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ABSTRACT

Physically-induced and biologically-induced seafloor roughness features are both common 
in soft sediments. Rarely is only one manifestation present. If only physical roughness features 
are present, they may be accounted for in mathematical terms which utilize their geometries. These 
geometrical depictions of roughness elements may be then translated to hydraulic roughness. 
Biological roughness features are typically more difficult to describe geometrically. This stems 
from both the variable morphologies of obvious biological roughness elements, and from the 
possibility that non-obvious biological surface roughness features are present due to infaunal 
activities. When a combination of physical, obvious and non-obvious biological roughness 
features are all present, quantifying roughness element geometries is especially difficult, and 
separation of components may be infeasible. Therefore, seafloor roughness may be better 
characterized by integrative measures which convey information about the geometries of all 
component elements.

This study characterized integrated physical and biological seafloor roughness by various 
measures of the sediment water interface defined using high-resolution digital sediment profile 
imagery. 15 cm sections of the sediment-water interface were extracted from profile images in 
order to quantify roughness. Scaling behavior of roughness was described using semivariogram 
functions. The small-scale seafloor roughness appeared self-affine over certain scales, but 
apparently scale-dependent beyond those. However semivariograms from scale-dependent and 
fractal processes may be similar if only part of the scaling behavior is observed, therefore fractal 
behavior of the seafloor could not be ruled out. Roughness was measured using statistical, fractal 
and spectral measures.

A transect across the Eel River continental shelf encountered two major geophysical zones: 
inshore sands with wave-induced structures, and mid-shelf mud-deposits with high levels of 
bioturbation. The geophysical zones could not be distinguished in terms of surface roughness 
using the statistical or fractal measures, but could be distinguished by the spectral slope. Micro 
(<1 mm to 5 cm) and macro-scale (>5 to 15 cm) roughness behavior was different across the study 
area, apparently due to the primary forcing factors and substrate composition. Therefore, although 
distinction between the physical and biological roughness elements may be possible using a 
commonly applied methodology, many promising roughness measures are confounded by nearly 
similar geometries.
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SPATIAL, GEOSTATISTICAL, AND FRACTAL MEASURES OF SEAFLOOR 

MICROTOPOGRAPHY ACROSS THE EEL RIVER SHELF, OFF NORTHERN CALIFORNIA



INTRODUCTION 

Summary o f Study

Several methods have been commonly applied to quantify the roughness or variability of 

the seafloor. Techniques generally vary by discipline and scale of the studied process. Each 

approach to roughness characterization has its merits, and all are useful for certain circumstances. 

Certain measures may be more efficient, as in able to convey more information about the character 

of the surface complexity, or more simple to calculate than others, and apply to more diverse 

roughness elements encountered. This study applied several roughness measures to 

microtopographical feature profiles and tests assumptions for their application. The measures 

applied were: simple statistical measures, geostatistical measures, fractal measures, and Fourier 

spectra. The objective was to characterize integrated physical and biological seafloor roughness by 

various measures of the sediment water interface defined using high-resolution digital sediment 

profile imagery.

In order to examine seafloor microtopographical roughness, and to relate roughness to the 

sedimentary environment and bioturbation on the Eel River continental shelf, seven procedures 

were implemented. 1) Standard analyses were applied to sediment profile images to describe 

qualitatively and quantitatively benthic habitat characteristics similar to Bonsdorff et al. (1996) such 

as sediment-type and grain size, depth of the apparent color redox potential discontinuity, signs of 

infaunal activity, and infaunal and epifaunal presence. 2) Image processing methods were used to 

extract the sediment-water interface profile contour from images, so that roughness measures could 

be applied to just the configuration of the interface. 3) Simple statistical roughness measures were 

estimated. 4) Geostatistical analyses were performed to describe the spatial relationships of 

roughness elements and to determine the scaling behavior of the seafloor examined at these scales 

(< 1 mm to 150 mm). 5) Fractal measures were calculated for the sediment-water interface 

contours. 6 ) Power spectra were calculated for piecewise continuous versions of the
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sediment-water interface contours. 7) Summary statistics were calculated and comparisons were 

made of roughness measures in relation to different physical and biological habitat attributes. 

Background

Seafloor roughness, or the variation and spatial organization of seafloor elevation and 

geometry, results from interactions between substrate composition, near-bottom flow dynamics 

and benthic and epibenthic biology. I used the terms microscale and macro-scale roughness to 

distinguish categories of small-scale seafloor roughness features based upon the horizontal 

component of the elements. Roughness elements were described as micro-scale seafloor 

roughness when vertical elevation changes were contained by elements with horizontal components 

of less than a millimeter to about five centimeters, and macro-scale roughness elements as those 

associated with horizontal gradients greater than about five centimeters. Micro and macro-scale 

roughness influences the behavior of acoustic waves, with which most mapping of the seafloor is 

accomplished (Goff et al., 1996), and also influences benthic boundary layer flow dynamics and 

material transport by momentum and mass transfer effects (Wright, et al., 1997; Grant and 

Madsen, 1986). Quantification of the small-scale roughness thus is important for proper 

interpretation of acoustic seafloor mapping and for the prediction of sediment transport and all 

associated processes. Roughness is also a dynamic feature (Wright, 1993; Wheatcroft, 1994), 

therefore the temporal manifestations of morphology should be considered in addition to static 

spatial aspects.

Attempts to characterize seafloor roughness have focused primarily upon large-scale 

roughness features, on the order of hundreds of meters to kilometers (Fox and Hayes, 1985; 

Malinvemo, 1989; Herzfeld et al., 1993). The roughness model of Fox and Hayes (1985), based 

upon large-scale features, has been shown to be applicable at small scales (centimeters to < 1  

meter), but others have only suggested the possibility of extension of large-scale models to small 

scales.
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The capability to accurately extrapolate mathematical models of seafloor geometry, 

composition, and erodibility is important since the acoustic devices used to map the seafloor have 

limited resolution. These empirically-derived models have spatial scale ranges for which they are 

suitable, outside of which their suitability must be assumed. If macro-scale roughness 

characteristics can be determined from large-scale data, then there would be no need to directly 

examine their characteristics. Larger areas can be mapped using lower resolution data, therefore if 

model extrapolation was valid mapping could be done more economically since knowledge of 

features at one scale would be sufficient to determine characteristics at other scales. Quantification 

of seafloor roughness at micro-scales to macro-scales in different environments is necessary to test 

the utility of model expansion by the establishment of spatial-scale similarities in the seafloor and 

the processes which influence its structure. Flow-dynamic and material transport models are also 

limited to particular conditions and scales.

In addition to modeling roughness for mapping efforts, roughness characterization is 

important to studies of benthic boundary layer flow. Form drag and skin-friction drag both depend 

upon seafloor roughness element morphologies, though each relate to different scales of 

morphological variability and configuration. The scaling aspect of roughness elements has been 

related to geologic and sedimentary processes (Fox and Hayes, 1985; Malinvemo, 1989) at large 

scales, whereas at macro scales surficial geological facies provides an overall limit to scaling 

properties of roughness elements, being directly related to wave and current induced flow 

dynamics (Wiberg and Harris, 1994; Robert and Richards, 1988). However, biological 

contributions to seafloor roughness features also become increasingly significant at diminishing 

scales (Grant and Madsen, 1986; Wheatcroft, 1994; Wright, et al., 1987; Wright, et al., 1997), 

tending to superimpose nearly random roughness features over more regular features of physical 

origin. Biological roughness has been characterized in terms both independent of and integrated 

with physical roughness character. The complexity of biologically induced seafloor roughness 

features can hinder accurate model parameter estimates and add variability to roughness measures.
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This study provided several distinct quantitative measures of geometry and spatial character 

of micro-scale (0.5 to 150 mm) integrated physical and biological seafloor roughness features 

across the continental shelf of the Eel River Basin, California. For references on the study area, 

see the special issue of Oceanography (Volume 9, Number 3, 1996) devoted to STRATAFORM. 

Fractal, spectral, and geostatistical measures were applied to high resolution sediment profile 

imagery of the seafloor sediment-water interface to produce microtopographical roughness 

measures which integrally characterized physical and biological processes. Since physical and 

biogenic roughness features may be distinguished qualitatively, this study also sought to 

distinguish measures of roughness in terms of their ability to discriminate feature origin.

Seafloor Roughness 

Micro to Macro-scale

Seafloor roughness height has the designation, k. The characteristic height, k, typically 

depicts Nikuradze, or grain, roughness. Grain roughness, k or kd, bed configuration heights (or 

ripple roughness), kbr, and biological roughness, kbi, compose total roughness height kb (Wright, 

et al., 1997).

Roughness height measurement depends upon how height distributions of local 

microtopographical roughness elements are characterized. For a given area of the seafloor, several 

distinct estimates of each parameter would be plausible because of the directionality or spatial 

variability in the roughness height distributions. Unless all elements and bottom configurations are 

uniform and isotropic, they will not lead to the same determination of roughness height. Thus, k, 

may be most accurately determined as a regionalized variable, or in terms of spatial correlations of 

values at different distance lags.

Several distinct approaches exist for depicting elevation distributions and roughness 

geometries. Typically, k is expressed using a traditional statistic of elevation heights such as the 

root mean square distance, standard deviation, or linear extrema, for aperiodic roughness elements. 

Periodicities in seafloor roughness, for example in cases of rippled beds, often are parameterized
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as wave heights or amplitudes, wavelengths, or steepness ratios which combine height and length. 

For many boundary layer flow studies, k is expressed as a single number which expresses a linear 

combination of roughness element measures, considered sufficient to characterize the region of 

interest.

Unless biological roughness elements are the only contributors to bed roughness, kbi, 

biological roughness, cannot be directly determined. Rather, kbi must be estimated by 

manipulation of the apparent roughness determined by some form of the Prandtl-von Karman 

equation

= — ln(—) (Equation 1)
W* K  Z Q

where u is time-averaged water velocity at some elevation above the bottom, z, and u* is the 

friction velocity and K is von-Karman's constant (approximately 0.4). The calculated apparent 

roughness, or roughness length, zo, is converted to predicted bed roughness, kb, which is then 

separated into bedform or ripple roughness and biological roughness, kbi, heights (Wright, pers. 

comm.). This seems to provide reasonable estimates of magnitude of organism-related feature 

heights (Wright, et al., 1997).

However, those height estimates for the biological features are only valid if the number is 

directly related to a characteristic dimension of the biogenic structures in terms of relating 

hydrodynamic characteristics (for discussion, see Vogel, 1994). Wooding et al. (1973) described 

a function to calculate roughness length directly from geometric properties of roughness elements 

as

where h represents element heights, X represents areal concentration of element as the quotient of 

frontal area and average horizontal area, and <J) = (h/s) 0 -38 where s is a streamwise length of 

roughness elements (Paola, 1985). This may be translated to biological roughness as

z0 = 2.04 hX(f) (Equation 2)

^ ,  =  6 l7 j /? (^ )0'58 (Equation 3)
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where rj represents element heights, kbi represents biological roughness, and P represents element 

density, using the relationship kbi = 30 zq (Wright, 1995). Although other direct parameterizations 

are possible, Equations 2 and 3 are empirical derivations. The validity of Equation 3 from 

Wooding et al. (1973) and Paola (1985) extends at least to equilibrium bed ripples, as shown by 

Grant and Madsen (1982).

Organisms' shapes may not be well defined by simplified geometric representations, and it 

is unlikely that only one type of organism would be present in any region. Therefore the choice of 

a formula used to directly estimate biological roughness should likely be based upon both the type 

of benthic organisms present and statistically-modelled geometric measures based upon samples of 

the constituents. Predictions of flow-derived apparent roughness estimates from geometrical 

formulations of biological roughness heights are not reliable using most in situ data.

Large-scale

Fox and Hayes (1985) examined large-scale seafloor roughness utilizing 

frequency-dependent expressions of roughness elements, employing frequency transforms to 

calculate power spectra. Briggs (1988) also applied power spectra to his study of 

microtopographical roughness of the seafloor of Dry Tortugas Bank, Gulf of Mexico, where 

biological roughness has been implicated as a significant factor determining seafloor configuration 

(Wright, et al., in press). Fractal measures have been applied by some investigators to describe 

roughness as well (Malinverno, 1989), though not without criticism concerning assumptions 

(Herzfeld, et al., 1993). Geostatistical techniques, such as semivariogram analysis, has been used 

by Herzfeld (1989), Malinverno (1989), and Herzfeld et al. (1993) to determine the spatial 

variation and scale-related variation patterns of roughness for large-scale seafloor features (fracture 

zones, spreading centers, and sedimentary slopes and plains), and by Robert and Richards (1988) 

to examine macro-scale bedform geometry. Variogram or semivariogram analysis can also be used 

to determine the scaling behavior of a process (Journel and Huijbregts, 1978) or whether a process 

is scale-dependent or scale-invariant (Herzfeld et al., 1993).
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The apparent fractal structure of the seafloor has been observed by several researchers and 

used to describe roughness or roughness zones in terms of fractal dimensions or fractal measures 

(Barenblatt et al., 1984; Arakawa and Kratkov, 1991; Malinverno, 1989; Herzfeld et al, 1993). 

Fractal geometry, fractal models, and fractal measures have been increasingly applied with 

abundant supporting theory (Mandelbrot, 1983; Taylor, 1986) in many fields, especially those 

considering natural surfaces (e.g. Pentland, 1984; Pfeifer, 1984; Yokoya et al., 1989), which are 

generally considered random fractals. True, or deterministic, fractals result from fixed iteration 

functions which describe a process indefinitely, across all scales, whereas random fractals result 

from the incorporation of stochasticity into the iterator (Pietgen et al., 1992). Natural surfaces may 

approximate random fractals, however they are bound by scale limits at some point (Pfeifer, 1984; 

Russ, 1994).

Application of fractal measures, or calculation of fractal dimensions, requires the 

assumption of scale-invariance for a process, also called self-similarity, although some measures 

assume only self-affinity, or weak scale-invariance (Russ, 1994). Seldom is this assumption 

tested (Herzfeld et al., 1993), although determination is relatively straightforward for one or two 

dimensional datasets. Self-affinity may be thought of in terms of how rescaled, or magnified, 

portions of the original object appear in relation to the original. Self-affine objects, magnified will 

resemble the original, but will be distorted by a fixed factor on one of the coordinate axes. For a 

more thorough explanation, see Mandelbrot (1983) or Pietgen et al. (1992).

Determination of the scaling behavior may be made by visual inspection of the 

semivariogram calculated for actual data representing a line or surface (Herzfeld et al., 1993). For 

distributional properties, Loehle and Li (1996) have described an information fractal dimension 

which directly incorporates the spatial manifestations of variables in the calculation of the 

dimension. Loehle and Li (1996) also discuss the potential statistical properties of fractal measures 

including sampling and estimation. Fractal measures, or fractal dimension estimates, directly and 

concisely relate the relative roughness or heterogeneity of a process within the bounding
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topological dimensions (Hastings and Sugihara, 1993). Fractal measures are not applied here to 

describe the general fractal nature of the seafloor formed by a definitive process. There are several 

realizations of fractal dimensions whose measures rarely agree and whose statistical properties 

have recently been tested and reviewed (Cutler and Dawson, 1990; Ramsey and Yuan, 1990; 

Theiler, 1990). Fractal measures are applied in this study because of their utility as single-number 

parameterizations of roughness which integrate different configurations of heterogeneity, and 

because of their relationship to some of the other, more common, roughness characterizations such 

as Fourier spectra.
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STUDY AREA

This study was part of the STRATAFORM program (Nittrouer and Kravitz, 1996; Wiberg, 

et al., 1996; Wheatcroft, et al. 1996; Syvitski et al., 1996; Pratson, et al., 1996; Austin, et al., 

1996; Goff, et al., 1996; and Steckler, et al., 1996) which was conceived to advance 

understanding of stratigraphic sequence formation on continental margins by interdisciplinary 

examination of sedimentary structures and processes (Goff et al, 1996). A sediment profiling 

camera and surface camera system was deployed December, 1995 from the R/V Pacific Hunter 

along an irregular transect offshore from Eureka, CA (Figures 1 - 2 )  from N 40° 51.668" W 

124° 12.727" to N 40° 57.801" W 124° 16.927". The sediment profile images I used to quantify 

microtopographical roughness elements of the seafloor were acquired primarily to document the 

recent depositional stratigraphic record in the surficial sediments.

The Eel River margin is a flood-deposit dominated, high-energy, narrow continental shelf 

off the northern California coast, extending approximately from Cape Mendocino to Trinidad Head 

(Wheatcroft et al., 1996). The continental shelf in this region is relatively smooth in geologic and 

acoustic terms (Goff et al., 1996).

The cross-shelf study transect traversed sands to marine muds in water depths from 

approximately 28 to 83 m, and included the primary depositional area where sediments transported 

offshore by Eel River winter floods settle (Wheatcroft, et al., 1996).

In the vicinity of the study region, Wheatcroft (unpublished) has recently surveyed benthic 

communities as part of the STRATAFORM project. These data are not yet available. Previously, 

benthic fauna was surveyed by Pequegnat et al. (1990) near the SPI study transect in 18 to 73 m 

water depth. They reported that benthic numerical and biomass dominants were polychaetes, and 

that dominant species were different in shallow and deep water zones. Most of the infauna from all 

taxa collected by Pequegnat et al. (1990) were small throughout the study area, an attribute 

explained by seasonal disturbance, presumably by flood deposition but perhaps also by high 

energy winter storm effects upon the substrate. The majority of the dominant polychaetes found
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were subsurface deposit feeders. Some large nephtyid and lumbrinerid polychaetes were 

occasionally observed in contrast to the many small animals.

The benthic biological community of the Eel margin was studied by Lissner et al. (1989) in 

deeper water (100 to 600 m). They showed that the Eel River continental shelf region is 

biologically distinct from other shelf regions along the northern California coast, possibly because 

of the sediment-type differences between the regions. The biological community also showed 

cross-shelf differences which appeared related to sediment-type. The community was composed 

mainly of burrowing, deposit-feeding infaunal polychaetes found in highest abundances at the 

deeper sites (Lissner et al., 1989).
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METHODS

Sampling

Sediment profile images and plan-view surface images were acquired from ten stations.

The camera system was deployed five to six times at each station (Table 1). Time and position 

was automatically recorded for each separate deployment. Five good profile image sets (two were 

taken during each deployment) were obtained from nine of the ten stations. Only one profile image 

was acquired from Station 9. Sediment surface images were taken during each system 

deployment; however highly turbid near bottom waters were encountered over most of the area, 

rendering bottom features indistinguishable. The profile camera system is self-contained and 

therefore not subject to turbidity, so that all the sediment profile images were clear. Several of the 

sample sites were near the locations where the V.I.M.S., the University of Washington, and the 

USGS had, or were planning to deploy tripods to measure benthic boundary layer flow and 

transport phenomena (Wright, et al., in press) (Figure 2).

Sediment Profile Imaging (SPI)

Mechanics

The sediment profile camera is a specialized remote underwater still camera system (Rhoads 

and Cande, 1971). For this study a Benthos model 3731 was used. The camera system is 

designed to provide an in situ image of the sediment-water interface and subsurface 2 2  cm of 

sediment with unparalleled detail. It consists of a large stainless steel frame structure, within 

which a cradle supports the camera attached to a water filled prism angled at 45 degrees is able to 

move vertically independent of the frame. The camera views the sediment through a Plexiglas 

window in the prism by means of a mirror. The prism penetrates into the bottom, slicing 

downward through the sediments by means of a sharpened blade edge. The camera was modified 

to take two photos at adjustable delay and timing. One photo was taken 8  sec. after bottom contact 

and the second after 15 sec. Clear images are acquired irrespective of bottom water turbidity 

because the prism is filled with clear distilled water and sealed from ambient water.
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Profile Images and SPI Analysis

In addition to revealing recent subsurface sedimentary stratigraphy (Figure 3) and 

undisturbed sediment-water interface features, the profile images also display features which relate 

the degree and depth to which the surficial sediments and strata have been reworked by benthic 

organisms (Diaz et al., 1994) as seen in Figure 4. Surface-layer relative consolidation can be 

determined directly from profile images as well since unconsolidated surface sediments have 

visible pore spaces between grains or aggregates (Figure 5).

Standard sediment profile image (SPI) analysis (Rhoads and Germano, 1982 and 1986; 

Diaz and Schaffner, 1988) of sediment profile images allows sedimentary regimes and benthic 

habitats to be classified in terms of functional community parameters which corroborate habitat 

characterizations made using traditional benthic methods (Bonsdorff et al., 1996).

Approximate sediment grain size was estimated from the original SPI slides. Grain size is 

directly measurable for grains approximately > 0.25 mm. Below 0.25 mm grain size was 

estimated based upon visual textural characteristics of the sediments. Sediments were categorized 

initially into descriptive classes, then converted to sizes using the Wentworth-Udden scale (Folk, 

1974). The relative degree to which the sediments in profile images were bioturbated, estimated as 

the overall extent to which biological features dominated sedimentary structures based upon a 

combination of mottled areas, burrows, tubes or infaunal feeding void structures, and the actual 

visible presence of organisms, was classified into five categories (none, trace , low, moderate, and 

high) from sediment profile images. Bioturbation categories were parameterized (0, 0.1, 1, 2, and 

3) for inclusion in multiple regression models. The non-uniformly spaced ordination categories 

were chosen to represent the apparent degree of bioturbational because the nominal categories 

represented visual estimations of proportional amount of sediments reworked. These proportions 

could only be visually relegated to crude percentage coverings. The entire sediment image area 

viewed represented 1 , and the approximate proportion of sediments reworked were 0 , < 1/ 1 0 , 1/4 , 

1/2, 3/4; representing the range of bioturbation observed. If all the viewed area were bioturbated,
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an additional class called "total" and parameterized 1 would have been included. The trace, or 0.1 

category might be considered negligible bioturbation. This classification scheme could be reduced 

to fewer classes easily, however initially it was desired to enable as much discriminatory resolution 

as possible.

Sediment mixing depth was estimated as the deepest extent to which evidence of recent 

biological activities was seen. This generally included depths of active and oxidized infaunal 

burrows, open feeding voids, organism presence, and sometimes mottling. The difference in 

elevation extrema for the sediment-water interface observed in the profile images was measured 

and recorded as surface relief. Correlations and multivariate models were constructed in an attempt 

to account for some of the relationships and variability in the measures using several environmental 

and benthic habitat parameters determined from the sediment profile image analyses.

Data Source

Microtopographical seafloor profiles obtained from sediment profile images using digital 

image processing and two dimensional signal processing techniques, were used to calculate a 

variety of roughness measures. Some of the roughness measures applied have been commonly 

used to describe macro-scale roughness, others were adapted from measures applied previously to 

large-scale seafloor morphology. It is important that all scales receive similar measures if 

comparison and extrapolation of concepts is to be accomplished.

Digital Image Storage and Processing

Digitization was done at 1100 by 1500 pixels per slide image using a Canon Fiery Scanner 

model 200i. Images were initially stored as RGB color mode, 8 -bits per color plane, encapsulated 

post-script (EPS) format with no compression.

Unaltered digitized images were analyzed visually for standard biological and physical 

sediment parameters. Image feature measurements were made using NIH Image version 1.58 (for 

Apple Macintosh computers). Image length scales were determined based upon total 15 cm width 

of images. The number of pixels per 15 cm total image width was applied to calibrate image
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feature measurements. Color plane curves, or the transfer function which controls the intensity 

levels of the individual or combined color planes which compose an RGB image, were adjusted 

during visual analysis to increase hue differences and allow visual detection of features difficult to 

discern. Color adjustments were consistent among similar sediment profile images. 

Sediment-Water Interface Profile Contour Extraction

In order to apply roughness measures, the sediment-water interface profile contours had to 

be extracted from each image as a single continuous line. This was done manually and using 

spatial and frequency domain automated processing routines. In order to apply the frequency 

domain processing routines, the images were initially cropped from 1100 pixels wide to 1024 

pixels wide, so that Fast Fourier transforms could be applied without altering the data series. For 

manual traces, the 1024 pixel wide images were interpolated to twice the magnification to produce 

2048 pixel wide images. Interpolation was done using Adobe Photoshop for MacOS. Visual 

comparisons of interpolated and original images showed no significant alteration of small image 

features.

Manual tracing o f2048 pixel images

Sediment-water interface (SWI) profile contours were traced from digitized sediment 

profile images. Adobe Photoshop for MacOS running on an Apple Macintosh 7100/80 was used 

for the manual extraction of the SWI contours from images. Digitized SPI images were overlain 

with a transparent digital image layer which could be used to store the trace done using a 

mouse-controlled single pixel wide pen tool. Contours were traced from the 2048 pixel wide 

images. The image or the transparency layer could be viewed together or individually temporarily 

by displaying one or the other in order to confirm the accuracy of the trace. Figure 6 displays an 

example trace overlaid on the original image.

Automated image processing routines

Digital image processing techniques allowing automated extraction of the sediment-water 

interface from digitized profile images were developed, although the interface contour may be
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traced manually, consistency would be maintained if image processing routines were available to 

treat each image systematically.

Spatial domain processing

Sediment profile image processing for automated interface extraction (processing 

performed using Adobe Photoshop with the Image Processing Toolkit Plug-in modules) are 

demonstrated in Table 2.

Frequency Domain Processing

Applying a two-dimensional Fourier transform to images produces a wave-number domain 

image representing the image's wave-number spectrum. The gray scale intensities in this image 

represent the magnitude of the component wave-number, the distance from the origin represents 

the wave-number, and the polar angle represents orientation (see Russ, 1995). Segmenting the FT 

image is an operation involving selection of a grayscale range, deletion of all values outside the 

range, and thresholding the values within the range which sets them all to a single value. What this 

accomplishes is a filter mask which can be convolved with the two-dimensional FT image, or 

multiplication of the selected wave-number components by the chosen filter function and 

multiplying all other wave-number components by zero. After convolution, the inverse Fourier 

transform is applied, and the image produced returns to the spatial domain.

The wave-number components retained during the transformation and convolution will 

result in a modified spatial domain image. If low wave-number components are retained, blurring 

of major features results, and detailed feature variations are eliminated. This approach is utilized in 

the wave-number-based (or frequency-based) edge-finding techniques applied to images in this 

study. Segmentation by thresholding was done at a constant intensity level value in order to 

consistently apply the process to all images processed by the technique. This consistency in 

processing often resulted in inaccuracy of SWI selection since distinct surface morphologies and 

sediment types led to different wave-number spectra patterns.
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After the inverse FT was applied, histogram stretching was applied or image 

pixel-neighborhood variance was calculated from the low- and high-pass filtered image, resulting 

in an image with grayscale values corresponding to the magnitude of variance within local pixel 

region. Thresholding the variance image increased contrast of the high variance areas and 

produced a binary image emphasizing the primary edges visible in the original image. Erosion 

operations removed macro-scale features and narrowed the edge range width. Skeletonization of 

this image produced a line representing the sediment-water interface profile contour. These steps 

are described in Table 3. The extracted SWI contour line was sometimes multivalued (Figure 7) 

because of subsurface or surface discontinuities which appeared very much like the sediment-water 

interface discontinuity. However, that line image was processed to produce a single-valued, 

piecewise continuous contour function (Figure 7) as were the original traced images so that 

one-dimensional signal processing could be applied to estimate roughness measures after satisfying 

Dirichlet conditions. This was done using NIH Image macro programming.

Imaging the sediment water interface

Traced sediment water interface (SWI) contours were used for the analyses since the traces 

always resulted in the most detailed and accurate depiction of the interface, whereas the automated 

routines often required excessive smoothing of the SWI contours in order to achieve continuity. 

Tracing was undesirable for many reasons, however, including subjectivity, mechanical 

limitations, and speed of implementation. The automated image processing routines overcame 

these problems at the expense of slightly less detailed data, except for small portions of the surface 

where the SWI variability is high or the image background is of high contrast. Edge finding is a 

frequently applied image processing routine, and many filters exist which accomplish the task 

relatively well. Edge features, however, can be difficult to separate if surrounded by like intensity 

or hue regions. If pixel intensities, hues and saturations are nearly the same on either side of a 

faint edge, none of the methods available are alone likely to accomplish successful edge-extraction. 

The processing routines applied included combinations of techniques which exploited image
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attributes of the SWI. The spatial domain processing routine used filters and image combinations 

which contrasted the regions of highest local variation in pixels (Table 3). The spatial domain 

processing was successful for most of the images, but in some cases confused the SWI with 

subsurface discontinuities.

The frequency domain routine was less successful for a variety of images because of the 

way edge features were represented in the frequency domain. In the frequency domain a well- 

defined edge feature was represented by all frequencies, evident as the dark vertical line in the FT 

image (Table 3). The FT mask filter included a white vertical line which eliminated all those 

frequencies in the spatial domain at an orthogonal orientation , affecting any pronounced horizontal 

edges which separated the image from background fill. Less well-defined edge features in the 

images were not visually distinct in the FT image. The frequencies and orientations which 

described them are scattered throughout the FT image, and thus edge detection based upon 

frequency domain processing required elimination of the very low and middle frequency bands and 

enhancement of the low and high frequency bands. This can be seen in the structure of the FT 

mask filter (Table 3) where the lowest frequencies are represented by the center of the image and 

become higher with distance from the center. The dark annuli represent the frequencies which 

were retained across all orientations and the light annuli represent the frequencies which were 

eliminated. Although this processing was uniform and always enhanced the SWI, sometimes the 

enhancement was insufficient to provide enough contrast to immediately extract the SWI feature via 

thresholding operations, so that additional spatial domain steps would be necessary. The main 

problem involved the noisy sediment features which also would be enhanced by the processing. 

The heterogeneity of the subsurface sediments, biological features, and unconsolidated surface 

sediments all had aspects which resembled the SWI. The resultant image features may confound 

the automated extraction of an accurate SWI, however they also promise to provide a basis for 

additional integrative measures of biological sediment mixing applicable to sediment profile images 

and X-radiographs.
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Roughness Measures Applied to Extracted Interface Contours

Images with SWTs which appeared to have been disturbed recently by mechanical forces 

were measured, but not included in later analyses. They were excluded because possibility of 

disturbance by the camera system impacting or dragging across the bottom could not be ruled out. 

Only two images were excluded for that reason.

Descriptive Statistics

Vertical linear extrema (surface relief) were calculated from digital image analysis data 

produced using NIH Image on a Macintosh 7100 computer (version 1.61: developed at the U.S. 

National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-image/) and 

standard deviations were calculated for SWI profile contours converted to scaled x, z values. 

Standard deviation (SD) is the same as root mean square (rms) when the predicted value is the 

mean of the series using

where Z* = mean(Z) = predicted(Z), and n is the number of observations. Geostatistical Analysis 

Semivariogram

The semivariogram technique measures spatial continuity and characterizes a variable's 

spatial behavior, as do the covariance function and power spectral density (Herzfeld, et al., 1996). 

The semivariance, y(h) used to construct the semivariogram (experimental variogram), may be 

calculated using

where h represents the spatial or temporal lag, or distance between successive data, which is 

incrementally increased by units i through the number of datapoints n (Joumel and Huijbregts, 

1978; Herzfeld, et al., 1993). The variogram of a function simply represents 2y(h) for all h.

SD ~ rms (Equation 4)
( n - 1)

r(h) = [*(*,■) -  z(*i+*)]2 (Equation 5)
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Semivariograms are generally described using one of a few basic models types or a combination of 

the basic models. The most commonly applied models are linear, parabolic, exponential, or some 

combination of those (Journel and Huijbregts, 1978; Davis, 1986). Semivariograms were 

calculated, using Surface ///+  for MacOS (Copyright Kansas Geological Survey), for 

sediment-water interface contours converted to scaled x, y, z values, where y values were set to 

zero, and were calculated for only one coordinate direction.

Semivariogram Components

Three primary components which relate the spatial continuity of the process examined may 

be observed in a graph of the semivariogram function. The nugget, the slope or shape, and the sill 

of the semivariogram describe the spatial variation of a process if the process exhibits second-order 

stationarity, in that the variance depends only upon the lag, or a weaker form of second order 

stationarity defined by the intrinsic hypothesis (Journel and Huijbregts, 1978). The nugget occurs 

as a y-axis intercept value which exceeds zero, and represents the lower resolution limit of the data 

as the variance at the smallest lag possible between data intervals, the lag being the spatial or 

temporal interval between data points. The slope or shape of the semivariogram represents the rate 

at which the variance of the data increases with increasing lag. The sill represents the observed 

sample variance of the process or data set, its limit being the population variance which would 

represent exhaustive data. A standard semivariogram appears in Figure 8 with components 

depicted. Semivariance is inversely related to autocovariance and autocorrelation as shown in 

Figure 9. A few basic models or combinations of them are used most often to describe the 

observed semi variance (Figure 10).

Determination o f Scaling Properties

The scaling property of a process may be determined directly from semivariogram. 

Self-similarity, self-affinity or scale-dependency will be evident in the shape and scale of the graph 

(Herzfeld, 1989). If the semivariogram displays a form which is mean-square differentiable at the 

origin, it represents strong or weak scale-invariance (Figure 11). Strongly scale-invariant, or
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self-similar processes should have linear semivariograms, and weakly scale-invariant, or 

self-affine processes will result in approximately parabolic variograms or power law variograms at 

the origin (Cressie, 1993). Scale-dependent functions will result in a semivariogram which 

reaches a sill value and then decreases, possibly followed by periodicity or aperiodic cycling 

(Herzfeld, et al., 1993) (Figure 12).

Malinvemo (1989) demonstrated that the seafloor possesses self-affinity for certain scales, 

however Herzfeld et al. (1993) contradict this observation, claiming that the seafloor possesses 

scale-dependent spatial structures which exhibit scaling behavior requiring more complex 

explanatory concepts, but also that the Hausdorff dimension does exceed the topological dimension 

for the seafloor, thereby possibly allowing the designation "fractal." These studies, however all 

consider the seafloor on very large scales, kilometers to hundreds of kilometers, whereas the 

macro-scale features they hoped to model using knowledge about large-scale features have not 

been examined in this way. Although Herzfeld et al. (1993) convincingly show that seafloor 

morphology is scale-dependent overall, their data do display scale-invariance for certain distance 

lags.

Scaling behavior may also be determined by direct examination of the properties of 

magnified portions of the original process. For example, in Figure 13, the lower box is a 7X 

magnification of the smaller box which encloses a 2  cm wide section of the sediment-water 

interface contour. The width of the entire upper contour is 14.8 cm, and the subsection was 

enlarged to match that width. Comparing the magnified vertical relief to the unmagnified surface 

relief reveals a self-affine structure, where the vertical scale in the exploded view is too large after a 

1:1 (x:z) magnification ratio. The magnification ratio should be approximately 1.5:1 to achieve 

statistical consistency between the original and close-up images. This departure from a 1:1 ratio is 

indicative of self-affinity rather than self-similarity (cf. Malinvemo, 1989). For a self-affine or 

similar process or object, the magnification would produce similar statistics as well. In other
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words, stationarity may be considered a criteria for self-similarity, however scale distortions may 

occur for some processes such as natural or random fractals and produce only self-affinity.

Fractal Measures

Increasingly, fractals have been used to characterize large scale seafloor properties 

(Barenblatt et al, 1984; Fox and Hayes, 1985; Malinvemo, 1989) as well as micro-scale properties 

of sediment grains (Frisch, et al., 1987) and as their functionality for describing natural surfaces 

has been realized (Mandelbrot, 1983). Fractal dimensions are efficient, single number parameters 

which characterize roughness and may be calculated for lines, surfaces, or volumes which are not 

easily defined or depicted in Euclidean geometrical terms or by trigonometric function 

approximations such as those employed by spectral techniques. Some fractal analysis techniques 

require the assumption that a function possesses self-similarity, or scale-invariance which is a 

property of ideal fractals, while other fractal techniques are suitable to functions or objects 

possessing only self-affinity (deemed random fractals), exhibited by most natural surfaces, 

including the large-scale (1 - 100 km) marine benthic landscape (Malinvemo, 1989) and the 

sediment-water interface (0.1 - 150 mm). The semivariogram analyses applied revealed that the 

sediment-water interface in all profile images collected exhibited self-affinity over some length 

scale, typically up to 5 cm, though scale-dependency existed at scales of >5 to 15 cm. Fractal 

measures are applicable, however, for the scale ranges over which self-affinity exists (Russ, pers. 

comm.).

Several different, but related, depictions of dimension are commonly generalized as fractal 

dimensions (e.g. topological dimension, Hausdorff dimension, Minkowski dimension, 

self-similarity dimension, box-counting dimension, Euclidean dimension). All are attempts to 

explain the relationship between length, surface, or volume and scale by a power law containing a 

non-integer exponent. Fractal curves, for example differ from Euclidean curves in that a Euclidean 

curve length will approach a finite limit as step length (measurement) approaches zero (Russ,
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1994) whereas a fractal curve length will continually increase, as step length approaches zero,

according to a power law.

A basic fractal depiction or measure of a line will reveal that length varies with

measurement scale except for smooth, or ideal Euclidean, curves, however the variation in length

is dictated by the structure and scaling properties of the fractal line such that a dimension for the

line may be calculated by several methods. The most basic relationship between scaling and

precision may be expressed as

a = - 7 7  (Equation 6 )

where a represents the number of scaled pieces, s represents scaling factor, and D is the fractal, or 

topological, dimension depending upon the object described (Pietgen et al., 1992). The rearranged

log form of this relationship can be expressed as the similarity dimension, Ds, by
p  _  —logo— (Equation 7)

' log(l / s)

(Peitgen, et al., 1992) using the variables as above. Subscripts for D typically denote the particular 

dimension or measure used by the first initial of the name. The relationship expressed by Equation 

7 is equivalent to the box-dimension, Db, for self-similar objects when a is changed to N(s) which 

represents the number of squares with side-length s intersected by a curve (Pietgen et al., 1992). 

The compass dimension, Dc, is sometimes used to represent the Hausdorff dimension, Dh, and 

can be estimated using the relationship

DH = Dc = l + d (Equation 8 )

where d represents the slope of the line on a log-log plot for total length versus precision, or 1/s, 

where s represents stride length or divider width, sometimes called the Richardson plot method of 

calculating the fractal dimension. Readers interested in the detailed set theory basis for the

Hausdorff dimension are referred to Mandelbrot (1983) and Pietgen et al. (1992). The Minkowski

dimension, Dm, which is calculated from the slope of a log-log plot of coverage area to coverage 

perimeter, where a coverage consists of a set of circles centered along every point on the line 

process (Russ, 1994). The relationship between the perimeter and area of the coverage as the
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circles increase in diameter determine the slope and the dimension estimate. Implementation of the 

Hausdorff measure is common, and existing computer code was used for the calculation. The 

Minkowski dimension, likewise was able to be calculated using previously existing code {Fractals 

for MacOS, Russ, 1994) and by imaging macros (NIH Image fractal macros: available at http:// 

www.cee.comell.edu/~mdw/fractech.html). Both these fractal measures were implemented 

directly upon the sediment-water interface contours extracted from the SPI images using image 

processing and analysis software for the MacOS (NIH Image, and Adobe Photoshop with the 

Image Processing Toolkit Plug-in modules).

Theoretically, all fractal dimensions should express nearly the same value, however 

because they are implemented as measures upon discrete datasets, they do not. Different fractal 

measures approximate the theoretical construct to different degrees of accuracy.

Demonstration of Fractal Measures Using Fractal Lines Generated from Known Parameters

In order to demonstrate the information conveyed by fractal dimensions, or measures, 

several fractal lines were generated (Table 4) with known iteration parameters using Fractals for 

MacOS (Russ, 1994), and fractal dimension estimates were calculated. The fractal dimensions for 

fractal lines range from 1 to 2 , non-inclusive, and higher values correspond to increasing 

complexity or roughness, as can be seen by comparing the lines in Table 4. Midpoint 

displacement iteration technique was chosen to generate the lines, since a single parameter, alpha, 

defines the degree of roughness with this method. Alpha is inversely related to the dimension 

measure value. Theoretically, for an alpha of 0.9, such as that used to generate, the fractal 

dimension will be 1.1. However, considerable variation exists in the actual measure of fractal 

objects (Table 4). This stems primarily from the means by which the dimensions, or measures, 

are calculated. Most of the measures rely upon some least-squares fit function, generally a slope, 

to incrementally increasing areal or volumetric covering or step-length sum of measure for a 

dataset. Errors in estimates are inevitable, but may be quantified, as reported by the "Fractal 

Surfaces" program. Also important is that the different measures do not produce the same exact
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estimate. This is discussed in detail in Russ (1994) as are the conditions under which each of the 

fractal measures are applicable. Loehle and Li (1996) discuss the statistical properties and 

distributions of fractal measures.

Table 5 summarizes the information presented in Russ (1994), which describes necessary 

assumptions for each measure. Most of the assumptions relate to the scaling behavior of the 

process, generally whether the process is self-similar or self-affine. Scaling behavior of the 

seafloor profiles examined in this study was determined using semivariogram analysis, as 

described earlier.

Most of the seafloor profiles acquired using sediment profile imagery for this study could 

be described as generally smooth, comparable to fractal lines generated using midpoint 

displacement with 0.7 <= alpha <= 0.9. Few displayed the more extreme roughness such as that 

seen in the line generated using alpha = 0.5. Using alpha = 0.5 and midpoint displacement to 

generate a line should produce a profile which closely approximates random noise, or white noise, 

and a fractal dimension of 1.5. This is also closely related to actual fractal Brownian noise, which 

ideally has a fractal dimension of 1.5 (Pietgen et al., 1992) and a power spectra slope of -1.

Power spectra slope relates to a fractal dimension as

D Fourier = (4 + /3 )/2  (Equation 9)

where beta is the slope (Russ, 1994). D > 1.5 (i.e., (3 < -1) indicates that higher frequency 

variations are favored over lower frequencies, and a zero or positive power spectra slope, 

theoretically possible, but unobserved, would indicate higher magnitude variation at higher 

frequencies (Fox and Hayes, 1985), and also means a fractal Fourier dimension >2 for a line. 

Description and Demonstration o f Hausdorff Measure Implementation

The Hausdorff Measure may be calculated directly from digital images of disperse point 

sets, lines, or surfaces whose elevations are represented by image intensity values. The lengths of 

the measuring units to the overall length estimated for the curve are log transformed, and the slope 

of the log transformed data provides the Hausdorff Dimension estimate or Hausdorff measure
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(Figure 14). The log-log plot is called a Richardson plot. Examples of the processing steps and 

details of the measurement technique are provided in Russ (1994, 1995). The Hausdorff Measure 

is applicable to self-similar objects (Russ, 1994).

Description and Demonstration of Minkowski Dimension Implementation

Calculation may be done directly from digital images of disperse point sets, lines, or 

surfaces whose elevations are represented by image intensity values. Minkowski coverages of the 

line or object are approximated either by erosion and dilation techniques or by the Euclidean 

Distance Map (EDM) transform (Russ, 1994). The EDM method was used in this study in 

addition to calculations made using the program "Fractal Surfaces." The EDM transforms a binary 

image, one with only black and white pixels where either the black or the white represent image 

features, into a grayscale image (Russ and Russ, 1989). The grayscale values in the new image 

directly represent the distance to the nearest feature in the image, therefore the features will be 

surrounded by bands of continually diminishing pixel values. Incremental areas of coverages and 

perimeters of coverages are measured. The slope of log transformed data produces the Minkowski 

Dimension (DM). Example processing steps are shown in Figure 15 and Table 6. The 

Minkowski Dimension is applicable to self-affine lines or objects (Russ, 1994).

Power Spectra Applied to Elevation Profiles

Fourier power spectra were calculated using the "Fractal Surfaces" program for piecewise 

continuous sediment-water interface contour profiles converted to scaled x, z values. Plots of the 

power spectra are presented in Appendix A.

Isotropy and Anisotropy

The profile camera system intersected the seafloor at varying azimuthul angles. Therefore, 

in locations where bedforms were encountered, some were imaged across ripple crests (Figure 

16) and some nearly perpendicular to crests (Figure 16). Where no images revealed anisotropic 

bedforms, it was concluded that roughness was isotropic. The stations in the deposit area had 

isotropic roughness based upon this criteria. Characterization of the sediment-water interface was
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conducted the same for isotropic and anisotropic roughness. Subsequent analyses were done 

assuming that the variances of data groupings was not influenced significantly by azimuthal angle 

of encounter with the bottom. No images were rejected from analyses because of particular 

orientation.
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RESULTS

Benthic Habitat Characteristics

General description of sediments, evidence o f depositional strata, fauna, biological structures, and 

roughness

Sediments along the SPI transect ranged from fine sands at the shallowest site 

(approximately 28 m water depth) to clay-silt at the deepest site (83 m) (Tables 7 and 8 ). Sand 

sediments at shallow sites all had surface bedforms, some symmetric and some asymmetric 

ripples. It was not always possible to determine wavelengths from the profile images since the 

prism window is only 15 cm wide, and often the image captured only part of the periodic structure 

or intersected it in a non-perpendicular orientation. Ripples which could be distinguished had 

wavelengths that averaged 10 to 15 cm, and heights of between 1 to 3 cm.

Infauna were visible in profile images from seven of the ten sample sites. The visible 

infauna were mostly small worms (< 1 mm wide), but a few large worms ( > 1  mm) were seen in 

images from Station 1 in 83 m water depth, and a large annelid or nemertean was visible in one 

image from 65 m. Epifauna on the sediment surface, within 1 to 2 cm of the prism window, were 

visible in profile images from six of the ten sites. Most were small gastropods (< 1 cm), but sea 

pens were evident in one image from the 28 m station.

Parameterizations by Water Depth, Sediment Type, and Biological Activity 

Flood Deposit Layer Thickness

The thicknesses of the Eel River 1995 flood deposit were estimated from Wheatcroft et al. 

(1996) and from SPI images (Figure 17). The two estimates show good agreement. Where the 

SPI transect crossed the flood deposit, the two estimates of deposit thickness ranged from 0 to 5 

cm. The deposit was thickest between 60 and 83 m. Three of the SPI stations (28 to 43 m) were 

inshore of the deposit layer.
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Measured SPI Parameter Values

The parameter values obtained from analysis of the sediment profile images are presented in 

the following sections as mean (± standard error (SE)).

Apparent Color RPD

The average apparent color redox potential discontinuity (RPD) depth was greater in the 

sandy inshore sediments and less in sediments from 48 to 83 m water depth (Figure 18).

Deepest RPD layer thicknesses were observed in images with fine sand to very fine sand sediments 

which occurred in the shallower water depths (28 to 43 m) (Table 7, Figure 18). Shallowest 

RPD depths occurred in the transition zone sediments where the substrate consisted of silty sand. 

RPD depths decrease with increasing water depth from 28 to 50 m, then increase with increasing 

water depth from 50 to 83 m.

SPI prism penetration

The overall mean prism penetration was 8 . 8  cm (± 5.4 cm) (Table 7). Prism penetration, 

which is associated with certain sediment mechanical properties, especially hardness and surface 

cohesion (Bokuniewicz et al., 1975), increased with water depth and distance offshore and was 

significantly correlated (r = 0.97) with sediment phi (Table 7 ) , as well as depositional strata (r = 

0.94) (Figure 19). That the number of strata correlated with prism penetration implies more than 

simply that more strata could be seen in images with deeper penetration depths. The maximum 

thickness of the most recently deposited layer, deposited in 1995, occurred in the 60 m depth 

range, at the latitude of the study area, while deepest penetration occurred at the station in deepest 

water.

Sediment Grain Size

Sediments encountered along the SPI transect ranged from approximately 0.3 mm diameter 

sands at the shallowest nearshore sites to 0.005 mm (approximate modal value) clayey silts at the 

deepest offshore sites (Figure 20). Grain size diminished nearly linearly with depth to 60 m, and
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was constant at deeper depths (Figure 20). Mean grain size for all stations was approximately 

0.09 mm (±0.1) (Table 7).

Bioturbation and Sediment Mixing

Bioturbation was very low (trace) in the sand sediments, and increased from 48 to 65 m 

water depth, decreasing slightly at 83 m (Figure 21). Apparent biological sediment mixing depth 

was zero in the shallow water sandy sediments, and was indeterminate in images from the 

intermediate water depths, but rapidly increased from 4 to 12 cm with increasing water depth from 

50 m and deeper (Figure 22) and with decreasing grain-size or varying sediment type (Figure 

23). The indeterminate values might be translated to values of 0 cm.

Examination o f parameters by flood deposit thickness

Figure 24 depicts several SPI parameters in relation to 1995 flood deposit layer 

thickness. Since deposit thickness varied non-linearly with water depth and distance offshore, this 

presentation elucidates patterns for some of the sediment characters related to the depositional 

processes. The apparent inversion of the trends in many of the parameters coincident with the 

2  cm deposit thickness may result from the 2  cm class existing in the transition from primarily non- 

cohesive sand to partially cohesive silty sands. Apparent color RPD was deepest in non-deposit 

sediments (1.53 ± 0.16 cm). Within the deposit region, RPD depth tended to increase with 

increasing deposit layer thickness. Prism penetration depth was low in non-depositional sands and 

tended to increase with increasing deposit layer thickness, though deepest penetration (16.7 ± 1.4 

cm) occurred in the 1 cm thick layer. The number of depositional layers tended to increase with 

increasing 1995 deposit layer thickness, ranging from an average of 1 (± 0) to 6  (± 0.5). The 

number of infaunal feeding voids increased with increasing deposit thickness, ranging from 0  (± 0 ) 

to 4 (± 0.6). The number of infaunal worms visible was zero in non-depositional sediments, and 

highest in the 1 cm thick deposit layer (4 ± 3). The number of burrows increased with increasing 

deposit, ranging from 0 (± 0) to 2 (± 0.4) per image. The number of infaunal tubes evident at the 

sediment-water interface tended to increase with increasing deposit thickness, ranging from an
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average of 0 (± 0) to 0.3 (± 0.3) per image. The number of epifauna tended to decrease with 

increasing deposit thickness, ranging from an average of 1.3 (± 0.5) to 0 (± 0) (Figure 24).

SPI parameters were also examined in relation to the degree of bioturbation. Apparent color 

RPD was deepest in non-bioturbational sediments (1.47 ± 0.26 cm). In bioturbational sediments, 

RPD was deep where bioturbation was negligible (trace), shallow in low bioturbational sediments, 

and then increased with increasing bioturbation. Prism penetration depth increased with increasing 

bioturbation. The number of depositional layers increased with increasing bioturbation. The 

number of infaunal feeding voids tended to increase with increasing bioturbation, though highest 

numbers of voids (3 ± 0.5) were present in moderately (category 2) bioturbated sediments. The 

number of infaunal worms visible was zero in non-bioturbational sediments, and tended to increase 

with increasing bioturbation, though highest (3 ± 2) in moderately (category 2) bioturbated 

sediments. The number of burrows increased with increasing bioturbation, ranging from 0 (± 0) 

to 2 (± 0.4) per image. The number of infaunal tubes evident at the sediment-water interface 

tended to decrease with increasing bioturbation, though peaking in sediments with low degree of 

bioturbation (0.3 ± 0.3). The number of epifauna tended to be low sediments which were low 

(0.2 ±0.1), moderately (0.1 ±0.1) and highly (0.3 ± 0.3) bioturbated, higher (0.7 ± 0.6) in 

non-bioturbational sediments, and highest (1.4 ± 0.7) in sediments with trace levels of 

bioturbation (Figure 25).

Sediment-Water Interface Spatial Analysis and Roughness Measures 

Semivariance o f microtopographical elevations

Most of the semivariograms (Appendix B) reveal the presence of scale-dependent structures 

for the 15 cm wide surface sections examined. All the semivariograms also showed approximately 

parabolic or power function, mean-square differentiable behavior at the origin to some lag (Figure 

26). This behavior will be referred to as parabolic from here. On average, parabolic behavior 

existed up to 5 cm, and ranged from 1 to 10 cm. Greatest lags over which parabolic behavior was 

apparent occurred in shallow (28 m to 43 m) and deep stations (64 m to 83 m). Apparently
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periodic waveforms or partial waveforms can also be detected in many of the semivariograms. 

This suggests either scale-dependent behavior of the SWI, in the form of bedforms or macro-scale 

biogenic roughness (Herzfeld, et al., 1993; Robert and Richards, 1988), or alternatively may 

represent fractal behavior.

The mean distance lag over which semivariance was parabolic was nearly constant across 

sediment types (Figure 27). No particular model seemed best suited to describe most of the 

semivariograms, except for the parabolic model from the origin to some lag. Some of the 

semivariograms exhibited periodic behavior beyond the range, while others approached the sill 

asymptotically.

Surface Relief

Overall mean surface relief was 1.44 cm (± 0.60 cm), ranging from 0.4 to 3.5 cm. Mean 

surface relief was highest at the shallowest sample site where fine sand ripples were present. 

Lowest surface relief was measured at two of the shallow sites with very fine sand sediments (38 

and 42 m water depth) and at the 65 m water depth site which had clayey silt sediments (Figure 

28).

Standard Deviation of the Sediment-Water Interface (SWI)

The overall mean standard deviation of the SWI (SWI SD) was 3.8 mm (± 0.3 mm) when 

sea pens in image 8-5 (28 m) were not included as part of the SWI, and 4.1 mm (± 0.4 mm), 

ranging from 0.25 to 16.1 mm when the sea pens in image 8-5 were included. Standard deviation 

of sediment-water interface elevation profiles were highest in shallow water depths, then decreased 

and increased twice as water depth increased. The depth related pattern of SWI SD was that of an 

inverse bimodal curve, or a "W" shaped curve approaching a trimodal function (Figure 29). The 

SWI SD was highest in sand sediments (4.3 ± 0.7 mm), and lower in both muddy-sand (3.7 ± 0.3 

mm) and mud sediments (3.7 ± 0.4) (Figure 30). SWI SD was highest (6.0 ±1 .0  mm)where 

there was no bioturbation, lowest in sediments with trace (3.5 ±1.1 mm) to low (3.3 ± 0.3 mm) 

levels of bioturbation, and slightly higher when bioturbation was medium (4.0 ± 0.7 mm) to high
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(3.9 ± 0.6 mm) (Figure 31). SWI SD was highest (4.5 ± 0.6) in the 2 cm and 0 cm (4.3 ± 1.0) 

deposit thicknesses. There was nearly continual decrease in SWI SD with increasing 1995 flood 

deposit thickness, except for the high value in the 2 cm category (Figure 32).

Fractal Dimensions or Measures

The different calculated fractal measures behave similarly overall, and display a pattern 

somewhat inverse to that observed for standard deviation. The fractal dimensions were low at the 

shallowest sampled site, then increased to high values, then decreased to minimum values typically 

between 50 and 60 m water depth, then increased and decreased again in deeper water (Figure 

33).

Hausdorff Dimension

The overall mean Hausdorff dimension was 1.22 (± 0.12), ranging from 1.058 to 1.52. 

Behavior in relation to depth: From 28 m to 43 m water depth, the Hausdorff dimension increased 

from 1.095 (± 0.014) to 1.44 (± 0.042), decreased to 1.12 (± 0.018) from 43 m to 55 m water 

depth, increased to 1.28 (± 0.022) from 55 m to 64 m water depth, then decreased to 1.22 (± 

0.050) in 83 m water depth (Figure 34). Hausdorff dimension was higher in sandy sediments 

(1.26 ± 0.040) than muddy-sand (1.19 ± 0.016) and mud (1.19 ± 0.015) where values were 

similar (Figure 30). The Hausdorff dimension was highest in sediments with trace levels of 

bioturbation (1.29 ± 0.070) and lower in sediments with none (1.18 ± 0.051) low (1.18 ± 0.012), 

medium (1.21 ± 0.029) and high (1.19 ± 0.025) bioturbation (Figure 31). The Hausdorff 

dimension was highest in sediments with no flood deposit (1.29 ± 0.057), and tended to decrease 

with increasing flood deposit thickness, except for a marked increase where the deposit was 4 cm 

(1.24 ±0.020) (Figure 32).

Minkowski Dimension

The overall mean Minkowski dimension was 1.22 (± 0.06), ranging from 1.072 to 1.56. 

From 28 m to 36 m water depth, the Minkowski dimension increased from 1.12 (± 0.020) to 1.36 

(± 0), decreased to 1.16 (± 0.009) in 55 m water depth, increased to 1.28 (± 0.030) in 64 m water
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depth, then decreased to 1.24 (± 0.039) in 83 m water depth (Figure 35). The Minkowski 

dimension was highest in sand sediments (1.23 ± 0.024) and lower in muddy-sand (1.22 ± 0.019) 

and mud (1.21 ± 0.013) (Figure 30). The Minkowski dimension was dimension was highest in 

sediments with trace (1.24 ± 0.040) and medium (1.23 ± 0.023) levels of bioturbation and lower 

in sediments with none (1.19 ± 0.042) low (1.20 ± 0.014), and high (1.21 ± 0.021) bioturbation 

(Figure 31). The Minkowski dimension was higher where the 1995 deposit was 0 cm (1.24 ± 

0.035), 2 cm (1.24 ± 0.039), and 4 cm (1.25 ± 0.018) thick and lower where the deposit 

thickness was 0.5 cm (1.22 ± 0.018) and 2 cm (1.18 ± 0.014) thick (Figure 32). Minkowski 

dimensions for piecewise and multivalued profile contours were identical, or nearly so, for images 

from most depths. Minkowski dimension estimates for piecewise continuous SWI contours were 

lower than those for multivalued contours in deeper waters where sediments were muddy and 

cohesive allowing small overhanging features to persist (Figure 36). The Minkowski dimension 

calculated using NIH Image macros versus depth shows similar pattern to that of the dimension 

calculated using fractals, but lower values overall (Figure 37). The similar patterns in the 

different estimates for Minkowski dimension can be seen in Figure 38. Differences are likely 

due to the dilation techniques used by the imaging macros which employed isotropic Euclidean 

Distance Mapping in all directions rather than just along the horizontal which should be done for 

affine objects (Russ, 1994).

Power Spectra Slopes

The overall mean power spectrum slope was -0.78 (± 0.18), ranging from -0.983 to 

-0.331. The slopes of the power spectra for SWI contours tended to diminish in magnitude 

(become less negative) with increasing water depth (Figure 39: note negative scale) Between 50 

and 60 m water depth, there was a marked diminishment and then increase in slope magnitudes. 

This corresponded to the latitudinal gradient between the stations clustered near 50 m water depth. 

Power spectral slopes converted to Fourier fractal dimensions versus water depth behaved just as
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spectral slopes (Figure 40). Spectral slopes were highest in magnitude (most negative) in sand 

sediments (-0.86 ± 0.022) and dimished in magnitude in muddy-sand (-0.79 ± 0.064) and mud 

(-0.73 ± 0.044) sediments (Figure 30). Spectral slopes were typically lower magnitude (less 

negative) with increased bioturbation, and lowest in magnitude (-0.69 ± 0.069) in sediments with 

low bioturbation, and greatest in magnitude with no (-0.86 ± 0.028) and trace (-0.90 ± 0.035) 

levels of bioturbation (Figure 31). Spectral slopes were greatest in magnitude outside the deposit 

area (-0.85 ± 0.027) and where the 1995 deposit was 0.5 cm thick (-0.83 ± 0.039). Lowest 

magnitude spectral slopes were observed in the 1 cm thick deposit (-0.63 ±0.13) and then 

magnitudes increased with increasing deposit thickness (Figure 32). Power spectra are included 

in Appendix A.

Comparison o f traced and auto-extracted contour parameterizations

Some SWI contours from each method were tested to determine potential difference in 

results. Traced SWI contours resulted in higher roughness measure values than contours extracted 

by spatial-domain processing, which resulted in higher roughness measures than contours 

extracted by frequency-domain processing (Table 9). The higher roughness values were 

indicative of better representation of the actual surface since smoothing occurred in both of the 

processing routines in order to provide continuity for the SWI contour. For this reason traced 

contours were used for analyses.

Isotropy of micro-scale roughness

Comparison o f parameters from cross-crest versus crest-parallel images

Certain roughness parameters were found to differ between replicate images from the same 

site which sampled isotropic roughness features at different angles. For example, the variation 

between surface relief measurements from images 8-3 (3.5 cm), 8-4 (2.8 cm), and 8-5 (2.1 cm) 

could not be attributed to the angle at which the camera intersected the bedforms since all were 

intersected cross-crest, nearly perpendicular. However, variation between surface relief 

measurement from images 7-1 (0.4 cm) and 7-4 (0.9 cm) were caused by parallel-crest and cross­
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crest intersection with the bottom. The bedforms at Station 7 had very small heights 

(approximately 1 cm), and therefore the magnitude of the possible difference was limited. The 

camera system's orientation upon the bottom elsewhere was not considered because roughness 

feature configurations were more isotropic in appearance. Gross morphologies were equally 

apparent despite camera orientation angles. Although isotropy may sometimes be determined by 

directional estimates of fractal dimensions (Russ, 1994), object orientation appears to have limited 

effect upon the estimate of fractal dimension in some cases (Pentland, 1984). The micro-scale 

roughness features observed in sediment profile images appear isotropic across the study area 

based upon the variograms, even though the macro-scale features may not be isotropic.

Statistical tests comparing roughness measures grouped by habitat characteristics

In order to assess gross differences in the distributions of the roughness parameters 

(surface relief, standard deviation, Minkowski dimension, and spectra slope) in relation to habitat 

parameters of possible direct influence, they were grouped into deposit/non-deposit, and 

bioturbational/non-bioturbational sets and compared using nonparametric Wilcoxon / Kruskal- 

Wallis rank sums test. RPD depth (p = 0.03) was significantly lower in the deposit region, 

whereas number of voids (p = 0.03), biological mixing depth (p = 0.04), number of worms (p = 

0.02), and number of burrows (p = 0.03) all were significantly higher in the deposit region. 

Number of tubes and number of epifauna were not significantly different across depositional 

groups. Power spectral slopes (p = 0.046) were significantly higher in bioturbational sediments, 

though surface relief, standard deviation, and Minkowski dimension were not significantly 

different in bioturbational sediments or in depositional sediments. The biological parameters were 

not tested for differences between bioturbational and non-bioturbational sediments because of their 

collinearity.

Multiple regression

Multiple linear regression models were calculated for untransformed, continuous interval 

values of the Minkowski dimension versus habitat parameters (sediment grain size, biological
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sediment mixing depth, flood deposit thickness) and other roughness parameters (standard 

deviation, and surface relief). Similarly a regression model was calculated for power spectra slope 

versus sediment grain size, biological sediment mixing depth, and flood deposit thickness, and 

surface relief. Standard deviation (cm) of the SWI, surface relief, biological sediment mixing 

depth, sediment grain-size and 1995 flood deposit thickness had a non-significant factor effect (at 

alpha = 0.05) on the Minkowski dimension and on spectral slope. None of the habitat parameters 

chosen accounted significantly for variation in slopes of power spectra.
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DISCUSSION

Habitat characteristics and the influence o f Eel River flood deposit

The biological and sedimentological parameters described using standard sediment profile 

image analysis (Rhoads and Germano, 1982, 1986; Diaz and Schaffner, 1988) appear to vary in 

accordance with the sediment layer deposited from Eel River floods upon the continental shelf as 

estimated from Wheatcroft et al. (1996). In other words, the flood deposit appeared to influence 

sediment parameters detectable by SPI (Figure 24). Two major floods were documented in 1995 

(Wheatcroft, et al., 1996) but were not differentiated by core sample analyses; the 1995 deposit 

refers to material deposited during all flood events from that year. Most SPI stations located in 

heterogeneous sediments which could be generalized as muds, showed signs of recent deposition, 

either as small light tan colored particulates in the surface layer (Wheatcroft, et al., 1996) or as a 

series of subsurface laminations, generally 1 to 2  cm thick extending to the bottom of the images.

The 1995 Eel River flood deposit thickness estimated from Wheatcroft et al. (1996) agreed 

well with the thicknesses determined from the profile images (Figure 17). Both estimates of 

deposit thickness reveal that the most recent layer thickness did not start until 50 m water, and 

increased in thickness to a maximum at 60 to 65 m. SPI estimates were greater than Wheatcroft, et 

al. (1996) for the 83 m station. The high degree of bioturbation may have homogenized the two 

uppermost layers and made them visually indistinct. Similarly, lower estimates based upon SPI in 

the 60 to 65 m range may have been a result of sub-lamina induced by geochemistry rather than 

different depositional events. What appeared to be two layers may have been only one layer 

undergoing early diagenetic processes. Alternatively, the two floods in 1995 could have resulted 

in deposits which were visually distinct and separable by SPI but not core analyses. Overall, the 

two independent estimates of the cross-shelf character of the flood were similar.

The SPI analysis was also able to clearly distinguish layer thicknesses from previous 

depositional events, therefore hindcasting of previous depositional volumes may be possible based 

upon coherent cross-depth strata thicknesses and some assumptions about compaction. The
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episodic character of the deposition has apparently allowed infauna to persist, even thrive in the 

depositional region. The activities of the infauna were apparently responsible for the 

unconsolidated sediment surface layer in the deposit muds (Figure 5). As shown by Wright, et 

al. (in press), the presence of an unconsolidated layer in the muddy sediments of the deposit 

allowed boundary layer stratification by suspended sediment to partially suppress turbulence and 

bed stress. High bioturbational activities and large, deep infuanal structures resemble those of a 

near-equilibrium type community structure (Pearson and Rosenberg, 1978) in the areas with 

highest deposition.

Several of the parameters had distinctly different behavior in the flood deposits relative to 

the inner shelf sands (Figure 24). For example, the redox potential discontinuity depth (RPD) 

generally is directly related to sediment grain size and flow-induced diffusion of oxygen into the 

sediments and also to the intensity of biological sediment-mixing activities, and to surface 

roughness structures (Ziebis et al, 1996; Rhoads and Germano, 1986). Apparent color RPD 

values were significantly less (p = 0.03) between the flood deposit and sediments inshore of the 

deposit, when images from transitional sediments were excluded. RPD depth, however did 

increase nearly linearly with water depth within the deposit region (Figure 19), greatest at the 

deepest station, apparently related to bioturbational activities. In addition, the biological mixing 

depth and number of voids, infaunal worms and burrows all were significantly higher in the 

deposit region. Numbers of epifaunal organisms and biogenic surface tubes were not different 

between deposit and non-deposit regions. However, this is likely a result of the few number of 

epifauna and tubes seen overall. All these differences suggest that the geophysical forcings 

controls the distribution of habitat type and benthic community structure and function.

Spatial processes o f the seafloor at micro-scales

The semivariograms (experimental variograms) showed no detectable nugget effect and 

resembled the form of a mean-square differentiable function at the origin, apparently best fit by a 

parabolic or power law variogram model. Therefore microtopographical seafloor roughness may
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be considered scale-invariant for the lag range over which this form of the variograms was evident. 

The scaling behavior exhibited was weak scale-invariance, or self-affinity, rather than 

self-similarity. This scaling behavior applied to an overall scale range of approximately 0.1 to 5 

cm. Vertical elevation profiles of the seafloor on the Eel Margin appear to be self-affine over 

limited distances, and scale-dependent beyond those distances.

Variation in the scaling behavior was likely related to orientation of the camera in relation to 

bed features in certain areas. Roughness features at some sample sites appeared isotropic, while at 

others, especially in shallower water, anisotropic ripples were present. Azimuth angle of the 

camera in relation to the bedform strike was non-uniform, therefore some images represent the 

bedform structures more than others from the same sites as demonstrated in Figure 16. The 

presence of periodic waveforms or partial waveforms which can also be detected in many of the 

semivariograms does not accurately portray the regions influenced by sand ripples, because the 

apparent periodicity represented in some semivariograms sometimes reflects biologically-derived 

structures or simply bottom heterogeneity. A wider prism may have represented bedforms better, 

and a continuous transect image may have allowed determination of the scaling behavior for 

features > 5 to 10 cm. A continuous profile image or other high resolution representation of 

surface features covering several meters of bottom could confirm whether seafloor roughness is 

actually a scale-dependent or a self-affine fractal process. Based upon SPI, it appears as though 

small-scale seafloor roughness may be best represented by a self-affine fractal process 

superimposed upon a scale-dependent periodic process.

Generalized biologically-influenced roughness in the area

Seafloor microtopographical roughness was not generally associated with the presence of 

fauna or biological surface structures since few were present in the SPI images. Thus, biological 

roughness, per se, was low, as was physical roughness in most of the images. Biological 

roughness should not simply be considered inconsequential because surficial structures or epifauna 

were generally absent. The structure of the surface layer can be strongly influenced by infaunal
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organisms and their activities (Figure 5) as has been shown by Bokuniewicz et al. (1975) and 

Wright, et al. (in press). Thus, the microtopography of the sediment-water interface which 

appears physically structured may, in fact, be bioturbated and possess both macro-scale roughness 

features and microscopic variability, which may be attributed to the benthic faunal activities.

When present, the epifaunal were important to roughness, however in the study area low 

epifaunal densities limited their overall effect. A profile image from Station 8  (28 m of water) did 

reveal epifauna (sea pens) which extended far above the SWI. Several parameters were calculated 

with the sea pens included and excluded for comparisons which might elucidate effects of 

biological forms upon roughness measures (Figure 41 and Table 10).

Subsurface sediments in much of the study area were highly bioturbated, so much so that 

evidence of depositional strata at some of the deepest water sites was nearly completely obliterated 

and indistinguishable because of mottling resultant of infaunal feeding and burrowing activities. 

Although surface roughness could be only indirectly linked to these biological activities, the 

evidence supporting the effects was strong. The types and numbers of infaunal structures present 

indicated a change in functional biological characteristics across the flood deposit region which 

may have influenced the surface morphology in different ways. The structures suggest a possible 

shift from surface deposit-feeding and filter feeding epifauna and small burrowing, scavenging 

infauna, to tube-dwelling surface deposit-feeding and deep burrow dwelling deposit feeding 

infauna and head-down excavating deposit feeders.

The sedimentary laminations, or strata, obvious in the images are consistent with the 

thicknesses reported by Wheatcroft et al. (1996) (Figure 20). Stations 2 (64 m) and 3 (60 m) 

exhibited the highest number of strata, and finest sediments, and also the highest number of 

infauna and subsurface biological structures (Tables 7 -8 ) . The roughness in this depth range is 

dominated by macro-scale features and is attributed primarily to benthic biology. These 

observations are consistent with Wheatcroft (1994), who described the rapid development of 

biological roughness features and erosion of physical roughness features in moderate flow
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conditions. Bedforms would not be expected in the region of highest deposition because of the 

grain sizes present since the height and wavelength of flow-constructed roughness features is 

directly proportional to grain size (Wiberg and Harris, 1994). Inshore from the region of highest 

deposition, in 50 m of water or less, roughness features were well-defined sand ripples which 

were of greater magnitude than the biological roughness features, except when the the sea pens 

were present.

The study area might be classified overall as possessing relatively smooth macro-scale 

roughness, where the standard deviation (SD) of the surface elevational features averaged 0.4 cm, 

the surface relief (extrema) averaged 1.4 cm, and the mean slope of Fourier power spectra (FPS) 

generated from surface elevations was -0.78 (1 SD = ± 0.18). However, at micro-scales, part of 

the area may be considered relatively rough, with combined roughness greatest in the very fine 

sand sediments and clayey silt sediments where the Minkowski and Hausdorff fractal measures are 

highest (Figure 42). If the data from the sampled sites with sand sediments are excluded from 

analysis, the fractal measures are more negatively correlated with the other roughness measures, 

thus where micro-scale roughness was high, macro-scale roughness was low and vice-versa. 

Bioturbational eradication of larger roughness features may be responsible, as described by 

Wheatcroft (1994). Wheatcroft (1994), however, examined changes in surface roughness at 

individual points over time, whereas this study examined several locations over only one time 

period. The timing of sampling however, coincided with a relatively calm period just prior to a 

severe storm period, and thus represented the end of a bioturbation cycle during which biological 

activities would have restructured surface morphology . Storms would then smooth small, high- 

frequency (high wave-number) biological roughness features (Wheatcroft, 1994) by bottom 

stresses induced by waves and currents (Wright, et al., in press) or erosion/deposition of 

sediments.
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Spatial aspects o f roughness

Semivariogram analysis provided a means to determine the spatial relationships and the 

physical characteristics of the roughness features (Robert and Richards, 1988), and corroborated 

the apparent reason behind the micro to macro-scale roughness measure differences. For example, 

the highest relief, SD, and FPS slopes were obtained at 50 to 60 m water depth, where there was 

some depositional layering, moderate to high levels of biological mixing activity, and sandy silt 

sediment. The roughness in this region is dominated by features on the order of 5 to 10 cm, as 

seen by the semivariograms from Stations 3, 10, and 4 (60, 55, and 52 m water depth). These 

sample sites exhibited many of the highest overall semi variances at lags of 5 to 10 cm, exceeded 

only by the nearshore sample sites where well-defined sand ripples were present. The 5 to 10 cm 

roughness features in the 50 to 60 m water depth range appear to be a combination of physical and 

biological reworking of material recently deposited from Eel River floods. The material in the 50 

to 60 m range appears relatively unconsolidated, based upon the penetration of the sediment profile 

prism (Figure 19) (Bokuniewicz et al., 1975) and by the consistency of the strata thicknesses 

below the sediment surface.

The semivariograms show that, in general, broader macro-scale (5 to 15 cm) seafloor 

roughness is a scale-dependent process. However, all of the semivariograms showed parabolic 

behavior at the origin up to some distance lag. The semivariance resembled a mean-square 

differentiable function which indicates strong spatial continuity in the variable (Joumel and 

Huijbregts, 1978), which may be interpreted as weak scale-invariance (Herzfeld et al., 1993). 

Thus, although seafloor roughness may be a scale-dependent process at 5 to 15 cm scales, and in 

general (over hundreds of km: Herzfeld et al., 1993), it may also be considered a scale-invariant 

process at scales below the ranges at which geological or physical processes form deterministic 

structures or extremely different topographical features. Therefore, microtopographical seafloor 

roughness (<0.1 to 5 cm) may be considered weakly scale-invariant.
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The non-asymptotic behavior of the seimivariograms after the initial apparent range has two 

possible origins. It suggests either scale-dependent behavior of the SWI, in the form of periodic 

bedforms or macro-scale biogenic roughness elements (Herzfeld, et al., 1993; Robert and 

Richards, 1988), or fractal behavior of the SWI. It can be shown that a fractal process can result 

in a semivariogram which fluctuates beyond the initial apparent range, and never actually reaches a 

sill, but continues to increase in semivariance with additional fluctuations. Examination of only the 

first of these cyclings does not provide sufficient detail to determine the process responsible 

(Figure 43).

Certain fractal measures, such as the Minkowski dimension and Korcak dimension, were 

appropriate since self-affinity existed for some scale range (Russ, pers. comm.). Hausdorff 

dimension estimates was made for comparison with previous studies, though with questionable 

accuracy since the surfaces were only affine (Russ, 1994). The Hausdorff, Minkowski, and 

Korcak dimensions all followed the same pattern over the study area (Figure 33). The different 

dimension measures were applied to discrete data, and would not be expected to agree exactly, 

however for relative depictions of roughness, any of the Minkowski, Hausdorff, or Korcak 

dimensions could be used to describe the study region. The Fourier fractal dimension exhibited a 

pattern distinct from the others, and if applied it should be qualified. It appears that seafloor 

roughness might be best defined at micro to macro scales as a periodic process superimposed by a 

fractal process. Minkowski and Hausdorff dimensions both depict the study area microtopography 

as generally relatively smooth, where the average Minkowski and Hausdorff dimension estimates 

were both approximately 1.2. Synthetic generation of combined periodic and fractal data is 

possible, however determination and measurement of those generated combined process attributes 

requires more than one quantitative procedure. Such processes are probably best defined using 

several parameters, requiring multiple analyses. Thus, defining a characteristic roughness height 

becomes complicated if it is to be considered integrative.
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The mean of the power spectral slopes (-0.78) was close to the average value (-0.6) 

reported by Fox and Hayes (1985) for scales of 200 m to 3000 m and closer to the slightly more 

negative slope (approximately -0.65) obtained from millimeters-scale resolution stereogrammetric 

analysis of a small area of the Atlantic Ocean bottom (see Figure 45 in Fox and Hayes, 1985).

The variation in the power spectra slopes and the different forms observed, and changes in slopes, 

indicate that the distribution of micro and macro-scale roughness features is quite heterogeneous 

over the study area, and that regional variabilities exist. The Fourier fractal dimension, calculated 

using the slope of a power spectrum which normally will agree with other fractal dimension 

estimates was distinct from the other fractal measures. The Fourier fractal dimension, DFourier, is 

less sensitive to noise (Russ, 1994), thus would appear more useful for analysis of in situ data. 

However, the agreement of DFourier with the others depends upon the behavior of the object 

analyzed. If the object is a true fractal, the phase values for the terms in the Fourier series will be 

random (Russ, 1994). If the phase values are not uniformly random, then the object cannot be 

considered fractal over all scales examined. Examination of the phase values distribution is another 

test of the suitability of fractal measures in addition to the semivariogram analysis or direct multi­

scalar examination, and in this case attested to the limited scale-invariance of the seafloor. Non- 

random distributions of the phase values were evident in most of the Fourier power spectrum plots 

calculated (Appendix A). This may explain why DFourier behaves differently from the other fractal 

roughness measures and why the Fourier power spectral slope values follow a trend similar to 

standard deviation (Figure 42).

The FPS were calculated for entire profiles, as were the other measures, but the FPS 

appears to have been more sensitive to macro-scale variabilities and especially periodicities.

Camera orientation may have affected this parameter most obviously. Where sand ripples were 

present (at the 28 m station), and where the interface possessed relatively high ripple-shaped 

structures which may have been sedimentary or biologically-induced (at the 60 m station), the FPS 

slopes were most negative, influenced more by low frequency variation. Although the Fourier
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fractal dimension may seem the logical choice for describing fractals, which ideally possess 

information at all frequencies because of self-similarity (Russ, 1994) it may not be best in general. 

Using the FPS slopes to estimate the fractal dimension for only self-affine data, such as the 

sediment-water interface profile contours, should be limited to scale ranges for which self-affinity 

is observed in the data. However, it may be more effective for the initial FPS calculated for entire 

profiles to be used as a criterion for determining when measures of micro-scale roughness such as 

fractal dimensions should be emphasized, versus when macro-scale roughness measures are 

sufficient description.

Linear extrema measures such as the surface relief values over the maximum range of 

observation conveys only gross morphological character. Seafloor roughness is spatially variable, 

and therefore at most scales a single extrema measurement will convey very little about the local or 

regional roughness or spatial variabilities of the surface. The extrema measurment value might be 

considered as one of the many values expressed by semivariance, but a measurement able to 

convey only the maximum range of variation. Such measurements are still useful in some 

circumstances.

More informative single number parameters include the fractal dimension estimates and 

Fourier power spectrum slope. Both convey how measured variations change across spatial 

ranges. Power spectrum is especially useful in that a single power law relationship, expressed by 

the slope, has been shown to apply over a very broad range of scales, including those examined in 

this study. The difference between the mean FPS slope here and that reported for the broad range 

of scales by Fox and Hayes (1985) could not be explained as a result of their pre-whitening of 

spectra which tended to make slopes more negative. It does suggest that data from lower 

resolution sources may overestimate micro-scale seafloor roughness as Fox and Hayes (1985) 

suggest. The scopes of the several roughness measures applied are comparable to the distinctions 

between form drag and skin friction roughness, which may be defined separately, but bear close 

association.
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Fractal measures are able to convey information which is pertinant to shear flow. A fractal 

dimension can be interpreted as expressing apparent length per length scale. An exact 

measurement may not be achieved for the length of a fractal line because it becomes longer as the 

measurement unit becomes smaller. However a measurement may be made of the line which 

expresses the scale of the measurement unit. The measurement unit may then be chosen according 

to the process of interest. For example, consider 1 cm diameter turbulent eddies. Their 

generation, persistence, and decay depends upon the interaction of the water motion with the 

bottom. How much bottom does the particle encounter? According to fractal theory, the length or 

area is technically undefined. An approximation may be made of the length of the pathline or area 

of the surface encountered by knowledge of one number, the fractal dimension, and choice of a 

measurement length. The dimension will allow conversion to length in terms of what the parcel 

actually "sees." For example, suppose the sediment-water interface observed by the 15 cm width 

SPI prism is the path over which a small turbulent eddy parcel crosses. Assume isotropy in the 

eddy dimensions, then it may be represented as a circle. The circle traces out a path as is crosses 

the line. The distance travelled can be estimated as the traced area divided by diameter. Doing the 

same below the SWI results in a traced area the same as one of those used to calcluate the 

Minkowski dimension. The dimension represents the relationship between measure and scale, 

therefore may be used to recover a distance from any desired length scale. The previously 

discussed concepts concerning the strengths and weaknesses of the different measures are 

demonstrated in Table 11.

These concepts are analogous to the geometrical measures derived by dimensional analysis 

by Wooding et al. (1973), but require much less restrictive descriptions of the roughness elements. 

The fractal, geostatistical, and spectral depictions of the geometry all provide simple 

representations which may be used to produce statistical models of roughness elements. The 

applicability and validity of the models produced must be qualified by testable assumptions, 

however at least one of the three types of measure is likely to apply to most seafloor geometries
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encountered. Similarly, the measures applied in this study allow extrapolation to many length 

scales, with or without adherence to assumptions, and therefore incorporate spatial notions similar 

to those expressed by Paola (1985). The efficacy of these measures, individually or combined, 

may then reside not in their discriminatory capabilities, but in their conveyence of cross-spatial- 

scale information. The applicationand interpretation of the spectral slopes must be qualified here,. 

Since the camera prism window was limited to 15 cm, the image width was unable to accurately 

represent the larger roughness features. It is necessary to observe at least one full wavelength in 

order to produce a valid spectrum, therefore the slopes of the spectra from some SWI’s may be 

misrepresentative of some of the roughness distributions.
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Table 1. STRATAFORM (1995) sediment profile image station positions.

Station#

2
2
2
2
2
3
3
3
3
3 

1 0 
1 0 
1 0 
1 0 
1 0
4 
4 
4 
4
4
5 
5 
5 
5
5
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
9 
9 
9 
9 
9 
9

TRIPODS
VIMS(S-70)
VIMS(S-60)
UW(S-60)

USGS(S-50)

rep #prof #surf Date Time(GMT) lat (cleg min.min) Ion (deg min.min)

1 5 6 1 2 / 6 / 9 5 2 2 2 4 4 3 4 0 57. 801 1 24 1 6 . 9 2 7
2 4 0 57. 781 1 24 1 6 . 8 9 7
3 4 0 5 7 . 7 9 9 1 24 1 6 . 8 7 2
4 4 0 5 7 . 7 9 7 1 24 1 6 . 8 7
5 4 0 5 7 . 7 8 3 1 24 1 6 . 8 7 7
6 4 0 57 . 78 ? 1 24 16 . 87 ?
1 5 5 1 2 / 6 / 9 5 2 3 1 8 4 7 4 0 5 3 . 62 1 24 1 5 . 8 5 2
2 4 0 5 3 . 6 2 4 1 24 15. 801
3 4 0 5 3 . 6 1 9 1 24 15. 801
4 4 0 53. 611 1 24 1 5 . 7 9 2
5 4 0 5 3 . 6 1 6 1 24 1 5 . 7 9 9
1 5 5 1 2 / 6 / 9 5 2 3 3 1 2 2 4 0 5 3 . 4 2 7 1 24 1 5 . 4 1 8
2 4 0 5 3 . 3 6 5 1 2 4 1 5 . 4 0 8
3 4 0 5 3 . 3 6 4 1 2 4 1 5 . 3 9 5
4 4 0 5 3 . 3 5 3 1 24 15 . 381
5 4 0 5 3 . 3 3 9 1 2 4 1 5 . 3 6 6
1 5 5 1 2 / 7 / 9 5 2 2 1 2 2 3 4 0 5 2 . 9 7 7 1 2 4 1 4 . 8 2 2
2 4 0 5 2 . 9 5 4 1 24 1 4 . 8 2 5
3 4 0 52. 951 1 24 1 4 . 8 2 2
4 4 0 5 2 . 9 5 3 1 2 4 1 4 . 8 2 7
5 4 0 5 2 . 9 4 7 1 24 14 . 841
1 5 5 1 2 / 6 / 9 5 0 0 0 0 2 6 4 0 5 2 . 96 1 24 14 . 501
2 4 0 5 2 . 9 6 8 1 24 1 4 . 4 8 3
3 4 0 5 2 . 9 7 5 1 2 4 1 4 . 4 8 5
4 4 0 52 . 98 1 24 1 4 . 4 8 2
5 4 0 5 2 . 9 7 4 1 24 1 4 . 4 7 6
1 5 5 1 2 / 7 / 9 5 1 9 1 4 5 3 4 0 53. 131 1 24 1 3 . 8 7 5
2 4 0 5 3 . 1 2 3 1 24 1 3 . 8 9 4
3 4 0 5 3 . 1 2 4 1 24 1 3 . 8 9 5
4 4 0 5 3 . 1 3 8 1 2 4 1 3 . 8 8 7
5 4 0 5 3 . 1 4 8 1 24 1 3 . 8 6 7
1 5 5 1 2 / 7 / 9 5 1 9 3 5 3 5 4 0 5 2 . 9 6 2 1 24 1 3 . 8 0 5
2 4 0 5 2 . 9 6 8 1 24 1 3 . 7 8 5
3 4 0 5 2 . 9 6 9 1 24 1 3 . 7 8
4 4 0 5 2 . 9 6 9 1 24 1 3 . 7 4 7
5 4 0 5 2 . 9 6 7 1 24 1 3 . 7 4 6
1 5 5 1 2 / 7 / 9 5 2 0 5 5 3 1 4 0 5 1 . 9 8 8 1 2 4 1 3 . 7 6 2
2 4 0 52. 001 1 2 4 13 . 771
3 4 0 5 1 . 9 9 8 1 24 1 3 . 7 7 6
4 4 0 5 1 . 9 9 4 1 24 1 3 . 7 7 4
5 4 0 5 1 . 9 9 5 1 24 1 3 . 7 6 9
1 1 6 1 2 / 7 / 9 5 2 1 3 8 5 8 4 0 5 2 . 1 9 4 1 24 1 2 . 8 6 7
2 4 0 5 2 . 1 8 8 1 24 12. 851
3 4 0 5 2 . 1 9 3 1 24 1 2 . 8 5 5
4 4 0 52. 191 1 24 12 . 861
5 4 0 5 2 . 1 7 9 1 24 1 2 . 8 6 4
6 4 0 52. 17? 1 2 4 1 2. 86?
1 5 5 1 2 / 7 / 9 5 2 1 1 6 4 2 4 0 51. 651 1 24 1 2 . 7 2 3
2 1 2 / 7 / 9 5 2 1 1 7 3 0 4 0 51 .65 1 24 1 2 . 7 3 6
3 4 0 5 1 . 6 6 3 1 24 1 2 . 7 4 4
4 4 0 5 1 . 6 6 3 1 24 1 2 . 7 4 6
5 4 0 5 1 . 6 6 8 1 2 4 1 2 . 7 2 7

4 0 5 3 . 6 4 8 1 24 1 6 . 9 9 3
4 0 5 3 . 4 3 4 1 24 1 5 . 1 5 8
4 0 5 3 . 3 9 5 1 24 1 5 . 3 3 3
4 0 53 . 82 1 24 13 . 82



T able 2. Spatial dom ain im age processing procedures. S ee  internet hom epage:
h ttp ://w w w .v im s.edu /~cutter/im .h tm l for links to this routine and original co lor  im ages.

The region o f the im age containing the entire sedim ent-w ater 
in terlace was selected from the digitized sedim ent profile im age to 
reduce calculation time required for full im age m anipulation, and the 
cropped image was stored in RGB mode PIC T files.

Filtering was applied to enhance the overall in tensity  level 
d istribution based upon the intensity  values in all o f  the color 
channels using the Image Processing Toolkit (IPTK ) filter "Optim al 
Gray." The Look-U p Table M ode was then changed to G rayscale, 
since all image channels had been converted to an identical result.

The edge features were enhanced by applying a derivative-based 
convolution kernel m atrix (an expanded version o f  the G rad N or 
Sobel kernel) to 7 X 7 pixel neighborhoods (See R uss, 1995 for a 
description o f how kernels are applied):

The Grad N kernel (in canonical form):
-1 -2 -1
0 0 0 
1 2 1

The im age was thresholded. duplicated and im age histogram  inverted.

Images were com bined using: A pply Filter \ B oolean operator \ 
Feature And.

The im age histogram  was inverted again.

Sm all, disjunct, noise-related features were rem oved by: A pply Filter 
\ Select (adjusting shape factor to < 1) or C u to ff filter (features < 
approx. 100 pixels were deleted).

The rem aining features were m ade 1 pixel-w ide features by 
skeletonization  (param eters: 4 coefficient =  3. depth  = 2).

The intensity  values were thresholded.

Visual inspection o f  the result com pared to the orig inal im age was 
done by overlaying the thresholded im age on the orig inal "surfsect" 
im age, and using Image \ A pply Im age \ M ultiply (100%  opacity).

If the extracted con tour was not continuous, it was m ade so by 
overlapping features by blurring using G aussian b lurring or a 
E uclidean d istance m ap, threshold ing , then con tracting  to 
s ingle-p ixel features by skele ton ization .

Visual inspection o f  the overlain  result upon the original sedim ent- 
w ater interface section im age was done again to verify im provem ent.

http://www.vims.edu/~cutter/im.html


Table 3. Frequency dom ain im age processing procedures. S ee  internet hom epage:
h ttp ://w w w .v im s.edu /~cutter/im .htm l for links to this routine and original co lor im ages.

T h e  reg io n  o f  the  im ag e  c o n ta in in g  ju s t  the  
s e d im e n t-w a te r  in te rface  and  n earb y  a rea  w as se le c ted  
from  th e  d ig itiz e d  sed im en t p ro file  im a g e  and  then 
c o n v er te d  by  e x p an s io n  o f  b ack g ro u n d  to  a sq u are  im ag e  
w ith  p ixe l w id th  an d  h e ig h t eq u al to  a p o w e r o f  2.

F req u e n c y  tra n s fo rm a tio n  w as d o n e  u s in g  F ast F o u r ie r 
T ra n s fo rm  te c h n iq u es  v ia  the  Im ag e  P ro c e s s in g  T o o lk it 
(IP T K ) F ilter: F o rw ard  FT

T h e  p o w er sp ec tru m  im a g e  w as f il te red  u s in g  a 
c o m b in a tio n  o f  a H am m in g  f il te r  and  an an n u lu s  
a p p ro x im a te ly  w ith  in n e r and  o u te r  rad ii o f  ab o u t 90  and 
110 %  o f  h a lf  the  im ag e  w id th .

A n in v e rse  F o u r ie r  T ran s fo rm  w as a p p lie d  to  co n v e r t the  
im ag e  to the  sp a tia l d o m a in .

T h e  re su lt w as th re sh o ld e d  to e x trac t th e  en h an c ed  
s e d im e n t-w a te r  in te rfac e  p ro f ile  co n to u r.

Sm all n o ise - re la te d  fea tu res  w ere  re m o v ed  u s in g  the  
C u to ff  filte r  o f  the  IP T K . T h en  c o n tin u ity  w as ach iev ed  
v ia  s lig h t b lu rr in g  u s ing  G a u ss ia n  b lu r  o r E D M  filte r in g , 
th re sh o ld in g , and  s k e le to n iz in g  to p ro d u c e  the  re su ltan t 
SW1 p ro file  c o n to u r.

http://www.vims.edu/~cutter/im.html


Table 4. Theoretical and calculated fractal dimensions lor generated fractal lines.

Method

midpoint
displacement

midpoint
displacement

midpoint
displacement

midpoint
displacement

a  Theoretical 

0.9 1.1

0.8

0.7

midpoint 0.6
displacement

0.5

H ausdorff Minkowski Kolmogorov 

1.0639 1.092 1.1101

1.2 1.1712 1.19 1.2073

1.3 1.2332 1.245 1.2823

1.4 1.4074 1.341 1.3928

1.5 1.4781 1.383 1.4539

Korea k 

1.0

1.0573

1.3825

1.4172

1.4735



Table 5. Assumptions concerning scaling behavior required for dimension estimators.

Dimension Implementation Scaling behavior 
required________

Hausdorff

Minkowski

Kolmogorov

Korcak

Richardson plot

Successive coverings to produce 
Minkowski comforter

Box counting

Relationship between spacing of 
zero crossings for line profiles

Self-similar data or zerosets 

Self-similar or self-affine

Self-similar only 

Self-affine

Fourier Power spectral slope relationship Self-similar or self affine



Table 6. Minkowski Dimension estimation data for selected coverages.

Pixel Distance

Image
Intensity

Level
by Level 

(cm)
Number of 

Pixels
Area

(cm A2)

a 1 0 0 .07 269 1.8
b 27 0 .18 771 5.1 '
c 72 0 .4 8 2091 13.9
d 170 1.13 517 7 34 .5

Dimension estimate using slope of log transformed data: 1.04
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Legend of terms for Tables 7 and 8 .

Term

DEPTH
STA or STATION
REP
N
STAT

RPD

PEN
SURF
SD

BIOTURB

MIXDEPTH
LAYERS
BEDFORMS

TYPE

WAVEL

HT
SEDTYPE
SEDTYPE2

PHIMED
PHIRNG
GRSIZE
VOIDS
WORMS
BURR
TUBES
EPIFAUNA
Deposit

SPILayerl

Meaning and (units)

Water depth in meters (m)
Station number
“Replicate” deployment number 
Number of cases
Summary statistic (mean = arithmetic mean, SD = standard 
deviation, min = minimum value, max = maximum value) 
Average depth of the apparent color redox potential 
discontinuity layer (cm), IND = indeterminate (generally 
because of surface layer disturbance or shallow penetration) 
Sediment profile camera prism penetration depth (cm) 
Sediment surface relief as elevational extrema (cm)
Standard deviation of the sediment water interface 
elevations (cm)
Apparent degree of bioturbation (category level: NONE = 
no visible signs, TRACE = very small amount of signs of 
bioturbation, LOW = relatively small amount of signs of 
bioturbation, MED = moderate amount of bioturbational 
signs, HIGH = predominance of bioturbational signs) 
Apparent biological mixing depth (cm), • = missing 
Number of depositional layers apparent (#)
Presence (Y) or absence (N) of sediment bedforms, IND = 
indeterminate
Type of bedforms, if present: SYM = symmetric, ASYM =
asymmetric, IND = indeterminate
Wavelength of bedforms (cm), if present: NA = not
available from image due to wavelength magnitude or image
orientation, IND = indeterminate
Height of bedforms, if present
Gross sediment type, mud or sand
Apparent sediment type, VFS = very fine sand, FS = fine
sand, SASI = sandy silt, SISA = silty sand, CLSI = clayey
silt, SASICL = sandy silty clay, SICL = silty clay
Apparent median sediment phi (see Folk, 1974)
Apparent phi range
Apparent mean sediment grain size (mm)
Number of water-filled biogenic voids (#)
Number of infaunal worms: annelids or nemerteans (#) 
Number of infaunal burrow structures (#)
Number of surficial biogenic tubes (#)
Number of epifaunal organisms (#)
Eel River 1995 flood deposit thickness (cm) estimated from 
Wheatcroft, et al. (1996)
Mean thickness (cm) of the uppermost layer in sediment 
profile images



Table 9. Comparison o f fractal measures for sedim ent water interface profile contours obtained by manual 
tracing (TRACIS) and spatial (SPAT) and frequency (PRHQ) domain image processing routines. Rich = Ilausdorff 
dimension estimate from Richardson plot method, Mink = Minkowski dimension estimate, Kolm = Kolmogorov 
dimension estimate, HPS slope = slope of the Fourier power spectrum, Four = Fourier fractal dimension estimate, 
SD = standard deviation.

Image Method Rich (SD) Mink (SD) Kolm (SD) Korc (SD) FPS slope (SD) Four

1-4 TRACE 1.3318 0.0089 1.327 0.0019 1.3145 0.0103 1.5138 0.0306 -0.9088 0.0155 1.5456
SPAT 1.1491 0.0076 1.106 0.0084 1.1367 0.0153 1.0560 0.0140 -0.7230 0.0137 1.6385
FREQ 1.1392 0.0083 1.096 0.0070 1.1355 0.0168 NA NA ' -0.6488 0.0152 1.6756

10-1 TRACE 1.0877 0.0024 1.150 0.0014 1.1399 0.0224 1.0674 0.0237 -0.9332 0.0073 1.5334
SPAT 1.0410 0.0013 1.082 0.0043 1.0814 0.0234 1.0339 0.0087 -0.8700 0.0086 1.5650
FREQ 1.0337 0.0020 1.096 0.0077 1.0647 0.0163 NA NA -0.7082 0.011 5 1.6459

4-1 TRACE 1.1770 0.0056 1.177 0.0036 1.2226 0.0188 1.2450 0.0318 -0.7335 0.0133 1.6333
SPAT 1.0657 0.0031 1.078 0.0037 1.1044 0.0139 NA NA -0.6448 0.0121 1.6776
FREQ 1.0843 0.0027 1.082 0.001 5 1.1029 0.0197 1.0884 0.0226 -0.5820 0.0134 1.7090



Table 10. Comparison of relief and roughness measurements from image 8-5, 
including and excluding epifaunal seapens. SD = standard deviation, D = dimension, 
mv = multivalued function form, and pc = piecewise continuous form of the 
sediment-water interface profile contour line.

Epifaunal 
Sea Pens

Surface
Relief
(cm)

SD
(cm)

Power
Spectral
Slope Hausdorff D

Minkowski D 
(mv)

Minkowski D 
(PC) Fourier D

Included 10.1 1.6 -0.98 1.52 1.56 1.17 1.51

Excluded 2.1 0.7 -0.94 1.11 1.16 1.15 1.53



Table 11. Strengths and weaknesses of measures applied.

Measure________

Relief

Standard Deviation 
(or RMS)

Fractal Dimension 

Spectral Slope

Strength________

Ease of calculation

Relative ease of calculation, 
and generality of application

Able to express roughness 
information for series 
resembling multivalued or 
non-differentiable functions, 
and able to convey roughness 
independent of scale

Able to discern and convey 
information about roughness 
element wavelengths and the 
relative contribution of 
different scale roughness 
elements

Weakness

May be completely determined 
by two extreme values in an 
otherwise uniform series

Unable to express 
wavelength(-like) information 
or discern scale of dominant 
features

Must have or assume self­
similar or self-affine data

Must have piecewise 
continuous data series, and 
linear slope only conveys a 
single fit to data from a 
spectrum which may be even 
more useful in other terms



Study Area

California

Figure 1. STRATAFORM study area off northern California.
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Figure 2. SPI study transect on the Eel margin, off Eureka, California. Station 
markers are labelled with station numbers.



R e d o  x.'potenttaTlTDis c  o  riti nu  i ty)-if asriss1

Layer 2

S a l

jintaninaij 

v o id s ,

llrav.eriS]

ilfaVJerta

STRATAFORM 95 
SPI Station 3-2

Figure 3. Sediment profile image from 60 m water depth (Station 3) revealing several 
sedimentary and biological features. The depositional layering is clearly evident as 
distinct color laminations. This station was closest to the VIMS physical data pod 
deployed Jan. 1996.
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Figure 4. Sediment profile image from 65 m water depth (Station 2) revealing several 
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Figure 5. Close-up view of a section of the sediment-water interface from a 
profile image from 65 m water depth (Station 2). The unconsolidated surface layer 
results from bioturbational activities of benthic infauna which are abundant in the 
sediments of the Eel River deposits. The magnified section of the original image (a), 
was processed digitally using spatial filters to exploit the regions of high variance in 
the image (b) which represented the large sediment pore spaces. The variance image 
was combined with a grayscale version of the original (c) to allow comparison.



a

Figure 6. (a) Sediment-water interface section from image 3-5 (60 m water depth), 
(b) traced SWI contour overlaid, and (c) just the SWI contour used for roughness 
measures.
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Figure 7. Examples of multivalued (a) and piecewise continuous (b) series. Arrows 
indicate portions of series a which must be modified in order to achieve continuous data 
which does not have more than one vertical coordinate for any point along the horizontal 
axes in order to use certain roughness measures.
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Figure 8. Features of semivariograms. The semivariance (gamma(h)) of a 
variable with some spatial continuity will increase with increasing lag. The 
lag (h) is the interval between samples of the variable. Semivariance for a 
particular h is half the sum of all variances of the data separated by that 
distance or time h. The nugget effect indicates non-zero semivariance at the 
smallest lag, and suggests that the data resolution was insufficient to detect 
the smallest variability of the series. The range is the distance lag over 
which the semivariance reaches the sill, the overall variance of the series. 
Beyond the sill, the variable is no longer considered correlated if the 
semivariogram behaves asymptocically. Redrawn from Davis (1986).
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Figure 9. Relationship between the semivariance and autocovariance of a 
series. Autocorrelation will behave as autocovariance, however the vertical 
scale will be standardized {0 <= y <= 1}. Redrawn from Journel and 
Huijbregts (1978).
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Figure 11. Semivariogram behavior at the origin, representing (a) parabolic 
model indicative of high degree of spatial continuity and self-affinity; (b) linear 
model; (c) spherical model with nugget effect; and (d) pure nugget effect. 
Redrawn from Journel and Huijbregts (1978).
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Figure 12. Semivariogram function for a periodic series revealing departure 
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Figure 13. Direct determination of scaling behavior by comparing statistics of magnified 
portions of the original line to the original. Consistency between the two indicate self­
similarity, whereas if an adjustment factor is necessary to rectify the two, self-affinity may 
hold (see Malinvemo, 1989). The lower box is a I X  magnification of the smaller box 
which encloses a 2  cm wide section of the sediment-water interface contour.
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Figure 14. Idealized Richardson plot used to estimate the compass, or 
Hausdorff dimension (DH). The slope of the log transformed total length (L) 
versus the inverse of the increment (s) used to build the measurement, gives DH 
by DH = 1 + b (see Pietgen, et al., 1992).



Figure 15. Procedure for estimating the Minkowski Dimension using the Euclidean distance map (EDM).
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Figure 16. Sediment profile images from different azimuthul angles with the seafloor, 
indicative of anisotropic roughness features at some locations: (a) perpindicular to and (b) 
parallel to crest strike.
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Figure 17. 1995 Eel River flood deposit layer thickness estimated from 
Wheatcroft (1996) (Wh) and sediment profile images (SPI). Error bars 
indicate +/- one standard error on the mean.
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Figure 18. Apparent color redox potential discontinuity layer (RPD) 
depth by water depth. Error bars indicate +/- one standard error on the 
mean.
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Figure 19. SPI prism penetration depth (PEN) and number o f depositional 
layers visible (LAYERS) by water depth. Error bars indicate +/- one standard 
error on the mean.
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Figure 20. Approximate modal sediment grain size (mm) determined from 
SPI by water depth. Error bars indicate +/- one standard error on the mean.
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Figure 21. Degree o f bioturbation by water depth. Category values indicate: 
0 = none, 0.1 = trace or negligible, 1 = low, 2 = moderate, 3 = high. Error 
bars indicate +/- one standard error on the mean.
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Figure 22. Biologically mixed depth (cm) o f sediments determined from SPI. 
Error bars indicate +/- one standard error on the mean.
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Figure 23. B iologically  m ixed depth (cm ) by sediment type. Error bars 
indicate +/- one standard error on the mean.
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Figure 25. SPI habitat parameters in relation to bioturbation category.
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semivariogram function was observed by water depth. Error bars indicate +/- 
one standard error on the mean.
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Figure 28. Surface relief (vertical linear extrema) (cm) of sediment-water 
interface elevations by water depth. Error bars indicate +/- one standard error 
on the mean.
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Figure 30. Sediment-water interface roughness parameters by sediment type.
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Figure 31. Sediment-water interface roughness parameters by degree of biotubation.
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Figure 33. Fractal dimension estimates by water depth: Minkowski 
dimension (DMink), Hausdorff dimension (DH), Kolmogorov dimension 
(DKolm), Korcak dimension (DKorc), and Fourier fractal dimension (DFour). 
Error bars indicate +/- one standard error on the mean.
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Figure 34. Hausdorff dimension estimates by water depth. Error bars indicate 
+/- one standard error on the mean.
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Figure 35. Minkowski dimension estimates by water depth. Error bars 
indicate +/- one standard error on the mean.
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Figure 36. Minkowski dimension estimates for multivalued (MV) and 
piecewise continuous (PC) sediment-water interface contours by water depth. 
Error bars indicate +/- one standard error on the mean.
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Figure 37. Minkowski dimension estimates calculated using Fractal 
Calculator macros for NIH Image by water depth. Error bars indicate +/- one 
standard error on the mean.
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Figure 38. Minkowski dimension estimates by water depth. Minkowski 
dimension (F)calculated using Fractals (Russ, 1995), and Minkowski 
dimension (FC) calculated using Fractal Calculator macros for NIHImage 
employing Euclidean Distance Map method. Error bars indicate +/- one 
standard error on the mean.

M
in

ko
w

sk
i 

D
im

en
sio

n 
(F

C
)



-0.5!

- 0.6

<D
§•-0.7
co
|
§ .-0.8
co

-0.9

-1.0 * i i i i | i i i i -|—i—i i  | i -i—i—i—| i i i i | i i i—i—| i i
20 30 40 50 60 70 80

Water Depth (m)

1 1 I 

90

Figure 39. Fourier spectral slope for sediment-water interface profiles by 
water depth. Error bars indicate +/- one standard error on the mean.
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Figure 41. Influence of epifaunal anthozoans upon measurements.
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