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Large "blooms" of ctenophores (Mnemiopsis leidyi) and scyphomedusae (Chrysaora quin-

quecirrha) occur throughout the York River, a sub-estuary of Chesapeake Bay. These
gelatinous zooplankton blooms can influence carbon (C) and nutrient cycling
through excretion of dissolved organic matter (DOM), and inorganic nitrogen (N)
and phosphorus (P). We measured dissolved organic carbon, nitrogen and phos-
phorus (DOC, DON and DOP), ammonium (NH4

þ) and phosphate (PO4
32) released

by M. leidyi and C. quinquecirrha in the laboratory, and estimated their contribution to
in situ DOC and inorganic pools. Both species released high amounts of DOC com-
pared with DON and DOP. DOM released by Mnemiopsis was C-rich with higher
DOC:DON (29:1) compared with the Redfield ratio (6.6C:1N). Daily turnover of
DOC and DON in ctenophores was high (25.2% of body C and 18.3% of body N),
likely due to mucus production. In contrast, individual Chrysaora released DOC and
DON similar to Redfield stoichiometry, but daily turnover of these compounds was
low (,3% of body C and N). Both species released dissolved N and P in inorganic
form but also released sizeable quantities of DON (21 and 35% of total dissolved
nitrogen, TDN, for ctenophores and medusae, respectively) and DOP (34 and 46%
of TDP). Most of the DOC in the York River came from Mnemiopsis populations
during summer (May–July). While their contribution to bulk DOC pools was low
(,1% day21), ctenophore populations released higher amounts of DOC to labile
pools (18–29% day21). Contributions to NH4

þ and PO4
32 pools were highest at times

when the York River was N-limited (5.8N:1P). Despite their potential to release phy-
toplankton from nutrient limitation, N excretion from gelatinous zooplankton sup-
ported ,4% of primary production. Because net NH4

þ released by Mnemiopsis

populations exceeded standing concentrations, we hypothesize an alternative DIN
sink whereby bacterioplankton supplement uptake of DOM released by gelatinous
zooplankton with inorganic N and P to satisfy intracellular elemental requirements.

I N T RO D U C T I O N

Estuaries are dynamic ecosystems that sustain high
productivity and large fluxes of organic and inorganic

nutrients. Chesapeake Bay is a well-studied estuary that
receives large inputs of inorganic nutrients but exports
large amounts of organic nutrients on an annual basis
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(Kemp et al., 2005). Quantifying nutrient source–sink
dynamics of inorganic and organic pools, therefore, is
critical to understanding carbon (C), nitrogen (N) and
phosphorus (P) cycling in this highly productive ecosys-
tem. Zooplankton play an important role in the cycling
of nutrients in planktonic food webs via their excretion of
inorganic nutrients, primarily in the form of ammonium
(NH4

þ) and phosphate (PO4
32) (Steinberg and Saba,

2008), and by release of dissolved organic matter (DOM;
Steinberg et al., 2000, 2002; Carlson, 2002; Bronk and
Steinberg, 2008). Most studies of zooplankton excretion
have emphasized the role of crustacean zooplankton (e.g.
copepods, euphausiids), whereas little is known about
excretion by gelatinous zooplankton (Steinberg and
Saba, 2008; Pitt et al., 2009) and how these common
organisms affect nutrient dynamics.

Over the past decade or more, large spatial and tem-
poral increases in gelatinous zooplankton have occurred in
coastal and estuarine systems worldwide. Gelatinous zoo-
plankton are major predators of crustacean zooplankton
and may play an equally important role in nutrient cycling
(Kremer, 1977; Pitt et al., 2009). Chesapeake Bay supports
high biomass (blooms) of two native species: the cteno-
phore Mnemiopsis leidyi and the scyphomedusan Chrysaora

quinquecirrha (Purcell and Decker, 2005; Condon and
Steinberg, 2008). Because of their high biomass during
blooms, gelatinous zooplankton can influence nutrient
cycling (Condon and Steinberg, 2008; Pitt et al., 2009).

To date, the relatively few studies examining gelati-
nous zooplankton excretion have focused on excretion
of NH4

þ and PO4
32, with little attention to DOM

production. The excretion of inorganic N and P by
M. leidyi ctenophores and Aurelia sp. medusae can support
up to 39% and 23%, respectively, of primary pro-
duction in Great South Bay, Long Island and Kiel
Bight (Park and Carpenter, 1987; Schneider, 1989), but
N is a minor contributor (3% of microplankton pro-
duction) in Chesapeake Bay (Nemazie et al., 1993).
However, NH4

þ and PO4
32 excretion by coastal and

estuarine scyphomedusae might be more important for
supporting primary production during times of nutrient
limitation (Schneider, 1989; Pitt et al., 2005).
Alternatively, the simultaneous release of DOM and
inorganic nutrients by zooplankton may have greater
influence on microbial communities in net heterotrophic
Chesapeake Bay (Schultz and Ducklow, 2000), because
microbial production is supported by organic matter
pools (Raymond and Bauer, 2000). DOM excretion may
also be augmented in gelatinous zooplankton by release
of DOM through mucus production (Shanks and
Graham, 1988; Hansson and Norrman, 1995).

The ctenophore M. leidyi, as well as Aurelia semaeos-
tome medusae, are known to release significant quantities

of their total excretia as dissolved organic carbon, nitro-
gen and phosphorus (DOC, DON and DOP) (Kremer,
1977; Hansson and Norrman, 1995). The response of
bacterioplankton to crustacean zooplankton DOM excre-
tia indicates that this material is labile and can support
substantial bacterial production (Møller et al., 2003;
Nelson et al., 2004; Steinberg et al., 2004). Although DOC
concentrations in Chesapeake Bay are high, only a small
proportion is labile (Raymond and Bauer, 2000). Thus,
blooms of gelatinous zooplankton could contribute to
labile DOC pools that can support microbial production.
This is in contrast to the current paradigm in which phy-
toplankton are viewed as the primary source of DOM in
marine systems (Carlson, 2002, 2007).

Here, we report results from laboratory experiments
measuring simultaneous release of DOM and inorganic
nutrients by M. leidyi ctenophores and C. quinquecirrha

medusae from the York River estuary, a southern tributary
of Chesapeake Bay. The C:N:P ratios of released organic
and inorganic excretia by both gelatinous zooplankton
species are compared with the canonical Redfield ratio
(106C:16N:1P) (Redfield et al., 1963) in order to explore
possible stoichiometric variations in the release of DOM
and inorganic nutrients (Sterner and Elser, 2002).
Furthermore, we evaluated the contributions made by
gelatinous zooplankton blooms to DOC and dissolved
inorganic N and P (DIN and DIP) pools by combining
results from laboratory experiments with abundance and
biometric measurements of ctenophore and medusae
populations from field surveys in the York River estuary.

M E T H O D

Collection and preparation of zooplankton
for experiments

Chrysaora quinquecirrha medusae were collected by dipnet
or in 20 L buckets (for larger animals) from surface
waters. Mnemiopsis ctenophores were collected during
30 s, gentle plankton tows using a 200 mm mesh net
and a non-filtering cod end. Upon collection, medusae
and ctenophores were immediately transported to the
laboratory and incubated with field-collected copepod
prey (20–100 copepods L21) at in situ temperature for
30 min. Damaged animals were discarded, but in
general most animals appeared healthy and undamaged
after collection. Prior to experimentation, gelatinous
zooplankton were gently transferred individually to sep-
arate 20 L buckets filled with 0.2 mm filtered York River
water where they remained for 15 min. This step rinsed
the animals and provided them time to clear their guts
(R. Condon, personal observation), reducing potential
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confounding effects of sloppy feeding and leaching of
DOM from fecal material during the experiments.

Gelatinous zooplankton DOM and
inorganic release experiments

We conducted nine laboratory experiments between
July and August 2003–2007 to determine the simul-
taneous release rates of DOM and inorganic nutrients
by M. leidyi ctenophores and C. quinquecirrha scyphome-
dusae in the York River estuary (Table I). For each
experiment, individual animals were incubated in the
dark for 4–12 h in 1.2 L (for M. leidyi) or 4 L (for
C. quinquecirrha) acid-cleaned, polycarbonate containers
filled with 0.2 mm filtered (Nucleoporew polycarbonate
filters), low-nutrient Sargasso Sea water diluted with
Nanopure Diamond (Barnsteadw) water to in situ York
River salinity (17–21 psu). The low DOM content (e.g.
40–50 mM DOC) in the experimental media reduced
methodological error and improved precision of DOM
measurements. Container sizes were determined based
on results from preliminary trials showing no significant
difference in Mnemiopsis NH4

þ excretion rates between
1.2 and 4 L containers [one-way analysis of variance
(ANOVA), P . 0.05, n ¼ 10]. At the start of the exper-
iment, one animal was randomly added to each exper-
imental container (treatment) and the release of DOM
and inorganic N and P determined by measuring
changes in DOC, DON, DOP and inorganic constitu-
ents (nitrite [NO2

2], nitrate [NO3
2], NH4

þ and PO4
32) in

the water every 3–4 h. Water without animals was
transferred from holding buckets to control containers
in order to account for the small addition of nutrients
associated with transferring the animal into each
chamber. At the completion of the experiment,
medusae and ctenophores were removed and their wet

and dry weights, and elemental composition deter-
mined according to Condon and Steinberg (Condon
and Steinberg, 2008).

DOM and inorganic release rates were expressed as
a function of body mass according to the allometric
equation:

Y ¼ a1W b ð1Þ

and expressed as a dual function of body mass and
temperature by the multiple regression equation:

log Y ¼ aþ a1 log W þ a2T ð2Þ

where Y is the release rate of organic or inorganic
excretia (mmol ind.21 h21), W the dry weight (g DW), b

the exponent relating excretion to body mass and a, a1

and a2 are constants (Ikeda, 1985; Nemazie et al., 1993).
Release rates were further characterized by comparing
C, N and P ratios of released DOM and inorganic
nutrients between the two gelatinous species and with
the Redfield ratio.

DOM and inorganic release rates were normalized to
gelatinous zooplankton dry weight (mmol g DW21 h21),
allowing comparison to rates reported for other gelati-
nous zooplankton species. Elemental turnover rates
were also determined on individual medusae and cteno-
phores (% released day21) by dividing excretion rates
(mmol ind.21 h21) by respective amounts of body C, N
and P (mmol ind.21) then multiplying by 24 h.

The possible influence of bacterial uptake of gelati-
nous zooplankton DOM metabolites on measured
excretion rates was investigated by measuring bacterial
production in a subset of excretion chambers (n ¼ 10).
Using a bacterial growth efficiency of 30% (R. Condon,
unpublished data), these measurements suggest that our
DOM release rates were only slightly underestimated,
with bacteria potentially utilizing between 1% and
13% of DOC released by M. leidyi ctenophores and
C. quinquecirrha medusae during incubations, and thus
we do not correct for bacterial uptake.

Field surveys

We combined data from laboratory experiments with
field surveys to evaluate the contributions by M. leidyi

and C. quinquecirrha populations to DOC, DIN and DIP
pools in the York River. Field surveys were conducted
during 2004–2006 along a salinity gradient in the
lower York River, and measured species composition
and biomass of gelatinous zooplankton, DOM (C, N
and P) and inorganic nutrients. Gelatinous zooplankton
were collected during 2 min, double-oblique plankton

Table I: Physical conditions and incubation
times for laboratory experiments

Date

Sample size
(n)

Temperature
(8C)

Salinity
(psu)

Incubation
(h)Mnem Chry

17 July 2003 7 NA 26 20 10
29 July 2003 6 NA 25 20 10
24 Oct 2003 NA 6 14 20 6
15 Aug 2003 8 NA 25 17 12
4 Feb 2004 12 NA 5 20 12
18 March 2004 9 NA 10 21 7–8
24 Aug 2005 10 9 27 20 3–4
2 May 2007 10 NA 14 20 8
5 May 2007 12 NA 20 20 7

Mnem, Mnemiopsis leidyi ctenophores; Chry, Chrysaora quinquecirrha
medusae; NA, not applicable.
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tows in surface waters (0–2 m). Biomass of M. leidyi and
C. quinquecirrha populations (g DW m23) was determined
by converting individual ctenophore and medusae sizes
to DW using empirically derived regressions (Condon
and Steinberg, 2008). For DOM and inorganic nutri-
ents, bulk concentrations were determined in the lab-
oratory on water collected from the top 1 m in 2 L,
dark, acid-washed polycarbonate bottles.

Daily population release (DPR) of DOC and inor-
ganic nutrients (mmol m23 day21) were determined as
follows:

DPR ¼ Y � DWP� 24 ð3Þ

where Y is the temperature-corrected, weight-specific
release rate from experiments [mmol g (DW)21 h21;
equation (1)], DWP is population biomass for cteno-
phores and medusae (g DW m23) and 24 is a conver-
sion factor for hourly into daily release rates. Daily
contributions made to bulk and labile DOC, and DIN
and DIP pools (% contributed day21) were determined
by dividing daily population release rates by respective
organic and inorganic nutrient concentrations
(mmol m23). Labile DOC pools were estimated using a
conversion factor of 2.8% of bulk DOC, which was
based on net bacterial DOC uptake over the initial and
5-day timepoints of experimental incubations conducted
by Raymond and Bauer (Raymond and Bauer, 2000)
during summer in the lower York River estuary. The
contribution of inorganic nutrients by gelatinous zoo-
plankton to primary production was also assessed under
conditions of phytoplankton nutrient limitation accord-
ing to Sin et al. (Sin et al., 1999). Prior studies of zoo-
plankton in the York River demonstrated that upriver,
mesohaline waters support significantly higher densities
and biovolumes of gelatinous zooplankton when com-
pared with downriver, polyhaline regions near the
mouth of the river. Thus, the impacts of gelatinous zoo-
plankton on DOC and inorganic nutrient pools were
based on comparisons between upriver and downriver
locations (stations 1 and 2 for upriver and stations 3
and 4 for downriver) (Condon and Steinberg, 2008).
Although exposure to a wide salinity gradient could also
affect DOM and inorganic excretion by gelatinous zoo-
plankton populations, this effect was likely minor in this
study because salinity differences between upriver and
downriver locations were small (3.8+ 2.6 psu;
R. Condon, unpublished data).

Chemical analyses

Water subsampled from incubation bottles was filtered
through pre-combusted (5008C for 4 h) Whatman

GF/F filters, and dissolved nutrients determined in the
filtrate. DOC concentrations were measured via high-
temperature combustion on a Shimadzu 5000A Total
Organic Carbon (TOC) analyzer using potassium
hydrogen phthalate (C8H5O4K) as standard (Peltzer
et al., 1996). Prior to combustion, 6 N HCl was added
to 5 mL samples (pH ,3) and sparged for 2 min with
C ultra free air to ensure removal of dissolved inorganic
C. DOC concentrations were based on the best three of
a maximum of five column injections within an analyti-
cal detection error set to a peak area standard deviation
of +120 or coefficient of variance of 0.8%. Samples
with +1.5 mM error were reanalyzed. In addition, data
precision, instrument accuracy and platinum catalyst
efficiency were quality checked with low C (1–2 mM
DOC) and deep Sargasso Sea water (44–46 mM DOC)
reference standards provided by the C reference
material program, University of Miami (http://www.
rsmas.miami.edu/groups/biogeochem/CRM.html)
(Sharp, 2002).

Total dissolved N (TDN) and P (TDP) were analyzed
by persulfate oxidation (Bronk et al., 2000; Sharp, 2002),
NO3

2 by the spongy cadmium (Cd) method, and NO2
2

and PO4
32 were measured on a LachatTM QuikChem

8500 nutrient autoanalyzer (Koroleff, 1983). During
analysis, the conversion of NO3

2 to NO2
2 by Cd catalyst

was monitored and columns regenerated if reduction
efficiency was ,97%. NH4

þ was measured on a
Shimadzu UV-1601 spectrophotometer by the manual
hypochlorite method (Koroleff, 1983) using standard
curves corrected for sample salinity. DON and DOP
were determined by calculating the difference between
total dissolved and inorganic fractions (Sharp, 2002).

Particulate organic C and N content of ctenophores
used in experiments were measured on a Carlo Erba
EA-1108 CHN Elemental Analyzer (Condon and
Steinberg, 2008), and C and N content in medusae
were determined following Nemazie et al. (Nemazie
et al., 1993). Particulate organic P content of jellyfish
was estimated using a literature dry weight-specific con-
version factor of 0.06% (Kremer, 1975).

Statistical analyses

Data describing gelatinous zooplankton release rates
and ratios were analyzed using single and multiple
linear regressions, ANOVA and t-tests using Minitab
statistical software (level of significance of a , 0.05).
Regressions were checked for outliers using Cook’s D

statistic and, where applicable, removal of outliers in
analyses are denoted in the text. Differences in weight-
specific release and turnover rates between both gelati-
nous species were determined using two-sample t-tests.
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Differences in York River DOM, DIN and DIP concen-
trations between upriver and downriver sites were deter-
mined using nested ANOVAs with date and species
nested in location. If ANOVAs were significant, post hoc

pairwise comparison of means using Tukey’s HSD tests
were performed (Quinn and Keough, 2002). Prior to
analyses, data were checked for normality and hom-
ogeneity of variance using the Kolmogorov–Smirnov
tests, and box plots and histograms of data and
residuals. Non-conforming data were converted using
log10 or fourth-root transformations (Quinn and
Keough, 2002).

R E S U LT S

DOM release rates

Both species of gelatinous zooplankton released rela-
tively high amounts of their total metabolites as DOC,
DON and DOP, with higher release of DOC vs. DON
and DOP (M. leidyi: P , 0.001, Fig. 1; C. quinquecirrha:
P , 0.05, Fig. 2). Using data across all temperatures,

weight-specific DOC release rates were similar between
ctenophores and scyphomedusae (Table II). Release per
individual animal ranged 0.02–8.86 mmol DOC
ind.21 h21 for M. leidyi (Fig. 1A) and 1.2–58.3 mmol
DOC ind.21 h21 for C. quinquecirrha (Fig. 2A), although
data were highly variable (Table II). Similarly, at 148C
and temperatures .258C, weight-specific DOC release
was the same in both species (P ¼ 0.84, Figs 1D and
2D). Release per individual animal ranged 0.001–
0.8 mmol DON ind.21 h21 and 0.0001–0.07 mmol
DOP ind.21 h21 for M. leidyi (Fig. 1B and C), and 0.7–
5.0 mmol DON ind.21 h21 and 0.1–1.3 mmol
DOP ind.21 h21 for C. quinquecirrha (Fig. 2B and C).
Weight-specific DON release rates were higher than
DOP rates for M. leidyi ctenophores (P , 0.001, Fig. 1E
and F) and for C. quinquecirrha medusae (P , 0.05,
Fig. 2E and F, Table II). Weight-specific excretion of
DON by medusae was higher than for ctenophores
(P , 0.05), whereas DOP excretion was the same
between species (P ¼ 0.82).

For M. leidyi, DOC, DON and DOP release
increased with body mass, but only DOC release was
significantly positively correlated with temperature (P ,

Fig. 1. Release rates of DOM by M. leidyi ctenophores (mmol ind.21 h21). (A) DOC, (B) DON and (C) DOP. Ctenophore weight-specific
release (mmol g DW21 h21) across temperatures of (D) DOC, (E) DON and (F) DOP. Error bars are +1 SD. Sample size (n) for each
temperature given in Table I. DW, dry weight. *denotes temperatures with significantly higher DOM release rates, P , 0.05.
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Fig. 2. Release rates of DOM at 278C by individual C. quinquecirrha scyphomedusae (mmol ind.21 h21). (A) DOC, (B) DON and (C) DOP.
Medusae weight-specific release (mmol g DW21 h21) across temperatures of (D) DOC, (E) DON and (F) DOP. Error bars are +1 SD. Sample
size (n) for each temperature given in Table I. DW, dry weight. ND, no data.

Table II: Linear and multiple linear regressions of DOM and inorganic nutrient release rates by
Mnemiopsis ctenophores and Chrysaora medusae

Var. T (8C) n WS Rel. (mmol g DW21 h21)

Y ¼ a1 Wb Log Y ¼ a0 þ a1 log W þ a2 T

a1 b r2 a0 a1 a2 r2

ML DOC 5–27 59 12.0+15.0 2.54 0.63 0.18** 20.09 0.53 0.023 0.29**
DON 5–27 45 0.8+1.0 0.49 1.00 0.39** 20.53 0.93 0.010 0.40**
DOP 14–27 35 0.2+0.2 0.29 1.28 0.62** 20.09 1.24 20.023 0.66**
NH4
þ 5–27 65 4.9+5.5 1.48 0.79 0.23** 20.08 0.65 0.045 0.60**

PO4
32 5–27 58 0.3+0.3 0.18 0.83 0.48** 21.22 0.73 0.023 0.66**

CQ DOC 14–27 13 11.3+12.6 7.67 0.64 0.15NS 0.44 0.54 0.021 0.24NS

DON 27 9 2.0+1.4 1.99 20.19 0.04NS ND
DOP 27 6 0.3+0.2 0.32 20.08 0.00NS ND
NH4
þ 14–27 11c 2.5+2.5 0.74 0.91 0.08NS 21.81 0.91 0.079 0.89**

PO4
32 14–27 12c 0.2+0.1 0.18 0.94 0.60* 21.18 0.89 0.021 0.81**

Errors are +1 standard deviation. ML, Mnemiopsis leidyi; CQ, Chrysaora quinquecirrha; Y, gelatinous zooplankton release rate (mmol ind.21 h21);
DOC, dissolved organic carbon; DON, dissolved organic nitrogen; DOP, dissolved organic phosphorus; NH4

þ, ammonium; PO4
32, phosphate; W, dry

weight (g); T, temperature (8C); WS Rel., mean weight-specific release rate of DOM or inorganic nutrients; a, constants; b, slope of the regression
lines relating organic or inorganic release to body mass; var., organic or inorganic variable; coutliers removed from analyses (Fig. 3); n, sample size; r2,
correlation coefficient; *P , 0.05; **P , 0.001; NS, non-significant; ND, no data.
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0.05, Table II, data not shown). Slopes of log-
transformed data that regressed body mass against
DOC, DON and DOP release rates indicated that
weight-specific release rates decreased with body size
for DOC (b ¼ 0.63), were independent of body size for
DON (b ¼ 1.00) and increased with size for DOP (b ¼
1.28) (Table II). Multiple regressions of body mass and
temperature slightly improved predictability of DOC
release by ctenophores (Table II). In contrast, release
rates of DOC, DON and DOP by Chrysaora medusae
release were not related to body size, and DOC was not
related to temperature (Table II; no temperature-

dependent DON and DOP release rates were
measured), although due to small sample sizes (Table I),
the statistical power of the tests may have been too low
to detect differences.

Mean daily DOC and DON turnover rates were
higher in M. leidyi compared with C. quinquecirrha

(Table III), and ranged 0.9–127% body C day21 and
0.4–98.7% body N day21 for ctenophores and 0.3–
12.2% C day21 and 0.5–6.9% N day21 for medusae.
There was no significant difference in mean body P
turnover between species (M. leidyi: 0.8–79.4% P
day21, C. quinquecirrha: 1.6–24.7% P day21; Table III,
P ¼ 0.19). Ctenophore C turnover was negatively
correlated to body mass and positively correlated to
temperature, although the relationship was weak (mul-
tiple r2 ¼ 0.15, Table III). Turnover of body N and P
by ctenophores was not related to body mass or temp-
erature (Table III). Similarly, C and P turnover by
C. quinquecirrha was not related to body size or tempera-
ture, but medusa N turnover decreased with increasing
body size (278C only; Table III).

Most of the TDN and TDP excreted by medusae
and ctenophores were NH4

þ and PO4
32, although size-

able proportions of DON and DOP were released by
both gelatinous zooplankton species (Fig. 3). DON com-
prised a higher proportion of TDN released by C. quin-

quecirrha medusae (mean ¼ 35%) compared with M.

leidyi ctenophores (mean ¼ 21%) (Fig. 3A). Similarly,
DOP comprised a higher proportion of TDP released
by medusae (mean ¼ 46%) when compared with cteno-
phores (mean ¼ 34%). Proportions of DOP released by
Chrysaora were similar to PO4

32 released (Fig. 3B).

Excretion of inorganic nutrients

Excretion rates of NH4
þ and PO4

32 by individual
C. quinquecirrha were typically higher than M. leidyi,
ranging from 0.1 to 22.6 mmol NH4

þ ind.21 h21 and
0.1–0.9 mmol PO4

32 ind.21 h21 for medusae and
0.02–2.9 mmol NH4

þ ind.21 h21 and 0.003–0.1 mmol
PO4

32 ind.21 h21 for ctenophores (Figs 4A, B and 5A,
B). However, there was no significant difference in
weight-specific excretion rates between both species
(NH4

þ: P ¼ 0.096, PO4
32: P ¼ 0.125, Table II). NH4

þ

and PO4
32 excretion rates increased significantly with

dry body weight (g) and temperature (8C) for both
species (Fig. 5, Table II), but there was no difference
between ctenophore weight-specific excretion of inor-
ganic nutrients at temperatures �208C (Fig. 4). The
slopes of log-transformed regressions relating body mass
to inorganic N and P excretion rates were similar within
each species, but slightly higher for C. quinquecirrha com-
pared with M. leidyi (Table II), suggesting a decrease in

Fig. 3. Comparison of inorganic vs. organic nitrogen (N) and
phosphorus (P) release by ctenophores and medusae. (A) Percent total
dissolved N released as DON and ammonium (NH4

þ), and (B)
percent total dissolved P released as DOP and phosphate (PO4

32), by
M. leidyi ctenophores across all experimental temperatures and C.
quinquecirrha scyphomedusae at 278C. Error bars are +1 SE.
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Table III: Linear and multiple regressions of daily DOM and inorganic nutrient turnover rates by
Mnemiopsis ctenophores and Chrysaora medusae

Var. Temp (8C) n DT (% released day21)

DT ¼ a1 Wb log DT ¼ a0 þ a1 log W þ a2 T

a1 b r2 a0 a1 a2 r2

ML DOC 5–27 59 25.2+30.4 6.7 20.29 0.05NS 0.39 20.38 0.020 0.15*
DON 5–27 45 18.3+19.2 14.1 0.09 0.01NS 1.01 0.05 0.006 0.02NS

DOP 14–27 35 26.1+18.5 36.3 0.28 0.07NS 2.00 0.24 20.023 0.16NS

NH4
þ 5–27 49 53.0+42.7 31.6 20.07 0.004NS 0.71 20.31 0.035 0.54**

PO4
32 5–27 58 42.6+31.6 21.9 20.17 0.04NS 0.87 20.27 0.023 0.36**

CQ DOC 14–27 13 2.9+3.3 1.99 20.37 0.06NS 20.15 20.46 0.021 0.16NS

DON 27 9 2.4+2.4 2.39 21.19 0.62* ND
DOP 27 6 14.0+9.9 16.2 21.08 0.44NS ND
NH4
þ 14–27 14 3.0+3.0 1.13 0.91 0.16NS 21.84 0.42 0.087 0.87**

PO4
32 14–27 14 11.4+5.5 9.64 0.21 0.08NS 0.47 0.08 0.024 0.54*

Errors are +1 SD. DT, daily turnover (% released day21); for remainder of abbreviations see Table II.

Fig. 4. Excretion rates of (A) ammonium (NH4
þ) and (B) phosphate (PO4

32) by M. leidyi ctenophores (mmol ind.21 h21). Ctenophore
weight-specific excretion (mmol g DW21 h21) of (C) NH4

þ and (D) PO4
32 across experimental temperatures. Sample size (n) for each

temperature given in Table I. Error bars are +1 SD. DW, dry weight. *P , 0.05.
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weight-specific excretion rate with an increase in body
size.

Daily turnover of NH4
þ and PO4

32 by M. leidyi was
greater than for C. quinquecirrha (NH4

þ: P , 0.001;
PO4

32: P , 0.001). Inorganic nutrient turnover by cte-
nophores was high with similar turnover rates for NH4

þ

and PO4
32 (P ¼ 0.47, Table III). For C. quinquecirrha,

inorganic N turnover was comparable to DON turn-
over, but significantly lower than inorganic P turnover
(P , 0.001, Table III). Multiple regressions of dry
weight and temperature showed that NH4

þ and PO4
32

turnover by M. leidyi were negatively correlated with
body mass but positively correlated to temperature
(Table III). In contrast, NH4

þ and PO4
32 turnover by

medusae were positively correlated to both body size
and temperature (Table III).

C, N, and P stoichiometry of DOM and
inorganic nutrients

DOC:DON ratios of DOM released by M. leidyi aver-
aged 29:1, higher than Redfield (6.6C:1N), but were
highly variable, ranging 0.62–472:1 (Fig. 6A). In com-
parison, Chrysaora DOC:DON ratios were closer to
Redfield C:N, averaging 8.1 (Fig. 6A). DOC:TDN ratios
(mean ¼ 2.8:1) were significantly lower than
DOC:DON for M. leidyi (P , 0.001) but were similar
for medusae (mean ¼ 5.6; Fig. 6B). In addition,
DOC:TDN release ratios by M. leidyi were negatively
correlated to both increasing body size and increasing
temperature (P , 0.05). For M. leidyi, DOC:DOP
release ratios were variable but on average simultaneous
release of DOC and DOP (118:1, Fig. 6C) was similar
to C:P Redfield stoichiometry (106:1). Multiple

Fig. 5. Excretion rates of (A) ammonium (NH4
þ) and (B) phosphate (PO4

32) at 278C by C. quinquecirrha medusae (mmol ind.21 h21). Medusae
weight-specific excretion (mmol g DW21 h21) of (C) NH4

þ and (D) PO4
32 across experimental temperatures. Sample size (n) for each

temperature given in Table I. Error bars are +1 SD. DW, dry weight. *P , 0.05. Circled data indicate outliers removed from statistical analyses
(Table II).

R. H. CONDON ET AL. j GELATINOUS ZOOPLANKTON DOM EXCRETION

161

D
ow

nloaded from
 https://academ

ic.oup.com
/plankt/article-abstract/32/2/153/1449401 by Serials D

ept -- C
ollege of W

illiam
 and M

ary user on 02 N
ovem

ber 2018



regressions of DOC:DOP decreased with ctenophore
dry weight (P , 0.05) and increased with temperature
(P , 0.05), although correlations were weak (r2 ¼ 0.43).
Mean release ratios of DON and DOP (6:1) were below
Redfield N:P ratio (16:1) for M. leidyi ctenophores and
C. quinquecirrha medusae (9:1, Fig. 6D). Linear
regressions relating DOC:DON and DON:DOP release
rates with body size and temperature were non-
significant for both species.

In general, NH4
þ:PO4

32 excretion ratios were similar
or slightly below Redfield stoichiometry of 16N:1P for
M. leidyi (mean ¼ 13.1) and C. quinquecirrha (mean ¼
9.3), although data exhibited high variability (Fig. 6E).
NH4

þ:PO4
32 excretion ratios increased significantly with

temperature for both species (P , 0.001), but were not
related to body weight.

York River bulk DOC and inorganic
nutrient concentrations

Bulk DOC concentrations were typically between 200
and 400 mM and were higher upriver compared with
downriver (log-transformed, P , 0.001; Fig. 7A and B).
In general, York River DOC (mM) followed a seasonal
pattern at both locations with lowest DOC

concentrations observed during summer (May–July),
followed by an increase during autumn (August–
December) before reaching a maximum during late
winter and spring (January–April) (Fig. 6A and B);
spring 2005 (March–April) with low DOC was an
exception.

Inorganic N and P concentrations varied greatly with
season (Fig. 7C–F). Within sample dates, there was no
significant difference in concentrations of NH4

þ (Fig. 7C
and D) and NOx (NO2

2 þ NO3
2) between upriver and

downriver locations; however, there were significantly
higher PO4

32 concentrations upriver compared with
downriver (P , 0.05; Fig. 7E and F). DIN concentrations
were high during late winter–spring (January–April),
but both NH4

þ (Fig. 7C and D) and NOx were low and
often below detection during summer months (May–
August). In contrast, PO4

32 concentrations were low and
often-below analytical detection limits during spring
(January–April), and significantly higher during summer
months (July–September; Fig. 7E and F). DIN:DIP on
bulk inorganic N (NOx

2 þ NH4
þ) and P pools were high

during spring (.100N:P), resulting in phytoplankton
P-limitation throughout the York River. During summer,
DIN:DIP ratios were significantly lower upriver (5.8:1)
compared with downriver (13.7:1, P ¼ 0.04).

Fig. 6. Box plots comparing organic and inorganic release ratios by individual M. leidyi ctenophores and C. quinquecirrha medusae. (A) DOC to
DON, (B) DOC to TDN, (C) DOC to DOP, (D) DON to DOP and (E) ammonium (NH4

þ) to phosphate (PO4
32) release ratios. Box and

whiskers represent 10th, 25th, median, 75th and 90th percentiles. Outliers not shown. Out of range value in parentheses. Vertical dashed lines
represent average release ratio.
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Gelatinous zooplankton biomass and
contributions to DOC, DIN and DIP pools

Biomass of gelatinous zooplankton in the York River
was dominated by Mnemiopsis ctenophores. High
biomass of M. leidyi (g DW m23) was observed during
summer and winter months, with significantly higher
ctenophore biomass occurring upriver (P , 0.001).
During summer, peak ctenophore biomass consistently
occurred during May (average range 0.4–
1.2 g DW m23) and June (average range 0.3–

1.5 g DW m23), although high biomass occurred at
other times. Winter biomass peaks usually occurred
during January and February and were comparable to
summer peaks (average range 0.02–1.2 g DW m23).
Chrysaora medusae were present in the York River
during July and August and primarily occurred at the
upriver station. Chrysaora biomass was about an order of
magnitude lower than that of ctenophores, and ranged
0.01–0.23 g DW m23 during July and 0.002–0.14 g
DW m23 during August.

Fig. 7. Lines signify upriver and downriver concentrations of (A and B) DOC, (C and D) ammonium (NH4
þ) and (E and F) phosphate

(PO4
32) (mmol L21). Bars show the contributions made by gelatinous zooplankton populations (mmol L21 day21) to DOC, NH4

þ and PO4
32

pools in the York River. Upriver and downriver regions are located at stations 1 (378 20.0460N, 0768 36.0520W) and 2 (378 14.2730N, 0768
30.2740W) and stations 3 (378 14.2330N, 0768 14.2320W) and 4 (378 14.5350 N, 0768 20.6330W), respectively, according to Condon and
Steinberg (Condon and Steinberg, 2008). BDOC, bulk DOC; LDOC, labile DOC. LDOC defined as 2.8% of BDOC following Raymond and
Bauer (Raymond and Bauer, 2000). Error bars are +1 SD.
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Contributions by gelatinous zooplankton to DOC and
dissolved inorganic N and P pools were greatest during
M. leidyi blooms (Fig. 7A and B). In general, release of
DOC by Mnemiopsis populations was higher upriver com-
pared with downriver, with high release of DOC occur-
ring during summer (May–July) and minor contributions
during winter and spring (February–April) (Fig. 7A and
B). Daily contributions by ctenophore populations to
bulk DOC pools were low (,1%); however, when com-
pared with labile DOC pools contributions were higher
with maximum daily contributions ranging 18–29%
(Fig. 7A). Daily contributions by C. quinquecirrha popu-
lations to bulk and labile DOC pools were low (,1%).

Maximum excretion of NH4
þ by gelatinous zooplank-

ton populations was highest upriver during summer
(May–July) when annual bulk DIN concentrations were
lowest (Fig. 7C and D). At these times, mean daily
NH4

þ production by M. leidyi populations represented
2–50% of York River NH4

þ concentrations, and indi-
vidual estimates often exceeded 100% (Fig. 7C and D).
Net PO4

32 excretion by gelatinous zooplankton was
high upriver during late summer (July–August, Fig. 7E
and F); however, during March–April, low release of
PO4

32 by ctenophore populations still represented a
major daily source of DIP to bulk pools (57–119% of
PO4

32; Fig. 7E and F).

Fig. 7. (Continued).
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Table IV: Comparison of weight-specific release rates of dissolved organic and inorganic nutrients for ctenophore and scyphomedusae species
(adapted from Nemazie et al., 1993)

Species Temp (8C)

NH4
þ PO4

32 DOC DON DOP

Ref.
WS Ex.
(mmol g DW21 h21) b

WS Ex
(mmol g DW21 h21) b

WS Rel.
(mmol g DW21 h21) b

WS Rel.
(mmol g DW21 h21)

WS Rel.
(mmol g DW21 h21)

Ctenophores
Mnemiopsis leidyi 5–27 0.2–23.2 0.79 0.06–1.0 0.83 0.4–61.6 0.63 0.02–6.3 0.01–0.6 1
M. leidyi 18–27 3.0–4.8 0.74 ND 2
M. leidyi 10–24 0.4–1.5 0.89–1.16 0.08–0.20 0.53–1.11 0.18–0.86 ND 0.04–0.08 0.001–0.002 3
M. leidyi 17–24 0.06–0.11 ND ND ND ND ND 4
M. mccradyi 22 0.4–1.8 0.94 ND ND ND ND 5
Ocyropsis sp. 25 0.7–0.9 0.76 ND ND ND ND 6
Bolinopsis vitrea 25 0.25–1.1 1.06 ND ND ND ND 6
Beroe ovata 25 2.3 0.93 ND ND ND ND 6
Eurhamphaea vexillegera 25 0.5 0.93 ND ND ND ND 6
Bathocyroe fosteri 9–13 0.1 1.20 ND ND ND ND 7

Scyphomedusae
Chrysaora quinquecirrha 14–27 0.1–7.8 0.91 0.12–0.44 0.89 1.3–46.4 0.64 0.4–5.7 0.03–0.5 1
C. quinquecirrha 18–28 3.5–5.0 1.00 ND ND ND ND 2
Aurelia aurita 15 1.2–3.9 0.93 ND ND ND ND 8
A. aurita 1.2–6.7 0.10 9
Pelagia noctiluca 21 1.9–4.1 0.90 ND ND ND ND 10
P. noctiluca 12–23 0.3–7.2 0.65 0.8–1.5 1.06 ND ND ND 11

WS Ex., weight-specific excretion rate; WS Rel., weight-specific release rate; NH4
þ, ammonium; PO4

32, phosphate; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; DOP, dissolved organic
phosphorus; b, slope of the regression lines relating organic or inorganic release to body mass; ND, no data; Ref. reference; 1, this study; 2, Nemazie et al. (1993); 3, Kremer (1977); 4, Park and Carpenter
(1987); 5, Kremer (1982); 6, Kremer et al. (1986); 7, Youngbluth et al. (1988); 8, Schneider (1989); 9, Hansson and Norrman (1995); 10, Morand et al. (1987); 11, Malej (1989).
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D I S C U S S I O N

Comparison of excretion rates with
previous studies

The general trends of higher NH4
þ and PO4

32 excretion
rates with increased body size and temperature, and
decreased (b , 1.0) or stable (b ¼ 1.0) weight-specific
inorganic excretion in larger animals are consistent with
previous studies on gelatinous zooplankton excretion
(Table IV). However, in our study, weight-specific
release rates of DOM by both gelatinous species and
NH4

þ excretion by M. leidyi ctenophores are higher than
in previous studies (Table IV). High inorganic excretion
and nutrient turnover has been reported for gelatinous
zooplankton fed on high prey concentrations (Kremer
et al., 1986), in short incubations (3 h), and at higher
temperatures (.258C) (Malej, 1989). In addition,
measurements based on long incubations (.12 h)
without correction for bacterial utilization of metab-
olites may underestimate DOM release rates (Hansson
and Norrman, 1995). In this study, experimental incu-
bations were short (4–12 h), bacterial uptake of DOM
was low and release rates were measured on recently
fed animals. Moreover, inorganic N and P excretion
rates by Chrysaora and PO4

32 excretion rates by cteno-
phores were similar to previous studies. We suggest that
higher weight-specific excretion rates of inorganic N by
ctenophores were primarily due to release of excess
assimilated N as shown by high daily turnover rates of
body N as NH4

þ.

Factors controlling DOM excretion by
gelatinous zooplankton

Both M. leidyi ctenophores and C. quinquecirrha medusae
released high quantities of DOC. Released DON and
DOP also comprised a sizeable fraction of the total N
and P released. Comparisons of DOP released on a
per-individual and dry-weight basis were similar for cte-
nophores and medusae. However, daily turnover rates
of DOC and DON were higher in ctenophores than in
the medusae, and the ratios in which these organic
compounds were released differed between the species.
Ultimately, the turnover of assimilated C, N and P
elements is linked to both the metabolic conditions (e.g.
temperature) and the elemental stoichiometric require-
ments of the animal (Sterner and Elser, 2002). We
suggest that differences in the release of DOC and
DON observed between the two species were related to
the production of mucus in ctenophores and retention
of organic C and N for body structural components
and nematocysts in scyphomedusae.

Mnemiopsis released DOM with high organic C
content as indicated by significantly higher release of
DOC compared with DON. High release of DOC by
gelatinous zooplankton has been attributed to their
“leaky” nature (Kremer, 1977), and to mucus pro-
duction (Hansson and Norrman, 1995; Steinberg et al.,
2000), and these attributes may have driven the high
variability in DOM release rates observed in this study.
Lobate ctenophores, such as M. leidyi, primarily use
mucus-lined lobes to capture and digest prey (Costello
et al., 1999). As a result, mucus production is key for
maintaining daily elemental body requirements via
assimilation of prey. The biochemical composition of
M. leidyi mucus is unknown, but colloids released by corals
and scyphomedusae are composed of glycoproteins that
are C-rich relative to N due to their high carbohydrate
content (Ducklow and Mitchell, 1979; Hansson and
Norrman, 1995; Cohen and Forward, 2003). If mucus
release is the primary pathway for DOC and DON pro-
duction, then organic C and N release rates would be
independent of the physical controls of metabolism, and
related more to biometric parameters involved in cteno-
phore feeding (e.g. surface area on lobes) because the
elemental composition and production of mucus are
independent of intracellular physiology (Heeger and
Möller, 1987). Our results indicate that both DOC and
DON release by ctenophores were significantly posi-
tively correlated with body size; however, weight-specific
DOC and DON release was either weakly or not corre-
lated with temperature and remained the same with
body size. Furthermore, DOC:DON release ratios were
not related to body size and temperature, suggesting
that ctenophores primarily release DOC and DON
compounds of similar elemental proportions indepen-
dent of intracellular metabolism. Collectively, these
results support the hypothesis that mucus production is
the principal mechanism of DOC and DON release in
lobate ctenophores.

In contrast, turnover of C and N, as released DOC
and DON, by individual C. quinquecirrha was low and on
average ,3% of body C and N per day. This is consist-
ent with a prior study showing that DOC turnover in
Aurelia medusae was a minor component of the C
budget and equivalent to the C allocated to reproduc-
tion (Hansson and Norrman, 1995). Although weight-
specific release rates between medusae and ctenophores
were similar for DOC but higher for DON in medusae,
individual medusae have a higher dry weight (.1 g)
and a greater amount of organic C and N compared
with individual ctenophores. Thus, similarities in
organic release rates between individual ctenophores
and medusae further emphasize the relatively low
release rates of DOC and DON by C. quinquecirrha.
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In contrast to ctenophores, there was no relationship
between DOC and DON release and body size in
medusae. And similar to ctenophores, there was no
difference in weight-specific DOC release with a 108C
increase in temperature, suggesting that organic C and
N release was not linked to C or N metabolism.
Scyphomedusae are tentaculate predators that slough
mucus and nematocysts as a defense strategy (Shanks
and Graham, 1988), and DOC:DON release ratios
were not indicative of C-rich mucus production as
observed for M. leidyi. Rather, medusae DOC:DON
release ratios were closer to the C:N elemental ratios of
Chrysaora organic body content of about 4C:1N by atom
(Nemazie et al., 1993). Chrysaora are more robust than
M. leidyi due to higher amounts of N-rich collagen
fibers in the mesoglea per individual medusae (Arai,
1997). In addition, nematocyst capsules used in prey
capture are made of C- and N-based chitin molecules
(Hessinger and Lenhoff, 1988). Thus, compared with
ctenophores, medusae have high organic C and N
requirements related to body structure that potentially
increase as the medusa grows. This is supported by
medusae daily DON turnover rates that significantly
decreased with increased body size, suggesting retention
of organic N in larger animals. We suggest that low
turnover of DOC and DON for C. quinquecirrha scypho-
medusae is due to preferential retention of these com-
pounds for use in structural components and that the
release of DOC and DON is associated with the turn-
over of these structural components, rather than due to
feeding or C and N metabolism.

Importance of gelatinous zooplankton for
DOC cycling in the York River

The highest contributions by gelatinous zooplankton to
DOC pools occurred during summer, with the majority
of DOC contribution associated with M. leidyi cteno-
phore blooms. While ctenophore populations contribu-
ted ,1% to bulk DOC pools, they contributed up to
18% and 28% day21 to labile DOC pools in upriver
and downriver locations. This ctenophore production of
labile DOC could support bacterial production compar-
able to that supported by phytoplankton production of
DOC (del Giorgio and Cole, 1998). In the spring, DOC
contribution by M. leidyi blooms was minor; this is a
time when DOC exudates released by spring phyto-
plankton blooms potentially contribute the majority of
labile DOC (Raymond and Bauer, 2000). Therefore,
the importance of M. leidyi blooms as a major source to
labile DOC pools is likely restricted to summer months
when ctenophore DOC release rates are high and
allochthonous sources of DOC to the York River are

low (Raymond and Bauer, 2000). At these times, cteno-
phore populations may further impact labile DOM
pools because the high release of C-rich DOM would
shift the stoichiometric balance toward organic ratios
biased for DOC relative to DON and DOP. This is in
contrast to phytoplankton-dominated systems which
control the ratio of organic C, N and P in seawater
close to canonical Redfield stoichiometry—
106C:16N:1P by atoms (Redfield et al., 1963; Steinberg
et al., 2000; Sterner and Elser, 2002).

The high contribution of labile DOC by M. leidyi

blooms has implications for bacterioplankton commu-
nities in the York River estuary, which have high C
metabolic demands and are utilizing DOC from large
pools that are primarily refractory (Raymond and
Bauer, 2000; Schultz and Ducklow, 2000). This process
may be accentuated in the York River estuary because
temporal shifts have occurred in M. leidyi blooms that
have increased both C residence times in and potential
release of DOC by gelatinous zooplankton populations
(Condon and Steinberg, 2008). This potential utilization
of ctenophore-derived DOC by bacteria may represent
a primary C pathway in gelatinous zooplankton-
dominated systems (Riemann et al., 2006; Condon and
Steinberg, 2008), whereby C (as well as N and P) can
be assimilated by bacteria and reincorporated into
planktonic food webs (Riemann et al., 2006).

In contrast, C. quinquecirrha populations contributed
minor amounts (,1%) to labile DOC pools and thus
direct release of DOC by medusae is likely not impor-
tant in DOC cycling in the York River. Sloppy feeding
or leaching of fecal material was not addressed in this
study because medusae were not fed during exper-
iments. Leaking of organic material via feeding may be
a more important mechanism by which medusae con-
tribute to labile DOC pools (Hansson and Norrman,
1995). Alternatively, Chrysaora medusae could be a
“sink” for organic C through direct uptake and assimi-
lation of DOC from bulk pools (Ferguson, 1988).

Importance of DON and DOP metabolites
released by gelatinous zooplankton

To our knowledge, there are no previously published
rates of DOP release for gelatinous zooplankton.
However, high daily turnover of DOP, increased release
of organic N and P with body size and high population
biomass of M. leidyi compared with C. quinquecirrha

suggest that ctenophore populations might be an impor-
tant source of DON and DOP in the York River
estuary. Using an average biomass of 1.5 g DW m23

and daily weight-specific release rates of
48.0 mmol DON g DW21 day21 and 14.4 mmol DOP
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g DW21 day21, we estimate that during summer
M. leidyi populations release 72.0 mmol DON m23 day21

and 21.6 mmol DOP m23 day21. During summer,
organic N and P concentrations in the York River typi-
cally range 10–15 mM for DON (R. Condon, unpub-
lished data), and 0.2–0.6 mM for DOP, assuming
similar concentrations to lower Chesapeake Bay (Conley
et al., 1995). Comparison of population release rates
with bulk DON and DOP concentrations suggests that
M. leidyi populations contribute more to DOP (3.6–
11%) than DON pools (,1%). The release of DOP
compounds by gelatinous zooplankton may thus have
important implications for bacterioplankton and P
cycling in coastal and estuarine systems (Karl and
Bjorkman, 2002), particularly as DOP is preferentially
remineralized by bacteria (Loh and Bauer, 2000).

Impacts of DIN and DIP excretion on
inorganic nutrient cycling

Large seasonal variations in inorganic nutrients
occurred throughout the York River, consistent with
previous reports on nutrient cycling in this region (Sin
et al., 1999; Schultz et al., 2003; Kemp et al., 2005). Our
calculations also suggest that gelatinous zooplankton are
a major source of recycled nutrients to DIN and DIP
pools in the York River estuary. The highest contri-
butions of inorganic N and P occurred during summer
in upriver locations that supported high gelatinous zoo-
plankton biomass. For the York River, which sustains
high phytoplankton biomass during summer (Sin et al.,
1999; Condon and Steinberg, 2008), the release of
nutrients by gelatinous zooplankton may favor phyto-
plankton growth because their excretion of NH4

þ and
PO4

32 occurs in ratios similar to Redfield N:P stoichi-
ometry (Kemp et al., 2005), and may release phyto-
plankton from N-limitation (Fig. 7).

During summer, daily primary production rates in
lower Chesapeake Bay are �83.3 mmol C m22 day21

(Chesapeake Bay Remote Sensing Program: http:
//www.cbrsp.org/). If we assume similar phytoplankton
production rates for the York River and Redfield nutri-
ent uptake kinetics, daily N and P production rates
by phytoplankton are 12.6 mmol N m22 day21 and
0.78 mmol P m22 day21. Comparison of these N and P
production rates with daily inorganic N and P released
by gelatinous zooplankton (rates taken from Fig. 7) indi-
cates that recycled nutrients by ctenophores and
medusae combined support ,4% of daily primary pro-
duction. This is similar to results from the mesohaline
Chesapeake Bay, where ctenophores and medusae
support up to 3% of microplankton production
(Nemazie et al., 1993), and within the range reported

for other estuarine and coastal regions (Bronk and
Steinberg, 2008). Gelatinous zooplankton excretion thus
supports a small fraction of primary production in
Chesapeake Bay, and phytoplankton must largely utilize
other N and P sources for production. For the York
River, additional sources might include the flux of NH4

þ

and PO4
32 from sediments during hypoxia (Kemp et al.,

2005), river runoff, desorption of PO4
32 from particles

(Sin et al., 1999) and regeneration of NH4
þ by non-

gelatinous zooplankton (Park and Carpenter, 1987;
Miller and Glibert, 1998; Kirchman, 2000).

These results also imply an alternative sink to phyto-
plankton for rapid utilization of gelatinous zooplankton
inorganic excretia because high inorganic excretion
occurred at times when DIN and DIP pools were low
or below detection. Advection may be responsible for
the removal of some of these nutrients, but low river
flow, summer water residence times greater than inor-
ganic production rates and strong vertical stratification
gradients would limit flushing and ensure retention of
nutrients in surface waters (Hayward et al., 1982; Shen
and Haas, 2004; L. Haas, personal communication). We
hypothesize that the release of inorganic N and P by
ctenophores and medusae favors growth of bacterial
communities because there may be a stoichiometric
imbalance in labile organic pools created by the high
release of C-rich DOM by M. leidyi populations that
drives supplemental uptake of inorganic nutrients in
order to satisfy relatively high bacterial N and P
demands (Kirchman, 2000). Here, bacteria would have
a competitive advantage over phytoplankton for inor-
ganic resources because of their higher surface area:
volume ratios. Low DOC:TDN and DOC:TDP release
by gelatinous zooplankton that are similar to bacterial
C:N and C:P elemental ratios and nutrient stoichiometric
requirements (Goldman et al., 1987; Kirchman, 2000)
would also favor uptake of inorganic N and P released
by bacteria over phytoplankton. In conclusion, we
emphasize that understanding the nature of interactions
of gelatinous zooplankton with bacteria is important if
we are to fully understand the role gelatinous zooplank-
ton play in DOM and inorganic nutrient cycling in
regions where gelatinous zooplankton proliferate.
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