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The role of nitrogen on the growth and colony development of

Phaeocystis globosa (Prymnesiophyceae)
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1Research Center for Harmful Algae and Aquatic Environment, Jinan University, Guangzhou 510632, China
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The effects of nitrate, ammonium and urea on the growth and colony formation of three strains of Phaeocystis globosa were

investigated. Although ammonium and urea supported growth, nitrate was the favoured nitrogen source for the growth of

solitary cells for all three strains. Phaeocystis globosa CCMP 1528 and 629 formed colonies in all cultures where nitrate was the

sole nitrogen source, but only a few colonies were observed in ammonium and urea treatments. Ammonium and urea were far

less effective in supporting growth, biomass generation and colony formation in all three strains. Once colonies developed,

colonial cells accounted for at least 15% of the total cells when grown with nitrate; colonial chlorophyll also contributed up to

60% to the total chlorophyll. The growth rates of colonial cells when using nitrate were greater than solitary cells. Changes in

colony size, colonial cell abundance and total P. globosa abundance as affected by the nitrogen source may influence the

carbon flux within the pelagic food web.

Key words: carbon flux, colony formation, growth, Haptophyta, nitrogen, Phaeocystis, solitary cells

Introduction

The genus Phaeocystis (Prymnesiophyceae) is
globally distributed, has a distribution that
ranges from tropical to polar oceans, and plays a
significant role in global carbon and sulphur cycles
as well as regional food webs (Lancelot et al., 1998;
Schoemann et al., 2005). It has an unusual hetero-
morphic life cycle that includes gelatinous colonies
and solitary cells. Individual cells are generally
3–10 mm in diameter, whereas colonies, with a
few to thousands of cells embedded in a mucilagi-
nous matrix, can occasionally be up to 3 cm in
diameter (Rousseau et al., 1994; Chen et al.,
2002). Among the six species that have been iden-
tified, P. globosa, P. pouchetii and P. antarctica
have been reported to form massive blooms in
colonial form (Medlin & Zingone, 2007). The for-
mation of colonies contributes to the success of
Phaeocystis, as it has been suggested that it may
provide protection against grazers, viruses and
bacteria (Hamm et al., 1999; Jakobsen & Tang,
2002; Brussaard et al., 2005). There is also evidence
that the colonial matrix can supply energy and
nutrients when light and nutrients become limiting
(Lancelot & Mathot, 1985; Schoemann et al.,
2001).

Phaeocystis is regarded as a harmful algal genus
in coastal waters (Lancelot et al., 1998) because of
negative influences on ecosystem structure, func-
tion, fisheries and tourism (Lancelot et al., 1987;
Peperzak & Poelman, 2008). Dense blooms have
been observed off the coasts of the North Sea
(Lancelot et al., 1987), North Atlantic (Gieskes
et al., 2007), southeast China (Qi et al., 2004),
Vietnam (Tang et al., 2004) and Norway (Larsen
et al., 2004). Clones isolated from Chinese and
Norwegian waters have been shown to have hae-
molytic properties (Shen et al., 2004; van Rijssel
et al., 2007). All of the locations listed above are
considered to be eutrophic, due to riverine and
anthropogenic nutrient enrichment (Lancelot
et al., 1987; Zhang et al., 2000; Cadée &
Hegeman, 2002; Thanh et al., 2004). Increased
N : Si and P : Si ratios have been proposed as a
mechanism for the increased number and duration
of blooms of non-siliceous phytoplankton
(Jacobsen et al., 1995), and the development of
Phaeocystis blooms has been associated with
increasing nutrient loads, especially NO3 and
PO4, and subsequent changes in the N : P ratio
(Riegman et al., 1992).
Phaeocystis colony development is controlled

mainly by NO3 supply (Lancelot et al., 2007).
Sharp decreases in N : P ratios as a result of high
consumption of nitrate have been observed in two
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P. pouchetii blooms (Bätje & Michaelis, 1986).
Nitrate removal by P. antarctica in the Ross Sea
has been observed repeatedly (Smith et al., 1998;
Arrigo et al., 2000; Cochlan & Bronk 2001), sug-
gesting that P. antarctica prefers nitrate as a nitro-
gen source, or at least can efficiently remove it.
Interestingly, Cochlan & Bronk (2003) found that
the dependence of colonial P. antarctica on nitrate
decreased from spring to summer, and Mathot
et al. (2000) noted a marked increase in the relative
contribution of solitary cells after the primary
bloom. This may imply that colonies derive their
nitrogen from nitrate, whereas solitary cells may
depend more heavily on ammonium or reduced
nitrogen (which increases in concentration after
the primary bloom). In the North Sea the distribu-
tion of nitrate showed a gradual decrease with dis-
tance from land and was correlated with a decline
in the P. pouchetii biomass (Veldhuis et al., 1986).
Phaeocystis dominates the spring bloom in Belgian
coastal waters, where nitrate is the major nitrogen
source (Tungaraza et al., 2003). Riegman et al.
(1992) provided experimental evidence that
Phaeocystis blooms may be restricted to those
N-limited environments where colony formation
is stimulated by nitrate and inhibited by ammo-
nium. Model studies also demonstrated a signifi-
cant correlation between Phaeocystis colony
biomass and winter NO3 in the North Sea
(Lancelot et al., 2005).
Nitrate has long been considered as the critical

nitrogenous substrate for phytoplankton; however,
studies have also suggested that reduced nitrogen,
such as ammonium and urea, can also play a key
role in phytoplankton growth (Eppley et al., 1971;
Lomas et al., 2002; Berman & Bronk, 2003; Glibert
& Burkholder, 2006; Solomon et al., 2010).
Elevated ammonium concentrations inhibit nitrate
uptake in diatoms as well as in P. pouchetii
(MacIsaac & Dugdale, 1969; Muggli & Smith,
1993; L’Helguen et al., 2008). The field work of
Tungaraza et al. (2003) confirmed that nitrate
uptake decreased rapidly due to elevated concen-
trations of NH4, and that Phaeocystis increased its
NH4 uptake when more NH4 was available. A 65-
fold higher urea uptake rate (relative to other N
substrates) by P. pouchetii was also observed by
Sanderson et al. (2008), but utilization of reduced
and organic forms by Phaeocystis has received rel-
atively less attention compared to uptake of NO3

and NH4 (Veldhuis & Admiraal, 1987; Schoemann
et al., 2005; Sanderson et al., 2008). Indeed, it is
generally assumed that small cells (5 mm diameter
and less) utilize reduced nitrogen (NH4), whereas
net plankton utilize nitrate (Probyn & Painting,
1985; Stolte & Riegman, 1995, 1996). Because of
its unusual life cycle, it remains unclear how the
different nitrogen sources affect the formation of

Phaeocystis colonies and support the growth of
solitary and colonial cells. Phaeocystis globosa is
the most widespread of all known colony-forming
Phaeocystis species, and forms extensive blooms
that have deleterious impacts on coastal ecosys-
tems. Understanding the species’ use of nitrogen
may help in predicting its appearance and concen-
trations in coastal environments.

Materials and methods

Stock maintenance

Three strains of Phaeocystis globosa isolated from two
geographical areas were used. P. globosa CCMP 627 and
CCMP 629 were originally isolated from the North
Atlantic, whereas P. globosa CCMP 1528 was isolated
from the South Pacific. The three strains were main-
tained in f/2 medium in coastal seawater (Guillard &
Ryther, 1962) at 20�C, with a salinity of 32 PSU under
an irradiance of 50 mmol photonsm�2 s�1 on a 12 : 12 h
light : dark cycle. The stocks were maintained in expo-
nential growth by regular dilutions with fresh media.
The cultures were non-axenic, and no attempt was
made to reduce bacterial growth.

Experimental cultures

Experiments were conducted in a walk-in growth cham-
ber in the same conditions as for stock maintenance.
Prior to the experiments, solitary cells of the three
strains of P. globosa were isolated by passing the culture
through a 10-mm nylon sieve twice under gravity (Tang,
2003), and experiments were initiated with an initial
solitary cell density of 104cellsml�1. Triplicate one-
litre batch cultures of each strain were grown in f/2
medium with a salinity of 32 PSU, where NHþ4 , NO3

or urea were added as the nitrogen source with an initial
N concentration of 8.82� 10�4 M. All cultures were
bubbled with filtered air to maintain a uniform distribu-
tion (Wang et al., 2010).

Microscopy and chlorophyll determinations

Samples for biomass assessment were collected every
other day. Aliquots of known volume were filtered
through Whatman GF/F filters to obtain total chloro-
phyll a, and through 20 mm polycarbonate membranes
(Poretics) to obtain the >20 mm fraction, which was
assumed to be representative of colonial chlorophyll
(Tang et al., 2008; Wang et al., 2010). All chlorophyll
a samples were extracted in darkness at 0�C for 24 h in
7ml of 90% acetone; fluorescence of extracted chloro-
phyll a was determined on a TD-700 fluorometer
(Turner Designs) before and after acidification
(Parsons et al., 1984). Samples for microscopical enu-
meration of solitary cell and colony abundances were
preserved in Lugol’s solution (final concentration 2%).
Solitary cell concentrations were measured using 1-ml
Sedgwick–Rafter chambers. Colony concentration,
colony size and cells per colony were measured in
24 multi-plates using a Nikon inverted microscope
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with a calibrated micro-ruler (Tang, 2003; Wang et al.,
2010). Colonies were counted within 24 h of collection to
limit colony disruption in the preserved state. Net
growth rates (divisions d�1) of triplicate samples of
each strain growing on each substrate were determined
from the slope of a regression between ln (N) (cellsml�1)
vs time (days).

Statistical analysis

SigmaStat (v. 3.50 SPSS) was used for statistical analyses.
Statistical comparisons of the effects of nitrogen source
on cell abundance with time were made by 2-way RM
ANOVA. Comparisons of changes in colony concentra-
tions, colony size, colonial cell abundance, partitioning of
cell and chlorophyll with time, as well as comparison of
growth rates between colonial and solitary cells, were
conducted by 1-way RM ANOVA and t-tests. Prior to
ANOVA, percentage data were normalized by an arcsine

transformation (Zar, 1984). Linear regressions were fit to
log cells colony�1 vs. log colony diameter, and compari-
son of the slopes of regressions between nitrogen was
done by 1-way analysis of covariance (ANCOVA). The
significance level for all statistical tests was set a priori at a
critical P value of 0.05.

Results

Solitary cell abundances

The maximum solitary cell abundance of
P. globosa CCMP 627 cultures grown on nitrate
was significantly greater than those grown using
ammonium or urea (P<0.05), but there was no
significant difference in maximum abundance
using urea and ammonium as the N source
(P>0.05; Fig. 1). The response of P. globosa
CCMP 1528 was similar to that of CCMP 627,
indicating that nitrate was the favoured nitrogen
source for the growth of solitary cells in both
strains. However, for P. globosa CCMP 629 the
solitary cell abundance grown on nitrate was
higher only on days 12 and 14 (P<0.05) when
compared with cultures using ammonium and
urea, and the absolute difference was far less
than observed with CCMP 627. Regardless of
nitrogen source, however, the solitary cell abun-
dance of P. globosa CCMP 627 was significantly
higher than for the other two strains. For example,
even when grown on urea, the maximum mean
solitary cell abundance was 2.85� 1.10�
106 cellsml�1 (mean� standard deviation), four
orders of magnitude higher than in other strains.
All three strains showed similar response to urea
and ammonium, in that reduced nitrogen was far
less effective in supporting growth and biomass
generation (Table 1).

Colony abundances

Unlike in nature, colony development did not
occur in our P. globosa CCMP 627 culture, regard-
less of the nitrogen source. Phaeocystis globosa
CCMP 1528 and CCMP 629 formed colonies in
all experiments when nitrate was provided as the
nitrogen source, whereas only a few colonies were
observed when ammonium and urea were provided
as nitrogen sources (Table 1 and Fig. 2).

Fig. 1. Phaeocystis globosa solitary cell abundance
(mean� standard deviation; n¼ 3) in nitrate (open circles),
ammonium (solid circles) and urea (open triangles)
cultures.

Table 1. Summary of the growth responses of three clones of Phaeocystis globosa as a function of the nitrogen source
provided.

P. globosa clone

CCMP 1528 CCMP 629 CCMP 627

Nitrogen source Solitary cells Colonies Solitary cells Colonies Solitary cells Colonies

Nitrate þþ þþþ þþ þþþ þþþ 0

Ammonium þ 0 þ 0 þþ 0

Urea þ 0 þ 0 þþ 0

Nitrogen effects on Phaeocystis 307



Furthermore, even these few colonies disappeared
soon after being formed (Fig. 2). With nitrate,
colony concentrations of CCMP 1528 increased
from 95 to 2309 coloniesml�1 by day 16; colony
abundance then decreased slightly toward the end
of the experiment. The highest colony numbers for
CCMP 629 were also observed on day 16.

However, in CCMP 629 colony abundance was
significantly less than in CCMP 1528 (P<0.01).

Partitioning of cells and chlorophyll

Nitrogen source strongly influenced the partition-
ing of cells between solitary and colonial forms.
CCMP 627 existed exclusively as solitary cells in
all nitrogen treatments (Table 1). At the beginning
of the experiments (that is, on day 4), <1% of the
total cells were in colonial form within non-nitrate
treatments for CCMP 1528 and CCMP 629,
whereas colonial cells accounted for at least 15%
of the total cells when grown with nitrate (Fig. 3).
This percentage increased to 50% for both CCMP
1528 and CCMP 629, and then decreased again to
c. 15% of the total cells at the end of the
experiments.
Size-fractioned chlorophyll also differed signifi-

cantly among nitrogen treatments. Because there
were relatively few colonial cells in non-nitrate
treatments, the >20 mm chlorophyll fraction was
not detectable for CCMP 1528 and CCMP 629
(confirming the use of this fraction of chlorophyll
as a proxy for colonies). With nitrate as the nitro-
gen source, the percentage of colonial chlorophyll
remained unchanged over time (P>0.05), contrib-
uting up to 60% to the total chlorophyll for both
CCMP 1528 and CCMP 629 (Fig. 3). In addition,
nitrogen source did not influence the chlorophyll a
per cell in colonies of both CCMP 1528 and
CCMP 629 (P>0.05, data not shown).

Fig. 3. The percentage of colonial cells of Phaeocystis globosa relative to the number of total cells (top) and the percentage of

chlorophyll in the >20mm fraction relative to total chlorophyll a (bottom) during supply of nitrate (open circles), ammonium
(solid circles) and urea (open triangles). Due to the relatively small number of colonial cells within non-nitrate treatments, the
>20 mm chlorophyll fraction was not detectable for CCMP 1528 and CCMP 629.

Fig. 2. Colony abundances (mean� standard deviation;
n¼ 3) of Phaeocystis globosa grown with nitrate (open cir-
cles), ammonium (solid circles) and urea (open triangles) as

a nitrogen source. Colony formation of CCMP 1528 and
629 within non-nitrate treatments were only observed at the
beginning of the experiment.
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Colony size and colonial cell

With nitrate as the nitrogen source, mean colony
size increased from 12.5 to 58.4 mm by day 10 for
CCMP 1528, and then decreased slightly but
significantly towards the end of the experiment
(Fig. 4). Similarly, changes in colony diameter
also occurred in the CCMP 629 culture. The
colony diameters of CCMP 1528 and 629 were
less than 40mm in the ammonium and urea treat-
ments when colonies developed, significantly less
than those in the nitrate-replete cultures after the
same period of growth.
The number of cells per colony of CCMP 1528

and 629 as a function of nitrogen were similar
(Fig. 4). There were significant increases in colonial
cell concentration over time for both strains within
nitrate treatments (P<0.01), and the highest mean
cell densities were 58.4 and 157 cells colony�1 for
CCMP 1528 and CCMP 629, respectively.
However, when grown with ammonium or urea,
there were less than 10 cells colony�1.
In all cases where colonies developed, there was

a significant linear log–log relationship between
the number of cells per colony and colony diameter
(P<0.01) with a slope <2, indicating that the
number of cells per unit of colony surface area
decreased as the colonies increased in size
(Fig. 5). For CCMP 1528, the slope of the regres-
sion was significantly smaller when ammonium
was the N source when compared to the nitrate
treatment (P<0.01). Nitrogen source, however,
did not significantly affect cell distribution within
colonies of CCMP 629 (P>0.05). Additionally,

within nitrate treatments there was no difference
in the slope of the regression lines between
CCMP 1528 and 629 (P>0.05).

Growth rates of solitary and colonial cells

In the cultures supplied with nitrate, the maximum
growth rate of solitary cells for CCMP 1528 was
0.28� 0.02 d�1, which was significantly less than
that of colonial cells (0.47� 0.04 d�1; P<0.001).
The difference was even greater for CCMP 629; the
maximum growth rate of colonial cells was twice as
rapid as that of solitary cells (0.64� 0.18 vs
0.33� 0.07 d�1; Table 1).

Discussion

Nitrogen limitation in the medium

The objective of this study was to understand how
different nitrogen sources influence the growth and
biomass generation of Phaeocystis globosa, espe-
cially in view of the increased nutrient enrichment
occurring in many coastal waters. Conversely,
studying the nitrogen uptake dynamics of P. glo-
bosa was secondary to the objective of investigat-
ing the role of nitrogen source in colony
development, and nitrogen data were not collected
during the time-course measurements. However,
estimates from rates of particulate matter genera-
tion suggest that N-limitation is unlikely. For
example, using the ratio of chlorophyll a : PON
determined by Wang et al. (2010), 2.19mmol N is
removed for every 1 mg chlorophyll a generated.

Fig. 4. Colony diameter and cell abundance (cells per colony) in cultures of Phaeocystis globosa using nitrate (open circles),

ammonium (solid circles) and urea (open triangle). Colony formation of CCMP 1528 and 629 within non-nitrate treatments
was observed only at the beginning of the experiment.
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Therefore, in f/2 medium with an initial N concen-
tration of 882mM, we would expect that 402 mg l�1

chlorophyll a would be generated. Only in the cul-
tures of CCMP 627 growing with nitrate did we
observe chlorophyll concentrations of 400 mg l�1,
suggesting that nitrogen limitation occurred infre-
quently. Therefore, we attribute the different
response in growth and colony formation to the
form of nitrogen supplied, rather than of N-limita-
tion per se.

Nitrate uptake and colony formation

Our studies suggest strongly that nitrate favours
the growth of both solitary cells and colonies of
P. globosa. Furthermore, reduced forms of nitro-
gen (ammonium, urea) failed to support extensive
growth in this species. Our results are consistent
with previous studies that have reported
Phaeocystis blooms in environments where nitrate
was the major N source (Riegman et al., 1992;
Smith, 1993; Arrigo et al., 1999; Lancelot et al.,
2007). Nitrate is the dominant form of nitrogen
in the North Sea (Lancelot et al., 2007), contribut-
ing more than 50% of total nitrogen. This region
has been dominated by massive Phaeocystis
blooms each spring, which are tightly coupled to
nitrate loading in both space and time (Lancelot
et al., 2007). Phaeocystis antarctica blooms in the
relatively deeply mixed (and nitrate replete) waters
of the Ross Sea, where the NO3 : PO4 removal ratio
for P. antarctica blooms was markedly higher than
the Redfield N : P ratio of 16 (Arrigo et al., 2000,

2002). Results from both of these locations suggest
that Phaeocystis can grow well and reach high
abundance using nitrate as a nitrogen source.
The investigations by Hai et al. (2010) presented

alternative evidence that high ammonium concen-
trations (4.9 mmol l�1) favour the development of P.
globosa blooms in the upwelling waters of the
south-central coast of Vietnam. The Phaeocystis
blooms are induced and supported by offshore
upwelling that brings nutrients from the deep
ocean to the surface (Tang et al., 2004). The
upwelled waters are also in close contact with sed-
iments, potentially providing a significant ammo-
nium source. Hai et al. (2010) found that nitrate
concentrations were still high (2.1 mmol l�1) and
above saturation levels during the Phaoecystis
bloom, but that ammonium was even more ele-
vated. It is possible that nitrate simulated colony
development close to the upwelling centre and
was reduced in concentration during the shoreward
advection of the water; then, following significant
ammonium regeneration in shallow water, nitrate
uptake was inhibited by high concentrations of
ammonium (Tungaraza et al., 2003). In addition,
the observed differences may be due to the different
strains studied. In Vietnam coastal waters, the
diameters of colonies of P. globosa reached up to
1 cm, and thousands of cells were embedded within
the colony matrix (W.O.S., unpublished observa-
tions). These giant colonies may represent an
entirely different biological response to the vari-
able nitrogen sources than was observed in
our cultures.

Fig. 5. Relationship between cell abundance per colony and colony diameter of Phaeocystis globosa CCMP 1528 (top) and 629
(bottom) when grown using different nitrogen sources (left, ammonium; right nitrate). Solid lines are linear regressions, and

dotted lines are the 95% confidence intervals. N¼ number of colonies measured.
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Differences in uptake strategies between solitary and
colonial cells

Comparatively few colonies developed when
ammonium or urea were provided as N sources,
whereas solitary cell abundances increased with
time for all three strains, irrespective of nitrogen
source. Furthermore, the final biomass of CCMP
627 grown in urea was greater than that grown in
nitrate, strongly suggesting that the growth of P.
globosa solitary cells was largely independent of
nitrogen source. Phaeocystis can remove ammo-
nium when ammonium concentrations exceed cer-
tain concentrations (Smith, 1993; Cochlan &
Bronk, 2003; Tungaraza et al., 2003).
Unfortunately, none of these studies differentiated
between solitary and colonial cells and the nitrogen
source of each form, but given P. globosa’s fail-
ure to form colonies in cultures supplied with
reduced nitrogen, we would suggest that ammo-
nium probably was removed by solitary and not
colonial cells.

Nitrogen and colonial architecture

The slope of the linear log–log relationship
between colony cell number and colony diameter
that we observed is comparable to previous results
in Rousseau et al. (1990) and Jakobsen & Tang
(2002). In their investigations nitrate was also
used as a nitrogen source. The significant differ-
ence between the slopes of the regression lines
between nitrate and ammonium treatments in our
experiments suggests that the cellular density in
colonies (the number of cells per unit colony sur-
face) was reduced by ammonium. It is generally
considered that ammonium takes less energy to
assimilate than nitrate (Syrett, 1981; Thompson
et al., 1989), and it is possible that the ‘excess’
energy of NH4-grown cells may have been used
to produce more carbon-rich mucus. However,
we did not find increased numbers of colonies in
ammonium-based cultures; indeed, colonial
growth using NH4 was extremely limited. Given
the large increased partitioning of carbon into the
mucus, it is possible that the colonies rapidly
became structurally unstable and could not main-
tain colonial integrity. Our data cannot explain the
differences in colony architecture, and further
work is necessary to provide the underlying phys-
iological or mechanical explanation.
Generally growth of nano-phytoplankton in the

ocean is thought to be based largely on ammo-
nium, with nitrate being relatively more important
for net phytoplankton (Malone, 1980; Probyn &
Painting, 1985). In our study solitary cells with
diameters of a few micrometres were able to
remove either nitrate or ammonium, whereas

colonies utilized nitrate. This may partly explain
why colonies were present only at the beginning
of experiments in ammonium-based cultures.
Given that individual cells are embedded in the
mucoid matrix, it is possible that ammonium dif-
fusion through the mucus was too slow to support
growth (perhaps due to the negative charge of the
ion). However, Ploug et al. (1999) suggested that
the mucus was highly permeable to the inorganic
substances they tested, which would argue against
the possible ammonium limitation via diffusion.
Similarly, in the ammonium-replete cultures
reported by Riegman et al. (1992), cells of P. glo-
bosa were solitary, whereas they were colonial
when supplied nitrate. Although urea concentra-
tions decreased rapidly during both diatom and
Phaeocystis blooms (Tungaraza et al., 2003),
there was no direct evidence that urea was directly
used as an N substrate by Phaeocystis (Sanderson
et al., 2008, Bradley et al., 2010). Only solitary cells
of P. globosa removed urea in our cultures,
strongly suggesting that solitary cells were respon-
sible for the decrease in urea concentration during
blooms of Phaeocystis.

Nitrate load within marine systems dominated by
Phaeocystis

Generally colony formation is assumed to repre-
sent a potential energy loss, which inevitably
results in reduced growth rates of the colonial
form (Jakobsen & Tang, 2002). However, colonial
and solitary cells have been shown in other studies
to have similar growth rates (Hamm, 2000;
Jakobsen & Tang, 2002), suggesting that colonial
mucus production does not represent a significant
energy drain for P. globosa nor result in a reduced
growth rate of colonial cells. In our cultures, the
growth rates of colonial cells were even higher than
those of solitary cells, similar to the finding of
Shields & Smith (2009) and Veldhuis et al.
(2005). Because the different morphotypes of
Phaeocystis have very different trophic roles (e.g.
Hamm et al., 2001; Smith et al., 2007), nitrate
inputs that induce changes in altered partitioning
between solitary and colonial forms will inevitably
affect many of the ecological processes in
Phaeocystis-dominated systems. Colony formation
may protect colonial cells against viral infection,
bacterial degradation and zooplankton grazing;
thus, colony formation and larger size can be con-
sidered to be a defence mechanism (Hamm, 2000;
Tang, 2003; Nejstgaard et al., 2007). Increases in
nitrate concentrations would enhance magnitude
and composition of P. globosa blooms and result
in decreased grazing pressure and, combined with
the presumed higher sinking rates of colonies,
increased inputs to the benthos (Hamm &
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Rousseau, 2003; Reigstad & Wassmann, 2007) and
decreased POC retention within the pelagic food
web (Hamm, 2000).
Finally, it should be noted that the variations we

found among the three strains were substantial,
both with respect to colony formation and nitrogen
assimilation. While this is not completely unex-
pected, given that clonal variations have been pre-
viously observed (van Rijssel et al., 2000; Long
et al., 2007; Mills et al., 2010), the magnitude of
these variations was surprising large (e.g. the dif-
ferences in final standing stocks that were indepen-
dent of the nitrogen source). While the clones
appear morphologically similar, it is possible that
significant genetic differences exist among clones
that result in substantial ecological and geographic
separation. Similar findings for oceanic prochlor-
ophytes have been observed (Johnson et al., 2006)
and we know of no reason why similar niche dif-
ferentiation should not occur in haptophytes.
Further detailed molecular analysis and linkage
to ecological responses in this critical species
would allow a greater understanding of the local
responses to nitrogen inputs.
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