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a b s t r a c t

High-resolution autonomous glider data (including temperature, salinity, fluorescence, and optical
backscatter) collected during the 2010–2011 austral summer identified variations in phytoplankton
biomass along two glider sections near 761400S. Sea surface temperatures were warmer during the latter,
westward section, while mixed layer depths were deeper. Substantial quantities of Modified Circumpolar
Deep Water, identified by neutral density criteria, were located within both sections. Chlorophyll (Chl)
concentrations computed from fluorescence exhibited daily quenching near the surface, and deep
chlorophyll concentrations at 200 m became periodically elevated, suggesting substantial export on
small space and time scales. The concentrations of particulate organic carbon (POC) computed from
backscatter increased abruptly during the latter, westward section, concurrent with a decrease in
chlorophyll. These higher POC:Chl ratios were not strongly correlated with presence of MCDW or with
shallower mixed layer depths, but were strongly associated with higher surface temperatures and wind
speed. The observed POC:Chl increase suggests a marked spatial and temporal transition between a
Phaeocystis antarctica-dominated assemblage characterized by modest POC:Chl ratios to a diatom-
dominated assemblage. Finally, a subsampling analysis highlights the capability of high-resolution glider
data to resolve these biological/physical parameter correlations that are not discernible from lower
frequency data typical of traditional cruise stations.

& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

In situ observations and satellite-derived data from the Ross
Sea have revealed high phytoplankton biomass and productivity
compared with much of the rest of the Southern Ocean (Arrigo
et al., 2008; Smith and Comiso, 2008). In addition, these data have
demonstrated considerable variability on a suite of time and space
scales, yet the mechanisms responsible for this variability are
not yet well understood (Peloquin and Smith, 2007). An improved
understanding of mesoscale controls on phytoplankton biomass
and composition will provide important insights into the dynamics
of the Ross Sea food web and reveal how this food web is
responding to physical changes that are already occurring, such
as freshening (Jacobs et al., 2002; Jacobs and Giulivi, 2010),
increases in ice extent (Massom and Stammerjohn, 2010),
decreases in ice-free duration of the polynya (Stammerjohn
et al., 2012), and wind changes (Bracegirdle et al., 2008).

Previous cruise-based observational programs within the Southern
Ross Sea have revealed that two dominant bloom-forming phyto-
plankton groups, haptophytes and diatoms, commonly occur and
show distinct seasonal cycles of growth (Smith et al., 2010) that help
support the region's sizeable contribution to the biogeochemical cycles
of the Southern Ocean (Arrigo et al., 2008). Phytoplankton growth
begins early each austral spring (late October) when the dominant
haptophyte, Phaeocystis antarctica grows rapidly and reaches max-
imum biomass in mid- to late-December (Smith et al., 2000). Growth
and biomass then decline rapidly (over a few weeks). Although the
mechanism for this sudden decline is not well understood, it has been
hypothesized to be a result of iron limitation and rapid sedimentation
of aggregates (Smith et al., 2000; Arrigo et al., 2003). Elevated
chlorophyll concentrations in the euphotic zone have been shown to
be associated with rapid (on the order of days) sinking and flux of
phytoplankton to depth in summer (Smith et al., 2011b). In contrast to
the strong seasonal cycle of P. antarctica, diatoms are present at
varying concentrations throughout the growing season; however, a
late summer secondary bloom has been observed in some years
(Peloquin and Smith, 2007; Smith et al., 2011a).

The domains in which these two phytoplankton groups dom-
inate are often spatially distinct and exhibit distinct ratios of
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particulate organic carbon (POC) to chlorophyll (Chl). Lower POC:
Chl ratios are often associated with P. antarctica, and higher ratios
are associated with diatoms during late summer (DiTullio and
Smith, 1996; Smith et al., 2000). Phaeocystis antarctica, which
exists in both solitary and colonial forms (Schoemann et al., 2005),
typically dominates in the central Ross Sea polynya where there
are relatively deep mixed layers (Arrigo et al., 1998; Smith et al.,
2010); conversely, diatoms dominate in regions with shallow
mixed layers, such as near retreating ice edges and in summer
(Arrigo et al., 1998). Even within regions dominated by a single
taxon, however, both taxa are likely to co-exist (Smith and Asper,
2001).

Temporal and spatial gradients between P. antarctica- and
diatom-dominated waters result from a combination of multiple
physiochemical controls (Smith and Asper, 2001), including
mixed-layer depths, micronutrients, and temperature distribu-
tions. For example, lower irradiance requirements of P. antarctica
explain their dominance over diatoms in waters with deeper
mixed layers (Kropuenske et al., 2009). Mixing of Circumpolar
Deep Water with surface waters to produce Modified Circumpolar
Deep Water (MCDW) has been hypothesized as a substantial
source of iron to the assemblage, though a recent study has shown
the Ross Sea iron budget dominated by benthic remineralization
and sea ice input (D. McGillicuddy, pers. comm.). The timing and
distribution of iron inputs may affect not only phytoplankton
biomass, but also composition due to potentially distinct iron
requirements of P. antarctica and diatoms. However, data on the
relative requirements of each functional group are inconsistent
(Alderkamp et al., 2012; Strzepek et al., 2012). Finally, higher
temperatures have been correlated with higher diatom abun-
dance, and lower temperatures with higher P. antarctica abun-
dance (Liu and Smith, 2012), although it is not yet clear whether
there is a causal mechanism behind this correlation.

Throughout the ocean, mesoscale processes on scales of
10–100 km and hours to days have first-order impacts on phytoplank-
ton physiochemical controls, and are critical in determining growth
patterns and distribution. For example, Friedrichs and Hofmann (2001)
demonstrated how internal gravity waves, with periods of 6–8 days,
can either stimulate growth or dilute chlorophyll concentrations in the
euphotic zone by vertically advecting low-chlorophyll, iron-enriched
water into the euphotic zone at rates greater than phytoplankton
uptake. McGillicuddy et al. (2007) demonstrated that wind and eddy
interactions could have varied effects on production at the mesoscale,
with enhanced production associated with mode-water eddies and
diminished production associated with cyclonic eddies. Indeed, the
largest chlorophyll concentrations ever observed in the Sargasso Sea
were associated with eddies (McGillicuddy et al., 2007). Finally
Mahadevan et al. (2012) demonstrated that eddies generate mesoscale
stratification in the North Atlantic to initiate the spring bloom prior to
the effects of increased temperatures.

In the Ross Sea physical features such as tidal variations and
wind-driven events have a substantial mesoscale impact on
hydrodynamic variability. For example, diurnal tides produce
continental shelf waves that, in turn, amplify shorter semidiurnal
tides (Robertson, 2005). Variations in current velocity, salinity, and
temperature have been attributed to this diurnal tidal forcing
(Kohut et al., 2013). In addition, katabatic winds and synoptic
forcing generate conditions favorable to atmospheric mesoscale
cyclones over the Ross Sea (Heinemann and Klein, 2003). Episodic
variations of wind speed and direction can lead to restratification
as a result of Ekman advection across lateral density gradients
(Long et al., 2012). Partly because of the difficulty obtaining high
frequency observations within the Ross Sea, the effect of these
physical processes on biological distributions is poorly known, but
is likely to be significant. For example, the relief of irradiance
limitation through stratification may be critically important to

determining the timing and distribution of the seasonal phyto-
plankton bloom in the Ross Sea (Long et al., 2012).

Given the theoretical size of mesoscale features in the Ross Sea
(10 km or less and on the order of days), such features cannot
be well resolved by traditional oceanographic sampling from
ships. However, autonomous underwater vehicles can successfully
resolve this variability, as they have done in other regions of the
Southern Ocean (e.g., Heywood et al., 2014). In the analysis
presented here, an autonomous glider was deployed in the south-
ern Ross Sea from December 2010 to January 2011 to characterize
the biogeochemical mesoscale variability and highlight potential
mechanisms contributing to this variability. We describe the glider
deployment, sampling strategy, and ancillary data available for this
analysis. The observed physical and biological distributions are
presented along with significant correlations among these dis-
tributions; factors controlling these biological distributions are
then discussed. Our results suggest a marked spatial, and pre-
sumably temporal, transition from a P. antarctica-dominated
assemblage to one dominated by diatoms. Furthermore, frequent
vertical penetrations of chlorophyll were observed, emphasizing
the importance of mesoscale events to regional biogeochemistry.

2. Methods and data analysis

2.1. Glider platform

An iRobot Seaglider™ model 1KA (SN 502) completed two
transects between 172.11E and 179.91W (�200 km) in the south-
ern Ross Sea (Fig. 1) between December 19, 2010 and January 16,
2011. During this 28-day period, 370 dives were completed, 191 on
the eastward section from December 19 through January 2, and
179 dives as the glider moved westward from January 2–16. The
region surrounding the glider track was largely free of ice during
both sections. Successive dives were separated by roughly 1 km,
and extended to 600 m depth (except in shallower waters). The
dives were divided into two portions, a down- and up-sampling
phase, each of which were treated as separate “casts”; locations
were computed for each cast as opposed to each dive. Because the
glider obtains GPS positions only when at the surface, locations for
down- and up-casts were interpolated to coordinates one-quarter
and three-quarters, respectively, of the distance between the pre-
dive and post-dive GPS-fixed locations. The glider's sensor suite
provided measurements of conductivity and temperature (Sea-
bird CTD), as well as fluorescence and optical backscatter (Wetlabs
Environmental Characterization Optics Triplet Puck optical sensor

Fig. 1. Southwestern Ross Sea with glider track (black line). The glider's eastward
(outbound) section began December 19, 2010, and the westward (return) section
ended January 16, 2011. Gray areas represent topography above sea level or ice
shelf. Bathymetric data obtained from the Bedmap2 dataset (Fretwell et al. 2013).
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instrument). The Wetlabs optical sensor uses an LED excitation
light source at 470 nm and detects fluoresced emissions at
695 nm, which is converted and output from the sensor in counts,
ranging from 0 to 16,000. The optical sensor also measures
backscatter within the same water volume at 470 nm and a
centroid angle of 1171. Optical sampling frequency was once every
10 s in the upper 250 m, and switched off in deeper waters to
conserve battery power. Temperature and salinity sampling fre-
quency was once every 5 s in the upper 250 m and once every 10 s
below 250 m. These data are available from the Biological and
Chemical Oceanography Data Management Office (BCO-DMO) at
http://www.bco-dmo.org/.

2.1.1. Physical data
A correction was applied to reduce hysteresis in the conductiv-

ity data at strong thermal gradients. When passing through a
thermocline, thermal inertia in the conductivity cell of the sensor
housing causes different response times for temperature and
conductivity measurements (Lueck and Picklo, 1990). This effect
is evident as slight salinity spikes of opposite signs on down-
versus up-casts. The correction scheme devised by Morison et al.
(1994) and refined by Garau et al. (2011) was used to reduce
hysteresis. To lessen the spikes further, an 8 m running median
was applied and salinities were binned every 1 dbar.

Mixed layer depth (MLD) was determined for each cast by a
potential density threshold using three different methods. The first
two methods utilized simple potential density threshold criteria;
specifically, MLD was defined as the shallowest depth at which σθ
differed from the value at 10 m by 0.01 kg m�3 in the first method
and by 0.03 kg m�3 in the second method. This type of methodol-
ogy is consistent with other Ross Sea studies, which have used
density thresholds ranging from 0.01–0.1 kg m�3 (Smith and
Gordon, 1997; Sedwick et al., 2011; Smith et al., 2011a). The MLD
was also computed using the maximum angle method, which
was applied by Chu and Fan (2011) to glider data from the Florida
coast and found to be more objective than threshold or gradient
methods and less confounded by noisy data than curvature
methods. The maximum angle method involves pairs of vectors
being fit, by linear regression, head-to-end along consecutive
sections of an entire depth–density profile. The tangent of the
angle between each pair of vertically adjacent vectors is calculated.
The MLD is then determined to be the depth that lies between the
vector pair with the maximum angle. Differences between the
three aforementioned methodologies for computing MLD were
found not to substantially affect interpretation of MLD results;
therefore, only the calculation via the 0.01 kg m�3 difference σθ
threshold was used in the statistical analyses.

MCDW was determined to be present if neutral density (Jackett
and McDougall, 1997) was between 28.00 and 28.27 kg m�3 (Orsi
and Wiederwohl, 2009). This neutral density criterion was sup-
plemented by an additional criterion of low dissolved oxygen
(Budillon et al., 2003; Fragoso and Smith, 2012; Kohut et al., 2013).
Specifically, MCDW was positively identified at a given location if
the above limits on neutral density were satisfied and the water
was determined to be at less than 80% of oxygen saturation.
[Contemporaneous dissolved oxygen data were available from the
glider and are presented and analyzed in Queste (2014)]. Ranges of
depths where water met these two MCDW criteria were identified
for each cast, and vertical surface areas were computed for each
section by horizontally integrating the depth ranges of MCDW
across cast longitudes.

2.1.2. Biological data
Glider fluorescence counts obtained from the Wetlabs sensor

were converted to chlorophyll via calibration with ship data

collected during glider recovery. Specifically, the fluorescence
profile from the last glider up-cast was regressed with shipboard
bottle chlorophyll measurements from the recovery station
(76.41S, 173.21W). The regression was computed to be: CHL¼
(Fluorescence�141)n0.00225 (n¼12, R2¼0.94, po0.01).

A similar ship-based calibration process was used to convert
optical backscatter values obtained from the Wetlabs optical sensor
to POC concentrations. Raw scattering counts minus dark counts
were converted to total volume scattering, β (1171,470 nm) using a
factory-calibrated scale factor. Total volume scattering was con-
verted to particulate volume scattering coefficients, βp, by subtract-
ing the volume scattering of seawater, βw (Morel, 1974), and then
converted to particulate backscattering bbp (470 nm), by a factor of
2πχ, where χ is 1.1 (Boss and Pegau, 2001). The resulting particulate
backscattering (bbp) profile from the last glider up-cast was
regressed with shipboard POC measurements of water samples.
The resulting POC regression relationship (POC¼19,607nbbpþ
17.621; n¼11, R2¼0.85, po0.01) was used to determine concentra-
tions for all glider casts.

2.2. Ancillary data

Chlorophyll and POC concentrations for use in the regression
analyses described above were determined from water samples
collected from the RVIB Nathaniel B. Palmer (NBP11-01) using
a SeaBird CTD/rosette system. Samples from known depths
were placed in opaque bottles and filtered under low pressure
(�1/3 atm) through Whatman GFF filters (POC filters were pre-
combusted at 450 1C for 2 h). Chlorophyll samples were placed in
cuvettes with 7 mL 90% acetone, extracted in the cold (�20 1C)
and dark for 24 h, and then quantified by fluorescence on a Turner
Designs Model 10 AU fluorometer that had been calibrated with
commercially prepared chlorophyll a (Sigma). The POC samples
were dried at 60 1C in combusted glass vials, returned to the
laboratory and analyzed via pyrolysis on a Costech ECS 4010
elemental analyzer. Blanks were filters through which filtered
seawater had been run (ca. 5 mL) and treated in the same manner
(Gardner et al., 2000).

Wind speeds at 10 m height were retrieved every six hours
from European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalysis data gridded by 0.75�0.751
over the locations and times of each glider cast (http://apps.
ecmwf.int/datasets/data/interim_full_daily/; Dee et al., 2011). The
ocean color and sea surface temperature data projected on a 9 km
spatial grid for December 2010 and January 2011 were retrieved as
Level 3 Standard Mapped Image monthly composites of Aqua
Moderate Resolution Imaging Spectroradiometer (MODIS) from
the OceanColor Web (http://oceancolor.gsfc.nasa.gov/), distributed
by the NASA Ocean Biology Processing Group. Due to extensive
cloud cover throughout the study period, only two days during the
study period provided usable ocean color data for more than half
of the southwestern Ross Sea; hence, a comparison of glider
observations and satellite-derived data on higher resolution tem-
poral scales was not feasible. Uncertainties in satellite derived
chlorophyll concentrations in the Ross Sea are estimated to be
�65% (Saba et al., 2011).

2.3. Statistical analyses

Mean section values were calculated from longitudinally
binned (0.251) glider observations (Table 1). Pearson linear corre-
lation coefficients (Sokal and Rohlf, 1969) were computed using
raw data for each variable pair across the eastward and westward
sections as well as the entire glider track (Table 2). Correlation
coefficients were also calculated for variable pairs after subsam-
pling the data at resolutions similar to that of traditional cruise
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stations (Table 3; see Section 4.2). A priori correlations with
p values r0.05 were considered statistically significant.

3. Results

3.1. Physical properties

Significant differences were found between the temperature
and MLD data from the eastward/outbound track (December
19–January 2) and the westward/return track (January 2–16). For
example, sea surface temperature (SST; the average temperature
of the upper 5 m) was 0.4 1C cooler along the eastward/outbound
section than along the westward/return section (Table 1).
Although a general warming trend would be expected during
summer, there was a particularly strong increase in SST between
January 3–7 (Fig. 2a). Monthly satellite composites from December
2010 and January 2011 set these glider SST data in a broader
spatial context (Fig. 3). The December 2010 image shows almost
no spatial temperature gradient along the glider track, whereas
the January 2011 image indicates significantly cooler surface
temperatures in the eastern half of the glider track compared
with the western half. The January image (Fig. 3b) also corrobo-
rates the surface glider data (Fig. 2a), showing slightly warmer
temperatures on the return (northern) track compared with the

outbound (southern) track. The glider profile data (Fig. 4) provide
a view of the deep temperature structure beneath these surface
waters, and illustrate the significant mesoscale variability within
the temperature field. Surface temperatures routinely change by
more than 0.5 1C on very short time (O(1 h)) and space (O(1 km))
scales, and pulses of warm surface water periodically penetrate
below 50 m for brief (O(1 h)) intervals.

Despite the consistently cold temperatures (o�1.5 1C) in deep
waters, warmer surface temperatures on the return track were
associated with deeper MLDs: on average MLDs were �7 m
deeper on the warmer, westward/return section (Table 1; Fig., 2b).
However, there was a general shoaling of the MLD concurrent with
the January 3–7 warming event (Fig. 2a,b). MLD deepened again
during January 10–13, a period with stronger wind forcing (Fig. 2b,
d). In general, defining MLD using the σθ¼0.01 kg m�3 difference
threshold produced MLDs that were consistent with the depth of
the thermocline (Fig. 4). The exception occurred on January 8–9,
during which time the isothermal layer depth was consistently
deeper than MLD estimated by the σθ criterion, suggesting that
changes in salinity were affecting MLD during this period.

Although SST and MLD were significantly different between the
eastward/outbound section and the westward/return transect, the

Table 1
Mean and integrated values computed using 0.25 km binned data from the eastward and westward
glider sections. Standard deviations are presented in parentheses for mean values. All eastward and
westward section means were found to be significantly different (po0.05). Integrated MCDW areas
were not tested for significance.

Variable Eastward section Westward section

Mean SST (1C) �0.62 (0.19) �0.22 (0.41)
Mean MLD (m) 19 (4) 26 (7)
Integrated MCDW area (km2) 11 13
Mean wind speed (m s�1) 3.2 (1.2) 6.1 (3.2)
Mean chlorophyll in mixed layer (mgChl m�3) 2.3 (0.6) 1.3 (0.7)
Depth-integrated (0–150 m) Chl (gChl m�2) 0.40 (0.051) 0.27 (0.075)
Mean POC in mixed layer (mgC m�3) 76 (7.9) 101 (46)
Depth-Integrated (0–150 m) POC (gC m�2) 10 (0.66) 11 (1.4)
Mean POC:Chl ratio in mixed layer (mgC (mgChl�1)) 47 (13) 105 (41)

Table 2
Pearson linear correlation coefficients for pairs of variables. Dashed lines represent
insignificant correlations. Bold numbers highlight correlations greater than 0.5.

Mean Chl in
mixed layer

Mean POC in
mixed layer

Mean POC:Chl in
mixed layer

Whole track
SST �0.73 0.35 0.83
MLD 0.16 0.38 0.11
MCDW
thickness

�0.53 �0.20 0.32

Wind speed �0.42 0.61 0.69

Eastward/outbound section
SST �0.43 ––– 0.49
MLD 0.35 ––– �0.39
MCDW
Thickness

�0.34 ––– 0.29

Wind Speed ––– 0.15 0.11

Westward/return section
SST �0.78 0.33 0.86
MLD 0.38 0.46 –––

MCDW
thickness

�0.71 �0.33 0.37

Wind speed �0.37 0.63 0.68

Table 3
Pearson linear correlation coefficients for pairs of variables from subsampled
(�50 km) data. The two numbers in each cell represent correlations from
subsampled station sets offset by 9 km. Dashed lines represent insignificant
correlations. Bold numbers highlight correlations greater than 0.5.

Mean Chl in
mixed layer

Mean POC in
mixed layer

Mean POC:Chl in
mixed layer

Whole track
SST –––,––– –––,––– –––,0.84
MLD –––,––– –––,––– –––,–––
MCDW
thickness

–––,�0.73 –––,––– –––,�0.74

Wind speed –––,�0.73 –––,––– 0.69,0.96

Eastward/outbound section
SST –––,––– –––,––– –––,–––
MLD –––,––– –––,––– –––,–––
MCDW
thickness

–––,––– –––,––– –––,–––

Wind speed –––,––– –––,––– –––,–––

Westward/return section
SST –––,––– –––,––– –––,–––
MLD –––,––– –––,––– –––,–––
MCDW
thickness

–––,––– –––,0.83 –––,0.95

Wind speed –––,––– –––,––– –––,0.95
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distribution of MCDW identified by the glider was similar within
both transects (Table 1). For example, in both sections (Figs. 2c, 4)
MCDW was most prominent in the central portion of each section
(�173–1791E). The vertical surface area (see Section 2.1.1) in
which MCDW occurred increased from the eastward to the
westward section: 11 km2 to 13 km2 (Table 1). (For comparison,
each section, with a horizontal distance of 203 km and average
depth of 363 m, had a total vertical surface area of �74 km2.)
Within both sections the deepest MCDW was located between 175
and 1761E at the western edge of Ross bank (Figs. 1 and 4). MCDW
then became progressively shallower over the bank, following the
bathymetric gradient, with the shallowest occurrences of MCDW
in both sections located near the shallowest portions of the bank,
on its eastern edge between 178 and 1791E. Significant mesoscale
variability is also apparent. For example, a mixing event that
occurred on January 6 not only resulted in warmer waters below
100 m, but also simultaneously eliminated all evidence of MCDW
at this depth (Fig. 4b).

Significant mesoscale variability in this region is associated
with the wind field. Wind speeds at the specific location of the
glider were approximately 3 m s�1 lower when the glider was
traversing the eastward/outbound section compared with the
wind speeds when the glider was returning on the westward
section (Table 1). Throughout much of the glider track wind
speeds remained less than or equal to �5 m s�1; however, they
nearly doubled around January 10 (Fig. 2d), whereupon the winds
became consistently strong for the remainder of the section.
Winds were predominantly southerly for both sections, with
the exception of the first few days (December 19–22) and brief
intervals on January 4 and 6, which were characterized by winds
from the north.

3.2. Biological distributions

Substantial changes in chlorophyll distributions were observed
along the glider track. Overall, mean chlorophyll concentrations in
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direction, (e) mean mixed layer chlorophyll concentration (mgChl m�3), (f) mean mixed layer POC concentration (mgC m�3), and (g) mean mixed layer POC:Chl ratio
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between January 2 and January 3 demarcates the eastward section (to the left of the line) from the westward section (to the right of the line).
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the mixed layer were 1 mg Chl m�3 higher on average during
the outbound section than during the return section, and depth-
integrated (0–150 m) chlorophyll concentrations showed a
similar trend (Table 1). Mean chlorophyll concentrations in the
mixed layer were relatively constant during the outbound track in
December, but changed significantly in January. First there was a
marked decrease in mixed layer chlorophyll during January 3–7
(Fig. 2e), concurrent with the SST increase previously described.
Mixed layer chlorophyll then remained low until the end of
the westward occupation (January 13–16), whereupon a modest
increase in mixed layer chlorophyll was observed (Figs. 2e and 6b).
Satellite-derived chlorophyll concentrations show the opposite
trend. A significant longitudinal chlorophyll gradient existed in
December, with higher chlorophyll in the eastern half of the glider
track and lower values in the western half (Fig. 3c). By January,
however, this spatial gradient in surface chlorophyll had disap-
peared, and the satellite-derived data show low surface concen-
trations and minimal spatial variation along the glider track
(Fig. 3d). This inconsistency in chlorophyll variability as observed
by the glider versus the satellite likely results from the fact
that chlorophyll evolves on time scales less than the �2 weeks
between repeated observations of the glider sections. The satellite
data also do not represent monthly averages, but instead represent
the average of a few cloud-free days in December and January.
Furthermore, surface fluorescence-derived chlorophyll values from
the glider are not directly comparable to satellite estimates
because much of the surface variability reflects diel quenching
rather than in situ concentration changes (see Section 4.1.1).

Concentrations of POC were similar between the two sections
except for an abrupt change near the end of the westward/return

track. This change caused mean mixed layer POC in the outbound
track to be 25 mg m�3 lower on average than during the return
track (Table 1). Integrated POC concentrations were remarkably
consistent throughout both the eastward and westward sections
(Table 1), and it was only after January 10 (and west of 1761E)
that mixed layer concentrations increased abruptly, reaching
maximum values on January 15 (Figs. 2f, 6). This increase in POC
concentrations occurred �3–7 days after the decrease in mixed
layer chlorophyll, but at approximately the same time as the
decrease in the deep chlorophyll signal and the increase in
southerly winds (Figs. 2d–f, 5, and 6).

Mesoscale variability of both chlorophyll and POC concentrations
was also evident below the mixed layer throughout both sections
(Figs. 5, 6). Chlorophyll and POC both episodically penetrated to depths
of �100–200 m on short (O(1 h)) time scales. A close examination of
Figs. 5 and 6 reveal that these events co-occurred (i.e., both POC and
chlorophyll were elevated at depth simultaneously). The deep chlor-
ophyll and POC signal (below 75m) decreased on January 10, at the
same time as the surface POC concentration increased. Deep chlor-
ophyll and POC concentrations then remained low until the end of the
glider track (Figs. 5b, 6b). In general, deep chlorophyll and POC
concentrations varied in phase, whereas mixed-layer concentrations
were largely out of phase, with the highest POC concentrations
occurring at times of lowest chlorophyll concentrations.

The ratio of POC to chlorophyll in the mixed layer remained
fairly constant during the eastward/outward track, but changed
greatly during the westward/return track. On average, POC:Chl
during the westward track was approximately double that of the
eastward track (Table 1). The POC:Chl began increasing as mixed
layer chlorophyll decreased (January 3–7) and continued

Fig. 3. MODIS images of the southwestern Ross Sea of monthly composites of SST for (a) December 2010 and (b) January 2011 and chlorophyll concentrations for
(c) December 2010 and (d) January 2011. The thin black lines illustrate the location of the glider track. The white areas in (c) and (d) roughly represent locations where mean
monthly ice cover exceeded 50%. Gray areas represent topography above sea level or ice shelf.
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increasing through the later period of increasing POC (January
10–15); over this almost two week period, POC:Chl increased
approximately two-fold (Fig. 2g) at a rate of �15 mgC mgChl�1

per day. By the end of the westward track, the POC:Chl ratio had
reached a maximum value of approximately 230 mgC mgChl�1,
increasing from an average value of 47 mgC mgChl�1 during the
eastward section.

3.3. Correlations

Correlation coefficients were calculated between physical variables
(SST, MLD, MCDW thickness and wind speed) and biological variables
(mixed layer chlorophyll, POC and POC:Chl ratio) across the whole
glider track (Table 2). Mixed layer depth was not highly correlated
(correlationso0.4) to chlorophyll or POC. In contrast, average mixed
layer chlorophyll was most strongly correlated (�0.73) with SST:

higher chlorophyll concentrations were associated with colder tem-
peratures. To a lesser degree, chlorophyll was also inversely correlated
with MCDW thickness (�0.53) and wind speed (�0.42), such that
higher chlorophyll concentrations were associated with low winds
and occurred where MCDW influence was low. In contrast to
chlorophyll, which was relatively highly correlated to multiple physical
variables (SST, MCDWandwind), POC concentrations were only highly
correlated (0.61) with winds over the whole track: significantly higher
POC concentrations occurred when wind speeds were high (Fig. 2).
The ratio of POC:Chl in the mixed layer was strongly positively
correlated with both SST (due to chlorophyll) and wind speed (due
to the POC contribution.)

Correlation coefficients were also calculated separately for data
within each section (Table 2). The westward/return section corre-
lations exhibited similar correlations as were found for the entire
track, with strong inverse correlations of chlorophyll and SST and

Fig. 4. Temperatures during the (a) eastward/outbound and (b) westward/return glider sections. The thick black line represents a 5-point moving average of mixed layer
depth and hatched areas represent MCDW.
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strong positive correlations between POC and wind speed.
In addition, on this westward section POC was strongly positively
correlated with MLD, such that high POC concentrations were
associated with deep mixed layers. Although the strong inverse
correlation between chlorophyll and SST was also apparent on the
eastward track, POC was not highly correlated to any physical
variables on the eastward track.

4. Discussion

4.1. Factors controlling observed chlorophyll and POC distributions

Multiple physical and biological processes are known to play
a role in the variability of the original fluorescence and

backscatter data of the glider, and may explain some of the
variability in the derived concentrations of chlorophyll and POC,
respectively. For example, diel variations in near-surface fluor-
escence may be related to diurnal shifts from photochemical
quenching to non-photochemical quenching. Moreover, varia-
tions in deep chlorophyll may represent sinking and export of P.
antarctica. Abrupt changes in the ratio of POC to chlorophyll
potentially suggest a shift in phytoplankton composition.
Although MCDW and MLD were expected to play major roles
in controlling biological distributions in the Southern Ross Sea,
neither played as significant a role as that of wind and SST on
the time/space scales measured by the glider. The influence of
these multiple factors on fluorescence and backscatter, hence
on the derived chlorophyll and POC and their variability, is
described below.

Fig. 5. Fluorescence-derived chlorophyll concentrations during the (a) eastward/outbound and (b) westward/return glider sections. The thick black line represents a 5-point
moving average of mixed layer depth.
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4.1.1. Diel fluorescence cycles
The high-resolution measurements obtained by the glider revealed

diel cycles of fluorescence, with minima occurring around noon and
maxima near midnight (Fig. 7). Previous studies have shown that
maximum fluorescence yield of phytoplankton cells can be decreased,
or quenched, by release of energy as heat, and this process is termed
non-photochemical quenching (NPQ; Buschmann, 1999). Photoinhibi-
tion and photoprotective NPQ can occur when cells are subject to high
mid-day irradiance (Van de Poll et al., 2011), and the diel pattern of
fluorescence observed by the glider likely results from such quenching.
A similar pattern has been observed in moored fluorometry data from
the same region, and is evident even during 24-h photoperiods (Smith
et al., 2011a). Fluorescence also decreased slightly near midnight
during numerous periods, a pattern similar to nocturnal depressions
previously hypothesized (Behrenfeld et al., 2006). Behrenfeld et al.
(2006) suggested that nocturnal depressions are unlikely to occur in

polar regions, but the occasional occurrence of this pattern in these
data suggests that summer mid-night depressions may also be
possible in polar systems and may reflect a reduction in the plasto-
quinone pool at night.

4.1.2. Modified Circumpolar Deep Water
It has been hypothesized that the presence of MCDW in subsurface

layers of the Ross Sea stimulates surface productivity by providing iron
that relieves micronutrient limitation (Hiscock, 2004; Peloquin and
Smith, 2007). Hiscock (2004) found a strong spatial correlation with
his delineation of MCDW based solely on neutral density and pigment
concentrations derived from coarse-resolution (�50 km station spa-
cing) shipboard data. In contrast, the results obtained here, which are
generally consistent with results obtained using other platforms
during the 2010–2011 season (Smith et al., 2014), do not indicate

Fig. 6. Optical backscatter-derived particulate organic carbon concentrations during the (a) eastward/outbound and (b) westward/return glider sections. The thick black line
represents a 5-point moving average of mixed layer depth.
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any such positive correlation between mixed layer chlorophyll or POC
concentration and the appearance of MCDW, its depth, or the portion
of the water column that it occupies. The absence of a positive
correlation suggests that MCDW is not stimulating phytoplankton
growth during summer; however, it is not clear whether this is due to
an insufficient supply of iron associated with the MCDW or whether
iron is simply not limiting phytoplankton growth at this particular
time and place.

4.1.3. Mixed layer depth
Estimates of MLD vary according to method used for calculation

and are affected by several distinct processes. Numerous procedures
exist for identifying MLD, including thermal difference and gradient,
shape of the density profile, and dissolved O2 criteria (Chu and Fan,
2011; Holte and Talley, 2009; de Boyer Montégut et al., 2007).
Algorithms that rely on temperature alone or potential density reveal
mixing effects of dissimilar water column processes (de Boyer
Montégut et al., 2004), with dissolved O2 being additionally affected
by air-sea gas exchange and biological processes (Castro-Morales and
Kaiser, 2012). In this study, using different potential density thresholds
did not substantially affect the results. In addition, the computedMLDs
are not significantly correlated to the glider SSTs, so that the expected
pattern of higher SST linked with shallower MLD is not apparent.
Factors that affect MLD, such as wind, buoyancy, ice melt, and waves
(Belcher et al., 2012), may be responsible for the lack of correlation
with SST in these data.

In the open waters of the central Ross Sea, mixed layer depths
are generally relatively deep and phytoplankton assemblages are
primarily dominated by P. antarctica, which typically exhibit
relatively low POC:Chl ratios (DiTullio and Smith, 1996); in con-
trast, diatoms, which exhibit relatively high POC:Chl ratios, dom-
inate in shallower mixed layer regions characteristic of ice edges
(Arrigo et al., 1999; Smith et al., 2010). On the time and space
scales observed by the glider during 2010–11, a contrasting pattern
emerged: the glider data revealed higher POC:Chl ratios during
relatively deep (30–50 m) mixed layer conditions. By means of a
pigment analysis, Fragoso and Smith (2012) found a similarly
contrasting pattern. They found diatoms dominating the assem-
blage when deep mixed layers were present in late summer, and
suggested that the MLD–composition relationship was temporally
and/or spatially variable. Together, these studies seem to indicate
that although diatoms tend to be present in locations that are

generally characterized by relatively shallow mixed layer depths,
the temporal variability of these concentrations at a given location
is such that higher diatom concentrations are sometimes asso-
ciated with deeper mixed layer depths. However, the mechanisms
generating these observed diatom distribution patterns require
further study.

4.1.4. SST and wind
Although biological distributions (chlorophyll, POC) were

not highly correlated to MLD or the presence of MCDW, these
biotic distributions were highly correlated with SST and wind
speed. Specifically, cold temperatures were associated with high
chlorophyll concentrations and high winds were associated with
high POC concentrations (Table 2). The association between SST
and chlorophyll appears linked to the seasonally increasing tem-
peratures and waning phytoplankton bloom; seasonally increasing
SSTs are evident in both the glider SST observations (Figs. 2a and 4)
and satellite SST composites (Fig. 3a,b). This description is con-
sistent with Liu and Smith's (2012) analysis of four years of cruise
data, which exhibited a strong, inverse association between
P. antarctica and temperature and more minor contributions to
biological variance from water column stratification.

In addition to the background seasonal warming, substantial
mesoscale variability caused temperature gradients on shorter
time and space scales as well. For example, the abruptly warming
surface temperatures observed between January 3 and 7 are
associated with abruptly decreasing chlorophyll concentrations
during this same period. Although it is not possible to ascertain
the cause of the temperature increase, it is likely associated
with a series of consecutive sunny days. Net solar radiation
reanalysis fluxes provided by the National Center for Environ-
mental Prediction (http://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.html; Kalnay et al., 1996) at 1781E indicate
that the only period of five consecutive days with net shortwave
radiation fluxes 4300 W m�2 at this location occurred during the
time period of January 3–6. In contrast, the preceding time period
(December 23–31) averaged �230 W m�2. Such an increase
in solar radiation would be expected to decrease fluorescence
through acclimation to high irradiance conditions characteristic of
highly stratified conditions, whereas the concentration of chlor-
ophyll may not necessarily be affected, although the degree
of this effect would depend upon phytoplankton composition
(Kropuenske et al., 2009). Such a decrease in fluorescence-
derived chlorophyll was observed in January 2011 as the glider
moved into waters with a deeper overall water column, and these
same waters were characterized by relatively low surface chlor-
ophyll concentrations as measured by satellite (Fig. 3c,d).

Concentrations of POC observed by the glider were nearly
constant between the time of the deployment until January 11.
At this time, a substantial increase in POC occurred contempor-
aneously with a doubling of wind speed, which was then followed
by a discernable deepening of the mixed layer. The significant
correlation between wind speed and POC suggests a vertical
mixing effect, perhaps through changes in irradiance availability
and/or nutrient redistribution. Frequent mesoscale mixing events
in the Ross Sea have previously been associated with substantial
biological variability, and may transform the assemblage by alter-
ing the irradiance environment (Smith et al., 2011a). Although the
higher POC concentrations could also be explained by the hor-
izontal advection of POC-rich water into this region, this would
require an explanation for increased POC in neighboring waters.

4.1.5. Phytoplankton composition
It is possible that the observed chlorophyll decrease (January

3–7) and POC increase (after January 10) could represent a change
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Fig. 7. The average diel cycle of fluorescence; data are binned every half-hour. The
black line shows mean fluorescence (in arbitrary units of output counts) at 5 m
depth, and the shaded region indicates the 795% confidence interval.
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in the contributions of solitary versus colonial cells of P. antarctica.
Since colonies partition substantial amounts of carbon to mucus
(Mathot et al., 2000), a transition from solitary to colonial cells
might be expected to result in an increase in POC:Chl ratio.
However, the fraction of P. antarctica that is composed of mucila-
ginous colonies is generally highest in December (Smith et al.,
2000), and decreases as the colonies sink and solitary flagellated
cells are released (Mathot et al., 2000). Furthermore, the number
of solitary cells remains relatively low during summer, likely as a
result of microheterotroph grazing (Smith et al., 2003). If the glider
data were capturing such a shift from colony-dominated to
solitary-cell dominated P. antarctica at one depth, a decrease in
the POC:Chl would be expected, opposite to what is observed.
Thus, it is unlikely that the changes in bio-optical data reflect a
change in the relative contributions of solitary cells of P. antarctica.
Although higher POC:Chl ratios could also be explained by an
increase in detrital matter, detrital carbon amounts are considered
to be low in the Ross Sea during this time of the year (Mathot et al.,
2000), and thus this is also not a likely explanation for the
observed decrease in chlorophyll and increase in POC. Finally, as
grazing is generally understood to have limited effect on phyto-
plankton assemblages in the Southern Ross Sea (Caron et al., 2000;
Dennett et al., 2001; Tagliabue and Arrigo, 2003), herbivory is
unlikely to be responsible for the observed variability.

Another potential explanation for the observed changes in the
POC:Chl ratio is that iron limitation became more severe, as iron

inputs are largely restricted in summer in the Ross Sea (Sedwick
et al., 2011), and the phytoplankton responded by altering intra-
cellular ratios. Nutrient limitation often impacts chlorophyll
synthesis before growth and overall biomass, and the increased
ratios observed by DiTullio and Smith (1996) are consistent with
iron limitation. Furthermore, increased POC:Chl ratios observed in
mesocosms of P. antarctica in the Ross Sea were observed after
nutrient depletion (Smith et al., 1998), which is again consistent
with the hypothesis of a physiological acclimation to nutrient
limitation.

Finally, another potential explanation for the observed decrease
in chlorophyll and subsequent increase in POC is that the glider
was witnessing a transition from P. antarctica to diatoms. Although
gliders do not provide accessory pigment information or samples
for microscopic species identification, the results presented here
suggest that compositional changes in the biota likely played a role
in the observed variations in optical data. For example, the
observed changes in POC and chlorophyll concentrations are
characteristic of a shift in phytoplankton assemblage, as low
POC, high chlorophyll waters throughout the eastward section
gave way to higher POC and low chlorophyll waters during the
westward section. Such differences between low and high POC:Chl
ratios have been observed previously in the Ross Sea (DiTullio and
Smith, 1996) and were found to be distinguishing features of
P. antarctica-dominated and diatom-dominated assemblages,
respectively. Both spatial and temporal gradients may have played

Fig. 8. Eastward glider sections sub-sampled at reduced horizontal resolution (�50 km station spacing) for temperature (a, c) and fluorescence-derived chlorophyll (b, d).
Two different subsampled station sets are used (a,b vs. c,d, offset by 9 km, as illustrated by dashed lines) to calculate mixed layer depths (thick black lines) and MCDW
(hatched areas), and the specific locations of the selected stations strongly affect the contoured chlorophyll distributions.
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a role in the observed variability. It is possible that there were two
spatially separated blooms, as evident in MODIS satellite imagery
(Fig. 3c,d), and the movement of the glider through this spatial
arrangement produced the observed distribution. It is also possible
that the changes in the bio-optical data were indicative of a
temporal transition from P. antarctica to diatoms. This suggested
temporal transition is in consonance with observations from both
cell counts and accessory pigments (Ditullio et al., 2003; Peloquin
and Smith, 2007; Smith et al., 2010).

4.2. Data resolution

The observed patterns and interpretation of water column
properties from the glider observations would have been markedly
different if they were sampled at lower resolution. To demonstrate
this quantitatively, lower resolution station observations were
obtained for comparison by subsampling casts from within
the glider data set at a resolution (�50 km; Fig. 8) similar to that
of traditional cruise stations (Smith and Asper, 2001; Hales and
Takahashi, 2004). This subsampling was performed twice (Fig. 8a,c),
and in both cases revealed patterns of temperature similar to those
of the original, high-resolution data, but with a diminished extent of
MCDW (Fig. 4a vs. 8a and c). In contrast, subsampled patterns of
chlorophyll concentrations produce very different patterns (Fig. 5a
vs. 8b and d). Shallow patches of elevated concentrations occur at
opposite ends of the glider section depending on the particular set of
stations selected (Fig. 8b,d). In addition, the mesoscale variability of
temperature and chlorophyll through �200 m that was observed
from the full glider data set (Figs. 4a, and 5a) disappeared when
these data were subsampled (Fig. 8). Instead, horizontal aliasing
appeared in the visualization as a result of interpolating between
distantly spaced data points. The surface diel fluorescence cycles
likewise became obscured as a result of the subsampling.

Correlations between physical and biological variables in the
subsampled sets also differed substantially from those computed
from the full data set. The strongest correlations evident in the full
data set between chlorophyll and SST and between POC and wind
were insignificant after subsampling (Table 3). In contrast, the
strongest correlates for chlorophyll and POC after subsampling
were wind and MCDW thickness, respectively. Performing the
subsampling twice with different station sets also produced
different correlations, reflecting a strong dependence on specific
station locations when assessing variable associations at lower
resolutions. In addition, there were few significant correlations
from the westward section, and all subsampled correlations within
the eastward section were not significant. These diminished
significances and dramatically altered correlations obtained after
subsampling the glider data at cruise-station resolution demon-
strate how high resolution data such as those described in this
study offer important insights into biogeochemical variability that
may be biased or obscured in lower resolution data sets.

5. Summary and conclusions

The glider observations described reveal environmental dynamics
in the Southern Ross Sea at a level of resolution that are difficult to
obtain by other means. Ship-based observations provide a lower
resolution description of the multiple physical and biological transi-
tions observed via glider, and the harsh conditions of the Ross Sea
limit the feasibility of other high temporal resolution platforms. For
example, moorings and their deployments are made challenging by
ice, and frequent extensive cloud cover prohibits daily, unobstructed
satellite imagery. This analysis of the distribution of high-resolution
physical and bio-optical properties has demonstrated chlorophyll and
POC trends consistent with a transition from a P. antarctica- to a

diatom-dominated assemblage. Further, the depth of the mixed layer
and MCDW were less associated with biological variations than SST
and wind speed. Attributing causality and differentiating spatial and
temporal effects is difficult when observing concurrent multivariate
shifts, but glider-based approaches like ours can help. Further high-
resolution surveys, and with additional sensors, will likely lead to a
new and comprehensive picture of Ross Sea biogeochemical dynamics.
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