community composition 

determined by image analyzed fluorescence microscopy at the Pamunkey and York 

sampling sites for the eight experiments.

Experiment Biomass (jig C 1"*)

Phototrophs ____ Heterotrophs Totals

site month cyano P-flag p-dino p-crypt diatom h-bact h-flagt Xh Xp Xh:Xp

Pam Aug 29.1 14.9 36.9 69.2 NE1 192* 8.67 2 0 1 * 150 1.34

Oct 2 0 .8 11.4 NE1 6.41 53.0 284 13.2 297 91 3.26

Nov 5.80 9.84 NE1 161 24.7 256 10.7 267 201 1.34

Dec 0.80 2.49 NE1 2.81 14.4 58.3 9.97 68 21 3.23

York Aug 416 85.0 47.8 15.5 208 157* 31.3 188* 772 0.24

Oct 15.0 38.9 NE1 44.4 23.2 166 31.3 197 121 1.63

Nov 4.14 12.7 38.1 276 NE1 176 58.7 235 331 0.71

Dec 3.10 2.32 13.7 13.5 0.37 132 5.49 137 33 4.15

*DAPI slide used to size h-bact, all other h-bact measurements are from AO slides 

tincludes micro- and nano- sized heterotrophs

*NE - no cell counted on the slide, consequently, no biovolume or biomass estimates could be made.
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T a b le  4 . Phytoplankton growth and grazing rates determined from the fully nutrient 

enriched dilution bottles (+NP) for the Pamunkey and York sampling sites. Rates were 

determined by a simple linear regression of apparent growth rates against dilution where 

gross growth rate (k) is the y - intercept and grazing rate (g) is the negative slope, except 

where noted. Type one error was less than 15% (a  < 0.15).

Experiment Growth and grazing parameters

site month n k (d 1) R  (dJ) R2 F-test (p=) r* CV2

Pam Aug 12 1.47 0.55 0.54 0 .0 1 1.29±0.26 2 0 .2

Oct 12 1.04 0.42 0 .2 2 0.13 0.90±0.31 34.9

Nov 11 0.63 0.15 0.25 0 .1 2 0.57±0.10 17.7

Dec 12 0.64 0.45 0.25 0 .1 0 0.46±0.31 68.5

York Aug 10 2.38 1.79 0.94 « 0 .0 1 1.63±0.66 40.7

Oct 12 1.51 0.75 0.83 « 0 .0 1 1.23±0.29 24.0

Nov3 12 - - - - 0.60±0.08 13.2

Dec3 12 _ _ - 0.42±0.19 43.8

lr = mean apparent (measured) growth rate of all replicates and dilutions.

^CV - coefficient of variance

^Because of the poor significance for these two regressions (p>0.15), it was assumed that g = 0 and k = r.
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Table 5. Bulk chlorophyll-a concentrations and 24 h production estimates (jig Chl-a H) 

based on growth (k) and grazing (g) rates in the +NP treatments for the Pamunkey (Pam) 

and York sampling sites.

Experiment Growth Estimates1

site month Chl-a ± SD2 PP RP PG SG GE

U gl4 U g H d 1 M£ l"1 d*1 % % %

Pam Aug 12.3 ±  0.5 41.2 18.3 55.6 42.8 44.4

Oct 10.8 ± 1.7 19.8 9.3 53.0 34.3 47.0

Nov 11.7 ±  0.3 10.3 7.2 30.1 14.1 69.9

Dec 3.10 ±0 .12 2.78 0.65 76.6 36.2 23.4

York Aug 25.9 ± 0.5 254 2 0 .8 91.8 83.3 8.18

Oct 11.0 ± 0.7 38.8 12.5 67.8 52.8 32.2

Nov3 9.80 ± 0.45 7.70 - - -

Dec4 4.45 ± 0.38 2.32 _ _ _ -

*PP = potential production = Po e^ - Po, where Po is the initial Chl-a concentration.

RP = real production = Po e^-g) - Po.

PG = percent of PP grazed = x 100%.

(PP - R P \
PP + Po/  x

GE = growth efficiency = ( p p )  x 100%.

2SD - standard deviation (n = 3).

3>4Only PP estimates were calculated because grazing rates for these ware below detection.
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Table 6 , Specific growth coefficients (rates) based on intracellular (KO, new (Ke) and 

recycled (Kr) extracellular pools of nitrogen and phosphorus. Coefficients were obtained 

through backwards multiple regression of grazing corrected growth rates against dilution at 

a significance level of a<0.05.

Experiment Nitrogen Coefficients (d_1) Phosphorus Coefficients (d_1)

site month Kj±SE Kr ±SE K e±S E  Kj±SE Kr ± SE K e±S E  n

Pam Aug 2.18 ±0.16 NS NS 3.08 ± 0.18 NS NS 12

Oct 1.10 ± 0.07 NS NS 1.30 ± 0.14 NS NS 12

Nov 0.76 ±0.07 NS NS 0.84 ± 0.06 NS NS 8

_______Dec NPS 1.60 ± 0.16 0.07 ± 0.01 NPS 1.07 ±0.31 0.03 ± 0.01 10

York Aug NPS 3.84 ± 0.32 0.23 ± 0.02 NPS 7.69 ± 0.76 0.09 ± 0.04 10

Oct 2.20 ±0.21 1.44 ±0.50 0.07 ± 0.20 2.59 ± 0.21 1.02 ± 0.50 0.07 ± 0.20 12

Nov 0.55 ±0.06 NS NS 0.72 ± 0.06 NS NS 12

Dec 0.30 ±0.09 NS 0.02 ± <0.01 0.32 ± 0.06 NS_________ NS 12

NPS - significant non-positive solution (oo0.05, Kx<0).

NS - solution not significant (a>0.05).

SE - standard error of the estimate.
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Table 7. Contributions of total intracellular (I), and new (E) and recycled (R) 

extracellular nitrogen and phosphorus pools to chlorophyll-a production (pg Chl-a 1”! d"*). 

The ratio of total nitrogen to phosphorus production (N:P) was calculated by summing the 

production of the three pools for nitrogen and dividing it by the same sum for phosphorus 

in each experiment

Experiment Nitrogen Dependent Growth Phosphorus Dependent Growth

site month I_______ R______ E total N I_______ R______ E total P N:P

Pam Aug 26.8 * 9k 26.8 37.8 9k 9k 37.8 0.71

Oct 11.9 * 9k 11.9 14.0 * 9k 14.0 0.85

Nov 8.89 9k 9k 8.89 9.83 * 9k 9.83 0.90

Dec * 4.96 0 .2 2 5.18 9k 3.32 0.09 3.41 1.52

York Aug % 99.5 5.96 106 9k 189 2.33 192 0.56

Oct 24.2 15.8 0.77 40.8 28.5 11.2 0.77 40.5 1.01

Nov 5.19 9k * 5.19 6.96 9k 9k 6.96 0.75

Dec 1.34 9k ■ 0.09 1.43 1.43 9k 9k 1.43 1 .00

*no significant contribution

c
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