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Critical Review

‘‘WHAT EXACTLY ARE YOU INFERRING?’’ A CLOSER LOOK AT
HYPOTHESIS TESTING
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Abstract—This critical review describes the confused application of significance tests in environmental toxicology and chemistry
that often produces incorrect inferences and indefensible regulatory decisions. Following a brief review of statistical testing theory,
nine recommendations are put forward. The first is that confidence intervals be used instead of hypothesis tests whenever possible.
The remaining recommendations are relevant if hypothesis tests are used. They are as follows: Define and justify Type I and II
error rates a priori; set and justify an effect size a priori; do not confuse p(E � H0) and p(H0 � E); design tests permitting Positive
Predictive Value estimation; publish negative results; estimate a priori, not post hoc, power; as warranted by study goals, favor
null hypotheses that are not conventional nil hypotheses; and avoid definitive inferences from isolated tests.

Keywords—Statistical significance Experimental design Confidence intervals Power

INTRODUCTION

Scientists use accepted methods to generate new infor-
mation, which is then organized around explanations. What
constitutes accepted methods or favored explanations changes
as experience and insight grow. It follows that all healthy
sciences, including environmental toxicology and chemistry,
require periodic review and revision of their practices and
paradigms.

The central role of significance testing in assessing evidence
suggests that associated statistical methods deserve critical
evaluation. That is the specific goal of this review. Funda-
mental changes occurring in the application of statistics in
health science and epidemiology [1–6], socioeconomics [7–
9], psychology [10,11], and ecology [12,13] will be brought
forward as being pertinent to environmental sciences. The
overarching premise during this review is that significance tests
should effectively guide rational transformation of observa-
tions into knowledge [1] about how contaminants act in or
affect our environment.

Significance testing, especially null hypothesis–based sig-
nificance testing, is arguably one of the most common ways
in which scientific inferences are made by environmental
chemists and toxicologists. Yet, its prominence and the una-
nimity about its soundness emerge more from custom than
from scrutiny. The initial disagreements of Fisher, Pearson,
and Neyman about key features remain unresolved and im-
perfectly integrated into present-day applications [2]. Common
misinterpretations about the exact meanings [2,10,11,14–16]
of Type I and II error rates confuse inferences, including those
directly germane to regulatory activities [15]. Biologically
trivial effects that are statistically significant are given un-
warranted attention [8], and biologically crucial effect sizes
are ignored [15]. Publication bias confuses literature interpre-
tation, meta-analysis, and estimation of prior probabilities [5].
Realization of these shortcomings in what Gigerenzer calls
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statistical rituals [16] recently prompted fundamental shifts in
other sciences, including discouragement or outright prohi-
bition of significance testing in prominent medical [17], psy-
chology [12], and conservation biology [13] journals.

FOUNDATION CONCEPTS

What is p?

No simple answer, save a careless one, exists for this ques-
tion. The two most common explanations emphasize belief or
relative frequency of occurrence. The original Bayesian con-
text was that probability ( p) suggests plausibility: p informs
an investigator so that his or her degree of belief in a hypothesis
can be adjusted based on evidence. For example, a forecast of
a 95% chance of a blizzard suggests that one ought to remain
home. One’s degree of belief or level of certainty [18] changes
as evidence accumulates and is used to generate p. Attempting
to steer clear of Bayesian subjectivity, frequentists treat p as
a probability for an observable event, outcome, or state, such
as a 50% chance in the long run of heads resulting from fair
coin tosses. One’s state of belief about a certain hypothesis is
irrelevant to the frequentist [19].

What does a ‘‘significant’’ test mean?

Again, no single answer exists. A set of contrasting an-
swers, however, is commonly presented based on the pio-
neering works of Bayes, Fisher, Neyman, and Pearson.

Fisher discarded the Bayesian vantage as being too sub-
jective and dependent on uncertain prior probabilities. He es-
tablished significance testing as a more objective inferential
approach. Strongly influenced by Popper’s logic of falsifica-
tion, Fisher asserted that sufficiently improbable events can
be considered impossible: Statistical methods facilitate ‘‘prac-
tical falsification’’ or pseudofalsification [18–20]. A p value
associated with a particular test statistic suggests whether a
null hypothesis is sufficiently improbable to be considered
practically falsified in the sense of a logical refutation [18].
The p value is the probability of getting the observed (e.g., 8
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heads in 10 coin tosses) or more extreme outcomes (e.g., 9 or
10 heads in 10 tosses) under a null hypothesis [20]. Fisher did
not advocate dogmatic application of any particular threshold
p, although at one point, he did suggest the 0.05 convention
as one of several standards for evidential strength [2,3,16]. He
explained that a p value of 0.05 or less might be appropriate
to make an inference in some instances but, as dictated by the
researcher’s understanding or goals, might only suggest the
need for further experimentation in others. The prior proba-
bilities of the Bayesian approach might be acceptable to Fisher
only if derived in a clear, rigorous, and defensible manner
[19]. The obvious fact that improbable events do occur re-
mained a major shortcoming of Fisher’s position. Sacrificing
some objectivity, Popper countered that improbable outcomes
in Fisher’s approach might be better thought of as not being
reproducible at will.

Neyman and Pearson judged Fisher’s vantage to be unten-
able [18], introducing in its stead hypothesis testing, which
defines primary and rival (alternate) hypotheses. Error rates
are established for falsely deciding to reject the primary hy-
pothesis (Type I error rate of �) or alternate hypothes(es) (Type
II error rate of �). The seriousness of each error type deter-
mined which hypothesis was the primary hypothesis (i.e., that
for which a decision error would have the most serious con-
sequences) and the values for � and � [18]. The most serious
error type determines the primary hypothesis, because selec-
tion of the most appropriate test statistic is based on the as-
sumption that that hypothesis is true.

When the errors can be distinguished by their gravity,
the more serious of them is normally called a Type I er-
ror. . . suppose two alternative theories concerning a food
additive were entertained, one that the substance is safe, the
other that it is highly toxic. . . it would be less of a danger
to assume that a safe additive was toxic than that a toxic
one was safe [18].

Arguably, the most serious consequences if studying ad-
verse effects most often would be associated with falsely de-
ciding that an unsafe compound is safe; therefore, the null
hypothesis should be that it is unsafe and the alternate hy-
pothesis that it is safe. Oddly, the opposite is the more common
practice. For example, a Dunnett’s test might be applied to a
sublethal effects data set to test the means of five nonreference
treatments relative to a reference treatment mean under the
null hypothesis that no difference exists. Adopting Fisher’s
terminology, the hypothesis associated with � was called the
null hypothesis [18]. An effect size (ES) also is defined (i.e.,
what constitutes a meaningful effect in any particular test).
For example, the ES might be a 25% decrease in reproduction
in the above sublethal effects test if a toxicant-induced de-
crease in reproduction of that size would result in local ex-
tinction of a wild population. A test critical region is then
established, and the observation-derived test statistic is com-
pared to that region in a way that minimizes the chance of
exceeding the specified error rates. Unlike Fisher’s significance
testing of a hypothesis, two hypotheses are incorporated, and
the rates of each of the two error types are defined a priori
based on judgment. The � and � are decision error rates as-
sociated with a particular test or experiment; they are not
thresholds for deciding whether a hypothesis is plausible [16].
Unlike Fisher’s approach, the Neyman–Pearson approach aims
only to guide future behavior about the proposed hypotheses
(i.e., to act as if one or another hypothesis were true), not to

infer from the experiment that a null hypothesis was falsified
[2,16]. According to the Neyman–Pearson line of reasoning,
you are more likely to be correct in the long run if you behave
toward a hypothesis in the manner suggested by the test results.
A shortcoming of this context is that the in-the-long-run con-
dition of such testing is a fiction [18] relative to actual scientific
inquiry and decision making.

Fisher’s approach focuses on inductive inference about a
single hypothesis using pseudofalsification, whereas the Ney-
man–Pearson approach informs future behavior based on a test
using two complementary hypotheses, associated decision er-
ror rates, and a specified ES. Both fail to completely avoid
the subjectivity of Bayesian methods. Objective criteria are
not possible for identifying a sufficiently improbable p value
in Fisher’s significance testing or for choosing the right com-
bination of primary hypothesis, decision error rates, and ES
in Neyman–Pearson hypothesis testing [18]. Depending on the
test statistics applied to the same data, Fisher’s null hypothesis
might or might not be rejected. An objective way of defining
how favorable a Neyman–Pearson hypothesis test result is rel-
ative to behaving as if a hypothesis were true is not congruent
with the common practice of categorizing results with con-
ventions such as accepted/rejected at � � 0.05 or the ‘‘roving
�’’ [2] classification of results as nonsignificant ( p � 0.05),
significant (0.01 � p � 0.05), or highly significant ( p � 0.01).

The Bayesian approach dominated statistical thinking before
Fisher, Neyman, and Pearson but was pushed aside in the 1920s
as being too subjective. Bayesian methods currently enjoy much
wider acceptance, primarily because the subjectivity in all ap-
proaches is more widely appreciated but also because conve-
nient software now exists for its implementation. The Bayesian
approach uses probabilities to gauge the belief in a particular
hypothesis warranted by evidence; for example,

p(H )p(E � H )1 1p(H � E ) � (1)1 p(E )

where p(H1 � E) is the posterior probability of the hypothesis
(H1) given the evidence or data (E), p(H1) is the probability
of H1 prior to considering E, p(E � H1) is the probability of
getting E if H1 is true, and p(E) is the probability of E re-
gardless of whether H1 is true. In this simplest form of Bayes’
theorem, the prior probability (e.g., p(H1)) is combined with
a normalized likelihood (p(E � H1)/p(E)) to estimate a posterior
probability of a hypothesis based on the evidence (e.g., p(H1

� E)). Here, the likelihood of the evidence given that the hy-
pothesis is true, p(E � H1), is normalized to p(E). As new ev-
idence is gathered, the posterior p can be used as a prior p to
produce a new posterior p. Several alternate hypotheses (n �
1) can be included in these Bayesian calculations to infer the
degree of belief in a hypothesis (H1) as warranted by evidence:

p(H )p(E � H )1 1p(H � E ) � (2)1 n

[p(H )p(E � H )]� i i
i�2

where 	 p(Hn) sums to one. In this case, the prior p for H1 is
multiplied by the likelihood of the evidence given H1 divided
by the sum of the prior p for each Hi times the corresponding
p for the evidence given a particular Hi. (The reader should
note that Bayes factors [21] allow much more involved com-
parisons of competing models than illustrated here.) So p in
Bayesian inference methods reflects an evidence-based belief
in a particular hypothesis (among a specified set of hypothe-
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ses); for example, p(Fish kill � Copper discharge) � 0.98 war-
rants high, but not absolute, confidence that a fish kill will
occur if a copper exposure of the specified qualities occurs.

SIGNIFICANCE TESTING PROBLEMS

That confusion exists about significance tests is unsurpris-
ing given both how recently this testing convention became
established and the different interpretations of p. Emerging
consensus from several sciences is that the resulting signifi-
cance test malpractice now impedes as much as fosters prog-
ress [2,3,5,6,8–13,16].

One major difficulty involves the inconsistent combining
of elements of the Fisher and Neyman–Pearson approaches [2]
into what Cohen [10,11] calls the ‘‘usual reject-H0-confirm-
the-theory’’ approach. The following example using sublethal
effects testing of a novel class of compounds is typical. For
each in a class of new compounds, a series of concentration
treatments is established within an experimental design pre-
scribed by regulatory guidance or published by a reputable
scientist. Observations of potential effect are taken and a Dun-
nett’s test applied with a null hypothesis of no difference from
a reference treatment (� � 0.05). Next, the test statistic p value
for each concentration treatment is used to classify that treat-
ment concentration as either having or not having an adverse
effect. The final research report does not discuss those com-
pounds for which no significant adverse effect was noted in
any treatment, because failure to reject the null hypothesis
could have resulted from inadequate experimental design. The
researcher decides to repeat those nonsignificant tests at some
later date. The following problems emerge in this approach.

First, a misinterpretation of Neyman–Pearson hypothesis
tests appears to be based on the Fisherian context. The � is
one of two conditional probabilities of making a decision error
during a specific hypothesis test, not a metric allowing one to
decide if the null hypothesis is true. The Neyman–Pearson
vantage cannot be taken to decide to act as if an effect exists,
because two a priori decision rates were not established. On
the other hand, no alternate hypothesis of an effect would exist
if Fisher’s vantage were taken. Second, the strict rejected ver-
sus not rejected interpretation of results is based merely on an
arbitrarily selected convention ( p � 0.05). Third, a pervasive
misinterpretation exists that a low p value associated with the
primary hypothesis (e.g., 0.04) indicates a high p of the sec-
ondary hypothesis being true (e.g., perhaps 0.96). Fourth, a
pervasive inattention to power (1 � �) is present despite its
essential role in Neyman–Pearson hypothesis testing. Fifth,
judgment was not applied a priori to select the most appropriate
Type I and II error rates. Sixth, a pervasive preoccupation with
statistical significance and inattention to ES exists, including
a failure to establish ES a priori. Seventh, the conventional
no-effect (nil) hypothesis approach is applied such that the
obligation to generate the most meaningful or discerning al-
ternate hypotheses is ignored. Finally, a tendency exists to
publish significant results more readily than nonsignificant re-
sults or to expand a study until a significant result is found
based, incorrectly, on Fisher’s pseudofalsification context of
significance testing.

Although Fisher intended p to be a flexible inferential tool
for rejection of a specified hypothesis and Neyman and Pearson
intended p (to be assessed relative to the � decision error rate
in obligatory combination with � and ES) to dictate behavior
toward primary and alternate hypotheses, p values of less than
0.05 commonly are used to definitively reject a null hypothesis

and to infer that the alternate hypothesis is true. For example,
it is usual to conclude, using � � 0.05 from a conventional
sublethal effect test, that an effect exists at a treatment con-
centration, because that treatment’s mean response was statis-
tically significantly different from that of the reference mean.
The false assertion that improbability of a primary hypothesis
inferred from a p value means that the alternate hypothesis is
probable is so prevalent that it has a name, the inverse prob-
ability error [3,10,11]. In actuality, a ‘‘p value substantially
overstates the evidence against a null hypothesis’’ [2]. During
the application of Neyman–Pearson hypothesis testing, it is
likely that no or little time was spent balancing Type I and II
error rates or determining what constituted a meaningful ES.
The most important decision error might be unduly trivialized
[8] or a toxicologically trivial, but statistically significant, ef-
fect elevated to the status of publishable finding [22]. Finally,
the effect level (e.g., lowest-observed-effect concentration and
associated no-observed-effect concentration) is approximated
from a single test, and future testing is implied to be unnec-
essary. Results are not treated as conditional evidence subject
to change as more evidence accrues.

These are the features of the presently confused blending
of the decision-based approach of Neyman and Pearson with
Fisher’s context of pseudofalsification to produce what Ziliak
and McCloskey [9] call mechanical testing. Gigerenzer [16]
suggests that mechanical application of the ‘‘null ritual’’ is
perpetuated by risk aversion associated with picking the wrong
statistical tool from a diverse toolbox.

Awareness of the origins of the [null] ritual and of its
rejection could cause a virulent cognitive dissonance, in
addition to dissonance with editors, reviewers, and dear col-
leagues. Suppression of conflicts and contradicting infor-
mation is in the very nature of this social ritual [16].

Cognitive dissonance aside, evolving best practices are es-
sential to the health of any science. Nine changes in current
practices that can reduce some of these problems are suggested
below.

Define and justify Type I and II error rates

The recent convention of applying an � of 0.05 in com-
bination with an unspecified � and ES is inappropriate [23].
Hypothesis test � and � are chosen based on the seriousness
of making each decision error, yet recent custom abrogates
such judgments. Fixing � but allowing � to range within ill-
defined limits set by experimental design and data variability
implies that only one decision error is truly crucial (i.e.,
Fisher’s vantage for judging the plausibility of a single hy-
pothesis).

Quotients are convenient tools to balance the relative se-
riousness of the two decision errors [23]. Pairing error rates
of � � 0.05 and � � 0.2 implies that the consequences of
making a Type I error is fourfold more serious than that of a
Type II error, because �/� � 0.25 � 1/4. Selecting � � � �
0.05 for a toxicity test indicates that the seriousness of falsely
rejecting the hypothesis of no effect is the same as that of
falsely rejecting the hypothesis of an effect. The majority of
sublethal effect tests fix � at 0.05 and, by virtue of standard
design, produce � in the range of 0.2 (assuming an ES of

20–30%) [24]. This creates the debatable default position
that the consequences of Type I error (i.e., falsely rejecting
the hypothesis of no toxic effect) are fourfold more serious
than those of a Type II error (i.e., falsely rejecting the hy-
pothesis of a toxic effect). Avoiding judgment does not elim-
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inate decision error consequences: It simply obscures them,
resulting in compromised judgments about the need for future
scrutiny.

Define and justify the test ES

A p value is an unreliable indicator of whether a decision
is being made about a meaningful effect—about what Mc-
Closkey calls the hypothesis test’s ‘‘oomph’’ [8]. As an ex-
treme illustration, if the size of an effect is treated as being
irrelevant, a null hypothesis of no difference will always be
rejected given enough observations. Establishing a test without
defining a meaningful ES is inherently misleading. A hypoth-
esis test should be designed with an a priori ES based on sound
insight and knowledge [9–11].

First consider using ES confidence limits

Arguments to replace hypothesis testing with presentations
of confidence limits are increasing as a consequence of the
confusion surrounding ES, p, and error rates [17,25,26]. For
25 years, several key human health science journals have de-
pended increasingly on confidence intervals to convey ES,
precision, and statistical significance simultaneously [17].

It is important to note that the 95% value for confidence
intervals, like the Type I error rate of 0.05, is a convention
and that other values might be more appropriate depending on
circumstances or goals. Regardless of which percentage is se-
lected, care should be taken when interpreting intervals. For
example, a 95% confidence interval defines the interval x̄ �
tn�1,95SE � � � x̄ � tn�1,95SE, where SE is the standard error.
If one were to generate many such intervals, 95% of the in-
tervals would contain � in the long run. It is incorrect to state
the probability is 0.95 that a particular interval includes �.

Cumming and Finch [25] suggest the following three gen-
eral rules for confidence interval presentation: Select error bars
associated directly with the relevant effect, presentation should
be sensitive to the experimental design, and the confidence
intervals should be thoroughly interpreted. More guidance can
be found in Cummings and Finch [25] and in Di Stefano [26]
for applying confidence intervals to a range of common sit-
uations. Altman et al. [27] describe detailed applications of
confidence interval techniques, including those dealing with
means, medians, proportions, regression analysis, time-to-
event studies, and meta-analyses. Altman et al. [27] also pro-
vide convenient software to facilitate implementation of these
methods. The SAS� software package [28] also has procedures
(e.g., INTERVALS option in the PROC CAPABILITY) that
make calculations convenient for a wide range of analyses.

Do not confuse p(E � H0) and p(H0 � E)

This point can be introduced with an old joke. Walking
down a city street, a woman passes a man who is jumping and
waving his arms wildly. She asks him why he’s doing this,
and he responds, ‘‘It scares away elephants.’’ To her retort that
there are no elephants in the city, the man exclaims, ‘‘You see.
It works!’’ Put in more explicit, but equally absurd, terms,
p(No Elephants � Behavior Scares Elephants) � p(Behavior
Scares Elephants � No Elephants). Obviously, knowledge of
other probabilities, such as p(Elephants), is required to judge
the soundness of the gentleman’s hypothesis.

Most conventional applications of null-hypothesis signifi-
cance tests generate test statistics associated with the proba-
bility of getting the data or evidence if the null hypothesis is
true (i.e., p(E � H0)). Therefore, rejection of H0 reflects the

chance of getting the data if H0 is true, not how likely it is
that H0 is true given the data (i.e., p(H0 � E)). The distinctness
of p(E � H0) and p(H0 � E) is obvious from Bayes’ theorem
above. More information (p(E) and p(H0)) than provided by
the hypothesis test is needed to estimate the probability of H0

given E. Continuing with the previous example of applying
Dunnett’s test to sublethal effects test data, rejection of the
null hypothesis of equal means for the reference and a toxicant-
spiked treatment does not lead directly to the conclusion that
a sublethal effect exists at the treatment concentration. It in-
dicates only that the observations have a low probability in
the long run of having occurred if the null hypothesis is true.

Design tests allowing estimation of Positive Predictive
Value

How does one estimate the probability of an alternate hy-
pothesis being true given a significant hypothesis test? An
estimate of this probability is the Positive Predictive Value
(PPV):

(1 � �)R
PPV � (3)

R � �R � �

where R is the ratio of ‘‘true relationships’’ to ‘‘no relation-
ships’’ estimated prior to testing [4,5]. Calculation of PPV
from the above equation requires informed estimation of R
and judgment about the appropriate � and � based on the
seriousness of making decision errors and ES. Otherwise, the
probability cannot be established for this hypothesis being true
given a positive test. The related probability that the null hy-
pothesis is true given a significant test (False Positive Result
Probability [FPRP]) is the following [4]:

�(1 � �)
FPRP � (4)

�(1 � �) � �(1 � �)

where � is the prior probability of association between treat-
ment and effect (i.e., R/(R � 1)).

The previous example of a hypothetical sublethal effect data
set evaluated with a one-way Dunnett’s test can be used to
illustrate that a test’s Type I error rate of 0.05 is not a reliable
indicator of PPV. Assume for purposes of illustration that most
tests have five nonreference treatments and that most toxicol-
ogists design experiments so that the lowest-observed-effect
concentration is one of the middle treatments. Then, R would
be two or three significant treatments of a total of five treat-
ments (i.e., 2/5 or 3/5). Also, let � and � be 0.05 and 0.2 [24],
respectively:

(1 � �)R (0.8)(0.4)
PPV � � � 0.86R�0.4 R � �R � � 0.4 � (0.2)(0.4) � 0.05

(1 � �)R (0.8)(0.6)
PPV � � � 0.91R�0.6 R � �R � � 0.6 � (0.2)(0.6) � 0.05

The common assumption that p is minimally 1 � � or 0.95
that an effect exists at a treatment concentration given a sta-
tistically significant test is clearly wrong. Here, 9 in 10 would
be a better estimate than the presupposed 19 in 20, or better,
chance. Similarly, it is untrue that 0.05 reflects the probability
that the null hypothesis is true given a significant test (i.e.,
FPRP). The FPRP ranges in this example from 0.09 to 0.14,
opening up the question of how small the FPRP, or the large
PPV, must be to make a decision from this type of sublethal
effect testing. The situation worsens for studies with higher �
values, such as mesocosm [29] and epidemiology [4] studies.
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Epidemiology studies reviewed by Wacholder et al. [4] had
typical R and � values resulting in a PPV of 0.5. A statistically
significant result in one of the reviewed epidemiology studies
had only a 50:50 chance of correctly indicating a true effect.
Equally pessimistic were Kraufvelin’s comments about tests
of mesocosm data [29].

It is recommended that the information needed to estimate
PPV or FPRP be generated and included in discussions of
environmental chemistry or toxicology studies.

Publish negative results

Studies showing no significant effects are judged to be of
ambiguous value based on the historical pseudofalsification
vantage point. The common practice of not setting or reporting
Type II error rates should lead to caution when interpreting
such studies, although similar caution, oddly, is not practiced
when interpreting tests with significant effects.

Publication bias has two undesirable consequences. The
underlying goal associated with most testing is to understand
PPV or FPRP. Publication bias makes the associated estimation
of R or � inaccurate. This compromises inferences from the
literature, although methods for coping with this bias do exist
[5]. A more subtle effect emerges as this publication bias com-
bines with the publication time-lag bias. Ioannidis and Tri-
kalinos [6] observe that the initial literature for a new research
theme tends to have more reported significant studies than
reported nonsignificant studies. Reports of significant findings
tend to be more contrasting if emphasis is placed on Type I
error rates. Researchers are attracted to contrasting reports, so
these kinds of studies are more likely to catch the attention of
editors and move quickly into publication. So, the preoccu-
pation with Type I error rate and the neglect of PPV initially
seeds the literature with contrasting significant studies. Ioan-
nidis and Trikalinos [6] define the consequent Proteus phe-
nomenon as being the appearance of highly contrasting studies
during the onset of any new research theme, followed by a
gradual movement toward more consistency among reports.
The debates associated with the Proteus phenomenon can im-
pede initial progress in a new area of research.

Estimate a priori, not post hoc, power

Test power (1 � �) is extremely important to define, be-
cause failure to reject H0 might reflect either insufficient power
or the high probability of the observations (i.e., the common
nonrejected-null-hypothesis dilemma) [14]. Consequently,
well-intended journals and agencies request inappropriate post
hoc estimates of observed test power [14] to suggest the reason
why H0 was not rejected. Recalling the core roles of �, �, and
ES in hypothesis testing, however, power makes sense only if
established a priori. Unfortunately, the requirement of a pilot
study or critical literature analysis seems to foster avoidance
of a priori power estimation in favor of post hoc power esti-
mation.

Hoenig and Heisey [14] argue forcefully against post hoc
power estimation from observed test statistics. They describe
the power approach paradox in which it is wrong to assume
that the nonsignificant H0 for a test with high power is more
likely to be true than that for a second nonsignificant H0 with
lower associated power. Observed power adds no insight, be-
cause it is determined by the test’s p value, which can vary
widely for the two nonsignificant tests. Equally unhelpful are
post hoc estimates of minimum significant difference or de-
tectable ES. Instead, Hoenig and Heisey recommend inference

from confidence intervals: ‘‘Once we have constructed a con-
fidence interval, power calculations yield no additional in-
sights’’ [14]. This is consistent with the third change suggested
above.

Use null, not nil, hypotheses

Emerging from Fisher’s initial vantage and the ‘‘usual re-
ject-H0-confirm-the-theory’’ approach [10,11], a bad habit of
automatically using a hypothesis of no difference or correlation
as the null hypothesis has become entrenched. Cohen [10]
refers to this as the nil hypothesis approach, which stipulates
an ES of zero and misinterprets Fisher’s term ‘‘null’’ to mean
‘‘zero’’ instead of ‘‘to be nullified.’’ As already mentioned, an
ES of zero can always by rejected given enough observations,
so this approach lacks merit as a reliable tool for informing
decisions. It also is inconsistent with the Neyman–Pearson
context of hypothesis testing, which informs decisions to act
as if one or another of two (or more) hypotheses is true.

Null hypotheses should be established based on sound judg-
ment. For example, a H0 of the decrease in reproductive output
is more than 25% under a certain exposure regime might be
based on the demographic insight that the species population
likely would go locally extinct if output dropped by more than
25%. This kind of null hypothesis selection and testing requires
more thoughtfulness about decision error consequences and
about error rate and ES magnitudes, but it rewards such effort
by producing much more meaningful results [10,14,16].

Avoid definitive inferences from isolated tests

A review of the above materials should suggest that a single
hypothesis test rarely is as useful as a series of inferentially
linked experiments and associated tests. As evidence accu-
mulates, the PPV or FPRP changes based on the changes to
R or �. The most effective inferences emerge from carefully
planned research programs or themes [5].

ENVIRONMENTAL CHEMISTRY AND TOXICOLOGY

How does the environmental chemistry and toxicology lit-
erature stand up to the issues presented above? Ten represen-
tative journals with good impact factors were reviewed to sug-
gest an initial answer: Aquatic Toxicology, Archives of En-
vironmental Contamination and Toxicology, Chemosphere,
Ecotoxicology, Ecotoxicology and Environmental Safety, En-
vironmental Pollution, Environmental Science and Technol-
ogy, Environmental Toxicology and Chemistry, Marine Pol-
lution Bulletin, and The Science of The Total Environment.
For each journal, a random number generator was used to pick
the volume and then the article number for 10 articles pub-
lished between 1996 and 2006 inclusive. Features of each ar-
ticle were scored (Yes, No, or Not Applicable) as summarized
below and in Figure 1. Ninety-seven of the 100 surveyed pa-
pers applied quantitative methods amenable to hypothesis test-
ing. The 95% confidence intervals shown in parentheses were
produced with the Wilson method [27] from frequencies first
estimated with the SAS 9.1 software package [28] PROC
FREQ.

In 57% (47–67) of the 97 quantitative publications, infer-
ences were based on hypothesis testing. Notably, many of the
surveyed environmental chemistry publications presented re-
sults graphically and compared them to predictions from the-
ories instead of relying heavily on hypothesis testing. This
57% is lower than the percentage noted in a 2005 survey of
two ecology journals (Ecology and Journal of Ecology) and
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Fig. 1. A comparison of results of the environmental science and
chemistry survey (ETC) to a 2005 survey [13] of two prominent
ecology journals, Ecology (EC) and Journal of Ecology (JE), and two
conservation biology journals, Conservation Biology and Biological
Conservation (CB). Mean percentages are shown with corresponding
95% confidence intervals. Note that Hnil indicates use of the conven-
tional nil hypothesis during statistical testing.

two conservation biology journals (Conservation Biology and
Biological Conservation) [13]. Most of the publications using
hypothesis tests applied the nil hypothesis. This nil hypothesis
use rate was lower than that in the ecology/conservation bi-
ology survey, because the base rate of hypothesis testing also
was lower, as just stated.

In 62% (49–74) of the publications employing hypothesis
tests, test results were treated in a dichotomous significant-or-
not-significant manner based on � � 0.05. A set � chosen by
convention before the test is incongruent with Fisher’s context
of significance testing. A priori selection of an �, but not a �,
is inconsistent with the Neyman–Pearson vantage. As dis-
cussed already, this use of p values can lead to considerable
confusion. Another 38% (26–51) of the publications used p
values to categorize results within schema, such as not sig-
nificant, significant, very significant, or highly significant.
Such use is specifically incompatible with the Neyman–Pear-
son framework in which � and � are established a priori and
p has no meaning outside the decision error context. In that
context, either the null hypothesis or the alternate hypothesis
is rejected with the specified error rates. Such use with an
inferred alternate hypothesis is inconsistent with Fisher’s van-
tage. The 2005 survey of ecology and conservation biology
journals [13] showed similar levels of use for such schema.

No publication using hypothesis testing reported calculating
power a priori, and a low 4% (1–13) of publications discussed
power issues in qualitative terms only. Power or some metric
of minimum ES was estimated post hoc in 6% (2–16) of the
publications employing hypothesis testing. The 2005 survey
of ecology and conservation biology journals [13] also had
extremely low percentage reporting of power.

Confidence intervals were used in some manner to make
inferences in only 16% (12–29) of the quantitative environ-
mental chemistry and toxicology publications. The 2005 ecol-
ogy and conservation biology journal survey [13] reported
only a slightly higher level of confidence interval use. These
percentages are well below those of the British Medical Jour-
nal, which after editorial policy changes increased from 4%
(1977) to 62% (1994) [12]. Similarly, the American Journal

of Epidemiology had a 70% confidence interval use rate in
1990. More engagement of statistical editors, as done for the
British Medical Journal, might improve this situation in en-
vironmental chemistry and toxicology journals.

Relative to alternate approaches, only 3% (1–9) of the quan-
titative publications applied information theory–based ap-
proaches. None used Bayesian methods.

Quantitative results were analyzed in relative isolation from
other experiments in 84% (72–91) of the surveyed studies.
The exceptions included those compiling large toxicological
data sets. No study estimated PPV or FPRP.

Generally, applications of hypothesis testing in environ-
mental toxicology and chemistry were similar to those in other
environmental sciences. The results for ecology and conser-
vation biology discussed above led Fidler et al. [13] to con-
clude that ‘‘further efforts are clearly required to move the
discipline toward improved practices.’’ The same conclusion
seems relevant to environmental chemistry and toxicology.

Unquestionably, hypothesis testing is a major tool that is
misapplied in many fields. Interpretation of p values is con-
fused (e.g., the reject-or-accept nil hypothesis routine based
on 0.05). Power is ignored or given short shrift, being applied
post hoc incorrectly in most of the few studies that give it
attention. None of the surveyed environmental toxicology or
chemistry publications set �, �, and ES a priori or attempted
to estimate R or � from the literature. Therefore, the PPV or
FPRP could not be estimated from results. The value of cal-
culating PPV in environmental health risk was clearly illus-
trated in a study by Rizak and Hrudey [30], in which water-
quality professionals were presented with a hypothetical de-
tection of a pesticide. Not understanding the value of calcu-
lating PPV, most reported high certainty (80–100% chance)
of the pesticide being present when, in fact, a low chance (5%)
existed. To end on a positive note, however, 16% of the sur-
veyed studies (particularly environmental chemistry studies)
used confidence intervals effectively to assess results.

CONCLUSIONS ABOUT IMPROVING
STATISTICAL INFERENCE

Two general recommendations suggest themselves for im-
mediate implementation based on the materials summarized
above. First, any interpretation of hypothesis testing as cur-
rently practiced should explicitly address any relevant test
shortcomings and not extend inferences beyond those limits.
Second, the teaching of statistics to environmental science
students should shift away from a traditional emphasis on hy-
pothesis testing to a more flexible approach embracing other
valuable vantages, especially the Bayesian and information
theory–based vantages.

Nine specific recommendations also are offered. The first
is that confidence intervals be used instead of hypothesis tests
whenever possible. Other alternate methods include Bayesian
and information theory–based techniques. If hypothesis testing
is done, the following eight recommendations are made: Define
and justify Type I and II error rates a priori; define and justify
an ES a priori; do not confuse p(E � H0) and p(H0 � E) during
interpretation of results; design tests to allow estimation of
PPV; publish negative results; estimate a priori, not post hoc,
power; avoid nil hypotheses as much as reasonable; and avoid
definitive inferences from isolated tests.
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