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Marine biology

Effects of food on bacterial
community composition
associated with the
copepod Acartia
tonsa Dana
Kam Tang1,*, Claudia Dziallas2,
Kristine Hutalle-Schmelzer2,3

and Hans-Peter Grossart2

1Virginia Institute of Marine Science, Gloucester Point,
VA 23062-1346, USA
2Leibniz Institute of Freshwater Ecology and Inland Fisheries,
12587 Berlin, Germany
3Biological Sciences, University of Santo Tomas, Manila 1015,
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The estuarine copepod Acartia tonsa naturally
carried diverse strains of bacteria on its body.
The bacterial community composition (BCC)
remained very conservative even when the
copepod was fed different axenic algal species,
indicating that the food per se did not much
affect BCC associated with the copepod. In
xenic algal treatments, however, copepod-
associated BCC differed with each alga fed, even
though the same bacterial source was used to
inoculate the algae. In addition, starved cope-
pods taken at the same location but at different
times significantly differed in their BCC. Algal
species composition and copepod life history
therefore serve to regulate BCC associated with
copepods, and spatial and temporal variations
in algal species composition and copepod origin
would alter bacteria–copepod interactions.

Keywords: denaturing gradient gel electrophoresis;
bacteria; copepod; estuary

1. INTRODUCTION
Conventional ecological research views mesozoo-

plankton and bacteria as two weakly and indirectly

connected functional groups (e.g. Azam & Malfatti

2007), but in reality they are closely linked in

occurrence and ecological functions (Harris 1993).

For example, the exoskeleton and gut lining of a

copepod provide favourable surfaces for bacterial

attachment (Carman & Dobbs 1997). The equivalent

bacterial abundance associated with copepods can be
orders of magnitude higher than that in ambient

water, indicating active bacterial colonization and

growth in these microenvironments (Tang 2005).

The observations that the copepod’s body and the

surrounding water share similar bacterial groups, but

in different proportions, suggest an active exchange of

bacteria between the compartments, but the different

environments tend to favour different bacterial groups

(Sochard et al. 1979; Delille & Razouls 1994). These
earlier studies relied on culturing techniques or
biochemical assays, and may have missed many
bacterial phylotypes that were present. Modern
molecular techniques allow for a more detailed
phylogenetic investigation of these bacterial commu-
nities (e.g. Møller et al. 2007; Peter & Sommaruga
2008). In the natural environment, food particles are
already colonized by bacteria (Simon et al. 2002);
copepod feeding will therefore bring new bacteria
to its gut. The food environment as exploited by the
copepod, and subsequent interactions between
the ingested bacteria and the gut environment, would
determine the resultant bacterial community compo-
sition (BCC) associated with the copepod. Here we
used the molecular fingerprint technique denaturing
gradient gel electrophoresis (DGGE) followed by the
sequencing of individual DGGE bands to study
how different algal species, under both axenic and
xenic conditions, affect the BCC associated with the
copepod Acartia tonsa.

2. MATERIAL AND METHODS
Axenic algal cultures (table 1) were maintained in f/2 medium at
20 psu; axenic status was confirmed by DAPI staining (Porter &
Feig 1980) and DGGE using eubacterial primers. Xenic algal
cultures were prepared by inoculating the algae with 5 mm filtered
water from the York River estuary (VA, USA). Cell carbon content
was estimated from cell size (Strathmann 1967), and the
experimental food concentration was adjusted to approximately
350 ng C mlK1 to ensure maximum ingestion rate (Tang et al. 2001).

The calanoid copepod A. tonsa was collected from the York
River estuary. Female copepods were first incubated in 0.2 mm
filtered Instant Ocean artificial sea water (20 psu) for 24 hours to
empty their gut contents. After starvation, a subsample of copepods
were rinsed with sterile sea water and transferred to sterile
Eppendorf vials as initial samples (5–7 copepods per vial; 3–4
replicates per treatment). The samples were preserved with 20 ml of
95 per cent ethanol (molecular biology grade) and stored at K208C
until DGGE analysis. Remaining starved copepods were transferred
to incubation bottles with either axenic (15 copepods per 130 ml in
triplicate) or xenic (13–15 animals per 130 ml in triplicate) algae.
Because the axenic and xenic algae treatments were conducted at
different times, the copepods were taken from different field
populations for the experiments. The bottles were fastened onto a
rotating wheel in an environmental room (19G18C, 12 L : 12 D
cycle) for 48 hours. The algae in the incubation bottles were
renewed after 1 day; after 2 days of incubation, remaining live
copepods were rinsed and preserved for DGGE analysis.

Bacterial DNA was extracted using phenol–chloroform–
isoamylalcohol and zirconium beads (Zhou et al. 1996). Fragments
of bacterial 16S rRNA genes were amplified using universal primers
341f-GC and 907r (Muyzer & Ramsing 1995). Approximately
500 ng of amplification product were loaded in each lane of a
7 per cent polyacrylamide gel with a denaturing gradient ranging
from 40 to 70 per cent (urea/formamide). The gels were run for
20 hours, stained with SYBRGold (Molecular Probes) for 30 min,
then destained with Milli-Q water for 10 min and illuminated on a
UV table (Biometra). Cluster analysis of the banding patterns was
done by GELCOMPARE II, v. 3.5 (Applied Maths) using unweighted
pair group method with arithmetic averages. A pairwise similarity
matrix based on Dice correlation index was calculated. DNA from
excised individual DGGE bands was re-amplified for sequencing
using the primers 341f without GC-clamp and 907r (Muyzer &
Ramsing 1995) and the PCR protocol of Grossart et al. (2005).
Partial 16S rRNA gene sequences were deposited in GenBank with
accession numbers EU675687–EU675713 and EU680798–
EU680807. Phylogenetic trees were constructed using the ARB
software package (www.arb-home.de) and a database of approxi-
mately 52 100 aligned sequences. Only sequences of more than
1400 nucleotides were used. Phylogenetic analyses were performed
by the maximum-likelihood algorithm. The resulting tree was
compared with trees calculated with the neighbour-joining or
maximum-parsimony algorithms to test for stability. Partial
sequences from DGGE bands (approx. 560 nucleotides) were
added to the tree according to maximum-parsimony criteria and
with the 50 per cent base frequency filter.
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3. RESULTS
There was a large dissimilarity in the initial copepod-
associated BCC between experiments (approx. 55%),
reflecting differences in the experimental copepod
populations (figure 1). In the axenic food experiment,
the final copepod-associated BCC were very different
from the initial samples (less than 40% similarity;
figure 1), but were very similar among treatments:
more than 80 per cent similarity except for one
replicate of Phaeodactylum tricornutum (72%) and one
replicate of Thalassiosira weissflogii (68%). This
indicates that although the addition of food caused a
change in copepod-associated BCC, the type of food
per se had little effect on what bacterial community
would establish on the copepods. Three bacterial
classes were most common among the DGGE bands:
a-proteobacteria; g-proteobacteria; and Bacteroidetes
(figure 2); all have members that commonly exist as
symbionts or pathogens in marine organisms.

Xenic food contributed new bacterial species to
the copepod (seven bands that were not present
in the initial samples; figure 1). To compare the two
experiments, we normalized the number of bands in
each sample to the total number of different bands
in each experiment and then performed Welch’s t-test.
The result showed that the two experiments were
significantly different from each other ( p!0.001,
tZK5.794, d.f.Z13). In xenic treatments, the cope-
pod-associated BCC clustered according to food type
(except for one Rhodomonas salina sample), suggesting
that different algal species delivered different bacterial
assemblages to the grazers. The bacterial community
mainly consisted of g-proteobacteria, of which
Yersinia of the Enterobacteriaceae group was
frequently present (figure 2). In addition, the excised
bands revealed several bacterial groups that are those
commonly found on surfaces and in close association
with marine organisms (Grossart et al. 2005):
Pseudoalteromonas of the Alteromonadaceae group,
Sulfitobacter and Roseobacter of the Rhodobacteraceae
group and Halomonas species.

4. DISCUSSION
Our experiments showed that an external source of
bacteria (e.g. via food intake) was required to
maintain a diverse bacterial community associated
with A. tonsa. The dissimilarity between the two sets
of initial samples suggests that the copepods were
initially exposed to and retained very different BCC

even after gut clearance, similar to the observations
by Grossart et al. (2009). This implies that the life
history of copepods has an influence on the occur-
rence of specific bacterial communities associated
with them.

Members of Vibrionaceae frequently appeared
among our 16S rRNA gene sequences. This group,
including the pathogen Vibrio cholerae, is often found
in close association with copepods (Heidelberg et al.
2002; Belkin & Colwell 2005). Vibrio species possess
enzymes for chitin catabolism (Park et al. 2002)
that make them well adapted to growing on the
exoskeleton, gut lining and faecal pellets of copepods.
Rhodobacteraceae are also commonly associated with
copepods (Maran et al. 2007; Møller et al. 2007; this
study), and form the second most abundant SSU
rRNA gene cluster in marine plankton clone libraries
(Giovannoni & Rappé 2000). The genus Yersinia is
commonly found as gut flora (Brenner et al. 2005).
Its frequent occurrence in our xenic treatments but
near absence in the axenic treatments suggests that it
relied on delivery via food intake to maintain a
constant presence associated with the copepod.
The absence of Pseudoalteromonas, Sulfitobacter and
Roseobacter in the initial samples, but their frequent
presence after xenic algal addition indicates that these
species were also delivered via food intake, and were
able to quickly establish a prominent presence associ-
ated with the copepod.

Although we made no distinction between bacteria
attached to the exterior of the copepod and bacteria
inside the copepod’s gut, there is no a priori reason to
expect that food intake would affect the composition
of externally attached bacteria. By contrast, food
intake is expected to affect bacterial dynamics
inside the gut (Harris 1993). For example, when
the copepod Calanus pacificus switched its diet
from diatoms colonized by 3H-labelled bacteria to
axenic diatoms, the copepod retained 31 per cent or
less of the 3H signal after 43 hours (Lawrence et al.
1993). The authors interpreted it as the amount of
ingested bacterial biomass assimilated into the
copepod tissues. We, however, suggest that some of
the residual 3H might represent ingested bacteria that
became attached to the gut. Applying transmission
electron microscopy (TEM) to paraffin sections,
Peter & Sommaruga (2008) observed bacteria in the
gut of starved Daphnia pulex (freshwater cladoceran),
suggesting that some bacteria remained attached even
after the zooplankton had cleared its gut content.

Table 1. Axenic algal strains used in the present study. (Cell carbon content was estimated from cell size based on
Strathmann (1967). All algal strains were obtained from Bigelow CCMP collection except for Dunaliella tertiolecta DE,
which was obtained from NOAA-NMFS in Milford, CT.)

axenic algal strain taxonomic group CCMP no.
carbon content
(pg C cellK1)

Phaeodactylum tricornutum Bacillariophyceae 1327 11.6
Thalassiosira weissflogii a Bacillariophyceae 1336 54
Rhodomonas salinaa Cryptophyceae 1319 29.9
Dunaliella tertiolectaa Chlorophyceae 1320 31.1
Dunaliella tertiolecta DE Chlorophyceae n.a. 31.1

aXenic algal food was prepared by inoculating the cultures with natural bacteria.
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They also reported the absence of bacteria in starved
copepod Acanthodiaptomus denticornis. However,
owing to the intrusive procedures of paraffin section-
ing and TEM, even attached bacteria could have been
lost, and negative results should be interpreted care-
fully. Using scanning electron microscopy, Nagasawa &
Nemoto (1988) found gut bacteria in starved copepod
Eucalanus bungii. Likewise, Hansen & Bech (1996)
reported the presence of bacteria in the intestines of
A. tonsa after the copepod had been starved and
stripped of externally attached bacteria. In another
study, when A. tonsa fed on axenic diatom, the
abundance of attached bacteria exhibited a dome-
shaped response to ingestion rate, which is consistent
with the idea that bacterial abundance inside the
gut was controlled by a balance between growth

as stimulated by the copepod’s feeding and loss
due to defecation (Tang 2005). Conceptually,
some researchers distinguish between ‘transient’ and
‘resident’ gut bacteria (Harris 1993). The former
are the ones that are ingested but are either digested
or released through defecation; the latter are the
ones that permanently reside inside the gut. Such a
distinction, however, may be difficult in practice.
A copepod’s gut must initially acquire bacteria from
an external source, most probably from pre-colonized
food particles. As shown in this study, the rather
stable copepod-associated BCC among the axenic
algal treatments suggests that certain bacterial groups
may be preferentially retained by the copepod; on the
other hand, ingestion of different algae that were pre-
colonized by bacteria resulted in varying bacterial
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Effects of food on BCC in A. tonsa K. Tang et al. 551

Biol. Lett. (2009)

 on November 5, 2018http://rsbl.royalsocietypublishing.org/Downloaded from 

http://rsbl.royalsocietypublishing.org/


communities associated with the copepod. Other

studies have shown that the bacterial communities

attached to particles are more diverse than ambient

free-living bacteria (Riemann & Winding 2001), and

that different algal species harbour different bacterial

communities (Grossart et al. 2006). Therefore, cope-

pods exposed to different food environments will

probably establish different resident bacterial commu-

nities inside their bodies. Some ingested bacteria will

probably survive digestion and be incorporated into

faecal matter (Lawrence et al. 1993). Although we

did not examine the faecal matter, the dissimilarity in

copepod-associated BCC among the xenic treatments

in this study leads us to speculate that copepod

feeding on different xenic food particles would pro-

duce faecal pellets that contain different bacteria,

which may lead to different dissolution rate of the

faecal materials, with important ramification for

material fluxes in the ocean.

In this study, we showed that BCC associated with

A. tonsa depended on several factors: life history of the

copepods; the source of bacteria; and the food that

delivered them. Extrapolating these laboratory results

to the field, we hypothesize that the same copepod

species exposed to different environments and food

would establish different bacterial communities associ-

ated with its body. Conversely, copepod species of

different feeding habits would acquire different
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bacterial communities via food intake, even if they
share the same environment. Spatial and temporal
variations in the food environment would therefore
mediate changes in copepod–bacteria interactions.
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