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Abstract
A novel radiation imaging technology for in vivo molecular imaging in small 

mammals is described. The goal of this project is to develop a new type of imaging 
detector system suitable for real-time in vivo probe imaging studies in small animals. This 
technology takes advantage of the gamma-ray and x-ray emission properties of the 
radioisotope iodine 125 ( I) which is employed a label for molecular tracers. The 
radioisotope I25I is a gamma-ray emitting radioisotope that can be commercially obtained 
already attached to biologically relevant molecules to be used as tracers for biomedical and 
molecular biology research.

The isotope I25I decays via electron capture consequently emitting a 35 keV gamma-
ray followed by the near coincident emission of several 27-32 keV K a and K(3 shell x- 
rays. Because of these phenomena, a coincidence condition can be set to detect I2;T thus 
enabling the reduction of any background radiation that could contaminate the image. The 
detector system is based on an array of CsI(Na) crystal scintillators coupled to a 125 mm 
diameter position sensitive photomultiplier tube. An additional standard 125 mm diameter 
photomultiplier tube coupled to a Nal(Tl) scintillator acts as the coincident detector. To 
achieve high resolution images the detector system utilizes a custom-built copper laminate 
high resolution collimator. The 125I detector system can achieve a spatial resolution of less 
than 2 mm FWHM for an object at a distance of 1.5 cm from the collimator. The measured
total detector sensitivity while using the copper collimator was 68 cpm/(j.Ci. The electronic 
readout and analog to digital electronics make use of modular electronics that are 
commercially available. The data acquisition and user interface is performed by a Power 
PC Apple Macintosh desktop computer.

Results of in vivo mouse imaging studies of the biodistribution of iodine, 
melatonin, and a neurotransmitter analog (RTI-55) are presented. Many studies in 
molecular biology require an analysis of the expression and regulation of a gene at different 
stages of an organism’s development or under different physiological conditions. This 
detector system makes it possible for laboratories without access to standard nuclear 
medicine radiopharmaceuticals to perform in vivo imaging research on small mammals 
using a whole range of I25I labeled markers that are obtainable from commercial sources.
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Chapter 1

Introduction

1.1 Radiation Detection Applied to Molecular Biology

Currently molecular biology techniques are contributing to the understanding of the 

mechanisms of gene expression and the myriad consequences of that expression. It is the 

instructions encoded in genes, defined by sequences of DNA molecules, that direct the cell 

to grow, differentiate, and divide. The mouse is one of the most frequendy used mammals 

for molecular biological research studies on gene expression. The primary methods 

available to follow and study gene expression currently employ RNase protecuon assays, 

Northern blots, in situ hybridization, and immunocytochemistry. These methods are 

typically used to study gene expression at single moments in time for an individual mouse. 

One must sacrifice the mouse to make a measurement, essentially taking a snapshot of the 

state of expression of the gene of interest. An ability to detect the distribution of gene 

expression and receptor binding in vivo for a single mouse is needed. To be useful, the in 

vivo gene imaging technique should be real-time, quantitative, and able to follow the 

organism over hours to weeks.

The goal of the project described here is to develop a new type of imaging detector 

system suitable for real-time in vivo probe imaging studies in small animals. In order to be

o
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CHAPTER 1. INTRODUCTION 3

practical, the detector system would have to make use of gene detection materials readily 

available to most molecular biology researchers. Much of molecular biology research 

utilizes specially constructed tracer molecules that will bind to specific target molecules to 

enable the detection and study of specific genes. Tracer molecules called probes can be 

constructed out of sequences of nucleic acid that bind to specific target RNA molecules. 

Other tracer molecules called ligands can be designed to bind to specific target proteins. 

The tracers, in addition to having the ability to bind to the target, must also have a property 

that allows them to be detected. To make detection possible, tracers are labeled with 

radioactive isotopes. Commercially produced tracers are labeled with radioactive isotopes 

of phosphorus C2P), carbon ( l2C), sulfur (35S), hydrogen (3H), or iodine (125I and 1311). 

The main application of these tracers is in assays involving paper thin slices of tissue 

samples that are placed in contact with a specially designed photographic film; this 

technique of detection is called autoradiography. Film exposure times of hours to months 

may be needed to obtain an image of the distribution of the radioisotope in the sample.

Only I2sI and 1311 emit emit both x-rays and gamma-rays suitable for in vivo studies 

involving small animals. This is because the other isotopes emit only electrons (beta 

particles) that have a range of less than 1 mm in tissue and therefore get absorbed by the 

tissue before emerging from the body of the animal being studied. The isotope 125I 

compared to IjlI is more readily available as a label for tracers for molecular biology 

research and thus more suitable for in vivo small animal imaging. In addition, the high 

energy gamma-rays (364 keV and 637 keV) 13‘I emits, and its short half-life (8 days) 

makes it less suitable for small animal imaging. It is difficult to construct high resolution 

small animal imaging detectors for the high energy gamma-rays emitted by I 131. The long 

half-life (60 days) and lower energy gamma-rays (-35 keV) are well suited for small animal 

imaging detectors. The biotechnology company Dupont NEN, Inc. has over 150 

biochemical tracers that are labeled with 125I [1].
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CHAPTER I. INTRODUCTION 4

1.2 A Novel Detector System

This thesis describes the development and testing of a novel radiation imaging 

detector system that was designed specifically to detect and generate high resolution images 

of the distribution l25I in small animals. Radiation imaging techniques similar to those 

employed with a nuclear medicine gamma camera have been developed to do high spatial 

resolution, real-time planar imaging of molecules in live small animals. The radiation 

imaging system makes use of new types of radiation detection materials and methods such 

that two 125I point sources, separated by less than 2 mm, can be resolved. Such resolutions 

of < 2 mm full width half maximum (FWHM) for the imaging of I25I is currently not 

possible with existing clinical nuclear medicine imaging detectors. The detector developed 

here is the only system capable of allowing a researcher to test a whole series of biological 

tracers in small animals such as mice in vivo. This detector system provides the ability to 

follow biological processes on a molecular level that are of considerable general importance 

for both theoretical and therapeutic reasons.

As will be pointed out in Chapter Two, within the last five years there has been 

work in the area of detector development for designing animal imaging systems appropriate 

for nuclear medicine type research that utilizes animals. Attempts are being made to scale 

down standard nuclear medicine imaging systems to facilitate in vivo nuclear medicine 

research using live animals. The detector system developed here was designed with the 

goal of providing the best detector system to image l25I in small animals for the primary 

purpose of molecular biology research. Though the low energy gamma- and x-rays (28-35 

keV) and long half-life (60 days) are not suitable for imaging in humans, any tracers 

labeled with I25I can also be labeled with I23I which emits gamma-rays at higher energy 

(159 keV)- Moreover, 123I has a much shorter half-life (13.3 hours) which together with its 

energy makes it more suitable for human imaging applications [2].
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1.3 Organization of this Thesis

Since the development of the detector system involves both detector physics and 

molecular biology, two concise appendices present background material which will provide 

information for the topics covered in the chapters. Appendix A outlines basic molecular 

biology as well as research techniques presently used to study genes. Appendix B 

provides background material regarding elementary concepts of detector physics used in 

particle physics and nuclear medicine. Basic detector topics, such as scintillators and 

photomultiplier tubes, are covered as well.

The first part of Chapter Two describes nuclear medicine imaging detector 

techniques that are pertinent to biomedical research involving small animals. The last part 

of Chapter Two provides a review of the state of the art of the detector development 

utilizing nuclear medicine techniques in animal research and will describe the advantages of 

the detector system developed for this dissertation. Chapter Three describes the different 

stages of design and testing of the radiation imaging detector that was developed. 

Presentations of part of this research have been made at various conferences and in 

different journals where the discipline was medical imaging, detector development, or 

developmental biology. Chapter Four presents initial results from a mouse imaging study 

involving the time dependence of accumulation of a brain specific molecular probe, RTI- 

55. Chapter Five reviews the present stage of the project and discusses the future 

directions for continuation of this project.
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Chapter 2

Nuclear Medicine Imaging in Animal 

Research
This chapter describes the basic concepts involved in nuclear medicine imaging 

detector systems that are pertinent to biomedical research involving small animals. The last 

section provides a summary of the state of the art of other detector development research 

utilizing nuclear medicine techniques in animal research. The detector system which is the 

central topic of this dissertation will be compared to these other imaging systems.

2.1 Nuclear Medicine Imaging Modalities

Nuclear medicine imaging diagnostic procedures for patients involves the imaging

of the distribution in the patient’s body of injected biochemical compounds that have been

labeled with a radioactive nuclide. These tracer compounds, whose biodistribution is

sought, are referred to as radiotracers, or radiopharmaceuticals [3]. Imaging detectors may

be used to image the distribution of the radiopharmaceutical after the tracer has been

injected into a patient. The temporal and spatial manner in which a radiopharmaceutical

compound is distributed in the tissue of the patient is dependent on the metabolism and

biological function of that compound. Thus, by imaging the biodistribution of the
6
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CHAPTER 2. NUCLEAR MEDICINE IMAGING IN ANIMAL RESEARCH 7

radiopharmaceutical, information about the tissue uptake rate and distribution is obtained.

For example, the radioisotope fluorine-18 is employed to label glucose ( 18F -fluoro-2- 

deoxyglucose), so that when injected into a patient it accumulates in metabolically active 

tissue just as glucose would [4].

Cancer cells lock into an uncontrolled growth phase and replicate at an accelerated 

rate. It is believed because of this rapid growth and tumor cell specific enzyme

abnormalities (isoenzymes of hexokinase), cancerous tissue has a high glucose requirement 

compared to normal tissue and enhanced glucose uptake can be quantified by using a 

nuclear medicine imaging detector[4].

This imaging modality is quite different from x-ray imaging, in which externally 

produced x-rays are directed through the patient to generate a structural image. In x-ray 

imaging a detector is used to record the tissue attenuation of the x-rays which is a function 

of tissue density.

2.1.1 Functional Imaging

The measure of the rate and distribution pattern of an injected radiotracer facilitates 

the diagnosis of a disease through the imaging of some anomalous bioactivity of the 

injected radiopharmaceutical. In addition to glucose, other compounds such as amino 

acids, nucleic acids, and peptides can be labeled with radioactive isotopes. The imaging of 

the biodistribution of these compounds provides information on the development and 

growth of body tissues under different conditions, such as that brought on by injury or 

drug therapy. For functional imaging, two different classes of radioactive nuclides are 

used, those whose radioactive decay results in the emission of single gamma-rays and x- 

rays, and those whose decay results in the emission of a positron (the anti-particle of an 

electron).
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The first class of emitters are used to obtain planar nuclear medicine images (also 

known as scintigraphy) and single-photon emission computed tomography (SPECT) 

images [5]. The most common radioactive isotope used for radiopharmaceuticals as a label 

for planar imaging and SPECT imaging is technetium-99m (99mTc, 140 keV gamma-ray, 6 

hour half-life), other elements such as radioisotopes of thallium (20IT1, 68 to 80 keV x- 

rays, 167 and 135 keV gamma-rays, 73 hour half-life), gallium (67Ga, 93 and 184 keV 

gamma-rays, 78 hour half-life), and xenon (133Xe, 31 keV x-ray and 81 keV gamma-ray, 

5.3 day half-life) are also used. The second class of emitters, positron emitting isotopes, 

are used to generate positron emission tomography (PET) images [6]. The most common 

radionuclide used as a label for PET radiopharmaceuticals is fluorine-18 ( l8F, 110 minute 

half-life). Other positron-emitting isotopes such as radioisotopes of oxygen (I50 , 2 minute 

half-life) and carbon (nC, 20 minute half-life) are also used.

In planar imaging, the three dimensional distribution of the radioactive tracer in the 

patient is seen as a two dimensional image of the superposition of the tracer at different 

depths along the line of sight of the gamma-ray camera, also referred to as a gamma 

camera, which was developed in the 1950’s by Hal Anger [7]. With SPECT imaging, 

computer algorithms based on the Radon transform reconstruct the volume distribution of 

the radiotracer by processing several projection images taken at different angles around the 

patient. The basic detector element for SPECT is also the gamma camera.

2.1.2 Gamma Camera

For planar imaging and tomographic (i.e. SPECT) imaging the basic detector 

element is the gamma camera, a typical clinical gamma camera is 50 cm in diameter. For 

certain medical imaging diagnostic procedures, such as cardiac and thyroid studies, a single 

gamma camera is employed to obtain planar images. A typical clinical gamma camera is 

made of an array of photomultiplier tubes that have their entrance windows coupled by a
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light guide to a large plate of a crystal scintillator material. The gamma-ray emitted by the 

isotope interacts in the crystal scintillator resulting in the emission of a scintillation light 

pulse that is then detected by the bank of photomultiplier tubes. The location of the 

interaction point is determined from the relative intensity of the light pulse signal 

simultaneously detected by all of the photomultiplier tubes. A high density material 

(usually lead, but sometimes tungsten) is used to make a collimator which restricts the 

direction of gamma-rays so that an image can be obtained. High spatial resolution images 

are obtained by choosing high resolution collimators and photon detectors that have a high 

intrinsic position resolving capability. However, the tradeoff of high resolution is low 

sensitivity, since higher resolution requires smaller openings in the collimator thus 

permitting fewer gamma-rays to reach the scintillator detector. Sensitivity is the ratio of 

counts detected per unit time divided by the activity of the radioactive source. Sensitivity 

is usually quoted for a collimator-detector system in terms of counts per second (cps) / 

mCi [8].

The central components of a gamma camera are a matrix of standard photomultiplier 

tubes, a disk of crystal scintillator (typically Nal) and a lead collimator. This design was 

first reported by Anger [7]. The mathematics in the following section were used to design 

a special copper collimator which is described in Chapter Three. Figure 2.1 shows a 

schematic of the major components of a modem clinical gamma camera.
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Figure 2.1: Schematic diagram of the major components of the modem clinical gamma 
camera.

The Nal(Tl) crystal scintillator is attached to the matrix of photomultiplier tubes via 

a light guide whose purpose is to transmit the scintillation light to the array of 

photomultiplier tubes. A scintillation light pulse is generated as a result of the total or 

partial absorption of ionizing radiation in the scintillation crystal. In nuclear medicine, the 

ionizing radiation is either gamma-rays or x-rays. This scintillation light produced by the 

gamma-ray or x-ray interaction transmits out of the crystal, through the light guide, to the 

matrix of photomultiplier tubes.

2.1.2.1 Collimators

The purpose of the lead collimator is to act as a means to constrain along a single 

direction the detection of the gamma-rays. Since gamma-ray photons cannot be focused 

with lenses one achieves "focusing" by using a bore hole made into lead or some other high 

Z material. A collimator can be merely a single hole to construct a “pinhole camera” or can
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be made from a series of holes in lead to make three types of collimators: a parallel hole 

collimator, a converging collimator, or a diverging collimator. Figure 2.2 illustrates the 

three types of collimators.

Figure 2.2: Diagram of the three basic gamma camera collimator designs.

The material of the collimator (lead, tungsten, copper etc.), the diameter of the bore 

hole, the thickness of the septa, and the thickness of the collimator are the collimator 

parameters that determine the sensitivity and spatial resolution of the gamma camera. The 

sensitivity as defined here, refers to the measure of acceptance of the gamma-rays being 

emitted by the radioactive source that actually hit the scintillator. Sometimes sensitivity is 

expressed in percentage or fractional terms from purely geometric means as in geometric 

acceptance in addition in terms of counts/sec/mCi. The latter case also takes into account 

the total sensitivity of the collimator-scintillator-photomultiplier combination and is obtained 

empirically. For instance, the typical sensitivity of a clinical gamma camera equipped with 

a high resolution collimator is less than 5000 counts/sec/mCi [9].

A pinhole gamma camera operates under the same principle as the optical pinhole 

camera. This was the collimator first employed by Anger and is still used to image a small
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object by using the magnifying properties of a pinhole camera. The pinhole collimator is 

usually used in nuclear medicine to image small organs and is used in laboratory research 

involving imaging of animals.

The major limitation of the pinhole camera is its poor sensitivity and the dependence 

of sensitivity on the angle of the object from the normal direction. Figure 2.3 shows a 

diagram illustrating the basic design of a pinhole collimator.

Pinhole collimator

Pinhole cross-section 
enlarged

pinhole aperture (d)

Figure 2.3: Basic design of a typical clinical pinhole collimator and a magnified view of a 
cross-section the pinhole aperture.

The resolution (Rg) and sensitivity are described by the following equations using

the notation used by Anger [10]:

Rg = (a + b jd /a  (2.1)

where:

Rg is the collimator resolution,

a is the distance from the pinhole aperture to the front of the scintillator, 

b is the distance from the object to the pinhole aperture, and 

de is the effective size of the pinhole opening expressed by:

de = [d(d+2/p.tan(a/2))]1/2 (2.2)
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where:

d is the pinhole opening diameter,

fi is the total linear attenuation coefficient of the collimator material at the 

energy of the gamma-rays, and 

a  is the taper angle of the pinhole.

The total system resolution (Rs) is:

Rs = [Rg2 + ((b/a)Ri)2],/2 (2.3)

where:

Rj is the intrinsic resolution of the gamma camera.

The sensitivity is dependent upon the distance between the aperture and the object. 

The geometric efficiency is the fraction of isotropically emitted gamma-rays which are 

properly collimated. The on-axis geometric efficiency (g) for the pinhole collimator is:

g = de2/l6 b 2 (2.4)

This geometric efficiency decreases in the radial direction with sin'(0) where 9 is

the off-axis angle. Often the main body of the pinhole collimator is constructed out of lead 

and the actual pinhole is made out of tungsten to reduce edge penetration of the gamma- 

rays.

Pinhole collimators on standard gamma cameras have been employed to perform 

high resolution imaging [11, 12]. By taking advantage of the magnification effect, one can 

achieve high resolution and good sensitivity by bringing the object to be imaged close to the 

pinhole. However, in order to image the full field of view it might be necessary to move 

the object farther from the pinhole, greatly reducing the sensitivity. For instance, to obtain 

planar images of a small tissue with a system resolution of 1.5 mm and a field of view 7 cm
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a 0.6 mm diameter pinhole is required. The pinhole would need to be placed 6 cm in front 

of the scintillator and the tissue would need to be placed at a distance of 5 cm from the 

collimator. In this geometry the on-axis and 60° off-axis geometric acceptances are 7xl0'6 

and 3.0x1 O'6 respectively. The geometric acceptances improve to 4x10‘5 and 2x10° by 

bringing the tissue 3 cm from the pinhole collimator for a reduced total field of view of 4 

cm.

The most frequently used collimator is the parallel hole collimator because it offers 

higher sensitivity than the pinhole. The sensitivity is not dependent on distance between

the object and aperture and is only a function of aperture opening, the septa thickness, and

bore length [13]. The resolution and geometric efficiency are expressed by the following 

equations taken from Anger [14] and Keller[15]:

Rc =d(ae + b + c)/ae (2.5)

ae = a - 2/[i (2.6)

where:

Rc is the collimator resolution, 

d is the size of the openings, 

a is the core length (collimator thickness), 

ae is the effective core length,

p. is the total linear attenuation coefficient of the collimator material at the 

energy of the gamma-rays,

b is distance between the source to be imaged and the collimator face, and 

c is the distance between the back of the collimator and the front of the 

scintillator.

The combined system resolution, Rs, can be described by the following equation:

Rs = (Rc2 + R f)"2 (2.7)
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where:

Rj is the intrinsic resolution of the gamma camera.

One can see from the above equations that the realized resolution varies with 

distance to the object to be image. Closer objects are imaged at a higher resolution than 

farther ones. The geometric efficiency can be described by the following equation:

g = k2(d2/(ae(d + s)))2 (2.8)
where:

k is an aperture shape dependent factor; it is 0.263 for hexagonal openings 

and 0.282 for square openings, and 

s is distance between each opening (the septa thickness).

Parallel hole collimators for medical imaging are made either by gluing folded 

sheets of lead together in a hexagonal pattern (Figure 2.4) or are made by lead molds.

Figure 2.4: Magnified picture illustrating the hexagonal pattern hole structure of a parallel 
hole collimator made of folded sheets of lead which are glued together. The marks of the 
scale at the bottom of the picture are 1 mm apart.
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Diverging collimators (see Figure 2.2) are used to image a small organ onto the 

detector surface to achieve higher position resolution, and converging collimators are used 

to image a large organ onto a smaller area detector surface. The main drawbacks of both 

designs are reduced sensitivity and image distortion, especially for thicker objects.

2.1.2.2 Scintillators and photomultiplier tubes

The crystal scintillator usually employed in a clinical gamma camera is thallium 

activated Nal which is an inorganic halide crystal. The high light output and good energy 

resolution of this scintillator make it an ideal scintillator for medical imaging applications. 

The wavelength of its scintillation light is well-matched to the wavelength sensitivity of a 

typical photomultiplier tube. The thickness of the scintillator is chosen to be sufficiently 

thick to provide maximum sensitivity to the incident gamma-ray photon but not too thick as 

to degrade position resolution caused by depth of interaction effects such as the differences 

in the geometry of light spread on the photodetector surface which impacts energy and 

spatial resolutions. The scintillation photons can be produced anywhere along the path 

length of the penetrating gamma-rays as a result of scintillator excitation. Scintillators are 

described in detail in Appendix B.

In a standard gamma camera typically, 37 or more, two inch diameter 

photomultiplier tubes are arranged in a matrix pattern and attached to the scintillator either 

via index of refraction matching optical grease alone or with a light guide (see Figure 2.2) 

[16]. The light pulse from the scintillator following the gamma-ray interaction is detected 

by the photomultiplier tubes resulting in an electrical output signal which is proportional to 

the amount of light detected in each photomultiplier tube. The output electrical signals, 

connected to a charge-division circuit, are used to determine the energy and location of the 

gamma-ray interaction point. For every gamma-ray event the output of the charge division 

circuit provides three analog signals, two signals representing the orthogonal coordinates of
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the location of the origin of the light pulse and one signal representing the sum of all the 

photomultiplier tube signals. These signals are then digitized and stored in a computer for 

image reconstruction.

Since the intensity of the light pulse emitted by the scintillator is proportional to the 

energy of the incident ionizing radiation (e.g., x-rays or gamma-rays) the energy spectrum 

of the incident ionizing radiation can be obtained from a pulse height spectrum of the 

photomultiplier output pulses [17]. The sum signal is used to construct a pulse height 

spectrum which is the energy spectrum of the radiation striking the scintillator. This energy 

spectrum is then used to set data acquisition trigger thresholds, based on the energy 

acceptance window chosen, on the image generation. By placing conditions based on the 

sum signal, scattered gamma-rays not originating from the direction of the actual 

radiopharmaceutical uptake sites are excluded from the image. The scattered, thus lower 

energy, gamma-rays are the result of the primary gamma-ray Compton scattering in the 

patient, the collimator, or the scintillator. These processes lower the gamma-ray energy. A 

pulse height analysis is used to limit the processing of photon events to reduce the effect of 

scattered, low energy gamma-rays.

2.1.3 SPECT Imaging

As mentioned before, the gamma camera is the primary detector used in SPECT 

images. SPECT is used when tomography is required to obtain three dimensional tumor 

localization, such as in brain and internal organ cancer diagnostics. A SPECT image is 

obtained with a single gamma camera or with multiple gamma cameras to get several 

required views of the object to be imaged. After obtaining a sufficient number of views 

(60-100) a chosen slice through the patient is reconstructed via a computer [18].

A typical clinical SPECT system involves a gantry with three detector heads. An 

example of this type of detector configuration is shown in Figure 2.5. The patient is
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positioned lying flat and perpendicular to the plane formed by the gantry which contains the 

gamma camera detector heads. Tomographic slices of the patient are obtained by scanning 

the patient horizontally through the gantry and acquiring multiple projections by rotating the 

gamma camera around the patient. The best resolution obtained so far for a clinical three 

head SPECT scanner while imaging a point sources is 7.5 mm full-width at half maximum 

in the center of the field of view.

End View

Gamma
Camera
Module

Rotating Gantry

Figure 2.5: Diagram showing a side and front view of a clinical SPECT scanner based on a 
rotating ring of gamma camera detector modules which surround the patient.
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2.1.4 PET Imaging

SPECT is similar to Positron Emission Tomography (PET) which uses positron 

emitting radiopharmaceuticals. With PET three dimension information may also be 

obtained of the biodistribution of the radiopharmaceutical. PET has advantages over 

SPECT since no collimator is needed, thus sensidvity is high, and spurious events in the 

detector that have no origin in the radiopharmaceudcals are rejected. In PET. the

radioisotope decays by a physical process called positron emission (also called (3+

emission). The positron that is emitted in the nuclear decay is an example of a class of 

particles known as anti-matter. The positron is the and-pardcle of an electron, it has the 

same mass of an electron however it has the opposite charge. A property of and-matter is 

that when and-matter and matter interact, the encounter results in the annihilation of the two 

with the release of energy. When a positron and an electron collide they annihilate resulting 

in the complete conversion of the electron and positron into a pair of 511 keV gamma-rays 

traveling at nearly 180° opposite directions from the annihilation point. It is the coincident 

detection of the two oppositely directed 511 keV gamma-rays that is used to compute a 

tomographic back projection and thus reconstruct a three dimensional image of the 

biodistribution of the emitting source [18].

The distance traveled by the positron prior to annihilation sets the lower limit of 

resolution for PET imaging. A typical clinical PET system is made of a stationary ring of 

detector modules made of crystal scintillators that are read out by individual arrays of 

photomultiplier tubes similar to the method used in gamma cameras (minus the lead 

collimators). PET typically uses photomultiplier tubes smaller in size than those used in a 

SPECT gamma camera. The patient is positioned lying flat and perpendicular to the plane 

formed by the ring. Tomographic slices of the patient are obtained by scanning the patient 

horizontally through the ring. A diagram of a PET system is shown in Figure 2.6.
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Figure 2.6: Diagram showing a side and front view of a clinical PET scanner based on a 
ring of detector modules which surround the patient. The case of brain PET imaging is 
depicted.

The line of response is determined by the coincident detection of the two gamma- 

rays resulting from the positron-electron annihilation. This line of response is used to build 

an image of the distribution of the radiotracer in a slice through the patient defined by the
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plane of the detector ring. After this line is determined, all pixels of a data matrix that 

represent that line in the plane of the detector ring are incremented by one. A tomographic 

slice defined by the plane of the ring is built up after many angles of different lines of 

response are superimposed.

2.2 Nuclear Medicine Detector Development for Animal 

Imaging

The remainder of this chapter will summarize some of the detector development 

conducted in the application of nuclear medicine techniques to the construction of detector 

systems designed to do small animal imaging. Standard medical imaging devices made for 

clinical applications have been used for animal research. For example, Bakker et al. [19] 

used a standard gamma camera to investigate a tumor detection technique that used a 

radiolabeled ligand (Tyr-3-octreotide) that was designed to bind to specific receptor 

molecules (somatostatin) that are found on the surface of certain tumor cells. Bakker et al. 

localized pancreatic tumors in rats using this method.

The work being done to construct animal-imaging-specific detectors can be divided 

into two categories. The first includes the use of imaging devices that use collimators to 

image the radiopharmaceuticals and the second category uses electronic collimation to 

image the biodistribution of PET radiopharmaceuticals. Most of the detector systems 

described here have been used in actual animal studies within the last five years. The 

primary motivation is to design instruments that will allow extensive testing of newly 

developed radiopharmaceuticals in vivo in animals prior to clinical use in humans [20]. 

The method for screening novel radiopharmaceuticals is through post mortem tissue studies 

involving mice and rats [21]. These detector systems are of interest to pharmaceutical
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companies since drug development can cost over several million dollars per new compound 

and take 10-15 years [22].

The detector system characteristics of spatial resolution, usually quoted as full- 

width at half maximum (FWHM) for an imaged point source, and sensitivity represent the 

primary parameters by which to compare different detector systems. PET systems use 

detection methods which do not require physical collimators, consequently they have the 

highest sensitivity. The sensitivity of a typical small animal PET system is of the order of

100-200 cps/pCi for a resolution of 2-3 mm FWHM. The sensitivity of a gamma camera

system using a high resolution collimator appropriate for small animal imaging would have 

a sensitivity of an order of magnitude lower to achieve the resolution comparable to a PET 

system. However, present day PET imaging requires the use of positron emitting isotopes 

with half-lives of less than a couple of hours which limit their use to short duration studies 

and requires that the isotope be locally produced. Since PET has great clinical value in 

human diagnostics it is necessary to use animal models to test new PET pharmacological 

agents before they are used in humans [20]. Below is a table highlighting some of the most 

commonly used positron emitting isotopes used in nuclear medicine which are produced by 

using large expensive on-site production devices (cyclotrons) [23, 24].

Positron Emitting Isotope half-life
(minutes)

Positron E ^  
(MeV)

oxygen-15 (i:>0 ) 2.07 1.72
nitrogen-13 ( |JN) 9.96 1.19
carbon-11 (“C) 20.4 0.96
fluorine-18 (1!lF) 109.7 0.64

Table 2.1: Table of positron emitting isotopes that are most commonly used as 
radiopharmaceutical labels in nuclear medicine applications.

Note that I8F is the one of the most often used for positron imaging as it has the 

longest half-life and its low maximum positron kinetic energy (E ^ )  results in a 2.4 mm
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maximum range in water. As mentioned earlier, the best theoretical resolution obtainable in 

PET is a function of the range of the positron in the tissue before it annihilates resulting in 

the two gamma-rays. Table 2.2 lists gamma-ray emitting isotopes that are most commonly 

used as radiopharmaceutical labels in nuclear medicine planar and SPECT imaging 

applications [2, 25, 26]. The radioisotope " mTc is the most often used nuclear medicine 

radiopharmaceutical and is obtainable from moIybdenum-99/technetium-99m generators 

which need to be re-stocked every few days [27].

Isotope Half-live Photon energies (keV) 
(photon abundance)

technetium-99m (^nTc) 6.02 hours 140 (89%)
indium-111 (‘“ I) 2.83 days 170 (94%), 240 (90%)
gallium-67 (0/Ga) 3.25 days 93 (37%), 185 (20%), 300 (17%), and 394 (4%)
iodine-123 (,iJI) 13.3 hours 159 (84%)

Table 2.2: Table of gamma-ray emitting isotopes that are most commonly used as
radiopharmaceutical labels in nuclear medicine applications.

It is therefore clear that both PET and single photon imaging have their place in 

biomedical research. Resolution and sensitivity, as will be pointed out, are not the only 

important characteristics of a detector system. For instance, the need to optimize imaging 

for a particular isotope may be an important detector characteristic for a particular animal 

imaging application. However, for research imaging of mice and rats, the main parameter 

to consider is spatial resolution. If a detector system cannot achieve the spatial resolution 

needed for small animal research it will not be useful regardless of its sensitivity. Often 

low sensitivity can be compensated for by extended imaging times which is usually 

possible with animals.

All but three of the detector systems described below were designed and tested to be 

used to image nuclear medicine radiopharmaceuticals such as found in SPECT and PET 

imaging. Although it is possible to label many compounds with SPECT and PET isotopes 

this requires special expertise and, for the case of PET, expensive on-site production
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facilities. A discussion pointing out the unique capabilities of the detector system that is the 

topic of this dissertation will follow the summary of present detector development.

2.2.1 Pinhole Collimated Gamma Cameras

The first nuclear medicine imaging research involving animals used standard clinical 

gamma cameras with pinhole collimators. The use of pinhole collimators still continues 

with the application of new techniques to obtain SPECT images with pinhole 

collimators [28]. As discussed earlier, the major limitation of the pinhole camera is its 

relatively poor sensitivity compared to parallel hole collimators. It also suffers from limited 

field of view at high magnification.

Weber et al. [29] and Jaszczak, et al [30] describe a pinhole SPECT using a single 

pinhole collimator attached to a clinical single head SPECT scanner. Recently, Ishizu et 

al.[28] report using four pinhole collimators attached to a standard clinical four-head 

SPECT scanner. They obtained a spatial resolution of 1.65 mm FWHM to obtain images 

of rat brains using 99nTc-hexamethyl-propyIeneamine oxime (HMPAO) and to perform 

heart imaging studies with ""Tc-methoxyisobutyl isonitrile (MIBI). By taking advantage 

of the magnification effect of a pinhole camera one achieves high resolution and the best 

sensitivity is obtained if the animal is close to the pinhole. Weber and Ivanovic [31] give a 

concise appraisal of the present state of nuclear medicine imaging using pinhole SPECT.

Present pinhole based SPECT detectors achieve a sensitivity on the order of 5 cps/pCi with

resolutions of 4.0 mm for source distances of 5.0 cm. This low position resolution makes 

it unacceptable for studies utilizing laboratory mice. In addition, the detector systems were 

standard expensive nuclear medicine SPECT systems which were outfitted with specially 

designed pinhole collimators. This type of system could not be made generally available to 

molecular biologists.
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2.2.2 Parallel hole Collimated Gamma Cameras

Dilmanian et al. [32] reported on the development of a high resolution SPECT 

system to image I25I in rats and mice. The scintillation light detector of their gamma camera 

was quite different from the typical detector used in SPECT and PET. They used a very 

expensive micro-channel plate dynode structure photomultiplier tube that had an active 

diameter of only 15 mm, called a Photon-Counting Image Acquisition System (PIAS) made 

by Hamamatsu Corporation [33], The tube has a fiber optic face plate window 15 mm in 

diameter, a bialkali photocathode, a three stage micro-channel plate dynode structure, and a 

silicon position sensitive detector. This type of expensive detector is no longer available, 

but at the time no practical position sensitive photomultiplier tubes were yet obtainable. 

The scintillator was a 0.7 mm thick Nal(Tl) plate with a lead glass parallel hole collimator. 

They employed a fiber optic taper to enlarge the area imaged to 26 mm in diameter and 

achieved a spatial resolution of 0.7 mm FWHM with a sensitivity of 3.6

counts/minute/fiCi. The instrument was used to obtain SPECT images of a rat’s thyroid

gland and a mouse’s lungs. This detector system is one of the three systems described here 

which was optimized for I25I. Though it had a resolution of the order of 1 mm it had a very 

limited field of view, the active area of their detector with the use of an fiber optic taper was 

only 26 mm diameter. The detector system developed for this dissertation has a resolution 

of 1.76 mm FWHM and an active area of 110 mm.

Antich et al. [34, 35, 36] developed two systems for small animal imaging that used 

plastic scintillators and the Hamamatsu R2486 position sensitive photomultiplier tube to 

image l25I. Their first system was based on the use of a 56 mm diameter, 1.5 mm thick 

plastic scintillator plate and a pinhole collimator. With this system they reported high 

resolution imaging of rat brain blood flow with 125I labeled compound. To allow for whole 

body imaging they devised their latest system with two layers of plastic scintillating fibers 

to form a cylinder around the animal. One layer of fibers had a right-hand pitch and the
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other had a left-hand pitch. They could determine the location of the gamma-ray interaction 

in the fibers by reading out the right and left-hand pitch fibers separately. The collimator 

was a multi-hole large-mesh cage-type collimator with an average spatial resolution of 3.1 

mm and a tomographic slice thickness of 6.6 mm. This device would only be useful for 

low energy gamma-rays because of poor absorption of the gamma-rays by the plastic 

scintillator. Their detector systems were also designed with ,25I imaging as the target 

isotope. However their low position resolution (>3 mm FWHM) make it make marginally 

useful for small animal imaging.

A collaboration of researchers in Rome, Italy, led R. Pani, have reported 

development of a small gamma camera based on a 40 mm x 40 mm size scintillator array of 

0.6 x 0.6 mm x 10 mm array elements made out of the recently developed crystal 

scintillator Yttrium Aluminate Perovskite (YAP) [37, 38, 39]. Their detector used the 

Hamamatsu R2486 position sensitive photomultiplier tube and a parallel hole lead 

collimator that had 0.9 mm diameter openings and 0.25 mm thick septa. The resulting 

spatial resolution of the system for imaging " mTc was 1.4 mm +/- 0.2 mm. The authors 

reported obtaining bone images of a rat that had been injected with 99mTc-methylene 

diphosphonate (MDP).

2.2.3 Focused Collimator Tomograph

Ochoa et al. [40] have been developing a unique x-ray/gamma-ray counter detector 

system that uses a large solid angle, focusing collimator to image radiopharmaceuticals 

labeled with a dual photon emitting radioactive nuclide. This type of radioisotope emits 

gamma-rays and x-rays in near coincidence but not in a collinear direction. For instance, 

l25I is this type of dual photon emitting isotope. The detector system using the focused 

collimator cannot be used to image positron emitting isotopes since the two gamma-ray 

emitting in positron annihilation travel collinear in opposite directions. This collimator
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could not work with positron emitters. Ochoa et al. are currently constructing a collimator 

that completely surrounds the volume to be imaged. They use Nal(Tl) crystal scintillator 

coupled to a standard photomultiplier tube (not position sensitive). The volume to be 

scanned is moved in all three coordinates so that the focal point of the collimator is used to 

take data at a single volume element at a time. The electronics only accepts data if a two 

photon event is detected. They anticipate a resolution of 1.4 mm FWHM.

This is the third system that was designed to image 1231 and their anticipated 

resolution of 1.4 mm FWHM is certainly adequate for small animal imaging. The major 

limitation of their system is the inability to perform a whole body dynamic imaging. This 

system is only appropriate to image small volumes such as the brain of a mouse or rat and 

is not be appropriate for whole body dynamic imaging studies because all of the sensitive 

volume data are collected sequentially.

2.2.4 PET

Spatial resolution of present clinical PET systems is between 4-6 mm. It is clear 

that this needs to be improved for small animal research. Most PET research involving
I Q

small animals use radiopharmaceuticals labeled with the positron emitting isotopes F,

l3N, or n C. To obtain the best position resolution I8F is used since it has a short positron 

range. It has been shown with phantom studies utilizing iterative image reconstruction 

algorithms that a resolution of 1.1 mm FWHM is possible with PET [41].

Recently there has been much work on the development of PET detectors for small 

animal research as compared to non-PET imaging. Described below are examples that 

highlight some of the recent detector development work being done by various groups 

around the world in this area. Groups that have actually used their system in animal studies 

will be the primary focus of this summary. The primary goal for the development of these 

instruments is to allow extensive testing of newly developed PET radiopharmaceuticals in
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vivo in animals before they are tested in humans [20]. Moreover, these detector systems 

require the use of short lived positron emitting isotopes that need to be produced locally and 

chemical expertise in the field isotope labeling is essential if special tracer molecules are to 

be used. One group which has a PET isotope facility is attempting to utilize PET isotopes 

to investigate gene therapy imaging rats using the UCLA MicroPET system which will now 

be described [42,43].

UCLA

Several researchers at UCLA have collaborated on the development and use of a 

animal PET scanner called MicroPET [44, 45, 46, 47, 48]. This high resolution PET 

scanner consists of a ring of 30 position sensitive scintillation detectors, each consisting of 

an 8x8 array of small lutetium oxyorthosilicate (LSO) scintillation crystals connected by 

plastic optical fibers to a Phillips Photonics Inc. [49] XP1722 multi-channel 

photomultiplier tube. LSO is a recently developed crystal scintillator whose properties such 

as high density and fast speed make it a good choice for PET scanners. The UCLA 

detectors have an intrinsic resolution averaging 1.68 mm and a 2.4 nanoseconds (ns) 

timing resolution for 511 keV gamma rays. These parameters demonstrate that the system 

is well suited for PET imaging of animals as small as mice. The timing resolution indicates 

that the detector can be brought close to the animal to achieve good sensitivity. The 

detector ring diameter is 17.2 cm with an imaging field o f view of 112 mm transaxially by 

18 mm axially. These dimensions indicate that the system can be used with animals as 

large as small monkeys. The authors report a reconstructed image resolution of 2.0 mm at

a distance of 1 cm from the center of the scanner resulting in a volume resolution of 8 mm3. 

The UCLA scanner has the highest combined resolution and sensitivity of any multi-ring 

scintillator based PET scanner currently in active use.
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The MicroPET has been used in brain amino acid pathway studies in primates and

rodents involving the injection of 6-[18F]fluoro-L-m-tyrosine. The in vivo metabolic

pathway of this compound was compared to that of 4-[I8F]fluoro-L-m-tyrosine and 6-

[l8F]fluoro-L-3,4-dihydroxyphenylalanine to study dopamine receptors in the brain [50]. 

In another study, the scanner was used to study cerebral metabolic rates for glucose by

feeding 18F -fIuoro-2- deoxyglucose (FDG) to monkeys and then imaging the dynamic 

biodistribution of the FDG [51]. Most recently the MicroPET has been used in research 

that utilized PET labeled marker substrates to detect the presence of particular enzymes 

resulting from the expression of a virus gene that was introduced into cultured tumor cells 

that were then injected into rats. The researchers used radiolabeled 5 -iodo-2'-fluoro-2'- 

deoxy-l-beta -D -arabino furanosyluracil (FIAU) as a marker substrate to measure the 

effectiveness of gene transfer techniques being tested for gene therapy.

National Institutes o f Health (NIH)

At NIH in Bethesda, MD, researchers have been developing high resolution PET 

detectors for use in small animal research at NIH [52, 53]. Their latest design is based on 

the use of arrays of LSO scintillating crystals coupled to Hamamatsu R5900-C8 position 

sensitive photomultiplier tubes. By using three-dimensional image reconstruction computer 

codes they have been able to approach one millimeter resolution. In addition, the group is 

pursuing higher resolution PET for small animal imaging by combining different types of 

scintillators to reduce the inherent uncertainty of determining at what depth the 511 keV 

gamma-rays interact within the scintillating crystal before releasing scintillation photons. 

This depth of interaction uncertainty contributes to the final spatial resolution in the 

reconstructed image. Improved spatial resolution can be realized if this depth of interaction 

uncertainty can be reduced. The solution, based on the so-called phoswich concept, is to
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employ columns of three different scintillator types, such as BGO-GSO-LSO, instead of 

uniform scintillator pixels.

RATPET

A collaboration, between the MRC Cyclotron Unit at Hammersmith Hospital in 

London, CTT PET Systems in Knoxville, Tennessee, and Byars Consulting in Oak Ridge, 

Tennessee has produced a small-diameter positron emission tomograph for small animal 

PET studies. The detector system is referred to by the collaboration as RATPET. The 

device uses BGO scintillating crystals in 16 detector blocks that are configured such that the 

axial field of view is 5.0 mm and the tomograph diameter is 115 mm. The best spatial 

resolution the detector can achieve at the center of the field of view is 2.3 mm FWHM. The 

system has been in use since 1993 and has been used primarily to perform rat brain 

imaging studies [21],

Julich, Germany

Weber et al., in Julich, Germany are developing a PET system for small animal 

research which utilizes arrays of YAP crystal scintillator mounted to Hamamatsu R3941 

position sensitive photomultiplier tubes. Their detector, which they refer to as the 

TierPET, (‘Tier” is German for animal) consists of four detector heads positioned on a 

rotating gantry. Preliminary results indicate a spatial resolution of 2.0 mm FWHM. They 

report their intention of adding more detector heads to improve the system performance. A 

useful feature of this animal PET scanner is its ability to be positioned in various detector- 

to-detector spacings to optimize either the spatial resolution or the sensitivity for dynamic 

studies of radiopharmaceutical uptake. Sensitivity increases when the detector heads are 

brought closer together, however, at the expense of spatial resolution. During instrument
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testing the TierPET system has been successfully used to image the dopamine D2 receptor 

binding in the rat brain using as the ligand [1 sF]methyl-benperidol [54].

HIRESPET Collaboration

A group of researchers from six institutions in Italy have formed a HIRESPET 

collaboration to develop high spatial and temporal resolution detector systems for nuclear 

medicine tomography using PET and SPECT. The collaboration has constructed a two- 

head PET scanner suitable for small animal research. The scanner is based on two arrays 

of YAP scintillating crystal attached to Hamamatsu R2486 position sensitive 

photomultiplier tubes. The authors report obtaining a spatial resolution of 1.2 mm FWHM 

[55]. In order to improve sensitivity, their detector system makes use of the Compton 

scattered portion of the energy spectrum since the photopeak fraction for YAP at 5 11 keV is 

only 3% which is much lower than in scintillators such as BGO, GSO and LSO which are 

other crystal scintillators used to detect 511 keV gamma-rays.

Oxford Positron Systems Ltd., England

The company Oxford Positron Systems Ltd. in England in collaboration with 

Packard Instrument Company in the USA sells a small animal PET scanner developed by 

Alan Jeavons [56]. This detector is based on a high density avalanche chamber (HIDAC) 

developed at CERN, Geneva, Switzerland. The HIDAC uses an enclosed gas chamber that 

electrically detects the ionization of the passing 511 keV gamma-rays with a spatial

resolution of 0.75 mm FWHM for n C imaging. This type of detector is common in 

nuclear particle physics research and is based on the multiwire proportional chamber 

(MWPC) that was invented by Dr. George Charpak in 1968 at CERN, Geneva, 

Switzerland [57]. The ionizing gamma-ray is converted (inducing the emission of 

electrons) by a lead converter foil, and the secondary electron passing through the gas
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induces an avalanche charge multiplication that amplifies the ionization signal. No 

scintillators or photomultiplier tubes are used in this detector. The HIDAC has high 

sensitivity, however, it practically lacks energy resolution, a limitation which precludes this 

device from being used in situations where scattered radiation is a concern. However, the

HIDAC was able to delineate regional tissue function using 18F -fluoro-2- deoxyglucose 

(FDG) at a resolution of 2.6 mm FWHM within small tumors in a study that imaged 30 

mice with implanted tumors [58]. The system offers the highest spatial resolution of any 

small animal PET.

Hamamatsu Corporation, Japan

Researchers at Hamamatsu Corporation in Japan have been developing a PET 

system for small animal studies [59 & 60]. They have developed a detector using a large 

number of small BGO scintillator crystals (2.8 mm x 6.8 mm x 30 mm) coupled to R5900- 

C8 position sensitive photomultiplier tubes. They are achieving position resolutions on the

order of 3 mm (FWHM) for monkey studies using [IC labeled ligands. The detector 

system is composed of 240 block detectors, each of which consists of a R5900-C8 position 

sensitive photomultiplier tube, and an 8x4 BGO scintillating crystal array; a total of 7,680 

crystals, 480 per ring are used. Their system was specially designed to investigate various 

brain specific PET pharmaceuticals prior to applications in humans by using a monkey in a 

sitting position. The researchers at Hamamatsu are also developing a detector system based 

on LSO scintillating crystals.
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Sherbrooke University in Quebec, Canada

Researchers at the Sherbrooke University in Quebec, Canada have developed and 

are using a PET system which uses avalanche photodiodes (APD) instead of 

photomultiplier tubes as scintillation light detectors. Avalanche photodiodes are solid state 

light detectors that take the place of photomultiplier tubes. They can be made to be very 

compact, are fast, and have a very high quantum efficiency. Although their gain is low 

compared to photomultiplier tubes, they can be used in many applications that do not need 

as much signal amplification. The arrays of APDs used at Sherbrooke University are 

coupled to BGO scintillator crystal arrays and the authors report a spatial resolution of 3 

mm FWHM. Studies of mammary adenocarcinoma tumor studies with the positron emitter 

wCu were performed with this system [61].

Some Other Related Efforts

Other PET detector development research not yet involving animals is ongoing 

based on new PET configurations. For example Fries et al. also report developing an APD 

based PET detector. In their case they use the crystal scintillator LSO coupled to avalanche 

photodiodes arranged in a 2x8 array to form a detector module taking the place of a 

photomultiplier based detector module [62]. In addition, a group of researchers in 

Brussels, Belgium have developed a small animal PET scanner that actually combines 

scintillator technology with wire chamber technology [63, 64]. The cylindrical ring 

configured detector uses arrays of BaF2 scintillation crystals and a photosensitive wire 

chamber filled with tetrakis-dimethylamine-ethylene (TMAE) gas. The main advantage of 

using a wire chamber is the ability of achieving good resolution over a large area with a 

much lower cost compared to using photomultiplier tubes. They report a system spatial 

resolution of 3 mm to 6 mm FWHM.
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APD technology has also recently been applied to the development of an radioactive 

isotope imaging device called the DDE Bioscope 3250 marketed by the company Integrated 

Detector and Electronics [65]. The device is designed to replace autoradiographic film for 

imaging of thin tissue samples that have been labeled with electron or gamma-ray emitters. 

The detector is a 300 pm thick double-sided silicon sensor which they claim can do real

time imaging at a resolution of 10 pm.

2.2.5 Small Animal Imaging Discussion

The advances in the last ten years in PET and non-PET imaging gamma-ray detector 

development for small animal imaging has been rapid. The biological animal studies that 

have occurred are mainly concerned with radiopharmaceutical development for later 

applications in disease progression and response to therapy in humans. Such areas as 

cancer research and neurobiology research (i.e. dopamine and cocaine receptor studies) are 

the main areas of animal research which have recently been taking advantage of small 

animals detector systems.

There exist many application specific concerns that dictate the design of a particular 

detector system. Spatial resolution clearly needs to be improved to facilitate animal 

research involving small animals such as mice and rats. For dynamic studies sensitivity is 

of great concern since detection rate limits the rate at which biological processes can be 

detected. Both animal SPECT and PET are achieving spatial resolutions on the order of 1 

to 2 mm FWHM. It is not clear if PET techniques can be used to go below 1 mm FWHM 

because of the inherent distance that a positron can travel before annihilating in a collision 

with an electron. SPECT, in principle, has no such limitation, however there is always the 

trade-off between higher resolution resulting in lower sensitivity when conventional 

collimators are employed.
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The next chapter will outline the development of a non-PET detector system which 

has been optimized to detect the x-ray and gamma-ray emission of iodine 125 (l25I). This 

isotope can be of particular importance for molecular biologists doing imaging research 

involving mice and rats. As set forth in the Introduction, the detector developed here is the 

only imaging system capable of allowing a researcher to test a large number of 

commercially available biological tracers in small animals such as mice. This detector 

system provides the ability to follow biological processes on a molecular level that are of 

considerable general importance for both theoretical and therapeutic reasons. As mentioned 

earlier Dupont NEN, Inc. [1] has over 150 tracers (proteins, anti-bodies, and nucleotides) 

labeled with 125I which were intended for in vitro non-imaging applications but can also be 

used for in vivo imaging studies involving small animals with the novel detector system 

described here.
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Chapter 3

Development of an I25I Imaging 

Detector System
This chapter will describe the development of a novel imaging system designed for 

the detection of the x-ray and gamma-ray emissions of 125I. Some of the results outlined in 

this chapter have been reported in several publications [66, 67, 68, 69]. The primary focus 

of the development of this detector system was the utilization of recently available position 

sensitive photomultiplier tubes coupled to scintillator crystals. The detector development 

progressed through three stages. In the first stage, the feasibility of imaging the gamma- 

ray and x-ray emissions of I25I was tested by using a small area detector system (active 

field of view of ~ 50 mm in diameter) that utilized a crystal scintillator plate. In this case 

the position sensitive photomultiplier tube was a 75 mm diameter (model R2486) 

manufactured by Hamamatsu Inc. In the second stage, the Hamamatsu 125 mm diameter 

position sensitive photomultiplier tube (model R3292) was coupled to an array of small 

scintillating crystals instead of a scintillator plate. The primary detector component used 

throughout the development of this detector system is the position sensitive photomultiplier 

tube manufactured by Hamamatsu Corporation. Both tubes are very similar in design and 

operation with the primary difference being the size of the detection area. At the third stage

36
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of the project a matrix crystal array with smaller individual elements and an optimized 

collimator design were implemented.

This chapter will first describe the goals of the project by introducing the molecular 

biology applications motivating the specific design requirements of the detector system for 

imaging the gamma-ray and x-ray emissions of 1251. Following this will be a detailed 

description o f the detector prototype instrumentation that eventually resulted in the final 

system. The main detector instrumentation difference between the early YAP crystal based 

prototype and the final CsI(Na) crystal scintillator based device was the use of different 

position sensitive photomultiplier tubes and different scintillators; the basic electronic 

readout method for both are the same. Following this will be detailed descriptions of the 

performance of the YAP based and CsI(Na) based detectors. The performance of the final 

optimized detector system in a mouse study with l25I will be detailed.

3.1 Project Overview

The goal of this project was to develop a prototype small field-of-view, high 

resolution, gamma camera that would have a suitable spatial resolution to investigate the 

possibility of imaging gene expression in live small animals, particularly in mice. The 

scientific motivation for developing this detector system is the desire to image gene 

expression and regulation in the mouse brain and nervous system. Such a detector system 

could provide a tool to investigate in vivo gene expression and regulation with I2;T 

incorporated into molecular probes to study neural gene expression in vivo using antisense 

RNA techniques. These techniques are described in Appendix A.

As part of the research and development process, prototype detectors were built and 

tested in biological studies using mice. The biological investigations done in the prototype 

development stages provided valuable insight which guided the final system design.
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3.1.1 Existing In Vivo M ethods

Most methods to study gene expression in animals are performed in vitro. The 

methods require that the animal be sacrificed and then very thin slices are made from either 

the whole animal or of organs of interest. At present, in situ hybridization and 

immunochemical assays are the primary methods to follow gene expression and regulation 

in small animals. The ability to detect gene expression, in vivo, for an extended period of 

time in a given organism allows the researcher to follow gene expression through various 

stages of organism development and under different biological conditions for the same 

organism. By attempting in vivo to detect the protein products of gene expression much 

can be learned about the function of a gene. This is possible with the use of radioisotope 

labeled ligands and antibodies (see Appendix A) and using conventional nuclear medicine 

imaging devices when done with humans and large animals. A more direct way would be 

to detect the mRNA resulting from transcription of a gene. In either case, as attested by the 

work described in Chapter Two of this dissertation, small animal specific medical imaging 

type gamma cameras and PET systems are of great interest. To be fully useful, the in vivo 

gene imaging technique should be real-time, quantitative and able to follow an organism 

over extended periods of time, i.e., several days. It is clear that the ability to follow 

biological processes on a molecular level in vivo is of considerable general importance for 

both theoretical and therapeutic reasons.

3.1.2 In Vivo Gene Studies

Presently there are two direct means of imaging gene expression (transcription) and 

regulation in vivo that are currently in use. One method uses a technique in which the 

coding region for a gene is attached (ligated) to a promoter sequence of a gene being 

studied which is then incorporated into a target organism. This gene, ligated to the
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promoter of the gene under study, is referred to as a reporter gene. When the reporter gene 

is expressed its gene product, which is not normally endogenous to the organism, is 

expressed and various methods could be used to detect it. The second method is the 

“antisense” method that uses a chain of nucleotides that are complementary to an mRNA 

molecule under investigation [70, 71, 72].

3.1.2.1 Reporter Gene Detection

One reporter gene technique uses the expression of a green fluorescent protein 

(GFP) fused to a specific gene promoter that is being studied, but the GFP method only 

works for small transparent animals [73]. This fluorescence detection method uses a 

reporter gene which codes for a protein, first isolated from jellyfish, called a green 

fluorescent protein (GFP) [73]. The detection of the expression of this reporter gene is 

confirmed by viewing the specimen when it is illuminated with UV light. This method 

requires that the gene expression occurs in a transparent animal or is close to the surface of 

the animal.

Another method is the “light method” which uses reporter genes that express light 

emitting proteins without the need of fluorescence [74, 75]. This method incorporates into 

an organism a reporter gene which codes for a protein called luciferase, which is the 

compound that allows fireflies to glow. When the reporter gene is expressed, light is 

emitted without the need of a UV light source to cause fluorescence. This method also 

requires that the gene that is being expressed exist near the surface of the animal or is used 

in transparent animals.

In a variation on the reporter gene method, Tjuvajev et al. [76, 77] report using 

radiolabeled marker substrates to detect the presence of particular enzymes resulting from 

the expression of a virus reporter gene they call a “marker gene” that was introduced into 

cultured tumor cells that were then injected into rats. The researchers used a radiolabeled
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thymidine analog, 5 -iodo-2'-fluoro-2'-deoxy-l-beta -D -arabino furanosyluracil (FIAU), 

as a marker substrate to measure the effectiveness of gene transfer techniques using mice 

that were being tested for gene therapy. They introduced into mouse tumor cells a gene 

from the herpes simplex virus (HSV) that codes for an enzyme called thymidine kinase 

(TK). The enzyme HSV-TK attaches phosphates to thymidine resulting in thymidine 

triphosphate, one of the four precursor nucleotides used in DNA synthesis [78]. Tjuvajev, 

et al. then injected 131I labeled FIAU, a thymidine analog, acted upon by the enzyme HSV- 

TK to attach phosphates to the molecule.

FIAU normally passes back and forth through cell walls but with phosphates 

attached, it gets trapped in cells expressing HSV-TK to accumulate FIAU. After sacrificing 

the animals Tjuvajev, et al. used quantitative autoradiography to measure enhanced 

radioactivity in the regions of the rat brain that had been the target of the gene therapy [76]. 

In addition, they also used a standard clinical gamma camera for limited in vivo imaging to 

test the presence of the marker gene in tumors that had been injected into the flanks of rats 

[77]. Gamma camera imaging and SPECT were performed using a dual-head, AD AC 

Genesys gamma camera with a high efficiency-high-resolution medical collimator. The 

best resolution this gamma camera could give them was -0.5 cm. They showed 

accumulation of the radiolabel in the tumor site. Srinivasan et al. [42] reported a very 

similar study involving mice with FIAU labeled with ISF, a PET isotope. Both of these 

methods require a large investment in time and experience in breeding a transgenic animal 

which has the reporter gene.

3.1.2.2 Gene Imaging via Antisense RNA

Antisense RNA probes have been constructed and introduced into live 

organisms.These probes make use of radioactive labeling to facilitate the detection method. 

When the information stored in the sequence of DNA molecule of a gene is “expressed” it
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is transcribed into an RNA molecule referred to as a messenger RNA (mRNA) transcript. 

The process by which RNA polymerase produces a mRNA from DNA template is called 

transcription. The mRNA is then acted upon by cellular processes that translate the unique 

nucleotide sequence into a particular protein molecule. It is the unique mRNA molecule 

which is the target molecule to be studied in antisense imaging. A complementary or 

“antisense” molecule contains a sequence of bases which will bind to the “sense” part of the 

RNA molecule. For instance, an RNA sequence with a series of bases UUGU would 

require an antisense sequence with the bases AACA since A binds to U and C binds to G. 

RNA is described in more detail in Appendix A.

The antisense complement to the target RNA molecule is labeled with an isotope 

such that a detectable amount of labeled antisense RNA molecule will bind to enough target 

RNA to allow for the biodistribution of that gene expression to be determined. Figure 3.1 

illustrates the use of the antisense mRNA molecule as the probe for the target molecule.

Cell Nucleus

' DNA

pre-mRNA

nuclear membrane 

Cytoplasm mRNA

anti-sense RNA ^  
probe labelled with 
1125

probe hybridizes to 
target1125

Figure 3.1: Antisense RNA probe linked to 125I.
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Dewanjee et al. [70, 71, 72] have shown that it might be possible to construct and 

successfully use radiolabeled antisense RNA probes to detect target mRNA in vivo in 

laboratory animals using a standard gamma camera as the detector system. Dewanjee et al. 

injected 111 In (171.2 keV) radiolabeled antisense and sense mRNA probes into mammary 

tumor-bearing BALB/c mice. Tumor cells are replicating at an abnormal high rate thus they 

are producing unusually large amounts of specific mRNAs. Dewanjee and his colleagues 

constructed antisense RNA probes to the c-myc oncogene gene that was being expressed at 

an exaggerated rate, thus there was sufficient mRNA to which to bind. The gamma camera 

system they used produced images demonstrating the presence of binding of the antisense 

molecule to its target mRNA with a spatial resolution of the order of 0.5 cm.

A possible drawback to this approach is that the cell mechanism to make the 

translated protein may be blocked, depending on the number of antisense mRNA molecules 

that bind up the endogenous mRNA. This could have unwanted physiological effects on 

the animal that could affect experimental results and possibly, in the extreme case, 

eventually harm the animal. The reporter gene technique, though complicated to achieve, 

does not have the consequence of interfering with the function of the gene of interest 

though it is not gene imaging under normal conditions.

3.2 Iodine 125

As described earlier, the goal of this project is to develop a detection system capable 

of testing the use of radioactive I25I as a label to study gene expression in a live mouse. 

The radioisotope I25I is commonly used in molecular biology and medical research. It is 

readily available linked to nucleic acids, antibodies, and other ligands from companies such 

as DuPont-NEN which provide probes for molecular biology research [1]. Its primary 

applications is in in vitro studies. For instance, Sasaki et al. [79] used a single crystal
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scintillator coupled to a photomultiplier tube to perform physiological and pharmacological 

studies of a class of neuroreceptor known as brain muscarinic acetylcholinergic receptors in 

the brains of live mice using [l25I]-4-iododexetimide and [125I]-4-iodolevetimide as ligands. 

In addition, it is possible to construct DNA and RNA probes, by obtaining from DuPont- 

NEN, I25I labeled nucleotides such as 5-[l25I]iodo dCTP and 5-[I25I]iodo dU.

3.2.1 Properties of Iodine 125

The radioisotope l25I (Z=53) has a half-life of 60.2 days. It decays via electron

capture to the excited state of I25Te which leads to the emission of a 35 keV gamma-ray

followed by the prompt emission (1.5 nanoseconds) of several 27-32 keV K a and K(3

shell x-rays from the daughter product l25Te [80]. The 35 keV gamma-ray is emitted in 1% 

of the de-excitations of I25Te and in the remaining 93% of the de-excitations, 125Te decays 

via a process called internal conversion [81]. The internal conversion process results in 

vacancies occurring in the inner electron shells which are filled by nearby outer orbital 

electrons. The energy difference between the two orbitals is released in the form of x-rays 

or is transferred to outer orbital electrons which are thereby ejected. These low energy 

electrons (a few keV), termed Auger electrons, are easily absorbed by nearby material. It is 

these low energy electrons which allow the visualization of a i:bI labeled tracer in thin 

tissue samples that are placed in contact with autoradiographic film [81]. The decay

scheme for I25I is shown in Figure 3.2.
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Figure 3.2. Decay scheme for l25I to a nuclear excited state of tellurium 125.

The long half-life, and therefore low specific activity (2200 Ci/mmole), compared 

to isotopes used in nuclear medicine, makes 125I particularly useful for following gene 

expression over an extended period of time in the same animal. Eighty percent of the 

electron captures of the decay of l25I result in K shell vacancies. After electron capture and 

internal conversion there are 142 detectable photons (gamma-rays and x-rays) for every 

100 disintegrations of I25I [81]. As many as 53.2% o f the decays of 125I result in 

coincident radiation, either in the form of two x-rays, or a  single x-ray and the 35 keV 

gamma ray [82]. The average path length is about 1 cm in a small animal and no more than 

about 75% of the 35 keV photons will exit the body (assuming 0.3 cm2/g for water). The 

estimated probability of detecting a coincident event would be then at best 56%, obtained 

from squaring the probability of passage of a single photon. Because of these correlated 

phenomena, a coincidence condition can be set to detect preferentially the I25I decays, thus 

reducing background radiation that constrains the lowest limit of detection of the isotope.

By using the coincidence detection mode, a definitive distribution of the I25I isotope 

in the tissue can be obtained, even if present in minute quantities. This could be important 

in some applications when one is attempting to detect receptor binding without over
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saturation of the endogenous target molecule or receptor. This coincidence technique to 

reduce the effect of background events originating from cosmic radiation and the 

photomultiplier tube itself has already been shown to be useful in non-imaging applications 

for the detection of extremely low concentrations (on the order of an attomole) of 125I linked 

to a probe [83].

3.2.2 Iodine 125 Production

The radioisotope 1251, like many artificially generated radioactive elements is 

produced in nuclear reactors that utilize the fission of uranium-235 (235U). For the case of 

I25I, xenon-124 (124Xe) is used as target nuclei, placed in a high neutron flux reactor. The 

l24Xe nuclei capture a neutron resulting in the production of unstable l25Xe nuclei. The 

125Xe nuclei then decay via electron capture resulting in radioactive daughter product l25I 

[84].

3.3 Detector Instrumentation

As mentioned in Chapter Two, for planar single photon imaging in nuclear 

medicine the standard detection device is the Anger gamma camera. The best intrinsic 

spatial resolution of standard medical gamma cameras is about 3.5 mm FWHM which is 

not sufficient for experiments involving small animal imaging. It is clear that improved 

position resolution over a smaller area than available with clinical gamma cameras is 

needed. The use of smaller diameter photomultiplier tubes to construct a higher resolution 

gamma camera becomes a problem because of the increased dead space between 

photomultiplier tubes that results in a limiting packing fraction for arrays made from these 

tubes. However, the recently available position sensitive photomultiplier tubes make it 

possible to construct an improved gamma camera of a small size.
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3.3.1 Position Sensitive Photomultiplier Tubes

In the last ten years, reliable high performance compact position sensitive 

photomultiplier tubes have been made available from industry for research[85]. By using 

these photomultiplier tubes, high resolution compact gamma cameras better suited for small 

animal imaging can now be designed. For this project the Hamamatsu R2486 and the 

Hamamatsu R3292 position sensitive photomultiplier tubes were used to image the 

scintillation light from the gamma-ray and x-ray photons emitted from the decay of 1231. 

Many groups have been working on the development of specialized detector systems based 

on the position sensitive photomultiplier tube, for example Pani, et al. [86] and Yasillo et 

al. [87]. The operation of standard photomultiplier tubes is discussed in detail in Appendix 

B.

Both the model R2486 (75 mm diameter) and R3292 (125 mm diameter) operate 

the same way. The size of the detection area (the photocathode) is the only difference. 

Both photomultiplier tubes have 12 grid mesh dynode stages, arranged in the proximity 

focusing geometry and crossed wire anodes, the R2486 has 16(x) and I6(y) anodes 

whereas the R3292 has 28(x) and 28(y) anodes. A light photon entering the window and 

striking the photocathode, liberates photoelectrons that are directed through the dynode 

stages by an electric potential of typically 1200 volts. The photoelectrons are accelerated 

and directed to strike the dynodes resulting in a multiplication of secondary electrons which 

are likewise accelerated. At the end of the multiplication stage an electron cloud with a 

width of about 1 cm reaches the crossed wire anode stage. The individual anode wires of 

each axis are separated by 3.75 mm. In Figure 3.3 is a diagram demonstrating how a 

scintillation photon incident on the photocathode of the position sensitive photomultiplier 

tube results in output signals at the anodes.
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Figure 3.3: Schematic of the operation of a position sensitive photomultiplier tube with a 
twelve stage mesh dynode stack to provide multiplication of secondary electrons. Incident 
y or x-rays induce scintillation photons in the crystal scintillator. Readout of the secondary 
electron shower is achieved by the crossed wire anodes.

A standard gamma camera utilizes an array of photomultiplier tubes, each requiring 

a separate dynode voltage divider circuit. With a gamma camera based on the position 

sensitive photomultiplier tube only one voltage divider circuit is needed.
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3.3.2 Readout of Position Sensitive Photomultiplier Tubes

The manufacturer of the position sensitive photomultiplier tube, Hamamatsu Inc., 

has shown that it is possible to obtain sub-millimeter resolution with these devices if the 

number of primary and photoelectrons produced by the scintillation light is sufficient [88]. 

The larger the number of secondary electrons, the better the signal to noise ratio for a given 

pulse of charge resulting from the photon interaction on the photocathode. This high 

resolution is even possible with an inexpensive charge division readout circuit that can be 

purchased from the manufacturer. Figure 3.4 is a schematic diagram of the charge division 

readout circuit demonstrating how the signals from each anode in the same axis are joined 

together with resistors.

Charge Divsion Readout 

Yb

>R

>R

\  R

a

R R R

Xa Xb

Figure 3.4: Schematic showing the basics of the charge division readout. Individual 
resistors (R) are placed between each anode wire in X and Y directions. The charge 
amplitude detected at Xa and Xb are used to determine the X location of the secondary 
electron shower and likewise for the Y direction.
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To simplify the figure, only four anode wires per coordinate are shown in the 

schematic. The amplitude of the charge pulses detected at Xa and Xb, and at Ya and Yb are 

used to determine the X and Y location of the center of the secondary electron shower, 

respectively. This readout method requires only four signals to be read out by the data 

acquisition electronics. The disadvantage of the charge division readout is that the 

information about the distribution of the signal on the individual anode wires is lost since 

only the integrated signal is preserved and the special algorithms (discussed below) 

improving spatial resolution are not possible.

In applications, such as with the detection of the low energy gamma-ray and x-ray 

emissions of 125I, if the number of photoelectrons is not sufficient to achieve the maximum 

designed intrinsic spatial resolution of the position sensitive photomultiplier tube, the 

charge division method will prove inadequate. Moreover, a non-linear spatial response 

occurs when the peak of the secondary electron cloud distribution is near the edge of the 

sensitive area and therefore the peak is no longer symmetrical. This non-linear spatial 

response has the effect of limiting the useful active area of the position sensitive 

photomultiplier tube. The best way to extract as much information on the extent of 

secondary electron shower in order to determine the center of gravity of the electron 

distribution, is to read out, individually, each anode wire. The electronic signals appearing 

at the anode wires are converted to digital signals by standard analog to digital converters. 

It is from these digitized signals that the centroid of the electron cloud needs to be 

computed.

3.3.3 Position Determ ination

Determination of the position of gamma-ray interaction in the scintillator is 

determined by computing a centroid of the signal distribution on the x and y anode sectors 

of the position sensitive photomultiplier tube. Equation 3.1 provides the centroid
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calculation to determine position (X) of the interaction by using the counts (Cn) for each 

anode wire (Xn).

total

^  X n  • C n

X =   (3-D
^ C n
n=l

Because of the cylindrical symmetry when the centroid of the electron cloud is 

calculated for the event occurring in the center of the detector, the location of the interaction 

point is calculated with minimal distortion. However, an edge effect occurs when a photon 

is detected near the outer perimeter of the area covered by the photocathode yielding an 

asymmetry in the charge distribution. This asymmetry results in a shift of the computed 

centroid value towards the center of the detector. Therefore, a resulting “crowding” of the 

image at the edges of the detector is observed. This can be demonstrated, for example, 

when an image of a mask made from a regular array of holes in a lead plate is produced.

A way to partially compensate for this image distortion is to exclude or truncate 

from the center of gravity calculation the anode wire sectors that carry low signals. The 

calculation of the truncated centroid is accomplished by using only the digitized signal of 

those anode wires in the calculation that have an empirically determined optimum fraction 

of the sum of the anode signals. This truncation fraction (F) is typically 5 to 10% and is 

determined experimentally by conducting imaging trials using various fraction values. The 

effect of this procedure is to weight the centroid calculation to follow closer the peak of the 

distribution rather than the center of its gravity which includes the data in the tails of the 

distribution.

The use of this truncated centroid technique is essential to maximizing use of the 

active area the position sensitive photomultiplier tube [89]. Using truncation values that are 

too large constrains the center of gravity calculation to too few channels and results in
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distortions by producing artifacts in the form of spikes in the image. These artifacts and 

distortions are easily seen in Figure 3.5.

•  i i i i i 11  i i I i i i  i i |  m  i i 11' i l T T y r r Ff-y f f 'r f i M } i ii"HT^*TiTuFT'jjjr r r 7  f t  * i 1 | i.

o  I  i  » l  » »  » i  I  » i  i  i  f  i  I  i  i  1 i  i  l  » l  » i  t  t  I
0  5 0  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0

F= 0.0
; I I  I I | I 1 I 1 |  'I I I I I ' l  l "l  I |  I I I I  ["1 I I I  | I .

0 r «_i i « I . . . . I 1 ^ ^  ._L. »_»__i . . . I
5 0  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0

F= 0.1

i » . .  . i i * * ■ ■ i ■ ■ ■ *  ̂■ ■ ■ ■ ^
5 0  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0

F= 0.05

« h  %5

m

■I I  I I 1 I I I > 1 M ->4 I I I I  I I I I  I I I I I I  I I | :
5 0  1 0 0  IS O  2 0 0  2 5 0  3 0 0

F=0.15

Figure 3.5: Four images for four selected values of the truncation factor (F) taken with a 
Nal(Tl) scintillating crystal flooded with 122 keV gamma-rays using a 57Co source masked 
with an array of 2.5 mm diameter holes, spaced 5 mm apart. Better hole separation, 
especially at the edges, is possible for higher F values, until the artifacts start dominating,
as seen here for the highest F-value.

Additionally, the number of electronics channels to amplify, digitize, and readout 

was reduced by two through connecting adjacent pairs of anode wires in the position 

sensitive photomultiplier tube. The original number of anode wires built into the position
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sensitive photomultiplier are necessary to provide the maximum performance in 

applications that have sufficient number of photoelectrons and the charge division readout 

method is used. The pairing o f anode wires in a multi-anode position sensitive 

photomultiplier tube is analogous to choosing the optimum width and spacing of the 

cathode strips of a type of detector used in high energy physics research called a multi-wire 

proportional chamber [90]. To minimize electronics in the multi-wire proportional 

chambers, it has been shown that a centroid calculation to localize the positive ion 

avalanche only requires three cathode stripes to be readout if the charge avalanche is 

centered about these strips [91].

3.3.4 Data Acquisition System

The data acquisition system used was CAMAC based, with a Macintosh Power PC 

workstation as the host computer interfaced to the CAMAC crate through the Jorway 73A 

SCSI crate controller. All data acquisition and computer imaging control software was 

developed with the Kmax data acquisition development system purchased from Sparrow 

Inc. [92]. The Kmax data acquisition system allows the user to construct software 

“instruments” to control the flow o f data from the analog-to-digital converters (ADCs) 

residing in the CAMAC crate to the host computer. In addition, the Kmax development 

system made it possible to perform real-time computations on the data and to display the 

data as one- and two-dimensional histograms. The position of the interaction was 

computed in real-time using a centroid calculation of the anode wire outputs for both 

dimensions.

Digitization of the charge from the anode wires of the position sensitive 

photomultiplier tube is achieved by using CAMAC charge analog-to-digital converters 

(ADCs). The signals from the paired anode wires of the position sensitive photomultiplier 

tube were first amplified with LeCroy TRA1000 monolithic preamplifiers. The signal from
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the last dynode of the position sensitive photomultiplier tube is inverted and passed through 

discriminator electronics to generate a timing signal. This signal is used to gate the analog- 

to-digital converters after it passes through a logic circuit. The purpose of the discriminator 

electronics is to restrict the generation of output gate pulses to dynode pulses that exceed an 

empirically determined threshold level. The threshold level was set high enough to exclude 

low energy noise, but low enough to allow the generation of gate pulses. This enabled the 

data acquisition process when the pulse height resulting from the scintillation event is above 

a desired threshold.

3.3.5 Coincident Radiation Detection

To detect the coincident radiation of l25I, a standard photomultiplier tube attached to 

a crystal scintillator was positioned near the object to be imaged. The anode of the second 

photomultiplier tube used as the coincident detector was discriminated and passed to the 

logic unit. This signal was then logically multiplied with the discriminated dynode signal 

from the position sensitive photomultiplier tube to produce a gate for the coincidence mode. 

The resolving time of the coincidence circuit was 20 ns.

The output pulses from the dynode of the position sensitive photomultiplier tube 

and the anode of the coincident photomultiplier tube both had -50 ns shaping and a timing 

jitter of -10 ns. The total width of the gate was 150 ns for the YAP detector and was 1.0

(is for the CsI(Na) based detector. This difference is that the light pulse decay constant for

YAP is 25 ns and is 630 ns for CsI(Na). A schematic representation of the electronics and 

timing diagram is shown in Figure 3.6. The detector system was always first operated in a 

non-coincident (single) mode, in which only the dynode signal from the position sensitive 

photomultiplier tube is used to generate the trigger for the ADC.
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Figure 3.6: Block diagram of the data acquisition electronics showing the path of the 
signals from the position sensitive photomultiplier tube (PSPMT) and the photomultiplier 
tube (PMT) used for coincidence detection.
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3.4 Prototype YAP Based Gamma-ray Imaging System

The goal of the first phase of development of the detector system involved two 

tasks. The first task was to investigate the performance of Hamamatsu position sensitive 

photomultiplier tubes in imaging the gamma-ray and x-ray emissions of 125I. In this stage 

of the project a YAP crystal scintillator mounted to the Hamamatsu R2386 position 

sensitive photomultiplier tube comprised the prototype detector system. This was put 

through rudimentary imaging performance studies to determine the detector properties by 

imaging sealed 125I calibration sources. In addition, the concept of using the coincidence 

detection of the gamma-rays and x-rays of 125I to generate low background images of l25I 

was also tested. This was accomplished by using an additional standard photomultiplier 

tube with another scintillator as the coincident detector.

After tests were first performed using sealed 125I calibration sources, animal studies 

were performed as the task of this phase. This was undertaken to evaluate the performance 

of the prototype system in the imaging of 125I in a live animal. Imaging tests involving 

laboratory mice were done to gain insight into the optimization of the detector system and 

the experimental procedure for later animal studies.

3.4.1 R2486 Position Sensitive Photomultiplier Tube Based 

D etector

The R2486 position sensitive photomultiplier tube is 75 mm in diameter and has a 

standard bialkali photocathode deposited on the entrance window resulting in a detection 

area of approximately 50 mm in diameter. The crystal scintillator, cerium doped (0.1%) 

yttrium aluminum Perovskite (YAI03:Ce) also known as YAP, has many properties that 

make it appropriate for imaging gamma- and x-rays resulting from the decay of l25I. YAP 

has a decay time of 25 ns, is non-hygroscopic, and has a density of 5.37 g/cm3 [93]. Tests
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were performed with a 60 mm x 60 mm x 1 mm plate o f YAP crystal scintillator using a 

250 nanoCurie l25I calibration source. The detector arrangement is shown in Figure 3.7.

IODINE-125 
CALIBRATION 

SOURCE
COINCIDENCE 

PHOTOMULTIPLIER TUBE

YAP
SCINTILLATOR SINGLE HOLE LEAD 

COLLIMATOR

60mm X 60mmX 1 mm YAP 
SCINTILLATOR PLATE

PARALLEL HOLE LEAD 
COLLIMATOR -  POSITION 

SENSITIVE PMT

Figure 3.7: Detector arrangement for coincident detection of x-ray and gamma-ray
emissions from l25I. During the mouse study the 125I source and single hole lead collimator 
were removed.

The plate of YAP was optically coupled to the position sensitive photomultiplier 

tube with optical grease that had an index of refraction of 1.465. The top of the scintillator 

was covered with Teflon tape and made light tight with black tape. A standard 2 inch 

diameter photomultiplier tube with a 3 cm x 3 cm x 1 cm YAP scintillator was used as the 

coincident detector.

3.4.1.1 Preliminary Detector Imaging Tests

The first imaging tests were performed using a sealed I25I calibration source 

obtained from Isotope Products Laboratories [94], An example of a raw uncorrected image 

of the source obtained using singles mode is shown in Figure 3.8. The total field of view
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is a circular area 50 mm in diameter. The source size was constrained to a diameter of 2 

mm by masking the source with a 3 mm thick lead mask comprised of a single 2 mm 

diameter hole. A 1 cm thick high resolution parallel hole lead collimator core that had 0.5 

mm diameter size openings and 0.3 mm thick septa was used to image the masked 125I 

calibration source.

Figure 3.8: Raw image obtained in singles mode of an 1251 calibration source using 1 cm 
thick parallel hole lead collimator and a single 2 mm diameter hole in a 3 mm thick sheet of 
lead to form a source size of 2 mm in diameter. The field of view is 50 mm in diameter.

Figure 3.9 is an image obtained in coincidence with a 3 cm x 3 cm x 1 cm YAP 

crystal scintillator placed on the other side of the source, as shown above. In this 

configuration the coincident detector was placed in contact with the unmasked side of the 

calibration source. One can see that the background is considerably less than in the singles 

case. Both images were obtained by accumulating data for several hours. Energy 

acceptance windows were applied to accept only events in the range of energy for the decay 

of I25I.
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Figure 3.9: Raw image of the same 125I calibration source as in Figure 3.8 obtained in 
coincidence mode.

The sum of the anode signals for each event was used to define a single energy 

window for the detector. No regional energy thresholds were set since the defined energy 

window was broad enough to accommodate the position dependent gain variation of the 

position sensitive photomultiplier tube.

3.4.1.2 Detector Properties

The intrinsic average position resolution across the active area of the position 

sensitive photomultiplier tube was measured to be 2.1 mm FWHM for 35 keV photons. 

This was obtained by imaging a 125I sealed calibration source that was collimated with a 1 

mm diameter pinhole in a 3 mm thick sheet of lead. A position resolution of 1.2 mm 

FWHM using the same technique with 122.5 keV gamma-rays from a 57Co source was 

achieved. As mentioned before, the position resolution of the Hamamatsu R2486 position 

sensitive photomultiplier tube improves with number of photoelectrons [95]. This occurs 

because the higher number of photoelectrons generated results in a larger signal at the 

anode wires centered under the secondary electron cloud resulting in a improved signal to 

noise ratio. The intensity of the scintillation light pulse is proportional to the energy of the 

gamma-ray or x-ray photon. The gamma-ray and x-ray photons resulting from the decay
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I25I (-35 keV) are relatively low energy compared to more commonly used nuclear 

medicine isotope such as 99mTc (-140 keV). Thus as expected a higher position resolution 

can be achieved with " mTc than with 125I.

The detector was equipped with a 1 cm thick high resolution parallel hole lead 

collimator. The collimator has 1.27 mm diameter apertures in an hexagonal pattern and the 

septa thickness is 0.15 mm. The system resolution with the collimator in place for a l25I 

source placed 1.5 cm from the collimator was determined to be 3.5 mm.

The sensitivity of the detector system operated without the coincident detector (i.e., 

in singles mode) for a source placed in the center of the detector was measured to be 366

cpm/(iCi. In coincidence mode, with the coincident detector and imaging detector 2.5 cm

apart, the sensitivity was measured to be 4.3 cpm/|iCi. The random coincidence rate in this

arrangement with only background radiation was only 1.6 cpm.

The energy acceptance window was set to include the x-rays and gamma-rays 

emitted by l25I. An example of a 125I pulse height spectrum, taken in coincidence mode is 

shown in Figure 3.10.

3 0

20

200 6 0 00
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Figure 3.10: I25I pulse height (energy) spectrum generated from the sum of the anode
signals using coincidence mode of detection. Dotted lines indicate the energy acceptance 
window which includes energies from approximately 20 to 50 keV.
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The peak, centered near channel 100, is the superposition of the 35 keV gamma-ray 

and the 27.2, 27.5, and 31 keV x-rays resulting from the decay of 125I. The energy 

acceptance window is indicated by the dotted lines.

3.4.2 Detector Performance During Animal Laboratory Tests

The prototype detector performance in an animal study was evaluated in tests 

involving the uptake of iodine in the Prairie Deermouse (Peromyscus maniculatiis) and 

melatonin uptake in the Swiss mouse (Mus musculus). For the first case, I25I was 

intraperitoneally injected into the mouse and the iodine accumulation in the thyroid was 

followed. The second study involved the imaging of the biodistribution of tail vein injected 

melatonin labeled with 125I. All animals were fed ad lib on a standard laboratory rat, 

hamster and mouse diet using Agway Pro Lab 2000 feed. These animal studies were 

instrumental in evaluating the experimental detector setup.

3.4.2.1 Animal Studies with 12:T

An intraperitoneal injection (IP) of I25I into a 15 gm female Peromyscus 

maniculatus was performed following anesthetization with IP injection of 4% chloral 

hydrate. The I25I was obtained from DuPont-NEN, Inc. in the form of Nal in 10"5 M

NaOH. The sample was diluted with sterile water to a concentration of 10 jj.Ci/(jJL and 2

jiL (20 (iCi of 125I) was injected.

A time record of the uptake of the iodine from the injection site to the eventual 

concentration into the thyroid gland was imaged over two days. Figure 3.11 depicts an 

image obtained in coincidence acquisition mode representing a collection time of 50 minutes 

obtained beginning at 8 hours post injection of 125I. The detectors were placed 1.5 cm 

apart.
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Figure 3.11: Raw image obtained using coincidence data acquisition mode of the 
distribution of 125I in mouse 8 hours post injection. The lower hot spot corresponds to the 
injection site. Some iodine accumulation is seen in the neck region, the location of the 
thyroid gland. The range of pixel values in the image, indicated by the gray scale, is from 
0 to 22 counts. The field of view is 50 mm in diameter.

In the Figure 3.11 one sees iodine concentration in the region of the injection site 

and some accumulation in the thyroid. The image count rate was approximately 20 image 

counts/minute, which is the rate of coincidence events satisfying the energy window. The 

,25I image obtained was processed with NTH Image software [96] and then overlaid onto a 

digital photograph of the actual experimental mouse as shown in Figure 3.12.
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Figure 3.12: Image data from Figure 3.11 scaled and then overlaid onto a photograph of 
the mouse. The range of pixel values in the image and indicated by the gray scale is from 0 
to 22 counts.

The mouse was allowed to recover from the anesthesia and was given food and 

water ad lib. Another image was obtained 24 hours post injection and the thyroid gland 

was found to contain the majority of the radioactivity at 23 image counts/minute (Figure 

3.13). The total dose still in the live mouse after 24 hours post injection measured from the

image was estimated at 5.3 (iCi or 27% of the original dose. The experimental results

provide an initial baseline example of the nature of the distribution of injected iodine and the 

eventual accumulation in the thyroid gland of the mouse. It is clear that soon after injection 

the l25I becomes distributed throughout the mouse. By 8 hours after injection concentration
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begins to appear in the thyroid region and by 24 hours the l25I is cleared form the mouse 

showing only an accumilation in the thyroid. These results are then be compared to results 

from the injection of 125I-labeled melatonin into a mouse which was the next phase of the 

mouse study.

Figure 3.13: Raw image obtained in coincidence mode of the distribution of l25I in the 
mouse 24 hours post injection indicating maximum concentration of most of the iodine in 
the thyroid gland. The range of pixel values in the image and indicated by the gray scale is 
from 0 to 17 counts.

3.4.2.2 Animal Studies with I2SI-IabeIed M elatonin

One of the goals of this project was to develop an imaging system which could be 

used to study neurological processes in the brain of a live mouse by way of various neural 

specific radioiodinated ligands. A major challenge is to test various ligand delivery 

techniques that can get labeled molecules into the brain. This is very difficult because of 

inherent physiology (blood-brain barrier) that keeps the brain partially isolated from the 

body’s general circulatory system. To test the ability of the detector to image the 

accumulation of a I25I-labeled ligand in the mouse brain, I25I labeled melatonin was injected 

into a live mouse. Melatonin is known to pass through the blood-brain barrier and to have 

binding sites in the brain as well as in other organs of an adult mouse [97], A dose of
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approximately 5 pCi I25I-labeled melatonin (Amersham Inc.[ 98]]) in 5 pi was injected into

the tail vein of a 20 gm male Swiss mouse that had been anesthetized with pentobarbital. 

Imaging was started 12 minutes after injection and a series of images were obtained 

approximately every 8 minutes, and an image representing an acquisition time of 8 minutes. 

Most images were obtained using the coincidence acquisition mode. For comparison, 

several images were also obtained with the coincidence mode disabled to investigate the 

effect of lost statistics because of the more restrictive coincidence mode of image 

acquisition.

Figure 3.14 depicts an image obtained from the sum of all the images taken with 

coincidence radiation. The image was made from a composite of images totaling 72 

minutes acquisition time and a total of 1375 imaging events.

Figure 3.14: Image of 12SI labeled melatonin distribution in mouse using coincidence 
radiation detection. The head of the mouse is towards the top of the image. Only events 
falling in the energy window of 50 to 200 channels were used to form the image. The 
range of pixel values in the image and indicated by the gray scale is from 0 to 8 counts.

In Figure 3.15 the data from Figure 3.14 has been scaled and superimposes onto a 

photograph of a mouse to indicate the approximate distribution of the melatonin in the 

mouse. Two regions of interest were chosen for comparison to determine if there is an 

enhanced uptake of melatonin in the head region. The first region included the head area
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and another of the same size located in the chest (abdomen/thorax). The plot shown in 

Figure 3.15 indicates the time change of the ratio of melatonin concentration in the head 

compared to the chest.

ST.

Figure 3.15: Illustration with data from Figure 3.14 on top of a photograph of a different 
mouse to indicate the approximate location of the uptake of melatonin. The field of view of 
the detector is indicated by the two horizontal lines. The range of pixel values in the image 
and indicated by the gray scale is from 0 to 8 counts.

The results suggest that maximum association 125I-labeled melatonin in the brain 

occurred very soon after injection and followed by possible saturation of the melatonin 

receptors. The subsequent disappearance from the head to other areas is indicated by the 

gradual accumulation of signal in the abdominal/thorax. In Figure 3.16 the data marked
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“image total” indicates the change in counts in the total image at different time intervals. At 

each time interval (~ 8 minutes) the image was cleared and a new one acquired.
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Figure 3.16: Time change of melatonin in the head compared to the chest. Plotted are the 
ratios of signal in head/chest, head/total and chest/total expressed in percent. The “image 
total” plot is in total counts Error bars are plus and minus one sigma (c) determined by 
propagating the errors using Poisson statistics (cr = number of counts) [99].

After imaging was complete the mouse was sacrificed and the brain was fixed, 

sectioned, and placed in contract with autoradiographic film. After 52 days the 

autoradiograms were developed and examined. Several 8 micron sections in the region of 

the brain (tissues of the median eminence as well as diffusely present within the ventricles) 

showed significant uptake of the melatonin (data not shown) confirming that there are 

binding sites for melatonin in the brain and that the detector system did measure 

accumulation in the brain.
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3.4.3 Discussion of the First Prototype Results

The initial results of imaging l25I with the prototype detector demonstrated the 

detector system’s ability to successfully image I25I. It was determined that it was possible 

to use position sensitive photomultiplier tubes to image the low energy' gamma and x-ray 

emissions of i:bL Shown also was that the coincident detection of the gamma-ray and x- 

ray emission of the decay 125I could be a useful option to image low uptakes of l25I. In 

addition, it was clear that this type of detector system could be improved with higher 

resolution, larger and more sensitive detectors, optimized geometry, and custom designed 

collimators. The Hamamatsu R2486 position sensitive photomultiplier tube, has a limited 

active area (-50 mm diameter) such that the entire mouse could not be imaged at once. 

Also, this position sensitive photomultiplier exhibits a non-uniform response across its 

active area which leads to image distortion at the edges, further limiting its useful field of 

view. The next phase of the project involved the building of a new detector system which 

used the five inch diameter Hamamatsu R3292 position sensitive photomultiplier tube and a 

110 mm in diameter CsI(Na) scintillating crystal array.

3.5 Gamma-Ray Imaging System Based a on CsI(Na) 

Crystal Array

The goal of the second phase of the project was to improve the spatial resolution in 

order to obtain a position resolution less than 3 mm FWHM and to utilize a larger active 

area position sensitive photomultiplier tube so that a whole mouse could be imaged at once. 

This phase of development of the detector system involved three tasks. The first task was 

to investigate the performance of the 125 mm diameter Hamamatsu position sensitive 

photomultiplier tube (R3292) in imaging the gamma-ray and x-ray emissions of 125I when
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coupled to a CsI(Na) scintillating crystal array. The second task was to evaluate the 

imaging capabilities of the array and configure the computer controlled data acquisition 

system to perform real-time image processing based on mapping the individual response of 

each crystal element into a processed image. The coincidence detection of the gamma-rays 

and x-rays of I25I to generate low background images of 125I was also upgraded to 

accommodate a larger imaging area. The third task was to test the performance of the data 

acquisition system and computer controlled mapping system in a real setting given the 

greater demands placed on the system to perform additional processing. A repeat of the 125I 

labeled melatonin study was performed to compare to the previous imaging test performed 

with the YAP based detector.

3.5.1 R3292 Position Sensitive Photomultiplier Tube Based

D etector

To improve spatial resolution with position sensitive photomultiplier tubes, a higher 

intrinsic resolution from the photon detector was needed. Therefore, larger scintillation 

light signals would need to be realized from the interaction of the gamma-ray and x-ray 

photons from I2SI. After studying various commercially available scintillator crystals the 

crystal scintillator CsI(Na) was chosen. CsI(Na) has approximately 60% better light yield 

then YAP and is about half the price. This is particularly important in the imaging of 35 

keV photons from the decay of l25I. This crystal is also able to be cut into an array 

comprised of small crystal elements to construct a “pixel” array-based detector.

3.5.1.1 Scintillating Crystal Arrays

The array-based detector was chosen to improve the spatial resolution and to 

facilitate the removal of the image distortion common with the Hamamatsu position 

sensitive photomultiplier tubes. Barone et al. [39] have reported improved spatial
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resolution with imaging detectors comprised of scintillators attached to position sensitive 

photomultiplier tubes through the use of arrays of scintillating crystal elements instead of a 

planar scintillator. The authors report that the scintillating crystal pixels act to direct the 

scintillation light onto the photocathode with much less light spread than would occur with 

a planar scintillator. This has the effect of confining the secondary electron cloud to a much 

tighter distribution which results in improved spatial resolution. The authors report 

imaging 140 keV gamma-ray sources with a  spatial resolution of 0.7 mm FWHM using 

YAP scintillating crystal arrays which had element dimensions of 0.6 mm x 0.6 mm x 7.0 

mm.

In order to increase detection sensitivity in the coincidence detection mode the 

detection area of both the imaging and the coincident detector was increased. In addition, 

collimators were designed to be optimized for 125I imaging with a CsI(Na) crystal array. 

The low energy radiation of 125I presents the opportunity to use materials, other than lead, 

for the collimators.

In developing a CsI(Na) based detector, first a system was tested that used an array 

110 mm in diameter where each crystal element is 2.0 mm x 2.0 mm in area and 3 mm 

thick. The array was directly coupled to the five inch diameter Hamamatsu R3292 position 

sensitive photomultiplier tube. The CsI(Na) array was custom built by Hilger, Ltd. [100]. 

The thickness of 3.0 mm was chosen to allow for the efficient collection and transmission 

of the scintillator light to the photocathode. Most of the 35 keV photons of the decay of 125I 

get stopped within the first 1 mm of CsI(Na).

Truman et al. [101], have demonstrated that arrays of a similar the crystal 

scintillator CsI(Tl) can be efficiently readout with the Hamamatsu position sensitive 

photomultiplier tubes. As mentioned earlier, the array based detector allows removal of the 

image distortion and facilitates correction of the non-uniformity of response common to the 

Hamamatsu position sensitive photomultiplier tubes.
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3.5.1.2 Hamamatsu R3292 Position Sensitive Photomultiplier Tube

The Hamamatsu R3292 125 mm diameter position sensitive photomultiplier tube 

has 28 x 28 crossed anode wires. Again, as was done in the case using the model R2486 

position sensitive photomultiplier tube, the number of individual channels read out was 

reduced by connecting anode wires in groups of two thus reducing the number of channels 

to instrument by a factor of two (see Figure 3.17)
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Figure 3.17: Cross sectional view of the 125 mm diameter R3292 position sensitive 
photomultiplier tube coupled to the CsI(Na) crystal array.
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The original 28x+28y anode wire readout was reduced to 14x+14y wire groups. 

All anode sector signals were amplified by a factor of ten in low noise LeCroy TRA 1000 

amplifiers and delayed by 50 nanoseconds before entering 28 individual ADC channels.

A conventional 125 mm diameter photomultipber with a Nal(Tl) crystal made by 

Scionix Holland B.V. [102] was used as the coincident detector. The Nal(Tl) crystal is 

121 mm in diameter, 3 mm thick; with a 1 mm quartz window and a 0.3 mm aluminum 

entrance window. As was the case with the YAP based detector, this detector was 

equipped with a 1 cm thick high resolution parallel hole lead collimator. The collimator has 

1.27 mm diameter apertures in an hexagonal pattern and the septa thickness is 0.15 mm.

3.5.2 CsI(Na) Scintillating Crystal Array Performance and 

Mapping

The individual 2 mm x 2 mm CsI(Na) crystal elements are resolved using the same 

truncated center of gravity technique discussed earlier. The real-time data processing 

developed and implemented using the Kmax data acquisition system treats the output of 

each crystal region individually to correct for crystal-to-crystal scintillation output variations 

as well as the local position sensitive photomultiplier tube gain variations. The procedure 

involved the generation of calibration look-up tables which were obtained by obtaining 

flood images. The look-up tables were then used by the data acquisition control software 

to perform the mapping.

3.5.2.1 CsI(Na) Scintillating Crystal Array Performance

A flood image was produced by using a 125I point source placed about 10 cm above 

the CsI(Na) crystal array (without a collimator installed) to flood the entire crystal array. 

Figure 3.18 illustrates an example of a flood image and a projection of the center row of 

crystals. The individual crystal-pixels show variations in light output because of the
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position dependent variation in sensitivity of the position sensitive photomultiplier. In 

addition, one can see the image distortion resulting from the non-uniformity of response of 

the position sensitive photomultiplier tube. This is particularly evident near the outer edge 

of the active area.
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Figure 3.18. The full raw flood image of the crystal array is shown in the top left portion 
of this figure. An enlargement of the central region of the image is in the top right. The 
histogram in the lower half of the figure is a projection of a single row of crystals. The 
data was taken in a coincidence mode. Over 95% of the crystals are well resolved.

Individual crystals are easily resolved as can be seen in the I25I image shown in the 

right half of Figure 3.18. The coincident detector was placed in contact with the 125I 

source. The lower part of Figure 3.18 shows a projection through one row of crystals
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illustrating the isolated image of each of the 2 mm x 2 mm individual crystals. The pulse 

height spectrum for this image is shown in Figure 3.19. This histogram is generated by 

summing the individual anode outputs from both axes.
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Figure 3.19: Pulse height spectrum (arbitrary units) for the image taken in coincidence 
mode.

3.5.2.1 Crystal Array Mapping

Raw images obtained with the position sensitive photomultiplier tube exhibit 

distorted crystal positions because of spatial non-uniformity of response in the position 

sensitive photomultiplier tube. Distortion correction is achieved by mapping the data 

identified to belong to a particular crystal into that crystal’s appropriate pixel in the 

corrected image. This is possible since the relative position of each crystal is known and 

the crystal locations can be identified in the raw image. Figure 3.20 indicates the points 

that have been determined to mark individual crystal region comers in the raw image. By
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using a flood image, as in Figure 3.18, four dots, one at each comer are placed at each 

comer of the region denoting the location of each crystal element.

Figure 3.20: Map of crystal regions. Each crystal region is marked by four dots, one at 
each comer. “False” filler crystals were also marked at the four comers to simplify the real 
time look-up table computer algorithm.

These dots are then read by a computer program to generate a look-up table that 

defines the regions identified for each crystal element. It is this look-up table which is used 

by the real time data acquisition program to perform the crystal mapping on an event by 

event basis. Since the crystal array is a circle formed from an array of square crystal 

elements, “false” filler crystals were marked at the four comers to simplify the real time 

look-up table computer algorithm.
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3.5.3 Detector Performance Imaging l2SI Labeled Melatonin in a 

Live Mouse

The performance of real-time computer controlled crystal mapping system was next 

tested under actual animal imaging conditions. With the lead collimator placed in front of 

the CsI(Na) array planar images were obtained of the distribution of l25I in the body of the 

mouse. The imaging ability of the detector was tested by attempting to image l25I-labeled 

melatonin that was concentrated in various sites in a live mouse.

A dose of approximately 12 |j.Ci (0.1 ml) of l25I-labeled melatonin obtained from

Amersham Pharmacia Biotech Inc. [98] was injected into a tail vein of a 23 gm male 

Peromyscus maniculatus mouse anesthetized with 0.35 ml of 4% chloral hydrate. Imaging 

was started 40 minutes after injection of the I25I-labeled melatonin. Examples of a raw and 

a corrected image are shown in Figure 3.21 and Figure 3.22 respectively, which were 

acquired in singles mode with the usual background signal observed.
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Figure 3.21: Raw image obtained using the CsI(Na) array. In this image it is possible to 
see individual crystals of the array. The crystals are particularly apparent in the area of the 
hot spot at the top of the image which corresponds to the mouse’s bladder. The mouse was 
positioned with its head pointing downward as indicated by an outline of the mouse drawn 
over the image.

The imaging information contained in Figure 3.21 is sorted and mapped on a crystal 

by crystal basis for the appropriate location and individual energy window. The results of 

this real-time processing for position and energy are shown in Figure 3.22. An energy 

window of 20% placed around the peak of the energy response was used on each crystal 

element to form the image.
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ABDOMEN

HEAD

Figure 3.22: This is the corrected image obtained using the data and orientation as shown 
in Figure 3.21 and applying the crystal boundary information shown in Figure 3.17. The 
gray scale has been compressed to show that small accumulation is showing up in the head 
region

The image shows the melatonin distribution in the mouse. Total image acquisition 

time was 20 minutes. The results obtained were similar to those obtained with the YAP 

detector, however this time nearly the entire animal was imaged. The computer controlled 

mapping of the response form the individual crystal to a corrected image performed 

adequately in real-time under realistic imaging conditions.
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3.5.4 Discussion of the CsI(Na) Array Based Results

The initial results in imaging l25I with the CsI(Na) based array detector 

demonstrated that a CsI(Na) array performs well when coupled to the Hamamatsu 3292 

position sensitive photomultiplier tube. It was clear that this type of detector system could 

be improved further with the use of a CsI(Na) array with smaller sized elements and a 

custom designed collimator. With Hamamatsu R3292 position sensitive photomultiplier 

tube the entire mouse could be imaged at once. This position sensitive photomultiplier 

exhibits a non-uniform response across its active area which leads to image distortion at the 

edges. This however is corrected by remapping the response from each individual crystal 

to generate an undistorted image.

The system resolution with this array and the lead collimator was -4 .0  mm FWHM 

for a source distance of 1.5 cm. The next phase of the project involved the building of a 

new detector system which again used the five inch diameter Hamamatsu R3292 position 

sensitive photomultiplier tube and a 110 mm in diameter CsI(Na) scintillating crystal array 

but this time with 1 mm x 1 mm sized elements and a specially designed high resolution 

parallel hole collimator.

3.6 Gamma-Ray Imaging System Based on an Array with 

1.0 mm x 1.0 mm Elements

The goal of the third phase of the detector development project was to improve 

further the spatial resolution in order to obtain a position resolution approaching 1 mm 

FWHM and to test all aspects of the detector system (coincidence imaging, spatial 

resolution, and sensitivity) prior to using the system in an actual animal study. This phase 

of the project involved three tasks. The first task was to investigate the performance of the 

125 mm diameter Hamamatsu R3292 position sensitive photomultiplier tube in imaging the
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photon emissions of l25I when coupled to a CsI(Na) scintillating crystal array which had 1 

mm x l mm size elements. The second task was to design, have built, and test a new high 

resolution parallel hole collimator. The collimator was constructed out of copper laminates 

using a photochemical etching process. The third task was to test the performance of the 

entire detector system with the high resolution copper collimator using various phantom 

radioactive sources. It was during these tests that the realized imaging capabilities of the 

system was quantified. The spatial resolution and system sensitivity were determined. The 

final task was to compare lead collimator and with the copper collimator in a realistic animal 

imaging situation. The system was tested by imaging the distribution I25I that had been 

injected into a mouse via a tail vein.

3.6.1 CsI(Na) Array with 1.0 mm x 1.0 mm Elements

To achieve still higher position resolution an array formed from crystal elements 1 

mm x 1 mm in size was implemented. Using the prototype described in section 3.5 of this 

dissertation, the individual CsI(Na) crystals of the crystal array composed of elements 2 

mm x 2 mm x 3 mm in size were resolved when flooded with radiation from l2:>I. When 

the 1 mm x 1 mm size crystal elements of the new array were flooded with radiation from 

125I it was not possible to resolve the individual crystal elements of the array. In order to 

resolve the individual crystals, the generation of more intense scintillation light was 

required to generate more photoelectrons in the position sensitive photomultiplier tube.

3.6.1.1 Raw Flood Image Using 662 keV Gamma-rays

It was possible to resolve each crystal by obtaining a flood image using the 662 keV 

photons from 137Cs. This is because, as discussed before, the position resolution of the 

Hamamatsu R3292 position sensitive photomultiplier tube improves as the number of 

photoelectrons increases. The higher energy photons give rise to more intense scintillation
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light which, in turn, results in more photoelectrons in the photomultiplier tube. From the 

I37Cs raw flood image it was possible to generate a look-up table such that individual 

crystals were identified by mapping their location from the raw flood image. This is shown 

in Figure 3.23 and in Figure 3.24.

mM&m

Figure 3.23: The full flood raw image of the 1 mm crystal array is shown. This was 
accomplished by using a 137Cs point source placed about 10 cm above the CsI(Na) crystal 
array. Over 95% of the crystals are resolved.
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Figure 3.24: Enlargement of a 3x3 cm2 area of the full flood raw image of the 1 mm crystal 
array shown in Figure 3.23. Individual crystals are easily resolved.

3.6.1.2 Array Mapping

The same real-time crystal mapping technique as implemented with the first array 

was accomplished by using the above raw flood image obtained with 662 keV gamma- 

rays. The real-time data processing system developed and implemented, again using the
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Kmax data acquisition system, treats the output of each crystal region individually to 

correct for crystal-to-crystal scintillation output variations as well as the local 

photomultiplier tube gain variations. For each event, the sum of the anode signals is used 

to generate a pulse height energy spectrum. Figure 3.25 is a sample of energy spectra 

obtained for five neighboring crystals from the CsI(Na) array using the mapping look-up 

table to define the position of each crystal element.

Figure 3.25: Iodine 125 pulse height (energy) spectra for five adjacent crystals generated 
from the sum of the anode signals using the coincidence mode of detection.

Figure 3.26 depicts a two dimensional representation of the individual gain 

variations determined at each crystal location. The data processing system is designed to 

allow each crystal element to have an acceptance window centered about its individual peak 

by way of another look-up table.
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Figure 3.26: Two dimensional representation of pulse height (energy) spectra peak value 
for I25I for all of the crystals generated from the sum of the anode signals.
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3.6.2 High Resolution Copper Collimator

The highest spatial resolution that the lead collimator allowed was -3.5 mm FWHM 

for a source distance of 1.5 cm. The sensitivity of the detector system with the lead

collimator was determined to be 240 cpm/fiCi. The goal of this part of the project was to

achieve a spatial position resolution that was less than 2 mm FWHM. A lower Z material 

could be chosen to construct a high resolution collimator with because of the relatively low 

energy gamma-rays emitted by l25I. This allowed for the construction of a high resolution 

collimator out of material that could be photochemically etched.

3.6.2.1 Collimator Construction

A high resolution parallel hole collimator was designed and constructed that was 

optimized for l25I imaging with a CsI(Na) crystal array with crystal elements 1 mm x 1 

mm. The low energy radiation of l25I makes it possible to use materials other than lead to 

construct collimators. A copper collimator was designed by using relationships described 

in equations 2.5 through 2.8 of Chapter Two of this dissertation and guided by Keller [15]. 

The result was a 0.5 cm thick parallel hole copper-beryllium collimator was designed to 

achieve the best geometric acceptance for this application.

The desired collimator parameters were used by the company Thermo Electron 

[103] to construct the collimator for this project. This special collimator is constructed out 

of a stack of 40 layers of copper-beryllium (-1.9% Be) laminates glued together for a total 

thickness of 0.5 cm. A proprietary process using photochemical techniques was used by 

the company to construct square openings of 0.2 mm x 0.2 mm in area separated by 0.05 

mm thick septa (see Figure 3.27).
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Figure 3.27: A precision stack lamination copper-beryllium collimator with a 0.5 cm total 
thickness built out of 40 layers similar to the one at the right. Custom built by Thermo 
Electron of Woburn, MA.

3.6.2.2 Collim ator Performance

For a source-to-collimator distance of 1.5 cm the calculated system resolution is 1.5 

mm FWHM and the geometric acceptance is -0.008% with the dead space between the 

crystals taken into account. From this geometric efficiency an estimate of the actual counts

per minute per p.Ci of activity can be obtained. For example, assume a 1 |iCi, 3.7 x 104

disintegrations/sec (dps), with the source of radiation placed in front of the parallel hole 

collimator and covering an area which is completely within the active field of view of the 

position sensitive photomultiplier tube. As mentioned before, for I25I, every disintegration 

results in on average 1.4 gamma-rays or x-rays. Less than one half of the gamma and x- 

rays emitted travel in the direction towards the collimator. Of those that do, only 0.008% 

pass through the collimator. The actual activity available for detection is therefore estimated 

by the following:

1.4 — PhOIOnS ■ x  3.7 x 10' disintegrati0ns x 8.0 x 10- x  0.5 = 2.0^ tOnS 
disintegration sec sec
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Therefore, there are at best 2 photons/sec (or 120 cpm/fiCi) that interact with the

scintillator. The sensitivity of the detector system in singles mode for a source placed in the

center of the detector was measured to be 68 cpm/jlCi. The measured value is 43% less

than the upper estimate of what one might expect from the detector with the copper 

collimator. This difference may be because in the actual copper collimator the comers of 

square openings when viewed under magnification are actually rounded slightly resulting in 

smaller apertures hence a slightly lower sensitivity.

3.6.3 Phantom Imaging Detector Performance Tests

The performance of the detector system with the high resolution copper collimator 

in place was tested using various phantom sources. In all of the tests a 20% energy 

acceptance window was implemented which was centered on the energy peak values that 

had been determined for each crystal element of the array. In most of the tests phantoms

with greater than 20 p.Ci activity of I25I were with an aqueous solution of Nal in 10'5 M 

NaOH.

3.6.3.1 Singles Mode Phantom Studies

A cross hair phantom was made by using two different lengths of polyethylene

tubing in which both tubes were filled with approximately -65 jiCi of 125I. The longer tube

(PE60, Clay Adams, Inc.) had an inner diameter of 0.030” and the second (PE 160) had an 

inner diameter of 0.045”. The length of the radioactive region in the larger diameter tube 

was 3.5 cm and 8 cm in the smaller diameter tubing. The image obtained of this phantom 

is shown in Figure 3.28.
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Figure 3.28: Image of a cross pattern made by imaging two plastic tubes filled with -65
fiCi of 12SI that were placed over each other. The tubes were placed 2 mm in front of the 
collimator. The active lengths are 8 cm (vertical) and 3.5 cm (horizontal). The FWHM at 
profiles along A and B is 1.76 mm and 2.46 mm respectively.

The resolution in profile A of the 0.030” diameter tube was 1.76 mm FWHM and

for profile B of the 0.045” diameter tube the resolution was 2.46 mm FWHM. The

calculated system resolution at a source distance of 2 mm is 1.25 mm FWHM which would

result in a width of 1.47 mm FWHM for the 0.030” (0.768 mm) diameter line source. The

measured width of 1.76 mm FWHM is in near agreement with the expected result. For the

0.045” (1.152 mm) diameter line source the measured width is 2.46 mm FWHM. In this
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case the line source is illuminating two rows of crystals therefore one would expect a line 

image width of 2.69 mm FWHM which is also in near agreement with the image result.

Another phantom was constructed to test the high resolving power of the detector

system. A loop was made out of 0.030” plastic tubing filled with approximately -65 [iCi

of I25I. The separation (center-to-center) of the loop ends that form the right hand opening 

of the loop was 2.5 mm (see Figure 3.29).

I— '— T

0 50 100 150 200
Counts

Figure 3.29: Image obtained of a loop constructed out of 0.030” plastic tube filled with 
-65 fiCi of 125I. The separation (center-to-center) of the tube ends forming the right hand 
opening of the of the loop was 2.5 mm. An acquisition time of 15 minutes was used to 
obtain this image.
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It is just possible to visualize the two ends. This is the expected limit of resolution 

as the crystal elements are 1 mm x 1 mm in size separated by 0.2 mm of dead space. 

Therefore the minimum resolvable separation of two line sources 0.77 mm (0.030”) in 

width is 2.4 mm. This is true assuming an ideal orientation with the crystal matrix where 

one line source is directly over one row of crystals and the other line source is two rows 

over. The loop was placed in contact with the face of the collimator. The discontinuities 

observed in the image are because of trapped air bubbles in the tube.

A grid phantom was constructed using a 0.75” (19.2 mm) thick, 1.5” (38.4 mm) 

diameter plastic disk with a grid pattern of 0.065” (1.66 mm) thick slots cut 0.5”(12.8 mm) 

deep separated by 0.25”(6.4 mm). The disk was inserted slot side down into a plastic 

cylinder which had a bottom wall thickness of 0.25”. The phantom with the grid disk

inserted was filled with -20 fiCi of 125I to a depth of 0.5”. The cylinder bottom was placed

1 mm above the collimator. An image of this phantom is shown in Figure 3.30. It was 

difficult to obtain uniform loading of the phantom which is responsible for the apparent 

enhancement of the radiation signal seen in some regions of the image.
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Figure 3.30: Image of a 125I filled grid phantom.

3.6.3.2 Coincidence Mode Phantom Studies

A test was performed using the detector in the coincidence mode of operation. As 

stated above the coincidence mode was found to be most useful when imaging low 

amounts of radioactivity. The random coincidence rate with the two detectors placed 2 cm 

apart was less than 1 cpm for a 20% energy window. Figure 3.31 shows two images

obtained with a three minute acquisition time of a 2 (iCi 125I source taken in singles and 

coincident modes.
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Figure 3.31: Two corrected images obtained with a three minute acquisition time of a 2 
(lCi 125I source taken in singles (left) and coincident (right) mode. The imaging and 
coincident detectors were placed 2.0 cm apart and the source was placed halfway between 
them.

The phantom was placed halfway between the two detectors. The phantom was 

placed halfway between the two detectors. The ratio of signal over image total for a region 

of interest covering the source was 0.45 (373/822) for the singles case and 0.77 (44/57) 

for the coincidence case. The system sensitivity in coincidence mode in the test described

here was 30 cpm/(iCi which, as expected, is slightly less than half of sensitivity of the 

system during singles mode.

3.7 Imaging Iodine Uptake in a Mouse

The detector system can be operated with either the low resolution lead collimator or 

the high resolution copper collimator in place. The low resolution lead collimator would be 

used in applications when high sensitivity is required such as in a dynamic imaging study.
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In singles mode, the low resolution lead collimator when compared to the copper collimator 

requires 8 times shorter acquisition times to get the same image statistics.

A mouse was imaged after receiving a tail vein injection of I25I in order to compare 

the results of imaging the biodistribution of l25I with the low spatial resolution lead 

collimator and the high spatial resolution copper collimator. This was done to provide a 

baseline to the nature o f the uptake of the label using two different collimators. The mouse 

was a 17.5 gm male Peromyscus maniciilatus. which was injected through a tail vein with a

5 jLLCi dose of 12SI ( Dupont NEN Inc. [1], NEZ033A:carrier free; SA = 17.4 fj.Ci/|ig; pH

8-10; in 20 (il 0.9 NaCl) after being anesthetized with 4% chloral hydrate administered by

an intraperitoneal injection. At approximately two hours after the injection of 125I, the 

mouse was sacrificed by an anesthetic overdose and was imaged. The mouse was imaged 

in singles mode both with the high resolution copper collimator and the low resolution lead 

collimator that was described earlier. The resulting images are shown in Figure 3.32.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. DEVELOPMENT OF A N 125I  IMAGING DETECTOR SYSTEM  93
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Figure 3.32: Images obtained of iodine distribution in 17.5 gm male Peromyscus
maniculatus mouse two hours after injection of 5 jiCi I25I. The image on the left was 
obtained using the high resolution copper collimator while the right image was obtained 
with the standard lead collimator in place. The left image represents a total acquisition time 
of the 45 minutes while the image on the right required 5.6 minutes.

A typical biodistribution of l25I was observed [104], The images show that the 

detector system when fitted with the high resolution copper collimator provides finer detail 

of the structure of the uptake than that obtained with the lead collimator. This is particularly 

apparent in the area of the mouth where the tongue region shows high accumulauon of 

iodine. The tongue region shows a more defined image in the copper collimator. The 

iodine accumulation in salivary glands and stomach also appear more defined as well. The 

actual distribution of iodine to these structures was confirmed on autopsy with liquid
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scintillation counting of isolated organs (data not shown). Both images have the same 

number of image counts, 45 minutes of image acquisition were required to obtain the image 

with the high resolution copper collimator while the image with the lead collimator only 

required 5.6 minutes.

The system described above is now in use in the Biology Department at the College 

of William and Mary and has most recently been used evaluate the detector system relative 

to a study conducted by a group at Johns Hopkins University [105] in which a non

imaging gamma-ray detector was used to measure the uptake in the mouse brain of a 

compound (RTI-55) labeled with 125I. The next chapter presents the preliminary results of 

this comparison.
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Chapter 4

Imaging Receptor Binding in the 

Mouse Brain
The detector system described in section 3.6 was used on a mouse to image the in 

vivo uptake of the I25I-labeIed tracer methyl 3 |3-(4-iodophenyl) tropane-2 (3-carboxic acid

methyl ester, also known as RTI-55(P-CIT) [106]. Described in this chapter are the initial

results of applying the detector system developed in this project with the results of a mouse 

brain study reported by Mochizuki et al. [105] at Johns Hopkins University. Mochizuki et 

al. have reported using a non-imaging gamma-ray detector to measure only the mouse brain 

uptake of the l25I-labeled RTI-55 as a function of time. This present study substantially 

extends the earlier study, since prior to the William and Mary detector system, there existed 

no high spatial resolution imaging detector optimized to image I25I in small animals.

RTI-55 acts as a cocaine analog and binds to unique protein receptor molecules 

termed “transporters” that are involved in the movement of dopamine and serotonin across 

cell membranes in the brain [106]. The study of the nature of uptake and metabolism 

(pharmocokinetics) of RTI-55 is of interest to those studying the mechnaism and treatment 

of human neurological disorders as well as cocaine action [105]. RTI-55 has been shown

95
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to cross the blood brain barrier and label the striatum of the brain, the hypothalamus, and 

the thalamus [107]. Imaging RTI-55 in primates has been performed using a clinical 

SPECT system with a 123I-label [108].

4.1. Static Biodistribution of RTI-55

The static biodistribution study was undertaken using a 25 gm, male CD-I mouse 

(Charles River, Wilmington, DE, USA). The mouse was anesthetized with an

intraperitoneal injection of 4% chloral hydrate. About 15 [iCi of 125I labeled RTI-55

(Dupont NEN, Inc., NEX 272) [1] in 50pl phosphate buffered saline was injected into the

tail vein of the mouse. Studies were conducted using the detector system operated in 

singles mode with the low resolution (therefore higher sensitivity) lead collimator. This 

configuration was chosen to obtain the maximum number of image counts for short 

intervals of time. First prone and then 90° side images were obtained of the mouse 30 

minutes after the injection of RTI-55. The prone image was obtained first with a total 

acquisition time of 40 minutes. The resulting image is shown in Figure 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. IMAGING RECEPTOR BINDING IN  THE MOUSE BRAIN 97

50
millimeters

gray scale (total counts)

Figure 4.1: Image of the biodistribution of about 15 (i.Ci of I25I labeled RTI-55 that had 
been injected into the tail vein of a 25 gm male CD-I mouse. Total acquisition time of the 
image was 40 minutes which was started 30 minutes after the injection .
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The gray scale for the RTI-55 image was compressed to highlight the 

biodistribution of the RTI-55. After the image was obtained, the detector was re-positioned 

90° to image from the side. The resulting image from the new direction is shown in Figure 

4.2.
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Figure 4.2: Side-view image o f the biodistribution of about 15 (iCi of I25I labeled RTI-55 
in the same mouse as shown in Figure 4.1. Total acquisition time of the image was 45 
minutes which was started 80 minutes after tail vein injection.

It is clear from Figure 4.1 that RTI-55 is distributed throughout the core body and 

head of the mouse within 30 minutes after injection. Figure 4.1 and 4.2 taken together also 

indicate that the I25I signal in the head is mainly associated with the brain. Following this 

study a second animal was used for a dynamic study of the time-dependent biodistribution 

of 125I RTI-55.
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4.2. Dynamic Dependence of the Biodistribution R T I-55

Mochizuki et al. [105] used a Nal crystal scintillator attached to a standard end- 

window photomultiplier tube. They limited the direction of gamma-ray detection by using 

a lead brick with a single 5.0 mm diameter collimating hole. They positioned the detector 

to touch the animal and directed it toward the left temporal region and the striatum of the 

brain. They used this configuration to study the effects of various “blocking” drugs on the 

rate of uptake of l25I-labeled RTI-55 in the brain. They reported that RTI-55 uptake was 

blocked by two drugs, paroxetine and l-[2-bis(4-fluorophenyl)methoxy]ethyl]-4-[3- 

phenylpropyl]piperazine dihydrochloride (GBR 12909). Their complete study involved 20 

mice which included 8  control animals. They observed that a combination of paroxetine 

and GBR 12909 was the most effective blocker of I25I-labeled RTI-55 uptake in the region 

of the brain seen by the detector[105].

In the study reported here obtained with the William and Mary I25I imaging system,

a 27.5 gm male CD-I mouse was anesthetized as previously described and about 15 fiCi of

1ZSI labeled RTI-55 was injected via a tail vein. The mouse was imaged with the low 

resolution high sensitivity detector configuration described earlier for a total 180 minutes 

with dynamic images generated at 11 minute intervals. Figure 4.3 shows the total 

accumulated distribution after 180 minutes of the 125I along side a photograph of the CD-I 

mouse.
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Figure 4.3: Image of the accumulated biodistribution of RTI-55 after 180 minutes
following the injection of about 15 (iCi of I25I-labeIed RTI-55 into the tail vein of a male 
CD-I mouse. A photograph of the mouse taken during the experiment is also provided for 
comparison.

A series of images acquired every 11 minutes with image overlaps of 1 minute is 

presented in Figure 4.4. The time indicated at the bottom of each image is the elapsed time 

following the injection of I25I-labeled RTI-55.
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Figure 4.4: A series of images of the distribution of RTI-55 in a mouse acquired for 11 
minutes in which each image overlaps in time the previous one by 1 minute. In all of these 
images the head is at the top. The time provided at the bottom of each image indicates the 
time span since the injection time that the image was accumulated.
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Figure 4.4 continued.
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Figure 4.4 continued.
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Taken together these images qualitatively demonstrate the rapid uptake of RTI-55 

into the head region. Three regions of interest were chosen for further analysis and the 

total counts in the areas were tabulated and normalized to the uptake at 60 minutes post 

injection and then plotted. The areas selected were two adjacent regions in the head and 

one in the liver as illustrated in Figure 4.5.

" I 'T T 'f 'J  

1 I I f l
0  5 0  1 0 0  1 5 0  2 0 0

T otal C o u n ts

Figure 4.5: Two images of the same data of the distribution of RTI in the CD-I mouse. 
The boxes in the right image indicate three regions of interest (ROI-1, ROI-2 and ROI-3) 
used to tabulate the accumulation rate.

The regions of interest (ROI-1, ROI-2) in the head are located in two adjacent areas 

in the mid line beginning just behind the level of the eyes and extending toward the tail to 

the region of the cerebellum. The third region (ROI-3) of interest includes a portion of the 

liver. All three regions individually represent an area of 5 mm x 5 mm (25 pixels). A 

series of plots were generated showing the rate of uptake for each of the three regions. All 

plots are normalized to the counts accumulated for the 11 minute interval occurring 60
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minutes after injection of the 125I-labeled RTI-55 which is the same normalization method 

used by Mochizuki et al.[105] in their report. A plot of the change in time of the total 

counts in the image with the counts in the region at the top of head is shown in Figure 4.6.
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Figure 4.6: Plot of the change over time of the total counts in the image plotted with the 
counts in the region of interest that is at the top on the head(ROI-l). Error bars are plus
and minus one sigma (a) determined by propagating the errors using Poisson statistics (cr
= number of counts) [99].

A similar plot was made using the lower head region as the region of interest 

relative to the change in total counts. This is as shown in Figure 4.7.
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Figure 4.7: Plot of the change over time of the total counts in the image plotted with the 
counts in the region of interest in the lower part of the head. Error bars were determined in 
the same manner as in the previous plot.

The pattern of radioactive accumulation in the two regions of the head shows a 

distinct step pattern wherein there is an increased rate of accumilation of counts in the head 

in the period of approximately 50 to 100 minutes. This results in a greater accumulation of 

signal in the head after 100 minutes compared with the distribution in the whole body. A 

third plot showing the time-dependent accumulation in the liver region is shown in Figure 

4.8. Here the step pattern seen in the head is not apparent and the rate of accumulation in
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the region of the liver does not appear to be significantly different compared with the total 

counts.
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Figure 4.8: Graph of the change over time of the total counts in the image plotted with the 
counts in the liver region. Error bars were determined in the same manner as in the 
previous plot.

Figure 4.9 is a graph of the data obtained for the lower head region compared with 

the plotted normalized data reported by Mochizuki et al. [105] for three mice. One can see 

that the results from the two studies are similar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. IMAGING RECEPTOR BINDING IN THE MOUSE BRAIN 109

1.6

1.4

co 1.2
z
3
o  1o
Q
LU
N  0.8
_j
<
CC 0.6
Oz

0.4

0.2

0
0 50  100 150 200

MINUTES

Figure 4.9: Graph of the change over time of the counts in lower head region from the 
present study plotted with the data reported by the Johns Hopkins University group (JHU) 
[105]. Error bars were determined in the same manner as in the previous plot.

Figure 4.10 is a plot of the data in all of the preceding graphs. This comparison 

indicates that there may be important differences in the rate of accumulation of RTI-55 

between the two head regions and the liver region compared with the total body.

LOWER HEAD REGION (ROI-2) 
JHU STUDY
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Figure 4.10: Graph of the change over time of the counts of the two head regions and the 
total image counts plotted with the data reported by the Johns Hopkins University group 
(JHU). Error bars were determined in the same manner as in the previous plot.

To control for the possibility of the continously changing availability of RTI-55 as it 

enters and leaves the field of view of the detector or is removed by metabolic processes 

(i.e. respiration) the data were also expressed as the ratio of ROI-1 and the total image 

counts then plotted as a function of time. This is show in Figure 4.11. The feature seen at 

about 1 0 0  minutes clearly needs further study but it is strongly suggestive of enhanced 

transport, possibly resulting from the expression and activation of transporters for RTI-55 

within the brain.
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Figure 4.11: Graph of the change over time of the counts in the top head region (ROI-1) 
divided by the total image counts. Error bars were determined in the same manner as in the 
previous plot.

4.3 Apparent Brain Accumilation of R T I-55

With the William and Mary detector it was possible to look at multiple regions of 

uptake and to observe the time course overall nature of the biodistribution. After 2 hours 

and 45 minutes post injection of RTI-55, the detector was re-positioned to obtain a side- 

view of the mouse. This image is shown in Figure 4.12 superimposed onto a photograph
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of the mouse. The lower image in Figure 4.12 is the accumilated data from the dynamic 

study and also is shown in Figure 4.4.

Figure 4.12: Images overlaid onto photographs of the experimental mouse. The side-view 
image was obtained beginning at 2 hours 45 minutes post injection o f the RTI-55 and the 
image data was collected for 25 minutes. The bottom image is the aggregated data from 
Figure 4.4 and was acquired over a period of 2 hours 40 minutes and started 5 minutes 
post injection.

These figures illustrate the extensive uptake of RTI-55 in the region of the brain. 

At the end of the study the mouse was sacrificed and the brain was serially cryosectioned,
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mounted on microslides, desiccated, and placed in contact with autoradiographic film. The 

autoradiographic analysis is currently in process and these results will be published as part 

of this study.

4.4 Discussion of RTI-55 Results

The William and Mary detector system clearly shows the dynamic nature of the 

uptake of I25I-Iabeled RTI-55 in the mouse brain. The results are in general agreement with 

those reported by others [105]. In the Johns Hopkins [105] study the researchers also 

measured the effect of RTI-55 binding when other compounds that bind to serotonin and 

dopamine receptors in mouse brain were also injected. The results obtained here with the 

William and Mary system but not possible with the Johns Hopkins system indicate that 

there may be important differences in the rate of RTI-55 accumulation in different regions 

of the head relative to the liver and the total body. The pattern seen in one brain region but 

less apparent in another could be more a statistical effect. However, there is the possibility 

that what is being imaged is a differential ligand saturation phenomena or varing amounts 

of transport availability. Results indicate the rate of accumulation in the region of the liver 

may not be different compared with the total counts suggesting the expected brain specific 

effect of RTI-55. A simultaneous comparative study of several regions of the mouse brain 

and body will be conducted using a variety of agents known to block RTI-55 transporters 

and receptors. These studies should contribute significantly to the literature on 

pharmacokinetics of these compounds.
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Chapter 5

Discussion and Future Directions

5.1 Molecular Biology Assays

The CsI(Na) array based position sensitive photomultiplier tube imaging detector 

system provided high resolution planar images of the biodistribution of 12:T in living small 

animals. We intend to pursue three directions in the future: 125I-labeIed ligand studies in 

mice, 125I-labeled anti-sense RNA research, and incorporation of tomographic capabilities 

to the existingdetector system.

The system is optimized to allow investigation of both the relative distribution of 

I25I-labeled ligands as well as the change in the distribution over considerable time 

durations. This detector configuration is also capable of imaging I25I-labeled antisense 

RNA probes hybridized to unique mRNA that is specific to the expression of particular 

genes. Hence, the detector system makes it entirely feasible to dynamically image actual 

gene expression within a discrete region of a small animal subject.

RNA molecules are readily broken down in vivo by natural enzymes within the 

cells. It is therefore necessary to determine how to develop ways to modify RNA 

molecules designed to act as antisense probes in order to facilitate their retention in living 

organism. Agrawal et al.[109] have reported progress in this regard using RNA molecules 

they refer to as mixed backbone oligonucleotides. These modified molecules have 

phosphorothioate segments at the 3' and 5' ends and a modified oligodeoxynucleotide or 

oligoribonucleotide segment located in the central portion of the molecule. Work is now in

114
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progress using PET techniques to image very short-lived isotopes used to label RNA. 

However, such an approach requires research facilities to have their own isotope producing 

facilities which severely constrains such research to very few centers with accelerator 

facilities. The ability to image I25I-labeIed ligands, including stabilized antisense RNA 

probes as they are developed, extends to a far greater number of investigators the ability to 

conduct dynamic in vivo gene expression research.

We are currently investigating the optimal parameters for brain imaging of I25I- 

labeled RTI-55 in order to make our technology available for pharmacodynamic studies of 

this cocaine analog. In addition to optimizing close administration protocols for RTI-55 we 

are also exploring the use of other l25I-labeled ligands to investigate this sort of receptor 

binding interaction. We are planning tests to develop protocols for delivering I25I-labeIed 

oligodeoxynucleotides past the blood brain barrier in an attempt to image gene expression 

in the brains of live mice using antisense RNA techniques. We will investigate the use of 

125I labeled antisense RNA probes to attempt in vivo gene expression imaging of genes 

whose expression patterns are well known in the mouse. Once this is mastered, attempts to 

image gene expression in the brain will be attempted, first with tail vein injections and then 

with injections into the cerebral fluid (intracerebroventricularly) of the mouse brain.

We are also making design improvements in the detector system with the addition 

of an automated rotating gantry, improved sensitivity collimators, and additional imaging 

and coincident detectors Presently, a gantry is being tested which allows the manual 

placement of the detector system at any angle surrounding the mouse under study (Figure 

5.1).
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Figure 5.1: A schematic of the gantry to be used to obtain SPECT images

Figure 5.2 is a photograph of the detectors attached to the gantry which will be 

fitted with a rotation motor. When this computer controlled gantry is complete it will be 

possible to develop and test tomography reconstruction software based on SPECT and 

optimized for 125I imaging in small animals.
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Figure 5.2: A photograph of the detectors mounted in the gantry to be used to obtain 
SPECT images.

A major drawback of the high resolution copper collimator developed for this 

detector system is its reduced sensitivity. A high resolution collimator constructed from 

laminates of etched tungsten will improve the sensitivity of the present detector system. 

Because of the higher absorption coefficient of tungsten compared to copper (at 35 keV; 

292.5 cm'1 versus 63.4 cm'1 respectively) thinner walled openings can be constructed in the 

collimator which would result in a 25% improvement in the sensitivity for I25I.

The addition of more imaging detectors will permit the simultaneous acquisition of 

images from multiple directions which would allow the generation of SPECT 

reconstruction images in a reasonably short amount of time. Finally, with more coincident
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detector surface area surrounding the subject, the efficiency of the coincidence mode of 

operation will be greatly improved.

5.2 Conclusion

This study successfully applied a position sensitive photomultiplier tube with a 

CsI(Na) array made from 1 mm x 1 mm size elements and a custom built high resolution 

collimator constructed from copper-beryllium to image the biodistribution of l25I labeled 

probes in live small animal subjects. This detector system is now installed on a rotating 

gantry and is in use for ongoing animal studies in a biological laboratory. This is the first 

detector system for in vivo small animal imaging of 1251 that utilizes a 125 mm diameter 

position sensitive photomultiplier tube coupled to a scintillating crystal array composed of 1 

mm x 1 mm size pixel elements and able to achieve less than 2  mm spatial resolution 

FWHM. Researchers at the University of Virginia [110], Johns Hopkins University 

[111], and Weizmann Institute [112] have requested access to the technology developed in 

this project for various in vivo molecular imaging applications at their institutions.
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Appendix A.

Molecular Biology Background
The goal of the project described in this thesis is to provide an imaging tool for live 

small animal research that uses molecules such as peptides and oligonucleotides which can 

be easily obtained or labeled with I25I. The purpose of this appendix is to provide 

background material regarding molecular biology techniques that are relevant to the detector 

system described in this dissertation. More complete treatments of much of the molecular 

biology theory and techniques contained in this appendix can be found in the books by 

Watson et al. [113] and Lewin [114] from which much of this appendix was drawn.

A.l Molecular Biology Theory: The “Central Dogma”

The “Central Dogma” describes the basic tenet of gene expression which is that 

genetic information contained in the double stranded DNA molecules in the chromosomes 

of cells is transcribed into another type of nucleic acid called ribonucleic acid (RNA). The 

genes of an organism contain the information necessary for the reproduction of the 

organism and for the development, growth and maintenance of all the cells that make up the 

organism.

119
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A.1.1 DNA

The instructions necessary for directing the cell to construct particular proteins are 

contained in deoxyribonucleic acid (DNA), which is a long double helix formed from two 

anti-parallel polymers. The molecule is made of three parts: a five carbon deoxyribose 

sugar (a ribose sugar with a hydrogen atom missing from its 2 ' carbon of its five carbon 

ring), a phosphate group (PO4 ) and one of four organic nitrogen containing bases: adenine 

(A), thymine (T), guanine (G) and cytosine (C) that are the base units which compose 

DNA sequences. The two ends of a single strand DNA molecule are characterized by 

referring to the end which is adjacent to the 5' carbon of the five-carbon sugar ring versus 

the opposite end 3’ carbon. Along the DNA coding strand three contiguous nucleic acid 

bases (codons) code for an amino acid. A given amino acid can be specified by one to six 

different codons. A double stranded DNA molecule (the double helix) is made by the 

binding of adenines to thymines and cytosines to guanines.

A .1.2 RNA

DNA is transcribed into mRNA which are single strand molecular polymers. RNA 

(ribonucleic acid) is similar to DNA except that the nucleic acid uracil (U) replaces the 

thymine (T) which is found in DNA. RNA is a nucleic acid made of three parts: a five 

carbon sugar, a phosphate group (PO4 ) and an organic nitrogen containing base. The 

enzyme, RNA polymerase, transcribes the DNA sequence by synthesizing an RNA 

template based on the DNA coding strand. This is illustrated in Figure A.I.
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Figure A .l: The process of transcription from DNA to mRNA by the enzyme RNA 
polymerase.

RNA is found in three forms in a cell: ribosomal RNA, transfer RNA (tRNA) and 

messenger RNA (mRNA). Messenger RNA is translated into a protein by a biochemical 

process carried out by ribosomes. Ribosomes are large RNA complexes which “read” the 

sequence of bases in the mRNA, three bases at a time. This three base “word" is called a 

codon. The gene’s protein information contained in the sequence of codons in the mRNA 

is translated into a protein using transfer RNA (tRNA) as the molecular vehicle to 

concatenate the appropriate amino acids coded by a codon being read from the mRNA by 

the ribosome. This is shown in Figure A.2. The spent tRNA later gets “re-charged” with 

its particular amino acid. The mechanisms regulating gene expression are the focus of 

many on going molecular biology research endeavors.
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Figure A.2. Translation of mRNA into a polypeptide chain by ribosomes.

A .1.3 Protein Formation

The information contained in the base sequences of a mRNA molecule is translated 

into a protein by linking together various combinations of twenty possible amino acids. 

This process is different between prokaryotic cells (bacterial cells) and eukaryotic cells 

(animal cells). In eukaryotic cells the transcription of the gene from DNA to a pre-mRNA 

occurs in the nucleus of the cell. The pre-mRNA undergoes modification such that non

coding regions (introns) are removed, leaving only coding regions (exons) that are then 

spliced together to form a mature mRNA transcript. At the boundaries between introns and 

exons in pre-mRNA are specific base sequences which are recognized as splice points for 

specific enzymes in the nucleus called endonucleases. This mRNA molecule is transported 

out of the nucleus through a transmembrane port. Once in the cytoplasm, the mRNA is 

then translated into a chained sequence of amino acids that, when completed, is the 

resultant protein molecule. These proteins have myriad biochemical and structural roles 

including, for example, serving as enzymes, ligands, or transmembrane receptors. See 

Figure A.3 for a diagram summarizing the steps outlined above.
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Figure A.3: The sequence of transcription from DNA to mRNA then to a polypeptide chain 
(protein) via translation for eukaryotic cells.

A major class of proteins known as enzymes act as biological catalysts and are used 

within the cell to facilitate specific chemical reactions that are needed by the cell. Another 

type of protein is called a receptor. Receptor molecules are proteins that function as 

molecular information transducers positioned within the cell plasma membranes or interior. 

Transmembrane proteins have a portion lying within the cytoplasm, with one portion 

protruding outside the cell in a manner that permits signaling ligand molecules outside the
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cell to bind to it. A whole sequence of biological actions called a “signaling cascade” can 

result from a specific molecule (the ligand) binding to an appropriate receptor.

A .1.4 Post Translational M odification

After a protein is assembled by ribosome through linking together combinations of 

twenty possible amino acids various post translational modification of one or more of the 

original amino acids can occur. These modifications change the properties of certain amino 

acids in the protein which can affect the protein’s function. Some common modifications 

consist of the addition of small molecular groups to a specific amino acid already part of the 

protein.

Phosphorylation is one such modification process in which a phosphate group is 

added to the hydroxyl group of one of the amino acids (i.e. serine). The phosphate group 

which has a net negative charge, changes the electrostatic properties of the protein after the 

addition. Other possible post-translational modifications are acetylation and methylation. 

Modifications that involve the covalent addition or removal of groups to and from proteins 

require specific enzymes. For instance, kinases are enzymes that covalently add groups to 

the amino acids tyrosine, serine and threonine, while phosphatases remove them. Protein 

kinases play an important role in post translational modification of different proteins that 

participate in various intercellular and intracellular signaling (i.e. receptors). Proteins can 

also be modified such that a carbohydrate side-chain is added to an amino acid forming a 

glycoprotein.
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A.2 Molecular Biology Techniques

Following are descriptions of available molecular biology techniques with relevance 

to in vivo animal studies. One of the basic investigative goals of molecular biology 

research is the understanding of the roles individual genes have in the all stages of life of an 

organism. To achieve this goal, researchers need to identify and isolate individual genes of 

interest and to study the role their products have on other biological systems in that 

organism. Of great interest are the chemical signaling roles of various molecules called 

ligands which will bind to specific cell membrane bound protein molecules called receptors 

which can generate a cascade of biochemical reactions. Methods to detect specific 

sequences of genes and to detect the presence of specific proteins have been developed and 

provide an essential tool for molecular biology research.

A.2.1 Making a Recombinant Molecule

The discovery of various special enzymes called restriction enzymes that cut DNA 

molecules at sites of specific sequence of bases make it possible to recombine, and 

therefore study and analyze genes. This technology referred to as recombinant DNA makes 

it possible to modify existing genes in a live organism thus making it possible to determine 

function.

A .2.1.1 Restriction Enzymes and Ligases

Restriction enzymes cleave lengths of DNA molecules at locations of a specific 

sequence of bases on the molecule known as restriction sites. For instance the restriction 

enzyme Eco RI will only cut at the sequence of bases GAATTC, see Figure A.4.
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Figure A.4: Restriction site in a DNA molecule for the restriction enzyme Eco RI.

Over 150 restriction enzymes that cut specific sequences of DNA have been isolated 

from several hundred strains of bacteria. Restriction enzymes are named after the bacteria 

from which they were isolated (for instance Escherichia coli for Eco RI). By using 

different restriction enzymes it is possible to fragment isolated DNA chains and separate the 

fragments through a technique termed agarose gel electrophoresis. Electrophoresis 

separates by size a collection of DNA fragments (DNA has a net negative charge) by 

moving DNA fragments which have denatured (split into two single strands) through the 

matrix of an agarose gel by using an applied electric field. The larger fragments will move 

slower, hence translating a shorter distance than the smaller fragments.

Other enzymes called DNA ligases are used to ligate or combine DNA chains 

together. Thus it is possible to isolate a gene of interest by having knowledge of its 

sequence and by choosing various restriction enzymes to extract it from a long DNA 

molecule. With restriction enzymes and DNA ligases it is possible to insert and recombine 

a fragment of DNA into a specific location in a host DNA molecule.

A .2 .1.2 Vectors

Specially designed molecules that are used to insert genes into a host organism are 

called vectors. Vectors are often used to transfer the foreign gene into a bacteria cell which 

then replicates thus making several hundred to several thousand copies of the gene of 

interest. This is done to generate a sufficient number of copies to facilitate analysis.
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Bacterial plasmids and bacteriophages (viruses that multiply in bacteria) are two possible 

vectors.

Bacterial plasmids are small, self replicating, circular pieces of extrachromosomal 

DNA that are used by bacteria to carry antibiotic-resistance genes. Bacteriophages, also 

called phages, are bacterial viruses that undergo rapid replication inside host bacteria. 

Specifically modified plasmids and phages are commercially available, allowing researchers 

to insert genes of interest by using various restriction enzymes to cut open the plasmid or 

phage DNA to allow insertion of the desired sequence. A typical plasmid vector carries an 

antibiotic-resistance gene that can be used to screen for bacteria that only have the plasmid 

the researcher has introduced (transfected) into a sample of bacteria. In addition, the

plasmid has a restriction-site within the lacZ’ gene. LacZ’ encodes the (3-galactosidase

protein which catalyzes a blue color reaction in contact with a compound called X-gal. The 

compound X-gal is added to the nutrient medium (agar) used in culture plates used to grow 

the transfected bacteria containing the plasmid. This determines if the foreign gene insert is

present. If the foreign gene was inserted into the plasmid, then the (3-galactosidase gene is

interrupted and not expressed and only the foreign gene is expressed. Therefore, the 

bacteria do not turn blue.

The phage vector is a linear region of virus DNA that has restriction sites for the 

several restriction enzymes (i.e. Eco RI) . In this way the researcher can insert the gene of 

interest to make multiple copies by infecting a host bacteria that has been previously grown 

on an agar culture plate. Figure A.5 is an illustration of a plasmid and phage vector.
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Figure A.5: Example of two vectors. The plasmid vector illustrates how the gene lac Z’ 
was inserted into the plasmid along with a region (polylinker) containing many sites into 
which a foreign DNA sequence can be spliced. The phage vector illustrates a linear region 
of a virus genome that has a restriction site for the Eco RI restriction enzyme.

A.2.2 cDNA Libraries and Genomic Libraries

There are two strategies used to isolate or clone a gene to allow it to be studied. 

The first uses the polymerase chain reaction (PCR) screening technique to amplify, isolate, 

and clone genes of interest from a small amount of the target organism’s DNA. In PCR, 

one uses short flanking DNA sequences known as primers that are similar to or related to
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the DNA sequence of the gene being sought. For instance, a researcher could choose to 

use specific primer sequences to isolate sequences of endogenous retroviruses.

The second method is library screening. There are two types of libraries that can be 

screened: genomic libraries and complementary DNA (cDNA) libraries. A genomic library 

theoretically contains all the genes in the DNA in the chromosomes (the genome) of an 

organism. It is therefore possible for genomic libraries to contain all of the DNA sequences 

that make up the genome of the organism. Complementary DNA is a DNA copy of an 

mRNA molecule. A cDNA library is obtained by using an enzyme called reverse 

transcriptase to reverse transcribe all mRNA extracted from a given tissue. The library will 

contain only expressed genes.

There are two ways to screen libraries. The first is referred to as homology 

screening which uses a probe with complementary sequences (homologous) to a gene 

being sought. The second method, called selected or dissected screening is used if the 

researcher is searching for the expression of genes similar to a known gene but at selected 

particular times of an embryo’s development or in specific dissected tissue samples. In this 

case, libraries constructed from a selected stage of development or from a specific dissected 

tissue of the organism is obtained and screening with a probe made of fragments of 

sequences of a known gene.

A.2.3 Analyzing Transcription

There are several techniques available for analyzing and visualizing a specific 

transcribed RNA fragment out of many contaminating molecules in order to study the 

manner of transcription of a gene. These techniques are used to determine how a particular 

gene is being transcribed under various circumstances. For instance, various techniques 

are available if one is trying to determine at what stage of embryonic development a 

particular gene of interest is being expressed or how certain molecules known as
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transcription factors are involved in the regulation of transcription of a particular gene. 

Such methods as Northern blotting, Rnase Protection Assays (IIPA), in situ hybridization, 

and promoter activity studies are used to analyze gene transcription.

A.2.3.1 Northern Blotting

The Northern blotting technique is used to analyze a sample of mRNA that has been 

extracted from a cell line or tissue. First, mRNA is isolated from the cells through 

extraction methods and are loaded into narrow slots (-0.5 cm) which define lanes for 

mRNA on an agarose gel to be separated by size using electrophoresis resulting in lanes 

0.5 cm wide and possibly extending the length of the gel which are smears of mRNA. An 

additional lane size markers can also be loaded on the electrophoresis gel to provide an 

indication of the size of the mRNA molecules. After electrophoresis separates the mRNA 

by size a replica of the pattern is made by placing nylon filter paper on the gel and using 

paper towels to wick a buffer solution through the gel which acts to transfer the mRNA 

fragments from the gel to the overlaying filter paper. These mRNA fragments then bind to 

the filter paper. In this way the mRNA fragments are transferred to the filter paper. The 

filter paper is then allowed to hybridize with a radioactively labeled probe (usually 32P) that 

is complementary to the mRNA under study. The filter paper is then washed with a buffer 

to remove unbound probe.

Autoradiographic film is then placed on the filter paper for a period of time (hours 

to weeks) and after developing the film, the presence and size of the desired RNA is found, 

if it exists at ail. The relative density of the image of the hybridized probe also gives an 

estimate of the amount of that RNA fragment that was present. This technique could be 

used on samples of RNA extracts from cells of a embryo at three different stages of 

development to test for the transcription of a particular gene of interest.
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A.2.3.2 RNase Protection Assays

In the situation where a more accurate determination of the amount of a particular 

sequence of mRNA present in a sample of extracted mRNA is desired the RNase protection 

assay (RPA) technique is used. With this technique a chemical synthesis method is used to 

generate a sequence of antisense RNA that is complementary to a fragment of the target 

mRNA. During the chemical synthesis of the antisense sequence a radioactive label is 

incorporated into the probe. The antisense RNA probe is combined with a sample of 

isolated mRNA and permitted enough time to hybridize to complement mRNA. Since the 

antisense RNA probe is a fragment the duplex formed by the mRNA-antisense RNA 

hybrid, there will be overhanging single stands of mRNA. At this point an enzyme is 

added (RNase) which digests any single RNA strands, and the mixture precipitated to 

remove any unhybridized RNA. The precipitate is loaded onto a electrophoresis gel which 

has a denaturing agent incorporated into it which separates the double strand duplexes into 

single strands to permit the electrophoresis to function properly so as to visualize the 

“protected” band. The gel is then exposed to autoradiographic film and the fragment 

mRNA will be seen if hybridization took place. Since the nonspecific probe is digested 

away a very accurate determination of the quantity of the RNA present is possible.

A.2.3.3 In Situ Hybridization

In situ hybridization assays also use labeled probes to determine the presence of a 

target mRNA indicating the transcription of a gene. With in situ hybridization the probe is 

allowed to hybridize to the target mRNA in the actual tissue sample or even whole 

organism (i.e. an embryo). For instance, a complete Xenopus embryo (a species of frog) 

is chemically treated to fix it, and prepare it for a mRNA probe. The embryo is treated and 

washed several times to remove all the protein matrix and other tissue to make it receptive 

to a mRNA probe. Typically a color marker is used such that when the probe hybridizes to
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its complement it turns blue thus staining the region of the embryo which is expressing the 

mRNA being studied. This technique is called whole mount in situ hybridization.

A similar technique called section-mount, in situ hybridization is used with larger 

subjects such as mice and rats in assays involving paper thin slices of tissue samples of the 

organism that has been sacrificed. The visualization of the binding of the probe is achieved 

either with visible staining for the case using visible dyes or with UV light for the case of 

the fluorescent dyes. For detection using autoradiographic film, probes are labeled with 

radioactive isotopes of phosphorus (32P), carbon ( I2C), sulfur (35S), hydrogen (3H), or 

iodine (l25I). With these techniques it is possible to visualize in the subject the locations of 

the expression of the gene of interest. The shortcoming with these techniques is that the 

subject needs to be sacrificed and long film exposure times are often required in order to 

detect a weak signal. The detector system described in this dissertation could conceivably 

make it possible to do in situ hybridization with a live animal in real-time.

A.2.3.3 Analysis o f Promoter Activity

There are specific sequence motifs upstream (in the 5’ direction) and downstream 

(in the 3’ direction) of the actual start site of transcription that are responsible for the 

regulation of gene expression. An important sequence of bases is termed the promoter 

which is a specific combination of bases that serve as sites where RNA polymerase binds 

in order to commence transcription. The promoter is a region in DNA that acts as a protein 

binding site which controls transcription of the gene to RNA by the enzyme RNA 

polymerase. If, because of mutation, the promoter is missing, this gene will not be 

expressed. Even minor mutations in the promoter can influence the expression of the gene.

In addition to the promoter, there are other sequences of bases which have been 

found to enhance the transcription of the gene into RNA; these sequence are termed
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enhancers which can also reside downstream. Figure A .6  is a diagram illustrating the basic 

structure of a eukaryotic protein gene.
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Figure A.6 : Basic structure of a eukaryotic gene which codes for a protein. The start of 
the transcription of the gene into pre-mRNA follows the promoter region. Further 
upstream and down stream of the gene are enhancer regions which also are involved in 
gene expression regulation

It is possible to induce small mutations in the series of sequence of DNA that are 

part of or near the promoter. This is done to determine which sequences are the ones 

necessary for promoter activity and thus leading to transcription of that gene. Once the 

promoter is well understood this same promoter can be used with a special gene called a 

reporter gene (discussed later) to study the function of a gene particularly in vivo.

A.2.4 Analyzing Proteins

Western blotting, immunocytochemistry, and ligand binding assays are three 

techniques that are used to analyze proteins. Western blotting is used to analyze proteins in 

vitro in a manner similar to Northern blotting analysis of mRNA. Immunocytochemistry 

and ligand binding refer to protein visualization techniques that can be used in vitro as well 

as in vivo.
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A.2.4.1 Western Blotting

Western blotting uses color labeled antibodies to visualize a target protein (antigen) 

within a collection of other extracted cellular proteins. The technique is similar to Northern 

blotting except that the proteins are loaded onto a different type of gel (SDS- 

polyacrylamide). This is a useful technique to check for the presence of proteins that are 

expressed by a gene that is being studied. Monoclonal antibodies are used to bind to one 

type of antigen while polyclonal antibodies will bind to a class of antigens.

A.2.4.2 Im m unocytochem istry

The immunocytochemistry technique uses color or radioactively labeled antibodies 

that are used to visualize a target protein (antigen) in vitro or in a live animal. A subject can 

be injected with the color labeled antibody and then sacrificed and section mounted in thin 

slices onto slides. For the cases where radioactive labels are used the slides are placed in 

contact with autoradiographic film. The film and slide are kept in contact for as short as a 

few hours but are often kept in contact for as long as several weeks. This technique has 

been using medical imaging devices for human and large animal studies. This technique 

will benefit from the detector system described in this dissertation since many commercially 

available antibodies are labeled with I25I.

A .2.4.3 Ligand Binding

Ligand binding assays use radioactively labeled ligands to bind to specific protein 

molecules termed receptors. Similar to immunocytochemistry, a subject is injected with the 

radioactively labeled ligand, sacrificed, and section mounted in thin slices onto slides and 

placed in contact with autoradiographic film. As mentioned earlier, receptor molecules 

function as information transducers positioned within the cell plasma membranes or 

interior. Cell surface proteins which will bind ligands are termed transmembrane proteins
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and, as mentioned before, have a portion lying within the cytoplasm and a portion outside 

the cell in a manner that allows the signaling ligand molecule outside the cell to bind to it. 

This visualization technique also has been using medical imaging devices for human and 

large animal studies and recently with small animals. This technique will also be advanced 

by the detector system described in this dissertation since many commercially available 

ligands are labeled with l25I.

A.2.5 Analyzing Gene Function

Once a particular gene is isolated through various methods, its various roles in an 

organism can be studied by introducing an altered version back into the organism and 

observing their action in vivo. Techniques have been developed that allow one to replace 

an endogenous gene with an altered version. Examples of these techniques are 

homologous recombination, transgenics and reporter genes.

A .2 .5 .1 Homologous R ecom bina tion

Gene targeting can be achieved by using a vector that has sequences that are nearly 

the same or homologous to the target sequence. Integration into the actual gene is targeted 

by cutting the circular plasmid to make it a linear molecule. The two ends will integrate 

preferentially (recombine) into the chromosomal sequence of the host which is homologous 

to the free ends of the linearized plasmid. In this way the researcher is actually able to 

insert a sequence into the DNA of a host cell.

To completely replace or knock out the target gene or its promoter with the 

sequence contained in the plasmid, a plasmid is made with two free ends that are 

homologous to sequences flanking the gene to be knocked out. In addition, several copies 

of a gene with the appropriate enhancer-promoter sequences can be integrated to result in an 

over expression of the gene of interest, thus multiplying its effect in an organism.
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A .2.5.2 Transgenics

Transgenics is the technique used to alter genes of a developing embryo and to 

introduce foreign genes (transgenes) into embryos of a host organism. It is possible to 

transform foreign genes in mice by injecting the gene of interest into a pronucleus of a 

recently fertilized egg. A newly fertilized egg has two pronuclei, one from the ovum and 

one from the sperm. The injected eggs are transferred to a foster mother and the presence 

of the transgene can be detected using various methods on DNA extracted from the 

offspring. If one wants to have the foreign gene inserted into a specific place in the 

genome then homologous sequences of the locus of interest are made to flank the foreign 

gene to be inserted using the homologous recombination technique. The function of this 

gene can be studied as the mouse develops. It is even possible to integrate foreign DNA 

into germ line cells of a mouse thus passing the gene onto the offspring of the host mouse.

A.2.5.3 Reporter Genes

With homologous recombination methods one can introduce a reporter gene into an 

organism to indicate the expression of the gene being studied. In this case a gene construct 

is engineered as in the transgene method. A reporter gene carrying the promoter sequence 

of the gene of interest is carried in a vector with the exact sequences to a region of the 

genome into which the reporter gene is to be introduced. The desired result is that the 

reporter gene will be expressed whenever the promoter of the gene of interest is activated. 

It is possible to develop a transgenic cell line and even whole organisms which will have 

the reporter gene passed onto its offspring. To detect the expression of the reporter gene, 

one then designs a gene probe to either bind (hybridize) to the reporter gene's mRNA or to 

its protein product by way of a labeled antibody probe. A schematic diagram to illustrate 

this concept of the reporter gene technique is shown in Figure A.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. MOLECULAR BIOLOGY BACKGROUND 137

Cell N ucleus
reporte
gene^DNA

Cytoplasm reporter gene 
mRNA

probe binds to 
target mRNA reporter protein 

COOH
antibody binds to 
target protein

NH;

anti-sense RNA 
probe labelled with 
125|

antibody probe 
labelled with 
125 i

Figure A.7: Schematic of reporter gene technique. A reporter gene with the promoter of 
the gene of interest has been made part of the genome of the organism. When the gene of 
interest is expressed so is the reporter gene. The figure illustrates two ways to detect the 
expression of the reporter gene. One method uses a probe for the mRNA of the report gene 
the other use immunoassays that use a labeled antibody to the protein coded for by the 
reporter gene.

In the figure, 125I is the radioactive probe that labels the antibody probe. It is also 

possible to use an RNA antisense probe labeled with a radioactive isotope to bind to the 

mRNA of the reporter gene.
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A.2.5.4 In Vivo Gene Imaging

There are three direct means of imaging gene expression and regulation in vivo. 

Two methods reviewed by Taubes [115] and Gura [116] make use of visible light. The 

first method uses a reporter gene which codes a protein first isolated from a jellyfish called 

a green fluorescent protein (GFP). The detection of the expression of this gene is 

confirmed by viewing the specimen when it is illuminate with UV light. The second 

method incorporates a reporter gene which codes for luciferase, which is the compound 

that allows fireflies to glow. When the reporter gene is expressed, light is emitted without 

the need of a UV light source to cause fluorescence. Both of these methods require that the 

gene that is being expressed exist near the surface of the animal or is used in transparent 

animals. Moreover, both of these methods require a large investment in time and 

experience in breeding a transgenic animal which has the reporter gene and only one gene 

per transgenic is possible

The third method is the “antisense” technique. This method uses a probe which 

uses a chain of nucleotides that is the match to a sought-after mRNA molecule transcribed 

when the gene of interest is being expressed. An antisense molecule to the target RNA 

molecule is labeled with a gamma-ray or x-ray emitting radioactive isotope. When a 

detectable amount of labeled antisense RNA molecule binds to enough target RNA the 

biodistribution of that gene expression can be determined by using a medical type gamma 

camera.

A.3 Molecular Biology Conclusion

Various molecular biology research techniques have been discussed. The detector 

system described in body of this dissertation provides a tool which will allow researchers 

to explore the possibility of imaging gene expression in mice in vivo. It is possible to 

obtain from a commercial source l25I labeled antibodies, ligands, and antisense probes.
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The detector system developed here fills the need for a high resolution radiation imaging 

detector that is optimized for I25I detection and mouse imaging.
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Appendix B

Radiation Detector Principles
The goal of this thesis was to develop a detector technology which could generate 

images of the distribution of a radioactive substance in a live animal. To aid biological 

research involving mice, the detector imaging technology needs to possess a spatial 

resolution able to resolve structures on the order of two millimeters. To accomplish this 

goal, radiation detector principles commonly used in particle physics detection were 

employed. In this appendix, detector physics principles that are pertinent to this project 

will be described. An excellent text which deals extensively with detector physics is 

Knoll’s Radiation Detection and Measurement [17]. For a thorough treatment of 

radioactive decay, radiochemistry and applications the text Radiochemistry and Nuclear 

Methods o f Analysis by Ehman and Vance [117] is an excellent source.

The substances to be detected and imaged are radioactive. The nature of radioactive 

decay will now be described and the various ways of measuring and describing 

radioactivity will be discussed. The nature of high energy particle detection by materials 

called scintillators coupled with very sensitive light detectors will be explained.

B.l Radioactive Decay

Atomic and nuclear processes resulting from radioactive decay give rise to the 

emission of charged or uncharged particulate radiation. Radioactivity, discovered by the

140
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French scientist Antoine Henri Becquerel in 1896, is a physical process in which the 

isotope of an atom is unstable and over time undergoes nuclear rearrangements. These 

rearrangements result in new isotopes and the emission of charged and uncharged 

particulate radiation. The charged particulate radiation is either electrons or heavy charged 

particles. The uncharged radiation is composed of photons (x-rays and gamma-rays) or 

neutrons. Three properties of radioactive isotopes: activity, type of emitted particles, and 

the energy of the emissions distinguish radioactive isotopes from each other.

The activity (a) or strength of a radioactive isotope is defined as the rate of decay 

over time of the number of parent nuclide. The activity (a) of a source is dependent on the 

amount of radioactive material contained in the sample and can be characterized by the 

following mathematical relations :

activity is defined as: a = = AN

where N is the number of radioactive nuclei and A. is the decay constant.

The above integrates to:

N = N0e _A,t .
Since a = AN, it follows that:

a = a„e ^  (B.l)
where a<, = A.N0.

The activity (a) is often given the units of disintegrations per second (dps). The 

unit bequerel (Bq) is equal to I dps and the unit curie (Ci) is defined as 3.7 x 1010 dps 

therefore:

1 Bq = 2.703 x 10" 11 Ci.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. RADIATION DETECTOR PRINCIPLES 142

The time needed for half the starting number of atoms (or starting activity) to decay is 

referred to as the radioactive half-life (tI/2 ) which can be expressed in terms of the decay 

constant:

tI/2 = 0.693/A.. (B.2)

The measure of radioactivity per unit mass for a given pure radioactive source is 

referred to as specific activity and can be described by the following equation:

• r -specific activity = (B -3)
where:

M is the molecular weight of the sample, and

Ay is Avogadro’s number = 6 .2  x 10  23  atoms/mole.

The energy o f the emissions caused by radioactive decay is given in units of 

electron volt (eV). One electron volt is defined as the kinetic energy gained by an electron 

that is accelerated through a potential difference of 1 volt. The SI unit of energy is joule 

(J), hence one eV is equivalent to 1.60219 x 10"^  J. The energy of a gamma-ray and x- 

ray photon is directly proportional to the frequency of the radiation and is related by the 

following:

E = hv (B.4)
where:

h is Plank’s constant (6.626 x 10'34J secs or 4.135 x 10'l5eV secs), and 

v is the frequency of the radiation.

As the emitted particles resulting from the radioactive decay pass through matter, 

some (or all) of this energy is absorbed by the material. The density of the material and the
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type of particle are the main factors that determine the efficiency of the energy absorption. 

Concepts relating to characterizing the amount of ionizing energy absorbed by a biological 

system will now be discussed.

B.1.1 Radiation Dose and Exposure

Radiation dose and exposure are important concepts used in radiation detector 

physics to insure the safe use of radioactive isotopes. Health physics is the field of study 

interested in the understanding of the biological effects of ionizing radiation and the 

implementation of safe practices with its use. Various units and quantities have been 

devised in an attempt to provide consistent methods of characterizing the biological effects 

of various forms of ionizing radiation. The following is a description of the number of 

health physics concepts that are pertinent to this project.

For gamma-ray and x-ray exposure, the exposure value (X) is defined in terms of 

the following equation:

X  = dQ/dm. (B.5)

The charge, dQ, results from the ionization of air molecules by secondary electrons 

produced by the absorption of gamma-ray or x-ray photons in a volume of air with mass 

dm. The SI units for this definition of exposure is coulombs per kilogram (C/kg). 

Historically, this unit has be called the roentgen (R) and is defined as that amount of x-ray

and gamma-ray radiation, which in one cubic centimeter (cm3) of air at standard

temperature and pressure (STP), will produce one electrostatic unit (e.s.u) of charge. 

Therefore, one roentgen (R) is equal to 2.58 x 10*4 C/kg.

The exposure rate is a function of the activity (a) of a radioactive source and the

square of the distance (d) from the source:

exposure rate = Ta/d2. (B.6 )
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In the above equation T is the exposure rate constant and has the units of R-cm2/hr-mCi.

This unit tells nothing about the quantity of energy absorbed or the possible 

biological damage caused by the ionizing radiation. To better quantify the biological affect 

of a particular form of ionizing radiation (x-rays, gamma-rays, fast electrons etc.) one 

needs to quantify the absorbed dose. The absorbed dose is the energy absorbed by any 

type of radiation (charged or uncharged) per unit mass of the absorbing material. The 

amount of energy absorbed is dependent upon the elemental composition of the absorbing 

material, and on the energy and type of radiation. The rad is the unit historically used for 

absorbed dose and is defined as 1 0 0  ergs of energy absorbed per gram of material.

One roentgen (R) of gamma-rays delivers a dose in soft tissue of approximately 93 

erg/g. The SI equivalent unit for rad is the gray (Gy) and is defined as 1 joule/kilogram, 

therefore:

1 Gy = 100 rad.

The absorbed dose in air corresponding to a gamma-ray exposure of 1 C/kg (or 

3.876 x 103 R) is 33.8 joules/kilogram (33.8 Gy).

To evaluate the biological impact of ionizing radiation the concept of dose 

equivalence (rem) has been introduced. The amount of biological damage by a particular 

form of ionizing radiation is directly proportional to the amount of energy deposition on the 

track formed by the passage of the radiation through a biological system. This local 

amount of deposited energy is defined as the linear energy transfer (ETL). A larger level of 

biological damage results from ionizing radiation with a large LET such is the case with a 

heavy ion. Electrons have a lower LET value so less damage can result from the electron 

even though the total energy per unit mass deposited may be equivalent to that of the heavy 

ion. A unit of dose equivalent is defined as that amount of any type of radiation that, when
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absorbed in a living organism, results in the same biological effect as one unit of absorbed 

dose obtained in the form of radiation with a low LET value.

The dose equivalent (H) is defined by the following:

H = DQ (B.7)
where:

D is the absorbed dose in rads, and 

Q is the quality factor.

The quality factor Q increases with linear energy transfer (L). The Q value is ~ 1 for 

electrons, gamma-rays, and x-rays but is -20 for alpha particles. If D is expressed in unit 

of rads, then H is defined in the units of rem. The latest SI convention expresses D in units 

of Grays and the unit of dose equivalent is referred to as a Sievert (Sv) where one Sievert is 

equal to 100 rem. The following is an example of how one might use the above concepts 

to describe in general terms the dose received to a person who is working 1 meter from a

10 fiCi I25I point source:

An amount of 10 (iCi of I2SI could be the typical quantity handled for an animal

experiment in this project. The exposure rate from a 10 (iCi 125I is obtained from the 

following:

exposure rate = Ta/d2. (B .7)

The exposure rate constant (r) for I25I is 0.7 R-cm2/hr-mCi. Therefore, the

exposure rate is equal to 7 x 10‘8R/hr. To convert this to an absorbed dose rate, the energy 

per unit mass of tissue needs to be known for gamma-rays. For a 1R dose of gamma-ray 

radiation, soft tissue absorbs approximately 93 erg/g. Using this quantity, one obtains an 

energy deposition rate of 6.51 x 10-6 erg/g-hr. Since 1 erg/g is equivalent to 10”* Gy, the
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resulting absorbed dose rate expressed in SI units, is 6.51 x 10' 10 Gy/hr, or in the older unit 

of rad (1 rad = 10"2 Gy), the resulting dose rate is 6.51 x 10'8 rad/hr. To obtain the dose 

equivalent rate (H) one needs to know the form of the radiation. The Q value is one for 

gamma-rays and x-rays. Therefore, for 125I, Q is equal to 1, so for this case Gy/hr is 

equivalent to Sv/hr which leads to a dose equivalent rate of 6.5lxlO"10 Sv/hr. This can also 

be expressed in the older units of rems, since 1 Sv is equal to 100 rem, the dose equivalent 

rate is 6.51xl0'8 rem/hr.

The average dose per person for all possible sources (natural, environmental and 

medical) is about 3-4 mSv/yr. So one can see that for this project the exposure risk from a 

typical animal study is minimal.

B.2 Decay Processes

As mentioned, nuclear transitions associated with radioactivity result in a new 

isotope and the emission of charged and uncharged particulate radiation. A nuclide is 

characterized by the number of protons and neutrons in its nucleus. One quantity, the 

atomic mass number (A), is defined as the total number of protons in the atom’s nucleus. 

The other, atomic number (Z), is the sum of the number of protons plus the number of 

neutrons in the atom’s nucleus. The charged particles emitted are electrons (beta particles) 

and heavy charged ions, while the uncharged emitted radiation is either x-ray photons, 

gamma-ray photons or neutrons.

Charged ions result from unstable nuclei that either undergo alpha decay in which 

an alpha particle (a helium nucleus) is emitted or they undergo spontaneous nuclear fission, 

resulting in the expulsion of charged ions. Fission is a less common decay mode which 

results in the emission of charged ions and can also result in the emission of neutrons. The 

various forms of nuclear decay will now be discussed. Described will be three forms of
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nuclear decay which result in the emission of three classes of particles: alpha particles, 

electrons, and high energy photons.

B.2.1 Emission o f Alpha Particles

In alpha decay, the atomic nucleus emits a particle called an alpha particle which is 

composed of two protons and two neutrons. After alpha decay, the resulting daughter 

nuclide has a mass number (A) 4 less than the parent and an atomic number (Z) 2 less than 

the parent. Sometimes gamma rays are also emitted because of subsequent nuclear 

transitions by the decay of an unstable daughter nuclide. This type of decay can be written 

with the following equation:

Z X ~* Z T Y +  ^ He

Americium-241 which is a common calibration source for various radiation 

detectors decays via alpha decay to Neptunium-237 which itself is unstable and decays via

alpha decay. However ^ N p  has a half-life of 2.1 x 106 years compared to 432.7 days for 

241 Am. The isotope 241 Am emits alpha particles of energies 5.486 MeV (85% of the time) 

and 5.443 MeV (13%) and various other alpha particles. The decay of 241 Am is shown 

below.

241 237 4
Am —̂ "F 7

B.2.2 Ejection of Energetic Electrons

There are three sources of energetic electrons through radioactive decay: beta decay, 

internal conversion, and Auger electrons. The most common is beta decay.
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Beta Decay

Beta decay is the decay mode in which an electron, (a (3 particle) or a positron is

emitted. A positron is a beta particle with a positive charge. The positron (+(3) is also

referred to as the anti-particle to an electron. The energy of the emitted electrons resulting 

from beta decay is characterized by a continuous spectrum up to a maximum energy point 

called endpoint energy. This endpoint energy varies for different beta emitting isotopes,
32

the endpoint energy for phosphorus 32 ( P) is 0.248 keV and is 167 keV for sulfur 35 

(jSS). Shown below is the beta decay resulting in the emission of an electron, an anti

neutrino (v ) and possible gamma-rays :

244 Y + P- + v + (yrays)

The anti-neutrino is the anti-particle of a neutrino. The neutrino is a very light 

particle which interacts very weakly with matter, its mass has just recently been measured 

to be non-zero [118]. Beta radiation is emitted with a continuous energy distribution up to 

the maximum endpoint energy. Because of this, energy-mass conservation laws require 

that another particle participate in the decay having the role of carrying off the kinetic 

energy equal to the difference between the maximum endpoint energy and the energy of the 

emitted beta particle. This particle is a neutrino. In beta decay, it is actually a neutron that 

decays to a proton, an electron and a anti-neutrino, hence an increase in atomic number but 

the mass number stays the same. Another example of beta decay is shown below:

Y +(3+ + v  + (yrays)
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In this case a proton decays (Z-l) resulting in three particles: a neutron, a positron 

and a neutrino. Isotopes that decay via beta decay and emit only beta particles with no 

emission of gamma-rays from daughter products which might be left in an excited nuclear
32 35

state are know as “pure” beta emitters. In molecular biology, P and sulfur S are used in 

various assays to label molecules for detection with autoradiographic film. These isotopes 

decay via beta decay and are examples of “pure” beta decay; they decay directly from a 

nuclear excited state to the product ground state with the ejection of a fast electron. Other 

emitters may also emit gamma-rays because their nuclear transitions do not go directly to 

the ground state or their daughter products also emit gamma-rays.

When- a nucleus undergoes a beta-plus (P+) decay, a positron is emitted. The

positron interacts with a nearby electron and therefore annihilates. This annihilation results 

in the disappearance of the electron and positron with the formation of two gamma-ray 

photons. These two gamma-rays always travel in opposite directions in order to conserve 

momentum. The energy of these two opposite directed gamma-rays is 511 keV.

Conversion Electrons and Auger Electrons

In addition to beta decay, electrons will be emitted from isotopes that generate 

internal conversion electrons and from those that generate Auger electrons. Internal 

conversion is a nuclear process that starts with an excited nuclear state which de-excites 

without the emission of a gamma-ray. The released energy, instead of being carried off by 

an emitted gamma-ray, is transferred to an orbital electron, that is then ejected. The internal 

conversion electron has an energy equal to the energy of the nuclear excited state minus the 

electron binding energy. Thus, the energy spectrum would show distinct energy peaks 

depending upon which orbital electron underwent internal conversion. The energy of the 

conversion electrons can be in the keV to MeV range.
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If the atomic orbital shells, rather than the nucleus, is in an excited state, this state 

may also de-excite through the ejection of electrons, called Auger electrons. For example, 

this can occur when a normally-filled electron shell has become vacant because of an earlier 

event such as an electron capture. Electron capture is the term for the process in which a 

shell electron is captured by the atomic nucleus thus resulting in a shell vacancy. In 

electron capture, an inner-shell electron combines with a proton of the nucleus which then 

decays into a neutron and a neutrino. This shell vacancy is filled by the cascading down of 

outer shell electrons which then fill the vacancy. The excess energy of the filling electrons 

result in the emission of photons called characteristic x-rays. However, instead of emitting 

a characteristic x-ray, the atom can de-excite by ejecting an electron from the outer shell. 

These Auger electrons have lower energy than electrons from beta decay or internal 

conversion. The energy of these electrons is about a few keV.

B.2.3 Ejection of High Energy Photons

For the uncharged radiation, electromagnetic radiation is in the form of x-rays or 

gamma-rays. Both x-rays and gamma-rays are both high energy photons. The term x-ray 

is used to describe high energy photons originating from an electron shell transition and 

having energies from a few hundred eV to several hundred keV. Gamma-rays originate 

from nuclear transitions of an atom and can have energies as low as a few keV up to several 

MeV. Emission of characteristic x-rays, resulting from electron shell transitions in an 

atom, mentioned above, is an alternative process to Auger electrons. Characteristic x-rays 

can come about by the excitation of the atom through radioactive decays such as is the case 

for electron capture or it can come about because of excitation from external radiation such 

as electrons or x-rays which ionize the atoms.

X-rays can also be emitted when fast electrons interact with matter whereby part of 

their energy in converted into a form of electromagnetic radiation known as bremsstrahlung
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(braking) radiation. Bremsstrahlung radiation is the process through which x-rays are 

generated in x-ray tubes used for medical radiographs (also know as medical x-rays). In 

bremsstrahlung, a high speed charged particle, such as an electron, scatters in the Coulomb 

field of an atomic nuclei. As the particle decelerates some of its energy is released in a 

continuous fashion in the form of x-ray photons. The number of x-ray photons with

energies between hv and h(v + dv) produced by an electron with energy E scattering in the

Z 2
Coulomb field of a atomic nucleus with a charge Ze is proportional to —  . This is

v

expressed in mathematical form by the following:

N(v) dv z 2—  (B.8)
v

where v is the frequency of the x-ray photon.

Gamma-rays can result from beta decay and through the annihilation of the positron

with an electron as mentioned earlier. Gamma-rays can also come about through nuclear

reactions such as those used to produce neutrons for nuclear physics research. For

instance, the following nuclear reaction results in the product nucleus I2C left in an excited

state which then decays giving rise to a 4.44 MeV gamma-ray:

4  9 ^  12 _  1a  + Be —» C* + n
2 4 6 0

The radioisotope iodine-125 (I25I) is an example of a radioisotope which emits an x- 

ray, a gamma-ray and Auger electrons. 125I is commonly used in molecular biology and 

medical research and is readily available linked to nucleic acids and antibodies from 

companies providing probes for gene research. I25I has a half-life of 60.2 days and decays
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via electron capture with the emission of a 35 ke V gamma-ray with the prompt emission of 

several 27-32 keV K a and K(3 shell x-rays from the daughter product l25Te [119].

B.3 Radiation Detection

In biomedical research the predominant radiations used are electrons, x-rays, and 

gamma-rays. The detection of these particles is accomplished either with photographic 

emulsions, scintillators, or gaseous based detectors. These particles are detected when they 

give up a portion or all of their energy in the detector material. Next is a discussion of the 

manner in which electrons and high energy photons (x-rays and gamma-rays) interact with 

matter. Following that is a description regarding materials called scintillators that are used 

to detect high energy particles.

B.3.1 Beta Particles

Electrons (beta particles) lose energy in matter through Coulomb interactions and 

radiative processes. Electrons are elementary particles (they apparently cannot be 

subdivided) and along with protons and neutrons are the constituents of all matter.

Electrons carry a negative electric charge of -l.6026xl0~19 Coulomb, are responsible for 

atomic and molecular processes, and are involved in semiconductor and conductor 

processes. Coulomb interactions involve the fast electron (the beta particle) giving up some 

of its energy when it has its direction of travel changed by a collision with a shell electron. 

This collision causes the shell electron to be knocked out of the atom (ionization) or to be 

raised to a higher energy orbital (excitation). Ionization is more likely to occur for high 

beta particle energies (fast electrons) and excitation is more likely for lower energy beta 

particles.
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Radiative processes in which beta particles interact with matter can be detected in 

three cases: bremsstrahlung, Cerenkov radiation, and positron annihilation. In 

bremsstrahlung, x-ray photons are emitted in a continuous fashion as the beta particle has 

its direction of travel changed by passing near a shell electron or the nucleus of the atom. 

Cerenkov radiation, composed of optical photons (blue to UV) in a cone pattern, occurs 

when the speed of the electron in an optically transparent material, with an index of 

refraction greater than 1, is faster than the speed of light in that material. If the beta particle 

is a positron, it can be detected through the detection of the two annihilation 511 keV 

gamma rays that result from an electron-positron interaction.

B.3.2 Gamma-Rays and X-Rays

Gamma-rays and x-rays have a much higher matter penetrating capability than 

electrons. X-rays and gamma-rays, though uncharged, can cause the production of ion 

pairs (ionization) through secondary processes in which they interact with an atom, a shell

electron or an atomic nucleus. The term gamma-ray (y) will be used to include x-rays when

describing the interaction processes for both gamma-rays and x-rays.

The absorption of gamma-rays by matter is dependent on the atomic number (Z) 

and density of the material and the energy of the gamma-ray. This can be described by the 

following equation:

I = l0e-HPx (B.9)
where:

10 is the starting intensity of gamma-rays, 

p. is the mass absorption coefficient (cm2/g),

p is the density of the material (g/cm3), and
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x is the thickness (cm).

The interaction of gamma-rays with matter is described by three processes: 

photoelectric absorption, Compton scattering, and pair production. The mass absorption 

coefficient o f the above equation is made of three parts as described by the following:

JIpe + P c  + lipp (B. 10)

where:

Ppe is the photoelectric absorption coefficient,

PC is the Compton scattering absorption coefficient, and 

Ppp is the pair production absorption coefficient.

Photoelectric Absorption

For the case of photoelectric absorption a gamma-ray has all of its energy 

transferred to a shell electron which is then ejected thereby ionizing the atom. The gamma- 

ray, completely stopped by the matter, disappears, ejecting a shell electron whose kinetic 

energy is equal to the energy of the gamma-ray minus the electron binding energy (Eb). 

The atom rearranges its shell electrons often emitting x-rays. The photoelectric absorption 

coefficient of a material is proportional to the number of atoms in that material. Below is a 

diagram illustrating this type of interaction.
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hv
ejected
electron

incident
gamma-ray

Figure B .l Illustration of photoelectric absorption of an incident gamma-ray in a material 
in which a shell electron completely absorbs the gamma-ray energy.

Compton Scattering

In Compton scattering the gamma-ray transfers part of its energy to a weakly bound 

electron in the material. In effect, the gamma-ray bounces off an electron resulting in the 

gamma-ray and the recoil electron scattering in a different directions. After this interaction, 

the gamma-ray has less energy and the recoil electron carries off the energy lost by the 

gamma-ray. The recoil electron subsequently gives up its kinetic energy by interacting with 

other electrons eventually being captured by an atom. The Compton scattering coefficient 

of a material is proportional to the number of electrons in that material. The following is an

equation describing the energy of the scattered gamma-ray (hv’) in terms of the original 

energy (hv) and the scattering angle (0 ).

hvhV  = ---------------- -̂-------------------------- (B.l 1)
l + (h v /m oc ') ( l - c o s 0 )

where ir^c2 is the rest mass energy of the electron (511 keV).
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The kinetic energy of the recoil electron is give by:

E = hv -  hv1 = hv
e

(hv/m0c2)(l — C O S 0 )
(B.12)

1 (hv/m0c2)(l — cos0 )

Figure B.2 is a diagram of a Compton scattering interaction. In normal detector 

applications all scattering angles will occur such that a continuum of gamma-ray energies is 

transferred to the electrons resulting in a detected continuum energy spectrum.

hv hv’

^V V o c ®
before after

Figure B.2: Illustration of the Compton scattering interaction of a gamma-ray photon
scattering off of an electron.

For very small angles (0  = 0) hv’ is nearly equal to hv and the kinetic energy of the

recoil electron is near zero. For the case where 0  = 7t, the incident gamma-ray is

completely back-scattered and the recoil electron is scattered in the original direction of the 

incident gamma-ray. The energy of the scattered gamma-ray and recoil electron is given by 

the equations below.

hv
scattered gamma-ray:

recoil electron:

= l +  2 hv/ m0c2

E l  = hv
e le=!t

f  . ' 2 \2 hv/m 0c
1 + 2 hv/m 0c" j

(B.13)

(B.14)
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Pair production

Pair production occurs only if the gamma-ray has an energy greater than 1.022 

MeV and if it is near the nucleus of an atom. When these conditions are met, the energy of 

the gamma-ray is converted into the production of an electron-positron pair. If the gamma- 

ray had an energy very close to 1.022 MeV then the positron appears at the detector with 

more kinetic energy than the electron because it experiences a repulsive force from the 

nuclear charge of a nearby nucleus. At higher gamma-ray energies this difference in kinetic 

energy of motion between the electron and positron disappears. The positron quickly 

interacts with a nearby electron and the two annihilate resulting in the production of two 

511 keV gamma rays.

All three of these processes occur in gamma-ray detectors. For the project 

described in this thesis, the goal is the detection of the gamma-rays and x-rays from the 

decay of I2SI, in this case the photoelectric absorption and Compton scattering are all that 

occur since the maximum energy of the gamma-ray and x-ray photons encountered is 35 

keV. An idealized energy spectrum showing the combination of the Compton scattering 

and photoelectric absorption events by the detector material is illustrated in Figure B.3 

below.

0=7t
0 = 0

4e---------->

[EH hv

Compton
continuum

photo peak

E (energy)

Figure B.3: General shape of a spectrum illustrating of combined photoelectric absorption 
events and Compton scattering of incident gamma-rays in an absorbing medium.
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Medical imaging applications most often use materials known as scintillators. In 

this project, scintillators are used to detect and image the gamma-rays and x-rays emitted 

from l25I.

B.3.3 Scintillators

A scintillator is a transparent material that generates pulses of light (scintillates) by 

converting the energy lost by ionizing radiation. In the case of medical imaging 

applications the ionizing radiation is x-rays, gamma-rays, and beta particles. As a high 

energy particle passes through the scintillator crystal some or all of the energy of the 

particle is deposited in the crystal material because of photoelectric absorption or Compton 

scattering. This eventually results in ionization and excitation phenomena which in turn 

lead to the emission of photons through luminescence, phosphorescence and delayed 

fluorescence. Ideally the conversion of the incident radiation to prompt fluorescence 

should dominate and conversion via phosphorescence and delayed fluorescence should be a 

minimum. Scintillation photons have wavelengths from ultraviolet to visible. This pulse 

of scintillation photons is detected by light sensitive measuring detectors such as 

photomultiplier tubes or photodiodes.

The most often used scintillators are either organic liquids and plashes, or inorganic 

alkali halide crystals, such as CsI(Na). The prompt fluorescence of some scintillators 

decays in times of -0.5 nanoseconds to 5 nanoseconds. Inorganic scintillators may take as 

much as 5000 nanoseconds for light emissions to decay. The number of light photons 

emitted by a scintillator is often characterized as number of photons per MeV of absorbed 

energy. For a plastic scintillator the typical value is lxlO4 photons/MeV of absorbed 

energy. An inorganic scintillator such as CsI(Na) has a light yield of 3.4 x 104 

photons/MeV. There are other differences between organic and organic scintillators which 

will now be discussed.
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Organic Scintillators

Organic scintillators are usually liquids or plastics, and as mentioned have very 

short decay times (a few nanoseconds) for the scintillation pulse. Organic scintillators are 

most often used for the detection of beta particles and neutrons. Fluorescence in organic 

scintillators occurs from transitions in the energy level structure of a single molecule and 

therefore occurs whether it is a solid, liquid or gas. The molecules that make up an organic

scintillator have special energy level structures which are called 7t-electron structure. This

Tt-electron structure is characterized by a series of singlet and triplet states. The states are

further divided by a series of levels, called vibrational states. Prompt fluorescence 

(scintillation) results from the de-excitation between the lowest vibrational state of the 

singlet state and one of the vibrational states of the ground state. The triplet states can be 

populated from singlet states in a process called “inter-system crossing.” Excited triplet 

states have longer decay times than singlets giving rise to delayed emission, called 

phosphorescence. An energy level diagram is shown in Figure B.4 to illustrate these 

concepts.
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Figure B.4: Energy level diagram of the 7t-electron structure of an organic molecule. For 
molecules of typical organic scintillators the energy spacing between the S0 and S, state is -  
4 eV and is less between higher states.

Organic scintillators are less expensive and can be made into large sizes. Their low 

Z material makes them good for beta particle detection because it reduces back-scattering. 

When a beta particle is back-scattered it does not cause scintillation. For the inorganic 

scintillator thallium doped sodium iodide Na(Tl) the percentage of beta particles that back- 

scatter is -30%. Plastic scintillators consist of plastic host material which is doped with an 

organic scintillating molecule. It is through the Compton effect that gamma-rays transfer 

their energy into scintillation light. Because of their low Z and low density, organic 

scintillators have poor efficiency for high energy gamma-rays but are used for high rate
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applications where speed is more important than efficiency. In molecular biology, liquid 

organic scintillators are often used for accurate counting of beta emitters (3H, 14C or 32P) 

and low energy gamma-ray emitters (I25I).

Inorganic Scintillators

Inorganic crystals such as sodium doped cesium iodide are often used for gamma- 

ray detection because they are constructed out of high Z material and are denser than 

organic scintillators. Though inorganic scintillators are slower than organic scintillators, 

they have higher light output which is important for maximum energy resolution in gamma- 

ray detection. The energy states defined by the crystal lattice of the crystal material govern 

the scintillation mechanism for inorganic materials. The valence band is the lower energy 

band and the conduction band is the upper. This is in contrast to organic scintillators in 

which the energy levels of individual molecules are involved. The outer electron orbitals 

(the valence electrons) of the crystal define discrete groups of energy levels which are 

referred to as bands in semiconductors and insulators (see Figure B.5).
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A

energy

Figure B.5: Illustration of the energy bands in a scintillation crystal. The incoming 
radiation causes a valence electron to be raised to the conduction band. This electron drops 
down to activator energy levels which de-excite giving rise to emission scintillation 
photons.

The valence band contains electrons that are strongly bound at crystal lattice sites 

and these electrons do not move or conduct through the pure crystal. The conduction band 

represents electrons which are free to move through the crystal since they have enough 

energy. A pure insulator only has electrons in the valence band. Conductors have 

electrons populating the conduction band. In a pure crystal, no energy levels are located in 

the “forbidden” gap referred to as the band gap. Incident radiation on the crystal can 

provide sufficient energy to excite electrons to the conduction band. These electrons de- 

excite back down to the valence band and release their energy in the form of photons. 

Forbidden energy levels can exist in the gap between these energy levels in crystals that 

have impurities. Often impurities called activators or dopants are added to the crystal

conduction band

e-
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. RADIATION DETECTOR PRINCIPLES 163

during crystal growth to increase the efficiency of the scintillation process by forming 

energy levels in the band gap.

For many pure crystals, the band gap is so wide that the wavelength of the de

excitation photon may not be in the range of the light detection device. The impurities form 

activator energy levels that require less energy to be excited, and the wavelength of de

excitation photons are more often in the range of near ultraviolet or visible which is 

detectable by light measuring devices such as photomultiplier tubes. Sodium iodide, which 

is thallium activated (NaI[Tl]), because it contains high Z material and is dense (3.67 g/cc), 

is a common crystal scintillator used in particle physics and medical imaging for x-ray and 

gamma ray detection.

Many scintillation crystals are hygroscopic, that is, they readily absorb water vapor 

which eventually degrades the scintillator. Hygroscopic scintillation crystals are cut and 

polished in a pure nitrogen atmosphere, and then hermetically sealed. In Table B.l is a 

summary o f crystal scintillators that could be used in nuclear medicine.

SCINTILLATOR NaI(Tl) LSO LuAP GSO YAP CsKNa)
Formula NaI(Tl) Lu2(Si0 4 )0 :Ce LuA103:Ce Gd2(Si0 4 )0 :Ce YA103:Ce CsI(Na)
Rel. Light Yield 100 75 >65 20-25 40 85
Peak Wavelength (nm) 410 420 365 440 365 420
Decay Constant (ns) 230 12,42 18 30-60 25 630
Density (g/cc) 3.67 7.40 8.34 6.71 5.37 4.51
Index of Refraction 1.85 1.82 1.94 1.85 1.95 1.84
Hygroscopic ? yes no no no no slight

Table B.l: Various properties of crystal scintillators considered for the present project.

The following section will now describe the operation of photomultiplier tubes. 

The most common scintillation detection device used in particle physics and medical 

imaging is the photomultiplier tube.
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B.3.4 Photomultiplier Tubes

Photomultiplier tubes are very sensitive light detection devices that are capable of 

converting the faint light pulse from a scintillator to an electrical signal achieving a gain

amplification factor as high as 1 x 108. Photomultiplier tubes in addition to possessing 

high gain, have a fast response and can operate in radiation environments.

Light entering the window of the photomultiplier tube strikes a semiconductor 

photosensitive material called a photocathode. In a photomultiplier tube with a 

transmission photocathode, the photocathode material is deposited on the inside surface of 

the photomultiplier window of the evacuated glass envelope. Another type of 

photomultiplier tube, called a side window photomultiplier tube, has a reflection 

photocathode deposited on a structure inside the photomultiplier tube. In Figure B .6  is a 

diagram of the two types of photomultiplier tubes.
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Figure B.6 : Diagram illustrating the two types of photomultiplier tubes. When the light 
strikes the photocathode photoelectrons are released which are directed by an electric field 
to the first dynode. These photoelectrons strike the next dynode thus releasing additional 
secondary electrons. This multiplication process continues until the electrons are collected 
by the anode.

When a photon strikes the photocathode it causes electrons, called photoelectrons, 

to be released from the photocathode material through a process called the photoelectric 

effect. In the photoelectric effect, the absorption of the energy of the incident photon by an 

atom in the photocathode material results in an electron being ejected with a kinetic energy
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which is a function of the energy of the incident photon. The energy (E) of the outgoing 

electron is defined by:

E = hv -Eb (B.14)

where E,, is the binding energy of the electron.

Most often the photocathode is made from a thin layer of Cs, Sb and K atoms that, 

for the end window photomultiplier tube, have been evaporated onto the inner surface of 

the entrance window of the photomultiplier tube. After the photon interaction, a 

photoelectron migrates to the photocathode surface and is thus able to escape. By the 

action of a externally produced electric field, the photoelectron is directed to a structure in 

the tube called the first dynode. On the surface of the dynode is a secondary electron 

emissive material that when struck by an electron is able to eject 3 to 4 additional electrons 

that are called secondary electrons. These electrons are then directed by the external electric 

field to additional dynodes that compose the remainder of the multiplication stage of the 

photomultiplier tube. The final output stage of photomultiplier tube is called the anode, and 

it is on the anode that the total charge is collected. The total electrical potential setup 

between the photocathode and anode is typically of the order of 1 kV to 2 kV.

The intensity of the photon pulse translates into a corresponding charge pulse at the 

anode, i.e. a large light pulse results in a large charge pulse at the anode. The intensity of 

the light pulse is characterized in terms of the number of photoelectrons produced at the 

photocathode. The faintest light pulse measurable generates a single photoelectron that 

results in a charge pulse equal to gain of the photomultiplier tube. The gain of the
g

photomultiplier tube is defined by the dynode multiplication chain and is typically 1 x 1 0 . 

The quantum efficiency (QE) of the photomultiplier tube is determined by the 

photocathode. The quantum efficiency of a photocathode is usually between 20 and 30 % 

and is defined as:
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# of emitted photoelectrons ^
# of incident photons

Typical photocathodes have a practical wavelength sensitivity going from near 

infrared up to the ultraviolet.

For the case of a standard photomultiplier tube, when a photon strikes the 

photocathode position information on where the photon was incident is not retained. 

Recently, position sensitive photomultiplier tubes have become available which use a 

parallel plate or grid type dynodes, and multiple anodes to obtain the position information 

of point of incidence. The position sensitive photomultiplier tube is the core of the imaging 

device of the detector system described in this thesis. The position sensitive 

photomultiplier tube used in this project uses fine mesh dynodes and crossed wire anode 

read out. The operation of the actual position sensitive photomultiplier tube is described in 

the main text of this thesis.

B.3.5 Final Detector Assembly

The choice of the major detector components, namely the scintillator and 

photomultiplier tube, depend upon the type and intensity of radiation to be detected. For 

the application of the project described in this dissertation, one required an imaging detector 

that could detect low intensity, low energy gamma-rays and x-rays resulting from the decay 

of 125I. Since amounts of l25I to be detected were relatively low, therefore the rate of 

incident gamma-rays and x-rays would also be low. Because of this a fast scintillator was 

not needed but rather one that would provide the most light given the low energy gamma- 

rays and x-rays to detect. The steps taken to arrive at the final detector system are 

described in the main text.
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