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ABSTRACT

The mechanisms of embryonic induction are of central importance to 
understanding how the basic body plan is established in vertebrate embryos. The 
identification o f signaling pathways involved during inductive processes has 
enabled significant progress to be made in understanding the molecular basis o f 
embryonic induction. Although many studies have characterized developmental 
signaling pathways, namely, the growth factor-tyrosine kinase and steroid- 
hormone receptor pathways, very little work has been done to identify G-protein- 
coupled receptors during development. This is suprising since they are expressed 
ubiquitously in adult signaling pathways. In an attempt to identify and 
characterize candidate receptors expressed during development, a st. 42 swimming 
tadpole cDNA library was screened for G-protein-coupled receptors. This resulted 
in the isolation and characterization of a novel member o f the G-protein-coupled 
receptor superfamily that shares 48% homology with a human gene, APJ. Based 
on its expression in endothelial tissues that give rise to the vasculature, namely, the 
heart and blood vessels, this gene has been named XEGR-1 for Xenopus endotheial 
G-protein-coupled receptor. The further characterization o f this class o f receptors 
may lead to the development o f therapeutic agents that are able to control 
unregulated angiogenesis in diseases such as arthritis and tumorigenesis.



THE ISOLATION AND CHARACTERIZATION OF A NOVEL 

G-PROTEIN-COUPLED RECEPTOR INVOLVED 

IN ANGIOGENESIS



INTRODUCTION

The central, driving question o f developmental biology is how a single cell, 

namely the fertilized egg, gives rise to a complex, patterned organism. The 

expression o f particular genes at specific times during development causes the 

differentiation o f unique cell types, leading ultimately to the assembly of these cell 

types into a functioning organism. There are two known mechanisms governing 

differential gene expression during development: the localization o f cytoplasmic 

determinants and embryonic induction. Cytoplasmic determinants are maternally 

deposited molecules in the egg that serve to convey some o f the earliest 

information involved in the differentiation o f the zygote and are important during 

early development (reviewed by Dawid and Sargent, 1986; Davidson, 1986). The 

other mechanism, embryonic induction, involves tissue interactions whereby one 

group o f cells influences the developmental fate o f another group o f cells (Slack, 

1993). Once the zygote begins to undergo cleavage, it is the progressive inductive 

interactions among dividing cells that orchestrate the developmental events o f 

differentiation, morphogenesis and organogenesis. The elucidation o f the 

mechanisms by which differential gene expression, the “central dogma” o f 

developmental biology, occurs has resulted in significant progress in addressing 

this question.
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Inductive interactions possess two elements: a tissue that produces the 

inducing signal and a tissue that is capable or “competent” to respond to it. A 

classic developmental process demonstrating the ability o f one group o f cells to 

influence the development of another group o f cells by means o f a series o f attuned 

tissue interactions is vertebrate lens induction (reviewed by Saha et ah, 1992). As 

the neural tube expands, the optic vesicle emerges from the lateral forebrain and 

touches the surface ectoderm, causing the ectoderm at this location to thicken and 

form the lens placode, subsequently giving rise to the lens, which, in turn, induces 

the cornea. The optic vesicle then invaginates to form the optic cup which will 

become the retina. Recent studies have shown that a combination o f signals 

arising from the anterior neural plate as well as the optic vesicle are responsible for 

inducing the lens (Henry and Grainger, 1990). In addition, the period o f 

competence in the responding ectoderm to these lens inducing signals has been 

shown to be very narrow (Servetnick and Grainger, 1991), only occurring during 

late gastrulation. These and other studies o f embryonic induction have provided 

the framework for analyzing the mechanisms underlying the embryonic induction.

To understand the nature of inductive interactions during development, it is 

necessary to look beyond tissue interactions and analyze the mechanisms involved 

at the molecular level. Perhaps one of the most significant and thoroughly studied 

examples o f embryonic induction at the molecular level is mesoderm induction.



4
After fertilization, the embryo undergoes a series o f rapid mitotic cell divisions, 

creating a hollow ball o f  cells called a blastula. Vertebrate embryos at this stage 

are composed o f two cell types: endoderm in the vegetal half o f the embryo and 

what in amphibian embryos is termed the “animal” half. Signals arising from the 

cells o f the vegetal pole induce the cells o f the middle zone to become mesoderm. 

The ectodermal cells o f the animal cap are protected from mesoderm-inducing 

factors by the blastocoel and are not transformed into mesoderm (Smith, 1993).

The presence of mesoderm-inducing signals in the vegetal pole o f the embryo was 

first demonstrated by Nieuwkoop (1969). He showed that when animal cap tissue 

is cultured alone, ectodermal tissue develops; however, when recombinants o f 

vegetal tissue and animal cap tissue were constructed and then cultured together, 

mesodermal tissues formed. For years after, many investigators searched for the 

elusive molecules responsible for mesoderm induction. Finally, fibroblast growth 

factor (FGF) and activin were identified as the ventral and dorsal mesoderm- 

inducing agents respectively (Kimelman and Kirschner, 1987; Slack et a l., 1987; 

Asashima et al., 1990; Smith et al., 1990).

As discussed above for lens induction, the responding tissue must be 

competent. Although a tissue can acquire competence in several ways, the most 

common mechanism is to express a receptor for the inducing molecule during a 

limited period o f time. In order to provide additional proof that fibroblast growth
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factor and activin were the natural mesoderm inducing agents, it was necessary to 

demonstrate simultaneously the expression of activin and FGF receptors in 

presumptive mesoderm (Gillespie et al. 1989; Musci et al, 1990) and to show that 

mesoderm induction could be disrupted by the inhibition o f these receptors 

(Amaya et al. 1991). These exciting experiments have done much to establish not 

only the current understanding of mesoderm induction, but have also elucidated 

the molecular basis o f inductive mechanisms in general.

Given the understanding of inductive mechanisms coupled with an 

extensive knowledge o f adult signaling pathways, a model for inductive 

interactions and cell - cell communication has emerged. Generally, a molecule 

(ligand) is secreted from a signaling cell and "travels" to a responding cell 

expressing the appropriate receptor. The binding o f the ligand to its receptor then 

activates secondary pathways that convey the information to the nucleus and 

enable the cell to respond appropriately. Many o f these ligands have been 

identified and have been classified into the following groups: peptide growth 

factors, steroids, peptide hormones, and miscellaneous small molecules. Each o f 

these classes o f molecules binds predictably to and activates a specific type o f 

receptor. In particular, several families o f growth factors ( i.e. fibroblast growth 

factor, transforming growth factor-beta, and the cytokines) have been 

characterized that are not only involved in diverse functions in the adult such as
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ovulation, bone formation, and wound repair, but also play a critical role in 

primary and secondary inductions during development. Tissues that are competent 

to these growth factors have been found to express cell-surface proteins which 

contain intrinsic tyrosine kinase activity. The structure o f the tyrosine kinase 

receptor and its methods o f signal transduction have been worked out in great 

detail (reviewed by Ullrich and Schlessinger, 1990).

Steroid hormones and their receptors have also been well characterized as 

an important class o f signaling molecules (reviewed by Fuller, 1991; O'Malley, 

1990). Estrogens, testosterone and glucocorticoids are examples o f important 

steroids functioning in the adult. A well-studied example o f an important steroid 

molecule involved in development is retinoic acid. This vitamin A derivative 

plays a critical morphogenetic role in early pattern formation o f the embryo. The 

receptors for retinoic acid belong to a unique family o f non-membrane bound 

receptors. Like all steroids, retinoic acid is lipid-soluble and is able to diffuse 

directly through the membrane into the cytosol where it binds to its receptor 

(reviewed by Summerbell and Maden, 1990). The hormone-receptor complex then 

translocates to the nucleus where it serves as a transcription factor to activate the 

expression o f specific genes.

One o f the most thoroughly characterized and perhaps most utilized 

signaling pathways in the adult organism is mediated through G-protein-coupled
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receptors. It has been estimated that nearly 80% of all known receptors are G- 

protein-coupled receptors (Bockaert, 1991). G-protein-coupled receptors are 

involved in such functions as the transmission of hormonal signals, odorant 

reception and vision (Bockaert, 1991). The regulation of this signaling pathway is 

critical for homeostasis and many diseases, including cancer, can result from their 

deregulation (Clapham, 1993). The cloning o f G-protein-coupled receptors has 

revealed sequence and structural similarities which have been conserved between 

organisms such as bacteria, insects, mice and humans, and has led to their 

placem ent into a superfamily of receptors (Probst et al., 1992). Analysis o f the 

amino acid sequence predicts a conformation that spans the membrane seven 

times, usually orienting the amino terminus to the extracellular side and the 

carboxy-terminus to the cytoplasmic side. These signals are typically transduced 

when a ligand binds the extracellular domain and induces a conformational change 

in the receptor, causing the intracellular domain to bind G-proteins which activate 

second messenger pathways that enable the cell to respond to the signal.

Given that there is a finite number o f genes with which to create and 

maintain an organism (estimates range from 100,000 to 500,000 genes), a common 

m echanism used to overcome this limitation is to reuse developmental genes in 

adult systems. This, coupled with the estimation that G-protein- coupled receptors 

may comprise nearly 1% o f the genome (Clapham, 1993), would make it highly
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probable that this class o f receptors is expressed during development. However, 

although more than 100 G-protein-coupled receptors in the adult have been cloned 

and characterized, very little work has been done to demonstrate a role for them 

during development.

The goal o f this project was to identify and characterize G-protein-coupled 

receptors that are expressed during the development of Xenopus laevis. Xenopus 

was chosen as an experimental model in this study for the following reasons: 1), 

Xenopus embryos can be readily collected for experiments because single matings 

between male and female frogs generate thousands of embryos and 2), the large 

size o f the embryos make them amenable to surgical manipulations, tissue culture 

and biochemistry, even at early developmental stages when other vertebrate 

embryos cannot be easily manipulated. In order to identify novel G-protein- 

coupled receptors, a cDNA library was screened with a polymerase chain reaction 

(PCR) fragment amplified with degenerate primers to the third and sixth 

transmembrane regions. Using this approach, a novel G-protein-coupled receptor 

cDNA was isolated from a stage 42 cDNA library that is expressed from neurula to 

swimming tadpole stages in tissues that appear to be involved in vasculogenesis 

and angiogenesis, namely, ventral mesoderm, angioblasts, heart and blood vessels. 

The results o f  this study characterize the sequence and expression pattern o f this 

clone, which has been named XEGR-1 for Xenopus endothelial G-protein-coupled



receptor; it also describes some o f the tissue interactions that may be important 

regulating its expression during development.



EXPERIMENTAL PROCEDURES

Animals

Sexually mature Xenopus laevis frogs were purchased from Xenopus I 

(Ann Arbor, MI). Embryos were obtained from matings induced by subcutaneous 

injections o f human chorionic gonadotropin (hCG) (Sigma) at concentrations o f 

1000 U for females frogs and 750 U for male frogs. Embryos were cultured at 14- 

16° C in 0.1 X normal amphibian media (NAM) containing 50 ug/ml gentamicin 

sulfate. All embryos used in subsequent experiments were staged according to 

Nieuwkoop and Faber (1967).

Low Stringency Homology Screening

In order to identify novel G-protein-coupled receptors involved in 

vertebrate development, a cDNA library constructed in lambda ZAP II 

(Stratagene) from stage 42 swimming tadpoles (Saha and Grainger, 1992) was

screened at low stringency with a 32p_random-primed-labeled 0.5 kb PCR 

fragment. The PCR fragment (a gift from Roger Cone, Oregon Health Sciences 

University) was originally amplified from a Xenopus laevis melanophore library

10
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Approximately 20 ug of the PCR fragment, designated R1 by Cone, was 

received already cloned into the vector pBS (Stratagene). In order to generate a 

sufficient amount o f DNA for screening procedures, R1 was transformed into 

Escherichia coli DH5 alpha cells which were made competent for transformation 

by incubation for 30 minutes in a buffer containing 13% glycerol, 10 mM Tris- 

HC1, 100 mM C aC b, and 50 mM MgCl2- To select for those cells which were

successfully transformed with R l, the cells were grown on agar plates containing 

50 ug/ml ampicillin. Plasmid DNA was then isolated from an overnight culture o f 

a successful transformant using a standard protocol o f alkaline lysis and PEG 

precipitation (Sambrook et ah, 1989). Linear R l was then prepared by excision 

from pBS with restriction enzymes EcoRl and Sal I. The resulting fragment from 

this digestion was isolated by gel electrophoresis and purified using GeneClean 

(B iolO l).

A probe was synthesized using Promega Prime-a-Gene labeling system, that 

is based on the method developed by Feinberg and Vogelstein (1983) in which 

random hexamers are used to prime single-stranded linear DNA templates for 

DNA synthesis in vitro. The reaction was conducted according to the 

manufacturer's protocol using approximately 5 ug o f R l. The amount o f probe 

synthesized in the reaction was estimated according to the ratio o f incorporated 

counts to total counts. Total counts were determined by spotting a DE-81 filter
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(W hatman) with 0.5 ul o f sample and measuring counts per minute (cpm) w ith a 

Geiger counter. The filter was then washed twice with 10 mL o f 0.5 M N a2 HPC>4

(pH 7.5) and once with 10 mL o f 95% ethanol and measured again for cpm to 

determine the counts which had been incorporated into the probe and retained on 

the filter. The ratio o f the total to the incorporated counts was used to determine 

the amount o f radioactivity that was incorporated into the probe. The probe was 

extracted once with phenol/chloroform and precipitated in 0.3 M sodium acetate 

and ethanol and stored at -80° C until needed.

For primary screening of the stage 42 cDNA library, agar plates were 

prepared at a density o f 50,000 to 60,000 plaque forming units (pfu) per 150 mm 

petri plate o f  confluent E. coli BB4 cells according to a standard protocol 

(Sambrook et al., 1989). Using 150 mm nylon membranes, duplicate lifts were 

made on six plates. In order to expose the phage DNA to the probe, the phage coat 

was broken open by pressurizing the filters in the autoclave at 10 psi and 100°C for 

one minute. The phage DNA was then cross-linked to the filters by UV-irradiating

at 1.2 x 10^ jo u le s /c m ^  for 120 s (Fisherlinker).

The filters were pre-hybridized at standard low stringency conditions in a 

buffer solution containing 1 M NaCl, 1% SDS, 10 mM Tris-HCl (pH 7.5), 100 

ug/ml salmon sperm DNA, and 30% formamide at 42° C for 6h. The filters were 

then hybridized in the same buffer solution containing the labeled probe (107
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cpm/mL) overnight at 42° C. The filters were washed once in 2X SSC, 1% SDS, 

for 10 minutes at room temperature, twice for 30 minutes at room temperature, and 

then at 50° C until counts reached a level o f 200-400 cpm. The filters were 

exposed to X-ray film (Fuji) with an intensifying screen overnight at -80° C and 

then developed and analyzed for the presence o f positive signals from both 

duplicate filters. Films showing positive clones were realigned with the original 

plates and the area around the positive plaque was bored out and the phage 

particles were eluted in 1 mL of storage media overnight (Sambrook, et al., 1989).

In order to purify the plaque o f interest from the suspension of phage 

particles eluted from the agar plug o f the primary screen, this subpopulation o f 

phage was plated out at a density of approximately 1,000 pfu per 90 mm plate o f 

confluent BB4 cells and re-screened with the probe. Preparation of the filters, 

hybridization and washing conditions, exposure to film and isolation o f positive 

clones was identical to the conditions described above for the primary screen.

To obtain a single positive plaque, the phage from the secondary plug were 

plated out at a density o f approximately 25 pfu per 90 mm plate o f confluent BB4 

cells and re-screened with the probe in the manner described above. Four single 

plaques, corresponding to positive signals, were bored out and eluted overnight in 

500 ul o f storage media. These were designated xR la, xR lb , xR lc  and xR ld.
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Having obtained a plaque-pure suspension of phage particles, excision o f 

the pBluescript plasmid containing the cloned cDNA insert from the lambda ZAP 

vector (Stratagene) was performed with minor modifications according to the 

m anufacturer's protocol. BB4 cells containing the excised pBluescript plasmid 

were selected by growing on agar plates containing 50 ug/mL ampicillin. Using a 

standard protocol o f alkaline lysis and PEG precipitation (Sambrook, et al., 1989), 

plasm id DNA was then isolated from overnight cultures that had been inoculated 

with a colony demonstrating ampicillin resistance.

Sequence Analysis

Dideoxy sequencing o f the clones (xRla, xR lb, xR lc, xR ld) identified in 

the hom ology screen was performed using Sequenase Version 2.0 (United States 

Biochemical) according to the manufacturer's protocol, a method based upon the 

chain term ination technique developed by Sanger et al. (1977). Universal and 

reverse primers (United States Biochemical) which recognize pBluescript 

sequences flanking the insert were used to obtain sequence from the extreme 5 ’ 

and 3 ’ ends of these clones. Sequence analysis demonstrated that these clones 

were identical. All further manipulations were performed on xR la , which was 

renam ed X E G R -1. Templates for sequencing were created by subcloning 

restriction fragments generated from digests o f XEGR-1 with Hind III, Kpn I, Xba
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I, Hae III and Alu I. Restriction fragments were isolated by gel electrophoresis, 

purified with GeneClean (Bio 101) and ligated into pBluescript with T4 ligase 

(Promega) according to Sambrook et al. (1989). Sequence was also obtained by 

designing 16-20 mer oligonucleotide primers to internal sequences o f XEGR-1 

(Table 1). Sequence alignments were generated using the FASTA and GCG 

programs provided by the University o f Virginia.

RNA Isolation and Northern Blot Analysis

Total RNA was isolated from whole embryos following a standard protocol 

(Sambrook et al., 1989) and separated through a 1.2% agarose/formaldehyde gel 

and blotted onto a nylon membrane. The nucleic acid was cross-linked to the

membrane by UV-irradiating at 1.2 x 10^ joules/cm^ for 120 s (Fisherlinker) and 

prehybridized for six hours at 42° C in a buffer containing 50% formamide, 1 M 

NaCl, 1% SDS, 10 mM Tris-HCl (pH 7.5), and 100 ug/mL salmon sperm. The 

blot was then hybridized in the same buffer containing a 32P-radiolabeled probe 

synthesized from the full length clone identified in the homology screen (as 

described previously) overnight at 42° C. Filters were washed twice at room 

temperature in 2X SSC and 1% SDS for 20 minutes each and then at 60° C until 

counts reached a level o f 200-400 cpm. The filters were then exposed to X-ray 

film (Fuji) with an intensifying screen at -80° C overnight.



T able  1. Primer design. In order to obtain complete sequence from both strands, 
16-20 mer oligonucleotides were designed to bind to internal sites o f XEGR-1. 
Their nucleotide sequence and the position at which they bind XEGR-1 are 
indicated.



TABLE 1

PR IM E R  SEQ U EN CE_________________________ PO SIT IO N

I 5 ’ GACTTACACCAGTCAC 3 ’ 1950

II  5 ’ ATATGGAAAGGCAGCC 3 ’ 810

III  5 ’ GTGTCCTTGGAGGACTTT 3 ’ 990

IV  5 ’ GTGGGGACAGAGACTTTGTT 3 ’ 1140

V 5 ’ GGTAATCTAGCACTGGCT 3 ’ 250

V I 5 ’ TTACTGCTTCATCGGTGG 3 ’ 700

V II 5 ’ AGCCCTATGGGAGTTTTC 3 ’ 1740
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W hole-m ount in situ Hybridization

In order to visualize the expression pattern o f XEGR-1, whole-m ount in situ 

hybridization was performed essentially as described by Harland (1991). Embryos 

used in this procedure were prepared by removing the gelatinous coat with a 2-5 

minute rinse in a solution containing seven pellets o f sodium hydroxide and 2 g o f 

cysteine / 100 mL o f sterile water, followed by three rinses in 0.1 X N A M  (Slack, 

1984). Embryos were harvested at different stages by removing the vitelline 

m em brane and fixing in MEMFA (0.1 M MOPS, 2 mM EGTA, 1 mM M gS0 4 ,

and 3.7% formaldehyde) for one to two hours. Embryos were then stored in 100% 

m ethanol at -20° C until needed. The antisense probe was transcribed with T7 

polym erase (Stratagene) on XEGR-1 which had been linearized with the restriction 

enzyme Bam HI. The most effective antisense probes were synthesized when 

om itting the DNAse treatment and hydrolysis steps recommended in Harland's 

procedure. Following hybridization, embryos were fixed overnight in M EM FA 

and then stored in 1 X PBS at 4 degrees Celsius until further use. Stained embryos 

were prepared for photography by clearing the tissue with a 2:1 solution o f benzyl 

benzoate and benzyl alcohol. Embryos were prepared for sectioning by 

dehydration in serial dilutions of ethanol and xylene followed by embedding in
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Paraplast. Sections were made on a microtome at a width o f 8 um and m ounted on 

slides treated with Mayers albumin in a mixture o f 1:1 xylene and Permount.

Embryo Manipulations

In order to investigate the regional expression o fXEGR-1  , embryos at stage

11.5 (mid-gastrula) and stage 14 (early neurula) were dissected into dorsal and 

ventral pieces and then further subdivided into anterior, middle and posterior 

regions (as described in Saha and Grainger, 1992), yielding a total o f six pieces.

All manipulations were performed with fine glass needles under a dissecting 

microscope and the resulting explants were cultured in 3/8 NAM  until sibling 

embryos reached stage 32. Explants and sibling embryos (used as controls) were 

harvested and fixed in MEMFA in preparation for in situ hybridization.



RESULTS

Isolation oiXEGR-1

Low stringency screening of a stage 42 cDNA library with a GCR-specific 

probe (as described in experimental procedures) resulted in the isolation o f  four 

positive clones. Restriction digests o f these clones with Eco R l, Xba I and Kpn I 

revealed that they were all approximately 2.2 kb in length and generated similar 

restriction fragments, indicating that all four clones were probably the same. 

Northern blot analysis with the XEGR-1 cDNA clone revealed a single major 

transcript approximately 3.0-3.5 kb in size (results not shown) present in total 

RNA extracted from gastrula, neurula and tailbud stages.

Sequence Analysis and Comparison

The determination o f sequence for the extreme 5' and 3' ends o f the clones 

identified in the homology screen confirmed that all four were identical to each 

other. The x R la  clone, renamed XEGR-1, was sequenced completely on both 

strands. Sequence across the entire length o f this clone was generated by 

assem bling partial sequences (as described in experimental procedures) from both 

strands. Figure 1 shows the nucleotide sequence and the translation o f the

20



Figure 1. Nucleotide sequence of XEGR-1 and the deduced amino acid sequence. 
The nucleotide sequence o f the XEGR-1 cDNA clone is presented as well as a 
translation o f  the assumed open reading frame. The initiating codon, ATG, is 
bolded and the Kozak consensus sequence (ACAACCATGG), located 
imm ediately upstream from the start site, is underlined. The putative 
transmembrane regions have been underlined and potential phosphorylation sites 
on the cytoplasmic domain have been marked with an asterisk.



1 CGGGACTTTCTATTGCTTCACACAGCCTTCAAAGATGGAAACAGAAGGCT 
5 1  TGAGCCTATCTATCAACACGACTATATACGGAAATGAGACTGGACTACAA 

1 0 1  CCATGCGATGAAACAGACTGGGATTTCTCCTATCTCTGCTACCTGTCTTT 
M K Q T G I S P I S A T C L L  

1 5 1  TACATGATCGTGTTTGTCCTTGGACTCTCAGGGAATGGAGTGGTCATCTT 
H D R V C P W T L R E W S G H L  

2 0 1  TACAGATGGAAGTCCAAGCCAAAGCGGAGATCTGCAGACACCTACATAGG 
Y R W K S K P K R R S A D T Y I G

2 5 1  TAATCTAGCACTGGCTGACCTGGCCTTTGTGGTAACACTGCCTCTATGGG
N L A L A D L A F V V T L P L W A

3 0 1  CCACATACACTGCTCTAGGCTTTCACTGGCCCTTTGGTTCTGCACTGTGC
T Y T A L G F H W P F G S A L C

3 5 1  AAGCTCAGCAGCTATGTGGTCTTGCTTAACATGTTTGCCAGTGTTTTTTG
K L S S Y L V L L N M F A S V F C

4 0 1  CCTGACCTGCCTCAGTTTTGATCGGTACCTGGCCATTGTCCATTCGCTTT
L T C L S F D R Y L A I V H S L S

4 5 1  CCAGTGCTAAACTTCGCTCCCGCTCCTCCATCATTGTATCCTTGGCTGTT
S A K L R S R S S I I V S L A V

5 0 1  ATTTGGCTCTTCTCAGGGCTTTTAGCACTCCCAAGTCTGATTCTGCGTGA
I W L F S G L L A L P S L I L R  D 

5 5 1  CACACGTGTAGAAGGCAATAACACTATCTGTGACCTGGACTTCAGTGGTG 
T R V E G N N T I C D L D F S G V  

5 0 1  TTTCAAGCAAGGAGAATGAAAATTTCTGGATCGGGGGGCTAAGCATTCTT 
S S K E N E N F W I G G L S I L  

5 5 1  ACCACAGTTCCAGGATTCCTGCTGCCCCTGCTCCTTATGACCATCTTTTA 
T T V P G F L L P L L L M T I F Y  

7 0 1  CTGCTTCATCGGTGGCAAGGTGACCATGCATTTCCAAAACCTAAAGAAGG 
C F I G G K V T M H F O N L K K E

7 5 1  AAGAACAGAAGAAAAAGAGGCTTCTTAAGATTATTATTACGCTGGTTGTA
E Q K K K R L L K I  I  I  T L V V  

3 0 1  GTGTTTGCTATCTGCTGGCTGCCTTTCCACATTCTGAAAACCATTCACTT 
V F A I C W L P F H I L K T I H  F

8 5 1  TCTAGACCTCATGGGCTTCCTGGAACTTTCTTGCTCTACACAAAACATCA
L D L M G F L E L S C S T Q N I  I  

S O I TTGTCAGCCTGCACCCCTATGCCACCTGCTTGGCATACGTTAATAGCTGC 
V S L H P Y A T C L A Y V N S C

9 5 1  TTAAACCCTTTCCTCTATGCCTTCTTTGACTTGCGATTTCGCTCCCAATG
L N P F L Y A F F D L R F R S Q C  

1 0  0 1  TTTTTTTTTTTTTGGTTTCAAAAAAGTCCTCCAAGGACACCTCAGCAACA 
F F F F G F K K V L Q G H L  S *  N T 

1 0  5 1  CATCTTCCAGTTTAAGTGCACAGACTCAAAAATCTGAAATTCACTGTGTA 
S *  S *  S *  L S *  A Q T * Q K S *  E I  H C V  

1 1 0 1  GCCACAAAGGTATAATTGAGTAAAGGGACATTTGATGGGGTGTGGGGACA 
A T* K V e n d  

1 1 5 1  GAGACTTTGTTCTAAAGAATTTTTGGGTTAATTGAATGTTATCTCTTGTT
1 2  0 1  ACTGGTCAAAAGGGAAGGTCATCTGCTGATTACAGAACAGGGACTTGCAC 
1 2 5 1  AGTCTACTGGATCGTATCACTGTCTGTAAAATGCCCCCACTTAGTGGAGA
13 0 1  TCTGGCTTTTCCTGAGTAACAGACAAACCTTAGTGAATAAGACAATCTTG
13  5 1  CTCAGTCCCCTCTCCAGAAAACAGGAGAGCTGGTTGGACAGGGTGGGAGA
1 4  0 1  AACTGTTTACTGAATTTTGTTATTGATGCAAGAGGGAACTTGGTATGACA
1 4  5 1  TGGGTTAACATATGCTGTATATTGCTGGGTTTCTTCTTTGTATTTGCTAA
1 5  0 1  GGATTTTTGCTTTCCTGTAAATATTTTGCTTGTTAAAGCACTTGTATAAT
1 5  5 1  TTCACACTTTTAACACATTGTTTAAAGGTAATTTTGGAATGTAATGTAAT
1 6  0 1  TGAAATGTTATTTAGCCAATTCACTGCTTTGTTATTATTACACGGACATT
1 6  5 1  AAGGTGAACTGGTTAGAAGCAGTTAAAATTAACAACTGTCTTGAAACCCG
1 7  0 1  TAGTTGATAAAGAAGCAAAGAATCATCACAGTGTAGGGGTTAATGTAGAT
1 7  5 1  TTCCTTTTAAGCCCTATGGGAGTTTTCCTGAACTACTACTTAAAGTATGC
18  0 1  CCAAACAGCCTGTGACTGGCTGAGGATTCTGGGAATTGTAGTTTCGATTA
1 8  5 1  TACTCTGGGGTATGCAGGTTTGCCACCAAAACTCTAAAGGGATAAAGATG
1 9  0 1  T G C AG AAAG G G AAAT C TAT T GG AT ATG AC AAAC T G AAAACTG C AAACT AT 
1 9  5 1  TAACCAAAGATAAGGACTACTGAATGGCTGATATTTTGGTGACTGGTGTA 
2 0 0 1  AGTCATTGCTTCTTATCTATATGTACCATGCTCTAGATATGCGTGTATAT 
2 0 5 1  ATATATATATATATATATATATATATATATATATATATATATATATATAT  
2 1 0 1  ATATATATAAAATATTCCCTTGGAAAGGGGGGATCATTGATAAAACTGTG 
2 1 5 1  TTGTTTGATGCAATAAAAATTTTGGACTATGAAAAAAAAAAAAAAAAAAA 
2 2 0 1  AA

Figure  1. S e q u e n ce  o t ' X E G l l - I .



Figure 2. Amino acid sequence comparisons with XEGR-1. The protein 
sequences o f XEGR-1 with human APJ and Xenopus angiotensin II type one 
receptors are compared. A period below a character indicates that a position 
well conserved,while an asterisk below a character shows that a postion is 
perfectly conserved.



XEGR-1
A PJ
XLAT1

WKS K P KRR S AD T YIGNL AL AD L A F W T L  P L WAT YT ALG 
TTGNGLVLWTVFRSSREKRRSADIFIASLAVADLTFWTLPLWATYTYRD 
VFGNSLWIVIYSYMKMKTMAS VFLMNLALSDLCFVITLPLWAVYTAMH

* ................................................. *  ■*r  ̂ *  *  * * * * * * * * * *

FHWPFGSALCKLSSYLVLLNMFASVFCLTCLSFDRYLAIVHSLSSAKLRS 
YDWPFGTFFCKLSSYLIFVNMYASVFCLTGLSFDRYLAIVRPVANARLRL 
YHWPFGDLLCKIASTAITLNLYTTVFLLTCLSIDRYSAIVHPMKSRIRRT 

* * * * _   ̂ * * _  ̂ *  ̂ * * * * * * * * * * * *

R S S IIV S L A V IW L F SG L L A L PSL IL R D T  RVEGNNTI CDLDFSGVSSKE 
RVSGAVATAVLWVLAALLAMPVMVLRTTGDLENTTKVQCYMDYSMVATVS 
VMVARLT CVGIWLAVF LAS L P S VIYRQIFIFPDTNQTVCALVY HS

*  *  *  *  *

NENFWIGGLSILTTVPGFLLPLLLMTIFYCFIGGKVTMHFQNLKKEE QK 
SEWAWEVGLGVSSTTVGFWPFTIMLTCYFFIAQTIAGHFRKERIEGLRK 
GHIYFMVGMSLVKNIVGFFIPFVIILTSYTLIGKTLKEVYRAQRA R 

* ...................

K K R L L K IIIT L W V F A IC W L PFH IL K T IH FL D L M G FL E L SC ST Q N IIV SL  
RRRLLS11WLWTFALCWMPYHLVKTLYMLG SLLHWPCDFDLFLMNI 
NDDIFKM IVAW LLFFFCW IPHQVFTFLDVLIQMDVIQ NCKMYDIVDTG 

* * * * * *  ̂  ̂  ̂ *  ̂ *

HPYATCLAYVNSCLNPFLYAFFDLRFRSQCFFFF G
FPYCYCISYVNSCLNPFLYAFFDPRFRQACTSMLCCGQSRCAGTSHSSSG 
M PITICIAY FNSCLNPFLY GFFG KK FRKH FLQ LIK YIPPK  MRTHASVN 

*  * _ * * * * * * * * * * * * > * *

FKKVL QGHLSNTSSSLS AQTQKSEIHCVATKV 
EKSASYSSGHSQGPGPNMGKGGEQMHEKSIPYSQETLWD 
TKSSTVSQ RLSDTKCASNKIALWIFDIEEHC K

*

M KQTG ISPISATCLLHDRVCPWTLREWSGHL YR
M EEEGGDFDNYYGA NQSECEYTDWKSSGALIPAIYMLVFLLG
MLSNIS AGENS EVE K IW K C S  KS MGMHNY I F  I T I P I I Y S T I F W G
* *

Figure 2. A m ino Acid Sequence Comparisons with XEGR-1.
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assumed open reading frame encoding a putative protein o f 335 amino acids. The 

ATG start codon is designated by bold letters and the canonical Kozak consensus 

sequence located immediately upstream from the initiating methionine is 

underlined (Kozak, 1986). The locations o f the transmembrane regions which 

have been predicted by a hydropathicity analysis are also denoted. Potential 

phosphorylation sites on the cytoplasmic domain have been indicated by an 

asterisk. Comparison with primate, rodent, mammalian and vertebrate sequence 

libraries in Genebank revealed that a human gene, APJ, has the highest sequence 

similarity, being 48% homologous at the amino acid level. APJ is a novel G- 

protein-coupled receptor with unknown function that appears to share sim ilarities 

with angiotensin II type one receptor (O ’Dowd et ah. 1993). The ligand for the 

angiotensin receptor, angiotensin II, is known to mediate its signal through two 

receptor subtypes, ATI and AT2, which have been identified using sequence 

homologies and pharmacological differences (Mukoyama, et ah, 1993). Figure 2 

compares the protein sequences o f APJ and Xenopus angiotensin II type one 

receptors to XEGR-1.

Expression Pattern of XEGR-1

W hole-mount in situ hybridization was used to demonstrate the spatial as 

well as the temporal expression o f  XEGR-1. XEGR-1 is first clearly detectable in
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early neurula stages (st. 14-16) as a diffuse stain in the most posterior region o f  the 

neural plate which is fated to become the tail (De Robertis, 1993) (Fig. 3A). In 

later neurula stages (st. 17-19), this diffuse staining in the presumptive tail 

becomes more intense and localized (Fig. 3B). During this period, a diffuse stain 

also appears in the ventral mesoderm in the anterior region o f the embryo. As the 

embryo nears tail bud stages (st. 24-28), the diffuse stain in the ventral mesoderm 

is transformed into punctate staining that appears in discrete cells (Fig. 3C). As 

the tail emerges during stages 29-34, staining continues to condense in the very tip 

o f the tail while angioblasts appear to coalesce into structures that appear to be the 

rudiments o f a vascular system. Specifically, signal can be seen concentrated in 

the heart region, in blood vessels throughout the head, between the somites, and in 

bilateral vessels running alongside the notochord (Figs. 3D,E). A marked decrease 

in the amount o f visible stain in the vasculature and in the tail occurs during stages 

36-42, with signal essentially disappearing by swimming tadpole stages (st. 45) 

(Fig. 3F).

In order to more closely examine the expression o f XEGR-1 during 

development, embryos which had undergone in situ hybridization were sectioned 

transversely along the entire anterior-posterior axis. The analysis o f the stain in 

these sections confirmed the patterns that appeared in the whole embryo. The 

vascular structures could now be examined in relation to their anatomical location.



Figure 3. W hole-mount in situ hybridization with XEGR-1. W hole-mount in situ 
hybridization was performed on Xenopus embryos at different developmental 
stages. (A) Early neurula (st. 14), dorsal view. The arrow indicates the 
presumptive tail (T)area. (B) Late neurula (st. 20), dorsal view. The arrow is 
pointing to the tail region. (C) Early tail bud (st. 28), lateral view. Angioblasts (A) 
in the ventral region o f the embryo are indicated. (D) Hatching (st. 34), lateral 
view. The blood vessels (V) running below the notochord and between the 
somites are marked. (E) Hatching (st. 34), close up o f the head region. The 
endocardium o f the heart (H)is clearly visible in this embryo. (F) Swimming 
tadpole (st. 42), lateral view.





29
Using an anatomical textbook as a guide (Lehman, 1977), an attempt was made to 

identify some of these structures (Fig. 4). The diffuse stain seen in the posterior 

neural plate o f whole embryos (st. 14-16) was not visible in cross section at the 

very early stages; however, by stage 18, a strong signal was apparent in the 

presum ptive tail region as well as the anterior ventral mesoderm (Figs. 4A, B). 

During pre-tailbud and tailbud stages, localized stain appeared in regions which 

give rise to the endocardium of the heart (Figs. 4C,D) and specific blood vessels 

identified as the carotids, pericardinal veins, lateral arteries, and the hepatic vein 

(Fig. 4E). O f particular interest was a discrete stripe of stain that appeared on 

either side o f the neural tube, between the eye and the ear, during stages 32-36 

(Fig. 4F) which does not appear to correspond to any anatomical structure 

illustrated in Lehm an’s text.

Regional Expression oiXEGR-1 in Explants

To begin to address the question o f which tissue interactions regulate 

XEGR-1, a preliminary set o f explant experiments was initiated to define the 

regional contributions o f the ventral and dorsal mesoderm to vasculogenesis. 

Embryos at stage 11.5 (mid-gastrula) and stage 14 (early neurula) were dissected 

into dorsal and ventral pieces (Figs. 5,6) and then further subdivided into anterior, 

m iddle and posterior pieces and then cultured in vitro until hatching stages (st. 32-



Figure 4. Histological analysis o fXEGR-1 mRNA expression. Following 
completion o f the in situ hybridization procedure, embryos were sectioned 
transversely along the anterior-posterior axis and analyzed for stain. (A) A neurula 
(st. 18) embryo, sectioned through the ventral anterior region. (B) Section through 
the tail o f  a st. 20 embryo. (C) Early tailbud embryos (st. 24) sectioned through 
the heart (H) region. (D) Hatching embryo (st. 34) sectioned through the heart. 
Diffuse stain in the area that will give rise to the carotid arteries is apparent as well 
as discrete staining o f the endocardium (E). (E) Cross-section through the gut 
region o f a st. 32 embryo showing stain in the pericardinal veins (PV) that run 
bilaterally along the embryo. (F) Stain on either side o f the neural tube is present 
in this tailbud embryo (st. 32).
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Figure 5. Schematic diagram o f the surgical operations performed on stage 11.5 
embryos. Gastrula stage embryos were divided into dorsal and ventral regions, 
and then further subdivided into anterior, middle and posterior pieces (yielding a 
total o f  six pieces). The side o f the embryo with the longest distance from the 
edge o f  the blastopore to the animal cap was considered to be the dorsal region 
while the animal cap and the blastopore were considered to be anterior and 
posterior respectively.
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Figure 6. Schematic diagram o f  the surgical operations perform ed on stage 14 
embryos. Neurula stage embryos were divided into dorsal (neural plate, notochord 
and somites) and ventral (endoderm and ventral mesoderm) regions, and then 
further subdivided into anterior, middle and posterior pieces (yielding a total o f  six 
pieces).
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34). These explants were then subjected to in situ hybridization with an XEGR-1  

antisense mRNA probe. By assaying for the expression o f XEGR-1 in various 

regions o f the embryo, it is possible to determine when this gene is “specified,” 

that is, the point at which a piece o f tissue excised from the embryo and cultured in 

vitro is able to express a gene which it would have otherwise expressed if left 

intact in vivo (Slack, 1991). In effect, this type o f experiment examines when a 

piece o f tissue is capable o f expressing a given gene in the absence o f further 

inductive interactions with surrounding tissues. It is important to distinguish 

clearly between the time at which a gene is expressed (as it would be expressed 

normally in vivo) and the time at which it is specified (the time at which a piece o f 

tissue can be removed and still express the gene) (Saha, 1993). The results o f  this 

experiment are summarized in Table 2. Analysis o f the ventral explants from stage

11.5 embryos shows an overall pattern o f stain which is diffusely localized on one 

side o f the explant. O f the three ventral regions, the anterior and middle pieces 

exhibited the most staining (Figs. 7D,E) while the posterior piece was generally 

negative (Fig. 7F). The signal seen in the dorsal explants revealed a different 

overall pattern o f expression from the ventral explants and could be described as 

more punctate and discrete. Once again, the anterior and middle pieces o f the 

dorsal mesoderm displayed significantly more staining than the posterior piece 

(Figs. 7A-C).



T able 2. Summary results o f  the regional expression o f XEGR-1 in explants taken 
from stage 11.5 and 14 embryos. The numbers in the table indicate the number o f 
explants that expressed X E G R -1 (positive) and the number o f explants that did not 
(negative). (VA) ventral anterior, (VM) ventral middle, (VP) ventral posterior, 
(DA) dorsal anterior, (DM) dorsal middle, (DP) dorsal posterior.



TABLE 2

EXPLANT CONTROL POSITIVE NEGATIVE PERCENT POSITIVE

11.5 VA positive 7 5 58%
VM positive 9 6 60%
VP positive 2 8 25%
DA positive 8 5 62%
DM positive 13 2 87%
DP positive 2 9 18%

14.5 VA positive 21 0 100%
VM positive 12 8 60%
VP positive 4 2 67%
DA positive 18 0 100%
DM positive 15 0 100%
DP positive 17 0 100%
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The pattern of stain was also examined in the dorsal/ventral explants that 

were rem oved at later stages, namely, neural plate stage embryos (st.14). XEGR-1  

is expressed in these explants in a manner which mimics the pattern seen in the 

corresponding regions o f whole embryos. Ventral-anterior explants stained in a 

pattern sim ilar to that seen in the heart forming region (Fig. 8D), ventral-m iddle 

pieces had a punctate line of stain similar to the bilateral stripe seen below the 

notochord in whole embryos (Fig. 8E), and ventral-posterior pieces exhibited a 

small degree o f punctate stain like the signal seen at the base o f the tail in whole 

embryos (Fig. 8F). Dorsal-anterior explants closely resembled a normal head and 

stained strongly throughout (Fig. 8A), while dorsal-middle pieces displayed both 

diffuse staining in the somites and punctate stain in a line beneath the notochord 

(Fig. 8B). Dorsal-posterior explants exhibited stain concentrated in the tip o f  the 

tail-like structure in a manner very similar to that seen previously in the tail o f  

whole embryos (Fig. 8C).



Figure 7. Expression of XEGR-1 in stage 11.5 explants. Gastrula stage embryos 
were divided into dorsal and ventral regions, subdivided into anterior, middle and 
dorsal pieces and then cultured in vitro until control embryos had reached stage 
32-34. In situ hybridization was performed with mRNA antisense probes to 
XEGR-1 on explants from all six regions. (A) Discrete points o f signal can be seen 
in these dorsal-anterior explants. (B) Areas o f intense stain are present in the 
explants from the dorsal middle region. (C) Dorsal-posterior explants showed 
virtually no stain. The ventral-anterior (D) and the ventral-middle(E) pieces 
showed an overall pattern o f stain which is diffusely localized to one side of the 
explant, while (F) the ventral-posterior explant was generally lacking any 
detectable signal.





Figure 8. Expression o f XEGR-1 in stage 14 explants. Early neurula stage 
embryos were divided into dorsal and ventral regions, subdivided into anterior, 
middle and posterior pieces and then cultured in vitro until control embryos 
reached a stage o f 32-34. In situ hybridization was performed with mRNA 
antisense probes to XEGR-1 on explants from all six regions. Overall, the 
expression pattern seen in these explants, mimicked the pattern seen in vivo. (A) 
Dorsal-anterior pieces closely resembled a normal head and stained strongly 
throughout, while dorsal-middle pieces (B) displayed both diffuse staining in the 
somites and punctate stain in a line beneath the notochord. Dorsal-posterior 
explants (C) exhibited stain concentrated in the tip o f the tail in a manner very 
similar to that seen in the tail o f  whole embryos. Ventral-anterior explants (D) 
stained in a pattern similar to that seen in the heart forming region, while ventral- 
middle pieces (E) had a punctate line a stain similar to the bilateral stripe in whole 
embryos. Ventral-posterior pieces (F) were also consistent with the in vivo 
pattern.
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DISCUSSION

XEGR-1 is a Novel Member of the G-protein-coupIed Receptor Superfamily

Sequence analysis o f XEGR-1 demonstrates that it shares sequence and 

structural characteristics which define the GCR superfamily, and that it is related 

to a host o f  angiotensin, somatostatin, neuropeptide and IL-8 receptors. However, 

XEGR-1  is most closely related to a human gene, called APJ (O ’Dowd, et al,

1993), sharing 48% homology at the amino acid level. APJ is a novel gene that is 

angiotensin receptor-like. Comparison o f XEGR-1 with the known angiotensin 

receptor cloned in Xenopus shows only 30 % homology at the amino acid level, 

suggesting that XEGR-1 is a novel G-protein coupled receptor.

Angiotensin II mediates it signal through two subtypes o f angiotensin 

receptors, A TI and AT2, which have been identified using sequence hom ologies 

and pharmacological differences (Chiu, et al., 1989). The function o f the A TI 

receptor in controlling blood pressure in the adult is well characterized, whereas 

the function for AT2 remains undefined. The abundant expression o f AT2 

receptors in embryonic tissues and fetal brain (Tsutsumi, et al., 1991) in addition to 

their expression in skin wounds and vascular injury indicates that AT2 may be 

involved in growth and development (Mukoyama, et al., 1993).

44
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It is not clear from sequence comparisons whether XEGR-1  represents the 

AT2 receptor subtype in Xenopus. In rats, there is only 34% hom ology between 

A TI and AT2 receptor subtypes. Given this relative dissimilarity between AT 

subtypes in rat, the possibility exists that we have cloned the AT2 receptor subtype 

in Xenopus since XEGR-1 is 30% homologous to Xenopus A T I. However, 

comparisons o f XEGR-1 to other AT2 receptors show only 30% homology. The 

pharmacological analysis o f XEGR-1 with angiotensin II and its receptor 

antagonists in addition to further comparison with additional genes should lead to a 

firmer identification o f XEGR-1.

Potential Involvement of G-protein-coupled Receptors in Vasculogenesis and 

Angiogenesis

The establishment o f a circulatory system is o f primary importance to a 

developing embryo as it divides and utilizes the finite store o f energy provided by 

the yolk. Studies o f chick/quail chimeras have identified two mechanisms that are 

responsible for assembling the heart and network o f blood vessels that will nourish 

the growing embryo. The first mechanism, called vasculogenesis, involves the in 

situ differentiation o f angioblasts from mesoderm. These endothelial precursors 

then migrate to specific locations in the embryo and fuse together into primitive 

vascular cords that subsequently develop into mature blood vessels. Structures
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such as the heart and vessels at the endodermal/ mesodermal boundary are formed 

as a result o f vasculogenesis. Angiogenesis is the second mechanism by which 

new blood vessels are formed. This process generates new vessels from pre­

existing ones by sprouting vascular branches that will extend into new regions o f 

tissue (Poole and Coffin, 1989; Coffin and Poole, 1991).

M any studies have attempted to define which of these processes are used to 

vascularize different regions o f the embryo (reviewed by Noden, 1989, 1992).

W ith the development o f monoclonal and polyclonal antibodies that recognize 

endothelial tissue in quail embryos such as QH-1 and MB-1 (Pardanaud et al.,

1987, Labastie et al., 1988) the question o f endothelial cell precursor (angioblast) 

origin and migration has been examined. By grafting different types o f quail 

mesoderm into chick tissue and identifying the presence of immunopositive cells, 

it has been possible to differentiate which grafts in the host tissue contain cells that 

give rise to vascular endothelium (Noden, 1989; Poole and Coffin, 1989). The 

results o f these studies indicate that several embryonic tissues contain endogenous 

angioblasts. Only prechordal mesoderm, notochord, neural crest, brain and spinal 

cord are not capable o f forming vascular endothelium. It is therefore thought that 

angioblasts must migrate into these tissues.

Although these methods in chick and quail models have established a basic 

fate map o f endothelial precursors that give rise to the vasculature, they have not
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led to the identification of either the tissue interactions nor the signaling pathways 

that are responsible for the intial induction and differentiation o f angioblasts and 

their subsequent assembly into vascular structures.

Some progress has been made in the understanding o f the molecular events 

involved in vasculogenesis and angiogenesis with the identification o f vascular 

endothelial growth factor (VEGF) (Ferrara and Henzel. 1989; Gospodarowicz, et 

al., 1989) and its receptor,///:-/, a member of the tyrosine kinase receptor 

superfamily. Studies have demonstrated that the expression o f VEGF and flk-1  is 

co-localized in endothelial cells throughout mouse development, including very 

early expression in the blood islands of day 8.5-10.5 embryos (Millauer, et al., 

1993). This suggests that the growth factor-tyrosine kinase pathway may serve as 

one o f the primary signaling systems in vasculogenesis and angiogenesis.

Further clues to the molecular players involved in these processes have 

been presented in several miscellaneous studies that have suggested a possible role 

for G-protein-coupled receptors in vasculogenesis and angiogenesis. One study 

demonstrated a potential role for angiotensin II (which mediates its signal through 

a G-protein-coupled receptor) in regulating angiogenesis in the bovine corpus 

luteum (Stirling et al., 1990). Another interesting study showed that a novel G- 

protein-coupled receptor called edg-1 was induced by the tumor promoter phorbol 

12-myristate 13-acetate (PMA) in endothelial cells and caused their differentiation
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into capillary-like structures (Hla and Maciag, 1990). A third study demonstrated 

that a molecule involved in the neovascularization of tumors called angiogenin 

was able to activate phospholipase C, leading to a brief rise in 1,2-diacvglycerol 

and inositol triphosphate (Moore and Riordan, 1990). The activation o f these 

second messenger molecules is typically mediated by G-protein-coupled receptors. 

A  study conducted by Bauer et al. (1992), used a human vascular endothelial cell 

line as a model for angiogenesis. By blocking the normal process o f tube 

formation seen in these cells with pertussis toxin, a possible role for G-proteins in 

angiogenesis was demonstrated. Lastly, the identification and characterization of 

XEGR-1  in this study offers further evidence for the involvement o f G-protein- 

coupled receptor signaling pathways in vasculogenesis and angiogenesis.

The temporal and spatial expression o f XEGR-1 during early neurula stages 

through swimming tadpole stages in tissues that give rise to the cardiovascular 

system (i.e. ventral mesoderm, and the developing heart and blood vessels) 

suggests that it may be a suitable molecular marker for studying the induction and 

differentiation o f endothelial precursors in Xenopus. With the identification o f 

additional molecular markers specific for endothelial precursors along with an 

increasing knowledge o f the early inductive interactions in amphibian 

cardiovascular development (Sater and Jacobson, 1990), Xenopus could be an 

alternative to chick and quail models. For unlike chick, Xenopus laevis tisues can
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be isolated and manipulated from the earliest stages of development, making 

Xenopus well suited for an analysis of the early tissue interactions leading to the 

assembly o f the cardiovascular system.

XEGR-1 as a Marker for Amphibian Endothelial Precursors

In order to begin to examine the tissue interactions involved in the 

differentiation o f amphibian endothelium, a preliminary round o f in situ 

hybriziations was initiated using XEGR-1 as an endothelial marker. In this 

experiment, embryos at stage 11.5 and stage 14 were divided into dorsal and 

ventral pieces and then subdivided into anterior, middle and posterior pieces (Figs. 

5,6) for the purpose o f observing which regions were capable o f giving rise to 

endothelial cells that express XEGR-1. Several interesting observations were made 

from this initial investigation.

First, the expression pattern observed in all six regions o f the stage 14 

explants was very similar to the pattern seen in vivo. This may suggest that for the 

m ost part, angioblasts throughout the embryo are “determined,” that is, they have 

undergone the tissue interactions necessary for these angioblasts to form normally 

patterned vascular tissue. Both the ventral and dorsal pieces have already acquired 

some endothelial identity by this stage in development and are able to regulate the 

expression o f XEG R-1 . The expression o f  XEGR-1 observed in stage 11.5 explants
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was, however, very different from the pattern seen in the corresponding regions o f 

the stage 14 explants. Both the anterior and middle pieces o f the ventral and dorsal 

explants showed areas o f expression while the posterior pieces were completely 

unable to express XEG R-1. The absence o f XEGR-1 expression in the presumptive 

tail explants was unexpected given the strong signal seen in the tail region 

throughout the course o f development. It will be necessary to refine these 

experiments to determine if additional tissue interactions are necessary to regulate 

the expression o f XEGR-1  in this region during gastrula stages.

Although the overall expression pattern detected in stage 11.5 explants 

generally did not resemble the in vivo pattern, there were a few interesting 

similarities. The expression o f XEGR-1 in ventral anterior and ventral middle 

explants was somewhat more diffuse and usually localized to one side o f the 

explant. This type of diffuse stain was observed in whole-mounts in the ventral 

mesoderm during tailbud stages. In contrast, the stain in dorsal anterior and and 

dorsal middle pieces at stage 11.5 appeared to be more punctate and present in 

discrete groups o f cells. This pattern o f punctate stain was also observable in 

regions o f dorsal mesoderm in whole-mounts. It is apparent from these 

comparisons o f stage 11.5 explants that the expression o f XEGR-1  in dorsal 

explants and in the ventral explants is different in composition. This difference
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may suggest that the mesodermal tissue in the dorsal region o f the embryo may 

have endothelial properties different from that in the ventral region.

Lastly, the expression o f XEGR-1 in stage 14 dorsal anterior explants was 

unexpected. The tissue in this explant is largely composed o f prechordal 

mesoderm, neural crest and brain; tissues which previous studies in chick have 

determined to be unable to give rise to endothelial precursors. The removal o f  the 

dorsal anterior area from surrounding tissue at this early stage should have 

prevented any migration o f endothelial cells into this area. The expression o f 

XEGR-1 in these explants suggests that either endothelial migration is occuring 

earlier than stage 14 or that prechordal mesoderm and neural crest are capable of  

vasculogenesis.

Future Directions

There are several experiments that could be pursued at this point in the 

investigation o f XEGR-1 to determine its role in angiogenesis. First, it will be 

necessary to refine the explant experiments carried out in this study. Virtually 

nothing is known regarding the specific tissue interactions responsible for 

angiogenesis and vasculogenesis. Once the explant experiments have defined the 

regional tissue interactions needed to regulate the expression o f XEGR-1, it would 

be possible to do in vitro recombinants o f several tissues to define and confirm
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what inductive interactions are taking place. Experiments o f this kind should not 

only provide an understanding o f the tissue interactions involved in regulating the 

expression of XEGR-1 but also help define which regions o f the mesoderm 

differentitate into the respective components of the cardiovascular system.

Second, to determine if there is any relationship between the expression o f 

XEGR-1 and angiotensin receptors, the expression pattern o f  XEGR-1 could be 

compared with the expression pattern o f the angiotensin II receptor that has 

already been cloned in Xenopus (Bergsma, et al., 1993). W hole-mount in situ 

hybridizations have not been done on this receptor and it would be interesting to 

see if  the spatial as well as the temporal expression of these receptors overlap. In 

addition, it would also be intriguing to clone the Xenopus homologs for VEGF and 

flk-1  and compare their expression patterns with that o f XEG R-1 .

Third, the signaling pathway used by XEGR-1 could be determined by 

identification of its ligand and the second messenger system to which it is coupled. 

The first candidate ligand to be examined should be angiotensin II. Another 

approach to identifying possible ligands would be to express the receptor in a 

bacterial strain or baculoviral system. XEGR-1 could be attached to a column and 

assayed for molecules which bind to it. Candidate ligands could then be 

radiolabeled and used in binding assays with XEGR-1. A review o f the current 

literature on angiogenic molecules revealed that angiogenin, an agent essential for
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neovascularization in tumors, may act through an unidentified membrane protein 

that activates endothelial phospholipase C and causes a subsequent increase in 1,2- 

diacyglycerol (DAG) (Moore and Riordan, 1990). The production o f these second 

m essenger molecules indicates the activation of a G-protein-coupled pathway. 

Given this information, it would be interesting to examine the binding capabilities 

o f angiogenin to XEGR-1. Once the ligand has been identified, it would then be 

possible to analyze the second messenger pathway activated by XEGR-1. This 

analysis could be accomplished by stimulating endothelial cells in vitro with the 

ligand and then assaying for an increase in the levels of second messenger 

m olecules like cAMP, 1,2 diacylglycerol or calcium ions.

Finally, in order to begin to understand the function o f XEGR-1  in 

angiogenesis/vasculogenesis. It would be possible to observe the effects o f 

ectopically expressing XEGR-1  in embryos by injecting transcripts into Xenopus 

oocytes which then become distributed to each o f the dividing cells in the embryo. 

I f  XEGR-1  is a critical control molecule early in the pathway leading to the 

determination o f angioblasts, then one may expect misplaced or additional 

vascular structures. A genetic approach to understanding function would also be 

intriguing; given the difficulty o f inactivating genes in Xenopus, the cloning o f  the 

homologs o f XEGR-1 in mice where gene inactivation experiments are now 

possible would be desirable.
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Angiogenesis is important not only in development, but also in adult 

functions such as reproduction and wound repair. Angiogenesis in the adult is 

tightly controlled because any deregulation of this process can lead to a host o f 

diseases, namely, arthritis, neovascularization o f the eye during later stages o f 

diabetes and tumorigenesis (Folkman and Shing, 1992). Further investigation o f 

molecules like XEGR-1 in signaling pathways involved in angiogensis and 

vasculogenesis may lead to the development o f therapeutic agents that may 

enhance angiogenesis during would repair and arrest it during arthritis and 

carcinogenesis.
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