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ABSTRACT

Lattice Boltzmann (LB) Methods are a somewhat novel approach to Computational

Fluid Dynamics (CFD) simulations. These methods simulate Navier-Stokes and

magnetohydrodynamics (MHD) equations on the mesoscopic (quasi-kinetic) scale by

solving for a statistical distribution of particles rather than attempting to solve the

nonlinear macroscopic equations directly. These LB methods allow for a highly

parallelizable code since one replaces the difficult nonlinear convective derivatives of

MHD by simple linear advection on a lattice. New developments in LB have significantly

extended the numerical stability limits of its applicability. These developments include

multiple relaxation times (MRT) in the collision operators, maximizing entropy to ensure

positive definiteness in the distribution functions, as well as large eddy simulations of

MHD turbulence. Improving the limits of this highly parallelizable simulation method

allows it to become an ideal candidate for simulating various fluid and plasma problems;

improving both the speed of the simulation and the spatial grid resolution of the LB

algorithms on today’s high performance supercomputers. Some of these LB extensions

are discussed and tested against various problems in magnetized plasmas.
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CHAPTER 1

Introduction

When considering the flow of liquids such as ocean currents, the flow of a gas over

an airfoil, or the flow of plasma either on the sun or in a tokamak fusion reactor, it is

important to be able to understand, predict and eventually control these flows.

The flow of liquids and gases can be described by the Navier-Stokes equations which

appear as

∂ρ

∂t
+∇ · (ρ~u) = 0 (1.1a)

∂~u

∂t
+ (~u · ∇) ~u = −1

ρ
∇p+∇ · 2νS . (1.1b)

where ρ is the fluid density, ~u is the fluid velocity, p is the pressure, ν is the kinematic

viscosity, and S is the rate of strain tensor in which S = 1
2

(
∇~u+ (∇~u)T

)
. The Navier-

Stokes equations were discovered when Newton’s second law was applied to fluid motion.

Stress was brought in by assuming that it is related to the sum of a diffusing viscous term

(∼ ∇~u) and a pressure term (p).

Plasmas found in fusion reactors and on the sun are made up of ions and electrons.
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These plasmas can be modeled using magnetohydrodynamics (MHD), a model similar to

the Navier-Stokes equation which includes magnetic field influences. The MHD equations

are defined as

∂ρ

∂t
+∇ · (ρ~u) = 0 (1.2a)

∂~u

∂t
+ (~u · ∇) ~u = −1

ρ
∇p− ~B ×

(
∇× ~B

)
+∇ · 2νS (1.2b)

where ~B is the magnetic field which evolves according to the MHD induction equation

∂ ~B

∂t
= ∇×

(
~u× ~B

)
+ η∇2 ~B (1.3)

and η is the resistivity.

Both sets of equations can be solved analytically for only a few set of initial conditions

due to existing nonlinearity. In order to solve the vast majority of relevant geometries

which cannot be determined analytically, computation is required to determine solutions.

This is known as computational fluid dynamics (CFD) and is typically done by modeling

a fluid over a spatial lattice of discrete points and evolving the system over discrete units

of time. This approach is successful in modeling the fluid, but the computational cost in

CFD tends to scale poorly for turbulence simulations that require high accuracy.

Modern High Performance Computers (HPCs) are built around many processing co-

res (on the order of 10,000s to 100,000s). As new HPCs are produced, the number of

processing cores in these machines continues to increase rapidly while the speed of each

core has little, if any, improvement. HPCs require highly parallelized code in order to take

advantage of the potential speedups from adding more cores to the newer HPC models.

Communication between processing cores has a very high latency rate (on the order of

microseconds) compared to the latency rate of simply reading values from memory (on the
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order of nanoseconds). A highly parallelizable code will attempt to minimize interprocessor

communication in order to decrease the total computation time.

Solving the set of MHD equations at a lattice site requires a solution to many spatial

derivatives. The difficulty with CFD is that the convective nonlinear derivative is spatially

dependent (~u·∇~u is dependent on ~u at the lattice sites). Thus one can not easily find a syn-

chronization between processors performing this evaluation. However, the linear advection

in lattice Boltzmann has perfect synchronization and hence excellent parallelization.

LB is a novel, alternative approach to CFD which models fluid on the mesoscopic scale

as a distribution of particles wherein each distribution is delineated by a discrete position

and momentum. The lattice Boltzmann procedure stems from the lattice Boltzmann

equation

∂tfi + ∂αeαifi =
1

τ
(fi − f eq

i ) (1.4)

where α follows Einstein summation and corresponds to each of the spatial dimensions,

f eq
i is the value of fi at equilibrium where i denotes the velocity component, eαi represents

a unit vector for each velocity i, and τ is the relaxation rate related to viscosity by ν =

c2
s

(
τ − 1

2

)
upon performing Chapman Enskog expansions on LB, and cs is the sound speed.

The LB procedure follows two main procedural steps based on equation (1.4) at each

timestep:

1. Stream each distribution along the spatial lattice according to each distribution’s mo-

mentum. This corresponds to the advective term in the lattice Boltzmann equation

(∂αeαifi) and can be simply described as a transfer/movement of data between nearest

neighbors on the lattice.

2. Locally collide all distributions with the same spatial position on the lattice. This

corresponds to the right-hand side of the lattice Boltzmann equation
(

1
τ

(fi − f eqi )
)

where each distribution relaxes towards a locally prescribed equilibrium f eq
i defined by
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the moments at each lattice point (sec. 3.3).

The LB method features some great improvements over the classical CFD methods.

Besides the great improvement in parallelizability due to the advective term and the simple

two step process of LB, there is also the short code length of LB. A minimal LB code

consists of about 1,000 lines making it very easy to write, debug, and edit.

Another notable feature is that simple LB is designed to run at lower fluid velocities

(subsonic speeds) and requires more discrete distribution velocities to run at higher fluid

velocities. This problem exists because a distribution of particles would have to move more

than one lattice site per timestep without a collision in order to model the higher velocities.

Increasing the number of discrete distribution velocities will require a greater computati-

onal cost and is typically undesirable. Therefore research [1, 2] has been pushing LB into

the supersonic and transonic regime while attempting to minimize the computational cost.

A general downfall to LB is that it is designed as a positive definite system in order

for the sum of the distributions to be equal to the fluid density. If any of the fluid

distributions become negative due to a number of factors, the simulation will become

unstable and break down. A new model of LB MHD partially developed by myself and

based on work by Karlin et. al. [3] is introduced in order to improve the overall stability of

a simulation. This stability improvement is introduced by separating the single relaxation

time (SRT), τ , into multiple relaxation times (MRT), one for each distribution fi. In

MRT, the relaxation rates are so chosen that they do not affect the viscosity of the fluid.

In the case of this new model, the relaxation times are also then chosen as a function of

maximum entropy. This model allows distributions prone to becoming negative to have a

shorter relaxation rate without modifying the underlying MHD equations where a longer

relaxation rate will slow the overall change of a distribution’s value. This new model is a

partial maximization of entropy; partial because it only maximizes the fluid’s entropy, not
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the magnetic field’s entropy.

A second problem expected to occur in CFD and LB is the computational cost re-

quired of highly accurate simulations whose cost is calculated as the product of the total

number of spatial grid points and timesteps. As a gridsize increases, so does the computa-

tional cost. Large eddy simulations (LES) are a technique designed to increase simulation

accuracy without increasing the number of gridpoints which leads to a minimal increase

in computational cost. The approach is to model the naturally generated subgrid scales

of motion by some form of subgrid viscosity. While many LES models exist for CFD

and some exist for LB, very few (if any) exist for LB MHD while taking advantage of its

features. A new LES model for LB MHD, developed by myself and based on theory by

Ansumali [4], is presented in chapter 8.

This paper begins by deriving the lattice Boltzmann equation from kinetic first princi-

ples in chapter 2. An explanation on how to use LB as a simulation method with variations

of some of its features is presented in chapter 3. Then, chapter 4 will derive the MHD

equations along with its application in LB. chapter 5 will cover some analytical theory

on the turbulent energy spectrum and the Kelvin-Helmholtz instability. The new model

on improving LB MHD stability by directly maximizing entropy in the fluid velocity is

in chapter 6 along with corresponding simulation results. The concept behind the theory

of large eddy simulations is explained in chapter 7. Finally, a new LES technique for

LB-MHD is presented in chapter 8 along with simulation results.
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CHAPTER 2

Derivation of Lattice Boltzmann

Gases are a statistical distribution of many (N ≫ 1) small particles, whose pro-

bability is given by the N-body distribution function. This can be broken down into a

BBGKY hierarchy and which under certain conditions can be approximated by kinetic

equations (and 1-particle distribution functions). A mathematical probability distribu-

tion function can be built to describe the probability that a particle exists in a phase

space location at a specific time fN (1, 2, . . . N, t) where 1, 2, . . . N represents the coor-

dinates ~x1, ~x2, . . . ~xN , ~p1, ~p2, . . . ~pN . This function allows the tracking of every particle in

the system. Integrating the distribution function over a given phase space provides the

normalized probability of all particles in all space such that

1 =

∫∫
fN (1, 2, . . . N, t) dx3Ndp3N . (2.1)

2.1 Deriving Boltzmann

A change in the particle distribution function can occur due to external forces and

particle collisions. The total change of a distribution, Dtf = df
dt

, is broken into a set of
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partial derivatives using the chain rule on each component of the distribution function.

The Liouville equation defines the precise evolution of the distribution function which is

defined as

DtfN =

[
∂t +

N∑
i

~pi
m
· ∇~xi +

N∑
i

~Fi
m
· ∇~pi

]
fN (1, 2, . . . N, t)

=

[
∂t +

N∑
i

~pi
m
· ∇~xi +

N∑
i

(
∂Φext

i

∂~xi
+

N∑
j

∂Φcol
ij

∂~xi

)
· ∇~pi

]
fN = 0

(2.2)

where fN is the distribution of the full system of particles N , ~xi and ~pi are respectively

the position and momentum of the ith particle, Φext
i is the potential of the ith particle due

to an external force and Φcol
ij is the inter-particle potential between particles i and j. The

Liouville equation tracks the position and momentum of every particle and evolves the

distribution for the system [5]. The number of particles in an environment can add up to

more than 1023. With such a large number of particles, it’s impossible to track each one

through time, even in a simulation.

An approach to tracking fewer particles in each distribution comes from the BBGKY

hierarchy. Although, the BBGKY hierarchy describes the evolution of the system using

distributions of fewer than N particles, the hierarchy is a precise equation equivalent to

the Liouville equation. For a subset, s of the total number of particles N , the BBGKY

equation becomes

[
∂t +

s∑
i

~pi
m
· ∇~xi +

s∑
i

(
∂Φext

i

∂~xi
+

s∑
j

∂Φcol
ij

∂~xi

)
· ∇~pi

]
fs (1, 2, . . . s, t)

= (N − s)
s∑
i

∇~pi

∫
∂Φcol

i s+1

∂~xi
· fs+1 d~xs+1 d~ps+1

(2.3)

where fs is the distribution function for a subset, s, of particles such that fs (1, 2, . . . s, t) =∫∫
fN dx3

s+1dx3
s+2 . . . dx

3
Ndp3

s+1dp3
s+2 . . . dp

3
N . The BBGKY hierarchy tells us that the evo-
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lution of just one particle requires the knowledge of a second. And the evolution of a

second requires a third which continues until the entire system is required to be tracked.

Boltzmann introduced closure to the BBGKY hierarchy by assuming uncorrelated

particles, except at their binary collision. This assumption is appropriate for a neutral

rarefied gas with very short range but strong interaction potential. Collisions between more

than two particles are considered to be far too rare to significantly effect the macroscopic

state of the gas. Thus for a 2-particle distribution function, one can reduce it to a product

of 1-particle distribution function together with the pair correlation term P

f2 (1, 2, t) = f1 (1, t) f1 (2, t) + P (1, 2, t) (2.4)

The 1st term on the right hand side is the result if particles 1 and 2 were totally uncorrelated

[ideal gas] i.e., statistically independent of each other. The pair correlation P (1, 2, t)

tells how particle 1 is correlated to particle 2. Under the molecular chaos assumption,

Boltzmann then deduced that the evolution of the 1-particle distribution function can be

given by

[
∂t +

~p1

m
· ∇~x1 +

∂Φext
1

∂~x1

· ∇~p1

]
f1 (~x1, ~p1, t) = (∂tf1)col (2.5)

where (∂tf1)col is the rate of change in the 1-particle distribution function due to particle

‘1’ colliding with other particles in the gas at position ~x1. A precise definition of the

particle collision term is

(∂tf1)col =
N∑
j

∫
g1jσ1j

(
f

′

1(~p1)f
′

1(~pj)− f1(~p1)f1(~pj)
)
dΩ d3~p

′

1d
3~p

′

j (2.6)

where primed values represent post-collision states, g1j = |~p1 − ~pj| =
∣∣~p ′

1 − ~p
′
j

∣∣, σ is the

9



differential scattering cross-section and dΩ is the solid angle of the collision. Although

the evolution of the distribution is now greatly simplified, the collision term requires a

pairwise comparison between every particle in the system to determine if any collision has

occurred, making the collision integral nonlinear and difficult to use.

2.2 H Theorem

An approach to simplifying the collision term came about as a side effect Boltzmann’s

H -Theorem. Boltzmann’s H -theorem is similar to a negative entropy of the system

derived from the assumption of molecular chaos. For f1 → f1 ln f1 then integrating over

phase space, the LHS of the Boltzmann equation (2.5) becomes

∫∫
d3~x1 d

3~p1

[
∂t +

~p1

m
· ∇~x1 +

∂Φext
1

∂~x1

· ∇~p1

]
f1 ln f1 (2.7)

The second and third terms can be transformed from volume integrals to surface integrals

such that

∂tH +

∫∫
d3~p1 dΣx ·

~p1

m
f1 ln f1 +

∫∫
d3~x1 dΣp ·

∂Φext
1

∂~x1

f1 ln f1 (2.8)

f1 → 0 as ~p1 → ∞ and ~x1 → ∞ so the surface integrals in the second and third terms

equal 0. H is defined as

H ≡
∫∫

f1 (~x, ~p, t) ln f1 (~x, ~p, t) d~x d~p (2.9)

Observing how H changes over time,

dtH =

∫∫
(1 + ln f1)

∂f1

∂t
d~x1 d~p1 (2.10)
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It can be proved [5] that the RHS collision term of (2.5) is shown to be ≤ 0 forcing

dtH ≤ 0. This is significant because it shows that a statistical distribution of particles

under molecular chaos will tend towards an equilibrium (when dtH = 0) and can thus

be considered irreversible since dtH cannot be positive. This corresponds with the ir-

reversibility stated in the second law of thermodynamics. A bridge now exists between

the microscopic and macroscopic scales of statistical mechanics/thermodynamics thanks

to Boltzmann’s H theorem.

2.3 Boltzmann Equilibrium

The concept of an equilibrium, determined from the collision term of (2.5) when

d
dt

H = 0, requires f1(1)f1(2) = f
′
1(1)f

′
1(2) for f1(i) where i represents the coordinates

of particle i. If the log is taken of this equation, we find the ln f is a collisional invari-

ant; meaning that ln f1(1) + ln f1(2) = ln f
′
1(1) + ln f

′
2(2) can be defined by conservation

equations ~p1 + ~p2 = ~p
′

1 + ~p
′

2 and
p21
2m

+
p22
2m

=
p
′2
1

2m
+

p
′2
2

2m
. If [ln f = A

(
~v − ~B

)2

+ lnC] or equi-

valently [f = C exp
(
−A(~v − ~B)2

)
], then f can be replaced with the Maxwell Boltzmann

distribution

f = f eq =
( n

2πRT

)3/2

exp

(
−(~v − ~u)2

2RT

)
(2.11)

with n as number density, ~u as macroscopic velocity, R = k
m

is the ratio of Boltzmann

constant k over mass m, and temperature is T . The choice of these variables is made by

choosing the lowest order moments of the distributions to reflect the conserved hydrody-
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namic quantities. This corresponds to

∫
f(~x,~v, t)dv3 = ρ (2.12a)∫
~vf(~x,~v, t)dv3 = ρ~u (2.12b)∫

(~v − ~u)2

2
f(~x,~v, t)dv3 =

ρDRT

2
. (2.12c)

For an isothermal model, T has no significance. The collision term may now be approxi-

mated by the Maxwell Boltzmann distribution when the system is close to equilibrium.

Bhatnagar, Gross and Krook (BGK) discovered a short-hand, linear way of relating

a particle collision to the equilibrium state. The BGK operator appears as

(∂tf1)col = −τ−1 (f1 − f eq
1 ) (2.13)

where τ is a relaxation time related to the viscosity. Rather than making pairwise compa-

risons with every distribution to determine the collisional state, one simply compares the

current distribution against its equilibrium. The BGK collision operator greatly simplifies

the kinetics and shows up at the fluid level in the effect on the viscosity through τ . If one

is interested in kinetic properties of the gas, then these are butchered by the BGK collision

operator. The Boltzmann equation becomes

[
∂t +

~p1

m
· ∇~x1 +

∂Φext
1

∂~x1

· ∇~p1

]
f1 (~x, ~p, t) = −τ−1 (f1 − f eq

1 ) (2.14)

2.4 Discrete Boltzmann Distribution

In many applications, including here, there is no need to introduce external forces

simplifying Φext = 0 in (2.14). At this point, It is instructive to integrate (2.14) along

12



particle trajectories. In this Lagrangian picture

Dt f (~x(t), ~p(t), t) = [∂t + ~v · ∇~x] f (~x, ~p, t) = −1

τ
(f − f eq) (2.15)

The Lagrangian derivative following the particle trajectory is simply the free-streaming

trajectory

d~x(t′)

dt′
= ~v(t′) ,

d~v(t′)

dt′
= 0 (2.16)

with trajectory parametrization to the Eulerian description at: t = t′, ~x(t) = ~x, and

~v(t) = ~v. Thus, on integrating (2.15) along Lagrangian trajectories,

∫ t+∆t

t

ds Dtf (~x(s), ~p(s), s) = −1

τ

∫ t+∆t

t

dt (f − f eq) (2.17)

yields

fi (~x+ ~ci∆t, t+ ∆t)− fi(~x, t) = −1

τ

∫ t+∆t

t

ds [f (~x(s), s)− f eq (~x(s), s)] (2.18)

The notation has been simplified since the kinetic velocity is constant along trajectories of

(2.16) and hence is not explicitly shown in the distribution functions. Instead a change in

notation for simplicity has occurred for the remainder of this paper. The distribution fi is

now denoted as the distribution with discrete velocity ~ci. In a lattice representation, the

nodes at ~x will be connected to their neighbors ~x+ ~ci∆t, where ~ci are the discrete veloci-

ties on the specifically chosen lattice (and which now replace the continuous independent

variable ~v).

While there are various approximations one can make on the collision term in (2.18),

the simplest, under the assumption that ∆t� t, is to treat the integrand as slowly varying
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and evaluating it at the lower terminal

fi (~x+ ~ci∆t, t+ ∆t)− fi(~x, t) = −∆t

τ
[f (~x, t)− f eq (~x, t)] (2.19)

By evaluating at the lower terminal, a simple explicit finite difference scheme is available to

solve. 5 The final lattice Boltzmann equation is acquired by relabeling τ in non-dimensional

units.

fi (~x+ ~ci∆t, t+ ∆t) = fi (~x, t)−
1

τ
(fi − f eq

i ) (2.20)

The procedure of converting the lattice Boltzmann equation (2.20) into a useful si-

mulation will now be discussed.
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CHAPTER 3

LB Procedure

We now have an equation for lattice Boltzmann derived from kinetic theory. How

do we implement this equation in a simple way to produce a meaningful simulation? In

this chapter, the basic LB simulation procedure will be explained. And the accuracy of

LB will be shown as the Chapman-Enskog procedure is used to derive the well-known

Navier-Stokes equations which govern basic fluid dynamics.

3.1 Stream and Collide

Implementing the lattice Boltzmann equation (LBE) in a simulation is rather simple.

The LBE

fi (~x+ ~ci∆t, t+ ∆t) = fi (~x, t)−
1

τ
(fi − f eq

i ) (3.1)

will evolve fluid particle distributions across a spatial grid at each timestep (∆t). In mo-

deling this behavior, we can perform operator splitting, separating the equation according
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to the dimensions of change.

f ti (~x, t+ ∆t) = fi (~x, t)−
1

τ
(fi (~x, t)− f eq

i (ρ, ~u)) (3.2a)

fi (~x+ ~ci∆t, t+ ∆t) = f ti (~x, t+ ∆t) (3.2b)

where ρ and ~u are respectively the density and macroscopic velocity of the fluid at position

~x. (3.2a) represents a change in the time dimension and (3.2b) represents a change in the

spatial dimension. From the perspective of the particle distributions, these are described

as the collide and stream equations respectively for (3.2a) and (3.2b).

These two steps would be taken consecutively for every timestep in the simulation

with (3.2a) relaxing a group of distributions at a single spatial point and (3.2b) simply

moving (streaming) particle distribution data from one spatial point to the next. As these

steps are taken, it can be seen that this model is extremely parallelizable [6, 7] given

that the collision equation only requires local data at a single lattice site and the stream

equation is simply an advective movement of said local data across the lattice. On HPCs,

the spatial domain is decomposed allowing each process to hand a spatial subdomain of

the simulation. MPI is needed to pass the streaming information to neighboring processes.

As this interprocess streaming is performed simultaneously for all processes, the algorithm

is well parallelized.

The LB procedure is in essence inverse statistical mechanics. The nonlinear problem

is being embedded into a higher dimension kinetic space, while minimizing the number of

phase velocities needed. The gain is that the nonlinear convective derivatives in Navier-

Stokes and MHD are replaced by linear advection in kinetic space. The nonlinear terms

are then introduced into LB as simple quadratic algebraic nonlinearities in f eq.

Given the evolution of a LB fluid, we can extract useful information at the end of

each timestep (just after streaming or before collision) by a process of taking moments.
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The conserved moments (ρ, ρ~u) of the lattice Boltzmann distribution (f) are necessary

to evaluate the equilibrium function (f eq) at every timestep and so the process of taking

conserved moments becomes an unofficial third step in the lattice Boltzmann procedure.

The conserved moments for any lattice are defined similar to (2.12) as

ρ = M0 =
∑

i fi , ρ~u = M1 =
∑

i ~cifi (3.3)

and only requires spatially local distributions (same as the collision equation). This means

the lattice Boltzmann method (LBM) remains extremely parallelizable even when taking

moments.

The procedure to take an ith moment Mi is

Mi =
8∑
j=0

Tijfj (3.4)

for some transformation matrix T whose size is determined by the total number of discrete

distribution velocities. The transformation matrix T will be discussed shortly.

3.2 Lattice Velocities

A lattice can take any isotropic geometric shape [2, 8]. The tendency has been to push

the geometries to be as simple as possible while remaining isotropic and using space-filling

lattices to prevent interpolation (which can cause numerical errors). In two dimensions,

this has resulted in square and hexagonal lattices to be most commonly used in research.

In one dimension (1D), only three moments are required to properly reproduce the

physical evolution equations (1 density, 1 velocity dimension, 1 element of the stress ten-

sor). This 1D lattice can be easily represented in the D1Q3 lattice as shown in table
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3.1.

On a square lattice, as used throughout this thesis, we can discretize the fluid distri-

bution velocity ~v in the four cardinal directions to maintain isotropy. In this most simple

case, we find that a change of basis to hydrodynamic moments only produces four inde-

pendent moments (velocity and shear stress in the x and y directions). Although we have

four distribution velocities for the fluid, they equate to only one speed and prevent the

fluid from reaching a Maxwellian equilibrium distribution.

Adding one resting velocity to the square lattice allows a better approximation for the

equilibrium to approach a Maxwellian distribution, thus making the simulation more sta-

ble, but still only provides five independent moments in a moment transformation (velocity

and shear stress in the x and y directions and density). According to Chapman-Enskog, we

need at least six moments (1 density, 2 velocity dimensions, 3 elements of symmetric stress

tensor) for 2D modeling. Without all six moments being stored, the Chapman-Enskog

expansion for the lattice will not match the proper macroscopic fluid evolution equations.

In order to maintain isotropy for a lattice, four more discrete distribution velocities must

be added to the four corners of the square. This velocity discretization on a square lattice

now meets all requirements for accurate modeling and resembles Fig. 3.1. In the D2Q9

lattice (2 dimensions, 9 distribution velocities), there are a total of 3 distribution speeds

as can be found in table 3.1.

With an hexagonal 2D lattice, we instantly meet the minimum number of lattice

velocities and maintain isotropy. In order to improve stability by ensuring more than one

distribution speed, a seventh rest velocity may be added. At the cost of a more complex

hexagonal lattice (compared to a square lattice), the number of velocities can be reduced

from 9 to 7 for a given fluid.

In 3D, the minimum number of moments is 10 (1 density, 3 velocity dimension, 6

elements of symmetric stress tensor), allowing for a large number of 3D cubic lattice
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Lattice Name Lattice Velocities Speeds (Quantity)
D1Q3 (0), (±1) 0 (1), 1 (2)

D2Q9 (0, 0), (±1, 0), (±1, ±1) 0 (1), 1 (4),
√

2 (4)

D3Q15 (0, 0, 0), (±1, 0, 0), (±1, ±1, ±1) 0 (1), 1 (6),
√

3 (8)

D3Q19 (0, 0, 0), (±1, 0, 0), (±1, ±1, 0) 0 (1), 1 (6),
√

2 (12)

D3Q27 (0, 0, 0), (±1, 0, 0), (±1, ±1, 0), (±1, ±1, ±1) 0 (1), 1 (6),
√

2 (12),
√

3 (8)

TABLE 3.1: Table of cubic lattice types.

options.

3.3 Moment Basis Representation

The bulk of work in this thesis uses the 2 dimensional 9-bit (D2Q9) phase space

velocities ~ci for the density distribution, (Fig. 3.1). The D2Q9 lattice naturally uses a

given equilibrium function along with a corresponding set of weights wi and lattice speed

of sound ci calculated using Hermite polynomials. The choice of f eq
i is made as a truncated

small velocity (low Mach number) expansion of the Maxwell-Boltzmann distribution whose

factors before each term are determined by the lattice weights and speed of sound [9]. The

LB f eq
i for the D2Q9 lattice is

f eq
i = wiρ

[
1 + 3 (~ci · ~u) +

9

2
(~ci · ~u)2 − 3

2
~u 2

]
, i = 0, .., 8 (3.5)

with lattice speed of sound cs = 1√
3

and lattice weights: w0 = 4
9
, w1...4 = 1

9
, and w5...8 = 1

36
.

To construct the moment space, it is natural to first choose the conservation moments

(the zeroth and first moments of fi) [10, 11]. One then chooses the remaining higher

moments to form an independent basis. The 1-1 mapping between the distribution space

(fi) and the moment space (Mi), as stated in (3.4), is given by a constant T matrix. For

the simplest choice of moments used throughout this thesis, the specific form of this 9× 9
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FIG. 3.1: D2Q9 Lattice Representation. The kinetic lattice vectors for 2D LB-MHD
are, in our D2Q9 model, ~ci = (0, 0) , (0,±1) , (±1, 0) , (±1,±1). wi are appropriate weight
factors dependent on the choice of lattice: for speed 0, w0 = 4

9
; for speed 1, wi = 1

9
; and

for speed
√

2 , wi = 1
36

.

T-matrix is

T =



1

cx

cy

cxcy

c2
x

c2
y

c2
xcy

cxc
2
y

c2
xc

2
y



=



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 1 1



(3.6)

where the x and y components of the corresponding 9-dimensional lattice vectors are just

cx = {0, 1, 0,−1, 0, 1,−1,−1, 1} , cy = {0, 0, 1, 0,−1, 1, 1,−1,−1} . (3.7)
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The first three fluid moments are simply the collisional invariants - being nothing but

the conservation of density (the 1st row of the T-matrix) and momentum (the 2nd and 3rd

rows of T). In particular, the moments can be written in terms of the conserved moments:

M eq
0 = M0 = ρ M eq

1 = M1 = ρux M eq
2 = M2 = ρuy

M eq
3 = ρuxuy M eq

4 = 1
3

(3ρu2
x + ρ)

M eq
5 = 1

3

(
3ρu2

y + ρ
)

M eq
6 = 1

3
ρuy

M eq
7 = 1

3
ρux M eq

8 = 1
9
ρ
(
1 + 3u2

x + 3u2
y

)
(3.8)

3.4 Derivation of the Navier-Stokes Equations

Using Chapman-Enskog Expansion, it is possible to derive the macroscopic Navier-

Stokes equations from the mesoscopic moments of (3.8). We begin by Taylor expanding

the left hand side of the LBE (3.1). The precise definition of this terms is

fi (~x+ ~ci∆t, t+ ∆t) =
∞∑
k=0

1

k!
(∂t + ~ci · ∇)k fi (~x, t) . (3.9)

Substituting this expansion into the LBE, we find the lowest order equation yields no

information, and we proceed to first order.

∞∑
k=1

1

k!
(∂t + ~v · ∇)k fi (~x, t) = −1

τ
(fi − f eq

i ) (3.10)

The LBE is now defined solely in terms of derivatives in (3.10), allowing the expansion

of the time derivatives and f ’s into smaller contributions. The contribution of each term

will be relative to the smallness parameter ε for (ε� 1). This breaks down the LBE into

contributions from various time scales where the lowest time scale is Euler (ideal), and
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then follows the transport time scale.

∂t → ε∂
(0)
t + ε2∂

(1)
t + . . . (3.11a)

∂α → ε∂α (3.11b)

f → f (0) + εf (1) + ε2f (2) + . . . (3.11c)

In this notation, the O(1) terms in the LBE (3.10) provide the equation

O(1) : 0 = −1

τ

(
f

(0)
i − f

eq
i

)
. (3.12)

proving the relationship f eq ≡ f (0).

Conserved quantities such as ρ and ρ~u are collisional invariants, meaning that they

remain unchanged (conserved) during particle collisions. In order to preserve these quan-

tities, they are solely defined by the lowest order distributions f eq. Specifically,

ρ =
∑
i

f eq
i (3.13a)

ρ~u =
∑
i

~cif
eq
i (3.13b)

with

0 =
∑
i

f
(k)
i (3.14a)

0 =
∑
i

~cif
(k)
i (3.14b)

for k > 0.

Inserting these expanded terms (3.11) into (3.10) we find the next two lowest order

equations corresponding to the ideal evolution (without dissipation) time scale and the
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dissipative time scale respectively are

O(ε) : ∂
(0)
t f

(0)
i + ~ci · ∇f (0)

i = −1

τ
f

(1)
i (3.15)

O
(
ε2
)

: ∂
(0)
t f

(1)
i + ~ci · ∇f (1)

i + ∂
(1)
t f

(0)
i +

1

2

(
∂

(0)
t + ~ci · ∇

)2

f
(0)
i = −1

τ
f

(2)
i (3.16)

The O(ε2) equation can be further simplified by substituing the O(ε) equation into the

fourth term resulting in

∂
(0)
t f

(1)
i + ~ci · ∇f (1)

i + ∂
(1)
t f

(0)
i +

1

2

(
∂

(0)
t + ~ci · ∇

)(
−1

τ
f

(1)
i

)
= −1

τ
f

(2)
i (3.17)

Simplified, the O(ε2) equation becomes

O
(
ε2
)

: ∂
(1)
t f

(0)
i +

(
1− 1

2τ

)(
∂

(0)
t + ~ci · ∇

)
f

(1)
i = −1

τ
f

(2)
i (3.18)

If the O(ε) (3.15) and O(ε2) (3.18) equations are now recombined we get

(∂t + ~ci · ∇) f
(0)
i +

(
1− 1

2τ

)(
∂

(0)
t + ~ci · ∇

)
f

(1)
i = −1

τ

(
f

(1)
i + f

(2)
i

)
(3.19)

the final combined evolution equation with ideal and dissipative terms.

Derivation of the Continuity Equation

Now, we can recover the Navier-Stokes equations by taking the conserved moments

from the combined evolution equation (3.19). We will start with the zeroth moment to

recover the density equation. It should be noted that ~ci commutes with the ∂t and ∇

operators and the partial derivatives can be factored out of the sum. Taking the moments
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term by term, and using (3.13) and (3.14) we find that

∑
i

[
∂tf

(0)
i +∇ · ~cif (0)

i +

(
1− 1

2τ

)(
∂

(0)
t f

(1)
i +∇ · ~cif (1)

i

)
= −1

τ

(
f

(1)
i + f

(2)
i

)]
(3.20)

∂tρ+∇ · ρ~u+

(
1− 1

2τ

)
(0 + 0) = 0 (3.21)

Simplified, the continuity equation is

∂tρ+∇ · ρ~u = 0 (3.22)

which is the Navier-Stokes equation governing the evolution of fluid density.

Derivation of the Momentum Equation

Next, the first conserved moment of (3.19) will prove to be the more difficult equation

but will result in the Navier-Stokes momentum equation. To begin, we take the first

moment of (3.19) by multiplying through by ~ci and then summing over i. The momentum

equation initially takes the form

∑
i

∂t~cif
(0)
i +

∑
i

∇ · ~ci~cif (0)
i

+
∑
i

(
1− 1

2τ

)(
∂

(0)
t ~cif

(1)
i +∇ · ~ci~cif (1)

i

)
= −

∑
i

1

τ

(
~cif

(1)
i + ~cif

(2)
i

) (3.23)

∂tρ~u+∇ · Π(0) +

(
1− 1

2τ

)(
0 +∇ · Π(1)

)
= 0 (3.24)

In order to evaluate the non-conserved moments that have appeared Π(0) and Π(1), we need

to be able to evaluate a moment’s equilibrium. The second and third moment equilibria are

evaluated below using (3.5). Henceforth, Greek indices will be used for vector components

and Roman indices will be used for lattice components. It is important to note here that
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cαicαicαi = cαi for some dimension α.

∑
i

cαicβif
eq
i = Πeq

αβ = ρ

(
δαβ

1

3
+ uαuβ

)
(3.25)

∑
i

cαicβicγif
eq
i = δαγ

ρuβ
3

+ δβγ
ρuα
3

+ δαβ
ρuγ
3

(3.26)

With Πeq evaluated above (3.25) and set to Π(0) via (3.12), we simply need to deter-

mine Π(1). This is found by taking the second moment of the O(ε) equation (3.15) which

appears as

∑
i

∂
(0)
t ~ci~cif

(0)
i +

∑
i

~ci~ci~ci · ∇f (0)
i = −

∑
i

1

τ
~ci~cif

(1)
i (3.27)

and solving for
∑

i ~ci~cif
(1)
i . The first term in (3.27) is found by applying the chain rule to

the specified non-conserved equilibrium in terms of the conserved equilibria as shown in

(3.28). The solutions to the resulting time derivatives of the conserved quantities are then

plugged in from their corresponding O(ε) moment equation (3.15). Summation convention

is used only over the Greek indices which give the vector nature of the fields. Because LB

functions in the low velocity limit (|~u| � Ma), simplification of these derivatives to O(u2)

is allowed.

∑
i

∂
(0)
t cαicβif

(0)
i = ∂

(0)
t Πeq

αβ =
∂Πeq

αβ

∂ρ
∂

(0)
t ρ+

∂Πeq
αβ

∂ρuγ
∂

(0)
t ρuγ (3.28)

∂
(0)
t Πeq

αβ =

(
δαβ

1

3
+ uαuβ

)
(−∇ · ρ~u) + (δαγuβ + δβγuα)

(
−∇λρ

(
δλγ

1

3
+ uλuγ

))
(3.29)

∂
(0)
t Πeq

αβ ≈ −
1

3
(δαβ∇ · ρ~u+ uβ∇αρ+ uα∇βρ) +O

(
u3
)

(3.30)

Now that the first term of (3.27) is determined, the second term can be found by

simply substituting in the equilibrium term (3.26) found previously. And so the final
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solution to Π(1) is found by substituting (3.30) and (3.26) into (3.27).

Π
(1)
αβ = −τ

3
[− (δαβ∇ · ρ~u+ uβ∇αρ+ +uα∇βρ) +∇αρuβ +∇βρuα + δαβ∇ · ρ~u] (3.31)

Π
(1)
αβ = −τ

3
[−uβ∇αρ− uα∇βρ+∇αρuβ +∇βρuα] (3.32)

Π
(1)
αβ = −τ

3
ρ [∇αuβ +∇βuα] (3.33)

The LB derived momentum evolution equation is now solved by substituing Π(0) (3.25)

and Π(1) (3.33) into (3.24).

∂tρuβ +∇αρ

(
δαβ

1

3
+ uαuβ

)
− τ

3

(
1− 1

2τ

)
∇αρ (∇αuβ +∇βuα) = 0 (3.34)

∂tρ~u+∇ · ρ (~u~u) = −∇ρ
3

+
1

3

(
τ − 1

2

)
∇αρ (∇αuβ +∇βuα) (3.35)

The form of the LB derived momentum evolution equation can be further simplified below

to precisely match the Navier-Stokes momentum equation

∂tρ~u+ ρ (~u · ∇) ~u = −∇P + 2∇ · νρS (3.36)

where S is the strain rate tensor with Sαβ = 1
2

(∇αuβ +∇βuα), P is the pressure evaluated

as P = ρ
3
, and ν is the kinematic viscosity evaluated as ν = 1

3

(
τ − 1

2

)
.

It is possible to further simplify the momentum equation if we assume incompressible

Navier-Stokes with uniform density (ρ). Separating out the diffusive term

∂tρ~u+∇ · ρ (~u~u) = −∇P + ν
(
(∇ρ) · (∇~u) + (∇~u) · (∇ρ) + ρ

(
∇2~u+∇∇ · ~u

))
(3.37)

and applying the assumption that ∇ρ → 0 and ∇ · ~u → 0, we find a simpler form to the
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momentum equation for a given problem.

∂tρ~u+ ρ (~u · ∇) ~u = −∇P + νρ
(
∇2~u

)
(3.38)

This chapter has shown how LB functions as an extremely parallelizable fluid simula-

tion method and has even proven it’s accuracy in reproducing the well-known Navier-Stokes

equations. In CFD, one has to deal with the nonlinear convective derivative (~u · ∇) ~u, while

in LB one is dealing with the passive linear advection ci · ∇ for the fixed lattice vector

ci. As mentioned in chapter 1, parallelization is a critical factor which sets LB apart from

other CFD methods, allowing it to maximize the use of modern HPC’s.
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CHAPTER 4

Magnetohydrodynamics

Plasma is a state of matter in which the constituents of a gas are ionized typically into

electrons and ions. What makes the description of a plasma difficult is the huge range in

both length and time scales that are possible. For a simple hydrogen plasma with densities

1019 m−3, temperatures of 1 keV, magnetic fields of 3 T and plasma lengths of 0.5 m, one

finds that length scales range from the 0.5 m down to the Debye length of 7 × 10−5 m,

while time scales range from the electron times 3.5× 10−11 s to ion cyclotron and Alfven

times of 2× 10−8 s, to resistive time scales of 2 ms and Ohmic decay times of 3 s [12].

This makes it impossible to devise a practical computationally feasible model to cover

all the parameters ranges. Hence one is forced into simplified restricted subsets of models,

with some overlapping others. The BBGKY hierarchy is unmanageable and so some form

of low order closure is hoped for. One of the simplest BBGKY closure models is to ignore

all binary-particle interactions, while retaining the collective effects in the system. This

will lead to the Vlasov equation, coupled to the Maxwell equations. One of the difficulties

of the Vlasov model is that it is still time-reversible (as is the underlying equations of

motion of all the particles underlying the plasma) and hence no H-theorem exists nor the
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tendency for the plasma to move towards a thermal equilibrium. In the time scales longer

than the particle collision times, one must now consider equilibration effects, typically

requiring (kinetic) velocity-space diffusion. This requires the consideration of binary par-

ticle collisions. At this order of closure, the BBGKY hierarchy leads to the Fokker-Planck

equation and to its plasma cousin, the Balescu-Lenard equations. The Balescu-Lenard

extension of the Fokker-Planck equation now includes renormalized potential interactions

terms due to the collective nature of the plasma. These equations do possess an H-theorem

and can (in principle) lead to thermal equilibrium. Generally these equations are too com-

plex and computationally straining, leaving one to seek other models if near-equilibrium

problems are of interest.

The simpler models are the fluid representations of the plasma. Binary collisions

and (non-destructive) plasma instabilities will typically drive a plasma to relaxation in the

kinetic-velocity space while maintaining spatial gradients that resolve on longer time scales.

Within these time scales the plasma is well approximated by local Maxwellian velocity

distributions [viewing binary collisions as local]. These quasi-Maxwellian distributions

have the nice feature of being described by the first few moments: mean density, mean

velocity and thermal (kinetic) temperature. An attempt is made to take moments of the

kinetic equations and form a hierarchy of moment equations which themselves need further

closure approximations. This description is now in the realm of fluid equations. One would

expect that the simplest accurate plasma model would be the two-fluid MHD model, made

up of one set of fluid equations for the ions which is coupled to the fluid equations for the

electrons. The neutral particles which exist can be marginalized, treating them as higher

order effects. Beyond this two-fluid MHD model, the one-fluid MHD model is an even

simpler plasma model that is remarkably robust in its predictions. The one-fluid MHD

model, where the different species are averaged, is the model that is of interest in this

thesis.
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The previously derived Boltzmann equation (2.5), altered to include the long-range

forces will serve as the basis for deriving the MHD equations

d

dt
f =

(
∂

∂t
+ ~vi · ∇~x +

~F

m
· ∇~v

)
fi = (∂tfi)col (4.1)

In MHD, the long range forces are governed by the Lorentz force. Rewriting the Boltzmann

equation, we have

(
∂

∂t
+ ~vi · ∇~x +

q

m

(
~E +

~u

c
× ~B

)
· ∇~v

)
f = (∂tfi)col (4.2)

where ~E is the electric field, ~u is the macroscopic plasma velocity, and ~B is the magnetic

field.

4.1 MHD Magnetic Equation

Deriving an equation governing the evolution of the magnetic field begins with Ohm’s

law, assumed to state that the Lorentz force is equivalent to the product of resistivity and

current density.

~E +
~u

c
× ~B = η ~J . (4.3)

where ~J is the current density and η is the resistivity. Substituting Ohm’s law (4.3) into

Ampere’s law

∇× ~B =
4π ~J

c
+

1

c

∂ ~E

∂t
(4.4)

30



we have a new relation for the current density

∇× ~B =
4π ~J

c
− 1

c2

∂
(
~u× ~B − cη ~J

)
∂t

(4.5)

In non-relativistic simulations, c � |~u|, or considering only low frequencies, the second

term on the RHS is negligible. We can absorb the remaining coefficients into the current,

defining it in terms of “natural” units as

∇× ~B = ~J (4.6)

From here, Ohm’s law (4.3) can be combined with Faraday’s law

∇× ~E = −1

c

∂ ~B

∂t
(4.7)

to recover the induction equation in MHD

∂ ~B

∂t
= ∇×

(
~u× ~B

)
−∇× η ~J (4.8)

where “natural” units are used, ~J is the current density and η is the resistivity. ~J can be

replaced with the previous solution for the current density (4.6), simplifying the induction

equation to

∂ ~B

∂t
= ∇×

(
~u× ~B

)
+ η∇2 ~B . (4.9)

where η is considered to be constant.

The induction equation provides the evolution of the magnetic field over time in MHD.

It is worth noting that ∇ ·∇×
(
~u× ~B

)
= 0, making ∇ · ~B = 0 automatically satisfied for
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all future time when no resistivity is present.

4.2 MHD Fluid Equations

The MHD fluid equations are recovered from the MHD Boltzmann equation (4.2) by

taking moments (2.12) according to the procedure mentioned in sec 3.3.

4.2.1 Continuity Equation

The zeroth moment of the Boltzmann equation (4.2) becomes, term by term

∫ ∞
−∞

d3v ∂tf = ∂t

∫ ∞
−∞

d3v f = ∂tρ (4.10)

where ρ is the macroscopic fluid density. The second term is

∫ ∞
−∞

d3v ~v · ∇xf = ∇x ·
∫ ∞
−∞

d3v (~vf) = ∇ · (ρ~u) (4.11)

where ~u is the macroscopic fluid velocity. This relation exists because ∇·~v = 0. The third

term is

∫ ∞
−∞

d3v
~F

m
· ∇vf =

∑
α

∫ ∞
−∞

d2v

[
~Fα
m
f

]vα=+∞

vα=−∞

−
∫ ∞
−∞

d3v
f

m
∇v · ~F = 0 (4.12)

which goes to 0 because f → 0 as v → ±∞ and ∇v · ~F = 0 for the Lorentz force.

Finally, the collision term defines the relationship between particles of different spe-

cies. Two defining rates are the rate of ionization and the rate of change in momentum.

The rate of ionization/recombination describes the production or annihilation of particle

number/mass. The ionization rate for all species modeled must sum to zero. Also, the rate
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of change in momentum occurs due to collisions with other particle species and will be set

to zero if all species modeled have the same mass. Since the current MHD model consists

of only one species, these values are set to zero and the collision term can be replaced by

the simple BGK operator used in LB just as before (2.13). All orders of contribution in

Chapman-Enskog of the collision term for the zeroth moment are zero according to the

procedure outlined in sec. 3.4.

The resulting MHD continuity equation can thus be written as

∂ρ

∂t
+∇ · (ρ~u) = 0 (4.13)

4.2.2 Momentum Equation

The momentum equation exists as the first moment of (4.2). Similar to the continuity

equation, term by term, the first term is

∫ ∞
−∞

d3v ∂t~vf = ∂t

∫ ∞
−∞

d3v ~vf = ∂tρ~u (4.14)

The second term is the divergence of the second moment of fi (2.12c)

∫ ∞
−∞

d3v ~v · ∇x~vf = ∇x ·
∫ ∞
−∞

d3v (~v~vf) = ∇ · (ρ~u~u) +∇P (4.15)
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where P is the macroscopic fluid pressure P = 2ρRT . The third term representing the

Lorentz force is

∫ ∞
−∞

d3v ~v
~F

m
· ∇vf =

∑
α

∫ ∞
−∞

d2v

[
~v
~Fα
m
f

]vα=+∞

vα=−∞

−
∫ ∞
−∞

d3v
f

m
∇v ·

(
~F~v
)

= 0−
(∫ ∞
−∞

d3v
f

m
~v ∇v · ~F +

∫ ∞
−∞

d3v
f

m
~F · ∇v~v

)
= 0−

(
0 +

ρ

m
~F
)

= −n~F

(4.16)

where n is the number density. The first term on the right-hand side of (4.16) is zero since

f scales as exp (−v2) near equilibrium according to (2.11). The second term of (4.16) is

zero since ∇v · ~F = 0, leaving the solution −n~F .

MHD is prone to quasi-neutrality, meaning that locally the number density of ions is

approximately equal to the number density of electrons, nion ≈ nelec. Since the charge of

ions and electrons are opposite, this implies that ~E is balanced and can be equated to zero

( ~E → 0), leaving n~F = nq ~u
c
× ~B = ~J × ~B where ~J is the current density. The Lorentz

force can be further simplified using (4.6). In “natural” units, the third term is

~F = ~J × ~B =
(
~B · ∇

)
~B − 1

2
∇B2 (4.17)

As stated before, the collision term is replaced with the BGK operator according to

(2.13). The first moment of this operator at the hydrodynamic time scale equals zero,

however, following the same procedure in sec. 3.4, the viscosity shows itself at the viscous

time scale in Chapman-Enskog expansions of order O(ε2). Following the Chapman-Enskog

procedure as before, the viscosity can be inserted with the same result as for Navier-Stokes

into the momentum equation as 2∇·νρS where ν is the dissipation rate and S is the strain-

rate tensor with Sαβ = 1
2

(∇αuβ +∇βuα).
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The resulting MHD momentum equation is

ρ
∂~u

∂t
+ ρ (~u · ∇) ~u = −∇P +

(
~B · ∇

)
~B − 1

2
∇B2 + 2∇ · νρS (4.18)

In summation, the dissipative, resistive MHD equations are

∂ρ

∂t
+∇ · ~u = 0 ∇ · ~B = 0 (4.19a)

ρ
∂~u

∂t
+ (~u · ∇) ~u = −∇p+

(
~B · ∇

)
~B + 2∇ · νρS (4.19b)

∂ ~B

∂t
=
(
~B · ∇

)
~u− (~u · ∇) ~B + η∇2 ~B (4.19c)

dt

(
p

ργ

)
= 0 (4.19d)

where ∇ · ~B is included from Gauss’s law for magnetism, the 1
2
B2 term is combined with

the pressure P to become a new pressure p, and the evolution of pressure is stated in the

adiabatic case with γ as the ratio of specific heats taken to be 5/3. The stated energy

equation is only applicable in the absence of shocks and heat conduction.

4.3 Dellar’s lattice Boltzmann MHD model

Lattice Boltzmann has been extended to include MHD by Dellar [13]. Because MHD

includes a third evolution equation which governs the magnetic field, his concept was to

create a magnetic distribution which evolves alongside the fluid and governs the magnetic

field. This new distribution would have only the magnetic field as a conserved moment

and would evolve in the same manner as the fluid. Ideally, the conserved moments make

up the lowest moments of a distribution. In order to accommodate the vector magnetic

field in the zeroth moment, Dellar made the distribution a vector distribution. This means

that in 3D, there would be three magnetic distributions evolving alongside each other and
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the fluid.

Dellar’s magnetic field LB equation is

∂t~gi + ∂αeαi~gi =
1

τg
(~gi − ~geq

i ) (4.20)

where ~gi is a vector distribution with i denoting the discrete velocity component of the

magnetic lattice ~ei (similar to ~ci), ~gi
eq is the value of ~gi at equilibrium, and τg is the

relaxation rate related to resistivity by η = c2
s

(
τg − 1

2

)
and cs is the speed of sound of the

lattice. The importance of the vector magnetic distribution approach is that it is able to

enforce the critical ∇ · ~B = 0 constraint automatically and not need divergence cleaning

as required by standard CFD algorithms.

Physically, this kinetic model for the magnetic field has no direct analog, especially

since “collisional” effects in the magnetic field represent the resistivity. A simplistic ap-

proach to rationalizing the concept is to imagine that the individual particles create their

own magnetic field which follow them as they move through space. The fluid distribution

describing the collection of particles can be mimicked for the collection of corresponding

magnetic fields. The total contribution of generated magnetic fields in a local region sum

to represent the macroscopic magnetic field of that region. Lattice Boltzmann is not at-

tempting to model the true kinetics of the system, instead it tries to model the MHD

equations at the macroscopic scale in a mesoscopic kinetic form. Some butchering of the

kinetics is justifiable as long as they recover the MHD equations in a Chapman Enskog

expansion.

The fluid equilibrium must be modified such that a force balance occurs between the

pressure gradient and the quasi-neutral Lorentz force (∇P − ~J × ~B = 0) with ~J defined

in (4.6). The equilibrium is then expanded in Hermite polynomials as found in [9]. In 2D,
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the new fluid equilibrium appears as

f eq
i = wiρ

(
1 +

1

c2
s

~ci · ~u+
1

2c4
s

(~ci · ~u)2 − 1

2c2
s

~u 2

)
+
wi
2c4
s

(
1

2

∣∣∣ ~B∣∣∣2 |~ci|2 − (~ci · ~B)2
)

(4.21)

where cs is the speed of sound of the lattice and is typically set to cs = 1√
3
.

The magnetic equilibrium can be set to any simple distribution where the zeroth

moment is equal to the magnetic field

∑
i

gαi = Bα (4.22)

and the first moment is equal to the Lorentz tensor

∑
i

cαig
eq
βi = uαBβ −Bαuβ . (4.23)

This distribution in 2D is

geq
βi = wi

(
Bβ +

cαi
c2
s

[uαBβ −Bαuβ]

)
(4.24)

to cubic error in terms of ~u and ~B.

4.3.1 Lattice Velocities

The new magnetic vector distribution only has one conserved moment per vector

component in any dimensional space. Following the rules from sec. 3.2, in 2D, only three

moments are required from each vector component to reproduce the induction equation (1

magnetic field and 2 elements from the quasi-neutral Lorentz tensor). In 3D, this becomes

four moments (1 magnetic and 3 elements from the Lorentz tensor). As can be seen, the

magnetic vector distribution requires fewer moments and can take advantage of a smaller
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number of lattice vectors than the scalar fluid distribution. It is then possible to run a

simulation with the fluid on one type of lattice and the magnetic field simultaneously on

a second type of lattice, as long as the conserved moments (ρ, ~u, ~B) can be defined at all

points on both lattice types. An example would be if the fluid is run on the D2Q9 lattice

while the magnetic field is run on the D2Q5 (with missing corner velocities from D2Q9)

lattice. The points on the D2Q5 and D2Q9 lattices overlap, allowing the macroscopic

variables to be easily defined at every point in both lattices.

4.4 Return to MHD equations

Recovering all three MHD equations from the new distributions is performed just as

before in sec. 3.4. The scalar fluid distribution reproduces the continuity and momentum

equation in the same way as before since the only change is in the equilibrium. One notable

change is that the second moment’s equilibrium has become

∑
i

cαicβif
eq
i = Πeq

αβ = ρ

(
δαβ

1

3
+ uαuβ

)
+

1

2
B2δαβ −BαBβ . (4.25)

The induction equation is found in the same manner as the fluid by following the steps

found in sec. 3.4 for the magnetic vector distribution at the zeroth moment.

4.4.1 ∇ ·B = 0

In general, when dealing with ideal MHD, the Maxwell equation, ∇· ~B = 0, tends to be

satisfied implicitly. As resistivity is incorporated, we typically find that ∇· ~B = 0 must be

manually enforced in simulations. In order to enforce this physical law in resistive MHD,

a process called divergence cleaning must be employed. Divergence cleaning is performed

by subtracting the “unphysical” part of the magnetic field represented as ∇φ where the
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magnetic field is represented as ~B = ∇ × ~A +∇φ. Subtracting this unphysical quantity

requires the Fourier transform, a bottleneck step in parallel computation.

Divergence is satisfied automatically in Dellar’s model. According to [13], the diver-

gence of the magnetic field was found to be < 10−16 in numerical experiments using 64-bit

(17 digit) IEEE floating point arithmetic. This precision is explained by maintaining that

the trace of the first moment is zero to second order in the Chapman-Enskog expansion.

At third order, a lack of isotropy occurs, but as stated, this error was found to be incre-

dibly small and thus negligible. This automatic precision of ∇ · ~B in resistive MHD is an

important improvement over CFD for extreme parallelizability.
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CHAPTER 5

Characteristics of Simulations

This chapter will focus on some of the simulation characteristics used to verify the

accuracy of the new LB models expressed in this thesis. Two important characteristics ex-

plored here are related to the energy spectrum of turbulent flows and the Kelvin-Helmholtz

instability. Firstly, the energy spectrum of turbulent flows in 2D and 3D for both Navier-

Stokes and MHD are expected to carry certain predictable quantitative and qualitative

attributes, if enough time to evolve has elapsed. These attributes exist regardless of a

flow’s initial conditions.

The second set of characteristics used pertain to the simulation of the Kelvin-Helmholtz

(KH) instability. The early time evolution of many instabilities can be predicted analy-

tically with a certain level of accuracy by linearization. Given that these instabilities are

some of the only ways to analytically predict the evolution of turbulent flows, they are

crucial in verifying the accuracy of turbulence models and simulations. In this thesis, the

Kelvin-Helmholtz instability is used to verify accuracy in each model.
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5.1 Energy Spectrum

The energy spectrum of an evolved turbulent system can be an important indicator

of simulation accuracy. As new models are created, they are typically expected to follow

“universal” spectral forms. A simulation without these expected spectral forms can be

ruled as not modeling physical fluids unless a theory predicts otherwise. Much work has

gone into predicting the spectra of evolved turbulent systems.

The energy spectrum of a spatial simulation can be generated by taking the Fourier

transform of the full simulation space. This is done separately for each vector component of

the fluid momentum (square root of kinetic energy
√
ρuα) and magnetic field (square root

of magnetic energy Bα) to obtain the kinetic spectrum and magnetic spectrum respectively.

The Fourier transform has changed the grid dimensions from spatial position (x, y, z) to

wavenumber (kx, ky, kz). The square root of the total energy for a particular wavenumber

is then the surface elements drawn out by some radius k from wavenumber (0, 0, 0). The

components of the kinetic spectrum can then be squared (multiplied by its own conjugate),

added to other components, and normalized for the one-dimensional kinetic spectrum of

the system. The same steps can be done for the magnetic spectrum and adding the two

spectra together provides the total energy spectrum of the system.

An example of a total energy spectrum is presented in Fig. 5.1 with log-log scaling,

allowing the spectra in the inertial subrange to be exhibited by a straight line. The plot

shows three basic regions of motion: the energy containing range made up of large scale

mixing in the fluid, the inertial subrange at the intermediate scale, and the dissipation

range where fluid motion is dissipated into heat. Each range plays an important role in

the evolution of the system but none are as frequently used in verifying simulation accuracy

as the inertial subrange; since the inertial subrange is the only range that has “universal”

characteristics for all simulations.
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FIG. 5.1: A model energy spectrum. Most of the energy is in large scales on the left
side while the dissipative range on the right has very little energy. In the inertial subrange,
energy cascades over time to smaller scales and maintains an average slope of k−5/3.

According to the second Kolmogorov similarity hypothesis, any turbulent flow at

sufficiently high Reynold’s number will produce an energy-spectrum function in the inertial

subrange equal to

E(k) = Cε2/3k−5/3 (5.1)

where C is a universal Kolmogorov constant supported by experimental data to be C = 1.5

and ε is the rate of dissipation [14]. This slope is well accepted and frequently used as a

measure of model/simulation accuracy.

Similarly, the energy containing range at small k is expected to have a slope of kp0

with p0 = 2, while the dissipation range is expected to decay very rapidly at large k,

E(k) ∼ k−5/3e−k [14]. These slopes are much more difficult to measure since the slope

approaches k−5/3 as k approaches the inertial subrange and so they are not typically used

to verify model accuracy.

The inertial subrange is an intermediate scale in which energy is typically transferred

from the large-scale energy containing range to the small-scale dissipation range. This
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cascading of energy to smaller scales explains why larger vortices typically break up into

smaller vortices. The exception to the rule occurs in 2D Navier-Stokes where inverse

cascading occurs transferring energy from small scales to large scales. In 2D Navier-

Stokes, small vortices with the same spin direction will join over time until only two large

vortices of opposite spin remain due to the existence of enstrophy as a conserved quantity

(as viscosity → 0), where enstropy is the mean square vorticity. This implies that models

designed to measure the small scales more accurately are better used in direct cascade

systems rather than 2D Navier-Stokes. Simply changing the 2D Navier-Stokes model into

a 2D MHD model allows direct cascading to occur.

5.2 Kelvin-Helmholtz Instability

A Kelvin-Helmholtz instability is one that exists due to a shear velocity difference.

The simplest picture of such an instability (Fig. 5.2) can be imagined as a fluid that

has been separated into a lower and upper portion, labeled 1 and 2 respectively. The two

fluids are separated vertically (ẑ) with their own respective density (ρ) and velocity (~u). To

create the Kelvin-Helmholtz instability in this model, the velocity of each fluid is assumed

to be mainly in the horizontal (x̂) direction parallel to the plane of separation of the fluids

(zs). As the two fluids move past each other, vortices begin to form from variations in the

fluid velocity which signify an unstable flow. This instability will continue to grow and

incite turbulence in Navier-Stokes fluids. However, a MHD fluid can be stabilized amidst

a Kelvin-Helmholtz instability if a strong magnetic field exists parallel to the direction of

flow. This stability can be explained by the fact that (~u× ~B) = 0 when the vectors ~u and ~B

are parallel. When ~u begins a transverse flow, those particles will begin cyclotronic motion

about the magnetic field lines, while the overall flow velocity will be maintained. The size

of the cyclotronic orbits will be determined by a ratio of flow velocity vs magnetic field
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strength. A weak magnetic field will allow large cyclotronic orbits which result in wider

vortices and greater instability of MHD flow while a strong magnetic field will enforce

tight cyclotronic orbits and prevent wide vortices from manifesting. The derivation of the

analytic solution for the dispersion relation of the KH instability of a MHD fluid follows.

FIG. 5.2: Diagram of two-fluid Kelvin-Helmholtz instability for MHD fluid.

5.2.1 Analytic Solution

The linear stability of the KH instability can be determined analytically via the dis-

persion relation. A perturbed plane wave solution is assumed for the MHD quantities

44



~u→ Ux̂+ ε δ~uei(kxx+kyy−ωt) (5.2a)

~B → B0x̂+ ε~hei(kxx+kyy−ωt) (5.2b)

p→ p+ ε δpei(kxx+kyy−ωt) (5.2c)

ρ→ ρ+ ε δρei(kxx+kyy−ωt) (5.2d)

zs → zs + ε δzse
i(kxx+kyy−ωt) (5.2e)

where O(1) terms only vary with respect to ẑ and zs is the vertical position of the boundary

between the two fluids. The perturbed plane wave solutions are inserted into the MHD

evolution equations from Chapter 4 but slightly edited to include the effects of gravity

d

dt
ρ =

∂

∂t
ρ+ (~u · ∇) ρ = 0 (5.3a)

∂

∂t
ρ~u+ ρ (~u · ∇) ~u = −1

ρ
∇p+

(
∇× ~B

)
× ~B + ~gδρ (5.3b)

∂

∂t
~B =

(
~B · ∇

)
~u− (~u · ∇) ~B (5.3c)

d

dt
δzs =

∂

∂t
δzs + (~u · ∇) δzs = w(zs) (5.3d)

where ~g is the gravitational acceleration equal to −gẑ, the zs equation is derived using

the derivative chain rule, and w(z) is the vertical component of the perturbed velocity

δ~u = (u, v, w) of the fluid at height z. After inserting (5.2) into (5.3) while ignoring O(ε2)

terms, the MHD equations become
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i (kxU − ω) δρ+ w∂zρ = 0 (5.4a)

iρ (kxU − ω)u+ ρ(∂zU)w = −ikxδp (5.4b)

iρ (kxU − ω) v − iB0 (kxhy − kyhx) = −ikyδp (5.4c)

iρ (kxU − ω)w −B0 (ikxhz − ∂zhx) = −∂zδp− gδρ (5.4d)

− iωh = iB0kxu + hz∂zUx̂− iUkxh (5.4e)

i (Ukx − ω) δzs = w(zs) (5.4f)

Following the procedure in Chandrasekhar [15], the momentum equations are further

simplified through linear combinations of (5.4) and the incompressibility equation∇·~u = 0.

Equation (5.4e) can be written explicitly for each component of the magnetic field ~h as

hx =
kxB0

kxU − ω

(
u− i∂zU

kxU − ω
w

)
(5.5a)

hy =
kxB0

kxU − ω
v (5.5b)

hz =
kxB0

kxU − ω
w (5.5c)

The expressions for ~h (5.5) and the continuity equation (5.4a) are then inserted into the v

46



(5.4c) and w (5.4d) momentum equations

iρ (kxU − ω) v − kxB
2
0

kxU − ω

(
ξ − ky∂zU

kxU − ω
w

)
= −ikyδp (5.6a)

iρ (kxU − ω)w + kxB
2
0∂z

(
1

kxU − ω

(
u− i∂zU

kxU − ω
w

))
− ik2

xB
2
0

kxU − ω
w = −∂zδp− ig

∂zρ

kxU − ω
w

(5.6b)

where ξ = ikxv − ikyu (5.6c)

and ξ represents the vorticity of the fluid. The vorticity can be rewritten in terms of the

w momentum by multiplying the u (5.4b) and v (5.6a) momentum equations by −iky and

+ikx respectively, then adding the equations together so that

ξ =
ky∂zU

kxU − ω
w . (5.7)

Substituting the vorticity in terms of the w momentum (5.7) back into the v momentum

equation (5.6a) reduces it to

iρ (kxU − ω) v = −ikyδp (5.8)

Now that the v momentum equation is simplified, we will combine the u (5.4b) and

v (5.8) momentum equations by multiplying them respectively by −kx and −ky and then

adding them together to obtain

ρ (kxU − ω) ∂zw − ρkx (∂zU)w = ik2δp . (5.9)

Using the two definitions of vorticity, (5.6c) and (5.7), as well as the incompressibility
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equation, ∇ · ~u = 0, we can build a useful relation relating ik2u to the w momentum for

further simplifications.

ik2u = − (kx∂zw + kyξ) = −
(
kx∂zw +

k2
y∂zU

kxU − ω
w

)
(5.10)

Now this new relation can be used to simplify the w momentum equation (5.6b) further

by first multiplying (5.6b) by −ik2 as

ik2∂zδp = ρk2 (kxU − ω)w − kxk2B2
0∂z

(
1

kxU − ω

(
iu+

∂zU

kxU − ω
w

))
− k2

xk
2B2

0

kxU − ω
w + gk2 ∂zρ

kxU − ω
w

(5.11)

and then applying the ik2u relation (5.10). The new w momentum is

ik2∂zδp = ρk2 (kxU − ω)w + k2
xB

2
0

{
∂z

(
∂zw

kxU − ω

)
− k2w

kxU − ω

}
−k3

xB
2
0∂z

(
∂zU

(kxU − ω)2w

)
+ gk2 ∂zρ

kxU − ω
w .

(5.12)

Finally, the v and w momentum equations are combined by replacing the δp term in (5.12)

by (5.9), producing

∂z {ρ (kxU − ω) ∂zw − ρkx (∂zU)w}

= ρk2 (kxU − ω)w + k2
xB

2
0

{
∂z

(
∂zw

kxU − ω

)
− k2w

kxU − ω

}
−k3

xB
2
0∂z

(
∂zU

(kxU − ω)2w

)
+ gk2 ∂zρ

kxU − ω
w .

(5.13)

This is the ultimate MHD evolution equation for the KH instability where all MHD equa-

tions have been combined into one, allowing the production of a dispersion relation. Inte-
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grating this equation (5.13) over z at z = 0, we get the final dispersion relation.

∆0 {ρ (kxU − ω) ∂zw} = k2
xB

2
0∆0

(
∂zw

kxU − ω

)
+ gk2∆0(ρ)

(
w

kxU − ω

)
0

(5.14)

where ∆0(x) defines a difference of the parameter x across the boundary layer at z = 0.

In order to solve this equation across the fluid border, a general solution is needed

for the w momentum. The general solution is found by identifying the quantity conserved

across the fluid border. Using equation (5.4f), we find the conserved change over the

boundary δzs = w
Ukx−ω . The boundary conditions are then defined for the general solution

such that the extreme upper (z = +∞) and lower (z = −∞) boundaries reduce w to 0 and

δzs1 = δzs2 at the boundary where z = 0. With these boundary conditions, the general

solutions for the lower and upper w are respectively

w1 = A (kxU1 − ω) e+kz (z < 0) (5.15)

w2 = A (kxU2 − ω) e−kz (z > 0) (5.16)

The ∆0 functions can now be solved across the fluid border using the general solution

to w. The dispersion relation is simplified to become

ρ1 (kxU1 − ω)2 + ρ2 (kxU2 − ω)2 = gk (ρ2 − ρ1) + 2k2
xB

2
0 (5.17)

as we assign subscripts distinguishing the quantities of the two fluids (1 for lower fluid and

2 for upper fluid).

At this point, I will set ρ1 = ρ2 = ρ0 as the fluid density is unchanged across the

boundary layer (z = 0) for all problems modeled in this thesis. Under these conditions,

the gravitational field plays no role. The KH dispersion relation with a uniform magnetic
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field parallel to fluid flow is then

ω

kx
=

1

2
(U1 + U2)±

√
B2

0

ρ0

− 1

4
(U1 − U2)2 (5.18)

This relation shows that ω
kx

will remain strictly real and thus stable under the condition

VA =
B0√
ρ0

≥ 1

2
|U1 − U2| (5.19)

where VA is the Alfvén velocity (in simplified units). Further discussion on the Kelvin-

Helmholtz instability for a MHD fluid can be found in Chandrasekhar [15].

5.2.2 KH Simulation Results

(a) (b)

FIG. 5.3: Initial profile of the KH jet instability simulated in LB. (a) Profile of the
initial jet’s vertical speed

[
uy(x) = U0 sech2

(
2π
L
x
)]

(blue) and vorticity [∇× ~u] (orange)
along the horizontal axis of the simulation grid. (b) A 2D plot of the initial vorticity of
the KH jet (red is positive, blue is negative).

In this section, a basic proof of concept simulation for LB MHD is provided as an

example of functionality. This example is also meant to be used for comparison against

the LB MHD models presented later in this thesis, which all use the KH instability as

50



t = 50k steps t = 150k steps t = 500k steps

(a) No magnetic field present

(b) Strong magnetic field parallel to flow

FIG. 5.4: KH LB simulation of a moderate velocity jet with gridsize L = 512,
magnetic field strength B0 and fluid velocity U0.

a measure of accuracy. The KH instability is modeled as a jet of fluid with an upward

vertical velocity against a motionless fluid background. The initial profile of the jet is

presented in figure 5.3 with velocity uy(x) = U0 sech2
(

2π
L
x
)
. It is worth noting that in 2D

MHD, the vorticity (∇× ~u) and current (∇× ~B) are solely in the ẑ-direction (in or out of

the plane).

Figure 5.4a shows the evolution of the KH instability where no magnetic field is

present. As can be seen, the jet eventually breaks up. Figure 5.4b shows the same

simulation with a strong magnetic field parallel to the flow of the jet. The jet initially

appears to become unstable but eventually stabilizes in a wider stance. The widening of
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t = 50k steps t = 150k steps t = 500k steps

(a) No magnetic field present

(b) Strong magnetic field parallel to flow

FIG. 5.5: KH LB simulation of a high velocity jet with gridsize L = 512, magnetic
field strength B0 and fluid velocity 2.5U0. Numbers are compared against those used in
figure 5.4.

the jet occurs when eq. (5.19) is not satisfied. Although the magnetic field is strong, it is

not strong enough to stabilize the initial high velocity of the jet. As the instability grows,

the kinetic energy of the jet is spread more thinly over the transverse space causing the

maximum fluid velocity at the center to drop. Once the maximum fluid velocity drops to

become equal with the Alfvén velocity, the jet finally stabilizes in its new, wider stance.

A second set of simulation results are shown in figure 5.5 with a much higher initial

velocity (2.5U0) and the same magnetic field strength (B0). With no magnetic field present

(Fig. 5.5a), the jet breaks up wildly to the point of breaking symmetry. The inverse

cascading of 2D Navier-Stokes can also be clearly seen as the four small orange vortices at
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t = 50k combine into two moderate-sized orange vortices at t = 150k and finally into one

large orange vortex at t = 500k. When the vertical magnetic field is present (Fig. 5.5b),

small striating vortex bands can be seen initially at t = 50k. These bands result from

direct cascading of energy to small scales in MHD and a lack of initial KH stabilization by

the magnetic field. As mentioned in the previous paragraph, the jet velocity lowers as the

jet widens until the jet velocity drops below the Alfvén velocity. Since the initial velocity

was much higher, so is the final width of the jet.
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CHAPTER 6

Partial Entropic MRT LB Model

The lattice Boltzmann (LB) algorithm has proven to be an extremely interesting

method for the solution of Navier-Stokes [16] flows because of its simplicity, extreme pa-

rallelizability and accuracy. One of the major constraints on LB is that it is prone to

numerical instability in certain parameter regimes. There is no inherent mechanism to

enforce the LB distribution function to remain non-negative in time, particularly in strong

turbulence simulations. In this chapter, a new entropic multiple relaxation time (MRT)

model is presented for LB MHD with the goal of improving stability. While this new model

will not enforce the scalar distribution to remain non-negative, it will reduce the tendency

of certain distributions to become unstable without changing the MHD equations. This

is done by dynamically adjusting the individual relaxation rates of certain distributions

as a function of minimum fluid entropy without changing the transport coefficients in the

MHD equations [3].
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6.1 Multiple Relaxation Time (MRT)

The LB equation (3.1) and specifically, the collision step of the LB method (3.2a)

assumes that all fluid distributions, regardless of velocity, approach equilibrium at the

same rate. This single relaxation time (SRT) is represented by a single τ used for all

distributions. Although this approach has had great success and simplicity for the LB

method, exploration of multiple relaxation times (MRT) has opened the door to greater

stability improvements for the LB approach in general.

There are quite a few MRT extensions [17–20] of the original SRT LB-MHD model of

Dellar [13]. However, for simplicity, we shall work with only an SRT model for the vector

magnetic field distribution ~gk, and an MRT model for the scalar distribution function fi,

where the subscripts denote the velocity streaming directions

(∂t + ∂γcγi) fi =
∑

j X
′
ij

(
f eq
j − fj

)
(6.1)

(∂t + ∂γcγk)~gk = Y
′
(
~g

(eq)
k − ~gk

)
(6.2)

with the moments

∑
i fi = ρ ,

∑
i fi~ci = ρ~u and

∑
k ~gk = ~B (6.3)

It is convenient to employ the summation convention only over the Greek indices which

give the vector nature of the fields (γ = 1, 2 for 2D), while the Roman indices run over the

corresponding (kinetic) lattice vectors ~ci, i = 0..8 for the 9-bit model in 2D (see Fig. 3.1).

Summation over the Roman indices will always be made explicit. X
′
ij is the MRT collision

operator for the evolution of fi while Y
′

is the SRT for the evolution of ~gk. The MHD

viscosity and resistivity transport coefficients are determined from these kinetic relaxation
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rates.

It is well known that the minimal LB representation of MHD equations on a square

lattice is a 9-bit velocity streaming for fi and just 5-bit streaming for ~gk. This is because

~u is defined from the first moment of fi while ~B is defined as the zeroth moment of ~gk. It

is convenient (and helpful for numerical stability) to employ the 9-bit streaming model for

both kinetic equations. To recover the MHD equations in the Chapman-Enskog limit of

the (discrete) kinetic equations, we take the well-known choice of relaxation distribution

functions f eq
i and ~g eq

k

f eq
i = wiρ

[
1 + 3 (~ci · ~u) +

9

2
(~ci · ~u)2 − 3

2
~u 2

]
+

9

2
wi

[
1

2
~B2~c 2

i −
(
~B · ~ci

)2
]

(6.4)

~g
(eq)
k = wk

[
~B + 3

{
(~ck · ~u) ~B −

(
~ck · ~B

)
~u
}]

(6.5)

for i and k = 0..8.

In MRT-LB it is natural to perform the collisional relaxation in moment space (be-

cause of the local conservation of mass and momentum constraints) and the streaming in

the distribution space fi, ~gk. There is a 1-1 map between these spaces. For the moment ba-

sis it is obvious to include the conservation moments (the zeroth and first moments of the

fi and the zeroth moment of ~gk), while the remaining higher moments are somewhat arbi-

trary [10, 11]. In particular, we consider the same constant 9× 9 T- matrix that connects

the scalar distributions (fi, i = 0..8) to their moments (Mi, i = 0..8) as for the vector mag-

netic distributions (~gk, k = 0..8) with their moments ( ~Nk, k = 0..8). The transformation

follows from section 3.3 and equations (3.4) and (3.6)

Mi =
∑8

j=0 Tijfj , ~Nk =
∑8

q=0 Tkq~gq (6.6)
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with

T =



1

cx

cy

cxcy

c2
x

c2
y

c2
xcy

cxc
2
y

c2
xc

2
y



=



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 1 1



(6.7)

where the Cartesian components of the corresponding 9-dimensional lattice vectors are

just

cx = {0, 1, 0,−1, 0, 1,−1,−1, 1} , cy = {0, 0, 1, 0,−1, 1, 1,−1,−1} . (6.8)

For the scalar distributions, the 1st row of the T-matrix is just the conservation of density

while the 2nd and 3rd rows are just the conservation of momentum (2D). For the vector

magnetic distributions the 1st row of the T-matrix is the only collisional invariant.

With this moment basis, the MRT collisional relaxation rate tensor X
′
ij is diagonalized

with the T− matrix as a similarity transformation. It is convenient to denote this diagonal

matrix with elements Xiδij. In the D2Q9 phase space, the relaxation rate Xj is associated

with the corresponding moment Mj, j = 0..8. Similarly for the magnetic distributions in

SRT, there is just a single collisional relaxation rate for each magnetic moment ~Nk, and

this will be denoted by Y .

In particular, the equilibrium moments can be written in terms of the conserved
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moments:

M eq
0 = M0 = ρ M eq

1 = M1 = ρux M eq
2 = M2 = ρuy

M eq
3 = ρuxuy −BxBy M eq

4 = 1
6

(
6ρu2

x + 2ρ− 3
(
B2
x −B2

y

))
M eq

5 = 1
6

(
6ρu2

y + 2ρ+ 3
(
B2
x −B2

y

))
M eq

6 = 1
3
ρuy

M eq
7 = 1

3
ρux M eq

8 = 1
9
ρ
(
1 + 3u2

x + 3u2
y

)
(6.9)

N eq
α0 = Nα0 = Bα N eq

α1 = uxBα − uαBx N eq
α2 = uyBα − uαBy

N eq
α3 = 0 N eq

α4 = Bα
3

N eq
α5 = Bα

3

N eq
α6 = 1

3
(uyBα − uαBy) N eq

α7 = 1
3

(uxBα − uαBx) N eq
α8 = Bα

9
, α = x, y

(6.10)

6.2 Entropic Method and its Partial Extension to MHD

The Karlin group [3, 21] introduces the entropic procedure for Navier-Stokes flows by

separating the scalar lattice Boltzmann distribution into various moment-related groups.

In particular,

fi = ki + si + hi , i = 0..8 (6.11)

where the ki distributions correspond to those distributions with conserved moments, the

si distributions correspond to the stress/shear moments, and finally the hi distributions

correspond to the remaining higher order moments. Thus for the ki distributions

ki =
8∑
j=0

2∑
m=0

T−1
imTmjfj , i = 0..8 (6.12)

with the m−summation running from m = 0, 1, 2 since there are 3 conserved moments.

Similarly for si and hi. The si distributions corresponding to the stress/shear moments
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will come from the set

si ∈ {d, d ∪ t, d ∪ q, d ∪ t ∪ q} (6.13)

where d is the deviatoric stress, t is the trace of the stress tensor, and q represents the

third order moments. Here we choose, for simplicity, the moment contributions si to be

d ∪ t so that

si =
8∑
j=0

5∑
m=3

T−1
imTmjfj , i = 0..8. (6.14)

Moments 3, 4, and 5 are each second order moments in the D2Q9 model, and thus represent

the second order quantities (d ∪ t). The moment contributions to hi are then all the

remaining moments that do not contribute to either ki or si. Thus

hi =
8∑
j=0

8∑
m=6

T−1
imTmjfj , i = 0..8. (6.15)

Karlin et. al. [3, 21] now consider the entropy of the post-collisional state, and intro-

duce a parameter γ which yields an extremal to this entropy function. In MRT only some

of the relaxation rates affect the transport coefficient under Chapman-Enskog expansions

[14]. The transport coefficient in Navier-Stokes simulations is first affected by the stress

related distributions (si). The tunable parameter γ is introduced to replace the relaxation

rates for the higher order moment effects arising from the (hi) distributions. In particular,

one moves from the standard post-collisional distributions

f
′

i ≡ fi (t+ 1) = fi + 2β (f eq
i − fi) (6.16)

to f
′

i = fi − 2β∆si − βγ∆hi (6.17)

where β is related to the kinematic viscosity as ν = 1
6

(
1
β
− 1
)

and ∆si = si − seq
i ,

∆hi = hi − heq
i , while for the conserved moments ∆ki = ki − keq

i = 0.
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In order to maximize the entropy S [f ]

S [f ] = −
∑
i

fi ln

(
fi
wi

)
. (6.18)

one now writes the entropy in terms of the post-collisional state and the γ parameter. The

critical point of the entropy [3, 21] determines the tunable parameter γ from

∑
i

∆hi ln

(
1 +

(1− βγ) ∆hi − (2β − 1) ∆si
f eq
i

)
= 0 (6.19)

This is a rather computationally expensive root-finding procedure having to be done at

every point of the grid and at every timestep. Karlin et. al [3, 21] noted that if one invokes

the simple small argument expansion log(1 + x) = x + ... one can then readily determine

the entropic factor algebraically. The parameter determined algebraically is denoted by

γ∗:

γ∗ =
1

β
−
(

2− 1

β

)
〈∆s|∆h〉
〈∆h|∆h〉

(6.20)

where the inner product 〈A|B〉 =
∑
i

AiBi

f eq
i

. (6.21)

A more complete derivation is provided in Appendix C. On substituting γ∗ back into the

new post-collisional state (6.17), a maximal entropy state has been determined for Navier-

Stokes flows. The Karlin group successfully tested this approximation for the tunable

parameter γ∗(~x, t) in various simulations of 2D and 3D Navier-Stokes [3, 21]. One thus

sees that this entropic algorithm is a subset of MRT - but it has a dynamic entropic

parameter determined at every lattice point and every timestep algebraically for entropic

stabilization as opposed to the static relaxation times for typical MRT models.

Clearly, this analysis does not simply carry over to LB-MHD with possible non-positive

vector magnetic distributions. Hence we make the ansatz for our partial entropic algo-
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rithm that the entropic parameter in LB-MHD is still determined by Eq. (6.20) for the

corresponding LB-MHD ∆h and ∆s. The validity of our ansatz will now be tested against

various 2D MHD simulations.

Summarizing, our partial entropic LB-MHD algorithm consists of the following steps

(c.f., Karlin et. al. [3]):

1. Compute the conserved moments (ρ,u,B) (Eq. 6.6, 6.9, 6.10)

2. Evaluate the equilibria (f eq
i (ρ,u,B) , ~g eq

k (ρ,u,B)) (Eq. 6.4)

3. Compute s and seq (Eq. 6.12, 6.13)

4. Compute ∆si = si − seq
i

5. Compute ∆hi = hi − heq
i = fi − f eq

i −∆si

6. Evaluate γ∗ (Eq. 6.20)

7. Relax (Collide): f
′
i (Eq. 6.17), and corresponding ~g

′

k.

Standard LB-MHD is recovered for entropy parameter: γ(~x, t) = const. = 2. As

mentioned earlier, there is no attempt made to find a corresponding maximal entropy

state for the magnetic distribution function since the magnetic field in most problems of

interest undergoes field reversal. (e.g., in magnetic field reconnection..). However the effect

of working with the maximal entropy state for the particle distribution function will have

direct effects on the evolution of the magnetic field due to the coupling of the ~B-field in

the relaxation distribution function f eq as well as the coupling of the fluid velocity ~u in

~g eq.
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6.3 Partially Entropic LB-MHD Simulations

We first have benchmarked our partially entropic LB-MHD code against our earlier

(totally non-entropic) MRT LB-MHD simulations of a Kelvin-Helmholtz jet instability in

a magnetic field [17]. Here we show the physics recovered by the variations in the partially

entropic parameter γ∗ and its variations away from the MRT value of γ∗(~x, t) ≡ 2.0 for

sufficiently weak axial ~B that the jet is unstable. Some runs were then performed to

examine the increased numerical stability in the parameter regime of the mean velocity ~u

and magnetic field ~B due to the partially entropic algorithm. Following this we consider

the interplay between Kelvin-Helmholtz instability and the tearing mode instability and

qualitatively compare our results to that of Chen et. al. [22]. Finally we qualitatively

compare our simulations with the Biskamp-Welter profile.

6.3.1 Magnetized Kelvin-Hemholtz Jet Instability

We now consider the partially entropic-LB-MHD algorithm for the breakdown of a

Kelvin-Helmholtz jet in a weak magnetic field. In our simulations, the initial parameters

are so chosen that there is a direct cascade of energy to small spatial scales (indicating the

existence of a magnetic field) but the magnetic field is sufficient weak so as not to stabilize

the jet. This simulation in general is to be compared with the KH simulation in section

5.2.2. The initial conditions are given as

~u(t = 0) = U0 sech2(x)ŷ, ~B(t = 0) = B0ŷ (6.22)

see figure 5.3 for a graphic profile of initial conditions.

The evolution of the vorticity, ω, the current, j, and the entropic stabilization pa-

rameter γ∗ for this 2D jet is plotted in Fig. 6.1. With the (dimensionless) choice of
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B0 = 0.005U0, the jet breaks into a Kelvin-Helmholtz vortex street (t ≤ 266k). There is

then further symmetry breaking as the vortex street is broken up, leading to vortex-vortex

reconnection (ala 2D Navier-Stokes turbulence), as well as the generation of small scales

eddies (characteristic of 2D MHD) for t > 266k. One notices that the partial entropy

parameter γ∗ in Fig. 6.1 deviates from the ordinary LB-MHD value of γ∗(~x, t) = 2 where-

ver there are significant number of small eddies. These are regions of steep gradients and

it is in these regions where the partial entropic stabilization of the simulation occurs. It

is important to note that this partial entropy stabilization is occurring from local infor-

mation at each lattice site. This is reminiscent of LB where gradients can be computed

from local moments of perturbed distributions: e.g., in large eddy simulation modelings

in the Smagorinsky model, the mean velocity gradients are determined from simple local

moments. For stronger magnetic fields, the jet will be stabilized and is of little interest

for our partial entropic-LB-MHD model, [17]. A spectral plot of the total energy of the

Kelvin-Helmholtz simulation at t = 500k is presented in Fig. 6.2 with a slope of k−
5
3 . This

spectral plot corresponds to the final timestep in Fig. 6.2.

Stability Improvements from the Entropic Algorithm

Some numerical stability boundaries were investigated between ordinary LB-MHD and

our partial entropic-LB-MHD with the γ∗ parameter on a grid of 10242 for the Kelvin-

Helmholtz jet. We found that the partial entropic-LB-MHD algorithm permitted a max-

imal mean velocity ~U0,max to be increased by a factor of 2 in a purely Navier-Stokes

turbulence simulation (i.e., no ~B-field) while the velocity maximum could be increased by

a factor of 8 when there was a strong stabilizing ~B-field. As regards the magnetic field

(at fixed ~U0), the partial entropic-LB-MHD algorithm permitted an increase by a factor of

2 in ~B0. In the partial entropic-LB-MHD algorithm the viscosity could become arbitrary

small, while ordinary LB-MHD the minimum stable viscosity was 10−5 when ~B0 = 0, and
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Vorticity(ω) Gamma(γ) Current(j)

t = 44k

t = 80k

t = 266k

t = 344k

t = 500k

FIG. 6.1: Entropic MRT evolution of a Kelvin-Helmholtz jet with very weak
axial magnetic field: B0 = 0.005U0. The column 2D plots are the vorticity ω, the
entropy parameter γ∗, and the current j. The jet is unstable forming a von-Karman like
vortex street (time t = 44k). These vortices start to generate secondary smaller vortex
streaks (t = 80k) - where the entropy factor becomes important. The vortex street then
becomes unstable (t = 344k) with vortex-vortex reconnection dominating shortly after
the break-up of the vortex street. However by t = 500k strong subsidiary vortices are
generated because of the 2D MHD turbulence with significant corresponding regions of
variations of the entropic parameter away from 2. Note that the color scheme is held
constant for all time snapshots. Spatial grid 10242
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FIG. 6.2: Spectral plot of the Entropic MRT Kelvin-Helmholtz simulation at
t = 500k where gridsize is 10242 and the slope of the dashed line is k−1.67.

10−2 when there was a strong stabilizing ~B0. No substantial stability limits were found on

the achievable minimum resistivity.

It should be stressed that the computational overhead of computing this entropic

parameter γ∗ is quite small, primarily because it is determined algebraically from local

information only.

FIG. 6.3: Magnetic field line comparison in EMRT simulation against Chen Fig.
6a. A snapshot of the (a) magnetic field lines (and velocity fields) from a Chen et. al.
[22] supersonic Alfvenic simulation, their Fig. 6a, compared to our (b) entropic LB-MHD
simulation on 10242 grid for the same initial profiles.
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FIG. 6.4: Magnetic field line comparison in EMRT simulation against Chen Fig.
4a. A snapshot of (a) the magnetic field line contours (and velocity field) for zero initial
shear, Chen et. al. [22] Fig. 4a, and (b) from our entropic LB-MHD algorithm on a 10242

grid.

6.3.2 Chen et. al. Profile

Chen et. al. [22] has considered the linear and nonlinear evolution of Kelvin-Helmholtz

(velocity shear) vs. the tearing mode (magnetic shear) instabilities in 2D compressible

MHD. Their closure includes an evolution equation for the enthalphy as well as various

resistivity profiles using standard CFD techniques. Their initial profiles are

uy(x, t = 0) = −U0 tanh(x), By(x, t = 0) = B0 tanh(x). (6.23)

Thus our comparisons can only be qualitative, and we only consider the Chen et. al.

[22] simulations when they keep their resistivity constant. Typically, when the velocity

is below the Alfven speed, it stabilizes the tearing mode and so reduces the reconnection

rate. However, if the velocity is above the Alfven speed the Kelvin-Helmholtz instability

sets in. In our first partial entropic LB-MHD simulation, we consider super-Alfven velocity

shear flow and the Kelvin-Helmholtz induced magnetic islands due to reconnection in Fig.
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FIG. 6.5: Evolution of the magnetic field lines from our partial entropic LB-
MHD code of Chen et. al. [22] Fig. 4a with zero initial shear velocity in a uniform
magnetic field. Snapshots of the field lines are presented at each 8000 (8k) LB timesteps.
Grid 10242.

6.3. In Fig. 6.3a we show the simulation results of case 13 in Chen et. al. for the magnetic

field lines and compare them to those arising from our partial entropic LB-MHD model

for resistivity η = 0.001, Fig. 6.3b.

For the case of no initial shear, large magnetic islands are formed. A corresponding

snapshot is given of the magnetic field lines from the case 5 simulation in Chen et. al., Fig.

6.4a, and from our entropic LB-MHD model, Fig. 6.4b. In Fig. 6.5 we show the partial

entropic LB-MHD evolution of the magnetic field lines for this initial zero velocity shear

flow parameter set of Fig. 6.4. It seems for the case considered here, the enthalpy equation

in Chen [22] does not play a significant role.
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6.3.3 Biskamp-Welter Profile

We now consider the model of Biskamp and Welter [23] for decaying 2D MHD turbu-

lence, using their initial profiles

~u(x, y, t = 0) = U0 [sin(y + 0.5)x̂− sin(x+ 1.4)ŷ] (6.24)

~B(x, y, t = 0) = B0 [sin(y + 4.1)x̂− 2 sin(2x+ 2.3)ŷ] (6.25)

(These are a generalization of the canonical Orszag-Tang vortex). A snapshot of the

current lines are shown in Fig. 6.6 and compared with those from the Biskamp-Welter

simulation. In Fig. 6.7 we plot the corresponding 2D entropy parameter γ∗(x, y) at this

FIG. 6.6: Comparison of current lines in Entropic MRT simulation of Biskamp
[23] case A1. Snapshot of the current lines from (a) partial entropic LB-MHD code on a
grid of 10242 at time = 226k, (b) Biskamp-Welter, Fig. 11a

time snapshot. The lattice points at which γ∗(x, y) 6= 2 correspond to points where there

are effects of in our partial entropic LB-MHD algorithm. The energy dissipation rate for

this Biskamp-Welter case is shown in Fig. 6.8. This can be compared with figure 20 in

[23].
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FIG. 6.7: Plot of the entropic parameter γ∗ in an entropic MRT simulation of
Biskamp [23] case A1 after 226k timesteps on a 10242 grid. γ = 2.0 corresponds to
ordinary LB-MHD. Lattice points with γ∗ 6= 2.0 correspond to the effects of the partial
entropic LB-MHD algorithm.

FIG. 6.8: Plot of energy dissipation over time for the Biskamp-Welter profile.

6.4 Conclusion

The Karlin [3, 21] entropic Navier-Stokes algorithm has been extended to LB-MHD

and tested on 3 different problems: velocity shear flows exhibiting Kelvin-Helmholtz and/or

tearing instability, a generalized Orszag-Tang vortex and magnetized jet instability. The

partial entropy algorithm is applied only to the particle distributions while in using a vector

distribution for the magnetic field one must allow for magnetic field reversals. Hence, the

new partial entropic MRT LB MHD model is not fully entropic. The algorithm clearly

extends immediately to 3D, but because of the much greater computational costs we

have restricted our simulations to 2D for we can still capture turbulence effects of the
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generation of small scale motions since in 2D MHD energy cascades to small scales. Good

agreement has been found with the CFD simulations of Chen et. al. and Biskamp and

Welter. The partial entropic algorithm permits much larger ranges of velocity and magnetic

field amplitudes than could be found in standard LB-MHD algorithms. This greater

numerical stability is achieved at a quite small increase in computational costs since Karlin

et. al. have determined a simple algebraic approximation to the full entropic parameter.

This approximation is then carried over as an ansatz for our 2D LB-MHD model. Moreover

the extreme parallelization of this partial entropic LB-MHD algorithm is retained since

this algebraic entropic parameter γ∗ is determined purely from local information at each

lattice site. The accuracy of the under-resolved Navier-Stokes simulations of Bösch et. al.

[24] portend that this new (partial) entropy method could be a possible subgrid model

in itself. In some sense, this is the spirit behind pushing the magnitude of U0 and B0.

There is no claim on improved accuracy for this model. This partial entropic LB-MHD

algorithm is a subset of MRT models in which there is now a dynamical relaxation rate

determined for quasi-stabilization of the fluid flow by a well-defined procedure as opposed

to the standard static MRT relaxation rates.
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CHAPTER 7

Large Eddy Simulations

In the previous chapter, the partial entropic MRT method was introduced to improve

the stability and the possible accuracy of the LBM. In this chapter, large eddy simulations

(LES) are introduced to address the specific problem of computational cost of simulations.

A brief history and explanation for the need of LES are covered.

7.1 Relative Scales

Passing a problem from the physical world into an LB simulation requires an under-

standing of relative scales. To simplify the relationship between physical (with subscript p)

and LB (no subscript) scales, the non-dimensional scales (with subscript d) are introduced.

The relationship between the physical and non-dimensional scales is

t0 = tp
td

, r0 = rp
rd

, up = r0
t0
ud , νp =

r20
t0
νd (7.1)

where t0 and r0 are scaling factors between physical and dimensionless values which are

typically set to 1 and ν is the viscosity. The relationship between the non-dimensional and
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LB scaled counterparts is

r1 = L
rd

, t1 = t
td

, U = r1
t1
ud , ν =

r21
t1
νd (7.2)

where L is the number of LB cells required to equal length rd and t is the number of

timesteps required to equal time td. Similar to t0 and r0, the non-dimensional variables rd

and td are arbitrarily set to 1 for simplicity when no physical scale is being referenced.

7.2 Cost of DNS

A proper choice of L is necessary in order to fully resolve the dynamics of a problem.

A typical, fully resolved (L ≥ Lmin) simulation is considered a direct numerical simulation

(DNS). Lmin needs to be large enough that all scales of motion are included down to the

dissipation of kinetic motion into heat. The smallest microscale where this occurs is known

as the Kolmogorov length scale, defined as

ηk =

(
ν3
d

ε

)1/4

for ε =
u3
d

rd
. (7.3)

where ε is the dissipation rate. The Kolmogorov length scale (ηk) can be used to find

the lowest required resolution and thus the minimum required length to fully resolve a

problem. In LB units, ηk becomes

ηLB =
1

r1

(
ν3L

U3

)1/4

(7.4)

Since ηLB represents the smallest turbulent motions with units one over length, this

value provides the lowest resolution required for a fully resolved DNS. The minimum
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gridsize for said resolution is

Lmin =
rd
ηLB

=

(
UL

ν

)3/4

= Re3/4 (7.5)

with the Reynold’s number defined as

Re =
UL

ν
(7.6)

where U is the fluid velocity, L is the characteristic linear dimension (typically width) and

the Reynolds number (Re) is a dimensionless ratio which characterizes a specific problem.

In 2D LB, the minimum number of required gridpoints is (Lmin)2 = Re3/2 and for 3D LB,

(Lmin)3 = Re9/4. This is problem for turbulent simulations as the Reynolds number can be

very large for physical turbulent flows. For example, the red spot in Jupiter’s atmosphere

has Re = 1012 by estimating the velocity on the order of 100 m/s, the kinematic viscosity

of hydrogen on the order of 10−5m2/s, and a height of the atmosphere on the order of 100

km.

Along with the minimum gridsize required to use in memory, the computational cost

of a DNS scales as Re3 according to Pope [14]. This shows that a DNS generally has a

very high computational cost. In general, the computational cost to simulate any system is

proportional to the full number of cells (LD for a cubic grid) times the number of timesteps

(t). This formula can be written as

C = LDt = LD
(
L2νd

ν

)
= LD+2νd

ν
. (7.7)

If, for example, the number of cells along each dimension were doubled (L → 2L) for

increased accuracy in a 2D system without changing the Reynold’s number (ν → 2ν), the
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computational cost would be

C = (2L)2t = 4L2
(

(2L)2 νd
2ν

)
= 8L4νd

ν
. (7.8)

Just doubling the linear size of a 2D LB grid without changing the Reynold’s number will

quadruple the amount of computational time spent calculating one timestep and halve the

value of a single timestep, making the total computational cost 8 times greater!

At this point, it is important to note that nearly all computational effort in DNS is

expended on the smallest dissipative motions. Figure 7.1 shows the ratio of energy scales

in a full DNS. Notice that the dissipation range takes up 99.98% of the phase space while

the energy containing range and the inertial subrange which carry most of the energy and

anisotropy take up only a small portion at the center. A standard energy spectrum is

presented in Fig. 5.1 showing the amount of energy in each of these ranges. Although

most of the energy is found at large scales and cascades to smaller scales, some energy

backscattering occurs. This means energy at smaller scales can affect larger scales due to

nonlinearity in the convective term and qualitatively explains why high resolution in the

dissipative range is required.

7.3 Filtering

One approach to further reducing the minimum required gridsize is a technique called

Large Eddy Simulation (LES). This technique applies low-pass filters to all fields, removing

the high frequency scales and lowering their perceived resolution. An example of filtering

1D data is shown in Fig. 7.2. As can be seen, the filtered field line U has smoothed the field

line U , allowing the representation of U to be shown on a low resolution plot. Similarly, an

example of 2D filtering is shown in Fig. 7.3. As the DNS data in Fig. 7.3a is filtered, the
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FIG. 7.1: Diagram showing the relative size of the energy scales in a full DNS
[Cited from Pope [14], Fig. 9.4].

filtered data in figs. 7.3b and 7.3c is perceived to be of lower resolution and can actually

be represented on lower resolution grids. The definition of filtered quantity U relative to

its counterpart U is

U =

∫
G(r,x)U(x− r, t)dr (7.9)

where G(r,x) is some filter function normalized such that

∫
G(r,x)dr = 1 . (7.10)

A very commonly used filter function is the Gaussian. It is favorable because of it’s

similarity in both real space and phase space. The normalized Gaussian is defined as

G(r) =

(
6

π∆2

)D/2
exp

(
−6r2

∆2

)
(7.11)
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FIG. 7.2: 1D Filter Example cited from Pope [14].
The upper thin curve corresponds to the exact field U , and the upper bold curve corre-
sponds to filtered field U . The lower thin curve around 0 is the deviation u′ = U − U .
Note that the filtered fluctuations u′ are nonzero as shown by the bold curve around 0.

(a) (b) (c)

FIG. 7.3: 2D filtering example. Velocity field of DNS simulation from Lu et. al. [25].
(a) DNS without a filter applied. (b) DNS filtered using Box filter with filter width ∆ = L

32
.

(c) DNS filtered using a Box filter with a coarser filter width ∆ = L
16

.

where D is the number of dimensions of the Gaussian and ∆ is the filter width which

defines the strength of the filter. The Gaussian filter is also used for its nice isotropic
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properties where the zeroth, first, and second moments have known simple values

∫
G(r,x)dr =1 (7.12a)∫

rG(r,x)dr =0 (7.12b)∫
rαrβG(r,x)dr =

∆2

12
δαβ . (7.12c)

Other filter functions can be ideal for certain simulation or LES techniques. The sharp

spectral filter is a simple cutoff filter in phase space but is entirely non-local in physical

space and the converse is true of the box filter. Filtering does not automatically pro-

vide closure to LES, as will soon be discussed, and so some filters have specific analytic

approximations to closure, such as the Pao filter, but can be difficult to use.

For reference, the difference in a field before and after it is filtered is defined as

u′(x, t) ≡ U(x, t)− U(x, t) (7.13)

and it is important to note that a filtered difference is not zero (as it would be if the filter

was an averaging procedure)

u′(x, t) = U(x, t)− U(x, t) = U(x, t)− U(x, t) 6= 0 . (7.14)

7.4 Early LES

Applying a filter to a field will lower the field’s resolution but does not change the

minimum resolution required of the simulation. So in order to perform a filtered simula-

tion with a lower resolution, we need to know how to evolve the subgrid elements (those

required elements in the dissipation range removed by the low-pass filter). Essentially, in
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filtered Navier-Stokes, the gridsize would be reduced according to the filter width. Each

filtered field would evolve as standard Navier-Stokes at each grid point, then an additional

evolution term would be included to evolve the subgrid motions and maintain the accu-

racy of a higher resolution simulation. This approach was pioneered by Smagorinsky when

he proposed an ad-hoc solution for the subgrid evolution. Creating the new evolution

equations requires the existing equations to be filtered.

∂tu + (u · ∇) u = −∇P + ν∇2u (7.15)

∂tu + (u · ∇) u = −∇P + ν∇2u (7.16)

To provide closure to the filtered Navier-Stokes equations above and to have standard

evolution in the filtered terms as described above, (u · ∇) u needs to be replaced such that

(u · ∇) u = (u · ∇) u + ∂jτij (7.17)

where τij = uiuj− uiuj. τij now presents a closure problem whose solution is now assumed

by Smagorinsky to be related to the rate of strain tensor Sij such that

τij = −2Cs∆
2
∣∣∣S∣∣∣ Sij = −2νT Sij (7.18)

where Sij = 1
2

(∂jui + ∂iuj),
∣∣∣S∣∣∣ =

√
2SijSij, νT is a parameter representing the “subgrid

viscosity”, and Cs is the unknown Smagorinsky constant which is a factor specific to each

problem. This definition was chosen for the subgrid evolution because the small scale

regime is dominated by diffusion. Determining this Smagorinsky constant was originally

determined through trial and error. However, much work has gone into a mathematical

approach to finding Cs with previous LB-LES-NS modeling [26, 27] concentrating on the
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Smagorinsky closure for the subgrid stresses.

7.5 Advances in LES

Early advances in LES were quickly made to find a solution to Cs for specific filters,

such as the sharp spectral filter and Pao filter. The drawback here is that many of these

filters can be difficult to use in certain circumstances and typically requires some level of

approximation. Further advances in LES would determine Cs by limiting the filter width.

A very large filter width where ∆
L
→ ∞ has the property Cs → 0. The filtered field

U tends to the mean 〈U〉 with this approach and is very inaccurate at higher Reynold’s

numbers [14]. At high Reynold’s number, the large filter width forces the inertial subrange

to be modeled inaccurately by the subgrid evolution terms.

The Clark model requires a very small filter width ( ∆
ηk
� 1) allowing the filter function

to be Taylor expanded about the filter width. When a Gaussian filter is used, the second

order subgrid term (according to the Gaussian isotropic properties (7.12)) becomes

τij = uiuj − uiuj =
∆2

12
∂kU i∂kU j (7.19)

removing the need for Smagorinsky’s constant altogether. When Smagorinsky’s model is

used with the same small filter width, conflicting values for Cs are found for different filter

functions [14]. These conflicting results show that the Smagorinsky model provides a poor

description of the residual stresses at a detailed level. However, the wide usage and success

of the Smagorinsky model and its derivative models have shown that the ad-hoc form is

relatively accurate.

Recent advances [28, 29] in LES have found a general solution numerically for the

Smagorinsky constant, regardless of filter function. The approach applies a test filter Ũ
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to the filtered evolution equations to yield doubly filtered equations. The error between

the first filter and the test filter is then minimized to precisely calculate Cs at every

timestep. Although a general solution provides the most accurate results for a given LES

problem, the computational cost is comparatively high since the filtering and minimization

is recalculated at every timestep.

Mixed models are another recent advancement which attempts to combine various

LES models for greater accuracy and lower computational cost. LES is a useful and

almost necessary extension to Navier-Stokes and MHD for simulating physical flows since

DNS can require high computational cost to be fully resolved.

80



CHAPTER 8

LES model for LB MHD

Computational methods are stretched to the limit in trying to solve problems of

strong turbulence [4, 28, 30–32]. Direct numerical simulations (DNS) attempt to solve

the evolution equations by resolving all the scales excited in the turbulence. Hence, in

strong turbulence, DNS will quickly run into resolution problems: one will not be able

to resolve all the excited scales all the way down to the dissipation scales. Basically, the

computational cost of DNS scales as the Re3, where Re is the Reynolds number of the

flow. (The Reynolds number is basically the ratio of the nonlinear to linear terms in the

equations).

There have been attempts to extend Smagorinsky’s ideas to MHD, similar to those in

section 7.4 [29, 33–36]. The filtered MHD equations, Eqs. (8.1–8.3), contain the unknown
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subgrid stress tensors (8.4, 8.5), τ
(v)
αβ and τ

(b)
αβ .

∇ · u = 0 , ∇ ·B = 0 (8.1)

∂t u+ (u · ∇) u = −∇p+
(
B · ∇

)
B + ν∇2u+∇ · τ (v) (8.2)

∂t B =
(
B · ∇

)
u− (u · ∇) B + η∇2B +∇ · τ (b), (8.3)

where ∇ · τ (v) =
[
(u · ∇) u− (u · ∇) u

]
−
[(

B · ∇
)
B− (B · ∇) B

]
(8.4)

∇ · τ (b) =
[
(u · ∇) B− (u · ∇) B

]
−
[(

B · ∇
)
u− (B · ∇) u

]
. (8.5)

As a first step one could invoke the Smagorinsky’s ad-hoc closure scheme to the filtered

MHD equations and so resolve the subgrid stress tensors, Eqs. (8.6) and (8.7), by relating

them to the mean strain rate tensor, Eq. (7.18), and the mean current, Eq. (8.8) :

τ
(v)
αβ = −2CSv∆

2
∣∣∣S∣∣∣Sαβ = −2νtSαβ (8.6)

τ
(b)
αβ = −2CSb∆

2
∣∣ j∣∣Jαβ = −2ηt Jαβ (8.7)

Jαβ = 1
2

(
∂βBα − ∂αBβ

)
(8.8)

Another closure scheme proposed by Carati et. al [29] permits the backscatter of

energy from the subgrid to resolved scales. This cross-helicity based closure takes the

form

τ
(v)
αβ = −2CSv∆

2
∣∣∣S v

αβ S
b

αβ

∣∣∣1/2Sαβ = −2νtSαβ (8.9)

τ
(b)
αβ = −2CSb∆

2 sgn
(
j · ω

) ∣∣ j · ω∣∣1/2 Jαβ = −2ηt Jαβ (8.10)

where S
v

αβ = Sαβ , S
b

αβ = 1
2

(
∂βBα + ∂αBβ

)
, ω = ∇× u (8.11)

Ansumali et al. [4] realized that the 2 limit processes in LES for a LB representation

of Navier-Stokes turbulence (the Chapman-Enskog expansion in the Knudsen number,
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Kn, and an expansion in the filter width, ∆) do not commute. The typical approach of

first performing the Chapman-Enskog limit on LB (to reproduce the fluid equations) and

then perform the filtering will lead to the closure problem. However, Ansumali et al. [4]

first performed the filter-width ∆ expansion directly on the LB equations. This was then

followed by the usual Chapman-Enskog expansion to recover the final fluid equations. By

requiring that the effects of the subgrid stresses first enter the evolution equations at the

transport level one can get a closed form final expression for the LES equations as well as

determining the required scaling of the filter width ∆ in terms of the Knudsen number Kn.

It should be noted that Ansumali et al. [4] restricted their analysis to 2D Navier-Stokes

turbulence in which the energy is inverse cascaded to large scales. It is also interesting to

note that Pope [14], has discussed the expansion of the filtered Navier-Stokes equation in

terms of the filter width ∆. The practical problem is that this would force us to perform

filtering in the dissipate range - and thereby placing a very heavy burden on the LES

solution to be useful in turbulence simulations, basically turning the LES into a DNS.

Here we extend the ideas of Ansumali et al. [4] to MHD. For simplicity, we restrict our

analysis to 2 dimensional (2D) MHD - since in 2D MHD turbulence energy is cascaded to

small scales as in 3D MHD turbulence. Hence there is a need for subgrid modeling in 2D

MHD unlike 2D Navier-Stokes turbulence in which there is an inverse cascade of energy

to large scales. In Sec. 8.1, we introduce the Gaussian filter and perform expansions

in the filter width ∆ to evaluate nonlinear filter averages. In Sec. 8.2, we discuss the

transformation of the LB-MHD algorithm into the moment basis, permitting a multi-

relaxation collision model for the density/velocity distributions while we use a single-

relaxation model for the vector magnetic distribution function first introduced by Dellar

[13]. In Sec. 8.3, the MHD equations are derived from the new LES-LB-MHD model.

We first filter the LB-moment equations and present the details, for brevity, of the 3rd

moment, M3. An expansion is then made in the usual Knudsen number, Kn, to move
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from the LB-MHD representation to the macroscopic dissipative equations for MHD. In

order that the subgrid effects first affect the dynamics at the transport time scales one

must scale the filter width ∆ ' O
(

Kn1/2
)

. Sec. 8.4 then discusses preparations of the

LES-LB-MHD model for actual simulation. And finally, Sec. 8.5 discusses the simulation

results of the LES-LB-MHD model in 2D.

8.1 Filters and Filter Widths

The backbone of any LES [14, 26–44] is the introduction of a spatial filter function to

smooth out field fluctuations on the order of the filter width ∆. Consider a filter function,

G (~r,∆), which averages over scales of width ∆, so that the filtered field X is given by the

convolution integral, as found in Eq. (7.9)

X (~r ′,∆) =

∫ ∞
−∞

X (~r ′ − ~r )G (~r,∆) d~r (8.12)

where ~r and ∆ defines a location on the lattice and the filter width respectively. For

convenience, we shall use the Gaussian filter function (7.11) which is sharply peaked about

r = 0

G (~r,∆) =

(
6

π∆2

) 1
2

exp

(
−6r2

∆2

)
(8.13)

with the isotropic properties

∫∞
−∞G (~r,∆) d~r = 1 ,

∫∞
−∞G (~r,∆)~rd~r = 0 ,

∫∞
−∞G (~r,∆) rαrβd~r = ∆2

12
δαβ (8.14)

Taylor expanding the dynamical field X (~r ′ − ~r ) about ~r = ~r ′ in Eq. (8.12) and then
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performing the Gaussian weighted polynomial integrals one immediately finds [14]

X = X +
∆2

24
∂2
βX +O

(
∆4
)

(8.15)

Similarly, it can he shown

(XY ) = X Y +
∆2

12

(
∂βX

)(
∂β Y

)
+O

(
∆4
)

(8.16)

and

(
XY

Z

)
=
XY

Z
+

∆2

12Z

[(
∂βX

)(
∂βY

)
−

(
∂βZ

)
Z

X (∂βY )+ Y
(
∂βX

)
−
XY

(
∂βZ

)
Z

+O
(
∆4
) (8.17)

for arbitary fields X, Y , and Z.

8.2 Moment Basis Representation for LES LB-MHD

The single relaxation LB-MHD model of Dellar [13] is extended to incorporate multiple

relaxation times (MRT) similar to section 6.1 but with a different transformation matrix

used for simplicity in the derivation. The derivation is done in 2D for simplicity, and it is

readily extended to 3D, but with the complications of a larger number of lattice velocities.

However, unlike the 2D Navier-Stokes work of Ansumali et. al., 2D MHD exhibits the same

energy cascade to small scales as in 3D. The LB equations for the distribution functions
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fi, of the density and mean velocity, and ~gk, for the magnetic field are

(∂t + ∂γcγi) fi =
∑

j s
′
ij

(
f eq
j − fj

)
(8.18)

(∂t + ∂γCγk)~gk = s
′
m (~g eq

k − ~gk) (8.19)

with the moments
∑

i fi = ρ,
∑

i fi~ci = ρ~u, and
∑

k ~gk = ~B. In these equations the

summation convention is employed on the vector nature of the fields (using Greek indices).

Roman indices correspond to the corresponding lattice vectors for the kinetic velocities ~ci

(Fig. 3.1) and ~Ck (Fig. 8.1). s
′
ij and s

′
m are the collisional relaxation rate tensor for

the density and the collisional relaxation rate scalar for the magnetic field distributions,

respectively. The choice of these kinetic relaxation rates will determine the MHD viscosity

and resistivity transport coefficients.

To recover the MHD equations, one must make an appropriate choice of phase space

velocity/magnetic field lattice vectors and appropriate relaxation distribution functions.

An appropriate choice for 2D MHD is the 9-bit phase space velocities (D2Q9) as seen

in Fig. 3.1 for the density distribution and the simpler 5-bit velocities (D2Q5) for the

magnetic field distribution as seen in Fig. 8.1. The simpler lattice for the magnetic field

distribution arises since the magnetic field ~B is the zeroth moment of ~gk while the mean

fluid velocity is determined from the 1st moment of fi. To recover the MHD equations

in the Chapman-Enskog limit of the (discrete) kinetic equations, an appropriate choice of

relaxation distribution functions f eq
i and ~g eq

k is presented in equations (4.21) and (4.24)
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and repeated here explicitly for the lattice systems

D2Q9 : f eq
i = wiρ

[
1 + 3 (~ci · ~u) +

9

2
(~ci · ~u)2 − 3

2
~u 2

]
+

9

2
wi

[
1

2
~B2~c 2

i −
(
~B · ~ci

)2
]
, i = 0, .., 8

(8.20)

D2Q5 : ~g eq
k = w

′

k

[
~B + 3

{(
~Ck · ~u

)
~B −

(
~Ck · ~B

)
~u
}]

, k = 0, .., 4 (8.21)

FIG. 8.1: The magnetic lattice vectors (D2Q5) for LB-MHD in 2D are ~Ck =
(0, 0) , (0,±1) , k = 0 . . . 4. wi are appropriate weight factors dependent on the choice of
lattice: for speed 0, w0 = 1

3
; and for speed 1, wi = 1

6
with lattice speed of sound cs = 1√

3
.

Typically these equations are solved by split-operator methods: streaming and collisio-

nal relaxation. The 1-1 constant transformation matrices T and Tm chosen for convenience

in derivation, permit the mapping between the distribution space (fi, ~gk) and the moment

space (Mi, ~Nk). The transformation equations are

Mi =
∑8

j=0 Tijfj , ~Nk =
∑4

q=0 Tm,kq~gq (8.22)
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with the choice of the moments

T =



1

cx

cy

cxcy

c2x − c2y

3cxc
2
y − 2cx

3cyc
2
x − 2cy

4 · 1− 9
(
c2x + c2y − 2c2xc

2
y

)
4 · 1− 4

(
c2x + c2y

)
+ 3c2xc

2
y



=



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 −1 1 −1 0 0 0 0

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1

4 −5 −5 −5 −5 4 4 4 4

4 0 0 0 0 −1 −1 −1 −1



(8.23)

and Tm =



1

Cx

Cy

C2
x

C2
y


=



1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

0 1 0 1 0

0 0 1 0 1


. (8.24)

For 2D LB-MHD the T-matrix is a 9 × 9 matrix, due to the lattice choice D2Q9, and

the Tm matrix is a 5 × 5 matrix, due to the lattice choice D2Q5 for the magnetic field

representation. The x and y components of the 9-dimensional lattice vectors are

cx = {0, 1, 0,−1, 0, 1,−1,−1, 1} , cy = {0, 0, 1, 0,−1, 1, 1,−1,−1} (8.25)

while the x and y components of the 5-dimensional lattice vectors for the magnetic distri-

bution are

Cx = {0, 1, 0,−1, 0} , Cy = {0, 0, 1, 0,−1} . (8.26)

In the moment basis, the collisional relaxation rate tensor in MRT is diagonalized from

s
′
ij to si similar to that in section 6.1 where the MRT collisional relaxation rate tensor

s
′
ij is diagonalized with the T− matrix as a similarity transformation. It is convenient to
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denote this diagonal matrix with elements siδij. In the D2Q9 phase space, i = 0..8 for si

corresponding to the respective moment Mi. The collisional relaxation rate scalar for the

magnetic field in SRT, s
′
m, is equal for all magnetic moments, ~Nk, just as it has been for

~gk, so we will define the relaxation rate for the magnetic field in moment space to be sm

for completeness in notation where sm = s
′
m.

The first three fluid moments are nothing but the collisional invariants - being nothing

but the conservation of density (the 1st row of the T-matrix) and the conservation of

momentum (the 2nd and 3rd rows of T). For the Tm matrix only the 1st row is a collisional

invariant. In particular, the moments can be written in terms of the conserved moments:

M eq
0 = M0 = ρ M eq

3 = ρuxρuy
ρ
−BxBy M eq

6 = −ρuy

M eq
1 = M1 = ρux M eq

4 = (ρux)2−(ρuy)2

ρ
−B2

x +B2
y M eq

7 = −3 (ρux)2+(ρuy)2

ρ

M eq
2 = M2 = ρuy M eq

5 = −ρux M eq
8 = 5

3
ρ− 3 (ρux)2+(ρuy)2

ρ

(8.27)

N eq
α0 = Nα0 = Bα N eq

α1 = ρuxBα − ρuαBx N eq
α2 = ρuyBα − ρuαBy

N eq
α3 = Bα

3
N eq
α4 = Bα

3

(8.28)

8.3 Derivation of LES MHD Equations for LB MRT

8.3.1 Filter expansion

Using the transformations, Eq. (8.22), the LB Eqs. (8.18, 8.19) are transformed into

the moment basis M0, . . .M8 and ~N0, . . . ~N4. Thus there will be a set of 9 scalar moment

evolution equations for the fluid (D2Q9) and 5 vector equations for the magnetic field

(D2Q5). We present the details for just one of these moments, the time evolution of the

3rd fluid moment M3, as the others are done similarly. Appendix A follows the procedure
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below explicitly for every moment, not just the M3 moment. On filtering the evolution

equation for M3

∂tM3 +
1

3
∂x

(
2M2 +M6

)
+

1

3
∂y

(
2M1 +M5

)
= s3

(
M

(eq)

3 −M3

)
(8.29)

where the problem of closure arises from the evaluation of the M
(eq)

3 in the collision term.

From Eq. (8.27) for M
(eq)

3 , and the filtering expansions Eqs. (8.16, 8.17), we obtain

M
(eq)

3 =

(
ρux ρuy

ρ

)
− (BxBy)

=
ρux ρuy

ρ
−BxBy +

∆2

12ρ
[(∂βρux) (∂βρuy)

−(∂βρ)

ρ

(
ρux (∂βρuy) + ρuy (∂βρux)−

ρuxρuy (∂βρ)

ρ

)]
− ∆2

12

(
∂βBx

)(
∂βBy

)
+O

(
∆4
)
.

(8.30)

It is convenient to rewrite this in the form (for a general moment)

M
(eq)

i = M
(eq)
i

(
M0,M1,M2,Nx0,Ny0

)
+ ∆2M

(∆)

i (8.31)

where M
(eq)
i

(
M0,M1,M2,Nx0,Ny0

)
is just those moment expressions in Eq. (8.27, 8.28)

but now a function of the filtered conserved moments rather than in their the unfiltered

forms, while the ∆2M
(∆)

i is the term arising from the fact that

M
(eq)

i 6= M
(eq)
i

(
M0,M1,M2,Nx0,Ny0

)
. Indeed for the 3rd moment we have

M
(eq)
3

(
M0,M1,M2,Nx0,Ny0

)
=
ρux ρuy

ρ
−BxBy (8.32)
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∆2M
(∆)

3 =
∆2

12ρ
[(∂βρux) (∂βρuy)

−(∂βρ)

ρ

(
ρux (∂βρuy) + ρuy (∂βρux)−

ρuxρuy (∂βρ)

ρ

)]
−

∆2

12

(
∂βBx

)(
∂βBy

) (8.33)

8.3.2 Knudsen expansion

We now expand the filtered LB Eqs. (8.29) in the standard way that the fluid equations

are derived from the LB by introducing the small parameter ε which is just the Knudsen

number (basically the ratio of the mean free path to the macroscopic length scales). Using

multi-time scale analysis, with the advection time scale at O(ε) and the transport time

scale at O(ε2), one has

∂t → ε∂
(0)
t + ε2∂

(1)
t , ∂α → ε∂α

M i →M
(0)

i + εM
(1)

i + ... , ~Nk → ~N
(0)

k + ε ~N
(1)

k + ...
(8.34)

In order that the eddy viscosity/resistivity terms come into the filtered fluid equations at

the transport time scale and not earlier, one must choose ∆2 to be on the order of the

Knudsen number (∆ ∼
√

Kn), with ∆2M
(∆)

3 ∼ εM
(∆)

3 .

The filtered LB equations are now separated into their respective order ε, and ε2

equations. For M3 :

O(ε) : ∂
(0)
t M

(0)

3 +
1

3
∂x

(
2M2 +M

(0)

6

)
+

1

3
∂y

(
2M1 +M

(0)

5

)
= s3

(
M

(∆)

3 −M (1)

3

) (8.35)

O
(
ε2
)

: ∂
(0)
t M

(1)

3 +
1

3
∂x

[(
1− 1

2
s6

)
M

(1)

6

]
+

1

3
∂y

[(
1− 1

2
s5

)
M

(1)

5

]
+ ∂

(1)
t M

(0)
3 = −s3

(
M

(2)

3

) (8.36)
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where at O(1), M
(eq)
i

(
M0,M1,M2,Nx0,Ny0

)
= M

(0)

i .

In general, the unknown terms in the O(ε) equations must now be determined : M
(0)

i ,

M
(∆)

i , ∂
(0)
t M

(0)

i , and M
(1)

i . The M
(0)

i and M
(∆)

i terms are determined as above in Eqs. (8.32,

8.33).

The zeroth order time derivatives of the conserved filtered moments M0..2 and Nα0

can be determined by solving the O(ε), Eq. (8.35), in their corresponding moment repre-

sentation

∂
(0)
t M0 = −∂xM1 − ∂yM2. (8.37)

The remaining zeroth order time derivatives of the non-conserved filtered equilibria M3..8

and Nα 1..4 can then be found by differentiating with respect to the filtered conserved

equilibria:

∂
(0)
t M

(0)

i

(
M0, M1,M2, Nx0, Ny0

)
=
∂M

(0)

i

∂M0

∂
(0)
t M0 +

∂M
(0)

i

∂M1

∂
(0)
t M1

+
∂M

(0)

i

∂M2

∂
(0)
t M2 +

∂M
(0)

i

∂Nx0

∂
(0)
t Nx0 +

∂M
(0)

i

∂Ny0

∂
(0)
t Ny0

(8.38)

Since our current LB algorithm itself is accurate to O
(
Ma3

)
, where Ma is the Mach

number, these derivatives need only be evaluated to O
(
Ma3

)
. Having determined the

zeroth order time derivatives of the conserved moments, one substitutes this into the

appropriate equation. The solution for ∂
(0)
t M

(0)

3 is

∂
(0)
t M

(0)

3 = ∂
(0)
t

(
M1M2

M0

−BxBy +O
(
ε2
))
→ 0 +O

(
Ma3

)
. (8.39)

Finally, the perturbed moments, M
(1)

i , can be calculated by substituting the previous

results into the O(ε) moment equation (8.35) and solving for M
(1)

i . The solution for M
(1)

3
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is (with M
(∆)

3 ' ∆2)

M
(1)

3 = − 1

s3

(
∂

(0)
t M

(0)

3 +
1

3
∂x

(
2M2 +M

(0)

6

)
+

1

3
∂y

(
2M1 +M

(0)

5

))
+M

(∆)

3

= − 1

3s3

{
∂xM2 + ∂yM1

}
+

∆2

12M0

[(
∂βM1

)(
∂βM2

)
−

(
∂βM0

)
M0

M1

(
∂βM2

)
+M2

(
∂βM1

)
−
M1M2

(
∂βM0

)
M0


− ∆2

12

(
∂βBx

)(
∂βBy

)
.

(8.40)

With the O(ε) equations for the conserved moments fully resolved, we must now

determine the O(ε2) equations for the conserved moments by solving for the unknown

∂
(1)
t M

(0)

i . This is determined by substituting these results into theO(ε2) moment equations

and then solving for ∂
(1)
t M

(0)

i . For ∂
(1)
t M0 we find

(
∂

(0)
t M0 + ∂xM1 + ∂yM2

)
+ ∂

(1)
t M0 = 0 → ∂

(1)
t M0 = 0 (8.41)

8.3.3 Final filtered LES-MHD equations

Similarly one proceeds with these steps to determine the filtered MHD equations

using the O(ε) and O(ε2) equations for the conserved moments. The final evolution of the

continuity (ρ), momentum (ρu) and the magnetic field (B) in our LB-LES-MHD model,

after considerable algebra, are (with summation over repeated Greek subscripts)
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∂t ρ+∇ · ρu = 0, ∇ ·B = 0 (8.42a)

∂t (ρu) +∇ ·
(
ρu ρu

ρ

)
= −∇p+∇ ·

(
BB

)
− 1

2
∇
(
B ·B

)
+

(
ξ +

1

3
ν

)
∇ (∇ · ρu) + ν∇2 ρu

−∇ ·
{

6ν

6ν + 1

∆2

12ρ

[
(∂β (ρu)) (∂β (ρu))− ∂β p

p

(
ρu (∂β (ρu)) + (∂β (ρu))ρu− ρu ρu∂β p

p

)]}
−∇

{(
s4
4

+
s7
20
− 3s8

10

)
∆2

12ρ

[
(∂β (ρu)) · (∂β (ρu))− ∂β p

p

(
2ρu · (∂β (ρu))− ρu · ρu∂β p

p

)]}
− 6ν

6ν + 1

∆2

12

{
1

2
∇
[(
∂βB

)
·
(
∂βB

)]
−∇ ·

[(
∂βB

) (
∂βB

)]}
(8.42b)

∂tB = ∇×
(
ρu×B

ρ

)
+ η∇2 B +∇×

[
∆2

12ρ

6η

6η + 1

{
(∂β (ρu))×

(
∂β B

)
−∂β p

p

(
(ρu)×

(
∂β B

)
+ (∂β (ρu))×B− (∂β p)

p
(ρu)×B

)}]
.

(8.42c)

In this isothermal model, the equation of state connecting the pressure to the density is

p = ρc2
s = ρ

3
, in lattice units (cs is the sound speed). The transport coefficients (shear

viscosity ν, bulk viscosity ξ and resistivity η) are determined from the LB-MRT relaxation

rates:

ν =
1

3s3

− 1

6
=

1

3s4

− 1

6
(8.43)

ξ = −1

9
− 1

9s4

− 1

15s7

+
2

5s8

(8.44)

η =
1

3sm
− 1

6
(8.45)

8.4 Preparing LES for Simulation

The LES model has now been derived by first filtering the lattice Boltzmann (LB)

representation of MHD [13, 17, 18, 45–49] after which one applies the Chapman-Enskog
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limits to recover the final LES-MHD fluid equations, in essence extending to MHD the

2D Navier-Stokes (NS) LES-LB model of Ansumali et. al. [4]. A technical difficulty with

the Ansumali et. al. model is that in 2D NS there is an inverse energy cascade to large

spatial scales thereby rendering subgrid modeling non-essential. In 2D MHD, however, the

energy cascades to small spatial scales as in 3D - and so makes it attractive to perform the

LES-LB-MHD simulations in which there can be a substantial amount of excited subgrid

modes. Here we present some preliminary LES-LB-MHD simulations of our model and

compare the results with some direct numerical simulations (DNS). As Ansumali et. al.

[4] did not perform any simulations on their LES-LB-NS model, these are the first such

LES-LB simulations when one has first filtered the underlying LB representation, followed

by the conventional small Knudsen number expansion.

If one wished to restrict oneself to a single relaxation (SRT) LB model for the particle

distribution function, then
(
s4
4

+ s7
20
− 3s8

10

)
= 0 since s3 = s4 = s5 = s6 = s7 = s8, and the

subgrid ∇ (ρu · ρu) terms of order ∆2 cancel. It should also be noted that one recovers the

standard (quasi-incompressible) LB model for the particle distribution function by setting

ξ = 2
3
ν with ∆→ 0.

The order ∆2-terms in the above equations are the new subgrid closure terms de-

termined by the LES-LB-MHD. We just note ∇ · B = 0 is maintained automatically to

machine accuracy [13]. The nonlinearities in the MHD equations are recovered by poly-

nomial powers of u and B in the relaxation distribution functions.

This model has some similarity to the Clark model [37] because we have also expanded

the closure term over a small filter width. The main difference is that Clark applies an

ad-hoc closure approximation for the eddy viscosity, however our method approaches the

problem from kinematic first principles to solve for the eddy viscosity leaving only the filter

width as a variable. While Vreman et al. [38] suggests that all LES based on Clark model

will be inaccurate, Girimaji [43] also suggests that the availability of nonhydrodynamic
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variables can potentially lead to a more accurate closure in LBM-LES.

We now summarize our computational LB-LES-MHD model that underlies Eqs. (8.42).

For the 2D MHD simulation, we consider an LB model with 9-bit lattice

(∂t + ∂γcγi) fi =
∑

j s
′
ij

(
f eq
j − fj

)
, i = 0...8 (8.46)

(∂t + ∂γcγi)~gi = s
′
m (~g eq

i − ~gi) , i = 0...8 (8.47)

with the moments
∑

i fi = ρ,
∑

i fi~ci = ρ~u, and
∑

k ~gk = ~B. Here the summation

convention is employed on the vector nature of the fields (using Greek indices) while for

Roman indices, correspond to the corresponding lattice vectors for the kinetic velocities

~ci, there is no implicitly implied summation. The lattice is D2Q9 (Fig. 3.1) which are just

the axes and diagonals of a square (along with the rest particle i = 0). s
′
ij are the MRT

collisional relaxation rate tensor for the fi while the SRT s
′
m is the collisional relaxation

rate for ~gi. These kinetic relaxation rates determine the MHD viscosity and resistivity

transport coefficients. (Of course, more sophisticated LB models can be formed by MRT

on the ~gk equations, but for this first reported LB-LES-MHD simulation we will restrict

ourselves to the simpler SRT model)

A convenient choice of the relaxation distribution functions, will under Chapman-

Enskog, yield the MHD equations

f eq
i = wiρ

[
1 + 3 (~ci · ~u) +

9

2
(~ci · ~u)2 − 3

2
~u 2

]
+

9

2
wi

[
1

2
~B2~c 2

i −
(
~B · ~ci

)2
]
, i = 0, .., 8 (8.48)

~g eq
i = w

′
i

[
~B + 3

{
(~ci · ~u) ~B −

(
~ci · ~B

)
~u
}]

, i = 0, .., 8 (8.49)

where the w′s are appropriate lattice weights. In the operator-splitting solution method of
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collide-stream, it is most convenient to perform the collision step in moment-space (because

of collisional invariants of the zeroth and 1st moment of fi, and the zeroth moment of ~gi.),

while the streaming is optimally done in the (fi, ~gi)-space. Moment space (Mi, ~Ni) is

defined by

Mi =
∑8

j=0 Tijfj , ~Ni =
∑8

q=0 Tm,iq~gq (8.50)

with the 1-1 constant transformation matrices, T given by Eq. (8.23) and Tm given by

Tm =



1

cx

cy

cxcy

c2
x

c2
y

c2
xcy

cxc
2
y

c2
xc

2
y



=



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 1 1



(8.51)

The x and y components of the 9-dimensional lattice vectors are

cx = {0, 1, 0,−1, 0, 1,−1,−1, 1} , cy = {0, 0, 1, 0,−1, 1, 1,−1,−1} (8.52)
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In terms of conserved moments, we can write

M eq
0 = M0 = ρ M eq

3 = ρuxρuy
ρ
−BxBy M eq

6 = −ρuy

M eq
1 = M1 = ρux M eq

4 = (ρux)2−(ρuy)2

ρ
−B2

x +B2
y M eq

7 = −3 (ρux)2+(ρuy)2

ρ

M eq
2 = M2 = ρuy M eq

5 = −ρux M eq
8 = 5

3
ρ− 3 (ρux)2+(ρuy)2

ρ

(8.53)

N eq
α0 = Nα0 = Bα N eq

α3 = 0 N eq
α6 = 1

3
(ρuyBα − ρuαBy)

N eq
α1 = ρuxBα − ρuαBx N eq

α4 = Bα
3

N eq
α7 = 1

3
(ρuxBα − ρuαBx)

N eq
α2 = ρuyBα − ρuαBy N eq

α5 = Bα
3

N eq
α8 = Bα

9

(8.54)

8.4.1 Filtering LB

In applying filtering to the LB Eqs. (8.46) and (8.47), only the nonlinear terms in

the relaxation distributions, Eqs. (8.48) and (8.49), require further attention. Moreo-

ver since collisions are performed in moment space, we need first to transform from f eq,

~g eq to M (eq), ~N (eq) and then apply filtering in terms of the filtered collisional invariants

M0,M1,M2,Nx0,Ny0 using the perturbations in the filter width ∆ from equations (8.16)

and (8.17). This produces a filtered moment equilibrium which can now be written in the

same form as in Eq. (8.31)

M
(eq)

i = M
(eq)
i

(
M0,M1,M2,Nx0,Ny0

)
+ ∆2M

(∆)

i i = 0....8 (8.55)
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where the O(∆2) term arises from the nonlinearities. In particular for the M
(eq)

3 term, the

equilibrium for the third moment in the simulation’s collision step would be defined as

M
(eq)

3 =
ρux ρuy

ρ
−Bx By

+
∆2

12 ρ

[
(∂β ρux) (∂β ρuy)−

(∂β ρ)

ρ

(
ρux (∂β ρuy) + ρuy (∂β ρux)−

ρux ρuy (∂β ρ)

ρ

)]
− ∆2

12

(
∂βBx

)(
∂βBy

)
+O

(
∆4
)
.

(8.56)

just as in Eq. (8.30). Similar definitions would exist for the other filtered equilibrium

moments. These new definitions for the equilibrium allow the LES-LB-MHD model to be

simulated.

8.5 LES-LB-MHD Simulation

The filtered LB equations are now solved, with streaming performed in distribution

space and collisions in moment space. As this is the first simulation on the LB-filtered-

LES approach, a significant number of simplifications have been made. The first thing

is to restrict the evolution of the filtered scalar distribution function to an SRT collision

operator. In this case the relaxation rates si are all equal so that the 3rd term in Eq. (8.42b)

is automatically zero. Moreover since nearly all LB simulations are quasi-incompressible at

the fluid level, the (filtered) density gradients in the moment representation of the collision

operator are neglected. Thus, for example, M
(eq)

3 is now approximated in simulation by

M
(eq)

3 =
ρux ρuy

ρ
−Bx By

+
∆2

12 ρ
(∂β ρux) (∂β ρuy)−

∆2

12

(
∂βBx

)(
∂βBy

)
+O

(
∆4
)
.

(8.57)
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Also, since the last term in Eq. (8.42c) is dependent on the filtered density gradient, its

effects at the filtered MHD level will not be significant when the filtered LB system is

coded.

FIG. 8.2: Initial vorticity profile of the LES-LB-MHD simulation: Uy =
U0 sech2

(
2π
L

4x
)

and By = B0 where B0 = 0.005U0.
Red denotes positive vorticity, while blue denotes negative vorticity.

Many of the spatial derivatives in the filtered equilibria (as found in Eq. (8.57)) can

be determined directly from strictly local, perturbed moments. An example procedure

in finding a spatial derivative for this LES-LB-MHD algorithm from the local, perturbed

moments can be found in Appendix B. There is a little subtlety in that not all the spatial

derivatives in the filtered collision moments can be determined from local perturbed mo-

ments [13, 30]. This limitation is thought to arise from the low D2Q9 lattice. It is expected

that on a D3Q27 lattice the linearly independent set of derivatives can be represented by

the now larger number of local perturbed moments.

While the filtered LB equations are solved, resulting in the filtered LES MHD Eqs.

(8.42), there is some similarity in the final MHD model with that of the “tensor diffusivity”

model of Müller-Carati [29]. However it must be stressed that a first principles derivation

of the eddy transport coefficients from a kinetic (LB) model is being performed while

Muller-Carati propose an ad hoc scheme of minimizing the error between two filters at

each time step in their determination of their model’s transport coefficients.
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t = 400k

t = 800k

t = 1.56M

(a) DNS (20482)

t = 200k

t = 400k

t = 780k

(b) LES (10242 ∆ = 2)

FIG. 8.3: Comparison of the vorticity evolution in the unstable magnetized KH
jet between DNS and LES -LB-MHD simulations.
(a) On the left, the DNS simulation on grid = 20482;
(b) on the right, the LES simulation on grid = 10242 and ∆ = 2.
There is excellent agreement between DNS and LES simulations with time scaling tDNS =
2tLES due to the chosen grids.
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(a) DNS 10242 (b) LES 10242, ∆ = 1

(c) DNS 20482 (d) LES 10242, ∆ = 2

FIG. 8.4: A late time vorticity snapshot comparison between (a) DNS on grid
= 10242 at t = 780k, (b) LES on grid = 10242 with ∆ = 1, at t = 780k, (c) DNS on grid
= 20482 at t = 1.56M , and (d) LES on grid = 10242 at t = 780k but with filter width
∆ = 2.
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(a) DNS 10242 (b) LES 10242, ∆ = 1

(c) DNS 20482 (d) LES 10242, ∆ = 2

FIG. 8.5: A late time spectral comparison between (a) DNS on grid = 10242 with
slope k−1.66 at t = 780k, (b) LES on grid = 10242 with ∆ = 1 and slope k−1.66 at t = 780k,
(c) DNS on grid = 20482 with slope k−1.71 at t = 1.56M , and (d) LES on grid = 10242

with slope k−1.66 at t = 780k but with filter width ∆ = 2.

The filtered LB equations are now evolved in time for the profile of a magnetized

Kelvin-Helmholtz instability in a sufficiently weak magnetic field so that the 2D velocity

jet is not stabilized [15]. The initial jet velocity profile is Uy = U0 sech2
(

2π
L

4x
)
. The

corresponding vorticity is shown in Fig. 8.2. The initial Reynolds number is chosen to be

Re = U0L/ν = 50k = const., with U0 = 4.88 × 10−2 and B0 = 0.005U0. The viscosity

and resistivity on a grid of 10242 are ν = η = 10−3 and scale with the grid to maintain a

constant Re and a constant magnetic Reynolds number U0L/η. The initial perturbation

to the fields are: Uy = 0.01U0 sin
(

2π
L

4x
)
, By = 0.01B0 sin

(
2π
L

4x
)
, Ux = 0.01U0 sin

(
2π
L

4y
)
,

and Bx = 0.01B0 sin
(

2π
L

4y
)
. Note that initially ∇ · ~B = 0 = ∇ · ~U .

In Fig. 8.3, the evolution of vorticity in time is compared from DNS on a 20482 grid

with that determined from the LES-LB-MHD model on a 10242 grid. The DNS simulations

are determined by solving the direct unfiltered LB Eqs. (8.46) and (8.47). For constant

Reynolds number simulations at different grid sizes, the kinematic viscosity is adjusted
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(a) DNS 10242 (b) LES 10242, ∆ = 1

(c) DNS 20482 (d) LES 10242, ∆ = 2

FIG. 8.6: A late time snapshot current comparison between (a) DNS on grid = 10242

at t = 780k, (b) LES on grid = 10242 with ∆ = 1, at t = 780k, (c) DNS on grid = 20482

at t = 1.56M , and (d) LES on grid = 10242 at t = 780k but with filter width ∆ = 2.
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appropriately. Thus on halving the spatial grid, a DNS time step of 2t0 corresponds to

time step t0 in LES-LB-MHD.

At relatively early times the jet profile width slightly widens while within the vorticity

layers the Kelvin-Helmholtz instability will break these layers into the familiar vortex street

(Fig. 8.3). Since a weak magnetic field insufficient to stabilize the jet has been chosen,

the vorticity streets break apart with like vortex-vortex reconnection (Fig. 8.3). There is

very good agreement between DNS and LES-LB-MHD with filter width ∆ = 2 (in lattice

units) on a grid L/2.

Finally, the corresponding vorticity (Fig. 8.4), total energy spectrum (Fig. 8.5), and

current (Fig. 8.6) plots are shown at t = 780k for simulations on 10242 grids and their

counterparts on 20482 grids at time t = 1.56M. Four cases are considered: (a) DNS on

10242, (b) filtered LB-LES-MHD on 10242 grid and small filter width, ∆ = 1, (c) DNS on

20482 and (d) filtered LES-LB-MHD on a 10242 grid but with filter width ∆ = 2. The

effect of the filter width ∆ in our LB-LES-MHD model on the evolution of the vorticity is

evident when comparing Fig. 8.4b to Fig. 8.4d - both in location and strength of the main

vortices as well as in the fine grained small scale vorticity. As the filter width increases to

∆ = 2 (Fig. 8.4d), there is stronger agreement now with the DNS (Fig. 8.4c) on L2 grid

with the LES-LB-MHD filtered model on (L/2)2 grid. This shows that the subgrid terms

are now influencing larger scales with some accuracy. The spectral plots (Fig. 8.5) are

somewhat similar in all simulations with a very localized Kolmogorov energy spectrum.

Presumably this is because the turbulence is limited and relatively weak. There appears

to be good agreement in both the vorticity and current between DNS and LES-LB-MHD

with ∆ = 2 on half the grid.
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8.6 Conclusion

Ansumali et. al. [4] have developed a rigorous closure model for 2D Navier-Stokes

turbulence by first filtering the LB moment equations and then performing the long-

wavelength long-time Knudsen expansion. The resulting closure model requires that the

filter width ∆ ' O
(

Kn1/2
)

. In principle their algorithm can be readily extended to

the D3Q27 LB model of 3D Navier-Stokes turbulence where subgrid modeling is now

critical. The Ansumali et. al. [4] LES-LB algorithm has been extended to 2D MHD by

incorporating the vector distribution function LB representation of Dellar [13]. Because

there is a direct energy cascade to small scales in 2D MHD, the model was restricted to

2D turbulence and the LB Navier-Stokes representation was extended to include multiple-

collisional-relaxation rates. The development of a 3D LES-LB-MHD would be somewhat

tedious but straightforward. In the new 2D-LES-LB-MHD model, the new subgrid-terms

are written in vector form and one notes that they take the form of the Smagorinsky

tensorial corrections. This is somewhat to be expected since Taylor expansions have been

made in the filter width resulting in a similar closure term to the Clark model.

Some preliminary 2D filtered SRT LB-MHD simulation results have been presented

based on an extension of ideas of Ansumali et. al. [4] that leads to a self-consistent LES-LB

closure scheme based solely on expansions in the filter width ∆ and invoking the constraint

that any eddy transport effects can only occur on the transport time scales. There is

very good agreement between DNS and the LES-LB-MHD models. This warrants further

investigation of other filters used in LES, as well as in dynamic subgridding commonly

used in LES of Navier-Stokes turbulence. Finally, an exploration of the effects of MRT on

this LES algorithm should be quite interesting as a somewhat unexpected term related to

the gradient of a pressure appears in the subgrid viscosity. This term reveals that higher-

order moments (not stress related) can have a first order effect on the subgrid viscosity
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when MRT is employed. Given that this subgrid pressure term relies on the existence

of higher order moments, it suggests that the extra parameters in lattice Boltzmann (ie.

the distribution velocities/moments) are introducing new physics naturally absent from

LES in computational fluid dynamics. It would be very interesting to see whether this

new term enhances the LES accuracy or increases stability at even higher Reynold’s flow.

Further study could include how this term effects other, well-established LES approaches

in computational fluid dynamics. These ideas are under consideration.
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CHAPTER 9

Conclusion

As the future draws closer, plasmas can be modeled more accurately with better

hardware and diligent research in modeling. Two new models have been presented which

expand the previous capabilities of LB MHD. A partial entropic approach to MRT in LB

MHD with the goal of increased stabilization will expand the domain applicability for

the LB method. And an LES model for LB MHD will provide for more realistic, high

accuracy problems to be modeled at a lower computational cost. These are the potentials

of the new models but more work is still to be done in testing to find each model’s relative

accuracy and computational cost. Further work can also extend these models to 3D and

determine whether local perturbed moments in 3D can fully describe every element of the

fluid momentum gradient. This work will be under future consideration.
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APPENDIX A

MRT Chapman-Enskog Expansion in

LES MHD

A full derivation of the filtered MHD equations is provided in detail for the LES model

found in chapter 8. Some equations are typed smaller so that they will fit on the page.

The MHD LB equations are defined as

(∂t + ∂γeγi) fi =
∑
j

Sij (f eq
i − fi) (A.1a)

(∂t + ∂γeγi)~gi =
∑
j

Sm (~geq
i − ~gi) (A.1b)

where Sij is the fluid relaxation tensor in velocity space and Sm is magnetic relaxation

tensor in velocity space.

Following the steps in section 3.4 to produce an O(ε) and O(ε2) similar to (3.15) and
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(3.18), the LB equations with separated scales appear as

O(ε) : ∂
(0)
t f

(0)
i + ~ci · ∇f (0)

i = −1

τ
f

(1)
i (A.2)

O
(
ε2
)

: ∂
(1)
t f

(0)
i +

(
1− 1

2τ

)(
∂

(0)
t + ~ci · ∇

)
f

(1)
i = −1

τ
f

(2)
i (A.3)

for the fluid and

O(ε) : ∂
(0)
t ~g

(0)
i + ~ci · ∇~g (0)

i = − 1

τg
~g

(1)
i (A.4)

O
(
ε2
)

: ∂
(1)
t ~g

(0)
i +

(
1− 1

2τg

)(
∂

(0)
t + ~ci · ∇

)
~g

(1)
i = − 1

τg
~g

(2)
i (A.5)

for the magnetic field.

The transformation matrix is defined for fluid in (8.23) and magnetic field (8.24).

Using the transformation equation from (8.22), a change of basis in the LB equilibrium

equations supplies a new set of equilibrium equations in the moment basis.

M
(0)
3 =

M1M2

M0

−BxBy (A.6a)

M
(0)
4 =

M2
1 −M2

2

M0

−B2
x +B2

y (A.6b)

M
(0)
5 = −M1 (A.6c)

M
(0)
6 = −M2 (A.6d)

M
(0)
7 = − 3

M2
1 +M2

2

M0

(A.6e)

M
(0)
8 =

5

3
M0 − 3

M2
1 +M2

2

M0

(A.6f)
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N
(0)
x1 = N

(0)
y2 = 0 (A.7a)

N
(0)
y1 =

M1By −M2Bx

M0

(A.7b)

N
(0)
x2 =

M2Bx −M1By

M0

(A.7c)

N
(0)
x3 = N

(0)
x4 =

Bx

3
(A.7d)

N
(0)
y3 = N

(0)
y4 =

By

3
(A.7e)

The filter of field products (XY ) and
(
XY
Z

)
are defined in equations (8.16) and (8.17)

and repeated here

(XY ) = XY +
∆2

12

(
∂βX

)(
∂βY

)
+O

(
∆4
)

(A.8a)

(
XY

Z

)
=
XY

Z
+

∆2

12Z

[(
∂βX

)(
∂βY

)
−

(
∂βZ

)
Z

X (∂βY )+ Y
(
∂βX

)
−
XY

(
∂βZ

)
Z

+O
(
∆4
) (A.8b)

The filter equations can be directly applied to the previously found equilibrium mo-
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ment equations (A.6) and (A.7) to become

M
(0)
3 =

M1M2

M0

−BxBy −
∆2

12

(
∂βBx

)(
∂βBy

)
+

∆2

12M0

[(
∂βM1

)(
∂βM2

)
−

(
∂βM0

)
M0

M1

(
∂βM2

)
+M2

(
∂βM1

)
−
M1M2

(
∂βM0

)
M0

 (A.9a)

M
(0)
4 =

M
2
1 −M

2
2

M0

−B 2
x +B

2
y −

∆2

12

[(
∂βBx

)2
−
(
∂βBy

)2
]

+
∆2

12M0

[(
∂βM1

)2
−
(
∂βM2

)2

−

(
∂βM0

)
M0

2M1

(
∂βM1

)
− 2M2

(
∂βM2

)
−

(
M

2
1 −M

2
2

)(
∂βM0

)
M0


(A.9b)

M
(0)
5 = −M1 (A.9c)

M
(0)
6 = −M2 (A.9d)

M
(0)
7 = − 3

{
M

2
1 +M

2
2

M0

+
∆2

12M0

[(
∂βM1

)2
+
(
∂βM2

)2

−

(
∂βM0

)
M0

2M1

(
∂βM1

)
+ 2M2

(
∂βM2

)
−

(
M

2
1 +M

2
2

)(
∂βM0

)
M0


(A.9e)

M
(0)
8 =

5

3
M0 − 3

{
M

2
1 +M

2
2

M0

+
∆2

12M0

[(
∂βM1

)2
+
(
∂βM2

)2

−

(
∂βM0

)
M0

2M1

(
∂βM1

)
+ 2M2

(
∂βM2

)
−

(
M

2
1 +M

2
2

)(
∂βM0

)
M0


(A.9f)
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N
(0)
x1 = N

(0)
y2 = 0 (A.10a)

N
(0)
y1 =

M1By −M2Bx

M0

+
∆2

12M0

[(
∂βM1

)(
∂βBy

)
−
(
∂βM2

)(
∂βBx

)
−

(
∂βM0

)
M0

(
M1

(
∂βBy

)
+By

(
∂βM1

)
−M2

(
∂βBx

)
−Bx

(
∂βM2

)
−

(
M1By −M2Bx

)(
∂βM0

)
M0


(A.10b)

N
(0)
x2 =

M2Bx −M1By

M0

+
∆2

12M0

[(
∂βM2

)(
∂βBx

)
−
(
∂βM1

)(
∂βBy

)
−

(
∂βM0

)
M0

(
M2

(
∂βBx

)
+Bx

(
∂βM2

)
−M1

(
∂βBy

)
−By

(
∂βM1

)
−

(
M2Bx −M1By

)(
∂βM0

)
M0


(A.10c)

N
(0)
x3 = N

(0)
x4 =

Bx

3
(A.10d)

N
(0)
y3 = N

(0)
y4 =

By

3
(A.10e)

Next, determine the lower order time derivative of non-conserved moments by using

the chain rule on the non-conserved filtered equilibrium equations (A.6) (A.7).

∂
(0)
t M

(0)

i

(
M1,M2,M3,Bx,By

)
=

∂M
(0)

i

∂M0

∂
(0)
t M0 +

∂M
(0)

i

∂M1

∂
(0)
t M1 +

∂M
(0)

i

∂M2

∂
(0)
t M2 +

∂M
(0)

i

∂Bx
∂
(0)
t Bx +

∂M
(0)

i

∂By
∂
(0)
t By

(A.11a)
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∂
(0)
t M

(0)
3 = ∂

(0)
t

(
M1M2

M0

−BxBy +O
(
ε2
))
→ 0 (A.12a)

∂
(0)
t M

(0)
4 = ∂

(0)
t

(
M

2
1 −M

2
2

M0

−B2
x +B

2
y +O

(
ε2
))
→ 0 (A.12b)

∂
(0)
t M

(0)
5 = − ∂(0)

t M1 = ∂x

(
M0

3
+
M

2
1

M0

− B
2
x

2
+
B

2
y

2

)
+ ∂y

(
M1M2

M0

−BxBy

)
(A.12c)

∂
(0)
t M

(0)
6 = − ∂(0)

t M2 = ∂x

(
M1M2

M0

−BxBy

)
+ ∂y

(
M0

3
+
M

2
2

M0

+
B

2
x

2
−
B

2
y

2

)
(A.12d)

∂
(0)
t M

(0)
7 = − 3∂

(0)
t

(
M

2
1 +M

2
2

M0

+O
(
ε2
))
→ 0 (A.12e)

∂
(0)
t M

(0)
8 = − 1

3
∂

(0)
t

(
5M0 − 9

M
2
1 +M

2
2

M0

)
→ 0 (A.12f)

∂
(0)
t N

(0)
x1 = ∂

(0)
t N

(0)
y2 = 0 (A.13a)

∂
(0)
t N

(0)
y1 = ∂

(0)
t

(
M1By −M2Bx

M0

+O
(
ε2
))
→ 0 (A.13b)

∂
(0)
t N

(0)
x2 = ∂

(0)
t

(
M2Bx −M1By

M0

+O
(
ε2
))
→ 0 (A.13c)

∂
(0)
t N

(0)
x3 = ∂

(0)
t N

(0)
x4 =

1

3
∂

(0)
t Bx = −1

3
∂y

(
M2Bx −M1By

M0

)
(A.13d)

∂
(0)
t N

(0)
y3 = ∂

(0)
t N

(0)
y4 =

1

3
∂

(0)
t By = −1

3
∂x

(
M1By −M2Bx

M0

)
(A.13e)

The filtered evolution equations at order O(ε) (A.2 and A.4) can be written by trans-

forming the LB evolution equations at O(ε) to a set of moment equations. Filtered Evo-
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lution equations at order O(ε).

∂
(0)
t M0 + ∂xM

(0)
1 + ∂yM

(0)
2 = 0 (A.14a)

∂
(0)
t M1 + ∂x

(
M0

3
+
M

2
1

M0

− B
2
x

2
+
B

2
y

2

)
+ ∂y

(
M1M2

M0

−BxBy

)
= 0 (A.14b)

∂
(0)
t M2 + ∂x

(
M1M2

M0

−BxBy

)
+ ∂y

(
M0

3
+
M

2
2

M0

+
B

2
x

2
−
B

2
y

2

)
= 0 (A.14c)

∂
(0)
t M

(0)

3 +
1

3
∂xM2 +

1

3
∂yM1 = −s3M

(1)

3 +
∆2

12M0

[(
∂βM1

)(
∂βM2

)

−

(
∂βM0

)
M0

M1

(
∂βM2

)
+M2

(
∂βM1

)
−
M1M2

(
∂βM0

)
M0


− ∆2

12

(
∂βBx

)(
∂βBy

)
(A.15a)

∂
(0)
t M

(0)

4 +
2

3
∂xM1 −

2

3
∂yM2 = −s4M

(1)

4 +
∆2

12M0

[(
∂βM1

)2
−
(
∂βM2

)2
−

(
∂βM0

)
M0

2M1

(
∂βM1

)
− 2M2

(
∂βM2

)
−

(
M

2

1 −M
2

2

)(
∂βM0

)
M0


− ∆2

12

[(
∂βBx

)2
−
(
∂βBy

)2]
(A.15b)

∂
(0)
t M

(0)

5 − ∂x

(
M0

3
+
M

2

1 −M
2

2

M0

−B
2

x +B
2

y

)
+ ∂y

(
M1M2

M0

−BxBy

)
= −s5M

(1)

5 (A.15c)

∂
(0)
t M

(0)

6 + ∂x

(
M1M2

M0

−BxBy

)
− ∂y

(
M0

3
+
M

2

2 −M
2

1

M0

+B
2

x −B
2

y

)
= −s6M

(1)

6 (A.15d)

∂
(0)
t M

(0)

7 − 2∂xM1 − 2∂yM2 = −s7M
(1)

7 −
3∆2

12M0

[(
∂βM1

)2
+
(
∂βM2

)2
−

(
∂βM0

)
M0

2M1

(
∂βM1

)
+ 2M2

(
∂βM2

)
−

(
M

2

1 +M
2

2

)(
∂βM0

)
M0

 (A.15e)

∂
(0)
t M

(0)

8 −
1

3
∂xM1 −

1

3
∂yM2 = −s8M

(1)

8 −
3∆2
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∂βM1

)2
+
(
∂βM2
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(
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(
M
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1 +M
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 (A.15f)
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∂
(0)
t Bx + ∂y

(
M2Bx −M1By

M0

)
= 0 (A.16a)

∂
(0)
t By + ∂x

(
M1By −M2Bx

M0

)
= 0 (A.16b)

∂
(0)
t N

(0)
x1 +

1

3
∂xBx = −sN,x1N

(1)
x1

(A.16c)

∂
(0)
t N

(0)
y2 +

1

3
∂yBy = −sN,y2N

(1)
y2

(A.16d)

∂
(0)
t N

(0)
y1 +

1

3
∂xBy = −sN,y1N

(1)
y1 −

∆2

12M0

[(
∂βM2

)(
∂βBx

)
−
(
∂βM1

)(
∂βBy

)
−

(
∂βM0

)
M0

(
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(
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)
+Bx

(
∂βM2

)
−M1

(
∂βBy

)
−By

(
∂βM1

)
−

(
M2Bx −M1By

)(
∂βM0

)
M0


(A.16e)

∂
(0)
t N

(0)
x2 +

1

3
∂yBx = −sN,x2N

(1)
x2 +

∆2

12M0

[(
∂βM2

)(
∂βBx

)
−
(
∂βM1

)(
∂βBy

)
−

(
∂βM0

)
M0

(
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(
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)
+Bx

(
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)
−M1

(
∂βBy

)
−By

(
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)
−

(
M2Bx −M1By

)(
∂βM0

)
M0


(A.16f)

∂
(0)
t N

(0)
x3 = −sN,x3N

(1)
x3

(A.16g)

∂
(0)
t N

(0)
y4 = −sN,y3N

(1)
y4

(A.16h)

∂
(0)
t N

(0)
y3 + ∂x

(
M1By −M2Bx

M0

)
= −sN,y3N

(1)
y3 (A.16i)

∂
(0)
t N

(0)
x4 + ∂y

(
M2Bx −M1By

M0

)
= −sN,x4N

(1)
x4 (A.16j)

Follow the same method for conserved O(ε2) moment equations (A.3 and A.5) as O(ε)
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above. Filtered evolution equations at O(ε2) for conserved moments.

∂
(1)
t M0 = 0 (A.17a)

∂
(1)
t M1 + ∂x

[
1

2

(
1−

s4

2

)
M

(1)
4 +

1

30

(
1−

s7

2

)
M

(1)
7 −

1

5

(
1−

s8

2

)
M

(1)
8

]
+ ∂y

[(
1−

s3

2

)
M

(1)
3

]
= 0 (A.17b)

∂
(1)
t M2 + ∂x

[(
1−

s3

2

)
M

(1)
3

]
+ ∂y

[
−

1

2

(
1−

s4

2

)
M

(1)
4 +

1

30

(
1−

s7

2

)
M

(1)
7 −

1

5

(
1−

s8

2

)
M

(1)
8

]
= 0 (A.17c)

∂
(1)
t Bx + ∂x

[(
1−

sN,x1

2

)
N

(1)
x1

]
+ ∂y

[(
1−

sN,x2

2

)
N

(1)
x2

]
= 0 (A.17d)

∂
(1)
t By + ∂x

[(
1−

sN,y1

2

)
N

(1)
y1

]
+ ∂y

[(
1−

sN,y2

2

)
N

(1)
y2

]
= 0 (A.17e)

The full equations for conserved moments (combining all respective moment equations

for O(ε) and O(ε2)).

∂tM0 + ∂xM1 + ∂yM2 = 0 (A.18a)

∂tM1 + ∂x

M0

3
+
M

2
1

M0

−
B

2
x

2
+
B

2
y

2
+ ε

{
1

2

(
1−

s4

2

)
M

(1)
4 +

1

30

(
1−

s7

2

)
M

(1)
7 −

1

5

(
1−

s8

2

)
M

(1)
8

}
+ ∂y

[
M1M2

M0

−BxBy + ε
{(

1−
s3

2

)
M

(1)
3

}]
= 0

(A.18b)

∂tM2 + ∂y

M0

3
+
M

2
2

M0

+
B

2
x

2
−
B

2
y

2
+ ε

{
−

1

2

(
1−

s4

2

)
M

(1)
4 +

1

30

(
1−

s7

2

)
M

(1)
7 −

1

5

(
1−

s8

2

)
M

(1)
8

}
+ ∂x

[
M1M2

M0

−BxBy + ε
{(

1−
s3

2

)
M

(1)
3

}]
= 0

(A.18c)

∂tBx + ∂x
[
ε
(

1−
sN,x1

2

)
N

(1)
x1

]
+ ∂y

[
M2Bx −M1By

M0

+ ε
(

1−
sN,x2

2

)
N

(1)
x2

]
= 0 (A.18d)

∂tBy + ∂x

[
M1By −M2Bx

M0

+ ε
(

1−
sN,y1

2

)
N

(1)
y1

]
+ ∂y

[
ε
(

1−
sN,y2

2

)
N

(1)
y2

]
= 0 (A.18e)

Now, find the perturbed moments by directly solving the lowest order moment equa-

tions (A.15 and A.16) for the perturbed moments. Perturbed moments solved to O
(
Ma2

)
from O(ε) equations are

117



M
(1)
3 = − 1

3s3

{
∂xM2 + ∂yM1

}
+

∆2

12M0
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∂βM1

)(
∂βM2

)
−

(
∂βM0

)
M0

M1

(
∂βM2

)
+M2
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M0


−∆2

12

(
∂βBx

)(
∂βBy

)
(A.19a)

M
(1)
4 = − 2

3s4

{
∂xM1 − ∂yM2

}
+

∆2

12M0
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)2
−
(
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2
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2
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− ∆2
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[(
∂βBx

)2
−
(
∂βBy

)2
]

(A.19b)

M
(1)
5 =

1

s5
∂

(0)
t M1 +

1

3s5
∂xM0 = 0 (A.19c)

M
(1)
6 =

1

s6
∂

(0)
t M2 +

1

3s6
∂yM0 = 0 (A.19d)

M
(1)
7 =

2

s7

{
∂xM1 + ∂yM2

}
− 3∆2
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∂βM1
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(
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 (A.19e)

M
(1)
8 =
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2
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2
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2
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)
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(
∂βM2
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(
M

2
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2
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(A.19f)
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N
(1)
x1 = − 1

3sN,x1
∂xBx (A.20a)

N
(1)
y2 = − 1

3sN,y2
∂yBy (A.20b)

N
(1)
y1 = − 1

3sN,y1
∂xBy −
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12M0
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∂βM2

)(
∂βBx

)
−
(
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)(
∂βBy
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)
M0

(
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(
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)
+Bx

(
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−M1

(
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(
∂βM1

)
−

(
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)(
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(A.20c)

N
(1)
x2 = − 1
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∂yBx +
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)(
∂βBx
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−
(
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)(
∂βBy
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(
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(A.20d)

N
(1)
x3 = = − 1

3sN,x3
∂

(0)
t Bx = − 1

3sN,x3
∂y

(
M2Bx −M1By

M0

)
(A.20e)

N
(1)
x4 = = − 1

3sN,x4
∂

(0)
t Bx = − 1

3sN,x4
∂y

(
M2Bx −M1By

M0

)
(A.20f)

N
(1)
y3 = = − 1

3sN,y3
∂

(0)
t By = − 1

3sN,y3
∂x

(
M1By −M2Bx

M0

)
(A.20g)

N
(1)
y4 = = − 1

3sN,y4
∂

(0)
t By = − 1

3sN,y4
∂x

(
M1By −M2Bx

M0

)
(A.20h)

The final MHD equations are found by inserting the perturbed moment values (A.19
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and A.20) into the evolution equations. The final MHD equations are

∂tM0 + ∂xM1 + ∂yM2 = 0 (A.21a)

∂tM1 + ∂x
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(A.21b)
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(A.21c)
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(A.22b)

In simplifying the MHD equations above, they become

∂tρ+∇ · ρu = 0 (A.23a)
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)
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ρ
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[
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APPENDIX B

Local Spatial Derivatives

Calculating spatial derivatives typically requires information from neighboring nodes.

In lattice Boltzmann, it is possible to calculate the spatial derivative of a conserved quantity

locally using perturbed moments. Perturbed moments are necessarily determined midway

through Chapman-Enskog (A.19 and A.20). The fluid and magnetic perturbed moments

without the LES filters from Appendix A are respectively

M
(1)
3 = − 1

3s3

{∂xM2 + ∂yM1} (B.1a)

M
(1)
4 = − 2

3s4

{∂xM1 − ∂yM2} (B.1b)

M
(1)
5 =

1

s5

∂
(0)
t M1 +

1

3s5

∂xM0 = 0 (B.1c)

M
(1)
6 =

1

s6

∂
(0)
t M2 +

1

3s6

∂yM0 = 0 (B.1d)

M
(1)
7 =

2

s7

{∂xM1 + ∂yM2} (B.1e)

M
(1)
8 =
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3s8

{∂xM1 + ∂yM2} −
5

3s8

∂
(0)
t M0 =

2

s8

{∂xM1 + ∂yM2} (B.1f)
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N
(1)
x1 = − 1

3sN,x1

∂xBx (B.2a)

N
(1)
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N
(1)
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∂xBy (B.2c)

N
(1)
x2 = − 1
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N
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∂
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∂
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N
(1)
y3 = = − 1
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∂
(0)
t By = − 1

3sN,y3
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(
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N
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∂
(0)
t By = − 1
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(
M1By −M2Bx

M0

)
(B.2h)

These perturbed moment equations can be solved directly for a strictly local set of

equations describing each spatial derivative. One set of solutions from these equations is
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found to be

∂xBx = − 3sN,x1N
(1)
x1

(B.3a)

∂yBy = − 3sN,y2N
(1)
y2

(B.3b)

∂xBy = − 3sN,y1N
(1)
y1

(B.3c)

∂yBx = − 3sN,x2N
(1)
x2

(B.3d)

∂xM2 + ∂yM1 = − 3s4M
(1)
3

(B.3e)
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(
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2

)
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30

(
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)
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)
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N
(1)
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∂
(0)
t Bx = − 1

3sN,x4

∂y

(
M2Bx −M1By

M0

)
(B.3i)

N
(1)
y3 = = − 1

3sN,y3

∂
(0)
t By = − 1

3sN,y3

∂x

(
M1By −M2Bx

M0
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(B.3j)

N
(1)
y4 = = − 1

3sN,y4

∂
(0)
t By = − 1

3sN,y4

∂x

(
M1By −M2Bx

M0

)
(B.3k)

where M0 = ρ, M1 = ρux, and M2 = ρuy.

In determining the simulation value of a perturbed moment, it can be simply calcu-

lated as the difference of a moment from its equilibrium

M
(1)
i = Mi −M (0)

i . (B.4)
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APPENDIX C

Entropic Derivation for LB

This appendix derives the solution for γ∗ found in section 6.2.

The relative entropy of a distribution of particles with discrete positions and momenta,

such as in lattice Boltzmann, is defined as

S = −
∑
i

fi ln
fi
Wi

, (C.1)

where fi is a distribution of the fluid at some lattice site with velocity i, and Wi is a

normalized vector of lattice weights (
∑

iWi = 1).

Entropy is naturally a concave function. We know this because the derivative of

−u log u is the strictly decreasing function − (1 + log u) on u ∈ [0, 1]. A sum of concave

functions remains concave and so we can say that (C.1) is concave since fi is a positive

definite distribution defined as fi ∈ [0, 1].

We begin by substituting the postcollisional state

fi ⇒ f
′

i [γ] = fi − β (2∆si + γ∆hi) (C.2)
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into the relative entropy equation (C.1) to produce a new postcollision entropy equation

which is explicitly a function of γ;

S [γ] = −
∑
i

(fi − β (2∆si + γ∆hi)) ln

(
fi − β (2∆si + γ∆hi)

Wi

)
, (C.3)

with β related to the original relaxation rate and the fluid viscosity as β = 1
2τ

= 1
6ν+1

,

∆si = si − seq
i , and ∆hi = hi − heq

i .

Using the property, fi = ki + si + hi, we find that fi − f eq
i = ∆si + ∆hi and the

postcollision entropy equation (C.3) can be modified to

S [γ] = −
∑
i

(fi − β (2∆si + γ∆hi)) ln

(
f eq
i + (1− 2β) ∆si + (1− γβ) ∆hi

Wi

)
. (C.4)

To lowest order in u, f eq
i is linear with respect to Wi. It can be shown that

f eq
i = ρWi (1 +O(u)) . (C.5)

Expanding this equation about u = 0 and ρ = 1, f eq
i ' Wi. So Wi in (C.4) can be replaced

by f eq
i to become

S [γ] = −
∑
i

(fi − β (2∆si + γ∆hi)) ln

(
1 +

(1− 2β) ∆si + (1− γβ) ∆hi
f eq
i

)
. (C.6)

Since entropy is naturally a concave function, it can be maximized by setting it’s

derivative to zero.

∂S [γ]

∂γ
= 0 =

∑
i

β∆hi +
∑
i

β∆hi ln

(
1 +

(1− 2β) ∆si + (1− γβ) ∆hi
f eq
i

)
(C.7)

This equation can be simplified to the critical point defining maximum entropy if we look
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at how the post-collisional scalar distribution, f
′
i , changes with respect to γ. It is evident

that the conserved moments are unchanged during a collision which allows us to specify

the constraint

∑
i

f
′

i =
∑
i

fi = ρ . (C.8)

We can now remove the
∑

i ∆hi term from (C.7) by substituting the derivative of (C.8)

with respect to γ, which appears as

∂

∂γ

∑
i

f
′

i =
∑
i

∂

∂γ
(fi − β (2∆si + γ∆hi)) =

∑
i

β∆hi = 0 . (C.9)

The critical point defining maximum entropy is thus shown to be

∂S [γ]

∂γ
= 0 =

∑
i

∆hi ln

(
1 +

(1− 2β) ∆si + (1− γβ) ∆hi
f eq
i

)
. (C.10)

From the critical point, determining a solution for γ is relatively straight-forward. We

begin the solution by expanding the equation about ∆si
feqi

and ∆hi
feqi

to lowest order so we can

remove the troublesome (ln ) term. This results in

0 =
∑
i

(∆hi − γβ∆hi)
∆hi
f eq
i

+
∑
i

(∆hi − 2β∆hi)
∆si
f eq
i

. (C.11)

Now, a terminology is introduced to simplify the summed terms where

〈X|Y 〉 =
∑
i

XiYi
f eq
i

(C.12)
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and (C.11) becomes

0 = (1− γβ) 〈∆h|∆h〉+ (1− 2β) 〈∆s|∆h〉 . (C.13)

Dividing 〈∆h|∆h〉 and solving for γ we get the final solution.

γ∗ =
1

β
+

(
1

β
− 2

)
〈∆s|∆h〉
〈∆h|∆h〉

. (C.14)
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