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ABSTRACT

Image acquisition using a  scene sampling device generally results in a  loss of fidelity in the 
acquired image, particularly if the scene contains high frequency features. Acquired images 
are also degraded by the blurring effects of acquisition filtering, image reconstruction, and 
additive noise effects. To compensate for these degradations, a  digital restoration filter th a t 
a ttem pts to partially eliminate the blurring while avoiding amplification of the noise effects 
is needed. In addition, to compensate for undersampling, a  subpixel technique known as 
microscanning is required. This dissertation provides research into the spatial resolution 
enhancem ent of digital images based on subpixel techniques th a t will help to m in im iz e  the 
im pact of these degradations. Subpixel techniques investigated include microscanning and 
estim ation of the function th a t measures the am ount of blurring incurred during acquisition. 
These techniques will be used in conjunction w ith a constrained least squares restoration 
filter to  achieve the best possible representation of the original scene.

xv
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Chapter 1

Introduction

1.1 Background

Image acquisition using a  device th a t samples a  scene (i.e., a  digital imaging system) can 

potentially  cause a  lack of image fidelity because the device has a  finite number of detectors. 

For example, scenes which contain high frequency features (or fine detail) may not be 

accurately acquired because the relative position of the detector sampling grid with respect 

to the scene could cause pixel-scale features to fall between adjacent detectors. The physical 

lim itation imposed on the acquisition device by the sampling density of the detectors creates 

a  problem  known as undersampling.

Undersampling causes a  noise-like effect known as aliasing. Aliasing occurs when fre­

quencies in the scene exceed the Nyquist frequency of the acquisition device and are “folded” 

back onto lower frequencies.1 Aliasing can be suppressed by microscanning. Microscanning

‘T h e  N yquist frequency is defined as th e  reciprocal of twice the d istance between two adjacent sam pling 
detectors.

2
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CH APTER 1. INTRODUCTION  3

is a  process in which multiple digital images of the same scene are acquired, where each 

digital image differs from the other images in a  prescribed manner. This process of acqui­

sition will suppress aliasing a t the expense of increased acquisition time. The difference 

among these m ultiple digital images is subpixel shifts of the image acquisition device prior 

to image acquisition. T he subpixel shifts may be horizontal, vertical, or diagonal. W hen 

the multiple acquired images are digitally merged to form a composite image, the sampling 

density of the composite image increases relative to the sampling density of the individual 

images. Accordingly, it may be possible to resolve the pixel-scale features that are aliased 

in the individual images. The composite image can be restored using conventional digital 

image restoration m ethods, providing better spatial resolution than  the individual images.

Using the Continuous/D iscrete/Continuous system model (shown below and defined in 

C hapter 2)

noisee
imagescene samplingformation restoration reconstruction

| <------------  continuous  >• | i--------------------------  discrete  ► | <------ cont.  >■ j

it can be stated tha t the purpose of a  restoration filter /  is to account for and minimize 

the impact of (a) th e  blurring caused by the acquisition filter h  and the reconstruction 

filter d, and (b) the noise effects caused by aliasing due to sampling S  and the therm al and 

electronic noise in the  device.

As will be discussed in  Chapter 4, independent of the location of the  scene relative to  the 

sampling grid, blurring will occur during acquisition. The amount of blur is characterized 

by the optical transfer function (OTF) of the detectors and the optics. The acquisition 

O TF is the Fourier transform  of the point spread function (PSF) associated with image

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 4

acquisition. W hen a  point source of light is imaged, a  certain amount of energy spreads 

to  adjacent locations. This energy dispersion causes blurring. The amount of dispersion 

(blurring) is measured by the P SF[65].

To design a  restoration filter tha t compensates for the blurring of the acquisition device 

an  estim ate of the O TF must be computed. A subpixel technique to estim ate the OTF 

of an  acquisition device has been proposed by Reichenbach et al[51]. This technique uses 

a composite “super-resolution" edge image to determine the line spread function of the 

acquisition device in either the vertical or the horizontal direction. Differentiation of the line 

spread function, followed by a  Fourier transform, produces an estimate of the O TF for the 

chosen direction. For a  complete two-dimensional representation of the O TF, an estimate 

of the O TF in multiple directions must be performed. The specifics of this technique will 

be presented in  C hapter 4.

A blurring sim ilar to th a t which occurs a t image acquisition occurs during image re­

construction. Reconstruction involves the transformation of data  from a digital image to a 

continuous ou tpu t scene. Interpolation of the digital data  on the display causes blurring. 

For the purposes of this dissertation, the associated reconstruction transfer function (RTF) 

will be modeled using a  param etric cubic convolution function[45].

Image degradation can occur not only from the inherent characteristics of the acquisition 

and display devices but also from random additive noise effects during acquisition. “Inherent 

characteristics" of the acquisition device include all of the physical objects (lenses, detectors, 

etc.) which b lur the image prior to sampling. Typically electronic noise effects are modeled 

as random and additive. However, in reality this may not be true. Noise effects tha t are 

represented in the c /d /c  model (described in Section 2.4) include the quantization effects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 1. INTRODUCTION  5

which are introduced when analog da ta  is converted to  a  discrete digital image. Non- 

uniformity of the response of the  detectors is a  source of noise not represented in the c /d /c  

model. It is assumed th a t variations in the response of the detectors and (at the extreme) 

detector failure have been calibrated out of the digital image before image formation.

The restoration filter /  is the only component of the  system model tha t digitally pro­

cesses the image. In C hapter 3, we introduce a  specific restoration filter. The constrained 

least squares (CLS) restoration filter defined in C hapter 3 is constructed using knowledge 

of the O TF of the  acquisition device and knowledge of the  RTF of the reconstruction filter. 

The effectiveness of the restoration filter is investigated for a  variety of signal to noise ratios.

1.2 Recent Research

Considerable research has been performed with respect to  subpixel techniques and general 

image resto rationfll, 12, 20, 21, 22, 23, 28, 29, 47, 57]. In  a  paper by Gillette, Stadtmiller, 

and Hardie[16] the  authors propose the use of microscanning to reduce the aliased noise 

which is present when undersam pling occurs. Both a  “controlled” and an “uncontrolled” 

version of microscanning are presented. In the description o f controlled m ic ro sc a n n in g , the 

authors refer to the use of a  m irror or beam steerer to ob ta in  digital images which are a t a 

known subpixel displacement from one another. Com position of the resulting microscanned 

digital images into a single image can be accomplished either in the Fourier domain or 

in  the spatial domain. T heir version of uncontrolled microscanning, where the subpixel 

shifts between images are unknown, entails a complex reconstruction method th a t is not 

considered in  this research. A lthough their theory is sound, they do not incorporate a
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C H APTER 1. INTRODUCTION  6

restoration filter into their model. The use of an  inverse filter is mentioned as a  means 

of accounting for “the effects o f the presampling filter” , however, it is not employed in 

their m odel or their results. By using microscanning only, without restoration, they are 

effectively reconstructing the  blurred, “pre-sample” image rather than  the  inpu t scene. 

Further research was performed by Hardie[17], however, the system model presented still 

fails to  incorporate restoration and  reconstruction filters.

A failure to appreciate the  need for a restoration filter is prevalent in the  literature. For 

example, Feidenberg[13] also extols the benefits o f microscanning. The use of “rectangular 

bidirectional” microscanning versus “diagonal” microscanning is discussed. A “reciprocal 

lattice” is defined and used to  explain the effects of microscanning w ith respect to the 

Nyquist frequency. Derivations of a  temporal m odulation transfer function (or M TF, defined 

as the  m agnitude of the O TF) and an interpolation M TF (referred to in th is research as 

RTF) are discussed. This discussion, however, is limited to the effects of microscanning 

with respect to the Nyquist frequency. The removal of the blurring associated w ith the 

PSF of the  acquisition device is not considered.

Jacquem od et al[24] also use microscanning as a  means of “oversampling” am input scene. 

The authors recognize the need for a  restoration filter to eliminate the blurring w ith respect 

to the P S F  of the acquisition device. However, the ir “deconvolution” filter is based solely 

on the impulse response of the  detectors. They fail to account for the blurring induced by 

the optics o f the acquisition device and the blurring which occurs during reconstruction. 

In addition, they assume a  high signal-to-noise ra tio  and thus use an  inverse filter as the 

restoration filter. In practice this type of restoration filter will boost the noise present in 

the image, perhaps dramatically.
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CHAPTER 1. INTRODUCTION  7

Savakis and Trussell[55] investigate estimation of the PSF as a  step in defining a restora­

tion filter; however, their simulation model is flawed because they do not address the issue 

of aliasing. They claim th a t “given the sampling [density] there is nothing tha t can be 

done to overcome the limitations of undersampling.” They assume th a t the input scene 

is band-limited to the Nyquist frequency of the scene s a m p l in g  device. Their assumption 

is inaccurate because most input scenes contain high-frequency features well beyond the 

Nyquist frequency. The authors fail to recognize tha t microscanning can facilitate restora­

tion to well beyond the Nyquist frequency of the acquisition device. Thus, by p e r fo r m in g  

the sampling operation as a convolution of the PSF filtered image (as their model states) 

rather than an  actual sampling of the image data they artificially guarantee tha t aliasing 

will not occur.

Tzannes and  Mooney[62] present a  multi-step technique to estim ate the OTF of an 

acquisition device. The first few steps of their technique are the same as the technique 

presented by Reichenbach et al[51], but in the final steps Tzannes and Mooney estimate 

the PSF as a  function tha t is the summation of three Fermi functions. This estimated 

function requires the  com putation of 10 free parameters, however, they do not provide an 

explanation of how to compute these parameters. Thus, it is difficult to reproduce their 

results. In addition, the authors focus on an estimation of the O TF w ithout explaining the 

purpose of the estim ation. T hat is, there is no indication th a t the information obtained by 

estimating the O T F of an  acquisition device can be used to restore the acquired image.

One approach to  restoration is to use the Weiner filter, which is the optim al restoration 

filter based on the mean-square difference between the input scene and the output image. 

The Weiner filter, however, can only be implemented using theoretical models because it
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relies upon information th a t might not be known, the frequency spectrum  of the scene, for 

instance, to achieve optim al results. Uncertainty about the accuracy of the model has caused 

research into more practical restoration filters. A constrained least squares (CLS) filter is 

presented in this dissertation as a  more appropriate restoration filter. W ith the exception 

of one real-valued user-specified sm oothing param eter, all parameters for the CLS filter are 

known or can be estim ated a  priori.
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1.3 Notation

For reference, all of the im portan t notation and symbols used in this dissertation are sum­
marized below.

s —► spatial domain representation of the inpu t scene.
S  —»■ Fourier dom ain representation of the  input scene.

a a —> Standard deviation of s.
h  —y spatial domain representation of the pre-sam ple acquisition filter (PSF).

H  —> Fourier dom ain representation of the pre-sample acquisition filter (O TF).
g —► spatial domain representation of the pre-sam ple blurred scene.

G  —> Fourier dom ain representation of the pre-sam ple blurred scene,
e —► spatial domain representation of the Gaussian noise matrix,
e —* Fourier dom ain representation of the G aussian noise matrix.

<re —y Standard deviation of e.
<S() —> Sampling function.

p  —*■ spatial domain representation of the sam pled image matrix.
p  —> Fourier dom ain representation of the sam pled image matrix.
/  —► spatial dom ain representation of the  CLS restoration filter.
/  —> Fourier dom ain representation of the CLS restoration filter.
G  —>• Fourier dom ain representation of the CLS restoration filter

smoothing function. 
a  —> CLS restoration filter parameter.
q -¥  spatial domain representation of the filtered image matrix.
q —> Fourier dom ain representation of the filtered image matrix.
d —¥ spatial domain representation of the reconstruction kernel.

D  —► Fourier dom ain representation of the reconstruction kernel (RTF),
r  —> spatial domain representation of the reconstructed output image.

R  —> Fourier dom ain representation of the reconstructed output image.
()* —> Complex conjugate.
® —> Circular Convolution operator (continuous or discrete).

—► Representation Passband: set of frequencies used to define S.
f lit —> Acquisition Passband: set of frequencies associated with the O TF

values not significantly different from zero, 
f Id —y Reconstruction Passband: set of frequencies associated with the RTF

values not significantly different from zero.
Op —► Sampling Passband: set of frequencies associated with the

sampled image.
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t i  , 72 —t constants, generally a power of two, indicating the maximum
frequency indexes used in determining f is.

N i , N 2  —y number of samples in the x i  and x i  directions, respectively.
£1,62 —> intersample distance in the x\ and X2  directions, respectively.

P 1 1 P2  period in the Xi and X2  directions, respectively. Defined to be Pi = N ^ i .
L'i, V2  —+ frequency domain coordinates (discrete).

uii,uJ2  —*■ frequency domain coordinates (continuous) =  i^i/Pi-
X\,X 2  —> spatial domain coordinates (continuous).
n h n 2  spatial domain coordinates (discrete).

p —► bins per pixel parameter.
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1.4 O verview

11

The remainder of this dissertation is organized as follows. In C hapter 2, a  detailed descrip­

tion of the continuovs-discrete-continuous c /d /c  system model is presented. The model 

described will be used for all results presented in this dissertation. A critical component 

o f the c /d /c  model is the digital restoration filter. Thus in Chapter 3, a  derivation of a 

specific restoration filter, the CLS restoration filter, will be presented. T he CLS restoration 

filter requires a  priori knowledge of certain components of the system model including the 

frequency response of the acquisition device. In Chapter 4, a  technique to estim ate the 

frequency response of an acquisition device is presented. This technique is employed on an 

actual acquisition device and the frequency response (or optical transfer function (O TF)) is 

estim ated. One step in the technique presented in Chapter 4 involves estim ating the edge 

of a  noisy, undersampled edge profile. C hapter 5 presents various algorithm s for estim ating 

the location of an edge based on an edge profile. The algorithms presented are compared 

based on accuracy, simplicity, and processing time. Chapter 6 introduces microscanning. 

Microscanning is presented as a  means of suppressing aliased noise w ithin an  acquired dig­

ita l image. In  addition, the  chapter discusses the effects of including microscanning in the 

c /d /c  model. Chapter 7 presents results using real data from a digital JVC camcorder along 

w ith conclusions.
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Chapter 2

C /D /C  Model Description

T he continuous input /  discrete processing /  continuous ou tpu t (c /d /c ) digital image 

processing system model indicated in Figure 2.1 is the  basis for all the results in this 

dissertation. [42]

I----------------------------------------------------------------- 1
acquisition

noise

scene

continuous discrete

processing

image

discrete continuous

form ation sampling

restoration reconstruction

Figure 2.1: System Model 

12
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The acquired scene s is the 2-dimensional projection of the 3-dimensional field of view 

onto the acquisition device. The acquisition device (or image formation system) [42] blurs 

the acquired scene by convolution (shown m athem atically in this research as ® ) w ith the 

acquisition device point spread function (PSF) h. The resulting pre-sample image g = s&h. 

is then sampled onto an Ny x IV2 sampling grid. N \  and iV2 correspond to the number of 

detectors per row and column respectively on the acquisition device. £ 1 and £2 represent the 

distances between adjacent samples (or “intersam ple” distance) in the  x i  and xn directions 

respectively. Thus, N i x  N? is the number of detectors on the array. This sampled image, 

corrupted by additive random noise e, forms the digital image p = S(g) + e. The additive 

random  noise e represents various effects of the acquisition process, including but not limited 

to  quantization error.

The restoration filter /  is the only component in the c /d /c  model th a t is used to perform 

digital processing. The other filters in the model, h and <f, are generally associated with 

hardware devices and cannot be altered except by changing the hardware configuration. 

The restoration filter /  is a discrete processing filter defined by its software implementation. 

The restored digital image q =  p  ® /  is then convolved w ith the reconstruction filter d. The 

result of th is convolution is the ou tpu t image r  =  q ® d.

Sampling transforms the data from a continuous representation to a  discrete represen­

tation. The image formation and reconstruction filters blur the image before and after 

sampling respectively. The restoration filter provides the digital filtering required to im­

prove spatial resolution in the image by attem pting to correct for this blurring.
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2.1 Coordinate System

As with Park and Rahman[46], all system model components are measured relative to a 

common spatial (x i,X 2) Cartesian coordinate system. By tradition, the coordinate system 

is assumed to be an orthogonal (x i ,x i)  system in which the intersam ple distances £i, £2 are 

constant along both  axes, as illustrated in Figure 2.2. The physical center of the detectors 

falls along the sampling grid a t pixel coordinates [n 1, n/\ as indicated by the V .

0

4

W ith respect to the 2-dimensional projection, only the field-of-view (FOVj within the N i  x 

N 2  detector array is of interest.

2.2 Use of Fourier domain

In  the Fourier (or frequency) domain convolution is performed as a  frequency by frequency 

multiplication. Therefore, in a  simulation environment it is preferable to perform these 

convolutions in the frequency domain.

"i— —r "i— —r

Figure 2.2: Coordinate System
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2.3 C /D /C  Model

2.3.1 Scene Representation

By assum ing th a t the acquired scene w ithin the field-of-view is periodic w ith period Pi x P 2, 

where Pi =  Ni£i  and Pi  =  -Af2£2, the inpu t scene s can be defined in terms of its Fourier 

series coefficients 1

1 f Pl f Pl
S[v i ,V 2]  =  -5 - 5 -  I  I s ( x i , X 2 ) e x p ( - i 2 n x i V i / P i ) e x . p ( - i 2 - K X i v 2 / P 2 ) d x i d x i .  ( 2 . 1 ) 

M  r 2 Jo Jo

T hat is, because this assumption causes no significant error (except perhaps a t the bound­

aries of the  FOV), the input scene can be represented as the Fourier series [46]

s(ar\ , x 2) =  5 3  $ 1  S[vi,vi]exp(i2TrxiUi/Pi)exp(i2nxiV2/Pi) V (x i ,x 2). (2.2)
| l / l | < 0 O  | j / 2 |< 0 0

Only a  finite num ber of terms in the Fourier series 5[i/i, u2\ are significantly different from 

zero. Thus, by restricting the summations to frequencies within the scene representation 

passband [46]

=  { (w i ,W 2 )  : | ^ i |  <  T1/P1, |cj21 <  r2/ p 2} , (2.3)

the scene is assumed to be band-limited to where ti and r2 are implementation defined 

cut-off frequency constants. That is,

«(ari,ar2) =  $ 3  $ 3  ^ [" i* ^ exp(i2irxiVi/Pi)exp^-jrxiVi /Pi)  V(ari,ar2)- (2-4)
|j/l|<n \V2\<T2

'A  d istinction  is m ade between functions, say s (x i , X 2 ), defined for a  continuum  of (real) values —00 <  
x i , X 2  < 00 a n d  matrices, say S [i/t, 1*2], defined for th e  discrete (integer) values v i , 1*2 = 0 ,  ± 1 , ± 2 , . . .  This 
“(•) for continuous” versus “[•] for discrete” no ta tion  is used throughout.
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Real scenes are generally not band-limited, but by choosing T\fP\  and T2/.P2 to be several 

times greater than the Nyquist frequency of the acquisition device, the above definition does 

not significantly affect the  accuracy of the model. The frequencies w ithin the representation 

passband are shown by the shaded area in Figure 2.3.

F igure 2.3: Representation Passband, Q,

As sta ted  previously, the param eters N \  and Nz  represent the number of detector ele­

ments w ithin the FOV. Thus, if a  particular acquisition device is to  be simulated, N \  and 

Nz  are known. In a  sim ulation environment, however, N \  and Nz  are generally set equal 

to  each other and to  a  power of two. Although there is no fundam ental reason for this 

power-of-two rule, it does facilitate the use of a Fast Fourier Transform (FFT) for conver­

sions between the frequency domain and the spatial domain. For sim ilar reasons, it is also
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preferable to define T\ and r2 to be powers of two. [46]

Using the defined values of N i, N 2 , T[, and T2, the input scene can be specified by 

a (2 ti +  1) x (2t2 +  1) complex-valued Fourier coefficient array 5[i/], Because the

input scene is real-valued, the Fourier coefficient array is subject to the complex-conjugate 

constraint 5 [—1/1, —1/2] =  i^]. [46]

2.3.2 Image Formation

The pre-sample image formation system response is completely characterized by a non- 

negative[59] point spread function  (PSF) h n o r m a liz ed  so that

/ oo roc
/  h(xi,X2) dx i dx2 = 1. (2.5)

■OO J —OO

Given an input scene function s, the (pre-sample) blurred im a g e  of this input scene is the 

image function g = s ® h  defined by convolution as

/•oo roc
g(x  i , x 2) = /  /  s ( x l - x ' l , x 2 - x ' 2) h ( x \ ,x 2 )dx \dx '2 V (xu Z2 )- (2.6)

J OO J — OO

Becaiise s is periodic, the convolved image function g is also periodic w ith period Pi x _P2- 

The Fourier domain representation of Equation 2.6 is

G[yu i/2] =  S[l>i , V2]H(1/1/ P i , 1/2/ P2) {v ilPuv-ilP i)  6  (2.7)

fc'i j **2 =  0, ±1, ± 2 , . . . ,  where H (u/i, 0J2 ) is the Fourier transform of h { x \ ,x2) defined as

roc roc
H{oji , o ^ ) =  I /  h (x i ,X 2 ) exp(—z27ro;iXi) exp(—*27rw2£2) V(o;1,a;2). (2.8)

J — OC J —OO
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T he convolution s ®  h simulates the  blurring associated with all of the objects (lenses, 

detectors, etc.) which filter the image prior  to  sampling. H{uj\ , uj/ )  is the cascaded product 

of each of the frequency responses associated with these devices. [46]

T he acquisition passband is defined as the set of frequencies for which H(oj\,uj2 ) is 

significantly different from zero. This definition can also be represented as

n h =  {(c^i, ĉ 2> : \H(u}i , u}?)\ > e} (2.9)

where e is a  sm all (application dependent) non-negative real-valued number. Figure 2.4 

shows the relationship between the acquisition passband and the representation passband 

T he acquisition passband is depicted by the frequencies which fall w ithin the circle2.

2 In  practice th is  passband does not necessarily take a  circular shape.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. C /D /C  MODEL DESCRIPTION 19

F igure  2.4: Acquisition Passband, Clh (relative to Q, - shaded region)

If T\ and T2 are chosen properly, the  acquisition passband will fall within the represen­

ta tion  passband so th a t C  f i3, as indicated. Once the scene has been acquired, all image 

energy a t the frequencies which fall outside of the acquisition passband is lost. This loss of 

energy causes a  loss of small scale features in the restored digital image. The energy a t fre­

quencies inside the acquisition passband is m odulated subject to the OTF of the acquisition 

device. This m odulation causes blurring.

2.3.3 Sampling

T he image function g is sampled a t integer multiples of the intersample distances £i and 

£2- Note tha t these intersample distances are particularly im portant parameters; £1 x £2
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represents the effective size of a  pixel, or equivalently l/2£ i represents the system ’s Nyquist 

frequency along the cji axis and 1/ 2^2 is the Nyquist frequency along the ujq axis. These 

two quantities do not have to  be equal, but for all the simulation results presented in 

this dissertation they are. Some acquisition devices contain square detectors, which makes 

this a  valid assumption. If, however, the detectors are not square, the research presented 

generalizes to the use of the  actual values of and £2-

2.3.4 Noise

Additive random system noise, which simulates error from various sources including quanti­

zation error, is modeled as a  real-valued additive noise array e. The Ni x iV2 ou tpu t image 

array p =  S(g)  +  e is defined by [46]

p [n i,n 2] =  g(n  i f  1, 71262) +  e [n i,n 2] V[nl ,n 2]- (2-10)

Consistent w ith the periodicity of s and g, the digital image p is periodic w ith period 

N i  x IV2- The corresponding frequency domain representation of p is

p[j/i,i/2] =  G[i/ \ , 1/2 ] + a\y\ , 1/2] +e[uu o2] (2.11)

for all [ui, U2 ] where

^ N1- 1 N2 - 1

p[vi,V2 ] = Y l  p [n i,n 2]exp(-t27ri/m 1/lV1)exp(-t27riA2n2/lV2) (2.12)
* ^ n i= 0  H2=0

and e is the  Discrete Fourier Transform (DFT) of the noise array e defined as

j Af 1 — 1 a 2̂ — 1
e[vu v2] =  ■■ e [n i,n 2]exp(-i27ri/1ni/lV 1)exp(-t27n^Ti2/lV2). (2.13)

* ^ m = 0  ri2=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. C /D /C  MODEL DESCRIPTION  21

The aliased noise  array a  is a  noise component which exists due to undersam pling and is 

defined by

a[vi,i/2] =  G[v\ -  k i N u  v2 -  k2N 2]
[*i ,*2M0,0]

for all [i/i, U2 ]. This additive noise component accounts for energy which falls outside the 

sampling passband and is “folded” back onto frequencies inside the sam pling passband. The 

sampling passband[46] is defined as

ftp =  : |u/i| <  l / 2£i, (0̂ 21 <  1/ 2^ }

where l/2 £ i and 1/ 2^2 are the Nyquist frequencies of the acquisition device. If  the sampling 

density is sufficient, meaning C  fip, aliasing will not occur in the reconstructed image. 

However, if Qh /- the sampling density is insufficient and aliasing will occur. In Fig­

ure 2.5 the dashed square is the representation passband and the circle is the acquisition 

passband Qh- The sampling passband is represented by the solid square. O f im portance is 

the relationship between the sa m p l in g  passband and the acquisition passband.
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F igure  2.5: S am p lin g  P a s sb a n d , f l p , so lid  sq u a re  (re la tiv e  to  - solid  circle, a n d  Qs - d o tte d  
sq u a re )

T he example on the left, where the sam pling passband is a subset of the acquisition pass­

band, depicts an instance where aliasing will be present in the sampled image. Specifically, 

the shaded region of the figure indicates the frequencies from which energy will be folded 

back into the sampling passband. The example on the  right shows a case where s a m p l in g  

is sufficient and aliasing will not occur. This is an  unusual case in image acquisition. Gen­

erally the  sampling density is insufficient. N atural scenes generally contain high-frequency, 

sub-pixel-scale features. [46] The effects of aliasing will be investigated here and a  corrective 

measure will be discussed.

In  addition to aliasing, quantization error and random  electronic noise associated w ith 

the image acquisition device both  limit the ability of the restoration filter to accurately 

restore the input scene. The pre-sampled image g consists of real-valued data. The digital 

image p  is an integer-valued array. Thus, a  quantization of the sampled values

p [n i ,n 2] =  n 2& ) +  0.5J
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causes an additional noise component in the digital image ([-J is the floor (truncation) 

function). The difference

3 (71̂ 1, 7i2£>) - p [ m ,n 2]

is termed quantization noise and can be characterized by a signal-to-noise ratio (SNR).[46] 

The SNR quantifies the level of additive random noise relative to the input scene. SNR 

is defined to be the ratio of the standard deviations of s and e[46], or <rs/ o e where

f  E  E  |£[|/1,I*]|2̂  -  |5[0,0]|

and

( fVi — 1 A/2—l \

E E I'K̂ ll2) - ie[0,0]|2.
1/1=0 i/?=0 /

Note th a t the SNR quantifies only the relative strength of the random noise in the image 

with respect to the strength of the signal. The amount of aliased noise is determined in part 

by the relationship (depicted in Figure 2.5) between the acquisition passband fl/, and the 

sampling passband Qp. The aliased noise could be more or less prominent than the random 

noise.

2.3.5 Image Restoration

The N i  x N 2  digital image p is filtered by convolution with a  restoration filter f  to produce 

the filtered image array q = p ®  f  defined by[46]

OO OO
q[nx,n 2] =  5 1  / [ n i> " 2M n i ~  n 'n n2 -  *4]. (2.14)

Hj=—00 n'j =—00
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Traditionally image restoration filters have been defined and implemented in the frequency 

domain. Thus, image restoration performed in the frequency domain is based on the equa­

tion

q[u i , 1/2] =  p[ ux, //2]/[^i , 1*2 ] (2-15)

where

00 00

fW  1, ^ ] =  5 1  1C / [ n i ,n 2]exp(-i27r2/ini/lV1)exp(-t27ri>2n2/lV2)) V(i/r, r^).(2.16)
m = —00 ri2——00

Note th a t the  function /  is periodic w ith 2-D period l x l  and tha t the frequencies [tq, **2] =  

{v \ /N \,  V2 / N 2 ) =  (f  1̂ 1, 62^ )  are measured in units o f cycles per sample.[46] Since p  is 

periodic w ith  period N i  x JVj, the filtered digital image q is also periodic w ith the same 

period.

2.3.6 Image Reconstruction

The output image r  is reconstructed by convolving the filtered image array q w ith an  aperi­

odic reconstruction kernel d. Image reconstruction can either mean displaying the restored 

image to a  display device or interpolating the image onto a different coordinate grid. In  ei­

ther case, the  image reconstruction system models the discrete-to-continuous conversion. [46] 

For the sim ulation model presented here, the reconstruction kernel is an interpolation pro­

cess defined as

OO OO
r {x i , x 2) =  q [n u n 2]d{xi -  n i f i , x 2 — n 2f 2) (2.17)

m = —OO 712 =  — 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. C /D /C  MODEL DESCRIPTION  25

for all (271, 2:2)- T he image reconstruction filter d  is characterized by a  param etric cubic 

convolution function[45] normalized so tha t

f  f  d { x i ,x 2)d x id x 2  = € ib -  (2-18)
J —OO J — OO

Because r  is periodic w ith period Pi x P2 it can be represented by its Fourier coefficients as 

r ( x i , x 2) =  5 2  5 1  R[vi,is2]exp(i2Trxii/i/Pi)exp{i27rx2V2/P2) (2.19)
|i/i|<Ti |i/2| <r2

for all (271, 2:2) where

^ q[vi,v2]D ( i ' i /P \ ,v2/P 2) (1/1/ P 1, v2/P 2) € fia- (2.20)

Note tha t the Fourier coefficients used in Equation 2.20 are based on frequency indexes which 

correspond to frequencies w ithin the representation passband f ta. This is valid provided 

7*1,72 are sufficiently large relative to  N i,  N2-[46] The image reconstruction filter is similar to 

the image form ation filter in th a t they are both low-pass filters. Thus, if the reconstruction 

passband is defined to be

=  { (01 , 02 ) : |^ ( o i ,o 2)| > ej , (2-21)

then the software defined constants T\ and t2 m ust be chosen so tha t c  f2a and c  Jla.

The reconstruction transfer function (RTF) D  is defined to be [46]

f°°  f°°D(cju oj2) = I I d ( x i , x 2)ex.p(—i2-mjJiXi)exp(—i2Trcj2x 2) d x i d x 2 V(ui,u>2). (2.22) 
J —OO J  —OO
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For purposes of this dissertation, reconstruction of a  filtered digital image will mean interpo­

lating the sampled data onto a  sampling grid which has a  higher density than Ny x N i  within 

the same Pi x Pi  period. This interpolation will constitute sim ulating the transformation 

from a N \  x N i  discrete array to a  continuous scene.

2.4 Output Image Components

As defined in Equation 2.11, p is the sum m ation of three components. This relationship is 

shown in Figure 2.6.

random noise 
e

aliased noise

Figure 2.6: Components ofp

In  a simulation environment, each of these components can be independently processed 

through a  restoration filter and a reconstruction filter.

We define pa to be the component of p th a t accounts for the aliased noise (previously 

defined as a). Also pe is defined to be the component of p tha t accounts for the quantization 

error and random electronic noise (previously defined as e). And, p c is defined to be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 2. C /D /C  MODEL DESCRIPTION 27

component of p  th a t accounts for the signal degraded by the O TF (previously defined as 

G). Thus,

P = Pc "P Pe "P Pa-

The components pc, pe, and pa are stored as JVt x jV2 arrays3. Therefore, due to  the 

linearity of /  and d  each component can be independently processed through a restoration 

filter and a  reconstruction filter.

Pc

Pe
Pa

Figure 2.7: Processed Components of p

T hat is,

QcW 1̂ 2] =  P cW u ^ lfW i,* ^] ,

Qe[v\,^ 2] =  pe[i/i, 1̂2]/ [ t ' l ,

9 a [^ l, ^2] =  P a [ ^ l , H / I ^ l , ^ 2]

restoration

® /

?c
reconstructionQe

Qa

rc
re
Ta

where /  is defined by Equation 2.16 and

Rc[vuPi] =  (^ ^ jq c [v u P 2 \£ > { u i /P u i>2/P2), 

ReW 1,^ 2] =

3A lthough the  pa is no t periodic, the sum {G)[i>i, ui\ =  5Z” =-oo — k\N \,u?  — faN i]  is
periodic w ith  period Ni x  N 2. Therefore, it is sufficient to  store (G) an d  com pute pQ as needed. [46]
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R aW l,”*] =

where D  is defined by Equation 2.22. Therefore, the output image components are defined 

to be r c, r e, and ra [46] where

r  = rc + re + ra 

or equivalently in the Fourier domain

R  =  R c  +  R e  +  Ra-

Defining the ou tpu t image in terms of its components not only presents a  means of visu­

ally representing the im pact of the  components on the output image but also provides an 

alternate definition of the  signal-to-noise ratio (SNR). Specifically R c /R e defines the signal- 

to-random-noise ratio, R c /R a defines the signal-to-aliased-noise ratio, and R c/ ( R e -f R a) 

defines the signal-to-system-noise ratio.

2.5 End-to-end Metric

Defining R  based on the frequencies w ithin the representation passband, as discussed in 

Section 2.3.6, also facilitates a  one-to-one comparison of the Fourier coefficients of the input 

scene to the Fourier coefficients of the ou tpu t image. This comparison can then be used as 

the  basis for am end-to-end metric th a t quantifies the effectiveness of the subpixel techniques 

presented in th is dissertation.
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If the  mean square error,

between the input scene and the output image is used, then an  equivalent expression can 

be com puted using the Fourier coefficients.

presented are done in the Fourier domain. Therefore, com putation of the metric could also 

be done in the Fourier domain. The root mean square error (RMSE) metric is used to

All quantized error values described in this research are com puted based upon this RMSE 

metric.

In the  next chapter we define the “non-unity intersample distance” Constrained Least 

Squares restoration filter. The CLS restoration filter is a  robust filter which avoids am­

plification of noise in the restored image (a feature inherent in an  inverse filter) without a  

reliance on theoretical values (a requirement of the Wiener restoration filter) [14, 39].

As sta ted  previously, the system model computations for the  simulations and results

determ ine the effectiveness of the restoration methods. Using Parseval’s equation and the

fact th a t s and r  are assum ed to be band-lim ited to fl3, the RM SE is defined as

IIs - r | |  =  \/l lS ~  r l|2 =  ^  ^  \S[v \ ,V2\- R [ v i , ”2] ■ (2.23)
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Chapter 3

Constrained Least Squares Filter

The restoration filter /  is the only component of the c /d /c  model th a t is used to digitally 

process the image. All other c /d /c  filters are typically related to hardw are devices. Snyder 

et al[58] state  th a t “restoration is normally performed on the precorrected image to recover 

the object’s intensity distribution by compensating for blurring and abberations th a t are 

caused by the optical elements.” Successful restoration of a degraded image relies upon a 

properly designed and implemented restoration filter. Blurring, which may occur during 

acquisition and reconstruction, must be removed if a  visually acceptable reconstruction of 

the inpu t scene is to be achieved. The restoration filter proposed here is the constrained 

least-squares filter. A derivation of this filter tha t assumes unity intersam ple distances can 

be found in [18]. A similar derivation which accounts for non-unity intersample distances 

£1,62 follows.

30
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3.1 Filter Derivation

As in [18], the CLS restoration filter is based on the metric,

J 2 = a S 2 +  F 2.

31

This m etric consists of a  smoothness  term

1 f p1 r p*S 2 =  | |c ® r ||2 =  ——  f  f  \c{x i ,x2)<&r(xu x2)\2d x i d x 2,
-T2 Jo Jo

a f id e l i ty  term

F 2 =  IIp-p'II2 =  j j r j j r  5 3  1 3  \p[n\,n2] - p '[ n i ,n 2]|2,
1 2 m  = o  ri2=o

and a  positive, real-valued, user defined param eter a  th a t controls the am ount of smoothness 

versus fidelity, c is a high-boost filter such as depicted in  Figure 3.1

C M

Figure 3.1: Generic High-Boost Filter

OJ

where C  represents the Fourier transform of c- C  is used to boost high frequency energy 

and suppress ringing in the restored image.1 For the results presented in this research

C{uj i,&/2) = tj2 + uj%.

1 T he  im portance of th e  high-boost filter will be shown la ter in th e  chapter.
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There is no fundamental reason for this choice of C  except tha t it is well behaved and 

m athem atically simple. The digital image p' is produced by using the ou tp u t image r  as 

the input scene to the c /d /c  model. T h a t is,

p'[i/ u u 2) = (R[ul ,u 2]H(ul / P u u2/P 2)) (3.1)

where the (•) operation accounts for the frequencies which fall outside the sam pling passband 

and are folded back inside the s a m p l in g  passband, or equivalently,

OO OO

p'[v 1 , ^ 2 ] =  X I 5 1  ~ k ip h P 2 ~  k2p 2]H{ui/Pl -  ki/$>l,u2/P 2 -  k2/& ).  (3-2)
k\=—oo k% ——00

A graphical depiction of p’ is shown in Figure 3.2.

noise

imagescene samplingformation restoration reconstruction

Figure 3.2: Definition of p‘

R eturning to the metric, the CLS restoration filter represents an a ttem pt to achieve a  

compromise between acquired im a g e  s h a r p e n in g  F 2 and random noise enhancement S'2 [18]. 

This compromise is accomplished by m inim ization of

,2 N i- lN z - l
J 2 =  a  5 Z { C i u j P u ^ / P ^ R ^ u t ^  + 5 3  X) IpKi**]- p ’W u ^ W 2

| l > l |< T l  |V 2 |< T 2  1 /1 = 0  1 /2 = 0

where C  is defined analogously to H  in Equation 2 .8 . The implications of this compromise 

will be shown in Section 3 .2 .3  (following the complete derivation of the CLS restoration 

filter).
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The smoothness and fidelity term s can now be defined with respect to the unknown 

restoration filter coefficients W riting the smoothness component of the metric in

term s of the restoration filter coefficients /  yields

N i-l  AT2-1
|p h ,^ > ] |2 f. f  .

i/i=0 i/2=0 Sls2

Using Equation 3.1, the following is derived.

5 2 = E E  | p h , ^ ] | 2 r r / h . H  (C {u l / P l ,u2/P 2)D(u1I P l ,u2/P 2) ) .  (3.3)

P'[v l ,^ ]  =

=  ( ^ ^ q i v i i ^ D i ^ / P u V ^ / P - d H i v i / P i ^ / P ? ) ^  def. of R  

= ^ £ ^ p [ i ' u i ' 2 ] f[ i ' i ,v2]D ( i ' i /P u » 2 /P 2 )H ( i ' i /P u v 2/P 2)'^ def. o f q

=  ^ - p [ ^ i ,  ^2] (D { v i /P \ , V2/P2)H{v i / P i , u2/P 2))

2 . (3.4)

Similarly defining the fidelity component and using the above derivation of p' yields

N1- 1 N2 - 1  ,
F 2 =  £  £  IP [^^2 ] |2 l - r r f V ' u ^ ] ( H { u l/ P u u2/P 2)D{ul / P u u2/P,

v\ =0 j/2=0 ? l s 2

Combining Equations 3.3 and 3.4, J 2 can now be defined as the quadratic equation

Wi-l N2 -I
j2  = i z  i z  \pWi,vi]\2

1/1=0 i/2 =0
(1 -  /• [ i /i , i^ j]B ( i/ i /P i ,^ /P 2 )  -  f[vi,U2]B*{ui/Pi,l^2/P2) +  

|/ [ ^ 1 ,H |2 | ^ / P i , ^ / P 2 ) | 2 )  (3.5)

where

A(cju oj2) =  ^ 2  ^ (^ (c l;! ,^ )-^ ^ !,^ )!2^ +  ^ 2  |(P(o;i,c*^)T>(a;i,a;2))|2
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and

B { u  1, 0*2) =  ■ j ^ - ( H { u l ,U2)D(cJi,W2))-

Minimizing the error associated w ith this m etric is accomplished by completing the square 

as

W -l iV2- l
j2  = Jmin+ X X Mv\/PuV2lPl)\p[vuVi]^\J[vuV2] ~ fcW\,^]\2 

i/i=0 1/2=0

where

Jmin = X X \PWuPl]? [X “ \fc[l'U^]\2M l ' l /P l ^ / P‘2)]
1/1 =0 1/2=0

The solution to this minimization can be shown to be

/ [  U u V 2 \  =
A (v i /N \£ \ ,  V2 /N 2 Q2 )

or, equivalently

/l^l ,^2j =  —  -------------[2------- fTT72------------  I3*6)
| < M ) ( Wl)wa)| + a ( |C £ > |  >(a/i,w2)

where

OO OO

(H* D*)(wi,UJ2) =  X  X  - ^ ( ^ l  — — k2/i2)b*{oj\ — fc l/fl,t* /2  — ^2 /^ 2 )
fc l = — OO A?2 =  — OO

OO OO
(jC'-D )(̂ i,â ) = X  ~ -  k2/&)D(<jJi -  -  2̂/̂ 2)|

fci = —oc fc2= —00

and (•)* denotes the complex conjugate. Equation 3.6 represents the definition of the 

Constrained Least Squares Restoration filter.
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3.2 Importance of a Properly Defined System Model

A common problem in simulation-based restoration studies is the use of incomplete system 

models. Examples of th is problem include a  failure to account for the sam pling tha t is 

inherent in the acquisition process and an assum ption of a  noise-free environm ent[32, 36, 

53]. The following sections show why these incomplete models and assum ptions can yield 

m isleading or incorrect results.

3.2.1 C /C  Model Results

A commonly used continuous-input /  continuous-output (c/c) system model (no sampling 

component) is depicted in  Figure 3.3.

noise

scene
s

e
formation 9 ^ i restoration

® /i •  /

image 
r

F i g u r e  3 .3 :  C /C  S y stem  M odel

From Equation 2.7, the Fourier series coefficients of the blurred image g are com puted by 

m ultiplying the Fourier series coefficients of the  input scene s w ith the O ptical Transfer 

Function of the acquisition device. T h a t is,

=  5[&'i, V2\H(yi/N\, V2 /N 2 ) (3.7)

where G  is the Fourier Series representation of the blurred image g and S  is the Fourier 

Series representation of the  input scene s.
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For the sim ulated results presented in this chapter the following aerial image of the 

Statue of L iberty was used as the input scene. This input scene (Figure 3.4) is a  512 x 512 

8-bit grayscale image.

F i g u r e  3 .4 :  scene (s)

The OTF used to simulate the acquisition filter, depicted in Figure 3.5, is

H (u i ,U 2 ) = exp (-(u j i /6 i)2) e x p ( - (u 2/S 2 )2) (3.8)

where Si =  <$2 =  0.4.

Figure 3.6 is the param etric cubic convolution (PCC) reconstruction of the blurred image 

g prior to image restoration. In a noise-free system, an inverse restoration filter would be
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1.0

0.0
0.0 1.0

F ig u r e  3 .5 : O T F  (H ) 

sufficient to restore the image. T hat is,

U!

F {v i / N u v */N2) =
1 (3.9)

R estoration would be achieved by multiplying the  Fourier coefficients of the blurred image 

w ith the Fourier coefficients of the restoration filter or, equivalently, dividing the blurred 

image by the OTF.

RW1, ^ ]  =  G[uUl/2]F{l>l /Ni,U2/N2) = -jr
G[u t , v2]

H (v i /P \ ,  v-,/P2)
(3.10)

It is easily seen from Equations 3.7 and 3.10 th a t R  is equivalent to S  and thus the inverse 

restoration filter restores the blurred image to th e  input scene (Figure 3.7).

Imaging systems, however, are not noise-free. The discussion following shows th a t in 

practice simply dividing the acquired blurred image by the O TF will boost the  noise th a t is 

present in the acquisition process. The resulting ou tpu t image can be significantly degraded 

by the amplified noise, as shown in Figure 3.8.
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Figure 3.0: OTF blurred (g = s® h)

Figure 3.7: Inverse filter, no noise
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Figure 3.8: Inverse filter, with quantization noise only 

The amplification of the noise can be seen through a  close look a t the equations tha t 

describe the acquisition and restoration process. The blurred image g is formed not only by 

convolution w ith the O TF but also with the additive random noise present in the acquisition 

process. T ha t is, in a C /C  system model

Gtyu  ^2] =  5[iq, i/2 ] H ( v i /N i , V2 /N 2 ) +  e[v 1, ^2] (3.11)

where e is the Fourier transform of the random additive noise array. Using the restored 

image obtained by the inverse filter for this model, gives

k {  , =  S f o , ^ 1 H W , / N u y z / N 2 l _ + _ ,3 12)

which results in

RW 1̂ 2] = 5[i/i, u2] + -r-— 3̂'13̂
H {yx/N uV2/N2)
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The energy present in S  a t higher frequencies is negligible; however, the energy present in 

e is constant at all frequencies for our assumed model o f white noise. Because H  is small a t 

high frequencies, the  noise is amplified causing the restored image to have significant noise 

artifacts.

3.2.2 C /D /C  Model Results

A more accurate model to use for simulation-based restoration studies is the continuous 

input /  discrete processing /  continuous output model (Figure 3.9). Acquisition of an input 

scene consists of sampling the scene onto the detectors of the acquisition device. The 

sampled digital image is discretely defined. Therefore, restoration is a  discrete process.

noise

unagescene samplingformation restoration reconstruction

Figure 3.9: C /D /C  System Model

The Constrained Least Squares filter defined in Section 3.1 is a discrete restoration filter 

defined in the Fourier domain and based on the acquisition filter, the reconstruction filter, 

a  high boost filter component, and the acquisition sample size N\  x -/V2.

By its definition, the CLS filter restores degraded images subject to minimization of a  

mean-square error m etric relative to the entire input scene. The focus is not on specific 

types of scenes such as “star fields” [25] o r individual components of the scene such as 

edge preservation[3, 38, 41]. By its design, the CLS filter restores degraded images while
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suppressing noise am plification.2 First, as a  basis for comparison, in a  noise free system, 

the CLS filter restores the  image as well as the inverse filter (Figure 3.10).

F igure 3.10: CLS filter, no noise

W hen noise is present, however, the CLS filter restores the image (Figure 3.11) w ithout 

significantly amplifying the  noise a t higher frequencies.

3.2.3 CLS Suppression of Noise Enhancement

The suppression of noise enhancement is accomplished in the CLS restoration filter through 

the use of a high-boost filter. The CLS restoration filter,

/ r . . & & < £ • £ • > ( * ! , W2)/[*/l,l*J =  —  -------------12------- —— 2------------ (3.14)
|< M )(w i,w a)| + a ( |C D | )(oji,U2)

Details of th is noise suppression will be presented la ter in th e  chapter.
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Figure 3.11: CLS filter, with noise

reduces to the inverse filter when a  =  0. As a  is increased, energy a t high frequencies (which 

constitutes mostly noise) is suppressed. This can be seen through the 1-D representation 

of the  CLS filter in Figure 3.12. The dashed line represents the CLS filter w ith a  =  0 (or 

equivalently, the  inverse filter). The solid line is the CLS filter w ith a  =  0.2.

6.3

3.8
/(C )

0.0 L
0.5250 1

F igure 3.12: Noise Suppression through High-Boost Filter 

A t low frequencies, where the signal energy is more prominent th an  the noise energy, the
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signal is restored by means of an inverse filter. At higher frequencies, however, where random 

noise can be more prom inent than signal, the energy is suppressed. O ther research[4, 7, 15] 

has been performed to  investigate a means of effectively choosing a  value for a . T hat 

investigation is not explored in this research.

3.3 A Priori Knowledge of CLS Filter Components

In this chapter we have derived the CLS Restoration filter and shown how it can be more 

effective than the inverse restoration filter. The equation for the CLS Restoration filter, 

however, relies upon knowledge of components inherent in acquisition and display. T hat 

is, in  order to com pute the CLS Restoration filter /  one must know the Optical Transfer 

Function (OTF), or H ,  of the acquisition device and the Reconstruction Transfer Function 

(RTF), or D, of the display device. In the next chapter we discuss a  possible means by 

which the Optical Transfer Function of a particular acquisition device may be estim ated.
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Chapter 4

Pre-Sample Filter Estimation

As defined in Chapter 3, the CLS restoration filter requires a priori knowledge of the fre­

quency response of the pre-sample acquisition filter H  and the reconstruction filter D. In 

a  simulation-based environment, these filters would be specified as p a rt of the simulation 

model and used to process the image and  to construct the CLS restoration filter. The 

end-to-end fidelity metric defined in Section 2.5 could then be used to  determine the effec­

tiveness of the restoration filter. To show the effectiveness of the CLS filter using actual, 

acquired digital data, however, requires an  estim ation of the H  and D  associated with an 

actual acquisition and reconstruction device. For the purposes of this dissertation, we will 

focus on the estimation of H .  Note th a t the  estim ation of H  need only be performed once 

per acquisition device configuration.

T he O ptical Transfer Function (O TF) W2) of a  digital acquisition device, such as

a  staring-array system, is the Fourier transform  of the cascaded convolution of the point 

spread functions (PSF) of the optics, detectors, and any other physical features of the 

acquisition process, such as turbulence[9, 67], th a t blur the input scene prior to sampling.

44
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Note th a t convolution is a  shift invariant operation and this shift invariance is possible only 

if  all the staring-array detectors have the same point spread function. Shift invariance may 

not necessarily be true in practice[33, 35, 37, 64], bu t, w ithout this assum ption, the O TF is 

not well-defined and so cannot be estim ated unambiguously. The rem ainder of this chapter 

is a  comprehensive investigation of O TF estim ation for a  particular acquisition device. In 

particular, use of the subpixel technique described in [43, 51] along w ith discussion about 

tradeoffs involved in estim ating the O TF will be presented.

4.1 Filter Estimation Technique

T he first step in estim ating the O TF of an acquisition device is to acquire an image of 

a  “knife edge” slightly inclined relative to the s a m p lin g  grid such th a t the incline spans 

less than  five pixel widths. The slight incline of the knife edge will produce many sampled 

edge profiles; ideally in each edge profile the edge location will occur a t a  different subpixel 

location relative to the sampling grid. A knife edge image, along w ith a  typical horizontal 

(row) edge profile, are shown in Figure 4.1.

I
4 * 4 4 4 4 4 4 4  4 4 * 4 4 4 4 * ' !  

4 4 4 4 4 4 4 4 4 4 4 * 4 4 4 4 4  I
4 * 4 4 4 4 4 4 4 4 4 * 4 4 4 4 4 1****4**4*44*44*4*i
*4e44e^«444*4444< ■
4 * 4 4 4 4 4  4 4 4 4 4 4 4 4  4 -IB 
4 4 4 4 4 4 4 4 4  44  *  4 4 «  4 • II  
4 4 4 4 4 4 4 4 * 4 4 * 4 4 4 4 ' IB 
< .*<.^<. .>4444444444  I I  
4 * 4 4 4 4 * 4 4 4 4 * 4 4 4 4  ■■ 
4 * 4 4 4 4 4 4 4 4 4 * 4 4 4 4 ■ ■  
4 4 4 4 4 4 4  4 4 4 4 4 4 4  44■■ 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 < ■ ■  ■■
4 * 4 4 4 4 * 4 4 4 4 * 4 4 4 ' i B B  
4 * 4 4 4 4 4 4 4 4 4 4 4 4 4 I B B  
4 4  4 4 4 4  4 4 4  4 4 4  44  4'IBB 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  IBB 
444444444444444 III 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 B B B  
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 BBB 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  I B !  
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  BBB 
< 44 44 44 444 444 4< < B B B  
4 4 4 4 4 4 4 4 4 4 4  4 4 4  •'I BBB 
4 4 4 4 4 4  44  44444411  BBB 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 * IBBB

pixel values

F ig u r e  4 .1 : K nife E d g e  a n d  E d g e  P rofile
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Once the knife edge image is acquired, an edge location algorithm  Is used to determ ine 

the subpixel edge location for each edge profile. T hat is, given a  sampled edge profile as 

input, the algorithm calculates a  subpixel edge location as output. As will be discussed 

in  C hapter 5, there are a variety of edge location algorithms, some of which use the entire 

sampled edge profile, while others use a  subset of the values. Regardless of the details of 

the algorithm  used, the input is a  sampled edge profile p[n], n =  0 ,1 ,2 , . . . ,  N  — 1 and the  

ou tpu t is a  real-valued edge location estim ate 7 , 0 < 7 < P ( P  =  N£). as illustrated in 

Figure 4.2.

p[n]

r
0

n

F i g u r e  4 .2 : E d g e  L o ca tio n  E s tim a tio n

Once an  edge location has been determ ined for each sampled edge profile, the profiles 

are aligned based on their edge locations. T hat is, as illustrated in Figure 4.3, a  common 

reference point is chosen and a  composite edge profile is constructed by positioning each edge 

profile w ith its 7  estimate on the common reference point. For the example following, the  

common reference point was chosen to be P /2 . Although there is no fundamental reason 

for this choice, positioning the common reference point a t P /2  allows for the maximum 

possible span of edge profile values which fall in between the high (bright) intensity values 

and low (dark) intensity values.
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p[n]
O <

O <

p[n]

7

p[n\

nr
7

o o o

p[n]

7

P[n]

X X

7

X X X X X X

Pc(x)
Composite

K> IXXD I»©» !»©» 90(0 IXXP 00*0 l>0<D

F i g u r e  4 .3 :  B in n in g  E dge P ro files  to  fo rm  C o m p o site  E dge Profile
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After the composite edge profile is created through alignment of the edge profiles based 

on their estim ated edge locations, the sampled da ta  from the composite edge profile is 

binned based on an  integer-valued bins per pixel parameter p. For the example shown in 

Figure 4.4 the four center pixel widths from 50 sampled edge profiles have been aligned and 

binned based on p =  4 (or 4 bins per pixel w idth £).

Pc( x)

+
7

F i g u r e  4 .4 :  B in n ed  d a t a  in  16 b ins across 4  p ix e ls

T he sampled d a ta  in each bin is then averaged to produce a  “super-resolution” edge profile, 

as illustrated in Figure 4.5. Although this super-resolution edge profile is not noise-free, the 

process of averaging the data  from the initial edge profiles reduces the effects of the noise 

present.

• • • • • •

PcM

• • • • m m
•

•
•

•

<---- --- — > *

n

F ig u r e  4 .5 :  A veraged  b in  valu es  in  16 bins across 4  pixels

The above graph represents the averaged d a ta  for the 4 pixels (16 bins) th a t are closest to 

the center of the “super-resolution” edge profile. The entire super-resolution edge profile
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pc[n] with n  — 0 , 1 , 2 , ,  pN  — 1 (shown in Figure 4.6) represents the estimated line spread

function (LSF) of the acquisition device. This estim ate represents a sampled array with a  

higher sampling density (provided p > 1) than the individual edge profiles.

4.2 Estimating H  From p c

In  the previous section we defined the means by which a  “super resolution” edge pc is 

computed. In this section we will use this sampled edge profile to estimate the O TF H.

4.2.1 Scene Model

Using the c /d /c  system model described in C hapter 2, an  input scene model is defined. An 

ideal unit-step edge function u is defined as

PcM

n

7
F ig u r e  4 .6 : S u p er-R eso lu tio n  E dge P rofile

The three-parameter ideal edge-function
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defines the input scene. The parameters 8, /3, 7  represent the dark background value, the 

bright foreground value, and the edge location respectively, as indicated in Figure 4.7.

P

s{x)
8

0
7

F i g u r e  4 .7 :  Idea l e d g e  fu n c tio n , in p u t scene

T he input scene s can be defined in terms of its Fourier coefficients

5[i/] =  — ((5 — 0)  sin(27ri/7/P) +  (3 sin(27n/))
27TI/

+  ( ( 6  —  (3 )  cosQiri/y/P) + j3  c o s ( 2 t t v )  — 8 ) )  (4-1)
2 tti/

where

1 r pS[i/] =  — I s{x) exp(—i2 irxv/P ) dx  (4-2)
P  Jo

for v  =  0 , ± 1, ± 2, __

From the i-dimensional equivalent of Equation 2.11

i>[u] =  G[u\ 4- d[i/] +  e[v).

If the additive random noise effects are ignored (for now), then

p H  =  S[u]H (u/P )  +  d[i/].

Thus,

H ^ / P )  =  (4.3)S[i/J
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provided

S[u] ?  0.

5[i/] is known from Equation 4.1. Substitu ting pcM  for p[u\, we estim ate H  to be

H { v /P )  =  ^  (4.4)
S[t/J

and, thus, only the effects of aliasing will degrade the estimate. Unfortunately, the effects 

of aliasing tend to degrade the estim ation s ig n if ic a n tly . An alternative to this estim ation is 

to calculate the Fourier Transform of the super-resolution PSF (calculated from the super- 

resolution LSF as q\n\ =  p[n] — p[n — 1]). For the results presented here and in subsequent

chapters, the estim ation of the O T F  is calculated as the Fourier T r a n s fo rm  of the super­

resolution PSF.

4.2.2 H  Shape and Subsampling

For all simulation results presented in this chapter we chose to use the following O TF Model

H (u )  = e x p ( - ( u / a ) 2) (4.5)

where a  is a real-valued, free param eter tha t defines the effective w idth of the  PSF h. For 

example, Figure 4.8 depicts the relationship between a  and £ (the distance between adjacent 

detectors, or ‘intersam ple’ distance).
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a  =  0.6

a = 0.4

a  =  0 .2

F i g u r e  4 .8 :  V arious h  g rap h s  re la tiv e  to  a

4 .2 .3  H  E s t im a te  (a  =  0.2)

Figure 4.9 shows the estim ate of H  with a  = 0.2 and a  sampling density of N  =  32. That 

is, the input scene S  was filtered by the acquisition filter H  (a =  0.2) and sampled 32 times 

w ithin the period P. The resulting sampled array pc was then divided by the input scene 

to produce the OTF estim ate. At higher frequencies (u > 20) the aliased noise becomes 

more prominent than the signal energy and, thus, the estim ate breaks down.
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H {u /P )

1-0 r * . 

0.8 

0.6 

0.4 

0.2 

0

Nyq32 - Nyquist FVequency

i
8 16

i
24

v
32

Figure 4.9: H  Estimate, a  = 0.2

4.2.4 H  Estimate (a =  0.4)

Figure 4.10 shows the estim ate of H  w ith a  = 0.4 and sampling densities of iV =  32 (V ) 

and N  =  64 (‘o’). As a  increases (or equivalently the width of h decreases) the effects of the 

aliased noise degrade the estim ate a t lower frequencies. Thus, by subsampling (N  =  64) 

aliasing effects can be suppressed out to higher frequencies.

1.0

0.8

0.6

0.4

0.2

0 i
0

N yq Z2
N yq&4

i
8 16

—°0oPoono^ nan °n°_______ _̂
24 32 40 48 56

- l  v  
64

Figure 4.10: H  Estimate, a  = 0.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. PRE-SAM PLE FILTER ESTIM ATION  54

4 .2 .5  H  E s t i m a t e  ( a  =  0.6)

Figure 4.11 shows the estim ate of H  w ith a  =  0.6 and sampling densities of N  =  32 (V), 

N  = 64 ( ‘o’) and N  =  96 ( ‘a ’) . Once again, increasing a  causes the aliased noise to  degrade 

the estimate a t lower frequencies. Increasing the sampling density suppresses the aliased 

noise out to higher frequencies.

H {y /P )

1.0

0.8

0.6

0.4 -

0.2
A  A

0
0 4816 32 64 80 96

Figure 4.11: H  Estimate, a = 0.6

4.3 Bins Per Pixel (Noise vs. Nyquist Frequency)

An im portant tradeoff exists when estim ating the O TF of an  acquisition device using the 

technique described in the previous section. Given the possibility of noise degradation 

within the knife edge image, it is prudent to use many sampled d a ta  values per bin when 

computing the super resolution edge profile. However, for a  fixed num ber of sampled edge 

profiles from the acquired k n ife  edge image, averaging more d a ta  per bin would require 

decreasing p.
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In  Section 4.1, p =  4 was used. Reducing p to 2 and using the same composite data, as 

shown in Figure 4.12,

Pc(ar)

F i g u r e  4 .1 2 : B in n ed  d a t a  in  8 b in s ac ro ss  4 pixels

produces the estimate of the LSF in Figure 4.13 a t its center-most 4 pixels.

PcM

n

F ig u r e  4 .1 3 :  A veraged  b in  values in  8 b in s across 4 pixels

Although averaging more sampled data  per b in  will reduce the effects of noisy da ta  on the 

estim ated LSF, reducing p  decreases the num ber of estim ated LSF data  values. Accordingly, 

as shown in the previous section, the extent to  which the O TF can be estimated beyond the 

N yquist frequency decreases. Thus, an optim al value of p must be determined such th a t 

noise is suppressed yet a maximal O T F estim ate is achieved.
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4.4 Data Density Along Frequency (w) Axis

Based on the discussion in the previous section suppose it is concluded th a t more sampled 

data  from the super-resolution edge should be used to extend the estim ate further beyond 

the Nyquist frequency while still keeping noise effects to a  minimum. In support of this 

supposition we might conjecture that simply padding samples of low intensity data  to the 

low intensity side of the super-resolution edge and padding samples of high intensity data  

to the high intensity side of the super-resolution edge will extend the estimation of the O TF 

to higher frequencies. T hat is, given the data  from the super-resolution edge in the previous 

section, shown in Figure 4.14,

p[n]

n

Figure 4.14: S uper-R eso lu tion  E dge P ro file

and padding low intensity and high intensity data, indicated by the o, as illustrated in Fig­

ure 4.15, we might conjecture tha t the estimate of the O TF will extend to higher frequencies 

than  an  estim ate w ithout the padded data.

This conjecture is false. Instead, simply including padded sampled d a ta  to the super- 

resolution edge produces an  O TF estimate which c o n ta in s  more d a ta  points within the same 

frequency range. T h a t is, this technique will simply refine the O TF estimation by having 

a higher density of values along the frequency axis. In the example shown, data  has been
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I O O O O O O O O O O O O O O O O

p[n]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 n

F i g u r e  4 .1 5 :  S u p er-R eso lu tio n  E d g e  P ro file  w ith  P a d d e d  D a ta

padded so that the num ber of samples has doubled. The effect of doubling the number of 

samples can be seen in Figure 4.16 where the  «’s represent the original data points and the 

o’s represent the additional d a ta  values produced by extending the super-resolution edge 

through padding of low intensity and high intensity values.

1.0

0.8

0.6

0.4

0.2

0 I
0

N yq Z2

I
8 16 24

I
32

F i g u r e  4 .1 6 : H  E s t im a te  w ith  P a d d e d  D a ta

The algorithm used to produce the OTFs illustrated  in this chapter is shown in Section 4.5. 

Given an acquired image containing a knife edge, the algorithm assumes that a  rectangular 

subset of the acquired sampled data  is used. Thus the param eters l e f t  and r i g h t  refer to 

the indices of the left and right edges of the rectangular subset w ith respect to  the acquired
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image as a  whole. For estimating the O TF in the x \  direction, these param eters would be 

replaced by to p  and bottom .
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4.5 Algorithm

void mainQ

long rovNum, colNum;
long **input_pic; // input scene containing edge profiles 
long edge.profile[right-left]; // individual edge profile 
long up.ind; // index of sample just to the right of 

// the estimated edge location 
// summation of data values in each bin 
long binned_data[NumBinsPerPixel* (right-left)] ;
// number of data values in each bin
long binned.count[NumBinsPerPixel*(right-left)];

for (rovNum = 0; rovNum < NumRovs; rovNum++)
■C

// Get sampled edge profile
for (colNum = left; colNum < right; colNum++)

edge.prof ile [colNum-lef t] = input_pic [rowMum] [colNum] ;
>

// Estimate the edge location
gamma_hat = EstimateEdgeLocationC edge.profile );

// Bin the line based on the edge location
Binlndex = CommonReferencePoint - (long)(NumBinsPerPixel * gamma.hat) 
for (i = 0; i < right-left; i++)

binned.data[Binlndex] += edge_profile[i]; 
binned, count [Binlndex] ++;
Binlndex += NumBinsPerPixel;

>
>
AverageBinsO ; // binned_data[i]/binned.count [i]

// Computes LSF (super-resolution edge profile)
ComputePSFO ;
FourierTransformPSFO ; // Computes OTF
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4.6 Alternative Approach to OTF Estimation

There are alternatives to the O T F estim ation algorithm presented in this chapter[19, 34, 

49, 54, 60]. One alternative to the algorithm  described in Sections 4.2-4.5 is presented by 

Tzannes and Mooney[62]. Tzannes and Mooney also start w ith am acquired image of a  knife- 

edge. An estim ate o f the edge location for each sampled edge profile is computed. The edge 

profiles are aligned to  the common reference point based on their estim ated edge location. 

At this point, however, the algorithms differ. Tzannes and Mooney fit a sum m ation of three 

Fermi functions to the  composite edge profile.

F( x)  = d  + y Z  pT -----
"  exp[(x -  bi)/ci] +  1

This function, F( x) ,  is used as the estim ate of the line spread function of the  acquisition 

device. The 10 free param eters are determ ined by a non-linear least squares fit to the 

sampled composite edge profile. The function F( x)  is then differentiated to produce a  point 

spread function. T he  point spread function is sampled and the sampled data  is processed 

through a  direct fourier transform  and scaled -to produce the O TF estimate.

4.7 Fitting a Model Function to the Estimate

Regardless of the technique used to  estim ate an  O TF, the resulting estim ate will be discrete 

valued. To be used in a  restoration filter, it is conventional to fit the estim ated O TF to 

a continuous function. Figure 4.17 shows the  acquired image of a  square th a t has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. PRE-SAM PLE FILTER ESTIM ATIO N 61

rotated slightly. Using 50 sample rows and focusing on the left edge of the square, the 

technique described in Section 4.1 is performed.

128x128

H(w 2) =  exp(-(bj2/a)2)

a = 1.2

0 21 3
l /2 f

F igure  4.17: Acquired Square Image and Estimated H  in x2 direction

T he estim ated O TF of the  device which acquired the image of the square is shown by 

the graph on the right (indicated by the «’s). A model function is then fit to the estimated 

OTF. T he solid line in  Figure 4.17 represents the model used for this acquisition device. 

The gaussian function, with one free param eter a  =  1.2, closely represents the estimated 

OTF d a ta .1 This example represents an estimation of the  O TF of the acquisition device in 

the X2  direction. To produce a  complete representation of the O TF, an estimation in the 2:1 

direction should also be performed using the top or bottom  edge of the square. The model 

functions for each direction could then be combined to produce a  complete 2-dimensional 

OTF estim ate, H (071, 0/2)-

‘A lthough a  gaussian function is used here, o ther model functions, such as sine, are valid.
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4.8 H  Is 2-dimensional

In Section 4.1, we described a technique by which one could determine a  1-dimensional esti­

m ate of the OTF of a  particular acquisition device. The OTF, however, is a 2-dimensional 

function having both x \  and X2  components[66]. If we assume that the O TF is circularly 

symmetric , then estim ating the OTF in one direction is sufficient for defining the model 

function. That is, given the  model function estim ating the OTF in one direction

H (cj) =  exp(—(w /a )2),

the circular version of the model function can be obtained.

=  e x p (- (^ /a r f  +  a / | / a ) 2)

A necessary, but not sufficient, condition for the assumption of circular symmetry is for 

the estim ate of the O TF in the x\  direction to be equal to the estim ate in the x? direction. 

Focusing on the upper edge of the square in the acquired image shown in the previous 

section, the same estim ation technique is perform ed to generate am estim ate of the O TF in 

the Xi direction, as illustrated in Figure 4.18.

In this particular case it appears as though the estimates in bo th  directions are the 

same. These two estimates may not always be equal, however, particularly if the detectors 

are not perfectly square. If the detectors are rectangular, yet not square, then the frequency 

response in one direction will differ from the frequency response in the orthogonal direction. 

In  the  case of differing responses with respect to  orthogonal directions, it is usually assumed 

th a t the O TF is at least separable. T hat is, given th a t the estimate of the O TF in the xi
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128x128

H(uii) = exp(—(o»i / a )

a = 1.2

QsW l]

-

0 2 31
1/ 2?

Figure 4.18: Acquired Square Image and Estimated H  m x\ direction

direction is

H ( u  i) =  exp(—( c ^ /a i ) 2)

and tha t the estim ate of the O T F  in the X2  direction is

H ( uj2) =  exp(—(o;2/ a 2)2)

one can assume th a t the 2-Dimensional estim ate of the O TF is

H(cju uj2 ) =  exp(—(cui/a1)2)ex p (—(cj2/ a 2)2) (4.6)

Once again, a necessary, but not sufficient, condition for the OTF to be separable is th a t the 

estim ated O TF along the 45 degree axis agrees with the separable equation (Equation 4.6). 

In order to test this theory, a  knife edge must be acquired which is slightly inclined from 

a 45 degree angle. Using this type of input scene and sampling along a diagonal produces 

edge profiles. It is im portant to  note tha t if a  comparison is to be done between the  x i  or
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X2  directions and the 45 degree sampled edge profiles, it must be taken into consideration 

th a t the intersam ple distance has changed from ?i or £2 to +  ?2-

Using the technique described in this chapter on an image of a square th a t has been 

ro tated  45 degrees, the O TF is estim ated in the diagonal direction. Edge profiles for this 

estim ation were formed by using samples along the  orthogonal 45 degree angle to the knife 

edge. After scaling by a factor of yC i +  £2 due to the increased intersam ple distance, it 

can be seen in Figure 4.19 that the estim ated 1-Dimensional O TF in the diagonal direction 

has a  strong correlation to the estim ates in the x i  and X2  directions.

H(ud) = exp(-(u>d/a ) 2)

l \
I

- n  — 1 ud
1 2  3

1/ 2?
Figure 4.19: Acquired Square Image and Estimated H  in diagonal direction

From the results presented, it can be strongly argued tha t the acquisition device repre­

sented here has a  circularly symmetric OTF.

4.9 Importance of Edge Location Estimation

In  this chapter we presented a step-by-step process by which the Optical Transfer Function 

of a  digital acquisition device can be estim ated. T he ability to accurately estim ate an OTF 

relies heavily on the estimation of the edge location from sampled edge profile arrays. We
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presented this estimation as a generic equation. T hat is, from an input of sampled edge 

profile d a ta  an  edge location estim ate 7 is calculated. In the next chapter we discuss various 

algorithms which can be used to calculate the edge location estimate.
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Chapter 5

Edge Location Algorithms

A critical step in estimating the optical transfer function of a scene sampling device is the 

com putation of the edge location for each representative edge profile taken from the “knife 

edge” input scene. Park and Idema[43] describe three possible algorithms to estim ate the 

edge location for a  given (sampled) edge profile. In  this chapter we expand on their findings 

and discuss various additional algorithms which can be used to estim ate the edge location 

of a  sampled edge profile. A lthough “edge detection” represents a different research interest 

than  “edge location,” there is some overlapping theory. Various studies have been performed 

using edge profile data [10, 26, 40, 48, 68] and occasionally localization is investigated in 

conjunction with edge detection[5, 6, 31, 61].

The algorithms presented here are grouped into four categories depending on how the 

d a ta  from the edge profile are used. “Global” algorithms use all the data  from the edge 

profile to  estim ate the edge location. “Local” algorithms use a  subset of the  edge profile 

to  estim ate the edge location. W ithin each of these two categories we have defined two 

types of algorithms. Algorithms which use the edge profile directly are labeled Edge Spread

66
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Function (ESF) algorithms. Algorithms which use the discrete differentiation of the edge 

profile are labeled Point Spread Function (PSF) algorithms.

5.1 System Model

5.1.1 Scene Model

The ideal edge profile function defined in Section 4.2.1 is used as the scene model for all 

of the result presented in this chapter. As in Section 4.2.1 the three-parameter ideal edge- 

function is defined as

s(x) = 8  + ( 0  — 8 )u(x — 7 ) 0 , if x  > 7 
8 , if x  <  7

and is depicted in Figure 5.1.

s(x)

P

8

0
7

F igure 5.1: Ideal Edge Profile

The algorithms presented in this chapter a ttem pt to estim ate the edge location 7  given a 

noisy, blurred, sampled version of s(x).  In some of the algorithms presented, an estim ation 

of 7  requires an estim ation of 8  and 0 .
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5 .1 .2  P S F / E S F  M o d e l

If the ideal unit-step edge function u  is used as the input scene to the c /d /c  system model, 

the  resulting image function H  =  u ® /i  defines the ESF of the imaging system[43]. This 

ESF is defined by

H (x)  =  f  u (x  — x ')h (x ')  dx' = f  h(xr) dx' 
J— oo J—oo

—  O O  <  X  <  O O .

Because the PSF h  is non-negative, the ESF H  is monotone increasing. Additionally, the 

PSF  is the derivative of the ESF or

d H (x )  X— ----- =  h{x) — oo <  x  < oo.ax

It is common to assume th a t the PSF is normalized so that

f  h(x) dx =  1 (5.1)
J  — OO

and symmetric abou t x  =  0 so tha t

f  xh{x) dx  = 0 and H (0) =  f  h(x) dx  =  1/2. (5-2)
J —oo J —oo

Consistent with the  c /d /c  system model, given the three-param eter ideal edge function 

model

s(ar) — 5 + (0 — S)u(x — 7 ),

the corresponding blurred (pre-sampled) image function g =  s  ® h is

g(x) =  f  s (x  — x ')h(x ')  dx'
J — OO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. EDGE LOCATION ALGORITHMS 69

=  S f  h(x') dx ' + (P — 6 ) f  u(x  — 7  — x ')h (x ')  dx'
J —oo J —oo

= 8  + (ft — 5)H (x  — 7 ) — 00 < x  < 00.

For the purposes of results presented in this chapter, we chose to define the pre-sample 

PS F/E SF component of the c /d /c  system model as the one-param eter Gaussian PSF

h(x) = — exp(—7rx2  /  a 2) a — 00 < x  < 0 0 .

The corresponding ESF model is

H (x )  =  &{>/2nx/ a) — 00 <  x  < 00

where <&(-) is the Gaussian cumulative distribution function defined by

$(z) =  -7=  f  exp(—<2/ 2) dt
V J —oo

— 00 < z  < 0 0 .

As shown in Figure 5.2, the real-valued parameter a  > 0.0 is related to the width of the 

PSF or, equivalently, the spread of the ESF.

1 / a

h(x) PSF

—a  0.0 a

H (x)

1.0

ESF

0.0
—a  0.0 a

Figure 5.2: PSF and ESF graphs
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5 .1 .3  N o is e  M o d e l

As w ith [43], the real-valued image function g =  s ® /i,

70

g(n)  =  6 +  — 8 ) H ( n  — 7 )

is sampled a t n  =  0, ± 1, ±2 , —  Due to  random noise error, including quantization error, 

present in the acquisition process the resulting integer-valued image sequence p is defined 

by the equation[43]

p[n] =  [s(n) +  <f>[n\ +  0.5J n  =  0, ±1 , ± 2 , . . .

where the noise sequence <f> represents real-valued m easurem ent error prior to quantization. 

The [(-) + 0.5J function models the real-to-integer conversion by rounding.

Independent realizations of a N orm al (0, cr) random  variable w ith mean zero and stan­

dard  deviation a  >  0.0 defines the measurement error model. Given the pre-quantization 

noise sequence <f>, the noise sequence e defined by

e[n] =  p[n] — g(n)  n  = 0, ± 1, ± 2, . . .

is used to characterize all simulation results[43]. Specifically, the signal-to-noise ratio (SNR) 

is defined as

SNR =  —-
2 (Te

where cre represents the standard deviation of the noise sequence e.
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5.1.4 System Simulation

A sim ulation based on the model presented in the previous sections requires the specification 

of the real-valued parameters 6 , (3, a , and  a. For simulation purposes, the image sequence 

p  and noise sequence e are finite -  not infinite as defined in the previous section. Therefore, 

bo th  sequences are assumed to be IV-point sequences where IV is an even integer. Thus, 

the  pixel range for each of these sequences is n  = 0 ,1 ,2 , . . . ,  N  — 1. T he remaining free 

param eter 7  represents the edge location and will be estim ated by the algorithms presented 

in  this chapter.

A lthough the param eter 7  is unknown, an intelligent selection of the sampled region (by 

visual inspection of the input scene, if necessary) can position 7 close to the center of the 

sequence. T hat is, 7  will be close to (N  — l ) /2 .  Given possible variations in SNR and a , we 

allow for a  ±1.5 pixel uncertainty in the edge location so tha t (IV—4)/2 <  7  <  (iV+2)/2[43]. 

Consistent with the assumption of the edge location, a  U niform ^0,1) random  number 

generator is used to generate values of 7 . T h a t is, 7  is computed as (N  — 4)/2  plus the sum 

of three independent U niform(Q , 1) random  variates. This computation guarantees that 

the expected value of 7  is (IV — l) /2  and the standard  deviation of 7  is 0.5.

The image sequence p and the associated noise sequence e are simulated as indicated.

7  =  (U niform (0 .0 , 1.0) +  U n ifo rm (0 .0 , 1.0) +  Uniform(0.0, 1.0) +  ( N  — 4)/2);
for (71 =  0; n <  JV; n + + )
{

9  =  5 +  (0 -  5) x H (n  -  7 );
<f> =  Norm al(0.0, cr);
P[n] =  19 +  0  +  O.5J; 
e[n] =  p[n] -  p;

}

The function U n ifo rm (0,1) represents a  random  number generator. The function N orm al(0, a)
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represents a  random variate generator.

72

5.1.5 Ensemble Simulation

In a  simulation environment, all system parameters and components, including the edge 

location 7 , are known. In practice, however, most param eters and components can only be 

estim ated. Thus, in order to ensure tha t an edge location algorithm is robust and accurate, 

it m ust be presented with a variety of edge profile inputs which vary in signal- to-noise ratio 

and a. The accuracy of the algorithm can then be based on the average error incurred 

across all presented input edge profiles.

Consistent w ith the generic algorithm presented in the previous section, an ensemble of 

image sequences is generated. T he edge location algorithm computes an estimate 7  for each 

image sequence. The accuracy of the algorithm is based on the two statistical metrics,

E [7  — 7] =  estimator bias

and

y /E [ { y -y )* ]  =  estim ator root-mean-square error (RMSE) 

where E[-\ represents the expected value (average) over the ensemble of edge sequences [43].

W hen properly defined (see Section 5.2), all sub-pixel edge location estimation algo­

rithm s presented are unbiased. Therefore, all comparison results presented will be based 

solely on the estim ator RMSE.
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5.2 Half-Pixel PSF Algorithm Bias

The ./V-point image sequence p  represents the noisy, sam pled data  from the edge profile. 

Some of the algorithms presented in this chapter, however, rely on the discrete differentiation 

of the  edge profile. For these algorithms, the sampled edge profile d a ta  m ust be discretely 

differentiated prior to estim ation of the edge location. We chose to use the convolution 

kernel [1, —1] to differentiate the sampled data. Therefore, if Figure 5.3

p[n]

i i i i r
7e

F i g u r e  5 .3 : S a m p le d  E dge P ro file  D a ta

•  •  •

I I

represents the sampled edge profile data, then Figure 5.4

q[n]

i i i i r
• •

i r  
Id

i -------- 1-------- 1-------- 1

F i g u r e  5 .4 : D isc re te ly  D iffe ren tia ted  E d g e  P ro file  D a ta

is the corresponding, discretely differentiated sampled edge profile da ta  where q[n] = p[n] —
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p[n — 1]. By overlapping these two figures in Figure 5.5, one can easily see tha t this 

convolution kernel introduces a  half-pixel bias in the estim ation of the edge location.

T
I
<4 | o

7e Id
Figure 5.5: Half-pixel Bias Depiction

Therefore, all algorithms presented in this chapter th a t rely on the sampled PSF data  will 

subtract off one h a l f  of the intersample distance from the estim ation of the  edge location in 

order to correct for this bias. The next section provides a  table of the a l g o r i t h m s  presented 

in this chapter followed by a more in dep th  discussion of each a lg o r i th m .
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5.3 Edge Location Algorithms

75

Type Label Description
Global PSF GPSF1 Discrete Differentiation: Inspired by calculus, this algorithm esti­

mates the edge location by simple discrete differentiation followed 
by a search for a  maximum.

GPSF2 Discrete Differentiation with Means: The previous algorithm  re­
lies heavily on two independent da ta  values only, making it highly 
susceptible to  noise. This algorithm represents an a ttem pt to 
lessen the im pact of the noise while still holding to the theory of 
GPSF1.

Local PSF LPSF1 Quadratic Interpolation: Using the values from q[m — l],g[m], 
and q[m +  1] (where q[m] is the largest PSF value) a quad ra­
t i c  function is uniquely defined. Ifrom this quadratic equation, 
a maximum value is computed and used as the edge location 
estimate.

LPSF2 Weighted Mean (Center of Mass): The expected value (or center 
of mass) is defined by q[m — 1], <jr[m], and q[m + 1], where the 
lesser of q[m — 1] and q[m -+- 1] is used as the lower bound. A 
weighted m ean value is used as the edge location estimate.

LPSF3 Weighted Mean (Center of Mass) Revisited: This algorithm is a 
repeat of the previous algorithm with the lower bound equal to 
zero.

Global ESF GESF1 Moment Matching: This algorithm attem pts to estim ate the edge 
location by matching theoretical statistical momemts (mean, 
variance, skewness) to their corresponding experimental (sam­
pled) statistical moments.

Local ESF LESF1 Linear Interpolation: Estim ation of the edge location is calcu­
lated by interpolating a  line between two data  values and re­
turning the edge location estim ate as the point a t  which the line 
crosses an average intensity value.

LESF2 Cubic Convolution: Four consecutive ESF values are used to 
construct a  spline between the inner two data  values. A binary 
search is performed to  determ ine the location a t which the spline 
crosses an average intensity value.

LESF3 Hermite Spline: This algorithm also uses a  spline to estim ate the 
edge location. The Hermite Spline computed is based on two 
ESF data  values and their respective first derivative. A binary 
search is performed to  determine the location a t which the spline 
crosses an average intensity value.
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5.3.1 Global PSF Algorithms

The algorithms presented in this section use the entire sampled edge profile d a ta  to estim ate 

the edge location.

5.3.1.1 Approximation Using Discrete Differentiation (GPSF1)

The motivation for this a lg o r i th m  comes directly from calculus. Calculating the edge loca­

tion of a continuous ESF function requires differentiation of the edge function followed by 

a search for the maximum. Using the definition of the  edge described in Subsection 5.1.2

g{x) = 6  + ( P -  6 )H (x  -  7 )

and its corresponding derivative

g'{x) = (0  — 5)h(x — 7 ),

the com putation of the expected value of g'{x) is

xg'(x) dx  =  - - • =  (/3 — <5)7 +  (j8 — 5) zh(z) dz

where 2 =  2 — 7 . From Equation 5.2

Thus,
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Also

f  g'{x) dx  ~  (/3 — 8 )
J — OO

and thus the edge location estim ate is based on the centroid equation

*g'(x) dx  (0 -  8 ) j
f~ oo9 ' ( x ) d x  ( P - 8 ) =  7 - (5-3)

As stated  previously, Equation 5.1 results from the assumption of a continuous ESF 

function. However, the data acquired from the edge profile are discrete. An equivalent 

version of Equation 5.1 which accounts for discrete d a ta  is 1

w  =  ( M )
JV E n = l  9 l n i ^

where £ represents the intersample distance. Simplification of Equation 5.4 results in the 

following:

-y/F =  En=~il n(p[n] - p[n -  1]) _  1 =  /  p[N  -  1] - p  \  1
E ^ W - p t n - l ] )  2 U * - 1 ] “ P[0]J 2 (5'5)

where

1 rf~ l 
P =  x  £  pH -

n = 0

Simulation confirms tha t this (bias-corrected) estimator is unbiased. One interesting feature 

of this algorithm is its apparent insensitivity to the w idth of the edge (a ). Due to the

1 Recall th a t  g[n] =  p[n] — p[n — 1] for n  =  1 , 2 , . . . ,  N  — 1 an d  th e  1/2 bias correction is due  to  th e  
convolution of th e  data .
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algorithm 's reliance on the accuracy of p[0] and p[N — 1] and the possibility of these values 

being corrupted by the random noise in h e r e n t ly  present, however, it generally produces 

poor results even when SNR is high. This indicates th a t even though the theory was sound 

in the continuous case, the model tends to break down when applied to discrete data.

Figure 5.6 shows the root mean square error of this algorithm based on a  variety of 

input scenes. Each algorithm in this chapter was presented with the same input scenes. 

Various values of a  (or edge width) were used ranging from approximately 0.5 to 2.0 pixel 

w idths. In addition, 5 levels of SNR were used: 8 (indicated by V), 16 (indicated by ‘o’), 

32 (indicated by ‘a ’) ,  64 (indicated by V ), and 128 (indicated by ‘ x ’ ) .  The results of each 

algorithm  will be shown for comparison. The basis for comparison is the RMSE between 

the estim ate produced by the algorithm and the actual edge location.

3.0 r

2.0

R M S E

1.0

0.0

A  A  A A A A-

0.5 1.0 1.5 2.0
a

F ig u r e  5 .6 : Discrete Differentiation Algorithm RMSE Results

Since the problem with this algorithm arises from the reliance on the accuracy of p[0] 

and p[N — 1], perhaps a  modification can be made to make the algorithm more insensitive 

to noise. This observation prompted the next algorithm presented (GPSF2).
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5 .3 .1.2 A p p ro x im a tio n  U sin g  D isc re te  D iffe re n tia tio n  w ith  M e a n s  (G P S F 2 )

T he motivation for this algorithm is based on the obvious sensitivity of the previous al­

gorithm  (GPSF1) to  noise. If the  sensitivity to noise can be decreased then perhaps the 

theory behind the design of the algorithm , i.e., the relationship to a  continuous system and 

the com putation of the  maximum value of the  discrete derivative, will be more influential 

and  result in a  reduced RMSE. W ith  this in mind, the previous equation used to calculate 

7,

w =  (  P l N - l j - p  \ 1
W  V p [JV -1] - p ( 0 ] j  2 ’

is altered slightly.

The problem w ith  the previous algorithm came from the possibility of noise corrupting 

the first (p[0]) or last (p[N — 1]) values in the edge profile sequence. Because the equation 

to calculate 7  relies heavily on the accuracy of these two values it would be expected 

th a t the algorithm would produce poor results when SNR is low. Thus, in an attem pt to 

compensate for this sensitivity to noise, the averages of the upper and lower intensity values 

are computed and used instead.

We define the  following quantities

1 K ~ l . 1 N ~ l
S =  — ^ 2 p[n) and & = — p[n]n=0 K  n=N-K

where K  is an inpu t param eter chosen so th a t the N  — 2K  d a ta  values in the middle of 

the input sequence represent all of the edge pixel values and the K  d a ta  values at each end 

of the input sequence only contain the high intensity and low intensity background pixel 

values, as shown in Figure 5.7.
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p N

255

0

S

0 r
0

n
K - I  N - K

F igure  5.7: Representation of K  in Edge Profile Data

N  -  1

Using these defined quantities, Equation 5.3 is changed to

< 6 - 6 >

Simulation confirms th a t this estim ator is unbiased. In addition, this modification of 

the previous algorithm produces more accurate results, as indicated in Figure 5.8.

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.5 1.0 2.01.5
a

Figure 5.8: Discrete Differentiation with Means Algorithm RMSE Results

However, when compared to  some of the other algorithms presented here, th is algorithm 

does not perform as well.
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5 .3 .2  L o c a l P S F  A lg o r i th m s

The algorithms presented in this section use a subset of the sampled edge profile d a ta  to 

estim ate the edge location.

5 .3 .2 .1  Q u a d ra t ic  In te rp o la tio n  (L P S F 1)

The m otivation for this algorithm is that the first derivative of the (continuous) image 

function g = s ® h  is a multiple of the PSF. T hat is,

g'(x) = ( 0  -  8 ) h ( x - ' y ) .

If we assume th a t h(x)  has a unique maximum a t x  =  0 then the function g' has its 

m aximum at x  = 7 . T hat is, the subpixel edge location 7  can be found by maximizing 

g'{x). In  practice, however, the function g is unknown; what we know instead is the Ap­

point sequence p — a noisy, sampled representation of g[43]. The local quadratic PSF  

interpolation algorithm deals with this problem by using the (N  — l)-point q sequence. A 

search is performed on the sequence q for a m a x im u m  to find the approximate location of 

7 and local quadratic interpolation is used to refine the location estimate as illustrated in 

Figure 5.9.

To be specific, let m  be the pixel for which q[m\ is largest. If there are several such pixels, 

the pixel closest to (JV — l)/2  is selected. A quadratic polynomial is then uniquely defined 

by the three pixel values q[m — 1], q[m\. and q[m +  1]. The location of the maximum value 

of this quadratic polynomial is determined by standard  calculus techniques; the result is
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q[n\

•  •  • •

r
0

n
7 +  0.5

Figure 5.9: Quadratic Interpolation

N  -  1

a  biased estimate of the subpixel edge location estimate. If the half-pixel bias is removed, 

com putation of the estim ated edge location is based on the equation

7 /£  = m  +
q[m +  1] — q[m\

2 q[m] — q[m +  1] — q[m — 1]
(5.7)

Simulation confirms th a t this (bias-corrected) estim ator is unbiased, provided the  PSF has 

a  unique m a xim um  at X  =  0.

Because this algorithm depends on differencing noisy data, it is intuitive th a t this algo­

rithm  may perform poorly if the SNR is low. Furthermore, if the PSF width is not large the 

algorithm  may perform poorly because the quadratic interpolation will not be appropriate.

As shown in Figure 5.10, both  of these conjectures are true. The algorithm performs 

poorly when SNR is low. Also, as the PSF width (a) decreases, the RMSE increases.

5.3.2.2 Weighted Mean (Center of Mass) (LPSF2)

T he motivation for this algorithm is s im ila r  to the Local Quadratic PSF Interpolation 

algorithm. Perhaps finding the center of mass of the three internal PSF points will produce
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F igure 5.10: Quadratic Interpolation Algorithm RMSE Results 

a  be tter estim ate than  fitting a  quadratic  to them. Using the points q[m — 1], q[m\, and 

q \m + 1] where m  is the pixel for which g[m] is the largest, the edge estim ate 7  is calculated. 

This algorithm , taken from Seitz[56], uses the smallest of the three values as a  lower bound 

on the com putation of the center of mass.

q[n]

q[m]

q[m -  1]:

q[m +  1]

-n
m  — 1 7  m  m  -F 1

Figure 5.11: Center of Mass Calculation

The calculation of the center of mass of the  region defined by the shaded area in Figure 5.11 

is

- /c _  (m  ~  1)g[m ~  1] +  m g N  + ( m +  1 )q[m +  1]) 1
q[m — 1] +  q[m] +  q[m +  1] 2

However, since Seitz chose to make the  smelliest of the three values the lower bound, the 

equation to calculate the edge estim ate is based on the center of mass defined by the  shaded
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si™ .

q[™ -  i l ; :

q[m +  1]

771 — 1 771 +  1

F i g u r e  5 . 1 2 :  C e n t e r  o f  M a s s  C a lc u la t io n ,  s m a l l e s t  q v a lu e  lo w e r - b o u n d

The area of the shaded region is calculated as

„ . _  (m — l)(g[m — 1] — q[m +  1]) +  m{q[m] — q[m +  1]) 
7  (q[m -  1] -  q[m +  1]) +  (q[m] -  q[m +  1])

1
2

or

7 / ^  =  771 +
q[m +  1] — <7 [771 — 1] 1

2q\rn +  1] — 9 (771] — q[m — 1 ] 2

Thus, taking into consideration tha t either 9 [771 — 1] or 9 [771 +  1] might be smaller, or tha t 

they may be equal, the following equation is used to determine the edge estimate.

7 / f  =

qfm — 1] — ofm  +  1] 1
m  +  2g[m +  1] — g[Tre] — q [ m  — 1] ~  2 1 +  1] < " [ m  ~  11
m  +  <l[m  M ^ * jf q[m  +  1] > q[m — 1]

2 q[m — 1] — q[m} — 9(771 +  1] 2
77i — if q[m +  1] =  9(771 — 1]

(5.8)

Simulation confirms th a t this (bias-corrected) estimator is unbiased. Figure 5.13 shows, 

however, th a t this estim ator is most accurate when a  is approximately 1.0. This estimator 

decreases in accuracy as a  increases and SNR decreases.
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F ig u r e  5 .1 3 : C e n te r  o f  M ass A lg o rith m  RAISE R esu lts

5.3.2.3 Weighted Mean (Center of Mass) Revisited (LPSF3)

This algorithm  is an extended investigation prom pted by Seitz’s algorithm  presented in the 

previous subsection. Once again, the algorithm uses the largest value of the PSF sequence 

q and its two nearest neighboring values to calculate the center of mass. Seitz’s a l g o r i t h m  

uses the smallest of these three values as its lower bound when computing the edge estimate. 

The difference between this algorithm and the previous algorithm is th a t the lower bound 

used for this algorithm is 0. Thus, 7  is calculated as the center of mass of the shaded region 

illustrated in Figure 5.14.

q[m\

q[m -  1]
..............4

................. j 1

9  b71 +  1]

----------- Li_ i
771— 1 7  TTl 771 -f - l

F ig u r e  5 .1 4 : C e n te r  o f  M ass C a lc u la tio n , zero low er-bound

The theory and most of the computation are identical to the previous algorithm. The 

equation used to determine the edge estimate, however, is slightly different. The equation
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used for this algorithm is

86

or

„ . (m  — l)<7[m — 1] +  m q[m\ + (m  + 1 )q[m + 1] 1
^  q[m — 1] 4- q[m] -F q[m +  1] 2

i H  =  m  +
q[m +  1] — q[m — 1] 1

q[m — 1] +  q[m\ +  q[m +  1] 2 ’ (5.9)

Simulation confirms th a t this (bias-corrected) estim ator is unbiased. Comparison with 

LPSF2 shows that the performance of LPSF3 is essentially the same as tha t of LPSF2. The 

difference between the two algorithms, namely the assignment of the lower bound, appears 

to  have little effect on the accuracy of the algorithm  except when a  is large (as 2.0) and the 

SNR is low (as 8.0). Figure 5 .1 5  shows the RMSE results produced by this a lg o r i th m .

0.20

0.15 -

0.10

0.05

1.00 .5 1.5 2.0
a

Figure 5.15: Center of Mass Revisited Algorithm RMSE Results

5.3.3 Global ESF Algorithms

The algorithm presented in this section uses the original ESF sampled edge profile data. 

The entire sequence is used to  estim ate the edge location.
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5 .3 .3 .1  M o m e n t M a tc h in g  (G E S F 1 )

Unlike the previous algorithms, the global ESF  moment matching algorithm is motivated by 

analogy to a  common statistical approach in which theoretical statistical moments (mean, 

variance, skewness, etc.) m e matched to  their corresponding experimental (sample) statisti­

cal moments[43]. One moment is matched for each unknown model parameter; the resulting 

set of equations, one per matched moment, is then solved to determine the param eter values. 

No search of the  p (or q) sequence is required[43j.

In a subpixel edge location application the three ideal edge parameters p.  7 , 8  can be 

determ ined by m atching the first three moments. T hat is, the mean, variance and skewness 

of the three-param eter ideal edge function s(x) — 8  + (P — 8 ) u{x) are defined in terms of 

/3, 7 , 8  and N  as

(7 — 1/2) 8  + ( N  — 7  — 1/2) P 
N

1 r N - 1/2
( ( s - s ) 2) =  — /  { s ( x ) - s ) d x

N  J - l / 2
(7 -  1/2)0? - s ) 2  + ( N -  7  -  1/2)00 -  S) 2  

N

and

I r N - 1 /2
<(s -  s) ) -  — /  (s(x) -  s) dx

N  J —1 / 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. EDGE LOCATION ALGORITHMS  88

(7 -  1 /2 )(S -  s )3 +  (N  -  7 ~  l/2 )(ff  -  s ) 3  

N

respectively. The corresponding mean, variance and skewness of the image sequence p  are 

computed directly from the three equations

p =  ^ H p M  < (p - p )2) =  ^ I > M - p )2 ( (p -p - )3) =  ^ E ( p N - p )3
n=0 n=0 n=0

respectively. Then, given numerical values for p, {(p—p)2) and ((p—p)3), the three equations

s = p  ((s -  s)2) = ((p - p ) 2) ((s ~  s)3) =  ((p -  p)3)

can be solved for f i ,  7  and S. The solution for 7 , interpreted as an estim ator for the subpixel 

edge location, is

where z  is the dimensionless ratio

< (P -P )3>z  ~
2 ( ( p - p ) 2 ) 3 / 2 '

Simulation confirms tha t this estimator is unbiased.2 Figure 5.16 shows the RMSE results 

produced by this algorithm.

2A lthough not used explicitly, if needed, th e  dark  and  bright background param eter estim ates are 

6 = p — s ^ \ / l  + z 2 — 2^ — 1/2 and  & = p -*■ s [ y j l  + z 2 + z' j  + 1 /2

respectively.
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F igure  5.16: Moment Matching Algorithm RMSE Results 

5.3.4 Local ESF Algorithms

The algorithms presented in this section use the  original ESF sampled edge profile data. A 

subset of the sequence p  is used to estimate the  edge location.

5.3.4.1 Linear Interpolation (LESF1)

T he motivation for this algorithm  is that the (continuous) image function g = s ® h  is 

monotone increasing from 8  to 0  and so must cross the line g(x) = ( 8  +  /3)/2 a t exactly one 

value of x. Moreover, this crossing occurs when

g(x) = 8  + { 0 -  8 )H (x  -  7 ) =
8 +  0

which is equivalent to the condition

H ( x - y )  =  - .

As discussed previously, provided the PSF is symmetric about x  = 0, the condition H (x  — 

7 ) =  1/2 is equivalent to x  =  7 . T hat is, the subpixel edge location can be found by solving 

the equation g(x) =  ( 8  + 0) /2 .  In practice, however, the function g is unknown; what we
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know instead is the AT-point sequence p — a noisy, sampled representation of g. T he  local 

linear E S F  interpolation algorithm  deals with this problem by searching the sequence p 

to find the  approximate location of 7 , then using local linear interpolation to refine the 

location estimate[43], as indicated in Figure 5.17.

p[n]

255 r  

P

5 -  

0

5 + 0

K  -  1 7 N  -  K

F i g u r e  5 .1 7 :  L in ea r In te rp o la tio n  C alcu la tio n

n
N  -  1

In  addition to the sequence p, this algorithm also requires knowledge of the positive in­

teger K , described in subsection 5.3.1.2. The intent is to guarantee th a t the image sequence 

has been selected so th a t the N  — 2K  pixels in  the middle of the sequence contain all the 

edge pixel values and the K  pixels a t each end of the sequence contain background pixel 

values only.

Consistent with the three-param eter ideal edge function model, the image sequence rises 

from dark to  bright. T hat is, the  first K  pixels represent dark background pixel values, 

the last K  pixels represent bright background pixel values, and generally — although not 

necessarily, because the image sequence pixel values are noisy — the image sequence is 

monotone increasing for the N  — 2K  pixels in the middle of the sequence. As defined 

previously, the dark and bright background edge parameters 5, 0  are estimated from the
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background pixel values as

91

0  = ^  E l pM
yv-i

n=0 n = N - K

respectively. The average (5 + j3) / 2 is used as the basis for a  linear search of the image 

sequence to find the pixel m  such th a t p[m — I] < ( 6  + 0 ) /2  < p[m]. If there are several 

such pixels, the one closest to (N  — l) /2  is selected. The subpixel edge location estimate is 

then computed as

(£ 4- P)/2  -  p[m -  1] 
p[m] -  p[m -  1] )■

(5.11)

Simulation confirms that this estim ator is unbiased (provided the PSF is symmetric about 

x  =  0.) Figure 5.18 shows the RMSE results produced by this algorithm.

R M S E
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0.00
1.0 2.00.5 1.5

a
Figure 5.18: Linear Interpolation Algorithm RMSE Results

Note th a t the scale of the RM SE represented in the graphs changes based on the algo­

rithm  presented. For example, the error incurred by this algorithm  is generally less than 

the error incurred by the previous algorithms presented.
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5 .3 .4 .2 C u b ic  C o n v o lu tio n  (L E S F 2)

The m otivation for the next two algorithms comes from an a ttem pt to improve on the 

perform ance of the linear interpolation algorithm  presented in Subsection 5.3.4.1. Perhaps 

a  different means of connecting the two internal points on the ESF will produce a  smaller 

error as compared to a  simple linear interpolation.

A first a ttem pt a t this improvement comes from Reichenbach [50]. A search is performed 

to find the four edge profile data  values p[m — 2],p[m — l],p[m] and p[m +  1] such th a t 

p[m — 1] <  +  6)/2  <  p[m]. Using these four da ta  values, a  spline is constructed between

the two internal pixels, as indicated in Figure 5.19.

p[n]

p[m + 1]

p m  -  1

p[m — 2]

m — 2 m — 1 7  m  m  +  1

Figure 5.19: Cubic Convolution Calculation

The equation for the spline th a t Reichenbach[50], and subsequently we, use is

p(x) =  p[m -  2](—(x +  l )3 +  5(x 4- 1)2 — 8(x +  1) +  4) 

+p[m  — l](x3 — 2x 2 +  1)

+ p M ( ( l  -  x )3 -  2(1 -  x )2 +  1)

+p[m  +  1](—(2 — x )3 +  5(2 — x )2 — 8(2 — x) +  4).

(5.12)
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The spline equation is defined such th a t

p (0) =  p[m -  1]

and

p ( l)  =  p[m].

Thus, a  search for the x  value, such th a t 0 < x  < 1, is needed. The value returned by the 

algorithm  as the estimated edge location is calculated as m  — 1 plus the  x  value at which 

p{x)  (from Equation 5.10) crosses (/? +  J ) / 2. Therefore, the algorithm calculates the x  value 

such tha t

/ \ P + s  - i  +P(x ) =  o or p  I —s— =  x -

The estim ated edge location is thus defined to be

7 =  (m  — 1 +  x)£.

C om putation of the inverse of the  spline function is required to obtain the  desired x  value. 

Due to the complexity of com puting p - 1(a:), however, we chose instead to converge to a 

solution by bisecting the interval 0 to 1 (between p[m — 1] and p[m]) until an acceptable 

accuracy3 was achieved.

Figure 5.20 confirms th a t this unbiased estimator actually results in a  lower RMSE than  

the linear interpolation when the edge is sharp (i.e., a  is small). If, however, a  is large, this 

estim ator performs worse th an  the linear interpolation algorithm.
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Figure 5.20: Cubic Convolution Algorithm RMSE Results

5 .3 .4 .3  H e rm ite  S p lin e  (L E S F 3 )

T he motivation for this algorithm was not only to improve on the linear interpolation 

algorithm , bu t also to correct the apparent failure of the previous spline algorithm to mimic 

the  ESF models used as input. The local ESF Hermite Spline algorithm is an  a ttem pt to 

more closely fit a spline to the input ESF models. Again using the central four pixels from 

the sampled edge profile data, the discrete derivatives of the in n e r  two pixels are computed 

and used in conjunction with the values of the pixels. The equation used to construct the 

spline is

p(x) = p\m — l](2x3 — 3a:2 +  1) +  Dp[m — l](x3 — 2a:2 +  x) 

+  p[m](—2x3 +  3x2) +  Dp[m]{x3 — x2)

where Dp[m] represents the discrete derivative a t pixel m  and is calculated as

3For th e  results presented here, accuracy of the  bisection m ethod was taken to  l/10000th o f a  pixel w idth.
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As w ith the previous spline algorithm  p(0) =  p[m — 1] and p (l)  =  p[m]. Thus, once again, 

a search for the x  value, between 0 and 1, at which point p{x) crosses (/3 +  <5)/2 is needed. 

A linear search to find the m  such that

p[m -  1] <  <  p[m]

is performed. After finding m  through a linear search of the  sequence p, the x  value satisfying

, , 0  +  6 
Pix ) -  0 or p

must be found. The estim ated edge location is graphically shown in Figure 5.21 and is 

computed as

7  =  (m — 1 +  x)£.

Bisection was again used in this algorithm to determ ine x, and subsequently 7 .

p[m +  1]

p[n]

p[m -  21

m  — 2 m  — 1 7  771 7 7 1 + 1

Figure 5.21: Hermite Spline Calculation

Simulation confirms tha t this estim ator is unbiased. Results from the simulation, de­

picted in Figure 5.22, also show th a t this algorithm perform s better than  the previous spline
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algorithm  when the ESF’s edge w idth is wide (a  >  1), however, it never produces a  lower 

RMSE than the linear interpolation algorithm  for a  given a  and SNR combination.

R M S E
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Figure 5.22: Hermite Spline Algorithm RMSE Results

One potential disadvantage of this algorithm  (and the previous) is the use of a  bisection 

m ethod in order to obtain the x  value needed. This process, depending on the accuracy 

desired, will compute the estim ated edge location slower th an  other algorithms presented 

in this chapter th a t simply use the data  in an equation to com pute the edge location.

5.4 Conclusion

In this chapter we presented various algorithms th a t can be used to estim ate the edge loca­

tion from a given sampled edge profile. These algorithms were grouped into four categories 

based on how the edge profile array data  is used. Each algorithm was used to estim ate edge 

locations from pre-defined edge profiles based on the SNR and edge w idth (a). Figure 5.23 

shows a table depicting the algorithms which produced the best results (lowest RMSE) for 

the SNR and a  specified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. EDGE LOCATIO N ALGORITHMS 97

Signal-to-Noise Ratio

8 16 32 64 128

0.4549 LESF2 LPSF2 LPSF2 LPSF2 LPSF2

0.6052 LESF2 LPSF2 LPSF2 LPSF2 LPSF2

0.7406 LESF2 LPSF2 LPSF2 LPSF2 LPSF2

Edge 0.8725 LESF2 LPSF2 LPSF2 LPSF2 LPSF2

W idth 1.0083 LESF2 LESF2 LESF2 LPSF2 LPSF2

(a) 1.1561 LESF2 LESF2 LESF2 LESF2 LESF2

1.3286 LESF2 LESF2 LESF2 LESF2 LESF2

1.5542 LESF1 LESF2 GESFl G E SFl G ESFl

1.9530 LESF1 LESF1 GESFl G ESFl G ESFl

Figure 5.23: Algorithms Producing Lowest RMSE

Based on the results presented in this table, it can be seen th a t algorithms tha t use

a subset of the edge profile data, localized near the edge location, perform better than  

algorithms that use all of the edge profile data. Only when the SNR is high (>  16) and the 

edge w idth is large (> 1.3) does a  global algorithm (Moment Matching: GESFl) perform 

be tter than the local algorithms. Also, algorithms that use the Point Spread Function 

generate a lower RMSE when SNR is high and the edge w idth is small. As the SNR 

descreases and the edge w idth increases, the algorithms th a t use the Edge Spread Function 

begin to perform better.

Consistent w ith [43]

• All algorithms (except GPSF1) are sensitive to changes in  a .
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•  All algorithms are sensitive to changes in SNR.

•  Algorithm performance improves when a  increases (except for some algorithms when 

SNR is low).

Although the table presented here may be useful, generally the SNR and edge w idth 

information is unknown. Therefore, it is prudent to  choose an algorithm that performs 

well (if not optimally) across all possible scenarios. T he results presented in this chapter 

indicate tha t the Linear Interpolation Algorithm (LESF1) represents a good candidate for 

this choice. Not only does LESF1 perform well across most of the scenarios presented, b u t 

it is also a  computationally simple algorithm tha t requires only the specification of one 

additional param eter (K ).

In the previous chapters we discussed the means by which the blurring which occurs 

during acquisition (based on the Optical Transfer Function) can be filtered through restora­

tion. A nother form of degradation which occurs during acquisition is aliasing. Aliasing is a  

noise effect tha t occurs when a  scene is undersampled. The next chapter discusses a means 

by which aliasing can be suppressed.
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Chapter 6

Microscanning

6.1 System Model with Microscanning

The system model defined in  C hapter 2 is the basis for a  single scan simulation. T h a t is, 

a  single scene is blurred, sampled, restored, and reconstructed. The modification to the 

model in this chapter is the  addition of a microscan feature. Microscanning (or “m ulti­

frame image acquisition” [1, 30]) consists of acquiring m ultiple digital images of the same 

scene with subpixel shift differences among the acquired images. Thus, the acquisition part 

of the model (Figure 6.1)

1
1
1
1

acquisition i
noise 1 

e 11 i
1

PSF 9 t sampling I i
i -  m |Pi,i1

1 ® /i S 1
I

1

Figure 6.1: Acquisition Model 
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is performed for each of the  microscanned images pmi,m2 f°r 0 <  mi < M\  and 0 <  m 2 < 

M2 where M\  is the num ber of microscans in the x\  direction and M2 is the number of 

microscans in the X2  direction. As shown in Figure 6.2, once all the microscanned images 

have been acquired, a  composition of the images is performed to produce p.

compositionscene

P m , — 1,M2 —1 shift

Po,o shift

F i g u r e  6 .2 : M icroscan  A cquisition  a n d  C om p o sitio n

It is assumed the subpixel shifts between scans are equal. Thus, using an Mi  x M2 

microscan method, each scan would differ by a £1 / M y  shift of the acquisition device in the 

x\  direction and a  £2/M 2 shift in the X2  direction. In the spatial domain, the composition is 

performed by an interlacing of the acquired images into one composite image tha t has M 1 M2 

times the sampling density of the individual scans[2, 27]. A spatial domain composition of 

these Mi M2 scans would be computed by

Pc[Mini  +  m i , M 2n 2 +  m2] =  Pm,,m2[™i, ” 2] (6-1)

where pc represents the M i N ,  x M2Ar2 composite image. Composition of the images in the 

Fourier domain requires the  sum m ation of phase shifted transforms of the individual scans. 

T hat is, the following derives the equation for composition in the frequency domain. A spe­

cific 2 x 2  version of this can be found in [52]. A generalized equation for any microscanning
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rate follows.

From Equation 2.12 we know that

j MiNi- 1M2AT2-1
1 1 * * ni=0 n2 = 0

exp(—i2-KL/\ 7 1 2/ M\  iVi) exp(—i27ri^7-i2/M 2./V2).

The above equation can be rew ritten and simplified as

 ̂ M1 - 1  m2- i j at, — i yv2 — 1
PcWi-M = - j r r r  Y  Y  T r j r  Y  Y  Pc[MX7ll +7lUM27l2+m2]2 mi =0 m2=0 1 2 nj=0 n2=0/ /AflTli +mi\\ (  ( M 2 TI2  + 7712 \ \“p v ' 2™' I m ,Ni JjBtp I- 2*1'2 { m m  - ) )

J Mi-l M2-l J AT,-1AT2-1
Y  Y  tftu:  Y  Y  PmIfma[ni,n2]M i M 2  ^ n N i N 2  ^m i = 0 m 2 = 0  1 m = 0  r i 2 = 0
„ (  o f M \ n \ +  m i \ \  /  / M2n 2 +  7712\  \
“P (t'2’"'1 I M M  ) )  ^  { ~ ' 2 m  { M2N ~  ) )

, M\  — 1 Af2- l  /  , Wi-1AT2- 1

MjT2 t  Y . P m . , m a [ n i , T l 2]
m j  = 0  m 2 = 0  1 m  = 0  n 2  —  0

exp(—t'27ri/in 1 / N \ ) exp( — i27ri/2 772/ ^ 2) )

exp (—t'27ri/i 7711 /  Mi N \ ) exp (—* 27ri/2 ”22/ M2 iV2).

Once again, from Equation 2.12 we recognize tha t

j AT, -1 AT2-1
Pm\ ,m2 [^i 51/̂ \ = 'N  N  Y  Y  Pm,,m2[« i,n 2]exp(-i27ri/i772/iV1)exp(-t27ri/27i2/A/2).1  ̂ni=0 n2=0

Thus, the composite image, computed in the Fourier domain, is defined as the  sum m ation 

of the Fourier transforms of the individual scans phase shifted relative to their microscan
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p o s i t i o n ,  o r

Kf i — I Kf2 — 1
l/\TT l\ l /2 TTl2

) ) -  (6-2)PcW 1^ 2 ]
m  1 = 0  m 2 = 0
$ 3  lUl ■ "*] ( _£27r N 1M 1 +  N 2 M 2

The rest o f the system model remains unchanged, except with respect to the size of 

the input expected. An M\  x M 2  microscan would result in an increase to N\  by a factor

the intersam ple distance £1 in the x i  direction would decrease by a factor of M\  and the 

intersample distance £2 in the x 2 direction would decrease by a  factor of M2. Due to this 

inverse relationship between the sample density and the intersample distance, the period 

for microscanned images Pm 3  is the same as tha t for single scanned images P33, i.e., Pi x P2  

never changes:

and similarly for P2.

6.2 CLS Filter with Microscanning

Based on the observation tha t the period remains constant despite an increased microscan 

rate, the application of the CLS restoration filter to the composite image can be accom­

plished by sca l i n g  the sample sizes N i ,  N 2  by their respective microscan rate M \ , M 2  and 

by sca l i n g  the intersam ple distances £1,^2 by the inverse of their respective microscan rate

of Mi in the x\  direction and to N 2  by a  factor of M 2  in the x 2  direction. Equivalenty,

( I t) =  N &  = Pi„

1 / M i , 1 / M 2. Therefore,
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\(Hb)(uix,u?)\ + a ( \ C D  ) ( u 1, l j 2 )
(6.3)

where

oc oc
{ H 'D - )  =  £  £  -  k , / ^ u 2  -  fc2/£,)£>*(c, -  k i / Z l u *  -

k i = —oo Ac2 ——°c

(jC D  ) =  £ !  £  -  k\/£,[,u}2 - k 2 / ^ 2 ) D { u x -  ki/e.[,u}2 - k 2 / ^ 2 ) ,
k]=—ook2 =—oc

£[ =  £ i /M \ ,  and ££ =  £2/ ^ 2- Equation 6.3 represents the Constrained Least Squares

Restoration filter for microscanned images.

6.3 The Nyquist Frequency and Aliasing

Images th a t have been acquired using a single scan can not be restored and reconstructed 

accurately beyond the Nyquist frequency of the acquisition device. Suppose, however, that 

for a particular input scene, energy is present a t frequencies beyond the Nyquist frequency. 

W ithout physically adding more detectors to the sampling device, accurate reconstruction of 

those high-frequency features could rely on the use of microscanning (or some other means 

of increasing the sampling density). Microscanning, image composition, and restoration can 

be used to accurately restore pixel-scale features [44].

6.3.1 Nyquist Frequency relative to the OTF

Figure 6.3 shows three possible optical transfer functions for a  digital image acquisition

device.
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1

low blur

m edium  b lur

heavy b lur

0

Nyquist frequency N yquist frequency
w ithou t MS w ith 2x MS

Figure 6.3: Various OTFs and Nyquist Frequency

The first dashed vertical line shows the Nyquist frequency of the acquisition device. The 

second dashed line shows where the Nyquist frequency would be pushed out to when a 2 x 

microscan is used. Microscanning with respect to the “heavy-blur” optical transfer func­

tion would not produce any improvement in the reconstructed image. Any high-frequency 

features th a t exist in the input scene are already lost due to the blurring effects of the 

formation filter. If  the optical transfer function resembles the “medium-blur” line with 

respect to the  Nyquist frequency, then a 2 x microscan would improve the resolution of re­

constructed images that contain energy at frequencies beyond the Nyquist frequency. Any 

additional microscanning performed with respect to this “medium-blur” O TF would not 

improve the reconstructed image. A 3x  or 4 x  microscan could be used to restore en­

ergy a t frequencies beyond the 2x Nyquist frequency in the “low-blur” case. This chapter 

represents an  investigation into aliasing effects, therefore, for the results presented in this 

chapter, we will assume that the OTF of the acquisition device is an “All Pass” filter. 

T hat is, H(oj 1, 0/2) =  1 V(cui,o;2)- We have already discussed (C hapter 3) tha t the CLS

restoration filter is designed to account for the degradations that occur with respect to the
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form ation filter h and the reconstruction filter d. Therefore, in this chapter we will focus 

on the remaining degradation inherent in the model defined in C hapter 2: aliasing.

6.3.2 Effects of Aliasing

In  addition to increasing the  effective Nyquist frequency in a mathem atical sense, in a  visual 

sense micros canning suppresses aliased noise. Aliasing occurs when energy a t frequencies 

beyond the Nyquist frequency are “folded” back onto lower frequencies. This causes aliased 

noise features to appear in the reconstructed image. For illustration, we will use the  input 

scene shown in Figure 6.4.

F igure 6.4: a(xi,X2 )

This scene is defined in  the spatial dom ain by the following relationship:

r i n n  (1 ( 'K{x \ — A / 2 ) 2 Tr(X2 — P2 / 2 )2 \ \s ( x u x 2) =  100 ^1+cos ^----- — ------+ ------ — ------J J
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for 0 <  x\  < P\ and 0 < x-i < P-i where P l =  P? =  512. The input scene is sampled onto 

a  JV| x Nn — 128 x 128 sampling grid. Thus, the Nyquist frequency for this (simulated) 

acquisition device is

1
U N y q  =  7 7  =

N 128
2£ 2 P  2(512)

=  0.125.

Figure 6.5 shows the frequency response |.S(u/i,u^)| where u\  =  cj?- The leftmost dashed 

line indicates the Nyquist frequency of the acquisition device. It is obvious th a t a significant 

amount of energy is present beyond the Nyquist frequency. This energy will be folded back 

onto the energy w ithin the Nyquist frequency creating aliasing artifacts in the restored and 

reconstructed images.

|S(u/i,u;2)l

0 L

X yquist frequency
2 x 2  N yq. freq.

0.0 0.1 0.2 0.3
F i g u r e  6 .5 : S ing le  Scan N y q u ist F requency  a n d  2 x 2  M icroscan  N yquist F requency

This sampling density is insufficient to accurately sample the higher frequencies found in 

the image. The energy a t frequencies outside the passband form (subbands) fold back into 

the passband and cause aliasing in the sampled image[8]. The effects of aliasing can already 

be seen in the sampled image in Figure 6.6. The presence of the additional circle artifacts in 

the acquired digital image result from the aliasing th a t occurred due to insufficient sampling.
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No restoration filter, CLS or otherwise, can restore the higher frequencies th a t have been 

folded back onto the lower frequencies. A param etric cubic convolution reconstruction filter 

used on the sampled image produces the continuous output image shown in Figure 6.7.

Microscanning a t a 2 x 2 density doubles the effective Nyquist frequency (also shown in 

Figure 6.5). Only a small amount of energy exists a t frequencies greater than  the effective 

microscan Nyquist frequency. Thus, the PCC reconstructed image in Figure 6.8 shows tha t 

the increased sampling density suppresses the aliased noise.

Figure 6.6: p[ni,n2], 128x128 Sample
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F igu re  6.7: r (x i, 2:2)7 M  = 1

F igure  6.8: r(x\,Xi),M = 2
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6.4 1-Dimensional Microscan Example

The purpose of microscanning is to acquire features of an image (or signal) which occur at 

higher frequencies than  the Nyquist frequency of the acquisition device, thus improving the 

resolution of the composite image relative to the individually scanned images[63]. These 

high-frequency features can then be restored and reconstructed. Suppose an  input had 

the characteristics shown in Figure 6.9. The frequency domain representation of this input 

scene has energy only a t  the frequency a/ =  4/512. Thus, in order for a sample to  accurately 

acquire the signal, the Nyquist frequency must be a t  least 4/512.

s(ar)

F i g u r e  6 .9 : S am ple  In p u t Signal

Suppose the acquisition device had the unfortunate characteristic of a sam pling density 

of N  = 4. The Nyquist frequency is

U N y q  =  ^7 =
N

=  0.00392£ 2 P  2(512)

and, thus, the energy present a t w =  4/512 =  0.0078 would be folded back onto frequencies 

below the Nyquist frequency. In the spatial domain, this can be seen by the  samples 

occurring every time the signal is a t its highest intensity (shown in Figure 6.10 by the • ’s). 

The reconstructed signal, corrupted by aliased noise, would consist of the sampled intensity 

value only.
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p[n]

i ' 
i ' 
/ ' r(x)
I

\i

l

n

F i g u r e  6 .1 0 : Single S can  S am p le  a n d  R econstruction

To compensate for this problem, a 2x microscan could be used. A 2 x microscan would 

increase the Nyquist frequency to u>Kyq =  8/2(512) =  0.0078. Thus, no energy exists beyond 

the effective Nyquist frequency and aliasing would be suppressed. In this example, the first 

scan would remain the same. By using a  second scan which occurs a t a half intersample 

distance shift from the first scan (indicated by the ° ’s), the signal can be reconstructed, as 

illustrated in Figure 6.11.

p[n]

\ i
p
I i

1 1 
I 1 
I 1
1 f

t ■ 
\ 1 
1 1 
\ 1

I 1 
1 1 
1 1

i
i 1 
i ' 
> '

r(x)
1 I
I /

1 1 
i 1

I
\ 1 i ' , i\ 1

------a ------- u r 1 — a— h' n

F i g u r e  6 .1 1 : 2 x  M icroscan  S am ples

As shown in Figure 6.11, the original signal is not reconstructed exactly. This is due to 

the blurring effects of the PCC reconstruction filter d (similar to the effects of the blurring 

incurred due to the formation filter h). If a  restoration filter, such as the CLS restoration 

filter, had been used to  process the sampled signal the reconstructed signal would more 

closely resemble the input signal (indicated in Figure 6.12)
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F i g u r e  6 .1 2 : 2 x  M icroscan  S am ples, R e s to ra tio n  a n d  R e c o n s tru c tio n

6.5 Complete vs. Partial Reconstitution of Input Scene

We have shown th a t there are three main degradations which affect the processing of a  digital 

image (in addition to random noise effects). Those degradations consist of the blurring 

effects of the O TF, the blurring effects of the reconstruction filter, and the aliased noise 

artifacts generated by u n d e r s a m p l in g .  In this section we show that only by compensating 

for all of these degradations will the output im a g e  most closely resemble the input scene 

(based on the root mean square error metric).

Suppose the input scene is the aerial image shown in Figure 6.13. T he O TF blurred 

image, where the O TF is defined as

H { u  i,cu2) =  exp(—(cui/0.4)2) exp(—a^/0 .4 )2),

is shown in Figure 6.14.
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Figure 6.13: a(xi ,x2)

Figure 6.14: g(x i ,x2)
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The frequency response of this input scene where u\ =  u 2  is shown in Figure 6.15. The 

Nyquist frequency is depicted based on a sampling density of Ni x jV2 =  128 x 128. The 

effective Nyquist frequency of a 2 x 2 microscan is also shown.

|S(wi,o/2)|

0 L

Nyquist frequency

2 x 2  Nyq. freq.

0.0 0.1 0.30.2

F ig u r e  6 .1 5 :  F requency  resp o n se  |5 |  o f A erial im age w ith  u>\ — u;2

Figure 6.16 shows the sam pled image p where N x x  N 2  — 128 x 128.

F ig u r e  6 .1 6 : p [ n i , n 2] , N  =  128
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PC C  reconstruction of Figure 6.16 without any microscanning or restoration is shown 

in Figure 6.17. This reconstruction fails to account for either the blurring effects of the 

O TF and RTF or the aliased noise present due to undersampling.

F ig u r e  6 .1 7 :  r ( x i , X2 ), N o R esto ra tio n , N o M icroscann ing

Using the CLS restoration filter on Figure 6.16 and reconstructing the image using the 

PCC reconstruction filter produces Figure 6.18. This reconstruction fails to account for the 

aliased noise present due to undersampling. Figure 6.19 shows a  2 x 2 microscan of the 

input scene.
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F i g u r e  6 .1 8 : r ( x i , x 2), C LS R e s to ra tio n , N o M icroscann ing

" '" V ~ sV S K ij;: .
nr.-i: .Jv.-.

• •
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• «•
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\ z z :  ~  r

. . -• ..............................
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F ig u r e  6 .1 9 : p [ n i ,n 2] ,2  x  2 M icroscan
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PCC reconstruction of Figure 6.19 w ithout restoration is shown in Figure 6.20. This 

reconstruction fails to account for the blurring produced by the O TF and RTF.

Figure 6.20: r(x i, X2), N o R e s to ra tio n , 2 x 2  M icro scan n in g

Figure 6.21 represents a  complete reconstitution of the input scene using the CLS 

restoration filter and a  2 x 2 microscan. The effects of the blurring from the OTF and 

R TF are suppressed by the CLS restoration filter. The effects of aliasing are suppressed by 

th e  increased sampling density.
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Figure 6 .2 1 : r ( x i , x 2), C L S R e s to ra tio n , 2 x 2  M icroscanning

Visual confirmation of the increased spatial resolution of the reconstructed images pro­

cessed by microscanning and restoration is im portant, however, a closer look at the root 

mean square error between the various ou tpu t images r  and the input scene s quantifies 

these improvements.

- RMSE relative to s

9 15.672498

r , No Restoration, No Microscan 16.343288

r , CLS Restoration, No Microscan 14.506453

r, No Restoration, 2 x 2  Microscan 12.029806

r , CLS Restoration, 2 x 2  Microscan 9.172435
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6.6 Real Digital Image Processing

In this and previous chapters we have presented theory designed and implemented to restore 

digital images subject to a specific system model. All results presented have been based on 

an  exact knowledge of the input scene s and the O TF h of a sim ulated acquisition device. 

This is not a  realistic expectation for real digital image processing, however. In the next 

chapter we use the theory presented here on real acquired digital images.
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Chapter 7

Real Data Application and 

Conclusions

It can be argued based on the quantitative (RMSE) and qualitative (visual) results presented 

in the previous chapters tha t the theory presented in this dissertation is sound. For the 

theory to be proven, however, investigation of its application to real acquired digital images 

is required. In th is chapter we present the processing of real digital image data  acquired 

using the digital cam era feature of a Compact VHS JVC Camcorder containing a staring 

array of 640 x 480 pixels.

Because there are no means to quantify the  actual input scene in terms of its Fourier 

coefficients (as presented in C hapter 2) there does not exist a method by which a quantitative 

error m etric can be defined. Thus, the results presented in this chapter will be based entirely 

on a qualitative analysis.

As discussed in  C hapter 4, the first step in  constructing the Constrained Least Squares

119
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filter to restore the acquired images is to  calculate the optical transfer function (OTF) of the 

acquisition device. The next section presents the estimation of the O T F for the acquisition 

device used.

7.1 OTF Estimation

The acquisition device used to generate the digital images presented in this chapter con­

tained 640 x 480 physical detectors th a t sampled the scene. To effectively estim ate the OTF 

of the acquisition device, as described in Chapter 4, a knife-edge image must be acquired 

such tha t the edge lies a t  a  slight angle to the direction of the s a m p l in g  grid. The angle of 

the inclined knife-edge should be created such that the maximum num ber of sub-pixel edge 

locations (described in Section 4.1) w ithin the edge profiles is achieved. The square image 

shown in Figure 7.1 was used as the knife-edge image. The image was acquired by placing 

a white, square piece of paper on a black background.
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F i g u r e  7 .1 : K nife-E dge Im ag e

Next, approximately 100 edge profiles were extracted from the left edge of the square. 

Based on the results presented in C hapter 5, which comprised a  comprehensive investigation 

of various edge location algorithms taken from current literature, the edge location for 

each edge profile acquired from Figure 7.1 was estim ated using the Linear Interpolation 

algorithm. The edge profiles were aligned relative to their estim ated edge location and the 

edge profile data was binned based on p =  4 (or 4 bins per pixel width). The average of 

the binned data (within each bin) represents the super-resolution LSF and is depicted in 

Figure 7.2.
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256

p[n]

-------------------------------------------=---------------------------------------------  n
0

F i g u r e  7 .2 :  S u p er-R eso lu tio n  L S F

For illustration, the super-resolution PSF, computed by q\n\ =  p[n] — p[n — 1], is shown 

in Figure 7.3.

30

q[n]

0 L

F i g u r e  7 .3 : S u p er-R eso lu tion  P S F

Using the left and top edges of the square from Figure 7.1, the m ethod described in 

C hapter 4 was utilized to calculate an  estim ation of the O TF of the acquisition device in 

the x \  and x^ directions. The results of those estimations can be seen in Figure 7.4.

Note th a t the estim ated O TFs in both the x \  and 1 2  directions calculate /f[0] =  1. 

Typically the estim ates would taper off to 0 as the frequency index u increases. Due to
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<7* M

0

•o
%

OO

0

F i g u r e  7 .4 : O T F  E stim a te s , x\  (o) a n d  x-i (•) d irec tio n s

the  under-shoot and over-shoot present in the super-resolution LSF, however, these OTF 

estim ates contain energy increases a t low frequency indexes before tapering off to 0. Thus, in 

order to fit a  model function to the sampled O TF estimates, the following shifted Gaussian 

function containing one free parameter S was used.

H {uj) =  exp(—(u> -  0.03125)/<S)2)

In  order to most closely fit the function to the estimated data, the free param eter S was 

defined to be 0.04 in both the xi and x^ directions. Figure 7.5 depicts the O TF estimates 

along with an  overlay of the model function used to represent H.

Thus, the 2-dimensional O TF estimate for this acquisition device was calculated to be

H (cj i,u>2) =  exp(—(cui — 0.03125)/(?i)2)exp(—(a/2 — 0.03125)/^2)2) (7 .1 )

where 6 1 = 6 ? =  0.04.
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H ( cj)

0

0
UJ

F i g u r e  7 .5 : O T F  E s tim a te s , xi  a n d  x-i d irec tions w ith  H  m odel function

7.2 Real Data System Model

It is im portant to note tha t for a  real data  investigation the system  model is truncated. 

The system model defined in C hapter 2 (illustrated in Figure 7.6) represents a  complete 

processing of the input scene to  an output image.

notse
e

scene
S

imagesamplingformation restoration reconstruction

continuous discrete -M4-

F i g u r e  7 .6 : S y stem  M odel

An acquisition device, however, captures the sampled, blurred digital image referred to in 

the system model as p. Therefore, the system model as defined by a real da ta  environment 

begins w ith p  as the input and processes the digital image as shown in Figure 7.7.

-2 * restoration Q , reconstruction
® / ®  d

image 
r

F i g u r e  7 .7 : R ea l S ystem  M odel
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Figure 7.8 shows a  256 x 256 8-b it digital image acquired by the digital camera acquisition 

device described in the previous section.

F igure 7.8: po.o * First Scan

Figure 7.9 and Figure 7.10 show the PCC reconstruction of the single scanned image 

(from Figure 7.8) with and w ithout CLS restoration, respectively.
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Figure 7.9: No Restoration, Single Scan

Figure 7.10: CLS Restoration, Single Scan
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The CLS restoration filter used in Figure 7.10 uses the estim ated O TF calculated in the 

previous section. Note tha t the restoration present in Figure 7.10 sharpens “line” features 

present in the image. These results, however, represent only a  partial reconstitution of the 

input scene. Figure 7.11 and Figure 7.12 show the PCC reconstruction of a  2 x 2 microscan 

of the input scene with and without CLS restoration, respectively. Figure 7.11 illustrates 

the effectiveness of microscanning. Subpixel scale features, such as the white space present 

within the “R” in “E PLURIBUS” , are now accurately represented in the reconstructed 

image. Figure 7.12 represents a complete reconstitution of the input scene. Not only has 

microscanning the input scene produced subpixel scale features, but the implementation of 

the CLS filter has refined the image to eliminate the blur caused by the formation filter H  

and the reconstruction filter D  thus sharpening the edges.
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Figure 7.11: No Restoration, Microscan

Figure 7.12: CLS Restoration, Microscan
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7.3 Conclusions

Based on the model presented in Chapter 2, we have shown tha t a  complete reconstitu­

tion of an  input scene can only be achieved through subpixel techniques. The constrained 

least squares restoration filter (defined in C hapter 3) represents a  compromise restoration 

filter between an inverse filter, which may boost random noise in h e r e n t  in the acquisition 

process, and the theoretically optimal Weiner filter, which relies on a priori knowledge of 

the scene Fourier spectrum . One free param eter within the CLS restoration filter allows for 

a fine tuning of fidelity versus smoothness in  the restored image. Previous research using 

the CLS filter has relied upon the constraint of a unity intersam ple distance. This research 

has presented a derivation of the CLS filter the generalizes the intersample distance £ and 

has shown how this change affects the rest of the system model. An im portant component 

of the  CLS restoration filter is the optical transfer function (OTF) of the acquisition de­

vice. Therefore, an estim ation technique was presented in C hapter 4 to accomplish this 

requirement.

A n im portant step in determ ining the O TF of a particular acquisition device is to 

estim ate edge locations of edge profiles acquired from a knife-edge image. We presented nu­

merous algorithms in C hapter 5 as candidates for this estimation. Through a  comprehensive 

investigation of various algorithm s based on edge width a  and signal-to-noise ratio S N R  it 

was determ ined that although, not always optimal, the Linear Interpolation algorithm was 

the most robust and accurate.

Image restoration is an im portant process for reconstructing an input scene; however, 

it was shown in Chapter 6 th a t no restoration filter (CLS or otherwise) can restore the
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pixel-scale features that are lost due to aliasing. Complete reconstitution of the input 

scene relies upon a  technique that increases the sampling density of the acquisition device. 

Microscanning has been presented as a solution to this problem. By acquiring multiple 

images of the scene with subpixel shift differences among the acquired images, a  composition 

of the images could be performed to push the Nyquist frequency to higher frequencies, thus 

allowing for sub-pixel scale feature restoration.

The research presented here represents a novel investigation, through the use of sub­

pixel techniques, to comprehensively identify and eliminate (to the extent possible) all of the 

degradations inherent in the system model defined. We have shown that, through the use of 

a  root-mean-square-error (RMSE) metric, mathematically the results presented offer justi­

fication for the use of subpixel techniques to improve spatial resolution. More importantly, 

C hapter 7 presents qualitative results based on real acquired data.
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