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ABSTRACT

Despite the rapid hardware upgrades, a common complaint among smartphone 
owners is the poor battery life. To many users, being required to charge the 
smartphone after a single day of moderate usage is unacceptable. Moreover, 
current smartphones suffer various unpredictable delays during operation, e.g., 
when launching an app, leading to poor user experience. In this dissertation, we 
provide solutions that enhance systems on portable devices using information 
obtained from their users and upper layers on the I/O path. 
 
First, we provide an experimental study on how storage I/O path upper layers 
affect power levels in smartphones, and introduce energy-efficient approaches 
to reduce energy consumption facilitating various usage patterns. At each layer, 
we investigate the amount of energy that can be saved, and use that to design 
and implement a prototype with optimal energy savings named SmartStorage. 
We evaluate our prototype by using the 20 most popular Android applications, 
and our energy-efficient approaches achieve from 23% to 52% of energy savings 
compared to using the current techniques. 
 
Next, we conduct the first large-scale user study on the I/O delay of Android 
using the data collected from our Android app running on 2611 devices within 
nine months. Among other factors, we observe that reads experience up to 
626% slowdown when blocked by concurrent writes for certain workloads. We 
use this obtained knowledge to design a system called SmartIO that reduces 
application delays by prioritizing reads over writes. SmartIO is evaluated 
extensively on several groups of popular applications. The results show that our 
system reduces launch delays by up to 37.8%, and run-time delays by up to 
29.6%. 
 
Finally, we study the impact of memory on smartphone user-perceived 
performance. Our heap usage investigation of 20 popular applications indicates 
that rich multimedia applications have high heap usage and go above allowed 
boundaries, up to 5.63 times more heap than guaranteed by the system, and 
may cause crashes and erroneous behaviors. Moreover, limited heap may not 
only cause an app to crash, but may even prevent an app from launching. 
Therefore, we present iRAM, a system that maintains optimal heap size limits to 
avoid crashes, efficiently maximizes free memory levels, and cleans low-priority 
processes to reduce application delays. The evaluation indicates that iRAM 
reduces application crashes by up to 14 percent. 
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Chapter 1

Introduction

Continual advancements in the technology of smartphones have become an important,

if not essential, aspect of our daily life. This is unsurprising since a single mobile device

has the ability to call and text family members, check status updates on social media

sites, access news and information on the Internet, and play a variety of games for enter-

tainment. However, a common complaint among smartphone owners is the poor battery

life. To many such users, being required to charge the smartphone after a single day of

moderate usage is unacceptable. In a 2011 market study conducted by ChangeWave [1]

concerning smartphone dislikes, 38% of the respondents listed that battery life was their

biggest complaint, with other common criticisms such as poor 4G capacity and inadequate

screen size lagging far behind. The result of such a study demonstrates the necessity for

solutions which address the issue of energy consumption in smartphone devices.

The number of smartphones used worldwide increases each year. According to In-

ternational Data Corporation, smartphone vendors will ship a total of 918.6 million smart-

phones in 2013, up 27.2% from the 722.4 million units shipped in 2012 [23]. With their

increasing use, smartphone users tend to demand better performance. Moreover, smart-

phone users are increasingly using phones for work-related activities such as process-

ing emails, reading documents, etc. A study by Forrester Research [18] found that one

quarter of work devices were smartphones and tablets. Therefore, it is crucial to study
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application performance in smartphones. In particular, reducing the application delay can

greatly improve user productivity. In addition, a recent analysis [72] indicates that most

user interactions with smartphones are short. Specifically, 80% of the applications are

used for less than two minutes. With such brief interactions, applications should be rapid

and responsive. However, the same study reports that many apps incur significant delays

(up to 10 seconds) during launch and run-time. Our study reveals that Android devices

spend a significant portion of their CPU active time (up to 45%) waiting for storage I/Os to

complete. This negatively affects the smartphone's overall application performance, and

results in slow response time. Therefore, in order to improve the application performance,

it is essential to investigate possible reasons of such waits.

1.1 Problem Statements

In this dissertation, we investigate the direct impact of smartphone storage techniques

on energy consumption and application performance. Specifically, we answer two key

research questions: 1) How can we optimize smartphone storage in order to save en-

ergy? 2) How can we improve smartphone application performance with I/O optimization

techniques? 3) How can we improve application performance with memory optimiza-

tion techniques? Answers to these research questions will help engineers come up with

smartphone designs that are more energy efficient and at the same time provide better

application experience, affecting as many as 1.038 billion smartphone users around the

globe (as of September 2012 [24]).

1.1.1 Exploring Impact of Storage on Smartphone Energy Consumption

We address the problem by evaluating smartphone power efficiency at various layers

of the I/O path, such as the block layer and device driver. We provide evidence which

highlights that the energy consumption of a smartphone can differ depending on stor-

age techniques employed. Different scheduling algorithms on the block layer or different
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queue lengths on the device driver impact the total energy consumption differently. We

find for 8 benchmarks the combinations of scheduling algorithms and queue lengths with

optimal energy savings. In order to save energy, we design our SmartStorage system and

implement it on the Android platform. SmartStorage tracks smartphone's I/O pattern in

run-time and matches with the benchmark with closest I/O pattern. After having matched

with a benchmark, the system dynamically configures an optimal storage configuration to

achieve lower energy consumption.

1.1.2 Improving Application Performance through I/O Optimizations

We address the problem by studying the behavior of read and write I/Os. First, the slow-

down of reads in the presence of writes is investigated. This slowdown can be one of

the main reasons causing the slow launch of applications due to the dominance of reads

while launching. Next, the difference in the slowdown of one I/O type due to another

may require better I/O scheduling and prioritizing. Therefore, this slowdown asymmetry

is researched. Finally, we look at the speedup of concurrent I/Os over serial ones. This

provides insights into what type of I/Os benefit more from concurrency. To improve ap-

plication performance, we design and implement a system prototype called SmartIO on

the Android platform. SmartIO measures optimal concurrency parameters for each type

of I/O, and issues I/Os with the use of the obtained concurrency parameters. The system

reduces the application delay by applying a set of I/O optimizations. Specifically, it as-

signs higher priority to reads, lower priority to writes, and groups the I/Os based on these

priorities.

1.1.3 Improving Application Performance through Memory Optimizations

We address the problem by studying memory usage of several groups of applications. In

particular, we identify the amount of memory available before and after their launch. Little

available memory may result in delayed I/O operations or frequent communication with
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much slower flash disks, which essentially causes slow application response. Insufficient

memory may even prevent an app from launching. Next, we investigate heap usage of

applications. High heap usage of games and other rich multimedia apps may increase

crash rates and likelihood of erroneous behaviors. Finally, we design and implement a

system prototype called iRAM on the Android platform. iRAM efficiently maximizes free

memory levels, cleans low-priority processes, and maintains optimal heap size limits. The

system learns which apps are of high priority for a particular user, and keeps them in the

main memory. The launch of such apps is then much faster, since it corresponds to warm

launch. iRAM also applies a prediction model to predict heap usage of a set of apps,

and dynamically adjusts the heap size based on predicted values. With this set of simple

optimizations, iRAM reduces application delays and decreases likelihood of erroneous

behaviors.

We found a few works in the research community closely relating to ours. The work of

Kim et al. [54] presents an analysis of storage performance on Android smartphones and

external flash storage devices. Their discovery of a strong correlation between storage

and application performance degradation serves as motivation for our work. Carroll et al.

[45] measure the breakdown of energy consumption by the main hardware components

in the device. Their direct measurements of each component's current and voltage are

used to calculate power. This is done on a smartphone used for scientific purposes only,

and many experiments cannot be replicated on commercially available smartphones. We

take a different approach based on the precise analysis of the I/O activities between the

application layer and the flash storage. Our work is also motivated by cross-layer I/O

analysis studied by the authors in [65, 69], which has not been done in smartphones. At

this stage, there has been no direct study of the correlation between storage techniques

and energy consumption within smartphone devices. We believe our work can help other

researchers realize the importance of storage and perhaps trigger more exciting solutions

to the smartphone energy consumption problem. Yan et al. [72] propose a system predict-

ing application launch using context such as user location and temporal access patterns.
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Their system then provides system support for application prelaunching that reduces per-

ceived delay. However, the proposed system does not solve the slow application launch

from the root, but instead lessens its impact. Moreover, the application launch is its only

focus.

1.2 Contributions

The overall result of this dissertation are following solutions contributing to improving

smartphone energy saving and reducing application delay.

Storage-aware Smartphone Energy Savings. We first focus on investigating the

impact of storage on smartphone energy consumption. Based on the findings of this

study, we design and implement a system that saves energy. Our main contributions are:

• First, we provide an experimental study on how storage techniques impact energy

consumption on smartphones.

• Second, we design and implement the SmartStorage system that tracks I/O pattern

of smartphones in run-time and dynamically configures storage parameters with

optimal energy savings.

• Third, we evaluate our solution with an Android-based smartphone on the 20 top

free applications from Android market and show that our system can save from

23% to 52% of energy. This is achieved with 2.5% energy overhead from running

SmartStorage and a difference of 3% in terms of application delay.

Reducing Application Delay through Read/Write Isolation. Next, we explore the

impact of storage on application performance. With the use of obtained knowledge, we

design and implement a system that reduces application delay in smartphones. Our main

contributions are:

6



• First, through a large scale measurement study on data collected using an Android

app we developed, we find that Android devices spend a significant portion of their

CPU active time (up to 45%) waiting for storage I/Os to complete. This negatively

affects the smartphone's overall application performance, and results in slow re-

sponse time. Further investigation reveals that a read experiences up to 626%

slowdown when blocked by a concurrent write. Additionally, the results indicate

significant asymmetry in the slowdown of one I/O type due to another. While the

slowdown ratio of a read is up to 6.15, the slowdown ratio of a write is only up to

1.6. Finally, the speedup of concurrent I/Os over serial ones is investigated.

• Second, we design and implement a system prototype called SmartIO that shortens

the application delay by prioritizing reads over writes, and grouping them based on

assigned priorities. SmartIO issues I/Os with optimized concurrency parameters.

• Third, we evaluate our system using 20 popular applications from four groups (sens-

ing, regular, streaming, and games) and we show that SmartIO reduces launch de-

lays by up to 37.8%, and run-time delays by up to 29.6%. Moreover, SmartIO also

reduces power consumption by 6%.

Sensing Memory Needs of a Smartphone. Finally, we explore the impact of mem-

ory on application performance. With the use of obtained knowledge, we design and

implement a system that reduces application delay and minimizes erroneous behaviors

in smartphones. Our main contributions are:

• First, through a measurement study we find that facilitating warm launch of just

five applications is extremely expensive, using up to 36 percent of memory. The

resulting little memory left can be one of the main reasons causing slow applica-

tion response due to delayed I/O operations or frequent communication with much

slower flash disks. Therefore, in order to improve the application performance, we

investigate how each application consumes the memory. Our heap usage study of
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20 popular applications indicates that rich multimedia applications have high heap

usage and go above allowed boundaries. This mainly applies to games that require

up to 5.63 times more heap than guaranteed by the system, and may cause crashes

and erroneous behaviors. Finally, further investigation reveals that limited heapmay

not only cause an app to crash, but may even prevent an app from launching. While

on Samsung S4, all five games fail to launch until the heap size of 64MB, on Nexus

4, all five games fail to launch until the heap size of 128MB. Therefore, the heap

size directly affects success or failure of application launch.

• Second, we design and implement iRAM, a system that maintains optimal heap

size limits to avoid crashes, efficiently maximizes free memory levels, and cleans

low-priority processes to reduce application delays.

• Third, our evaluation on memory hungry applications indicates that iRAM reduces

application crashes by up to 14 percent. In addition, the results confirm that iRAM

increases free memory levels by up to 4.8 times. The evaluation using 40 popular

applications from four groups (games, streaming, miscellaneous, and sensing) also

shows that iRAM reduces launch delays by up to 78.2 percent. This performance

gain comes with 3.5 percent of CPU overhead and 0.9 percent of power overhead.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 presents a detailed survey

of related work on smartphone energy and performance. In Chapter 3, we present Smart-

Storage, a system that tracks I/O pattern of smartphones in run-time and dynamically con-

figures storage parameters with optimal energy savings. In Chapter 4, we expand on our

smartphone optimization approaches to present SmartIO, a system prototype that short-

ens the application delay by prioritizing reads over writes, and grouping them based on
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assigned priorities. Chapter 5 studies the impact of RAM on smartphone user-perceived

performance. Finally, we present our conclusion and future work in Chapter 6.
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Chapter 2

Related Work

The previous work can be divided into four categories: smartphone storage, smartphone

application delay, smartphone power consumption, Linux I/O schedulers, and enterprise

solutions.

Smartphone Storage. Kim et al. [55] present an analysis of storage performance on

Android smartphones and external flash storage devices. Their discovery of a strong cor-

relation between storage and application performance degradation serves as motivation

for our work. We take one step further and investigate possible reasons of such perfor-

mance degradation, and propose a system to reduce application response using smart

I/O optimizations. Nguyen et al. [60] study the impact of the flash storage on smartphone

energy efficiency, while the main focus of our work is the application performance. We

use obtained knowledge from the study of I/O behaviors to design and implement a sys-

tem that improves the response time by prioritizing reads over writes, and grouping them

based on assigned priorities.

Smartphone Application Delay. Yan et al. [72] propose a system that predicts which

apps are to be launched using the context such as user location and temporal access

patterns. Their system then provides effective application prelaunching that reduces per-

ceived delay. Parate et al. [62] propose another prediction algorithm to reduce the launch

delay. Compared to the previous work, their approach does not require prior training or
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additional sensor context. However, mis-predictions of the proposed approaches will lead

to significant memory and energy overhead. We address the problem of slow application

launch by analyzing possible reasons of the slowdowns in the granularity of read and

write I/Os. With this knowledge, we design a system that improves the response time by

prioritizing reads over writes. This has a positive impact on the application performance

beyond delay.

Smartphone Power Consumption. Works have been done to analyze the power

consumption of network traffic in smartphones. Gupta et al. [51] measure the WiFi power

consumption by various network activities in smartphones. Balasubramanian et al. [40]

measure the power consumption characteristics of GSM, WiFi, and 3G. In this work, we

focus on the power consumption analysis of the storage system in smartphones. Several

works measure the power consumption of different components in the smartphone. Car-

roll et al. [45] presents a detailed power consumption analysis of different smartphone

subsystems. However, the smartphone used is only for scientific purpose rather than

practical usage. In [59, 53], the authors measure and model the power consumption

of several hardware subsystems, including CPU, display, graphics, GPS, audio, micro-

phone, and WiFi. In contrast, our work focuses on investigating the impact of the storage

system on energy efficiency.

Linux I/O Schedulers. The default I/O scheduler since Linux kernel version 2.6 is the

Complete Fair Queuing scheduler (CFQ) [37]. This scheduler has also been adopted as

the default one in most Android smartphones, including the ones used in our experiments.

However, not optimized for smartphone environments, CFQ may cause long application

response time that is the main focus of our work. Other available I/O schedulers (Noop

and Deadline [12]) are only used for specialized workloads.

Enterprise Solutions. Flash technology has been recognized in enterprise systems.

This is mainly due to its technical merits highlighted in [36, 48], including low power con-

sumption, compact size, and fast random access. This motivated researchers to propose

I/O schedulers for flash memory based Solid State Drives in computer storage systems
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[50, 56, 57]. We instead study I/O characteristics of smartphones that require different op-

timization approaches. Our proposed solution is simple, and reduces application delays

by up to 37.8%, while still being power efficient. Other enterprise solutions focus on fair-

ness policies [63, 67]. SmartIO builds upon the default Linux I/O scheduler, and adds an

additional priority level that preserves the original priorities. Further fairness optimization

is beyond the scope of this work.
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Chapter 3

SmartStorage: Storage-aware

Smartphone Energy Savings

3.1 Introduction

Continual advancements in the technology of smartphones have become an important,

if not essential, aspect of our daily life. This is unsurprising since a single mobile device

has the ability to call and text family members, check status updates on social media

sites, access news and information on the Internet, and play a variety of games for enter-

tainment. However, a common complaint among smartphone owners is the poor battery

life. To many such users, being required to charge the smartphone after a single day of

moderate usage is unacceptable. In a 2011 market study conducted by ChangeWave [1]

concerning smartphone dislikes, 38% of the respondents listed that battery life was their

biggest complaint, with other common criticisms such as poor 4G capacity and inadequate

screen size lagging far behind. The result of such a study demonstrates the necessity for

solutions which address the issue of energy consumption in smartphone devices.

In this chapter, we investigate the direct impact of smartphone storage techniques on

total energy consumption and we answer two key research questions: How does stor-

age affect smartphone power efficiency? and How can we optimize smartphone storage
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in order to save more energy? By answering the first question, we find which and how

each storage component contributes to the total energy consumption. Different storage

techniques have different effects on application performance that results in varying power

levels. That leads to our second research question that helps us find ways on optimizing

storage approaches in order to save more energy. Answers to these research ques-

tions will help engineers come up with more sophisticated storage designs better tailored

to modern smartphones and more efficient savings, affecting as many as 1.038 billion

smartphone users around the globe (as of September 2012 [24]).

In order to answer the first research question, we evaluate smartphone power effi-

ciency at various layers of the I/O path, such as the block layer and device driver. We

provide evidence which highlights that the energy consumption of a smartphone can dif-

fer depending on storage techniques employed. Different scheduling algorithms on the

block layer or different queue lengths on the device driver impact the total energy con-

sumption differently. We find for 8 benchmarks the combinations of scheduling algorithms

and queue lengths with optimal energy savings. In order to address the second research

question, we design our SmartStorage system and implement it on the Android platform.

SmartStorage tracks smartphone's I/O pattern in run-time and matches with the bench-

mark with closest I/O pattern. After havingmatched with a benchmark, the system dynam-

ically configures an optimal storage configuration to achieve lower energy consumption.

We found a few works in the research community closely relating to ours. The work of

Kim et al. [54] presents an analysis of storage performance on Android smartphones and

external flash storage devices. Their discovery of a strong correlation between storage

and application performance degradation serves as motivation for our work. Carroll et al.

[45] measure the breakdown of energy consumption by the main hardware components

in the device. Their direct measurements of each component's current and voltage are

used to calculate power. This is done on a smartphone used for scientific purposes only,

and many experiments cannot be replicated on commercially available smartphones. We

take a different approach based on the precise analysis of the I/O activities between the
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application layer and the flash storage. Our work is also motivated by cross-layer I/O

analysis studied by the authors in [65, 69], which has not been done in smartphones. At

this stage, there has been no direct study of the correlation between storage techniques

and energy consumption within smartphone devices. We believe our work can help other

researchers realize the importance of storage and perhaps trigger more exciting solutions

to the smartphone energy consumption problem.

In summary, our contributions within this chapter are the following:

• First, we provide an experimental study on how storage techniques impact energy

consumption on smartphones.

• Second, we design and implement the SmartStorage system that tracks I/O pattern

of smartphones in run-time and dynamically configures storage parameters with

optimal energy savings.

• Third, we evaluate our solution with an Android-based smartphone on the 20 top

free applications from Android market and show that our system can save from

23% to 52% of energy. This is achieved with 2.5% energy overhead from running

SmartStorage and a difference of 3% in terms of application delay.

3.2 Background and Motivation

In this section, we introduce background and motivation of our work. Next, we explain the

measurement and methodology. Afterwards, we proceed with the measurement on the

cache, the block layer, and the device driver. Finally, we give summary of our measure-

ment results.

3.2.1 I/O Path Components

In this work we take a look at energy efficiency of various storage techniques applied

at several main components such as the cache, the block layer, and the device driver.
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Figure 3.1: Kernel Components on the I/O Path.

In particular, our focus is to investigate the impact of different storage configurations on

power level in smartphones. We illustrate the main kernel components affected by a block

device operation on the I/O path in Figure 3.1. The figure is adapted from the literature

[42].

3.2.1.1 Cache

The disk cache is a software mechanism allowing the system to keep in RAM some data

normally stored on the disk. Further accesses to that same data can be granted without

accessing the disk [42]. There are 2 classical caching policies, write-back and write-

through. Write-back is the default approach used in smartphones which in practice means

that the devices signal I/O completion to the operating system before data has hit the flash

disk. In contrast, a write-though cache performs all write operations in parallel, with data

written to the cache and the disk simultaneously. There are two mechanisms to control

caching behavior of the storage devices, forced cache flush and force unit access. In the

Android kernel, write-through is enforced by setting the true value to REQ FLUSH and

REQ FUA parameters. If we want the phone to use one of the caching policies, after

updating the parameters for the corresponding method in the kernel source code, the

kernel needs to be rebuilt and re-flashed into the phone.
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3.2.1.2 File system

There are several file system types used by smartphone vendors, each flash partition

can be formatted in a different file system type before being properly mounted to given

namespaces such as /data, /system, or /cache. Most frequently used file systems are

YAFFS2, ext2, ext3, and ext4. YAFFS2 is used, for instance, in HTC Hero or Google

Nexus One. Ext4 is employed in the most recent Android smartphones such as Google

Nexus 4 or Samsung Galaxy S4. We can get information regarding the file systems in

use by calling mount command on a rooted phone.

3.2.1.3 Block Layer

Block layer is another component on the I/O path. At this level, the main work is schedul-

ing I/O requests from above and sending them down to the device driver. The Linux

kernels on Android smartphones offer 4 scheduling algorithms: BFQ, CFQ, Deadline,

and Noop. In BFQ (Budget Fair Queuing), each process is assigned a fraction of disk

(budget) measured in number of sectors and the disk is granted to a process until the

budget expires. CFQ (Complete Fair Queuing) attempts to distribute available I/O band-

width equally among all I/O requests. The requests are placed into per-process queues

where each of the queues gets a time slice allocated. Deadline algorithm attempts to

guarantee a start time for a process. The queues are sorted by expiration time of pro-

cesses. Noop inserts incoming I/Os into a FIFO fashion queue and implements request

merging. In some Android phones, the default fixed scheduling algorithm is BFQ (Google

Nexus One), others use CFQ (Samsung Galaxy Nexus, Samsung Nexus S).

3.2.1.4 Device Driver

The device driver gets requests from the block layer, and processes them before sending

back a notification to the block layer. On the device driver, we are interested in a parameter

called queue depth that is defined as the number of pending I/O requests for storage. The
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queue depth is fixed to different values depending on vendors, usually 128 (e.g., Samsung

Galaxy Nexus or Google Nexus One).

3.2.1.5 Flash

The last level to be reached by the I/Os is the storage subsystem that contains an internal

NAND flash memory, an external SD card and a limited amount of RAM. The subsystem

contains a number of partitions depending on vendors. The partitions can be found in the

/dev/block directory.

3.2.2 Motivation

In this section, the first research question How does storage affect smartphone energy

efficiency? is addressed by discussing preliminary measurements. We list the chosen

benchmarks for our experiments and measure smartphone power level with default I/O

path parameters. Afterwards, power level affected by each layer is investigated, start-

ing with the block layer and moving further to the device driver layer. Caching policies

are discussed at the end due to lower overall impact. All results are averaged over ten

measurements with corresponding confidence intervals.

Benchmark Properties
AnTuTu [3] storage, memory, CPU, GPU
CF-Bench [6] storage, memory, CPU, Java
GLBenchmark [7] GPU
BrowserMark [5] browser, JavaScript, HTML
AndroBench [2] storage, SQLite
Quadrant [8] storage, memory, CPU, GPU
Smartbench [9] storage, memory, CPU, GPU
Vellamo [10] storage, memory, CPU, GPU, browser

Table 3.1: Benchmarks
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3.2.2.1 Benchmarks

We run 8 popular benchmarks on the Google Nexus One phone with Android platform

under different storage configurations and measure power consumption levels with the

Monsoon Power Monitor [17] (details given in Performance Evaluation). Each benchmark

tests different phone subsystems and has its specific I/O pattern. The aim is to cover as

many I/O pattern types as possible. The 8 chosen benchmarks with their properties are

listed in Table 3.1. We do not use a synthetic benchmark that simulates I/O patterns, since

we aim to use application benchmarks that reflect real Android application behavior.

3.2.2.2 Block Layer Level

The default file system, scheduling algorithm, queue depth, and caching policy for the

Google Nexus One is YAFFS2, BFQ, 128, and write-back, respectively. Each benchmark

is executed on the phone for each scheduling algorithm and the power level is mea-

sured. The parameters are fixed to the default values, including the queue depth 128

and write-back caching policy. The results are illustrated in Figure 3.2. The first observa-

tion says that for the same benchmark, different scheduling algorithms result in different

power levels. For instance, the AnTuTu (1st benchmark) average power consumption

level is 792mW with CFQ, 720mW with Deadline, 792mW with Noop, and 1080mW with

the default BFQ. This is an expected outcome due to different I/O request reordering

and merging of each scheduling algorithm [65]. Another observation is that none of the

scheduling algorithms is optimal for all benchmarks. However, it is possible to find the op-

timal scheduling algorithm(s) for each benchmark and save relatively a lot of energy. For

example, AnTuTu benchmark has the optimal power consumption with the Deadline al-

gorithm, and more than 33% of energy on average can be saved compared to the default

configuration with BFQ.
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Figure 3.2: Power for Default Configurations

3.2.2.3 Device Driver Level

To investigate impact of the device driver level on energy consumption, we run the bench-

marks with different queue depths and compare how different queue depths affect power

levels. On Google Nexus One phone, the default queue depth is 128. The power con-

sumption of this default queue depth is already illustrated in the previous Figure 3.2.

Therefore, we investigate the power levels of the depth 4 in this section and compare

with previous measurements. This way we can see the potential of howmuchmore power

efficient the system will be if we change the queue depth. Figure 3.3 shows the power

levels for the depth 4 normalized to the consumptions with depth 128. Looking at AnTuTu,

with BFQ and queue depth 4 (BFQ/4) the average power consumption is 720mW which

corresponds to 66.7% of the default BFQ/128 consumption. That means by changing the

queue depth to 4, the phone can save on average 33.3% energy. However, there are

some exceptions such as in the case of Smartbench and Vellamo (last two benchmarks)

that with smaller queue depth do not perform well and consume on average more power

than expected. These two benchmarks are not storage intensive (Table 5.1), hence, the

smaller queue causes higher overhead and as result, the higher consumption is observed.
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Figure 3.3: Power for Queue Depth 4

Benchmark Reads/s Writes/s RP Opt. Config. Saving Running Time(s)
AnTuTu 1108 1395 0.79 Deadline/4 40% 224.76
CF-Bench 104 1298 0.08 CFQ/4 27.27% 148.18
GLBenchmark 253 51 4.96 Deadline/4 27.27% 254.21
BrowserMark 185 115 1.61 CFQ/4 28.57% 278.14
AndroBench 2260 104 21.73 Noop/128 31.58% 45.1
Quadrant 301 400 0.75 BFQ/4 42.86% 129.11
Smartbench 26 2 13 BFQ/128 0 217.35
Vellamo 9 1 9 BFQ/128 0 49.82

Table 3.2: Benchmark I/O Patterns

3.2.2.4 Cache

This section attempts to find out how power level differs when using write-back and write-

through caching approaches. The phone's consumption with the default caching pol-

icy (write-back) can be again determined from Figure 3.2. Hence, here for each bench-

mark wemeasure the power levels with write-through cache (scheduling and queue depth

fixed). For easier reading, this is normalized to the power levels with the default write-

back cache. Figure 3.4 shows that write-through caching consumes on average slightly

less power. The difference is approximately 10%. This is due to limited queuing buffer

space at the disk [65]. If write-back policy is in use, under heavy load the effective queues

reach to the maximum allowable value, which is in our case 128. If the buffer queue is full,

the device driver delays additional I/O requests. Consequently, that causes the system to

slow down and consume more energy. For applications that require more reliability and

consistency, write-through cache can be of help. The price for this small improvement in

average power consumption requires rebuilding the Android kernel. For this reason, we

decide not to include cache layer modifications into our design to provide better scalability
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Figure 3.4: Power for Write-through Cache

and simpler deployment to ordinary users.

3.2.2.5 Optimal Consumption

In order to find optimal power consumption for all benchmarks with above knowledge, we

run for each benchmark all 8 possible combinations of scheduling algorithms (BFQ, CFQ,

Deadline, Noop) with queue depths (128, 4) researched. Table 5.1 shows the final combi-

nations with optimal power consumptions for each benchmark. We can see that Quadrant

consumes least power with the combination of BFQ/4, in which case it consumes 754mW

and therefore, we save almost 43% compared to the default configuration (BFQ/128).

As with many other optimizations, this significant improvement in power saving has

its trade-off that causes performance degradation. In particular, we observe worsen per-

formance of the CPU, GPU, RAM, and I/O. This degradation has to be minimal for users

to fully appreciate our proposed solution in the following section. For illustration, the per-

formance scores of AnTuTu benchmark is listed in Table 3.3 for the default parameters

(BFQ/128) and the parameters with optimal power consumption (Deadline/4). The higher

benchmark scores, the better performance of a subsystem. For instance, the CPU per-

formance score decreases from 958 to 946 after changing the default parameters to the

optimal ones. Similarly, there is a slight GPU performance decrement from 880 to 865.

This is expected due to the trade-off from the different I/O ordering and queue depth.

However, the average performance degradation is only less than 2%.
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Configuration CPU GPU RAM I/O
Default (BFQ/128) 958 880 317 270
Optimal (Deadline/4) 946 865 317 268

Table 3.3: AnTuTu Benchmark Performance Scores

3.3 SmartStorage Design

In order to address the second research question on how to optimize storage to save

energy in smartphones, we present SmartStorage. Further in this section, an architecture

is introduced and implementation details are discussed.

From previous sections, for each benchmark there exists a combination of a schedul-

ing algorithm and queue depth that is most power efficient. This information can be

reused. First, we investigate the I/O pattern of each benchmark. Next, we obtain a run-

time I/O pattern from the phone and match it to a benchmark with the most similar I/O

pattern. Finally, an optimal combination of a scheduling algorithm and queue depth is

configured. We discuss details in the following subsections.

3.3.1 System Architecture

The architecture is illustrated in Figure 3.5. It is divided into kernel space and user space.

Kernel space consists of two main modules: SmartStorage Core and Benchmark I/O

Patterns. User space includes the graphics user interface (GUI) and Tools for Advanced

Users. Following, we elaborate each module and its functionalities.

3.3.1.1 Kernel Space

SmartStorage Core. This module has three main functionalities. First, it obtains phone's

run-time I/O pattern. Next, it gets a combination of a scheduling algorithm and queue

depth with optimal power efficiency. Finally, it configures this combination in the block

layer scheduler and the device driver of corresponding flash partitions.
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Figure 3.5: SmartStorage Architecture

The phone's run-time I/O pattern is obtained via blktrace [4, 43]. Blktrace is a block

layer I/O tracing utility that provides information about request queue operations coming

into storage subsystem. Blktrace is normally available in Linux distributions but it needs

to be enabled in the Android system. Typically, the blktrace output includes a process

ID, type of an I/O such as Read or Write, its time stamp, sequence number, etc. After

gathering I/Os for a predefined time period, it calculates the run-time I/O pattern that is

later used for matching with benchmark I/O patterns. The I/O pattern consists of rates of

each I/O type per second. Note that such a pattern characterizes the I/Os of the whole

phone, including those originating from background services. Therefore, this approach is

not application-dependent.

Matching is done in the second phase after acquiring the phone's run-time I/O pattern.

The phone's pattern is matched to a benchmark with the most similar I/O pattern. Since

each benchmark has a combination of a scheduling algorithm and queue depth with op-

timal consumption, that combination is returned as a result of this phase. With power

efficiency in mind, we want a computationally inexpensive matching approach that is at

the same time precise. Having all types of I/Os coming to storage, simple intuition says

that what matters most at the end are the total number of completed reads and number of
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completed writes in a given interval. Furthermore, it is necessary to take into considera-

tion differences between characteristics of read and write I/Os. Some partitions will serve

reads better than writes or vice versa. Some partitions will be read-only, other allow both

read and write. Motivated by this, we decide to expand the simple intuition, and do the

matching based on the proportions of rates of completed reads and completed writes.

For clarity, let us define RCRate as number of reads completed per second. and

WCRate as number of writes completed per second. Further, let us define Rate Pro-

portion (RP) as RP = RCRate / WCRate. If the Rate Proportion (RP) of the phone's I/O

pattern is close to the RP of a benchmark, a match is found. We find that this simple

matching method is precise. More will be discussed in the Performance Evaluation sec-

tion. Finally, the optimal scheduling algorithm is set in the block layer scheduler and the

optimal queue depth is set in the device driver. This is done on all partitions.

Benchmark I/O Patterns. This includes a table with our benchmarks and their I/O pat-

terns. See Table 5.1. Each benchmark is paired with a combination of a scheduling

algorithm and queue depth with optimal power consumption obtained offline. The I/O pat-

tern consists of rates of a specific type of I/O per second: Number of Reads completed

per second and Number of Writes completed per second.

3.3.1.2 User Space

SmartStorage works naturally as a background service to save energy, without any need

of interaction with users. It does not require popping up GUI or the Tools for Advanced

Users. The two additional components are there only for convenience of interested users.

The screen shots of the GUI and Tools for Advanced Users are included in Figure 3.6.

We describe these two components below.

GUI. The graphic user interface provides the current status of the system. That includes

information on which scheduling algorithm and queue depth are being used. It also in-

forms of how long the system is being in use and how much energy has been saved.
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Figure 3.6: Screen shots of the GUI and Tools for Advanced Users

Tools for Advanced Users. This part is designed to serve researchers and advanced

users who can possibly contribute to further project advancements. The tools let users edit

after how long system should recalculate I/O pattern of the phone. It also allows setting

preferred scheduling algorithms and queue lengths to be considered in dynamic configu-

rations. With scalability in mind, it is possible to add new benchmarks to the Benchmark

I/O Patterns table in the future. Finally, it communicates preferences to the SmartStorage

Core in kernel space through a netlink socket [64].

3.3.2 Implementation

We implement our system on the HTC Google Nexus One smartphone with Android 2.3.7

and kernel 2.6.37.6. The implementation has 2 main parts, SmartStorage Core that is in

the kernel space and the GUI that is developed as an application. As mentioned earlier,

SmartStorage works naturally as a background service to save energy, without any need

of interaction from the users. The additional user interface is only for the convenience

of the researchers and interested users. This section highlights some of the important
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implementation details of the SmartStorage Core and the GUI.

SmartStorage Core is implemented as a kernel module. It interacts with the appli-

cation layer through a netlink socket. It sends up information regarding the current sta-

tus, including the combination of a scheduling algorithm and queue depth in use. That

scheduling algorithm is obtained by reading from a block layer scheduler. For instance,

following we obtain the algorithm in use in the /data partition (mtdblock5): cat /sys/block-

/mtdblock5/queue/scheduler. Similarly, the queue depth in use in the /data partition is

obtained from the nr requests (number of requests) parameter:

cat /sys/block/mtdblock5/queue/nr requests.

SmartStorage calculates the phone's I/O pattern periodically each minute. After hav-

ing found an optimal combination of a scheduling algorithm and queue depth via matching

the phone's I/O pattern to the benchmark I/O pattern table explained earlier, the system

enforces the use of the scheduling algorithm and queue depth found. For example, to set

CFQ for the /data partition, the scheduler file of the block device is modified on-the-fly as

follows:

echo cfq > /sys/block/mtdblock5/queue/scheduler. The queue depth of the /data parti-

tion can be changed on-the-fly to 4 by modifying its nr requests parameter:

echo 4 > /sys/block/mtdblock5/queue/nr requests.

In order to use blktrace, the support for tracing block I/O actions is enabled by changing

the menuconfig file to support tracing block I/O actions. Afterwards, the makefiles are

modified to include blktrace.

3.4 Performance Evaluation

This section evaluates the SmartStorage solution by a series of comprehensive experi-

ments and answering the following questions. The first two questions are related to energy

savings: (1) How does SmartStorage save energy with a typical use case? We address

this by comparing energy usage of the 20 most popular applications from the Android
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Market with and without SmartStorage. (2) What is the overhead of SmartStorage? We

address this by measuring overhead in energy usage of SmartStorage compared to the

case when it is not in use. The last two questions are related to performance issues: (3)

How precisely does SmartStorage match I/O patterns to storage configurations with opti-

mal energy savings? Here we show how many applications get matched with the correct

combinations. (4) Does our SmartStorage solution incur performance penalties? This is

determined using the AndroBench benchmarking tool testing throughput and I/O perfor-

mance. In addition, we run ten most popular applications and evaluate their application

delays.

3.4.1 Experiment Setup

In our experiments, we use the SmartStorage implementation in the HTC Google Nexus

One phone. To measure energy consumption, the Monsoon Power Monitor [17] is uti-

lized. We run the experiments with the top 20 free applications from the Android Market

as of August 7, 2012. See Table 3.4. The applications include #1.Gmail, #2.YouTube,

#3.Facebook, #4.Lookout Security, #5.Google Maps, #6.Twitter, #7.Tiny Flashlight + LED,

#8.Yelp, #9.Amazon MP3, #10.Tango Video Calls, #11.Temple Run, #12.WhatsApp Mes-

senger, #13.Adobe Flash Player, #14.Instagram, #15.Google Play Books, #16.Pandora

Internet Radio, #17.ColorNote Notepad Notes, #18.Amazon Mobile, #19.GO SMS Pro,

and #20.Voice Search. The Monsoon Power Monitor is configured by blocking the posi-

tive terminal on the phone's battery with electrical tape. The voltage normally supplied by

the battery is supplied by the monitor. It records voltage and current with a sample rate

of 5 kHz. During our experiments, all radio communication is disabled except for WiFi.

The screen is set to stay awake mode with constant brightness and auto-rotate screen

off. When SmartStorage is in use, it runs only in the background and its GUI is off.
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Top 20 Apps RP SmartStorage
Combination

Optimal Com-
bination

#1 App 2.6 CFQ/4 CFQ/4
#2 App 0.09 CFQ/4 CFQ/4
#3 App 0.28 CFQ/4 CFQ/4
#4 App 14.7 BFQ/128 BFQ/128
#5 App 12.29 BFQ/4 BFQ/4
#6 App 4 Deadline/4 Deadline/4
#7 App 9.09 BFQ/4 BFQ/128
#8 App 0.79 Deadline/4 Deadline/4
#9 App 0.24 CFQ/4 CFQ/4
#10 App 1.36 CFQ/4 CFQ/4
#11 App 1.27 CFQ/4 CFQ/4
#12 App 0.28 CFQ/4 CFQ/4
#13 App 2.03 CFQ/4 CFQ/4
#14 App 11.2 BFQ/128 BFQ/128
#15 App 0.02 CFQ/4 CFQ/4
#16 App 2.5 CFQ/4 CFQ/4
#17 App 0.26 CFQ/4 CFQ/4
#18 App 0 CFQ/4 CFQ/4
#19 App 0.81 Deadline/4 Deadline/4
#20 App 4.94 Deadline/4 Deadline/4

Table 3.4: The 20 Applications Used in Evaluation

3.4.2 Energy Savings

As far as energy saving is concerned, it is our priority to save as much as possible, and at

the same time, the system should not cause significant overhead. We show our results

in this subsection.

3.4.2.1 Energy Savings

In order to address howmuch energy our solution saves in a typical use case, we run each

of the 20 applications mentioned with SmartStorage in the background and compare with

the case when the application is running with the default scheduling algorithm and queue

depth (BFQ/128). A typical use case varies for applications. For instance, for Gmail,

we read 20 emails and write 10 emails; for Amazon Mobile, we search for 20 products

and read information about them; in Pandora, we listen to a channel for 30 minutes; on

YouTube we search and listen to 5 songs; on Facebook, we read and write posts, etc.
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The Android Monkey tool is utilized to allow repeating the same behavior more times with

and without SmartStorage so as to ensure fairness. The results of the total savings are

in Figure 3.7. We can observe that the energy savings vary from 23% to 52% and the

largest savings are with Pandora application (52%). The three applications with no energy

values have the optimal configuration identical to the default parameters of the phone.
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Figure 3.7: Energy Savings on Nexus One

As for validation, we also deploy our solution on the LG Google Nexus 4 smartphone

with the latest Android OS 4.2.2 (Jelly Bean), kernel 3.4, and Ext4 file system. The results

of the total savings on the Nexus 4 phone are in Figure 3.8. Gmail, YouTube, Facebook,

and other applications with the optimal scheduling algorithm CFQ have slightly less en-

ergy savings on Nexus 4. That is expected, since the Nexus 4 phone has the default

configuration CFQ/128, hence, additional savings are low.

3.4.2.2 Real-time Power Consumption

To show how SmartStorage saves energy in real-time, we conduct the following exper-

iment. We utilize the Monkey tool to use five applications (YouTube, Pandora, Google

Maps, Amazon Mobile, and Facebook) over 20 minutes (app per four minutes). This

is done two times, once with SmartStorage enabled, the other time with SmartStorage

disabled. Both times we make sure that the application cache is cleared before a new
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Figure 3.8: Energy Savings on Nexus 4

run. Monkey is run with the same seed, hence triggering the same series of events both

times. This assures we get precise results without any delay caused by inconsistent user

behavior. We use Monkey to launch YouTube and watch a video clip, the total time in-

cluding both loading and watching is four minutes. After having closed YouTube (closing

time negligible), we load Pandora and listen to a channel, again the total time is four min-

utes. Similarly, our Monkey script continues with Google Maps to find a few spots, loads

Amazon Mobile to search several products, and finally uses Facebook to check the news

feed.

The resulting power levels logged from the monitor are in Figure 3.9. Each four-minute

segment shows data of an application. We can observe that after approximately two min-

utes of use of an application, the phone's power level drops. This is an expected behavior.

Since the I/O pattern recalculation is done after each minute, and the loading time of an

application takes a while, we should be looking for significant power drop after approxi-

mately two minutes. For YouTube (minute 0-4), the first spikes load the application, then

the power reaches 2000 mW when SmartStorage is disabled. When SmartStorage is

enabled, the values drop to around 50% after two minutes of use. Pandora (minute 4-8)

has the power dropping after a little later than expected because an advertisement pops
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Figure 3.9: Real-time Power

up when SmartStorage is enabled. For Google Maps (minute 8-12), the number of high

power spikes significantly decreases after slightly more than two minutes. When using

Amazon Mobile (minute 12-16), even earlier than 14th minute, power drops to approx-

imately 50%. Finally, Facebook (minute 16-20) shows a similar behavior, power level

goes down during the 18th minute. The power levels here, however, are varying slightly

more. We attribute this to the difficulty to replicate the exact behavior on Facebook that

has more features that can affect the power levels than the other ones.

The total energy saving in this experiment is 152.3J which corresponds to 31.5% of

the total energy consumption. In theory, according to the results in Figure 3.7, if we run

each application separated, we will get 34% saving in total by averaging the savings of

all five applications. The difference of 2.5% we account to the recalculation period of one

minute that is not optimal. We discuss possible improvements of this approach later in

Future Work.

3.4.2.3 Cost

To address the energy overhead, we run the 5 applications above separatedly with Smart-

Storage enabled and measure the energy consumption. These applications are running

again with SmartStorage disabled and the measurement is repeated. Finally, the 2 con-
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sumptions are subtracted and the overhead is obtained. The average overhead is 2.6%

of energy consumption for Pandora, and 2.5% for other four applications. This is negligi-

ble considering the fact that with SmartStorage enabled we can save from 23% to 52%

of energy consumption including the cost mentioned.

3.4.3 Performance

First, we are interested in the I/O pattern matching performance. Next, we ensure that

SmartStorage incurs small performance penalties. Finally, we provide a discussion on

application delays.

3.4.3.1 I/O Pattern Matching

The results of I/O matching are presented in Table 3.4. We can see the results of the final

combinations of a scheduling algorithm and queue depth found by SmartStorage. In 19

cases out of 20, the matching method works correctly, which presents 95% accuracy. We

note that there are 8 configurations (4 scheduling algorithm choices multiplying 2 queue

length choices), each of which is the potential optimal configuration for some applications.

However, the 8 selected benchmarks only cover 5 of them. Although the current I/O

pattern matching method is precise for the 20 most popular applications we evaluate, in

future we plan to explore a machine learning based method. More is discussed in the

Future Work.

3.4.3.2 Performance Penalties

The AndroBench benchmarking tool [2] is utilized to evaluate the performance penalties

of SmartStorage, since it heavily loads storage and provides flexible workload settings.

The experiments are run on the Google Nexus One phone with 165MB of free space in the

internal storage. We run the benchmark with four different workloads: a read-dominated,

write-dominated, and a balanced workload of reads and writes of different working set
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sizes (large and small). Each workload is run for the case when SmartStorage is enabled,

and the case when it is disabled. The benchmark throughput in transactions per second

(TPS) is measured, followed by the number of disk requests completed in each second

(IOPS).

The used benchmark specifications are listed in Table 3.5. For each workload we

set the read file size, write file size, and number of transactions. We aim to have signifi-

cant difference between the read file size and the write file size for Read-dominated and

Write-dominated workloads. In our case, one size is 16 times larger than the other one.

Furthermore, we differentiate the large workload, i.e., occupying approximately 40% of

free space, and the small workload, i.e., occupying a few percentage of free space. The

number of transactions is set to a constant.

Workload Read Size Write Size Transactions
Read-dominated 32MB 2MB 300
Write-dominated 2MB 32MB 300
Balanced Large 32MB 32MB 300
Balanced Small 2MB 2MB 300

Table 3.5: Workload Parameters

Each workload is run twice, once with SmartStorage enabled and once disabled. Figure

3.10 shows the benchmark throughput in number of transactions per second for both runs.

This indicates negligible difference between the 2 cases. The throughput varies from 4%

to 6%. The biggest penalties are for the case of write-dominated workload and balanced

large workload.

The second part of Figure 3.10 illustrates the disk I/O performance for the case with

SmartStorage enabled and the case with SmartStorage disabled. The performance in

number of disk I/Os completed per second is demonstrated for all four workloads men-

tioned. Similar to the previous case, the performance penalties vary from 4% to 6%. The

biggest penalty comes with the large workload of balanced reads and writes. This is an-

other spot where the performance can possibly be improved. As in the previous case with
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Figure 3.10: SmartStorage Throughput and I/O Performance

the number of transactions per second, the large workload seems to be problematic, this

can be a key to research how to further optimize the system performance.

3.4.3.3 Application Delay

While saving energy is important, having solid performance with small application de-

lays is equally important. In order to test delays of applications running on the phone

with SmartStorage, we utilize the Android Monkey tool. Using it, we generate pseudo-

random streams of user events such as clicks, touches, or gestures, as well as a number

of system-level events. We run the experiments with the 10 most popular Android ap-

plications on the Google Nexus One smartphone with SmartStorage enabled, and the

second time with SmartStorage disabled. Each application has a predefined set of user

activities triggered through the Monkey tool. We measure the time delay for both cases,

when SmartStorage is enabled, and when it is disabled.

Monkey is a command-line tool that can send a stream of events into the phone's
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system in a random yet repeatable manner. Each series of events we specify with the

same seed value (10) in order to generate the same sequence of events. We insert a

fixed delay between events (1000 ms) and adjust percentage of different types of events.

We fix the number of events as a constant (500). The events are individually adjusted for

each application to represent a typical usage, for instance, in Gmail we read and write

an email, add a contact, change a label, etc. We run the experiments with the 10 most

popular applications from Table 3.4, once with SmartStorage enabled, the next time with

SmartStorage disabled. Each timewe output the time delay inmilliseconds and the results

are illustrated in Figure 3.11. We can see that the difference is less than 3%, thus we can

claim with confidence that the application delays caused by SmartStorage are negligible.
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Figure 3.11: Application Delay

3.5 Conclusions and Future Work

In this chapter, we presented an experimental study of how storage parameters in the

cache, device driver, and block layer affect the power levels of mobile devices running

Android. In addition, we proposed a system called SmartStorage that dynamically tunes

storage parameters to reduce energy consumption by matching the current I/O pattern to
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a known pattern that we recorded from the eight benchmarks. Finally, we validated our

dynamic tuning technique by showing that SmartStorage saved 23% to 52% of the energy

consumption by running SmartStorage in the background with selected applications from

the top 20 most popular apps in the foreground.

In this work, we noticed that the write-back policy consumes on average 10%more en-

ergy than write-through with the eight selected benchmarks. This could further increase

our energy savings. However, this knowledge was not used in our implementation be-

cause switching from write-back to write-through or vice-versa would require rebuilding

the kernel. That would be impractical for future deployment. Similarly, changing the file

system and copying data around is counterproductive but could provide additional energy

savings when considering the overall interaction with the remaining storage components

and their parameters. In the future, we will model the trade-off between energy savings

and performance degradation with write-back and write-through, and analyze how the

file system interacts with the remaining components to understand and explore additional

energy savings. In the device driver layer, we benchmarked the phone with two different

queue depths and found significant differences in energy consumption. Naturally, more

research on combining queue depths and scheduling algorithmsmay yield higher savings.

We proposed the RP metric that proved to be efficient at matching I/O patterns since

what matters most is the number of writes and reads in a time interval and not the or-

dering of them. We plan to research the following machine learning based method in the

future. In the method, each configuration is considered as a target class. We plan to

collect I/O patterns from a large number of applications and label the I/O pattern of each

application as its optimal configuration class. The optimal configurations of all applica-

tions should cover all 8 choices. With this data, we train either a supervised classification

model or an unsupervised clustering model for run-time I/O pattern matching. Our pilot

solution periodically measures the storage I/O and then matches the I/O fingerprint to

that of benchmarks for locating the optimal storage policy to save energy. If this process

happens too frequently, the cost may be unnecessarily high and the system may not be
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stable since application performance may be impacted during highly frequent storage pol-

icy transitions, which we also plan to evaluate. If such a process happens too sparsely,

we will not save much energy. Hence, we plan to monitor application events such as ap-

plication started and terminated, and use them to adapt the measurement and matching

frequency.

The conventional wisdom is that storage contributes little (approximately 30%) to the

total energy consumption [45]. Our system with dynamic storage configurations saves

from 23% to 52% of the total energy consumption. We need to emphasize that these

savings are the savings of the whole smartphone, not only of the storage subsystem itself.

We attribute this to the performance impact of storage on other phone components. We

suspect that the interesting savings are triggered by the changes in storage, and further

propagated into other components in the phone. This opens a new research question, and

that is, how storage affects the performance of different smartphone subsystems. Kim et

al. [54] already show how performance of smartphone applications is affected by storage

performance, but do not consider energy performance. Therefore, still more research is

required and we hope that our results will motivate a deeper look into this exciting area.
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Chapter 4

SmartIO: Reducing Smartphone

Application Delay through

Read/Write Isolation

4.1 Introduction

The number of smartphones used worldwide increases each year. According to Interna-

tional Data Corporation, smartphone vendors shipped a total of 918.6 million smartphones

in 2013, up 27.2% from the 722.4 million units shipped in 2012 [23]. With their increasing

use, smartphone users tend to demand better performance. Moreover, smartphone users

are increasingly using phones for work-related activities such as processing emails, read-

ing documents, etc. A study by Forrester Research [18] found that one quarter of work

devices were smartphones and tablets. Therefore, it is crucial to study application perfor-

mance in smartphones. In particular, reducing the application delay can greatly improve

user productivity. In addition, a recent analysis [72] indicates that most user interactions

with smartphones are short. Specifically, 80% of the applications are used for less than

two minutes. With such brief interactions, applications should be rapid and responsive.

However, the same study reports that many apps incur significant delays (up to 10 sec-
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onds) during launch and run-time.

Our study reveals that Android devices spend a significant portion of their CPU active

time (up to 58%) waiting for storage I/Os to complete. This negatively affects the smart-

phone's overall application performance, and results in slow response time. Therefore, in

order to improve the application performance, it is essential to investigate possible rea-

sons of such waits. This chapter addresses two key research questions towards achiev-

ing rapid application response. (1) How does disk I/O performance affect smartphone

application response time? (2) How can we improve application performance with I/O

optimization techniques?

In order to address the first research question, we study the behavior of read and

write I/Os. First, the slowdown of reads in the presence of writes is investigated. This

slowdown can be one of the main reasons causing the slow launch of applications due

to the dominance of reads while launching. Next, the difference in the slowdown of one

I/O type due to another may require better I/O scheduling and prioritizing. Therefore,

this slowdown asymmetry is researched. Finally, we look at the speedup of concurrent

I/Os over serial ones. This provides insights into what type of I/Os benefit more from

concurrency.

To address the second research question, we design and implement a system pro-

totype called SmartIO on the Android platform. SmartIO measures optimal concurrency

parameters for each type of I/O, and issues I/Os with the use of the obtained concurrency

parameters. The system reduces the application delay by applying a set of I/O optimiza-

tions. Specifically, it assigns higher priority to reads, lower priority to writes, and groups

the I/Os based on these priorities. The approach proves to have smaller performance

improvement on launch delays of applications currently running in the background (warm

launch). This is expected, since once an app is already in memory, its launch is much

faster (on average by 65% based on our experiments). Because there is little I/O traffic

going to the flash disk during warm launch, SmartIO reduces warm launch delays on av-

erage only by 6.8%. Our work focuses on reducing launch delays of applications currently
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not running in the background (cold launch).

Little work in the research community directly relates to ours. Kim et al. [55] present

an analysis of storage performance on Android smartphones and external storage de-

vices. Their discovery of a strong correlation between storage and application perfor-

mance degradation serves as motivation for our work. Yan et al. [72] propose a system

predicting application launch using context such as user location and temporal access

patterns. Their system reduces perceived delay through application prelaunching. How-

ever, the proposed system does not address the issue of slow application launch from

the root, but instead lessens its impact.

In summary, the contributions of this chapter are as follows:

• First, through a large-scale measurement study based on the data collected from

2611 devices using an app we developed, we find that Android devices spend a

significant portion of their CPU active time (up to 58%) waiting for storage I/Os to

complete. This negatively affects the smartphone's overall application performance,

and results in slow response time. Further investigation reveals that a read expe-

riences up to 626% slowdown when blocked by a concurrent write. Additionally,

the results indicate significant asymmetry in the slowdown of one I/O type due to

another. While the slowdown ratio of a read is up to 6.15, the slowdown ratio of a

write is only up to 1.6. Finally, we study the speedup of concurrent I/Os, and the

results suggest that reads benefit more from concurrency.

• Second, we design and implement a system prototype called SmartIO that shortens

the application delay by prioritizing reads over writes, and grouping them based on

assigned priorities. SmartIO issues I/Os with optimized concurrency parameters.

• Third, we evaluate our system using 40 popular applications from four groups (games,

streaming, miscellaneous, and sensing) and we show that SmartIO reduces launch

delays by up to 37.8%, and run-time delays by up to 29.6%. Moreover, SmartIO

also reduces power consumption by 6%.
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Figure 4.1: StoreBench Storage Benchmark

4.2 Measurement Study

In order to understand how disk I/O performance affects smartphone application response

time, we conduct a measurement study. First, we investigate what portion of the CPU

active time is spent in storage waiting for I/Os to complete. When the time the CPUs

spend in the storage subsystem is significant, this will negatively affect the smartphone's

overall application performance, and result in slow response time. To identify what may

be causing such waits, we learn more about I/O activities and their properties. The first

property that may be a reason of such waits is I/O slowdown, which quantifies how one I/O

type is slowed down due to presence of another. If one I/O activity (e.g., read) is slowed

down by another (e.g., write), there will be certain cases in the application life cycle that

will suffer from such slowdown (e.g., launch, since reads dominate during launch). The
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impact of such slowdown on the application delay may vary depending on its ratio. This

is studied in the slowdown asymmetry subsection. Another property to be researched

is concurrency. Depending on hardware characteristics, different devices may benefit

differently from concurrency. Therefore, in the last subsection we study the speedup of

concurrent I/Os over serial ones. Finally, we discuss the measurement results and their

implications.

4.2.1 Measurement Setup

In a small-scale study, a Samsung S5 phone with Android 4.4.2 is utilized. The phone

is normally used daily by the first author. During measurements, our Samsung S5 has

all radio communication disabled, and the screen is off. Additionally, no app is in the

foreground or background, and the cache is cleared before each measurement. To verify

small-scale key observations, we design and implement a storage benchmarking tool

called StoreBench [20] as an Android app, and make it available for free download on

Google Play [19]. StoreBench is utilized to collect data for a large-scale study.

In the large-scale study, through StoreBench we obtain data from 2611 Android de-

vices (complete list at [21]) that installed our benchmark from Google Play (97% of the

devices run Android 4.0 or higher) in the period of nine months (November, 2013 - July,

2014). StoreBench tests the I/O performance of the internal flash storage and external

SD card. Specifically, the tool measures the I/O bandwidth, response time, and CPU

active time spent waiting for disk I/Os to complete (iowait). Additionally, it measures the

launch and run-time delay of 20 popular apps. With the permission of users, results are

submitted to our online database for further analysis and performance ranking. Our app

anonymizes all data to maintain users' privacy. Note that we do not collect or derive any

data from human subjects. Instead, we only collect technical information of the devices.

Therefore, no IRB approval is required in our case. The dataset of the large-scale storage

performance study will be made available at [20]. StoreBench requires a rooted device
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with Android 3.0 or higher, and installed BusyBox [11] on the device. The app's screen-

shot is in Figure 4.1.

4.2.2 Storage Contribution

To investigate what portion of the CPU active time is spent in storage, we use the iostat

[14] shell command to output the I/O statistics of our Samsung S5 phone. The statistics

from 30 days of use include detailed numbers of reads/writes of each block device in the

flash disk. More importantly, the information includes the breakdown of the CPU active

time spent in three domains:

• iowait - the percentage of time that the CPUs were idle during which the system had

an outstanding disk I/O request, which simply means the time spent waiting for disk

I/Os to complete. This does not include the wait for network I/Os.

• user - the percentage of CPU utilization that occurred while executing at the user

level (application).

• system - the percentage of CPU utilization that occurred while executing at the sys-

tem level (kernel).

The output of iostat for each domain is illustrated in Figure 4.2(a). The results show that

a decent portion of time is spent in storage (19.4% of total active time), corresponding

to 61.6% of system level time and 39.5% of user time. The output values observed are

stable, and the standard deviation is as little as 0.1%. Note that the numbers are from

the total use of all apps through the whole time period. Hence, some more I/O intensive

apps can spend considerably longer than 19.4% waiting for disk I/Os to complete.

Since the measurements may be different from device to device, we also extract the

iowait results from our large-scale study obtained through StoreBench to verify the pat-

tern. The iowait empirical cumulative distribution function across 2611 Android devices is

plotted in Figure 4.2(b). 40 percent of the devices have iowait values between 13% and
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58%, which represents a significant portion of CPU active time. The averaged standard

deviation is 0.1%. These results are also consistent with those of the Samsung S5.

Although the statistics vary for different devices and usage patterns, it is safe to say

that CPUs in Android devices spend a significant amount of time waiting for disk I/Os.

Then a following question is, what may be the main causes of such I/O waits? To answer

this question, we study several important properties of Android I/O activities, including I/O

slowdown, slowdown asymmetry, and concurrency.

4.2.3 I/O Slowdown

In the following experiment, the goal is to understand how one I/O type is slowed down

due to another, in particular, how reads are slowed down by concurrent writes. For this

purpose, we utilize the Linux flexible I/O tester named fio [38] to issue read and write I/Os

from/to the Samsung S5 phone's internal flash disk. We port fio to Android OS, patch the

modifications to the original fio code, and cross-compile it. We make fio's binary available

for interested readers at [13].

First, we want to measure the response times of reads when they are running alone.

We start by sequentially reading a 128MB file (32768 read I/Os, each I/O size of 4KB),
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Figure 4.3: I/O Slowdown

and calculating the average response time of a read I/O as the total response time di-

vided by the number of I/Os. This is repeated for 10 runs. The average response time of

a sequential read when running alone is 0.072ms, and standard variation is 2.3%. The

choice of a 128MB file is to ensure that this workload is large enough to provide statis-

tically significant measurements but at the same time does not overwhelm the phone's

storage capacity. We use this size throughout the chapter unless otherwise stated. The

choice of the 4KB block size in our workloads is due to the fact that the default file system

(Ext4) employed in recent Android devices utilizes this block size. Therefore, only 4KB

is considered throughout this chapter, even though it has been reported that large block
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sizes can improve performance [41]. Smartphone manufacturers use this small block

size, since 4KB I/Os account for up to 65% of smartphone operations [58].

Next, we record the response times of reads in the presence of concurrent writes. We

start by sequentially reading a 128MB file and concurrently writing a 256MB file (larger

write size to assure there is concurrent write running when we read), and calculate the

average response time of a read I/O. This is repeated for 10 runs. The average response

time of a sequential read in the presence of a concurrent write is 0.445ms, and stan-

dard variation is 3.1%. The two concurrent workloads are issued via fio as two separate

processes. Buffers and caches are bypassed to obtain native properties. The above ex-

periment is repeated for random I/Os. The average response time of a random read when

running alone is 0.187ms, and standard variation is 3.3%. The average response time of

a random read in the presence of a concurrent write is 0.595ms, and standard variation is

3.7%. The results of the two experiments are illustrated in Figure 5.2(a). There are a few

observations from the figure. A sequential read experiences on average 515% slowdown

(6.15 times slowdown) and up to 626% slowdown when blocked by a concurrent write.

Similarly, a random read experiences on average 218% (3.18 times slowdown) and up to

293% slowdown when blocked by a concurrent write. This is important since it can be one

of the main sources of slow application launch, when loading data is being blocked by a

concurrent write. The root cause of the slowdowns is the flash read/write speed discrep-

ancy (reads take much faster to complete). Additionally, reads become less predictable

and the response times vary significantly over runs in the presence of a concurrent write.

Finally, we can observe that random reads are about 2.6 times slower than sequential

reads. Although there is no seek time as in conventional rotating storage, random I/Os still

suffer from processing overhead. When random I/O requests are issued, the CPUs have

to coalesce the requests, and the storage controller has to interpret and pass them down

to the correct block device, where a proper ordering is determined. Moreover, random file

operations often involve file table access, which adds additional delay.
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Figure 4.4: Response Time ECDF of 2611 Devices

4.2.4 Slowdown Asymmetry

The next property that may affect I/O performance (and iowait as a result) is slowdown

asymmetry. In the following we compare the average slowdown ratio of a read and a

write. The slowdown ratios are calculated as follows:

• ReadSlowdown = Response time of a read in the presence of a concurrent write /

Response time of a read when running alone

• WriteSlowdown = Response time of a write in the presence of a concurrent read /

Response time of a write when running alone

The Samsung S5 results for both sequential and random I/Os with standard deviations

are displayed in Figure 5.2(b). For sequential I/Os, while the slowdown ratio of a read is

6.15, the slowdown ratio of a write is only 1.13. For random I/Os, while the slowdown ratio

of a read is 3.18, the slowdown ratio of a write is only 1.6. This large asymmetry in the

slowdowns has a following reason. Writes in the flash storage take already significantly

longer than reads, hence, there is a smaller impact of the slowdown. While the response

time of a sequential write running alone is on average 0.19ms, a sequential read running

alone takes only 0.072ms. While the response time of a random write running alone is on

average 0.41ms, a random read running alone takes only 0.187ms.
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Figure 4.5: Storage Performance of Top 20 Models

To understand the trend in the large scale, we plot the response time distributions

obtained via StoreBench benchmark in Figure 4.4. In general, writes take longer than

reads, and random I/Os take longer than sequential ones. This is consistent with the

small-scale study using Samsung S5.

We also add Figure 4.5 with storage performance ranking obtained from the devices

submitted by our users. Specifically, the figure includes the total bandwidth of the top 20

devices in MB/s. If a model has more devices in the ranking, then it is represented by its

top device. An interesting observation is that a more recent model does not necessary

mean higher ranking. For instance, while Nexus 5 (2013) tops the whole chart, Nexus

6 (2014) only occupies the 3rd place. Nexus 5 manufactured by LG mainly dominates

thanks to its strong random write performance. The devices are following. 1:LG Nexus

5; 2:OnePlus One (A0001); 3:Motorola Nexus 6; 4:Bq Aquaris E10; 5:Motorola Moto

G; 6:Samsung Galaxy Note 2 (GT-N7100); 7:Sony Xperia Z Ultra (XL39h); 8:Samsung

Galaxy S3 (GT-I9300); 9:LG G2 (LG-D800); 10:Nubia Z7 Max (NX505J); 11:Sony Xperia

Z1 (C6903); 12:Samsung Galaxy Note 3 (SM-N9002); 13:Asus Nexus 7; 14:Sony Xperia

Z2 (D6503); 15:LG L70 (LG-D321); 16:Lenovo A328; 17:Hisilicon Hi3798CV100; 18:LG

Optimus F6 (LGMS500); 19:HTC One M8; 20:LG G3 (LG-D850).
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4.2.5 Concurrency

The next property that may affect I/O performance (and iowait as a result) is concurrency.

An obvious approach to speeding up the application response is to issue I/Os concurrently.

However, a large number of concurrent I/Os may overwhelm the processing capacity, and

thus cause performance degradation. Therefore, it is necessary to find a sweet spot in

concurrency to achieve maximal speedup. The last experiment's goal is to study the

speedup of the concurrent I/Os over serial ones in the Samsung S5 phone. This is done

for reads and writes separately. First, we issue two serial reads, each of size 32MB, and

record the total response time. Then we issue two concurrent reads, each of size 32MB,

and record the response time (use the larger result of the two reads if they differ). The

speedup is calculated as the ratio of the two response times (serial / concurrent). This is

repeated with four reads, eight reads, 16 reads, and 32 reads, respectively. The choice of

smaller workloads in this section (32MB) is because we issue up to 32 of such workloads

concurrently, and do not want to overwhelm the phone's storage capacity.

To see how writes benefit from concurrency, we repeat the above with writes. First,

two serial writes are issued, each of size 32MB, and the total response time is recorded.

Then we issue two concurrent writes, each of size 32MB, and record the response time

(use the larger result of the two writes if they differ). The speedup is calculated as the ratio

of the two response times. This is again repeated with four writes, eight writes, 16 writes,

and 32 writes, respectively. The speedup of concurrent I/Os over serial I/Os is illustrated

in Figure 4.6.

We obtain four concurrency parameters from the figure. The number of concurrent se-

quential reads with maximal speedup (1.45) is 2, and the number of concurrent sequential

writes with maximal speedup (1.29) is 4. The number of concurrent random reads with

maximal speedup (1.55) is 4, and the number of concurrent random writes with maximal

speedup (1.41) is 2. The speedup of reads is higher than the one of writes for both cases,

which implies that reads benefit more from concurrency. This is expected. Intuitively,
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Figure 4.6: Samsung S5 Speedup over Serial I/O

with growing processing time, the wait time also increases. Moreover, if the processing

needs exceed the processing capacity, then there is no well-defined average waiting time

because the queue can grow without bound. Since writes take longer to process than

reads, it is expected that writes would overwhelm the processing capacity sooner, and

thus benefit less from increased concurrency. In addition, different devices may bene-

fit differently from concurrency, since they may have different speedup represented by

concurrency parameters. Since these concurrency parameters may differ for various de-

vices, a solution with the maximum benefits from concurrency requires a design that is

capable of adapting to each phone's concurrency characteristics.

4.2.6 Summary

The above experiments lead to several important observations that shed light on how to

improve smartphone application performance, and we summarize them below.

First, Android devices spend a significant portion of their CPU active time waiting for

storage I/Os to complete. Specifically, 40% of the devices have iowait values between

13% and 58%. This negatively affects the smartphone's overall application performance,

and results in slow response time. Therefore, in order to improve the application perfor-
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mance, it is essential to investigate possible causes of such waits.

One of the reasons causing such waits is I/O slowdown. Our first experiment studies

slowdown of one I/O type due to presence of another, and reveals significant slowdown

of reads in the presence of writes. Specifically, a sequential read experiences on average

515% slowdown and up to 626% slowdown when blocked by a concurrent write. Similarly,

a random read experiences on average 218% and up to 293% slowdown when blocked by

a concurrent write. This significant read slowdown may negatively impact the application

performance during the life cycles when the number of reads dominates. A good example

is application launch.

Next, the impact of such slowdown on the application delay may vary depending on

the slowdown ratio of a read and a write. As demonstrated earlier, there is a significant

asymmetry in read and write I/O slowdown. Specifically, for sequential I/Os, while the

read slowdown ratio is 6.15, the write slowdown ratio is only 1.13. For random I/Os, while

the read slowdown ratio is 3.18, the write slowdown ratio is only 1.6.

Finally, the last property researched is concurrency. Our experimental study reveals

that different devices may benefit differently from concurrency. The above results also

suggest that reads benefit more from concurrency. However, in order to optimize the

application performance, we need to be able to adapt to the concurrency characteristics

of each device. Such characteristics include four concurrency parameters of the maximal

speedup: the number of concurrent sequential reads, the number of concurrent sequential

writes, the number of concurrent random reads, and the number of concurrent random

writes.

4.3 System Architecture

In order to improve the application delay performance in smartphones, we present Smar-

tIO, a system that reduces the application response time by prioritizing reads over writes,

and grouping them based on assigned priorities. SmartIO issues I/Os with optimized con-
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Figure 4.7: SmartIO

currency parameters. The architecture of SmartIO is illustrated in Figure 4.7. It is fully

located in the kernel space, and consists of two main modules: the I/O Scheduler and the

Concurrency Profiler. The I/O Scheduler encapsulates 3 submodules: I/O Priority Assign-

ment, I/O Grouping, and I/O Dispatch. We elaborate each module and its functionalities

below.

I/O Priority Assignment. Our system prototype follows the implications from the previ-

ous experimental study. First, since a read suffers a large slowdown in the presence of

a concurrent write, the goal is to allow reads to be completed before writes, and delay

writes as long as there are reads, while avoiding write starvation. In order to achieve this,

a third level of I/O priority is added into the current block layer, assigning higher priority

to reads and lower to writes. This third priority level has a lower priority than the first two

priority levels (class priority, and priority within each class) from the block layer explained

earlier in the Background section. Write starvation is avoided by applying a time slice,

which is a maximal period of time assigned to a process, and is by default 100ms as used

in the Linux scheduler time slice concept.
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Figure 4.8: Dispatch Example

I/O Grouping. The dispatch queue further groups reads and groups writes based on the

three levels of priority. Reads are ordered in front of writes, and reads are then dispatched

before writes. Due to the read/write discrepancy nature of the flash storage (reads take

much faster to complete), the read-preference reordering does not introduce amajor delay

to write I/Os.

This reordering enforced by SmartIO does not affect correctness and semantics of

write barriers. It is common knowledge that write barriers are essential for consistency of

many file systems. That is, however, maintained at the file system layer, which is above

the I/O scheduler. Therefore, requests issued to an I/O scheduler can be reordered with-

out affecting correctness. In fact, reordering is a common practice to minimize the seek

costs in mechanical disks.

I/O Dispatch. A sample dispatch is illustrated in Figure 4.8. In the current CFQ imple-
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mentation, each block device has 17 queues (ss queue) of I/O requests (8 Real-time, 8

Best Effort, and 1 Idle). The existing system selects a queue based on the priorities, takes

a request in the queue, and inserts it in the dispatch queue. The queue selection process

accounts for two priority levels: the class priority (Real-time, Best Effort, Idle), and the

priority within the class (0-7).

Our system does not change the above dispatch process but uses a third priority level

to organize the dispatch queue in favor of the read I/Os. The dispatch queue is then

divided into three sections, from the bottom up real-time, best effort, and idle requests.

Each section is organized such that reads precede writes.

Concurrency Profiler. The system uses the knowledge of the phone's four concurrency

parameters to issue the I/Os to the block device. The parameters include the optimal

number of sequential or random reads (writes) that benefit most from concurrency, as

discussed earlier in the Concurrency subsection. Based on the parameters, the system

issues the appropriate number of reads (writes) concurrently from the dispatch queue.

To achieve this, SmartIO measures the concurrency parameters during installation by

invoking the fio tool to benchmark the phone. fio issues reads and writes, and calculates

the speedup of concurrent I/Os over serial ones, as performed in the measurement study.

The concurrency parameters with optimal speedup are then used to complete the I/O

requests. This assures robustness of our system to different characteristics of the flash

storage in the phones. With the use of fio, SmartIO can adapt to different devices without

prior knowledge of their concurrency parameters.

4.4 Implementation

In this section, we elaborate implementation details of the SmartIO system. In particular,

we explain the algorithm of the scheduler's dispatch process. Next, we highlight impor-

tant implementation challenges of the SmartIO system. Specifically, we discuss the I/O
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testing tool integration in the Concurrency Profiler module. The module utilizes the tool

to obtain optimized concurrency parameters that allow SmartIO issue optimal number of

I/Os concurrently to block devices.

SmartIO. First, we discuss implementation details of our solution. We implement the

SmartIO system on the rooted Samsung S5 smartphone with Android 4.4.2 (KitKat), ker-

nel 3.10, and Ext4 file system. The phone is equipped with a 2.5 GHz quad-core Krait 400

CPU, 2 GB of RAM, and 16 GB of internal flash storage. The implementation consists of

2 main modules, the I/O Scheduler and the Concurrency Profiler, both of which are in the

kernel space.

The I/O Scheduler is implemented as a kernel patch of the default CFQ Linux sched-

uler. Users can switch to our scheduler with a simple shell command that changes the

scheduler file. For instance, the scheduler is set on all block devices on-the-fly as follows:

echo ss > /sys/block/mmcblk0/queue/scheduler. Similarly, the users can go back to the

default scheduler by:

echo cfq > /sys/block/mmcblk0/queue/scheduler.

Details of the dispatch are explained below. First, the system selects a queue from the

17 priority queues, then chooses a request in the selected queue, and inserts the request

into the dispatch queue. If the time slice of the current queue is not expired (default 100ms

as in CFQ), and the queue is not empty, the dispatch continues with the current queue.

Otherwise, it chooses a different queue based on the priorities. The time slice serves as

an ultimate mechanism to avoid starvation. When a queue q is chosen, the algorithm

dispatches a request from it. If it may dispatch, it picks a request from the queue in the

FIFO fashion, and inserts the request into the dispatch queue. The dispatch is elaborated

in Algorithm 4.4.1.

To find out if we can dispatch from a queue q,may dispatch is envoked. First, it checks

whether the queue has more I/Os in flight than allowed. If not, it allows the dispatch. If

the queue has already reached the dispatch limit, the system checks how many queues
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Algorithm 4.4.1: Dispatch(queue ∗ q)

//choose a queue
if current queue q empty or its time slice expired
then choose another queue and assign it to q

//if queue q may dispatch
if may dispatch(q)

then
{
pick a request in FIFO fashion
insert request to dispatch queue

Algorithm 4.4.2: may dispatch(queue ∗ q)

//does this q already have too many I/Os in-flight?
if (q.dispatched >= max dispatch)

then



if (busy queues > 1)

then

//we have other queues,don't allow more
//I/Os from this one
return (false)

else if (busy queues == 1)

then
{
//sole queue user, no limit
max dispatch←∞

else
{
max dispatch← quantum
//default init quantum is 8

//if we're below the current max, allow dispatch
return (q.dispatched < max dispatch)

are waiting for dispatch. In case when there is another queue waiting, the dispatch is not

allowed. If the queue is the only one, SmartIO sets no limit for it. The number of in-flight

I/Os of a queue from the Linux default settings is 8. may dispatch is elaborated in Algo-

rithm 4.4.2.

Obtaining Concurrency Parameters. As discussed earlier, based on the concurrency

parameters, SmartIO issues the appropriate number of reads (writes) concurrently from

the dispatch queue. To achieve this, SmartIO measures the concurrency parameters

during installation by invoking the fio tool to benchmark the phone. fio issues reads and

writes, and calculates the speedup of concurrent I/Os over serial ones, as performed in

the measurement study. fio [38] is a Linux I/O testing tool that directs different types of

I/Os to block devices, and returns information on the delay performance. The first step to
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get fio issue a desired workload is to write a job file. The typical contents of the job file

is a global section defining shared parameters, and one or more job sections describing

the jobs involved. For instance, the following code tests the sequential read and write

performance of the /data partition on a phone:

[ g loba l ]

d i r e c t o r y =/ data

bs=4k

s ize=32m

[ sequent ia l−read ]

rw=read

numjobs=1

s tonewa l l

[ sequent ia l−wr i t e ]

rw=w r i t e

numjobs=1

s tonewa l l

Stonewall allows a job to start only when a previous one has finished. Without the two

stonewalls above, the tool issues two jobs running concurrently. The directory defines

the destination for the workload, bs stands for block size, and size defines the size of the

workload to be issued.

To integrate fio in SmartIO, we patch the fio code with Android compiling adjustment,

and cross-compile it to get its binary. We make the binary and job files available at [13].

The binary then is imported into the Concurrency Profiler module, and in run-time trans-

ferred to the /data partition directory in the internal flash disk.
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Figure 4.9: Iowait Before and After

4.5 Performance Evaluation

This section evaluates SmartIO, and answers the following questions. (1) How does

SmartIO reduce iowait? We output iostat values of five smartphones with SmartIO. (2)

How does SmartIO improve the benchmark performance? We address this by investi-

gating the I/O slowdown and asymmetry of the synthetic benchmarks. The experiments

are conducted with SmartIO disabled, and enabled. Additionally, SmartIO is compared

with other existing I/O schedulers. (3) How does SmartIO improve the application perfor-

mance? This is addressed by recording the launch and run-time delay of the 40 popular

apps from Google Play with and without SmartIO. In addition, we conduct an experiment

on the Facebook application to determine the user-perceived performance improvement

of our solution.
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4.5.1 Iowait

As in the measurement study, we utilize the iostat [14] shell command to output the I/O

statistics of five devices: Samsung S5, Samsung S4, Nexus 5, Nexus 4, and Motorola

RAZRMaxx. The devices are normally used daily by the authors, and are running Android

4.4, 4.3, 4.4, 4.2, and 4.0, respectively. The statistics from the use of SmartIO within

30 days and the use of CFQ within 30 days are illustrated in Figure 4.9. The results

indicate a significant iowait reduction on Samsung S5 (74.2%) and Nexus 4 (73.2%).

These numbers highly depend on the individual I/O traffic resulted from usage patterns of

each smartphone user. In particular, Samsung S5 and Nexus 4 have both the total amount

of blocks read almost an order of magnitude larger than the amount of blocks written

(10,122,938 vs. 1,017,864; 250,005,743 vs. 26,042,265; each block of 4KB). This read

intensive traffic benefits from our solution that favors reads over writes, which contributes

to the reduction of the CPU time the devices spend waiting for I/Os to complete. The other

devices also show a decent reduction in iowait: 65.1% (Samsung S4), RAZR (50.5%), and

Nexus 5 (47%).

4.5.2 Benchmark Performance

To determine SmartIO's performance gain and cost, we investigate the I/O slowdown and

asymmetry of benchmarks. Since the proposed system is designed to serve in favor of

reads over writes, writes are expected to perform slightly worse. We run two benchmarks,

first with SmartIO disabled, and the second time with SmartIO enabled. When SmartIO is

disabled, the default I/O scheduler (CFQ) is utilized. The first benchmark consists of an

1-reader (128MB) and an 1-writer (128MB) process. The second benchmark consists of

a 4-reader (4 x 128MB) and a 4-writer (4 x 128MB) process. We consider both sequential

and random I/Os. First, the experiment is done on the Samsung S5 phone. The I/Os are

issued by the fio tool.
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Figure 4.10: I/O Slowdown

Gain vs. Cost.

The I/O slowdown of the 1-reader and 1-writer with standard deviations is illustrated in

Figure 4.10(a), where SR=sequential read, SW=sequential write, RR=random read, and

RW=random write. For sequential I/Os, the read slowdown improves from 6.15 (CFQ)

to 1.72 (SmartIO). Since our system delays writes in favor of reads, it is important to

make sure that writes do not suffer a large performance degradation. As observed, this

read performance improvement comes with only little cost due to the read/write discrep-

ancy nature of the flash storage (reads take much faster to complete). Specifically, the

write slowdown ratio worsens from 1.13 to 1.51. Similar behavior is observed for the ran-

dom I/Os. While the read slowdown ratio improves significantly from 3.18 to 1.97, the

write slowdown worsens slightly from 1.6 to 1.83. However, the random reads achieve

smaller performance gain than the sequential ones. This is consistent with the results

from the Measurement Study (Section 5.2), which show the random reads having lower

slowdowns in the presence of the concurrent writes, hence, the benefit from the SmartIO

read-preference scheduling is smaller.

The I/O slowdown of the 4-reader and 4-writer is illustrated in Figure 4.10(b). For
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sequential I/Os, the read slowdown ratio improves dramatically from 28.03 to 5.12. This

large performance gain comes from the read-preference of SmartIO, together with the

speedup from improved concurrency. The write slowdown ratio worsens from 4.21 to

6.12, which is the cost of SmartIO's lower write's priority. The random read slowdown

improves from 19.22 to 8.75, while the write slowdown worsens from 8.01 to 9.32. Again,

the random I/Os benefit from SmartIO slightly less than the sequential I/Os, which agrees

with the theory.

Adaptation to Different Phones. As for validation, we also deploy our solution on other

phones. First, we look at the Motorola Razr smartphone with the Android OS 4.0 (ICS),

kernel 3.0, Ext4 file system, and duo-core. The Razr's default I/O scheduler is also CFQ,

and its four concurrency parameters with maximal speedup found by SmartIO are: 2

concurrent seq. reads, 2 concurrent seq. writes (different from Samsung S5), 2 concur-

rent random reads (different from Samsung S5), and 2 concurrent random writes. The

I/O slowdown of the 1-reader and 1-writer is illustrated in Figure 4.10(c). The I/O slow-

down of the 4-reader and 4-writer is illustrated in Figure 4.10(d). Both figures are plotted

with standard deviations. The 1-reader and 1-writer shows a similar behavior as on the

Samsung S5 phone. The 4-reader and 4-writer indicates even larger read performance

improvement compared to the Samsung S5 phone. The sequential read slowdown ratio

improves from 59.4 to 4.98, while its write slowdown only worsens from 7.92 to 8.41. The

random I/Os also show great improvement, the read slowdown improves from 31.12 to

9.5, while the write worsens from 8.01 to 9.08. This large performance boost is due to

higher gains from concurrency, and demonstrates that SmartIO with its concurrency pa-

rameters measurement can adapt to different flash characteristics. The Samsung S5's

smaller performance gain is due to the fact that the phone is more recent, and its four

cores already offer great baseline performance. While the Razr's duo-core architecture

shows even larger read performance improvement due to the lower baseline performance

of the smaller number of cores. For comparison, we also display further results on the rest
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of the devices: Nexus 5 in Figure 4.10(e)(f), Samsung S4 in Figure 4.10(g)(h), and Nexus

4 in Figure 4.10(i)(j). They all demonstrate significant reductions in the read slowdown,

while the write slowdown only worsens little. From these three devices, Samsung S4 has

the largest read slowdown reduction (7.6 times in (h)), while Nexus 5 has the largest write

slowdown increment (1.77 times in (f)). In summary, the above benchmarking experi-

ments show different performance gains for a diverse set of devices. This is reasonable,

since each device is equipped with different hardware components, and hence different

results are expected. However, the experiments also confirm that SmartIO is able to adapt

to different phones.

4.5.3 Scheduler Comparison

This section aims to compare SmartIO with other existing I/O schedulers: Complete Fair

Queuing (CFQ), Deadline, and Noop. These are the only three schedulers available on re-

cent Android devices. CFQ attempts to distribute available I/O bandwidth equally among

all I/O requests. The requests are placed into per-process queues where each of the

queues gets a time slice allocated. Further details on CFQ are explained earlier in the

Background section. Deadline algorithm attempts to guarantee a start time for a process.

The queues are sorted by expiration time of processes. Noop inserts incoming I/Os into

a FIFO fashion queue and implements request merging.

To compare the schedulers, we utilize fio to issue mixed workloads of both reads

and writes to the Samsung S5 phone's internal flash disk, and measure the time delay

that takes to complete the workloads (response time). This is repeated on all mentioned

schedulers, and the comparison is done for both sequential and random I/Os.

Sequential I/O. For each scheduler we issue a 128MB mixed workload with 10% of se-

quential reads (90% of sequential writes), and record the response time. Next, we issue a
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Figure 4.11: Scheduler Comparison

128MB mixed workload with 20% of reads (80% of writes), and record the response time.

We continue issuing a workload with 30% reads, 40% reads, etc. Until the workload with

100% reads. The block size is set to 4KB, the queue depth to 128, and the cache is

cleared after each measurement.

The resulting response times are plotted in Figure 4.11 (solid lines). In general, for all

four schedulers, with the increased percentage of reads, the response time decreases.

For instance, with a workload consisting 10% reads, the response time for SmartIO is 9

seconds, CFQ 16 seconds, Deadline 28 seconds, and Noop 30 seconds. With 50% of

reads, the response time is faster, SmartIO needs 3 seconds, CFQ 8 seconds, Deadline

20 seconds, and Noop 22 seconds. This is consistent with our measurement study, since

reads are faster to complete, and less writes also means smaller I/O slowdown. For most

workloads, SmartIO provides the fastest response time, while the current I/O scheduler

in Samsung S5 (CFQ) is second best. Deadline and Noop perform poorly, and one beats

another depending on the workload. Consequently, by changing the scheduler from the

default CFQ to the proposed SmartIO, we achieve on average 42% faster response times

(max of 64%).

Random I/O. The above experiment is reiterated for random I/Os. The resulting response
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times are plotted in Figure 4.11 (dashed lines). Again, it is safe to say that with the in-

creased percentage of reads, the response time decreases for all schedulers. This is con-

sistent with our experimental study, since reads are faster to complete, and less writes

also means smaller I/O slowdown. For all random I/O workloads, SmartIO has fastest

response times. As a result, by changing the scheduler from the default CFQ to the pro-

posed SmartIO, we may achieve on average 49% faster response times (max of 66%).

Compared to sequential I/Os, random I/Os take longer to complete. This is also consis-

tent with our findings in the measurement study, which identifies that random activities

generally take longer to complete.

4.5.4 Application Performance

To address the third question on how SmartIO improves the application performance, we

measure the launch and run-time delay of 40 popular apps (10 games, 10 streaming,

10 miscellaneous, and 10 sensing) from Google Play, with and without SmartIO. Among

others, the miscellaneous group also includes two file processing applications (File Com-

mander and File Manager) and two write-intensive applications (ZArchiver and RAR for

Android). During the experiment, our Samsung S5 has all radio communication disabled

except for WiFi that is necessary to provide stable Internet connections required on most

apps. The screen is set to stay-awake mode with constant brightness, and the screen

auto-rotation is disabled. Only one app runs at a time, and no other app is in the back-

ground. This is to achieve a fair comparison between the two cases: with SmartIO, and

without SmartIO. The cache is cleared before each measurement in order to evaluate real

performance improvement caused by SmartIO.

Launch Delay. The Android Monkey tool [16] is utilized to trigger the launch process of

each app. The application launch delay starts when the launch process is triggered, and

ends when the process completes. The launch delay includes three components. We
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use the time command [22] to output the three time components: the time taken by the

app in the user mode (user), the time taken by the app in the kernel mode (system), and

the time the app spends waiting for the disk and network I/Os to complete (totalIO). The

storage I/O delay is obtained by dividing the total number of I/Os completed (kBread +

kBwrtn) over the total rate of I/Os completed (kBreadRate + kBwrtnRate) in a flash block

device. The network I/O delay is then calculated as the total I/O delay (totalIO) subtracted

by the storage I/O delay (storageIOdelay).

Formally,

storageIOdelay =
kBread+ kBwrtn

kBreadRate+ kBwrtnRate
, (4.1)

where kBread is the amount of data read from a flash block device, kBwrtn is the amount

of data written to a flash block device, kBreadRate is the data rate read per second from

a flash block device, and kBwrtnRate is the data rate written per second to a flash block

device. All four variables are obtained from the output of the iostat Linux command.

networkIOdelay = totalIO − storageIOdelay, (4.2)

where totalIO is the time an app spends waiting for both disk and network I/Os to complete.

The variable is obtained from the time command during application launch.

The cold launch delay is a launch delay required to launch an application not cur-

rently running in the background. Such application also has its cache cleared before

each measurement. The cold launch delay of the 40 apps with and without SmartIO is

illustrated in Figure 4.12(a). The figure includes 10 games (1-5, 21-25), 10 streaming

apps (6-10, 26-30), 10 miscellaneous apps (11-15, 31-35), and 10 sensing apps (16-

20, 36-40). Applications running with SmartIO are denoted with a star (*). The figure is

plotted with standard deviations. The applications are following. 1:Angry Birds; 2:GTA;
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Figure 4.12: Launch and Run-time Delay

3:Need for Speed; 4:Temple Run; 5:The Simpsons; 6:CNN; 7:Nightly News; 8:ABC

News; 9:YouTube; 10:Pandora; 11:Facebook; 12:Twitter; 13:Gmail; 14:Google Maps;

15:ZArchiver; 16:AccelerometerM.; 17:Gyroscope Log; 18:Proximity Sensor; 19:Compass;

20:Barometer; 21:2048 Puzzle; 22:Pet Rescue Saga; 23:Pou; 24:Solitaire; 25:Words;

26:CT 24; 27:Live Extra; 28:VEVO; 29:VOYO.cz; 30:WATCHABC; 31:Instagram; 32:File

Commander; 33:RAR for Android; 34:Dropbox; 35:File Manager; 36:Physics Toolbox;

37:Sensor Kinetics; 38:Android Sensor Box; 39:Sensor Music Player; 40:Sensor Mouse.

The reduction in cold launch delays with SmartIO ranges from 6.3% (Accelerometer

Monitor) to 37.8% (The Simpsons) as compared to delays without SmartIO. The cold

launch delay with SmartIO enabled for all the 40 apps is on average 20.5% faster than

with SmartIO disabled. These results are expected. The app launch is I/O intensive, and

includes a lot of read activities. The average number of reads observed for the 40 apps is

5 times higher than writes. Some apps even go to the extremes, for instance, the Temple

Run game has reads exceeding writes by 58 times. Therefore, the read-preference nature

of SmartIO contributes to reducing disk I/O delay during the launch. Specifically, the disk

I/O delay portion itself is reduced on average by 69%. Slight difference in the user and

system time of several apps suggests that SmartIO also affects other time components.
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We reserve further investigation for future work.

The warm launch delay is a launch delay required to launch an application currently

running in the background. The cache of such application is not cleared before the mea-

surement. The warm launch delay of the 40 apps with and without SmartIO is illustrated in

Figure 4.12(b). The absolute values of warm launch delays are on average 65% smaller

than those of cold launch delays. This is reasonable, since once an app is already in

memory, its launch is much faster. In addition, since there is little I/O traffic going to the

flash disk (81% less than during cold launch), the reduction in delays for all 40 apps with

SmartIO is on average only 6.8%. The disk I/O delay portion itself is reduced on average

by 13%.

Run-time Delay. In order to test delays of apps running on the phone with SmartIO,

we utilize again the Android Monkey tool to generate streams of 500 user events such

as clicks, touches, or gestures. The run-time delay is defined as the time needed to

complete the 500 user events in a running app. We run the experiments with the same

40 Android apps mentioned previously. Each app has a predefined set of user activities

triggered through the Monkey tool. The run-time delay for both cases is measured with the

time command, once with SmartIO enabled, and once with SmartIO disabled. Monkey

is a command-line tool that can send a stream of events into the phone's system in a

repeatable manner. We apply a constant seed value (10) to generate the same sequence

of events. The events are individually adjusted for each app to represent a typical usage,

for instance, in Gmail we read and write an email, add a contact, change a label, etc.

The run-time delay of the 40 apps with and without SmartIO is illustrated in Fig-

ure 4.12(c). The figure is plotted with standard deviations. The reduction in run-time delay

with SmartIO ranges from 2% (Pandora) to 29.6% (Angry Birds) as compared to run-time

delay without SmartIO. The run-time delay with SmartIO enabled for all the 40 apps is on

average 16.9% smaller than with SmartIO disabled. Clearly, the run-time delays do not

benefit from using SmartIO as much as the application launch. This is reasonable, since
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Figure 4.13: Power Consumption

the application launch is more I/O intensive than the application run-time. For the 40 apps,

the average number of I/Os during launch is 2 times higher than during run-time. While

the run-time delay of the games with SmartIO is on average 23% smaller, the stream-

ing apps have on average only 4% smaller run-time delay. This is expected, since the

games have decent disk I/O activity during the run-time, whereas the streaming apps are

mainly network-bounded. For example, 56% of Angry Birds's run-time delay stems from

disk I/Os, and the disk I/O delay portion itself is reduced by 49%. While 64.7% of CNN's

run-time delay originates from network I/Os, and the disk I/O delay portion itself is only

reduced by 8%. Finally, the average gains of the sensing and miscellaneous category are

18% and 20%, respectively. The improvement in the disk I/O portion of the time spent

during run-time is on average by 54%.

Power Consumption.

While improving the application performance is important, having solid power effi-

ciency is equally important. To measure power consumption, the Monsoon Power Monitor

[17] is utilized. Each of the 40 apps is run with SmartIO disabled, and then enabled. The

Android Monkey tool triggers the launch process of each app, and then generates the

same stream of 500 user events as previously. The results with standard deviations are
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presented in Figure 4.13. The average power consumption with SmartIO enabled is lower

than the consumption with SmartIO disabled by 6%. Hence, our solution does not have

energy overhead, and even contributes to lower power levels. We attribute this to the

read-preference approach of the system that essentially allows shorter jobs to be com-

pleted first, which contributes to smaller application delay and consequently also lower

power consumption.

4.5.5 User-Perceived Performance: Facebook

In this subsection we conduct an experiment on the Facebook application to determine

the user-perceived performance improvement of our solution. Since the delays in Fig-

ure 4.12 are obtained in the OS layer, the values are precise but significantly smaller than

if obtained in the application layer. In order to acquire measurements in the application

layer, we may use a stop watch, which is however inaccurate. Instead, we choose to

slightly modify the Facebook source code1 to record timestamps of several performance

parameters. Specifically, we focus on three metrics that are critical to Facebook users:

cold launch, warm launch, and timeline loading. A short demo of a modified Facebook

version is available at [15]. The app uses test accounts and automates 150 measure-

ments per metric without necessity of any user interaction. The experiment is conducted

on the five phones listed above.

Cold Launch. Cold launch in Facebook is defined as the time required to complete load-

ing all components of the start activity and rendering of the News Feed. All cache data

is cleared except the login information. The ultimate goal of Facebook Inc. for the follow-

ing years is to have cold launch of less than 5 seconds on devices released in 2012 or

newer, and less than 10 seconds on older devices. The results in Figure 4.14(a) show that

cold launch on our oldest device RAZR (2012) takes 9.9 seconds with CFQ and 6.2 sec-

onds with SmartIO. The newest phone Samsung S5 (2014) spends 3.7 seconds on cold
1The author interned with Facebook Inc.
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Figure 4.14: User-Perceived Performance of Facebook

launch with CFQ, and 2.3 seconds with SmartIO. Finally, cold launch with CFQ on Nexus

5 (2013), Nexus 4 (2012), and Samsung S4 (2013) requires 4 seconds, 9.5 seconds, and

7.8 seconds, respectively. While with SmartIO, the three devices need 2.5 seconds, 6

seconds, and 5.1 seconds, respectively. Since the shortest human perceivable delay is

100ms [44], we can conclude that SmartIO can contribute significantly to reducing the

user-perceivable cold launch delay.

Warm Launch. Warm launch is defined similarly as cold launch, except the cache is not

cleared before each measurement. Figure 4.14(b) indicates that RAZR has the most no-

ticeable reduction in the delay. Specifically, warm launch with CFQ takes 5.6 seconds,

while with SmartIO it takes 3.5 seconds. Nexus 4's warm launch delay is reduced from
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4.1 seconds to 2.6 seconds. Samsung S4 shows a reduction from 3.8 seconds to 2.4

seconds. Finally, the newest devices Samsung S5 and Nexus 5 get their delays reduced

from 1.6 second to 1.1 second, and from 2 seconds to 1.3 second, respectively.

Timeline Loading. Timeline is a user profile page. Its loading is defined as the time

required to complete loading and rendering of all components in the profile activity, where

the origin activity is the News Feed. This can be seen as switching from the News Feed

to the Timeline page. The results in Figure 4.14(c) show less noticeable reductions in the

delay. This is reasonable, since this timeline loading corresponds to run-time delays in

Figure 4.12, where the I/O traffic is usually less intensive. RAZR and Samsung S4 show

most significant delay reductions: from 2.6 seconds to 1.8 second, and from 2.3 seconds

to 1.7 second, respectively.

4.6 Discussion and Future Work

Launch and run-time delays are critical to user experience, since one launches and runs

apps repeatedly throughout the day. Therefore, we focus on launch and run-time delays.

However, in future work we plan to evaluate the impact of other stages of the life cycle

on application performance such as install, update, switch, and uninstall, and quantify

their effects on everyday phone usage. We intend to extend this study by researching

how other common usage patterns are impacted. For instance, taking photos, recording

movies, messaging, calling, email sync (recently studied in [70]), etc.

As discussed earlier, one of the main reasons causing longer launch delay is the disk

I/O performance, specifically read I/O performance. This is due to the read-intensive

nature of application launch. The average number of reads observed during launch on

the 40 popular apps in our experiment is five times higher than writes. Other factors may

also play a role in the high variation of launch delays. In particular, the launch delay also

depends on the app's physical location, i.e., whether on the internal flash or external SD
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card. According to our analysis, the application size is not a big contributor to the launch

delay. While the three largest apps Angry Birds (42.4MB), The Simpsons (41.7MB), and

Temple Run 2 (36.7MB) have the launch delay around 0.65s, the smallest app Proximity

Sensor (0.02MB) has the fifth largest launch delay (0.8s). Finally, we plan to analyze the

impact of network I/O based on existing results [71, 39, 46, 47, 52, 66, 73].

Our work only focuses on reducing the application delay with respect to the internal

flash storage. It may be also interesting to study how different applications use SD cards.

Kim et al. [55] already performed a series of benchmarking experiments on SD cards

from multiple speed classes. However, it will be useful to go beyond benchmarking and

investigate I/O access patterns on these devices. This especially can benefit multimedia

applications that store data on the external storage.

The major overhead of SmartIO is the additional delay in writes because it is designed

to serve in favor of reads. As demonstrated in the evaluation, the write slowdown ratio

worsens from 1.13 to 1.51 for sequential I/Os, while for random I/Os it worsens from 1.6

to 1.83. In another experiment, we install the 40 apps researched, and the results reveal

that writes are on average 4.7% slower with SmartIO. However, at the same time, many

other processes in the background may benefit from SmartIO. Based on our large-scale

study, there are on average 255 processes running on each device at any point of time,

from which 98 have some I/O activity and generate a workload. These processes are

expected to have faster response time with SmartIO.

Our system keeps most of the dispatch process from the current Linux I/O scheduler

unchanged. In particular, it only adds a third priority level to organize the dispatch queue

in favor of reads. This third priority level preserves the original Linux scheduler design

because it has a lower priority than the first two priority levels from the block layer. There-

fore, the fairness between processes is still maintained, and a read from a process with

lower priority may not incur unfair performance penalty on a service process with higher

priority.

Finally, the observations made in our measurement study are based on data obtained
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in the Samsung S5 phone and 2611 Android devices through StoreBench. I/O slowdown

and concurrency measurements were excluded from StoreBench, since these tests take

too long (around 1 hour) to complete, and would discourage users from using this bench-

mark tool.
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Chapter 5

iRAM: Sensing Memory Needs of

My Smartphone

5.1 Introduction

With smartphone penetration now reaching a total of nearly 1.3 billion units shipped in

2014 [35], the world of apps is also seeing a rise in popularity. According to a new report

[33], mobile consumers download more apps than ever before, with the average number

of apps owned by a smartphone user now at 41, a rise of 28 percent from the 32 apps

owned on average last year. Apps are thought to make our life easier, doing things such

as streamlining our calendars [29] and grocery lists [26], offering entertainment while we

are stuck in line [25], and making it easy to collaborate with co-workers [27]. In a re-

cent study [31], when consumers were asked if they had encountered a problem (app

crashes, freezes, errors, or extremely slow launch) accessing a mobile app within the

last six months, 56 percent said yes. Among those who have experienced a problem, 62

percent reported a crash, freeze or error; 47 percent experienced slow launch; and 40

percent reported an app that would not launch.

We believe that many such performance issues are due to little available memory

and its inefficient utilization. Our study reveals that after having launched five regular
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applications (Facebook, Instagram, G+, Angry Birds, and YouTube), the amount of free

memory left is just around 4 percent. The low free memory level stays throughout the

experiment, and does not recover to significantly larger values. This negatively affects

the smartphone's overall application performance, and ultimately results in slow response

times and crashes. In addition, many applications do not respect heap thresholds, and go

far above their allowed heap usage, which also contributes to more erroneous behavior.

Users quickly notice apps that are slow or likely to break (whether because of downtime,

crashes, etc.), and this impairs both usage and brand perception. Users expect a mobile

app to be fast and responsive; if it is not, it will get poor reviews, low ratings and low

adoption numbers. While 79 percent of consumers would retry a mobile app only once or

twice if it failed to work the first time, only 16 percent would give it more than two attempts

[31]. Poor mobile app experience is likely to discourage users from using an app again.

This chapter addresses two key research questions towards achieving better applica-

tion performance. (1) How does memory affect smartphone application performance? (2)

How can we improve application performance with memory optimization techniques? In

order to address the first research question, we study memory usage of several groups

of applications. In particular, we identify the amount of memory available before and af-

ter their launch. Little available memory may result in delayed I/O operations or frequent

communication with much slower flash disks, which essentially causes slow application

response. Insufficient memory may even prevent an app from launching. Next, we inves-

tigate heap usage of applications. High heap usage of games and other rich multimedia

apps may increase crash rates and likelihood of erroneous behaviors. To address the

second research question, we design and implement a system prototype called iRAM on

the Android platform. iRAM efficiently maximizes free memory levels, cleans low-priority

processes, and maintains optimal heap size limits. The system learns which apps are

of high priority for a particular user, and keeps them in the main memory. The launch of

such apps is then much faster, since it corresponds to warm launch. iRAM also applies

a prediction model to predict heap usage of a set of apps, and dynamically adjusts the
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heap size based on predicted values. With this set of simple optimizations, iRAM reduces

application delays and decreases likelihood of erroneous behaviors.

Little work in the research community directly relates to ours. Yan et al. [72] propose

a system predicting application launch using context such as user location and temporal

access patterns. Their system reduces perceived delay through application prelaunch-

ing. Our proposed solution efficiently maximizes free memory levels, cleans low-priority

processes, and maintains optimal heap size limits. The system keeps high priority pro-

cesses in the main memory. Hence, there is no complex prelaunching involved as in the

previous work. Nguyen et al. [61] study the impact of flash storage on smartphone ap-

plication performance. The authors design a system that improves the response time by

prioritizing reads over writes. Our work does not study internal or external flash storage

devices, but instead focuses on smartphone's memory component that is also referred to

as dynamic random-access memory (DRAM).

In summary, the contributions of this chapter are as follows:

• First, through a measurement study we find that facilitating warm launch of just

five applications is extremely expensive, using up to 36 percent of memory. The

resulting little memory left can be one of the main reasons causing slow applica-

tion response due to delayed I/O operations or frequent communication with much

slower flash disks. Therefore, in order to improve the application performance, we

investigate how each application consumes the memory. Our heap usage study of

20 popular applications indicates that rich multimedia applications have high heap

usage and go above allowed boundaries. This mainly applies to games that require

up to 5.63 times more heap than guaranteed by the system, and may cause crashes

and erroneous behaviors. Finally, further investigation reveals that limited heapmay

not only cause an app to crash, but may even prevent an app from launching. While

on Samsung S4, all five games fail to launch until the heap size of 64MB, on Nexus

4, all five games fail to launch until the heap size of 128MB. Therefore, the heap
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size directly affects success or failure of application launch.

• Second, we design and implement iRAM, a system that maintains optimal heap

size limits to avoid crashes, efficiently maximizes free memory levels, and cleans

low-priority processes to reduce application delays.

• Third, our evaluation on memory hungry applications indicates that iRAM reduces

application crashes by up to 14 percent. In addition, the results confirm that iRAM

increases free memory levels by up to 4.8 times. The evaluation using 40 popular

applications from four groups (games, streaming, miscellaneous, and sensing) also

shows that iRAM reduces launch delays by up to 78.2 percent. This performance

gain comes with 3.5 percent of CPU overhead and 0.9 percent of power overhead.

5.2 Measurement Study

In order to understand howmemory affects smartphone application performance, we con-

duct a measurement study. First, we study memory usage of several regular applications.

In particular, we measure the amount of memory available before and after their launch.

Little available memory can be one of themain reasons causing slow application response

due to delayed I/O operations or frequent communication with much slower flash disks.

Next, we investigate heap usage of applications. High heap usage of games and other rich

multimedia apps may increase crash rates and likelihood of erroneous behaviors. Then

we look further into how the heap size affects success or failure of application launch. Fi-

nally, we discuss the measurement results and their implications. In our study, we utilize

two devices: Samsung S4 (2GB RAM, 128MB heap size) with Android 4.3 and Nexus

4 (1GB RAM, 64MB heap size) with Android 4.2. The phones are normally used daily

by the authors. During experiments, the devices have all radio communication disabled

except for WiFi that is necessary to provide stable Internet connection required on most
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Figure 5.1: Free Memory

apps. The screen is set to stay-awake mode with constant brightness, and the screen

auto-rotation is disabled. The cache is cleared before each measurement.

5.2.1 Free Memory

In this experiment, we studymemory usage of five popular applications: Facebook, YouTube,

CNN, Angry Birds, and Temple Run. In particular, we launch the five apps every ten min-

utes and issue 100 user events via Android Monkey [16], which corresponds to using an

app for a few seconds. Then we close each app with the Home button keyevent, assur-

ing that an app does not get killed and stays in the background. We record free memory

levels within one hour. To facilitate the measurement, we implement a shell script with

the free [30] command to output free memory levels of the devices.

The free memory levels during this experiment are illustrated in Figure 5.1. The results

indicate that from the beginning both devices have only less than half of memory available,

since the Android OS already consumes a large portion. When the apps are launched

the first time, the memory level drops significantly. This is expected, since the first launch

corresponds to cold launch. Specifically, Nexus 4 has afterwards only three percent of

memory left, while Samsung S4 eight percent left. When the apps are relaunched after 10

minutes, the levels drop again but not dramatically, which is because the apps are already

in the background (warm launch). However, facilitating this warm launch is extremely

expensive, using up 36 percent of memory on Samsung S4 and 23 percent on Nexus 4.

Notice also that Nexus 4 has mostly lower memory values throughout the measurement
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due to its smaller total RAM capacity. This also causes Nexus 4 to reach a memory

threshold triggering garbage collection, which is represented as spikes in the figure. The

above results reveal that simple usage of only five regular applications can already use

up a significant amount of memory. To understand how each application consumes the

memory, we study heap usage of several groups of popular applications in the following

subsection.

5.2.2 Heap Usage

This experiment investigates heap usage of applications. To obtain a deeper understand-

ing, we look into the heap behavior of 20 applications from four diverse groups: games

(Angry Birds, Grand Theft Auto, Need for Speed, Temple Run, The Simpsons), streaming

(CNN, Nightly News, ABC News, YouTube, Pandora), miscellaneous (Facebook, Twitter,

Gmail, Maps, AccuWeather), and sensing apps (Accelerometer Monitor, Gyroscope Log,

Proximity Sensor, Compass, Barometer Monitor). Each application is launched and run

for a minute and gets issued a set of predefined user events via Android Monkey. Ev-

ery time an app is running, there are no other apps in the background. To facilitate the
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measurement, we implement a shell script with the dumpsys meminfo [28] command to

output the heap usage of the apps.

The results of the experiment are displayed in Figure 5.2. There are several key ob-

servations. Due to rich multimedia content, games in Figure 5.2 (a) use up much more

heap than the heap size allowed by the OS. For instance, the Simpsons game reaches a

maximum of 360MB, while the heap allowed is only 128MB on Samsung S4 (2.81 times

difference), and 64MB on Nexus 4 (5.63 times difference), respectively. To make the fig-

ure less complex, we only display the larger heap size. The Android design allows apps

to grow heap usage above the default heap size threshold, but such oversized usage

does not have any performance guarantee, and apps may be killed unexpectedly by the

system during run-time. This happens during the experiment with Need for Speed, and

the app crashes unexpectedly at the fourth second, causing a sudden drop in heap us-

age. The app is subsequently relaunched at the sixth second to continue the experiment.

The streaming apps in Figure 5.2 (b) overall use up less heap than games, but still go

above the threshold, especially CNN and ABC News with their rich user interface. The

miscellaneous apps in Figure 5.2 (c) indicate a varying heap usage. Facebook has high

heap usage due to its aggressive caching policy and advanced multimedia support (five

posts ahead, auto video play, images pre-loading, etc.). Maps go over the heap thresh-

old when a route across the whole U.S. is loaded. While Gmail, mainly text oriented, is

always far below the threshold. Finally, the sensing apps with their simple user interface

use little heap, and are the least memory hungry. The main takeaways of this subsection

are following. Rich multimedia applications may have high heap usage and go above

allowed boundaries. This mainly applies to games that require up to 5.63 times more

heap than guaranteed by the system, and may cause crashes and erroneous behaviors.

Small amount of available memory may even prevent an application from launching. This

is studied in the next subsection.
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5.2.3 Application Launch

In the following experiment, we look further into how the heap size affects success or

failure of application launch. We focus on games, since as seen previously they have the

highest heap usage. The Android Monkey tool is utilized to trigger the launch process of

each app ten times. We use setprop dalvik.vm.heapsize command to change the heap

size from 16MB to 256MB, and record whether launch is successful or not.

Heap App Samsung S4 Nexus 4
16MB AB 10x fail /10 trials 10x fail /10 trials
32MB AB 10x fail /10 trials 10x fail /10 trials
64MB AB 10x fail /10 trials 10x fail /10 trials
128MB AB 10x success /10 trials 10x fail /10 trials
256MB AB 10x success /10 trials 10x success /10 trials
16MB GTA 10x fail /10 trials 10x fail /10 trials
32MB GTA 10x fail /10 trials 10x fail /10 trials
64MB GTA 10x fail /10 trials 10x fail /10 trials
128MB GTA 10x success /10 trials 10x fail /10 trials
256MB GTA 10x success /10 trials 10x success /10 trials
16MB NFS 10x fail /10 trials 10x fail /10 trials
32MB NFS 10x fail /10 trials 10x fail /10 trials
64MB NFS 10x fail /10 trials 10x fail /10 trials
128MB NFS 10x success /10 trials 10x fail /10 trials
256MB NFS 10x success /10 trials 10x success /10 trials
16MB TR 10x fail /10 trials 10x fail /10 trials
32MB TR 10x fail /10 trials 10x fail /10 trials
64MB TR 10x fail /10 trials 10x fail /10 trials
128MB TR 10x success /10 trials 10x fail /10 trials
256MB TR 10x success /10 trials 10x success /10 trials
16MB TS 10x fail /10 trials 10x fail /10 trials
32MB TS 10x fail /10 trials 10x fail /10 trials
64MB TS 10x fail /10 trials 10x fail /10 trials
128MB TS 10x success /10 trials 10x fail /10 trials
256MB TS 10x success /10 trials 10x success /10 trials

Table 5.1: Application Launch

The results are displayed in Table 5.1. AB: Angry Birds; GTA: Grand Theft Auto; NFS:

Need for Speed; TR: Temple Run; TS:The Simpsons. For Samsung S4, all five games

fail to launch until the heap size of 64MB. This means that with limited heap, the system
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implicitly does not allow application launch. Note that we launch apps via Android Monkey,

which is a software approach. If a user launches an application explicitly with a touch on

an icon, the launch in most cases will be triggered (and may succeed), but the application

will likely crash or show an erratic behavior during run-time. Starting from 128MB heap,

the application launch of all five games is successful. For Nexus 4, all five games fail

to launch until the heap size of 128MB. The two devices behave differently, since they

have different memory capacities and heap sizes. The above results reveal that limited

heap may not only cause an app to crash, but may even prevent an app from launching.

Current state-of-the-art [61, 72, 62] focuses on reducing application delays, while in this

study we have observed even more critical issues that need to be addressed, and we

summarize them in the subsection below.

5.2.4 Summary

The above experiments lead to several important observations that shed light on how

to improve smartphone application performance, and we summarize them below. First,

facilitating warm launch of just five applications is extremely expensive, using up to 36

percent of memory. The resulting little memory left can be one of themain reasons causing

slow application response due to delayed I/O operations or frequent communication with

much slower flash disks. Therefore, in order to improve the application performance, it

is essential to understand how each application consumes the memory. Our heap usage

study of 20 popular applications indicates that rich multimedia applications have high heap

usage and go above allowed boundaries. This mainly applies to games that require up

to 5.63 times more heap than guaranteed by the system, and may cause crashes and

erroneous behaviors. Finally, further investigation reveals that limited heap may not only

cause an app to crash, but may even prevent an app from launching. While on Samsung

S4, all five games fail to launch until the heap size of 64MB, on Nexus 4, all five games fail

to launch until the heap size of 128MB. Therefore, the heap size directly affects success
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Figure 5.3: Kernel Components and iRAM

Figure 5.4: iRAM Architecture

or failure of application launch.

5.3 System Architecture Overview

In order to improve application performance in smartphones through memory optimiza-

tions, we need to address the above challenges. Of the top priority is the finding that rich

multimedia applications have high heap usage and are likely to crash. Next, users can-

not tolerate slow application response caused by little available memory. Therefore, we

present iRAM, a system that maintains optimal heap size limits to avoid crashes, efficiently

maximizes free memory levels, and cleans low-priority processes to reduce application

delays. iRAM and main kernel components on the I/O path are displayed in Figure 5.3.
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The architecture of iRAM is illustrated in Figure 5.4. It is fully located in the kernel space,

and consists of several key modules: the HeapManager, the Priority Manager, the Sched-

uler, the Config module, and the Context Aggregator. We elaborate each module and its

functionality below. iRAM's complete source code is available for download on our GitHub

page1.

Heap Manager. Our system prototype follows the implications from the previous exper-

imental study. Since high heap usage of games and other rich multimedia applications

may cause crashes and erroneous behaviors, the Heap Manager dynamically configures

global heap thresholds such that they are always higher than application heap require-

ments. To achieve this, we employ an autoregression model with exogenous inputs (ARX)

to predict future heap usage, and then dynamically update the global heap size to avoid

crashes. Specifically, we combine past data from the same run and historical data from

previous runs together to predict future heap usage with the use of the ARX model. The

prediction of future heap usage using past heap usage forms the autoregressive portion

of the model, while the historical heap usage data serves as exogenous inputs. Finally,

based on the predicted heap usage, we dynamically adjust the global heap size threshold

to avoid crashes.

Priority Manager. The Priority Manager module efficiently maximizes free memory lev-

els, and cleans low-priority processes to reduce application delays. In particular, the

Priority Manager finds candidate processes to be killed based on Android's importance

hierarchy, from the lowest to the highest importance. Next, if there are any high priority

user processes among the candidate processes, they are filtered out. Finally, the pro-

cesses left in the candidate list are killed. Motivated by [62], we obtain high priority user

processes through a simple prediction method. Assuming the next application to be used

by the user has the highest user priority, we apply prediction by partial matching (PPM).

Therefore, predicting next app based on previous usage pattern corresponds to predicting

next letter based on probability distribution occurrence of previous letters. iRAM predicts
1https://github.com/dunguk/iRAM

85



9 next applications and places them in the Whitelist. If a candidate process to be killed is

also listed in the Whitelist, such process is filtered out and is not killed.

Scheduler. The Scheduler triggers Priority Manager and memory cleaning if the free

memory level is below a threshold defined in the Config module. The Scheduler checks

this memory level each time period, which is also configurable in the Config module. By

default, we set the period to be 20 seconds when the device screen is on, and 60 seconds

when the screen is off. The rationale behind this is the assumption that when it is off, there

are not many user activities, and hence no frequent cleaning is required. While when the

screen is on, the user is actively using the device, and likely many memory operations

are going on.

Config Module. Config includes several global parameters. AGGRESSION LEVEL de-

fines how aggressively the system should proceed during memory cleaning. There are

three levels, roughly 1 includes all background processes, 2 includes background pro-

cesses and system caches, 3 includes background processes and foreground processes

and system caches. Details are discussed in the Priority Manager Design section. Finally,

MIN MEM is a memory threshold below which the system should proceed with cleaning,

and its default value is set to be 60 percent, implying that a relatively high free memory

level is required.

Context Aggregator. Context Aggregator collects information about the user and device.

Such information is, for example, whether the device is being used or in the sleep mode,

how long the device is being used or how long the screen is off. The context information

is utilized by the Scheduler module to manage memory cleaning process.

5.4 Heap Manager Design

In this section, we elaborate the Heap Manager's system design previously introduced in

System Architecture Overview (Section 5.3). As observed before, games and other rich

multimedia applications may crash during launch due to their high heap usage. To avoid
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Figure 5.5: Angry Birds' Heap Usage

such erroneous behaviors, the Heap Manager dynamically configures global heap thresh-

olds such that they are always higher than application heap requirements. To achieve this,

we apply an autoregression model with exogenous inputs (ARX) to predict future heap

usage, and then dynamically update the global heap size to avoid crashes.

5.4.1 Heap Usage Prediction with ARX

To predict future heap usage, a simple approach is applying past data, which refers to

the heap usage data obtained from the moment an app is launched till the current time

stamp. The accuracy of such method is based on high autocorrelation between the pre-

dicted heap usage and past heap usage. If predicted and past heap usage data are highly

correlated, then this method can achieve satisfiable prediction result. Figure 5.5 displays

three measurements of Angry Birds' application launch. The figure indicates that after

10 seconds, heap usage remains relatively stable. During this stable heap period, if we

use past stable heap usage data to predict future usage, the prediction accuracy will be

high. However, heap usage increases rapidly at the beginning of the application launch.

Therefore, if we only predict heap usage based on past data obtained during launch, the

predicted value will be lower than the real heap usage. Hence, setting the global heap size

threshold based on the predicted value may lead to an application crash, since the real

heap usage will exceed the threshold. Another method to predict heap usage is based

on historical data, which refers to heap usage traces collected in the past. Figure 5.5

indicates that the launch curves from different measurements are similar at the beginning
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(approx. first 10 seconds). The correlation coefficients between the first and second, sec-

ond and third, third and first measurements in the first 10 seconds are 0.907, 0.892, and

0.987, respectively. However, once the app runs stably, heap usage from different mea-

surements shows about 20MB difference. Therefore, after the app runs stably, prediction

only based on historical data will not be accurate.

Based on the above observations, we combine past data from the same run and his-

torical data from previous runs together to predict future heap usage with the use of the

ARXmodel. The prediction of future heap usage using past heap usage forms the autore-

gressive portion of the model, while the historical heap usage data serves as exogenous

inputs:

y (t) =

p∑
i=1

aiy (t− i) +

q−1∑
j=0

bju (t− j) + e (t) , (5.1)

where t indexes time, y (t) denotes the heap usage at time t, u (t) represents historical

heap usage at time t, ai and bj are coefficients, and e (t) is a sequence of independent

random variables. The objective of the model is to provide timely prediction of future heap

usage. In order to do this, we have to estimate the coefficients, ai, bj . In addition, the

model orders p and q are also unknown and have to be estimated. Parameters ai and aj

can be estimated using the least-squares method. For orders p and q, in our experiment,

we vary p from 0 to 3 and q from 0 to 4 in Equation 5.1 to obtain the optimal values of p and

q for prediction. Intuitively, this answers the question of how much of past and historical

heap usage data should be used to predict heap usage in the future. Within the ranges

examined, p = 0 or q = 0 represent models where there is no past data or historical data.

Also, if p = 0 and q = 1, we have a linear regression between current heap usage and

historical heap usage. If q = 0, we have standard autoregression model (AR).

5.4.2 ARX Parameters

Based on the ARX model in Equation 5.1, we adopt K-fold cross-validation approach to

compute the optimal combination of p and q. In a typical K-fold cross-validation scheme,
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Figure 5.6: Heap Usage Prediction

one dataset is equally divided into K subsets. At each step of the scheme, one subset is

selected as a test set, while other subsets function as a training set in order to estimate

the model parameters. In the experiment, we collect eleven one-minute-long heap usage

traces for each app as the dataset in K-fold cross-validation scheme. Heap usage pre-

diction in the ARX model depends both on past heap usage and historical heap usage.

Therefore, we randomly select one trace as a historical trace, and combine it with any

other trace into one sample. This way the dataset is divided into K subsets, where each

subset contains two traces, one current running and one historical trace.

By studying the launch curves of all applications, we find a common property that

it takes three seconds for apps to use up the default heap size (128MB). This means

the default heap size helps avoiding crashes during the first three seconds, but does

not help avoiding crashes afterwards. Therefore, we can apply the default heap size

for the first three seconds, and use the ARX model to predict heap usage for the time

period after those three seconds. Notice that y (t) is computed based on past data,

y (t− 1) , · · · , y (t− p), and historical data, u (t) , · · · , u (t− q + 1). Therefore, the first

data value that can be predicted is y (max (p+ 1, q)). As we use the ARX model after

three seconds, the first prediction time max (p+ 1, q) should be less than or equal to four
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seconds. Therefore, the data range for p is 0, 1, 2, 3, and q is 0, 1, 2, 3, 4.

Considering the above constraints, our K-fold validation testing procedure is as fol-

lows. For each app and for each (p, q) pair from p = 0, 1, 2, 3 and q = 0, 1, 2, 3, 4, repeat

the following steps:

1. Divide the dataset into K subsets {S1, S2, . . . , SK}.

2. For each Sk, k = 1, . . . ,K, compute the parameters ai and bj using all the other subsets

with the least squares methods. Based on the estimated model parameters and associated

prediction model in Equation 5.1, predict the heap usage value of each member of Sk.

3. Compare the predicted heap usage result with the real heap usage data using the root

mean-squared error (RMSE):

ε =

√
1

T

∑
t

(
y(t)predicted − y(t)real

)2

(5.2)

We choose K = 10. Using the above 10-fold cross-validation, we compute the root

mean-squared error for all the apps under different (p, q) pairs. The (p, q) pair that gives

the smallest RMSE is selected as the optimal model orders. Table 5.2 shows the RMSE for

Angry Birds. The table indicates that the ARX model achieves the smallest RMSE under

p = 2 and q = 1. This means that to predict heap usage for Angry Birds at time t, two heap

usage data values at time (t− 1) and (t− 2), and one historical heap usage data value at

time t are the most effective data points in prediction. We also observe that when using

past heap usage data alone (q = 0) or using historical heap usage data alone (p = 0), the

RMSE values are relatively high (larger than 7.6MB and 8.4MB in corresponding cases).

When past and historical data are combined together (p 6= 0, q 6= 0), we get lower RMSE

values. This indicates that both past heap usage data and historical heap usage data are

useful in prediction.

5.4.3 Global Heap Threshold

Based on the predicted heap usage, we update the global heap size threshold as follows:

y(t)global = y(t)predicted + α · ε, (5.3)
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q=0 q=1 q=2 q=3 q=4
p =0 null 11.07 9.49 8.50 8.45
p =1 7.68 5.97 6.16 6.29 5.98
p =2 7.63 5.95 6.15 6.38 6.07
p =3 7.63 6.17 6.26 6.33 6.14

Table 5.2: Angry Birds' RMSE

where y(t)global is the global heap size we need to set, y(t)predicted is the predicted

heap usage, α is a constant, and ε is root mean-squared error. We vary α from 0 to

5 to compute the global heap threshold, and compute the percentage of time that the

threshold is larger than real heap usage under different α. When α is set to 0, 1, 2, 3, 4,

we get the following numbers: 45.47%, 81.14%, 96.05%, 98.39%. The larger the α is,

the larger the heap threshold, and the lower probability the app crashes. However, if the

heap threshold is set to be a very large value, the system may need to distribute a large

amount of memory to an app. In our system, we select α as 2. In this case, the real heap

usage does not exceed the global heap threshold for 96% of time. To dynamically adjust

the heap size, we utilize Android command setprop dalvik.vm.heapsize.

We plot heap usage prediction for Angry Birds in Figure 5.6(a) (p = 2 and q = 1). The

figure confirms that the Predicted Usage curve and Real Usage curve are in proximity with

the maximum error of 29.20MB and RMSE of 5.33MB. The global heap threshold (Heap

Size) is set equal to the default threshold provided by the device manufacturer (128MB)

for the first three seconds. Then the threshold is updated by Equation 5.3. The figure

indicates that real usage data only exceeds the heap size at the time stamp of the 49th

second by 18.55MB, which demonstrates the effectiveness of the Heap Manager module.

We also display the results for a sample streaming app (CNN) in Figure 5.6(b), a miscel-

laneous app (Facebook) in Figure 5.6(c), and a sensing app (Accelerometer Monitor) in

Figure 5.6(d), with RMSE values of 5.47MB, 5.34MB, and 0.48MB, respectively. This

confirms that our heap prediction methodology allows efficient heap utilization by setting

the heap size reasonably close to its real usage.
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5.5 Priority Manager Design

In this section, we elaborate the Priority Manager's system design previously introduced

in Section 5.3. Our Measurement Study (Section 5.2) leads to several important obser-

vations that shed light on how to reduce smartphone application delay. First, facilitating

warm launch of just five applications is extremely memory expensive. Little free memory

can be one of the main reasons causing slow application response due to delayed I/O op-

erations or frequent communication with much slower flash disks. Moreover, insufficient

memory may even prevent an app from launching. Therefore, we employ the Priority

Manager module that efficiently maximizes free memory levels, and cleans low-priority

processes to reduce application delays. In particular, the Priority Manager finds candi-

date processes to be killed based on Android's importance hierarchy, from the lowest to

the highest importance. Next, if there are any high priority user processes among the

candidate processes, they are filtered out. Finally, the processes left in the candidate list

are killed.

Processes with the lowest importance are obtained based on Android's importance

hierarchy. Since its documentation [34] is incomplete, we discuss below to provide a

full picture. There are eight levels, and the following list presents the different types of

processes in order of importance (from the highest to lowest).

1. System: the main system process, of the top priority

2. Persistent: lower-level priority system processes supporting drivers and manufacturers' ser-

vices (e.g., android.nfc, qualcomm.wfd.service)

3. Foreground: processes hosting an activity or a service that the user is interacting with (e.g.,

com.facebook.katana)

4. Visible: processes hosting an activity or a service bound to a foreground activity (e.g.,

google.process.location, android.bluetooth)

5. Perceptible: processes with active notifications (e.g., android.input-method.latin)
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6. Service: processes started with the startService() method and do not fall into either of the

two higher categories (e.g., android.process.media, android.gms.wearable)

7. Background: processes holding an activity that is not currently visible to the user; most apps

running previously by the user become background processes

8. Empty: processes not holding any active application components

Based on the AGGRESSION LEVEL, iRAM selects processes to kill from the lowest to

highest importance. If it equals 1, iRAM populates the candidate list with Empty and Back-

ground processes. If it equals 2, iRAM populates the candidate list with Empty processes,

Background processes, and system caches. If it equals 3, iRAM populates the candidate

list with Empty, Background, Service, Perceptible, Visible, Foreground processes, and

system caches.

Next, if there are any high priority user processes among the candidate processes,

they are filtered out. We define high priority user processes as applications that have

the highest probability of being used next by the user. Motivated by [62], we obtain high

priority user processes through app prediction by partial matching, a variant of an existing

text compression method called PPM [49]. PPM generates a probability distribution for

the prediction of the next character in a sequence. Consider the alphabet of lower case

English characters and the input sequence ``abracadabra''. Assume that each character

corresponds to an application used by the user. For each character in this string, PPM

needs to create a probability distribution representing how likely the character is to occur.

However, the only information it has to work with is the record of previous characters in

the sequence. For the first character in the sequence, there is no prior information about

what character is likely to occur, so assigning a uniform distribution is the optimal strategy.

For the second character in the sequence, 'a' can be assigned a slightly higher probability

because it has been observed once in the input history.

Consider the task of predicting the next character after the sequence ``abracadabra''.

One way to go about this prediction is to find the longest match in the input history which
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matches the most recent input. The most recent input is the character furthest to the

right and the oldest input is the character furthest to the left. In this case, the longest

match is ``abra'' which occurs in the first and eighth positions. The string ``dabra'' is a

longer context from the most recent input, but it does not match any other position in the

input history. Based on the longest match, a good prediction for the next character in the

sequence is simply the character immediately after the match in the input history. In this

case, after the string ``abra'' was the character 'c' in the fifth position. Hence, 'c' is a good

prediction for the next character.

Therefore, predicting next app based on previous usage pattern corresponds to pre-

dicting next letter based on probability distribution occurrence of previous letters. Since

we want to predict at each moment nine next applications to be used by the user, we

want to know nine next characters instead of one next character. The choice of nine apps

will be explained in the evaluation. Our modified code to [62] is also available on our

previously mentioned GitHub account. As proven by the previous work, this prediction

approach outperforms all previous solutions that also incorporate user context such as

location and time.

5.6 Performance Evaluation

This section evaluates iRAM, and answers the following questions. (1) How does iRAM

contribute to reducing erroneous application behaviors? We address this by performing a

crash rate test on memory hungry applications. (2) How does iRAM improve application

performance? This is addressed by evaluating how free memory levels are improved by

iRAM, and how well high priority applications are predicted. We also record the launch

delay of 40 popular apps fromGoogle Play with and without iRAM. In addition, we conduct

an experiment on the Facebook application to determine the user-perceived performance

improvement of our solution. (3) Does iRAM incur any performance penalties or cost?

This is determined by evaluating CPU and power overhead.
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Run; TS: The Simpsons; AB: Angry Birds; GTA: Grand
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Figure 5.7: Crash Rate and Free Memory

The evaluation utilizes the same devices as in the measurement study: Samsung S4

(2GB RAM) with Android 4.3 and Nexus 4 (1GB RAM) with Android 4.2. When neces-

sary, we discuss results of both devices, otherwise Samsung S4 is the main phone. As

mentioned, the phones are normally used daily by the authors. During experiments, the

devices have all radio communication disabled except for WiFi that is necessary to pro-

vide stable Internet connection required on most apps. The screen is set to stay-awake

mode with constant brightness, and the screen auto-rotation is disabled. The cache is

cleared before each measurement.
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(a) NFS (b) TR (c) TS

Figure 5.8: Crash Behaviors

5.6.1 Crash Rate

Our Measurement Study of 20 popular applications indicates that rich multimedia ap-

plications have high heap usage and go above allowed boundaries, which may cause

crashes and erroneous behaviors. Therefore, in this section we investigate how iRAM

contributes to reducing erroneous behaviors of the five games (Need for Speed, Temple

Run, The Simpsons, Angry Birds, and Grand Theft Auto). Specifically, we launch each

game every ten minutes, and record crash statistics, with and without iRAM. Each time

we launch a game, there are four common apps in the background (Facebook, YouTube,

Accelerometer Monitor, and Heads Up), while the game being launched is not currently

in the background. This is to create typical memory pressure on the device. Having four

apps in the background is reasonable, since current Android OS allows users to have up

to 17 background apps. Each game is launched 50 times throughout 500 minutes.

The experiment has several interesting findings. First, the crashes of the applications

have varying behaviors, as illustrated in Figure 5.8. (a) Need for Speed app displaying

error message ``Unfortunately, NFS Most Wanted has stopped!''; (b) Temple Run app

displaying its logo and a black screen; (c) The Simpsons app displaying a black screen.
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Need for Speed displays an error message indicating the app has stopped. While Temple

Run crashes by showing its logo and a black screen, The Simpsons game displays a

completely black screen. Finally, Angry Birds and Grand Theft Auto freeze on their launch

screen. For the sake of space, we display the first three cases. All these crash behaviors

are unacceptable, and impair both usage and brand perception. Users expect a mobile

app to be fast and responsive, but most of all, users expect an app to work.

Next, Figure 5.7 (a) illustrates the amount of crashes over 50 runs for each application.

Without iRAM, Temple Run has seven crashes over 50 runs, corresponding to 14 percent

crash rate. Compared to other games, Temple Run has the highest heap usage during

the first two seconds of its launch, which explains this result. The Simpsons game has six

crashes, and Need for Speed four crashes. These two games have the steepest growth

of heap usage, and hence the high crash rates are not surprising. Finally, Angry Birds

and Grand Theft Auto have the lowest crash rate. Both games have mild heap usage at

the beginning, and their maximal values are much smaller than those of others. Note that

with iRAM, there are no crashes recorded. This is credited to the fact that iRAM predicts

future heap usage, and then dynamically updates the global heap size thresholds such

that they are always higher than application heap requirements.

Is the crash rate of up to 14 percent of the state-of-the-art significant? We think it is.

Bad application performance means losing users. Users will not tolerate a problematic

mobile app, and will abandon it after only one or two failed attempts. According to a recent

study [31], 79 percent of users would retry a mobile app only once or twice if it failed to

work the first time. In addition, dissatisfied users are driven to competitive apps and will

spread unfavorable reviews in person and online. If dissatisfied with the performance of

a mobile app, 48 percent of users would be less likely to use the app again.

So what are the main reasons causing app crashes? There are no statistics cover-

ing applications across the board, but based on error submissions from Facebook's user

base, 62 percent of app crashes are due to OutOfMemory errors, while others are due to

various system instability (CPU, GPU, network, storage, etc.). The results are based on
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1.385 billion Facebook's mobile monthly active users across all mobile platforms (Android,

iOS, Windows Mobile, etc.). According to our analysis, most OutOfMemory errors are

caused by bad programming habits of application developers. iRAM can minimize con-

sequences of poor memory management, but only developers can eliminate root causes

of app crashes. To avoid memory leaks, developers may follow this simple guidance:

1. Strictly apply pairs based on owner lifecycle

• onResume -> onPause

• onCreate -> onDestroy

• onAttachToWindow -> onDetachFromWindow

2. Use only what is needed

• plan standard memory usage, and specify in the app's manifest if higher usage is

expected

• monitor usage (use tools such as dumpsys, littleeye, Omura, etc.)

5.6.2 Free Memory

In this experiment, we study memory usage of the five popular applications used in the

Measurement Study: Facebook, YouTube, CNN, Angry Birds, and Temple Run. In par-

ticular, we launch the five apps every ten minutes and issue 100 user events via Android

Monkey [16], which corresponds to using an app for a few seconds. Then we close each

app with the Home button keyevent, assuring that an app does not get killed and stays in

the background. We record free memory levels within one hour. This is measured both

on Samsung S4 and Nexus 4, with and without iRAM.

The free memory levels during this experiment are illustrated in Figure 5.7 (b). The

results indicate that without iRAM, Samsung S4 has an average of 15.1 percent of free

memory, and an average of 57.1 percent with iRAM (3.8 times more). Nexus 4 has an

average of 7.5 percent of free memory without iRAM, and 35.9 percent of free memory
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Figure 5.9: Prediction Accuracy

with iRAM (4.8 times more). This large amount of memory on both devices is made avail-

able thanks to the Priority Manager that periodically finds candidate processes to be killed

based on Android's importance hierarchy, from the lowest to the highest importance. How-

ever, if there are any high priority user processes among the candidate processes, they

are filtered out and hence not killed. High priority user processes are obtained through a

prediction method, and we will find out in the following subsection howwell such prediction

works.

5.6.3 High Priority Processes Selection

Motivated by [62], we obtain high priority user processes through a simple prediction

method elaborated in Section 5.5. Assuming the next application to be used by the user

has the highest user priority, we apply prediction by partial matching (PPM). Therefore,

predicting next app based on previous usage pattern corresponds to predicting next letter

based on probability distribution occurrence of previous letters. iRAM predicts 9 next

applications and places them in the Whitelist. If a candidate process to be killed is also

listed in the Whitelist, such process is filtered out and is not killed.

We run the prediction on a dataset from real-world iPhone usage of 34 students [68]

in the period of one year. The trace with applications run by users includes entries with

user IDs, names of applications, and time stamps. The prediction accuracy results are

displayed in Figure 5.9. As seen, the more applications in the Whitelist, the higher likeli-

hood it includes an app to be used next. In other words, the more apps in the Whitelist,

the better the prediction. However, the accuracy growth slows down significantly when
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close to 5-6 apps, and there are almost no changes when close to 9-10 apps. Since we

aim for high accuracy, but also not having too many apps to potentially pollute memory,

nine applications seem reasonable. That is also what iRAM applies. Therefore, an app

to be used next by the user exists in the Whitelist with the probability of 91 percent.

Since iRAM has 91 percent of prediction accuracy, in order to evaluate launch delay

of an application, we can assume the app is in the Whitelist. This is discussed in the

following subsection.

5.6.4 Launch Delay

To address the second question on how iRAM improves application performance, we

measure launch delay of 40 popular apps (10 games, 10 streaming, 10 miscellaneous,

and 10 sensing) from Google Play, with and without iRAM. In order to evaluate application

launch with iRAM, we insert each tested app in the Whitelist. During the experiment, only

one app runs at a time. This is to achieve a fair comparison between the two cases: with

iRAM, and without iRAM.

The Android Monkey tool [16] is utilized to trigger the launch process of each app.

The application launch delay starts when the launch process is triggered, and ends when

the process completes. The launch delay includes three components. We use the time

command [22] to output the three time components: the time taken by the app in the user

mode (user), the time taken by the app in the kernel mode (system), and the time the app

spends waiting for the disk and network I/Os to complete (totalIO). The storage I/O delay

is obtained by dividing the total number of I/Os completed (kBread + kBwrtn) over the total

rate of I/Os completed (kBreadRate + kBwrtnRate) in a flash block device. The network

I/O delay is then calculated as the total I/O delay (totalIO) subtracted by the storage I/O

delay (diskIOdelay).

Formally,

diskIOdelay =
kBread+ kBwrtn

kBreadRate+ kBwrtnRate
, (5.4)
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Figure 5.10: Launch Delay

where kBread is the amount of data read from a flash block device, kBwrtn is the amount

of data written to a flash block device, kBreadRate is the data rate read per second from

a flash block device, and kBwrtnRate is the data rate written per second to a flash block

device. All four variables are obtained from the output of the iostat Linux command.

networkIOdelay = totalIO − diskIOdelay, (5.5)

where totalIO is the time an app spends waiting for both disk and network I/Os to complete.

The variable is obtained from the time command during application launch.

The launch delay of the 40 apps with and without iRAM is illustrated in Figure 5.10.

The figure includes 10 games (1-5, 21-25), 10 streaming apps (6-10, 26-30), 10 miscel-

laneous apps (11-15, 31-35), and 10 sensing apps (16-20, 36-40). Applications running

with iRAM are denoted with a star (*). 1:Angry Birds; 2:GTA; 3:Need for Speed; 4:Tem-

ple Run; 5:The Simpsons; 6:CNN; 7:Nightly News; 8:ABC News; 9:YouTube; 10:Pan-

dora; 11:Facebook; 12:Twitter; 13:Gmail; 14:Google Maps; 15:ZArchiver; 16:Accelerom-

eter M.; 17:Gyroscope Log; 18:Proximity Sensor; 19:Compass; 20:Barometer; 21:2048

Puzzle; 22:Pet Rescue Saga; 23:Pou; 24:Solitaire; 25:Words; 26:CT 24; 27:Live Extra;
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28:VEVO; 29:VOYO.cz; 30:WATCH ABC; 31:Instagram; 32:File Commander; 33:RAR

for Android; 34:Dropbox; 35:FileManager; 36:Physics Toolbox; 37:Sensor Kinetics; 38:An-

droid Sensor Box; 39:Sensor Music Player; 40:Sensor Mouse. The reduction in launch

delays with iRAM ranges from 68.8 percent (Instagram) to 78.2 percent (File Comman-

der) as compared to delays without iRAM. The launch delay with iRAM enabled for all the

40 apps is on average 71.9 percent faster than with iRAM disabled. These results are

expected. The app launch is I/O intensive, and includes a lot of I/O activities involving

the flash disk. However, thanks to iRAM, an application being launched is already in the

background, and most I/Os only involve the main memory, which is much faster than the

flash disk. The speed of main memory on our device is 400Mbps, while the speed of the

flash disk is only 24Mbps, which makes the main memory 16.7 times faster than the flash

disk.

5.6.5 User-Perceived Performance: Facebook

In this subsection we conduct an experiment on the Facebook application to determine

the user-perceived performance improvement of our solution. Since the delays in Fig-

ure 5.10 are obtained in the OS layer, the values are precise but significantly smaller than

if obtained in the application layer. In order to acquire measurements in the application

layer, we may use a stop watch, which is however inaccurate. Instead, we choose to

slightly modify the Facebook source code to record timestamps of the launch delay. The

app uses test accounts and automates 150 measurements without necessity of any user

interaction.

Facebook launch is defined as the time required to complete loading all components

of the start activity and rendering of the News Feed. The ultimate goal of Facebook Inc.

for the following years is to have the launch delay of less than 5 seconds on devices

released in 2012 or newer, and less than 10 seconds on older devices. The results in

Figure 5.11(a) show that launch on our older device Nexus 4 (2012) takes 9.5 seconds
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(a) Facebook Launch Delay.

(b) CPU Overhead. (c) Power Overhead.

Figure 5.11: Launch Delay and Overhead

without iRAM and 4.1 seconds with iRAM. The newer phone Samsung S4 (2013) spends

7.8 seconds on launch delay without iRAM, and 3.75 seconds with iRAM. To evaluate per-

formance on more recent devices, we also conduct the experiments on a Nexus 5 phone

running Android 4.4 with 2GB RAM (2013), Nexus 6 running Android 5.1.1 with 3GB RAM

(2014), and Nexus 5X running Android 6.0 with 2GB RAM (2015). The results from the

Nexus 5 and Nexus 6 are as great as expected. Specifically, the launch delay has been

reduced from 3.98 seconds to 2.37 seconds, and from 2.65 seconds to 1.84 seconds,

respectively. Surprisingly, the newest device (Nexus 5X) has been outperformed by its

older brother (Nexus 6), and only reduces the delay from 2.77 seconds to 2.26 seconds.
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We think that this is mainly due to its smaller memory capacity and the brand new Android

release 6.0 that reportedly is still not without glitches. Overall, since the shortest human

perceivable delay is 100ms [44], we can conclude that iRAM can contribute significantly

to reducing the user-perceivable launch delay.

5.6.6 Overhead

To answer the last question whether iRAM incurs any performance penalties, we evaluate

iRAM's CPU and power overhead.

CPU Overhead. In this experiment, we study the CPU overhead of the five popular appli-

cations used in the Measurement Study (Section 5.2): Facebook, YouTube, CNN, Angry

Birds, and Temple Run. In particular, we launch the five apps every ten minutes and

issue 100 user events via Android Monkey [16], which corresponds to using an app for

a few seconds. We record CPU utilization within one hour, with and without iRAM, and

the results are illustrated in Figure 5.11(b). As observed, CPU utilization with iRAM is on

average 3.5 percent higher than the case without iRAM. iRAM's CPU utilization peeks

during the launch time of the five apps, but since each optimization period lasts only 0.13

second, the average overhead is acceptable.

Power Overhead. While improving the application performance is important, having solid

power efficiency is equally important. To evaluate power overhead, we launch the above

five apps every ten minutes and issue 100 user events via Android Monkey, with and

without iRAM. The battery on Samsung S4 is fully charged at the beginning. We record

how long the battery lasts for each case. The results are presented in Figure 5.11(c).

While without iRAM, the battery lasts 10.54 hours (10 hours 32 minutes). With iRAM, the

battery lasts 10.44 hours (10 hours 26 minutes). This implies that the power overhead of

iRAM is 0.9 percent, which is acceptable.
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5.7 Discussion and Future Work

Launch delay is critical to user experience, since one launches apps repeatedly through-

out the day. However, in future work we plan to evaluate the impact of other stages of the

life cycle on application performance such as install, update, switch, and uninstall, and

quantify their effects on everyday phone usage. We intend to extend this study by re-

searching how other common usage patterns are impacted. For instance, taking photos,

recording movies, messaging, calling, email sync (recently studied in [70]), etc.

Our work only focuses on improving application performance with respect to RAM. It

may be also interesting to study how different applications use main memory and flash

disks. Nguyen et al. [61] already researched flash storage I/O behaviors, and designed a

system that improved application response times by prioritizing reads over writes. How-

ever, with the decreasing price of flash, it will be useful to investigate opportunities for

performance enhancements through hybrid solutions that consider both areas.

5.8 Conclusion

This chapter presents iRAM, a system that maintains optimal heap size limits to avoid

crashes, efficiently maximizes freememory levels, and cleans low-priority processes to re-

duce application delays. The evaluation indicates that iRAM reduces application crashes

by up to 14 percent, reduces launch delays by up to 78.2 percent, and increases free

memory levels by up to 4.8 times.
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Chapter 6

Conclusion and Future Work

This dissertation presented three system prototypes contributing to improving smartphone

energy saving and reducing application delay.

First, we proposed a system called SmartStorage that dynamically tuned storage pa-

rameters to reduce energy consumption by matching the current I/O pattern to a known

pattern that we recorded from eight selected benchmarks. We validated our dynamic

tuning technique by showing that SmartStorage saved 23 to 52 percent of the energy

consumption by running SmartStorage in the background with selected applications from

the top 20 most popular apps in the foreground.

Next, we presented ameasurement study on the behavior of reads and writes in smart-

phones. Among others, we observed that reads experienced up to a 626 percent slow-

down in the presence of concurrent writes. The obtained insights were used to design and

implement a system that reduced the application delay by prioritizing reads over writes,

and grouping them based on assigned priorities. The evaluation on 40 apps demonstrated

that SmartIO reduced launch delays by up to 37.8 percent.

Finally, we presented iRAM, a system that maintained optimal heap size limits to avoid

crashes, efficiently maximized free memory levels, and cleaned low-priority processes

to reduce application delays. The evaluation indicated that iRAM reduced application

crashes by up to 14 percent, reduced launch delays by up to 78.2 percent, and increased
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free memory levels by up to 4.8 times.

For future work, we are considering three following research directions:

• An Integrated Storage and Performance-Aware Smartphone Energy Saving

System

Rather than separately answering the research questions on smartphone energy

efficiency and performance impact of our SmartStorage system, we will extract out

principles from the research results and integrate them into a prototype system.

This system will consist of three layers: (1) the application classification layer that

will classify applications based on performance tolerance; (2) the storage I/Omatch-

ing layer that will fingerprint applications’ storage I/O activities for locating the most

energy efficient storage policies; and (3) the storage configuration layer that will use

optimal storage policies for different applications so as to save smartphone energy

while providing high performance. The systemwill be thoroughly tested with existing

and future smartphones. User study will also be conducted to evaluate and assist

in improving user experience and acceptance of our prototype system.

• Advanced iRAM

We plan to extend our iRAM work with several significant improvements. 1) Not

static memory thresholds but dynamic. iRAM provides a set of configurations that

allows choosing the best policy. This includes the aggression level, minimal mem-

ory threshold, heap size, and other parameters. These thresholds should not be

static but rather dynamic. 2) Not manual white list management but automatic.

iRAM gives the highest priority to a set of selected processes in a white list that

is managed manually. This should be managed automatically by a learning algo-

rithm that would rate the importance of the processes based on the frequency it

is being launched or other performance parameters. 3) Not periodic heap usage

tracking but adaptive. iRAM maintains the global limit of the heap size available to

each application/process. The system tracks the run-time heap usage of selected
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apps with the highest priority. If the heap usage of any high priority app reaches the

limit, the limit is increased incrementally by 10 percent. Heap size tracking should

not be performed periodically but rather adaptively. For instance, when the device

is in the sleep mode, tracking does not have to be often.

• Long-term Direction: Beyond Performance, Impact on Human's Everyday Life
In this dissertation, we studied the impact of various layers (cache, block layer, de-

vice driver, and RAM) on smartphone energy and application performance. In the 

long-term, we plan to investigate other layers and subsystems such as filesystem, 

CPU, and network subsystem. Next, this dissertation only focuses on launch and 

run-time delay performance that is critical to user experience, since one launches 

and runs apps repeatedly throughout the day. However, in future work we intend 

to go beyond performance, and plan to evaluate the impact of our technology on 

human's everyday life and seek opportunities to improve the overall phone usage 

experience. Specifically, we plan to extend this study by researching how other 

common usage patterns are impacted and how they can be improved. For instance, 

taking photos, recording movies, messaging, calling, and emailing.
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