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REVIEW

Zooplankton carcasses and
non-predatory mortality in freshwater
and inland sea environments
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Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating
the importance of non-predatory mortality, but both are often overlooked in ecological
studies compared with predatory mortality. The development of several microscopic
methods allows the distinction between live and dead zooplankton in field samples,
and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8
(maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh
and inland waters. Common causes of non-predatory mortality among zooplankton
include senescence, temperature change, physical and chemical stresses, parasitism
and food-related factors. Carcasses resulting from non-predatory mortality may
undergo decomposition leading to an increase in microbial production and a shift in
microbial composition in the water column. Alternatively, sinking carcasses may con-
tribute significantly to vertical carbon flux especially outside the phytoplankton growth
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seasons, and become a food source for the benthos. Global climate change is already
altering freshwater ecosystems on multiple levels, and likely will have significant posi-
tive or negative effects on zooplankton non-predatory mortality. Better spatial and
temporal studies of zooplankton carcasses and non-predatory mortality rates will
improve our understanding of this important but under-appreciated topic.

KEYWORDS: carbon flux; inland waters; lakes; live/dead sorting; non-predatory
mortality; zooplankton carcasses

I N T RO D U C T I O N

Zooplankton (here referring to mesozooplankton; 200–
2000 mm) perform many important ecological functions
such as grazing (Calbet, 2001), trophic transfer (Fernando,
1994), nutrient recycling (Vanni, 2002) and involvement in
the biological pump (Ducklow et al., 2001). To fully under-
stand the ecological significance of zooplankton, it is ne-
cessary to study their life cycle, which can be defined by
the basic parameters of reproduction, growth and mortal-
ity. Of these, mortality is perhaps the least studied (Runge
et al., 2004) and is often assumed to be caused by predation
only. In reality, zooplankton also suffer from non-predatory
mortality, which may leave nutrient- and carbon-rich car-
casses behind. Hirst and Kiørboe (Hirst and Kiørboe,
2002) estimated that non-predatory factors account for 1/
4–1/3 of the total mortality among epi-pelagic marine
copepods. Ignoring carcasses in field samples therefore
will lead to errors in demographic assessment, and

oversight of carcass-mediated nutrient and carbon fluxes
as well as microbial processes (Fig. 1).

Tang and Elliott (Tang and Elliott, in press) recently
reviewed the occurrence, fate and ecological importance of
zooplankton carcasses, but focused mainly on marine cope-
pods and the western literature. Limnologists have long
appreciated the occurrence of zooplankton carcasses in
lakes and inland waters, and many of the earlier studies
were reported in non-English literature, which unfortunate-
ly is less accessible to the wider research community. Thus,
the purpose of this article is to review the state-of-the-
knowledge of zooplankton carcasses and related ecological
processes in lakes and inland waters. Some of the concepts
and processes discussed are, however, also applicable to the
marine environments. We include non-English literature to
highlight the work pioneered by Russian scientists on this
research topic. Where appropriate, comparison with the
marine literature is made.

Fig. 1. Based on the literature data, on average 11.6–59.8% of the marine zooplankton and 7.4–47.6% of the freshwater zooplankton are
carcasses (Tables II and III), likely the results of non-predatory mortality such as senescence, temperature variations, physical and chemical stresses,
parasitism and food-related factors. Carcasses resulting from non-predatory mortality can be incorporated into the classical food web through direct
consumption, be incorporated into the microbial food web through microbial decomposition or become part of the sinking fluxes.
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M E T H O D S FO R L I V E / D E A D
S O RT I N G O F Z O O P L A N K TO N

Various methods exist for sorting live/dead zooplankton
(Table I). Kastalskaja-Karzinkina (Kastalskaja-Karzinkina,
1935, 1937) was the first Russian researcher to study live/
dead zooplankton. By staining preserved samples with a
5% solution of erythrosine, dead zooplankton in Glubokoie
Lake could be distinguished from live ones based on mor-
phological changes within as little as 3 h after death. This
method was later used in the Black Sea (Zelezinskaya,
1966). Alternatively, some researchers examined, without
staining, postmortem morphological changes of the zoo-
plankton (Koval, 1984; Geptner et al., 1990; Gruzov et al.,
1994; Pavlova and Melnikova, 2006a,b, 2011). Sampei et al.

(Sampei et al., 2009) collected copepods in the Beaufort Sea
and killed them with formalin to simulate death in poisoned
sediment traps, or by crowding or heat to simulate death
before entering the traps. In the latter treatments, 64% of
Calanus hyperboreus and C. glacialis, and 44% of Pareuchaeta gla-

cialis had different appearance of their antennules and
swimming legs than those killed by formalin, providing a
basis for separating live and dead copepods in sediment
trap samples (Sampei et al., 2009, 2012).

Several vital and mortal staining methods have been
developed for live/dead sorting. For freshwater zooplank-
ton, a 5–7.5% solution of Aniline Blue (C37H27N3O9S3

Na2) has been commonly used based on the protocol ori-
ginally described by Seepersad and colleagues (Seepersad
and Crippen, 1978; Seepersad et al., 2004) and further
improved by Bickel et al. (Bickel et al., 2009). The zooplank-
ton sample is stained for ca. 15 min, after which it is rinsed
to remove excess stain and preserved (e.g. Dubovskaya and
Gladyshev, 1983; Telesh, 1986; Dubovskaya, 1987;

Sergeeva et al., 1989). Aniline Blue is classified as a mortal
stain; i.e. it penetrates and stains dead zooplankton a
bright blue color, whereas live zooplankton do not take up
the stain (Dubovskaya, 2008b; Bickel et al., 2009). Live zoo-
plankton that are damaged during sampling and handling
give a specific staining pattern different from dead speci-
mens (Supplementary data, Fig. S1).

Another commonly used stain is the vital stain Neutral
Red (C15H17ClN4). The basic procedures were described
in the 70s (Dressel et al., 1972; Crippen and Perrier, 1974;
Fleming and Coughlan, 1978), and an improved protocol
is given by Elliott and Tang (Elliott and Tang, 2009).
When treated with ca. 0.015 g L21 Neutral Red prior to
preservation, live zooplankton are stained bright red
whereas dead ones are unstained. This stain is used pri-
marily in marine and estuarine settings (e.g. Vinogradov
et al., 1998; Elliott and Tang, 2011a; Litvinyuk et al.,
2011). The staining intensity of field samples may vary, in
which case digital images can be taken of questionable
specimens for more detailed analysis (Litvinyuk and
Mukhanov, 2012). Semenova (Semenova, 2010a) com-
pared the use of Aniline Blue and Neutral Red in the
brackish Curonian Lagoon, and found the latter often
did not stain live Rotifera and Cladocera. Elliott and
Tang (Elliott and Tang, 2009) also reported that Neutral
Red did not work well in freshwater.

In Lake Baikal, Procion Brilliant Red (H-E3B, reactive
red 120) solution (1.25 g L21) was used to differentiate
live/dead copepods in preserved samples (Kozhova,
1991; Riapenko and Polynov, 1991; Naumova, 2006).
However, a detailed protocol and its comparison with the
other stains have not been published. Fluorescein diace-
tate (FDA) has been used to assess embryo viability
(Buttino et al., 2004) and for live/dead sorting in the

Table I: Published methods for distinguishing between live and dead zooplankton in marine and freshwater
samples

Method Environmental setting Observations Key references

Erythrosine staining Freshwaters Decay of muscle fibers and integuments become more visible Kastalskaja-Karzinkina, 1935
Postmortem morphology Sea waters Decay of muscle fibers and integuments Koval, 1984
Postmortem morphology Sea waters Changes in morphology and posture of antennules and

swimming legs
Sampei et al., 2009

Aniline Blue staining Fresh to brackish
waters

Dead zooplankton stained blue; live zooplankton do not stain Seepersad and Crippen,
1978

Neutral Red staining Sea and estuarine
waters

Dead zooplankton do not stain; live zooplankton stained red Fleming and Coughlan, 1978

Procion Brilliant Red
staining

Freshwaters Dead zooplankton stained red; live zooplankton do not stain Naumova, 2006

Fluorescein diacetate
staining

Sea waters Live zooplankton show a green fluorescence. Buttino et al., 2004

SYTOX Green staining Sea waters Dead zooplankton show a green fluorescence Buttino et al., 2004
Cell digestion assay Partial digestion of dead cells, but only for organisms ,50 mm Zetsche and Meysman,

2012

Descriptions of the original protocols are given in the key references indicated. Examples of application and improvement of some of the methods are
given in the text.
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Black Sea (Litvinyuk et al., 2009, 2011). The latter authors
obtained very similar results with FDA and Neutral Red
(Litvinyuk et al., 2011). In a comparison of three methods
for live/dead sorting: cell digestion assay, staining with
SYTOXw Green, and staining with Neutral Red, Neutral
Red was by far the best for marine plankton .50 mm
(Zetsche and Meysman, 2012).

In summary, Aniline Blue is the most effective for live/
dead sorting of fresh and brackish water zooplankton
and Neutral Red for marine zooplankton. Both stains
are inexpensive and are considered non-hazardous
chemicals and therefore particularly suitable for field
applications.

Z O O P L A N K TO N CA RCA S S DATA
F RO M T H E L I T E R AT U R E

In marine environments, high carcass abundances have
often been found in polluted areas (Kulikov, 1990; Pavlova

and Melnikova, 2006a,b, 2011) and in deep layers
(Geptner et al., 1990; Gruzov et al., 1994; Vinogradov et al.,
1998). The minimum percentages of dead marine zoo-
plankton varied from 0 to 50%, with an average of ca.
12% (Table II) and a median of 10%, and were normally
distributed (the Kolmogorov–Smirnov test; DK-S ¼ 0.163,
P . 0.20, n ¼ 33) (Fig. 2a). The maximum values varied
from 20 to 100%, with both mean and median at 60%
(Table II), and also were normally distributed (DK-S ¼

0.088, P . 0.20, n ¼ 33) (Fig. 2b).
In freshwaters, the minimum percentages of dead zoo-

plankton ranged from 0 to 64% with an average of ca.
7% (Table III), close to that for marine zooplankton.
However, the set of minimum values had a median of
0.2, significantly lower than that for marine zooplankton
(the Mann–Whitney U-test, P ¼ 0.005, n ¼ 41 and 33).
The set of minimum values were not normally distribu-
ted (DK-S ¼ 0.292, P , 0.01, n ¼ 41) (Fig. 3a). In other
words, zero dead zooplankton was more frequently

Table II: Minimum and maximum percentages of dead zooplankton reported for various marine
environments as determined by morphology in unstained samples (U), staining with erythrosine (E), neutral
Red (NR) or fluorescein diacetate (FDA)

Location Method Taxon
% dead

Reference
Min. Max.

Black Sea, Odessa coast E Acartia clausi 1 53 Zelezinskaya, 1966
Penilia avirostris 16 64

Atlantic off American Coast U Mixed species 50 70 Wheeler, 1967
Atlantic off African Coast U Mixed species 16 28 Weikert, 1977
Black Sea, shelf U Mixed species 0 100 Koval, 1984
North Atlantic U Mixed species 25 50 Roe, 1988
Sea of Japan U Mixed species 16 28 Terazaki and Wada, 1988
Red Sea U Mixed species 1 50 Böttger-Schnack, 1990
Indian Ocean off African Coast U Mixed species 2 100 Geptner et al., 1990
Baltic Sea, Gotland depression NR Mixed species 2 46 Kulikov, 1990
Black Sea, northern part U Mixed species 0 100 Gruzov et al., 1994
Red Sea U Mixed species 10 29 Böttger-Schnack, 1995
Gulf of Eilat U Mixed species 10 60 Genin et al., 1995
Pacific near California Bight U Mixed species 10 60 Haury et al., 1995
Arabian Sea U Mixed species 5 70 Böttger-Schnack, 1996
Gulf Stream and Labrador Current NR Mixed species 0 38 Vinogradov et al., 1998
North Pacific U Mixed species 0 75 Yamaguchi and Ikeda, 2001
North Pacific U Mixed species 10 90 Yamaguchi et al., 2002
Gulf of Aqaba U Mixed species 10 20 Yahel et al., 2005
Chesapeake Bay NR Mixed species 13 37 Tang et al., 2006a
Black Sea, Sevastopol Bay U Copepoda 26 51 Pavlova and Melnikova, 2006a

Cladocera 17 73
Noctiluca 14 74
Cirripedia larvae 38 68
Polychaeta larvae 14 44
Mollusca larvae 11 33

Black Sea, Sevastopol Bay U Mixed species 11 57 Pavlova and Melnikova, 2006b
Black Sea, Sevastopol Bay U Mixed species 7 60 Pavlova and Melnikova, 2011

Cladocera 20 74
Copepoda 13 59
Larvae 10 74

Black Sea, Sevastopol Bay NR, FDA Mixed species 2 85 Litvinyuk et al., 2011
Chesapeake Bay NR Acartia tonsa 2 53 Bickel et al., 2011
Average+SE 11.6+1.9 59.8+3.7
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observed in freshwaters than in the marine environments.
The maximum percentages of dead freshwater zooplank-
ton ranged from 2 to 100% with a mean of ca. 48% and
a median of 44% (Table III) and were normally distribu-
ted (DK-S ¼ 0.131, P . 0.20, n ¼ 41) (Fig. 3b). The
maximum values in freshwaters on average did not differ
significantly from those in marine environments
(Student’s t-test, 1.86, P ¼ 0.067, n ¼ 41 and 33).

In general, the highest percentages of dead freshwater
zooplankton (100%) were found in rivers (Dubovskaya,
1987; Gladyshev, 1993; Table III) and in overheated lit-
toral zones (Buseva, 2011; Table III). Comparatively high
percentages of carcasses were found in polluted areas
(Kozhova, 1991; Gladyshev, 1993; Smelskaya, 1995;
Semenova, 2010b) and during cyanobacteria blooms
(Semenova, 2011). High carcass abundances were also
observed in deep layers of lakes, probably as a result of
their sinking from above and/or unfavorable local condi-
tions (Kastalskaja-Karzinkina, 1935; Dubovskaya, 1987).

In summary, the observed percentages of dead zoo-
plankton vary within the whole possible range, 0–100%,

and carcass abundances will be determined by mortality
rate and carcass turnover rate at any particular location. A
common practice in zooplankton population modeling is
to use mortality as the closure term and attribute it only to
predation (Edwards and Brindley, 1999). However, Elliott
and Tang (Elliott and Tang, 2011b) showed that neglecting
even a small degree of non-predatory mortality will lead to
unrealistic projections of population growth. Because non-
predatory mortality is defined as mortality not due to pre-
dation, it has literally unlimited number of possible causes.
Nonetheless, we may consider several common causes:
senescence, physical and chemical stresses, parasitism and
food-related mortality.

P H Y S I O LO G I CA L D E AT H A N D
E S T I M AT I O N O F
N O N - P R E DATO RY M O RTA L I T Y

Mortality in the absence of predators can be partly
explained by physiological death or senescence. Dorazio
(Dorazio, 1984) calculated theoretical curves of mortality
under different population growth rates for animals whose
only source of mortality is death at some finite age. His cal-
culations showed that senescence mortality becomes more
important for slow-growing populations with a short life-
span. He also calculated this mortality for a population
growing at 0.1 day21 with different survival curves. For
Type I survival curve, physiological death rate is low for
juveniles but increases with age, and with a lifespan of
20 days, it accounts for a fraction of 0.38 of the total mor-
tality. Such a high senescence mortality rate has been
demonstrated experimentally for Daphnia (Hülsmann and
Voigt, 2002). For Type II (equal mortality at different ages)
and III (high juvenile mortality) survival curves, this frac-
tion drops to 0.21 and 0.07, respectively (Dorazio, 1984).

Romanovsky and Ghilarov (Romanovsky and Ghilarov,
1996) estimated a senescence mortality of 0.045 day21 for
Diaphanosoma brachyurum. Dodson (Dodson, 1972) assumed
the physiological death of Daphnia rosea to be 0.03 day21

based on earlier data (Hall, 1964). Romanovsky
(Romanovsky, 1984) estimated that the typical lower
limits of physiological death rate for zooplankton to be
0.04–0.06 day21. The average per day senescence death
rate of marine zooplankton of size .1.5 mm is assumed
to be 0.05 day21 of the biomass, and for animals of size
,1.5 mm it is 0.01 day21 of the biomass (Lebedeva et al.,
1982; Sazhin, 1986). Note that only the papers of
Lebedeva et al. (Lebedeva et al., 1982) and Sazhin (Sazhin,
1986) derive mortality rates from biomass; all others are
based on abundances.

The aforementioned estimations were based on
laboratory cultures and modeling, rather than in situ

Fig. 2. Frequency distributions of (a) minimum, and (b) maximum
percentages of dead zooplankton observed in marine environments.
Lines are expected normal distributions for reference.
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measurements. A way of measuring in situ non-predatory
mortality was proposed by Gladyshev and Gubanov
(Gladyshev and Gubanov, 1996), and further developed
by others (Dubovskaya et al., 1999, 2003; Gladyshev et al.,
2003a). The method involves the use of non-poisoned
sediment trap and a water column sampler, and applies
the following equation:

mi ¼
Dy

Dti � Ni

þ Gi �
yi

Ni

ð1Þ

where mi (day21) is the specific non-predatory mortality,
Dti ¼ tiþ1 2 ti, with ti being the instant of taking the
sample i, yi is the abundance of carcasses (ind..m23)

above the trap at time ti, Dyi ¼ yiþ1 2 yi, and Ni is the
abundance of live individuals (ind..m23) above the trap.
Gi is the specific removal rate of carcasses from the water
column, and is a function of decomposition, consump-
tion and sedimentation. However, sedimentation is
assumed to be the principal removal mechanism
(Dubovskaya et al., 1999; Dubovskaya, 2008b) such that
G ¼ V/h, where h is water column thickness (m) above
the trap. The sinking velocity of carcasses, V (m.day21), is
calculated as

V ¼ Y

S � y� ð2Þ

Table III: Minimum and maximum percentages of dead zooplankton reported for various fresh and brackish
water environments as determined by morphology in unstained samples (U), staining with erythrosine (E),
Aniline Blue (AB) or Procion Brilliant Red (PBR)

Location Method Taxon
% dead

Reference
Min. Max.

Glubokoie Lake E Rotatoria 31 94 Kastalskaja-Karzinkina, 1935
Cladocera 64 96
Copepoda 35 80

Glubokoie Lake E Daphnia 10 47 Kastalskaja-Karzinkina, 1937
Bosmina 20 47
Diaphanosoma 17 69
Eudiaptomus 8 84
Mesocyclops 17 37
Rotifera 4 93

Neva River and Lake Ladoga AB Cladocera 0 20 Telesh, 1986
Copepoda 0 50
Rotifera 0 40

Sayano-Shushenskoie Reservoir AB Mixed species 16 96 Dubovskaya, 1987
Yenisei River AB Mixed species 0 100 Dubovskaya, 1987
Krivorozhskaya Reservoir AB Mixed species 0.7 5.5 Sergeeva et al., 1989
Lake Baikal PBR Epishura 0 75 Riapenko and Polynov, 1991
Lake Baikal PBR Epishura 0 44 Kozhova, 1991
Krasnoyarsk Reservoir AB Mixed species 2.5 34 Gladyshev, 1993
Syda River AB Mixed species 28.5 100 Gladyshev, 1993
Galichskoie Lake AB Mesocyclors 0.17 15 Smelskaya, 1995
Lesnoi pond AB Bosmina 0 11.4 Gladyshev and Gubanov, 1996
Lake Constance U Cyclops vicinus 0.1 11.5 Gries and Gude, 1999

Daphnia galeata 0.1 18
Daphnia hyalina 0 2

Krasnoyarsk Reservoir AB Mixed species 0 16.7 Dubovskaya et al., 2004
Yenisei River AB Mixed species 0 22.1 Dubovskaya et al., 2004
Bugach reservoir AB Cyclops 0 20.1 Dubovskaya, 2005

Daphnia 0 46.6
Lake Baikal PBR Epishura 0 80 Naumova, 2006
Obsterno Lake AB Mixed species 0.1 6.2 Dubovskaya et al., 2007
Lake Stechlin AB Daphnia 0 36.3 Bickel et al., 2009

Bosmina 0 47.6
Copepodites 0 4.6

Lake Dagow AB Daphnia 0.4 9.8 Bickel et al., 2009
Bosmina 1.1 60.8
Copepodites 0 34.4

Belarus lakes AB Diaphanosoma 4 100 Buseva, 2011
Daphnia 23 91
Ceriodaphnia 8 13
Bosmina 11 44

Curonian Lagoon AB Mixed species 0.4 47.8 Semenova, 2011
Average+SE 7.4+2.1 47.6+5.1

JOURNAL OF PLANKTON RESEARCH j VOLUME 36 j NUMBER 3 j PAGES 597–612 j 2014

602

D
ow

nloaded from
 https://academ

ic.oup.com
/plankt/article-abstract/36/3/597/1501400 by VIR

G
IN

IA IN
STITU

TE O
F M

arine Science user on 30 O
ctober 2018



where Y is the number of carcasses collected in the trap
per day (ind..day21), S is the mouth area of the collector
(m2), and y* is the abundance of carcasses (ind..m23) at
trap depth.

This method of mortality estimation is inevitably
prone to errors because of the inherently small precision
of estimation of zooplankton abundance by field sam-
pling and carcass sinking by sediment traps. However,
ways to minimize these errors have been suggested
(Dubovskaya, 2008b): (i) time of trap exposure should be
�24 h to increase accuracy and precision of estimation
of Y; (ii) several traps should be exposed simultaneously as
replicates and to increase the total value of S; (iii) plank-
ton samples at the trap depth should be of a large volume
to increase accuracy and precision of y*; (iv) the sampling
at the trap depth should be done two to four times during
the period of trap exposure to increase accuracy and pre-
cision of y*.

This method was used in a reservoir and gave a specific
non-predatory mortality rate up to 0.8 day21 for Daphnia

(Dubovskaya et al., 2003), considerably higher than
senescence-related mortality. This is not unexpected
because, as we discuss below, zooplankton can be subject
to multiple non-predatory mortality factors in situ, which
likely hasten their death.

WAT E R T E M P E R AT U R E

There is evidence of increasing non-predatory mortality
within a community caused by increasing water tempera-
ture (Elliott and Tang, 2011b). For instance, the abundance
of zooplankton carcasses downstream of a warm water dis-
charge from a thermal power station was two to seven
times higher than that upstream (Sergeeva et al., 1989).
Increase in mortality of ‘spring’ clones of Daphnia magna (in
situ temperature 4.48C) was observed in a life-table experi-
ment at 308C under high food quality and quantity
(Giebelhausen and Lampert, 2001). In the Chesapeake
Bay, an exceptionally warm summer in 2005 (average
water temperature 27.58C, maximum 33.48C) coincided
with a high percentage of dead copepods (average 32%)
(Tang et al., 2006a). Seasonal variations of water tempera-
ture may also be important. For example, water tempera-
ture in the previous winter, early spring and particularly
early summer were found to affect the magnitude of
summer predatory and non-predatory mortality of Daphnia

(Benndorf et al., 2001; Wagner et al., 2004).

W I N D A N D C U R R E N T S

Wind affects plankton mortality via waves and currents.
For instance, mortality of Diaphanosoma brachyurum corre-
lated positively with wind speed (Herzig, 1974; cited by
Boersma et al., 1996). On a day of strong wind and waves,
peaks of dead Daphnia (ca. 20%) and copepodites of
Cyclops (16%) were observed in the shallow Bugach reser-
voir (Dubovskaya, 2005). Boersma et al. (Boersma et al.,
1996) cited reports of large amounts of air-locked Daphnia

along the foam lines of Langmuir circulations, and patches
of millions of doomed Daphnia individuals trapped at the
surface. Zagarese et al. (Zagarese et al., 1998) asserted that
in shallow lakes, moderate wind is sufficient to generate
turbulence velocity .1 m min21, which is significantly
higher than the cruising speed of crustacean zooplankton,
�12–24 cm min21, and suspends zooplankton close to
the surface, exposing them to potentially damaging solar
radiation.

Enhanced mortality of lentic zooplankton has been
found in rivers and lake and reservoir outflows. For
instance, increasing current velocity in Petrokrepost Bay
of Lake Ladoga increased the percentages of dead indivi-
duals up to 20% among the cladocerans, up to 40% in

Fig. 3. Frequency distributions of (a) minimum, and (b) maximum
percentages of dead zooplankton observed in freshwater environments.
Lines are expected normal distributions for reference.
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rotifers and up to 50% in copepods (Telesh, 1986;
Table III). Only 1% of the cladocerans and 10% of the
copepods from the waters of Lake Ladoga and the Neva
River reached the Neva Bay alive (Telesh, 1986). During
passage through the high-pressure dam of Krasnoyarsk
Hydroelectric Power Station in the Yenisei River, the per-
centage of dead zooplankton increased from 3% in the
reservoir to 6% in the river after the dam (Gladyshev
et al., 2003b; Dubovskaya et al., 2004). Afterwards, in the
fast-flowing Yenisei River (current velocity 1–4 m s21),
�30 km downstream from the dam, percentages of zoo-
plankton carcasses increased to an average of 11%
(Gladyshev et al., 2003b; Dubovskaya et al., 2004). It is
estimated that the threshold current velocity for lentic
zooplankton was 0.2–0.25 m s21 (Greze, 1957; Bityukov,
1965; Dubovskaya, 1987, 2009). Above this threshold,
lentic zooplankton, which are introduced into the rivers,
will die. Besides lake–river interfaces, enhanced zoo-
plankton mortality has also been observed at river fronts
in coastal areas (Zelezinskaya, 1966; Koval, 1984; Tang
et al., 2006a).

T U R B U L E N C E

The sublethal effects of turbulence on excretion, heart
beats (Alcaraz and Saiz, 1991), development (Saiz and
Alcaraz, 1991) and growth efficiency (Saiz et al., 1992)
have usually been studied in the laboratory by exposing
zooplankton to moderate turbulence intensity within the
range normally found in coastal zones and tidal fronts
(energy dissipation rates ¼ 0.05–0.15 cm2 s23, Kiørboe
and Saiz, 1995). In comparison, the impacts of intense
episodic turbulence such as that caused by storms and
boating activities are rarely evaluated. Tóth et al. (Tóth
et al., 2011) showed that in Lake Balaton, enhanced tur-
bulence due to low water level after a long drought coin-
cided with low zooplankton abundances. A study in the
Chesapeake Bay showed that the prevalence of dead
copepods was significantly higher (14.3%) within the
wakes of passing motorized boats than outside the wakes
(7.7%), and it was also higher (34%) along a navigation
channel than in the adjacent quiescent waters (5.3–
5.9%) (Bickel et al., 2011). Complementary experiments
by both research groups confirmed a positive correlation
between non-predatory mortality and turbulence inten-
sity (Bickel et al., 2011; Tóth et al., 2011). Recreational
and commercial boating activities can be high in lakes
and rivers; frequency and intensity of storms are also
expected to increase due to climate change. The effects
of intense episodic turbulence, both natural and
man-made, on zooplankton mortality deserve further
investigation.

TOX I C I T Y

Cyanobacterial blooms are expected to increase in lakes
and ponds in response to climate change (Paerl and
Huisman, 2009), raising concerns that these blooms may
be harmful to zooplankton communities. Direct observa-
tions of zooplankton mortality due to cyanobacterial tox-
icity, however, are sparse (Haney and Lampert, 2013),
and reports have been ambiguous and contradictory at
times (Wilson et al., 2006; Tillmanns et al., 2008). For
example, in the Bugach reservoir, no correlation was
found between zooplankton non-predatory mortality and
cyanobacterial toxicity (Dubovskaya et al., 2002). There is
also evidence of adaptation of zooplankton to cyanobac-
terial toxins, allowing them to avoid or mitigate any tox-
icity effects (e.g. Hairston et al., 2001; Sarnelle and
Wilson, 2005; Wojtal-Frankiewicz et al., 2013). On the
other hand, mass death of Daphnia was observed in Lake
Hallwilersee, probably caused by toxins (oligopeptides)
from Planktothrix rubescens (Baumann and Jüttner, 2008).
Semenova (Semenova, 2011) reported an average of
6.7% dead zooplankton in the Curonian Lagoon in a
year with a heavy cyanobacterial bloom, in contrast to
only 1.9% in a year without blooms. Other phytoplank-
ton species may also have toxic effects: Naumova
(Naumova, 2006; Table III) reported as high as 80%
dead nauplii of Epischura baikalensis in Lake Baikal in years
of high abundance of the diatom Melosira baikalensis, and
probable deleterious effects of cytotoxic compound of
marine diatoms on juvenile copepods have been dis-
cussed extensively in the last two decades (Ianora and
Miralto, 2010 and references therein). Many of the pur-
portedly toxic phytoplankton species are also considered
inferior food for zooplankton, making the distinction
between toxic effects and nutritional effects difficult
(de Bernardi and Giussani, 1990; Jónasdóttir et al., 1998).

Mortality due to anthropogenic toxins (xenobiotics) is
well documented in the laboratory, and is very likely hap-
pening in polluted natural water bodies (Hanazato and
Dodson, 1995; Ivanova and Telesh, 1996; Relyea, 2009).
For instance, Gladyshev (Gladyshev, 1993) found an
increased percentage of dead zooplankton, up to 34%
(Table III), in the Krasnoyarsk reservoir at a site under
the influence of village wastewaters. Similarly, in Lake
Galichskoie, the maximum percentage of zooplankton
carcasses (15%) occurred at polluted sites, while the
minimum (0.17%) was at unpolluted sites (Smelskaya,
1995; Table III).

PA R A S I T I S M

Parasitism is widespread among freshwater (Ebert et al.,
2001; Bittner et al., 2002) and marine zooplankton
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(Skovgaard and Saiz, 2006). In three small ponds in
southern England, three Daphnia species were infected by
17 species of endoparasites, and the mean percentage of
infected adults was up to 84.7% (Stirnadel and Ebert,
1997). A rich and highly prevalent community of para-
sites in D. magna was found in both fishless ponds
(Stirnadel and Ebert, 1997) and ponds with fish
(Decaestecker et al., 2005), despite the expectation that
planktivorous fishes would selectively cull infected
Daphnia (Duffy et al., 2012). While most parasites affect
the hosts by reducing their fecundity and reproduction
(e.g. Stirnadel and Ebert, 1997; Decaestecker et al., 2005),
cases of fatality have been reported. In microcosms,
D. galeata from Lake Constance infected by the protist
(haplosporidium) Caullerya mesnili died in 11–12 weeks,
but uninfected ones had a longer life span (Bittner et al.,
2002). Outbreaks of fungal infection also caused massive
mortality of the cladoceran Penilia avirostris in the Black
Sea, leading to a high percentage of carcasses (64%;
Table II) and a ‘rain of carcasses’ into sediment traps
(Zelezinskaya, 1966). Johnson et al. (Johnson et al., 2009)
estimated that a chytrid epidemic (Polycaryum leave) reduced
the population density of D. pulicaria by an average of ca.
10%, and up to 50% during peak infection levels.

Besides endoparasites, zooplankton can be infected by
epibionts such as algae, ciliates, fungi and bacteria. Allen
et al. (Allen et al., 1993) reported an increased total mor-
tality of Daphnia in Lake Mendota due to high infestation
by the epibiont diatom Synedra cyclopum. Pigmented algal
epibionts also make the zooplankton more visible to
planktivorous fish and thereby enhance predatory, rather
than non-predatory, mortality (Willey et al., 1990, 1993;
Dubovskaya et al., 2005). Indeed, in the Bugach reservoir,
there was no correlation between the percentage of dead
zooplankton and various indices of infestation by epi-
bionts (Dubovskaya et al., 2005).

FO O D Q UA N T I T Y A N D Q UA L I T Y

Limitation by food quantity is an evident and well-known
cause of non-predatory mortality (Luecke et al., 1990;
Boersma et al., 1996). A well-documented phenomenon
in temperate lakes is the mid-summer decline of zoo-
plankton (Threlkeld, 1979 and references therein) that
follows the clear water phase when food supply becomes
scarce, and recent studies have shown that this decline is
caused at least partly by starvation (Hessen, 1989;
Hülsmann and Weiler, 2000; Wagner et al., 2004).

Besides food quantity, food quality in terms of the
C:N:P ratio, essential polyunsaturated fatty acids (PUFA)
and sterols is also a key factor regulating zooplankton
populations (e.g. Müller-Navarra, 1995; Wacker and Von

Elert, 2001; Martin-Creuzburg et al., 2005; Gladyshev
et al., 2006). It has been suggested that high non-
predatory mortality of Daphnia in Bautzen Reservoir in
the summer was the result of low food quality rather than
quantity (Hülsmann, 2001, 2003; Hülsmann and Voigt,
2002). In the Bugach Reservoir, a shortage of the essential
PUFA eicosapentaenoic acid (EPA, 20 : 5:v3) in seston
was the most significant contributor to zooplankton non-
predatory mortality among all other environmental
factors (Gladyshev et al., 2003c; Dubovskaya, 2008a).

S I N K I N G O F Z O O P L A N K TO N
CA RCA S S E S

Regardless of the cause of death, a zooplankton carcass
may continue to influence water column biogeochemistry
via decomposition and sinking. The sinking of small par-
ticles within a laminar flow regime can be described by
Stokes’ law:

US ¼
1

18

BL2

n
; ð3Þ

where US is the terminal velocity, L is the particle size,
B ¼ gDr/rw is the downward force due to gravity g,
Dr ¼ (rp 2 rw) is the ‘excess density,’, i.e. the particle
density rp minus that of surrounding water rw. For large
objects, the Reynolds number Re ¼ US Ln21�1 and the
flow around the object become unstable (turbulent), in
which case the sinking rate can be parameterized as:

US
2 ¼ CD

�1BL; ð4Þ

where CD is an empirical drag coefficient.
Equation (3) is usually applied for particles with Re ,

0.5, such as phytoplankton cells and zooplankton fecal
pellets, whereas equation (4) is applicable to large sinking
bodies with Re � 1, such as dead fish. Mesozooplankton
fall into the uncertainty area of Re � 1. To approximate
this intermediate flow regime, the following formula was
derived by Allen (Allen, 1900):

B � L�3=2n1=2US
3=2 or US ¼ C

��2=3
S B2=3Ln�1=3 ð5Þ

Kirillin et al. (Kirillin et al., 2012) proposed an alternative
formula yielding similar results:

US ¼
BL2

CSnþ ðCDBL3Þ1=2
; ð6Þ

with CS and CD being empirical constants. Equation (6)
corresponds to equation (3) for small L and CS ¼ 18, and
to equation (4) for large L; it therefore provides a smooth
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interpolation between the two asymptotic regimes. Brooks
and Hutchinson (Brooks and Hutchinson, 1950) analyzed
carcass sinking rate data for different Daphnia species, and
found that equation (3) held true for Re as high as 4. Only
for the large individuals with Re varying from 10 to 16,
that equation (5) gave better results. Hutchinson
(Hutchinson, 1967) analyzed the data for D. schodleri

(Hantschmann, 1961) and reported a transition to the
intermediate regime for individuals �1.6 mm. Based on
empirical data, Kirillin et al. (Kirillin et al., 2012) found the
difference between equations (3) and (6) to be negligible
for Re ¼ 0.5–1.0. Thus, the sinking rates roughly obey
Stokes’ law for all but the largest specimens, with a typical
value of 50–150 m day21 (Fox and Mitchell, 1953;
Stepanov and Svetlichnyyi, 1981; Kirillin et al., 2012). The
hydrodynamic characteristics of zooplankton carcasses
can be further modified by the opening and closing of car-
apaces and antennae: The sinking rate of Daphnia with
spread antennae decreased by a factor of 0.7 compared
with that with closed antennae (Eyden, 1923). Some indi-
viduals of D. cucullata opened their carapace upon death,
creating a ‘parachute effect’ and reducing the sinking rate
by a factor of 0.4 (Kirillin et al., 2012).

Compared with laboratory measurements, in situ

methods of sinking rate estimation yield much lower
values: The average sinking rate of plankton in the epilim-
nion of a lake was only 1–4 m day21 (Bloesch and Burns,
1980), and sinking rate of dead copepods in the Black
Sea was 4–6 m day21 (Zelezinskaya, 1966). Umnova
(Umnova, 1999), summarizing many in situ measurements,
concluded that most particles sank at ca. 0.1 m day21.
Zooplankton carcasses caught in shallow plankton net
tows also suggest that some carcasses may remain in the
upper water column for an indefinite time (Bickel et al.,
2009; Elliott and Tang, 2011a). A study in the Japan Sea
even found an accumulation of copepod carcasses just
below the thermocline, where they may remain for
months (Terazaki and Wada, 1988). The major environ-
mental factors decreasing sinking rate are small-scale tur-
bulence, density stratification and microbial degradation.
A model of stochastically homogeneous and isotropic tur-
bulent fluctuations based on empirical data produced a
slightly shorter average carcass residence time in the upper
half of a well-mixed epilimnion, and a longer residence
time in the lower part (Kirillin et al., 2012). Thus, the tur-
bulence effect on the mean sinking rate was weak, but the
residence time of individual carcasses diverged strongly
from the mean value: �10% of the carcasses stayed in the
epilimnion for twice as long as the average residence time,
and �1% stayed four times longer before settling to the
hyplimnion. In shallow unstratified lakes without a hypo-
limnion, turbulence may significantly increase the resi-
dence time of zooplankton carcasses in the water column,

which is confirmed by the correlation between sediment
trap data and wind velocity in the shallow Bugach reser-
voir (Dubovskaya et al., 2003).

Stratification mainly influences sinking when the car-
casses encounter higher viscosity in the hypolimnion,
whereas its effect on the carcass excess density is assumed
to be small. The actual effect of stratification on excess
density is determined to a high degree by thermal expan-
sion of the carcasses when they reach the cold hypolim-
nion, which is practically unknown and is usually
assumed to be equal to thermal expansion of water, but
this is apparently not true (Visser and Jónasdóttir, 1999;
Campbell and Dower, 2003).

Elliott et al. (Elliott et al., 2010) developed a model of
microbial decomposition of carcasses and estimated that
sinking copepod carcasses would degrade to zero excess
density within the first 300 m. Adopting that model,
Kirillin et al. (Kirillin et al., 2012) found a remarkable
decrease in the termination depth of sinking (depth at
which the carcasses achieve neutral buoyancy) with a
slight warming of the hypolimnion: An increase in water
temperature from 5 to 78C resulted in a two-fold decrease
in the termination depth (from 80 to 40 m for an initial
excess density of 25 kg23). This result implies that the
climate-driven hypolimnion warming in temperate lakes
could lead to a strong increase in water column carbon
retention in the form of zooplankton carcasses.

CA RCA S S F LU X TO T H E
B E N T H O S

Traditionally, zooplankton bodies found in sediment traps
are assumed to be swimmers and excluded from gravita-
tional flux calculations (Buesseler et al., 2007). However,
zooplankton carcasses are part of the true passive flux and
can be important outside the phytoplankton growth
periods in coastal and continental shelf areas (Sampei
et al., 2009, 2012; Frangoulis et al., 2011). Using scuba
diving and sediment trap deployment in Lake Constance,
several investigators showed that zooplankton carcasses
were important components of sinking aggregates espe-
cially during the clear water phase (Grossart and Simon,
1993; Grossart et al., 1997; Gries and Güde, 1999). Gries
and Güde (Gries and Güde, 1999) reported the sedimenta-
tion of infected and dead D. galeata to be as high as
3000 ind. m22 day21 during the time when the pelagic
population decreased from 160 000 to 10 000 ind. m22.
Likewise, in Bugach reservoir, an increase in trap-collected
Daphnia carcasses was related to an increase in non-
predatory mortality of the pelagic population (Dubovskaya
et al., 2003). These observations, albeit limited, suggest
that sinking zooplankton carcasses can be important
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vectors for transporting organic matter to the bottom
water, especially in shallow lakes and reservoirs.

In marine systems where mass deposition of zooplank-
ton carcasses has been observed, benthic scavengers
were able to exploit the carcasses for food (Zajaczkowski
and Legezynska, 2001; Lebrato and Jones, 2009). In tem-
perate lakes, zooplankton often undergo a regular boom-
and-bust cycle characterized by a rapid population decline
during the clear water phase (Voigt and Hülsmann, 2001;
Hülsmann, 2003); one may therefore suggest that seasonal
deposition of zooplankton carcasses represents a predict-
able and important pulse of food to the benthos.

CA RCA S S - M E D I AT E D
M I C RO B I A L P RO C E S S E S

Given that zooplankton biomass tends to have a much
lower C:N:P ratio than phytoplankton and detritus
(Redfield et al., 1966; Elser and Hassett, 1994), it is con-
ceivable that zooplankton carcasses represent a high
quality organic substrate source for bacteria. Harding
(Harding, 1973) suggested that zooplankton carcasses are
decomposed primarily by bacteria colonizing from the
outside, rather than bacteria originally carried by the
zooplankton. More recently, microbial decomposition of
freshwater zooplankton carcasses has been studied in
greater detail: as expected, newly deceased zooplankton
function as microbial hotspots, supporting elevated bac-
terial enzymatic activities and production in the water
column (Tang et al., 2006b; Bickel and Tang, 2010).
The bacterial community composition associated with
decomposing carcasses also shifted, indicating that select-
ive bacterial species were more capable of exploiting zoo-
plankton carcasses (Tang et al., 2006b). When bacteria
were inhibited by antibiotics, extensive fungal coloniza-
tion of the carcasses was observed, pointing to a hitherto
unknown role of aquatic fungi in turning over zooplank-
ton carcass carbon (Tang et al., 2006b).

In a study that compared microbial decomposition of
cladoceran and copepod carcasses in lake water, cla-
doceran carcasses were initially colonized by bacteria
more quickly, suggesting that their carapace was more
penetrable by bacteria (Tang et al., 2009). Interestingly,
copepod carcass carbon was turned over at a higher rate,
suggesting that copepod tissues were more labile. The
ambient environment also made a difference: Carcass
carbon was turned over more quickly in a eutrophic lake
than in an oligotrophic lake (Tang et al., 2009). Hence,
while microbial decomposition of carcasses will channel
zooplankton carbon to the microbial loop, the strength of
this pathway will depend on the zooplankton species,
ambient environmental conditions and residence time.

The role of carcasses as hotspots of microbial activity
might have an important indirect effect on the aquatic
carbon cycle. In aquatic ecosystems, autochthonous recal-
citrant organic matter (ROM) might represent up to 80%
of the total organic carbon (Guenet et al., 2010).
Mineralization of ROM is believed to be accelerated in
the presence of labile organic matter (LOM) that supplies
energy to decomposers for the production of extracellular
enzymes, which in turn degrade ROM into simpler cata-
bolites (Guenet et al., 2010). We might speculate that car-
casses of freshly dead zooplankton as a source of LOM
might provide such a ‘priming effect’ for ROM decompos-
ition in the water column.

CO N C LU S I O N S A N D F U T U R E
D I R E C T I O N S

The difficulty in separating live and dead zooplankton in
field samples may lead researchers to ignore carcasses out
of convenience, and the challenge in identifying the
causes of non-predatory mortality can be daunting.
Nevertheless, as pointed out by the eminent limnologist
Robert G. Wetzel (Wetzel, 1995): ‘Just because we cannot

measure non-predatory mortality well does not mean it does not exist

or even dominate at most times of the year.’ There has been a
growing interest in studying zooplankton carcasses in
marine systems in recent years (e.g. Elliott et al., 2013;
Dasse et al., 2014; Martı́nez et al., 2014), which will add to
our knowledge of the global non-predatory mortality
among marine zooplankton (Hirst and Kiørboe, 2002).
Marine and freshwater zooplankton communities tend to
be dominated by taxa with very different life cycle strat-
egies: marine systems are usually dominated by sexually
reproducing copepods with longer life cycles and distinct
developmental stages, whereas freshwater systems are
usually dominated by parthenogenetic cladocerans with
relatively high intrinsic growth rates (Allan, 1976).
Comparison of the global non-predatory mortality rates
and patterns between the two systems and their driving
mechanisms will be an important research direction.

Global climate change is already having noticeable
effects on freshwater ecosystems such as changes in hydrol-
ogy, water chemistry, species diversity and phenology
(Carpenter et al., 1992; Winder and Schindler, 2004;
Heino et al., 2009). Non-predatory zooplankton mortality
is expected to increase due to rising water temperature, in-
creasing cyanobacterial blooms and weakened coupling
between phytoplankton and zooplankton production
cycles. Warmer temperatures may also promote the emer-
gence of new parasites and diseases (Lafferty, 2009) and
changes in fish recruitment (Lehtonen, 1996). These
changes will likely alter the relative importance of
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predatory vs. non-predatory mortality among zooplankton,
and the consequent trophic transfer, nutrient and carbon
fluxes. Recent advances in live/dead sorting methods and
modeling provide researchers with the necessary tools to
study this important but under-appreciated topic.
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Supplementary data can be found online at http://plankt.
oxfordjournals.org.
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