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Original Article

Properties of age compositions and mortality estimates derived
from cohort slicing of length data

Lisa E. Ailloud, Matthew W. Smith, Amy Y. Then, Kristen L. Omori, Gina M. Ralph, and John M. Hoenig*
Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA

*Corresponding author: tel: +1 804 684 7125; e-mail: hoenig@vims.edu

Ailloud, L. E., Smith, M. W., Then, A. Y., Omori, K. L., Ralph, G. M., and Hoenig, J. M. Properties of age compositions and mortality
estimates derived from cohort slicing of length data. – ICES Journal of Marine Science, 72: 44–53.

Received 2 September 2013; revised 22 April 2014; accepted 23 April 2014; advance access publication 3 June 2014.

Cohort slicing can be used to obtain catch-at-age data from length frequency distributions when directly measured age data are unavailable. The
procedure systematically underestimates the relative abundance of the youngest age groups and overestimates abundance at older ages. Cohort-
sliced catch-at-age data can be used to estimate total mortality rate (Z) using a regression estimator or the Chapman–Robson estimator for right
truncated data. However, the effect of cohort slicing on accuracy and precision of resulting Z estimates remains to be determined. We used Monte
Carlo simulation to estimate the per cent bias and per cent root mean square error of the unweighted regression, weighted regression, and
Chapman–Robson mortality estimators applied to cohort-sliced data. Incompletely recruited age groups were truncated from the cohort-
sliced catch-at-age data using previously established recommendations and a variety of plus groups was used to combine older age groups. The
sensitivity of the results to a range of plausible biological combinations of Z, growth parameters, recruitment variability, and length-at-age error
was tested. Our simulation shows that cohort slicing can work well in some cases and poorly in others. Overall, plus group selection was more
important in high K scenarios than it was in low K scenarios. Surprisingly, defining the plus group to start at a high age worked well in some
cases, although length and age are poorly correlated for old ages. No one estimator was uniformly superior; we therefore provide recommendations
concerning the appropriate estimator and plus group to use, depending on the parameters characterizing the stock. We further recommend that
simulations be performed to determine exactly which plus group would be most appropriate given the scenario at hand.

Keywords: age composition, age distribution, age slicing, catch-at-age, cohort slicing, mortality.

Introduction
While there has been a recent shift in stock assessment methods
towards using catch-at-length-based models, much of modern
stock assessment remains based on catch-at-age models, which esti-
mate population sizes and derive exploitation history by summing
catches over time on a cohort-by-cohort basis. Size-structured
models like MULTIFAN-CL (Fournier et al., 1998) and Stock
Synthesis (Methot, 2005) are often more informative than the
simpler catch-at-age models, but these highly complex integrated
assessment methods also tend to require more data, leaving
simpler models like virtual population analysis (VPA) still used
for data-poor species.

The catch-at-age approach is predicated on having reliable data
on the age composition of the catch in each year. Age data can often
be obtained from hard parts (e.g. otoliths, vertebrae, spines), but
such techniques are labour-intensive and time-consuming, and

not applicable to many invertebrates. This information is therefore
not always available to stock assessment scientists who have to
extract age composition from the available fisheries catch-at-length
data. The most common approaches used when no age estimates are
available are Pauly and David’s (1981) ELEFAN, and Fournier et al.’s
(1990) MULTIFAN. When limited direct observations on age are
available, an inverse age–length key (Hoenig and Heisey, 1987;
Kimura and Chikuni, 1987) or a combined forward and inverse
key (Hoenig et al., 1994) might be used. While these tools reduce
the need for direct ageing studies, they still require some age–
length data to be collected, which is not always practical.

An alternative is to estimate the age composition from the length
frequency distribution of the catch using cohort slicing (also known
as age slicing). This requires a growth equation to be available but
does not require information on variability in size at age. With
this method, a length interval or “bin” is specified for each age
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group and the number at each age is estimated as the number of
observations in the corresponding length bin. The bin definitions
are determined from a von Bertalanffy (or other) growth equation,
following the assumption that ages are clearly separated by length
bounds. The oldest age groups are lumped together in a catch-all
“plus” group because, as fish grow, the relationship between body
size and age weakens to the point that the oldest nominal ages are
largely mixtures of ages (Figure 1). This method is currently being
used in the assessment of many highly migratory species, including
swordfish, Xiphias gladius, yellowfin tuna, Thunnus albacares,
bigeye tuna, Thunnus obesus, Atlantic bluefin tuna, Thunnus
thynnus, and North Atlantic albacore, Thunnus alalunga
(International Commission for the Conservation of Atlantic
Tunas, 2010, 2011, 2012a, b, 2014) as well as a number of demersal
fisheries, including the witch flounder, Glyptocephalus cynoglossus
(International Council for the Exploration of the Sea, 2012),
European hake, Merluccius merluccius, red mullet, Mullus barbatus,
red shrimp, Aristeus antennatus, and deep-water pink shrimp,
Parapenaeus longirostris (General Fisheries Commission for the
Mediterranean, 2012).

Cohort slicing is predicated on the assumption that there is no
overlap in length among cohorts. Strictly speaking, this assumption
is never met—size distributions for the oldest age groups always
overlap. While the properties of cohort slicing have not yet been
evaluated comprehensively, a few studies have explored the implica-
tions of its assumptions for the estimation of age composition.
Mohn (1994) and Restrepo (1995) were the first to point out that
cohort slicing tends to underestimate recruitment variability.
When the cohorts are of equal abundance, the younger cohort con-
tributes as much to the estimate of the older cohort as the older
cohort contributes to the estimate of the younger cohort. Hence,
the errors of misclassification cancel out. But, when the cohorts
are of unequal size, the more abundant cohort contributes more
to perceived size of the weaker cohort than the weaker cohort con-
tributes to the more abundant one. Consequently, the abundance
of weaker year classes tends to be overestimated and the abundance
of stronger year classes tends to be underestimated. Furthermore,
Kell and Kell (2011) compared cohort slicing with a more

sophisticated statistical method, mixture analysis, and suggested
that cohort slicing underestimated the contribution of younger
fish in an analysis of data on swordfish. Similar observations were
made by Goodyear (1987) in the assessments of red drum,
Sciaenops ocellatus, where he noted that young fish, being
fast-growing in nature, were consistently misclassified as being
older, while older fish, which are typically slow growing, were con-
sistently misclassified to younger age classes, leading to underesti-
mates of the first couple of age groups and overestimates of the
remaining age groups (Figure 2).

In a study by Rodrı́guez-Marı́n et al. (2001), cohort slicing,
length frequency analysis by MULTIFAN, and age–length key
(from dorsal spine readings) were compared to determine the rela-
tive performance of each method in estimating catch-at-age for ju-
venile Atlantic bluefin tuna. They found no significant difference in
the catch-at-age estimated using the three methods, but noticed that
both cohort slicing and MULTIFAN underestimated the abundance
of the strong 1994 cohort compared with estimates made using the
age–length key. Similar observations were made by Turner and
Terceiro (1994) who compared catch-at-age estimated by
MULTIFAN with cohort slicing in juvenile Western bluefin tuna.
In addition, they found that differences between the two methods
widened in older age groups.

Cohort-sliced catch-at-age models have been criticized for being
markedly inferior to catch-at-length models (Polacheck and Preece,
2001; Butterworth and Rademeyer, 2013). While it is true that, in
data-rich situations, catch-at-length models can resolve problems
associated with cohort slicing, under more difficult assessment con-
ditions (i.e. when less data are available for the stock), it is not
always evident that catch-at-length models perform better than
cohort-sliced catch-at-age models (Kurota et al., 2001; Kolody
et al., 2004). With increasing demand for more stock assessments to
be carried out, but limited resources available to obtain the necessary
data and perform sophisticated statistical analyses, cohort slicing may
be a valuable tool for obtaining preliminary results. Furthermore,
there is value in having a simpler model with which to compare
other, more sophisticated models; those simpler models allow stock
assessment scientists to explore what individual components of the
dataset may indicate and may be very helpful when transitioning to
more sophisticated models. Cohort slicing is still being used for a

Figure 1. Simulated swordfish lengths plotted against age. The lengths
were generated by adding a random error to the predicated lengths
from the von Bertalanffy growth curve currently used in stock
assessment (shown as the solid line). The dashed lines indicate the
length bin separations used in cohort slicing. The parameters used in
the simulation are: K ¼ 0.185 year21, L1 ¼ 238 cm LJF, t0 ¼ 21.404
year, Z ¼ 0.38, sr ¼ 0.3, and sl ¼ 4%L1.

Figure 2. Differences between the actual sample composition and the
cohort-sliced composition in three realizations of a simulation
scenario. The parameter values used in the simulation are: K ¼ 0.185
year21, L1 ¼ 238 cm LJF, t0 ¼ 21.404 year, Z ¼ 0.6, sr ¼ 0.7, and
sl ¼ 12%L1.
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number of species and as such it must be emphasized that practi-
tioners know its properties and limitations, so they may take these
into account when interpreting the stock assessment model results.
For example, VPA is still being used for some stocks assessed by the
International Commission for the Conservation of Atlantic Tunas
(ICCAT) and will continue to be used for a number of years as transi-
tions are made to statistical catch-at-age models; cohort slicing is used
to obtain the required catches-at-age. There is a need to determine if
perceived changes in stock dynamics are due to changes in abundance
or to changes in methodology.

Having recognized the qualitative properties of the derived
age composition, we chose to summarize the implications of age
misclassification in subsequent use of the catch-at-age data.
We used a Monte Carlo simulation to examine how ageing errors
induced by cohort slicing affect estimates of total mortality rate
derived from catch curve analysis, in part because catch curve ana-
lysis is used as one component of the assessment of Mediterranean
swordfish. Of interest to our study was to: (i) determine which con-
ditions produce large errors (i.e. evaluate the implications of having
different definitions of the plus group, different magnitudes of re-
cruitment variability and growth variability, etc.), and (ii) provide
recommendation as to which method of mortality estimation is
most suited for age-sliced data (i.e. given the existing biases,
which estimation technique produces estimates with the smallest
root mean square error).

Methods
We quantified errors in estimating age composition by repeatedly
generating datasets with known properties and then analysing
each dataset using cohort slicing. We used a factorial design to
examine the effects of recruitment variability, individual growth
variability, the von Bertalanffy growth coefficient, K, the total mor-
tality rate, Z, and the first age in the plus group on catch curve esti-
mates of total mortality rate. We simulated knife-edge selectivity by
age (not length); we assumed that below a certain age, fish suffer no
fishing mortality at all. The parameters used to generate the datasets
were loosely patterned after the biology and population dynamics of
X. gladius in the Mediterranean Sea, a species assessed by cohort
slicing. We also bracketed these parameter values to see how
robust the conclusions are under a variety of conditions (parameter
values are listed in Table 1).

For each combination of factors, 10 000 populations were simu-
lated and analysed according to the following procedure.

Generate an age composition with 41 ages (arbitrary number
made sufficiently large to ensure the complete elimination of the
population after 41 years) by generating 41 initial cohort sizes as log-
normal random variables and projecting the abundance of each
cohort forward to a specified age in the range 0–40 according to a
constant mortality rate, Z. Thus, at one point in time, the age com-
position is given by,

Nt = N0te
−Zt, t = 0, 1, . . . , 40, (1)

where Nt is the number of animals in cohort t at age t, N0t the initial
size of the cohort that is age t in the sample, N0t � ln(m,s2

r ), and
m ¼ ln(10 000). Thus, the expected initial size of a cohort t is
E(N0t) = exp[m+ (s2

r /2)] . 10000.
Assign a length to each animal in the population by adding a nor-

mally distributed random error to the expected length of the animal
as specified by the von Bertalanffy growth equation. Thus,

Li = L1(1 − e(−K(ti−t0))) + 1i, (2)

where Li is the length of the ith animal, ti the age of the ith animal, the
parameters K, L1, and t0 are from the von Bertalanffy equation, and
1i � N(0,s2

l ).
Establish length bins for cohort slicing and count the number of

occurrences in each bin. The number of animals of age t, Nt, is esti-
mated to be the number of animals where LBt ≤ L , UBt where the
lower bound LBt is the predicted length from the von Bertalanffy
equation at age t 2 1

2 and UBt is the predicted length-at-age t + 1
2.

Estimate the total mortality rate from the estimated age compos-
ition using the Chapman–Robson estimator for truncated age
distributions (Robson and Chapman, 1961), the unweighted regres-
sion estimator (see Ricker, 1975), and the weighted regression esti-
mator (Maceina and Bettoli, 1998; Smith et al., 2012).

The Chapman–Robson estimator (Chapman and Robson,
1960) was used in the form published by Robson and Chapman
(1961) for truncated age distributions,

Ẑ = − log
T

n − m + T

( )
, (3)

where Ẑ is the estimated total mortality rate, n the sample size, m the
frequency of fish in the plus group (fish of age . k), and T is defined
as,

T = N1 + 2N2 + 3N3 + · · · + kNk + m(k + 1), (4)

where Ni corresponds to the number of fish at age i, starting with the
age of maximum catch plus 1 year [following recommendations by
Smith et al. (2012)] and ending with the last age group before the
plus group, Nk.

The unweighted regression estimator as defined in Ricker (1975)
was used to estimate Z by fitting a linear regression to the log-
transformed catch-at-age data and calculating the negative of the
slope obtained by ordinary least squares. The first age group used
was the age of maximum catch, following recommendations of
Smith et al. (2012), and the oldest ages were truncated following dif-
ferent plus group definitions. The weighted regression estimator
(Maceina and Bettoli, 1998; Smith et al., 2012) was used as an alter-
native to simple truncation for dealing with the low and often spor-
adic catches of older age groups. Weights were calculated following
the method of Maceina and Bettoli (1998) who recommend using

Table 1. Parameter values used in the simulation and case study of
Mediterranean swordfish.

Parameter Simulation Mediterranean swordfish

K 0.185 or 0.4 year21 0.185 year21

L1 238 cm LJF 238 cm LJF
t0 21.404 years 21.404 years
sl 4, 8, or 12% L1 4% L1

sr 0.3, 0.7, or 1.1 0.3
Z 0.3, 0.6, 1.0 0.38
Plus group 5, 7, 9, 11, 13, or 15 years 5, 7, 9, 11, 13, or 15 years

Recruitment variability parameter (sr) values were chosen from Myers et al.
(1995) to cover the range that might be expected for X. gladius. LJF, lower
jaw–fork length. Entries for Plus group refer to the youngest age in the plus
group. For the case study, parameter values were patterned after the latest
stock assessment for Mediterranean swordfish (International Commission for
the Conservation of Atlantic Tunas, 2011), which uses the von Bertalanffy
parameters estimated by Tserpes and Tsimenides (1995).
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the predicted log catch-at-age values from an unweighted regression
model as weights in a subsequently fitted model. This weighting
scheme, although ad hoc, successfully shifts weight away from the
older age groups which could otherwise be highly influential in de-
termining model fit.

The ability of each technique to recover the true value of Z was
assessed by calculating per cent bias (%BIAS) and per cent root
mean square error (%RMSE) for each scenario according to the
equations

%BIAS(Ẑ) = 100
E(Ẑ) - Z

Z
, (5)

and

%RMSE(Ẑ) =
100

����������
E(Ẑ- Z)2

√
Z

, (6)

where E() denotes expectation, which is approximated by averaging
over simulation results.

Results
Cohort slicing was found to systematically underestimate the abun-
dance of the youngest age groups, while overestimating the contri-
bution of the oldest age groups (Figure 2). Estimates of total

mortality rate were negatively biased in most scenarios (Figure 3).
The weighted regression yielded nearly identical results to the
unweighted regression but, in rare instances, performed slightly
better than the unweighted regression. We therefore focus on the
weighted regression for simplicity.

Simulations with low K (K ¼ 0.185)
For the Chapman–Robson estimator, biases were mostly negative,
ranging from 238 to +5%, with most biases occurring between
0 and 215% (Figure 3). Small positive per cent bias was observed
at young plus groups for scenarios combining low Z, low to moder-
ate length-at-age error, and medium to high recruitment variability
(Figure 4). When length-at-age error was low, per cent biases were
near zero throughout the range of plus groups, recruitment error,
and Z. As length-at-age error increased, the first age in the plus
group became more important, with per cent bias becoming in-
creasingly negative with decreasing first age in the plus group. The
largest negative per cent bias occurred at high Z and high
length-at-age error, where bias reached 238%.

For the Chapman–Robson estimator, recruitment variability
was an important factor in determining per cent RMSE, which
was not the case for per cent bias (Figure 4). As a rule, when per
cent bias was low, per cent RMSE was very dependent on the level
of recruitment variability and when per cent bias was high, per
cent RMSE was fairly insensitive to the level of recruitment

Figure 3. Histograms showing the range and distribution of per cent bias and per cent RMSE results across scenarios resulting from (a) the
Chapman–Robson estimator and (b) the weighted regression estimator. Note the different scales used in the bias panels.
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variability (Figure 4). Overall, per cent RMSE could be controlled by
selecting for an older plus group.

For the weighted regression estimator, bias reached 97% at high
recruitment error, low Z, and low length-at-age error when the
youngest plus group (age 5+) was being used (Figure 4), but,
overall, most biases were around 230 to +5% (Figure 3). At low
Z, per cent bias remained close to zero in the older plus groups, re-
gardless of recruitment error and length-at-age error (Figure 4). At

high Z and low length-at-age error, per cent bias was close to zero
regardless of recruitment error and plus group selection. Overall,
selecting an older plus group helped keep per cent bias low, which
is the opposite of what was observed in almost all cases for the
Chapman–Robson estimator (Figure 4).

Per cent RMSE resulting from the weighted regression estimator
followed the same patterns as per cent bias in that selecting for a
higher plus group consistently brought per cent RMSE closer to

Figure 4. Simulation results from the low growth rate scenario (K ¼ 0.185 year21). The left panel indicates per cent bias in the estimate of Z, the
right panel indicates per cent RMSE in the estimate of Z. The black vertical lines present in the left and right panels indicate 0% bias and 0% RMSE,
respectively. The numbers and letters represent the first age in the plus group: 5, 5 years; 7, 7 years; 9, 9 years; A, 11 years; B, 13 years; and C, 15 years.
The grey numbers and letters are results from the Chapman–Robson estimator and the black numbers and letters are results from the weighted
regression estimator. Solid horizontal grey lines divide results from scenarios with high, medium, and low length-at-age error. Dotted horizontal grey
lines divide results from scenarios with high, medium, and low recruitment error. The parameters used for the last line of results (low Z, low sl and
low sr) are patterned after Mediterranean swordfish.
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zero. Like per cent bias, per cent RMSE reached a peak (of 152%)
when Z was low, length-at-age error was low, recruitment error
was high, and the youngest plus group was being used (Figure 4).
Higher Z and higher length-at-age error caused an increase in per
cent RMSE and employing older plus groups helped keep per cent
RMSE low. As was seen in the Chapman–Robson results, when
either Z or length-at-age error was low, per cent RMSE from the
weighted regression was very sensitive to recruitment error and
plus group selection; as recruitment variability increased, so did
per cent RMSE. The differences were most notable for younger
plus groups.

The Chapman–Robson and regression estimators both yielded
largely negative biases (Figure 3). Smallest biases (≈0%) were
observed when all variables were low, and highest biases
(≈240%) were reached when Z and length-at-age error were
high, except the 97% bias observed at high recruitment error, low
Z, young plus groups, and low length-at-age error when the regres-
sion estimator was used (Figure 4). Under both methods, increasing
recruitment error increased per cent RMSE drastically at lower plus
groups, but per cent bias was only affected when the regression esti-
mator was used (Figure 4). The main difference between the two
methods was the influence of plus group selection on per cent bias
and per cent RMSE (Figure 4). With the weighted regression, select-
ing for a younger plus group inflated the per cent bias and per cent
RMSE, whereas the Chapman–Robson estimator was much less
sensitive to plus group selection and performed better, or almost
as well, for young plus groups as for old plus groups. Overall, the
range of per cent bias and per cent RMSE observed was narrower
when the Chapman–Robson estimator was used compared with
the regression estimator (Figure 3).

Simulations with high K (K ¼ 0.4)
Increasing K from 0.185 to 0.4 increased the spread of per cent bias
and per cent RMSE observed throughout the range of scenarios
(Figure 3). Under the Chapman–Robson estimator, biases ranged
from 264 to +4%, with RMSE reaching up to 65%. Under the re-
gression estimator, biases ranged from 245 to +61% with RMSE
reaching 117% (Figures 3 and 5). Aside from the exceptional case
where the recruitment variability was highest and Z and
length-at-age error lowest, all scenarios displayed low per cent
bias at a low plus group (5+ to 9+), regardless of which mortality
estimator was used. The same pattern was observed for per cent
RMSE when the Chapman–Robson estimator was used, but pat-
terns in per cent RMSE were not as clear when the weighted regres-
sion was being used (Figure 5).

As was the case in the low K scenario, the Chapman–Robson
estimator performed better in terms of per cent bias with younger
plus groups than with older plus groups, but under the higher K
scenarios (K ¼ 0.4), the Chapman–Robson estimates were much
more sensitive to plus group selection, performing worse with in-
creasingly older plus groups (Figure 5). Per cent RMSE for the
Chapman–Robson estimates was generally lowest, or close to
lowest, when the first age in the plus group wasyoung, the exceptions
being when high recruitment variability was paired with low Z and
length-at-age error (Figure 5).

When weighted regression was used, high positive biases around
40% appeared for all low Z scenarios when the youngest age in the
plus group was high (9+ and up). High positive per cent bias also
occurred for some low Z scenarios when the youngest age in the
plus group was ,9 (Figure 5). Per cent bias was generally lowest
when young plus groups were used (5+ to 9+) and highly negative

for cases with high Z and medium to high length-at-age error
(Figure 5). Per cent RMSE was lowest at medium Z, when
length-at-age error and recruitment variability were low. In all scen-
arios where length-at-age error was low, per cent RMSE was highly
sensitive to plus group definition, with the youngest plus group
(5+) almost consistently performing worse than the other plus
groups. On the contrary, when Z was low and length-at-age error
was high, weighted regression performed better when the youngest
plus group was being used. The highest per cent RMSE was caused by
high recruitment error, when both Z and age-at-length error were
low (Figure 5).

The bias of the Chapman–Robson estimator always becomes in-
creasingly negative with an increase in the first age of the plus group.
In contrast, the weighted regression estimator displays a more
complex behaviour (Figure 5). In general, choosing a young plus
group minimized per cent bias for both estimators (Figure 5);
however, there are some exceptions for the regression estimator
(Figure 5, high recruitment variability with low length-at-age
error and low to medium Z). For both estimators, proper plus
group selection was key to reducing both per cent bias and per
cent RMSE. In a high K situation, the preferred estimator, in
terms of both minimum per cent bias and minimum per cent
RMSE, varied across scenarios (Figure 5).

Discussion
Our simulations show that cohort slicing can work well in some
cases and poorly in others. The impact of certain parameters on
the per cent bias and per cent RMSE of the mortality estimate is
more predictable than others. Length-at-age error, recruitment
variability, and mortality rate influenced the per cent bias and per
cent RMSE in a similar way across estimators; as a rule, an increase
in these variables resulted in an increase in per cent bias and per cent
RMSE. The influence of K on per cent bias and per cent RMSE was
not always straightforward, but, overall, plus group selection was
more important in high K scenarios than it was in low K scenarios.
A surprising result that came out of the study was that sometimes
a high plus group provides good results for mortality estimation
(although length and age are poorly correlated for old ages).

No one estimator was uniformly superior. With high K, the
weighted regression performed as well or better than the
Chapman–Robson estimator for medium and high Z scenarios,
while the Chapman–Robson estimator performed better for low
Z scenarios. The opposite was true with low K: the Chapman–
Robson estimator performed better than the weighted regression
for medium and high Z scenarios, while weighted regression per-
formed better for low Z scenarios. Our recommendations concern-
ing the appropriate estimator and plus group to use are outlined in
Table 2. These points are important guidelines for reducing bias
induced by cohort slicing; however, the variables taken into consid-
eration in this study do not account for all possible sources of uncer-
tainty likely to affect the resulting Z estimate. As with any other
assessment tool, additional sources of uncertainty, such as the
quality of the length data and variations in the population dynamics
of the stock, are important factors to consider when providing
recommendations in the stock assessment process as these are
likely to exacerbate the biases observed in this simulation. That
being said, the parameters included in our simulation can act as
proxies for understanding the effect additional sources of uncer-
tainty would have on the results. If the concern is measurement or
recording error of body lengths, and if this error is assumed to be
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random with mean 0, then this source of error would be expected to
act like the length-at-age error included in our simulations.
Similarly, if the concern is that cohort-specific schooling behaviour
causes cohorts to be missed at random, then variation in recruit-
ment strength would have the same effect (i.e. strong and weak
cohorts in the catch-at-age sample).

We consider swordfish in the Mediterranean Sea as a case study.
Appropriate plus group selection was discussed in the latest stock
assessment (International Commission for the Conservation of

Atlantic Tunas, 2011). In 2007, a plus group of 10 was used for
cohort slicing, but, in the following assessment, the plus group
was reduced to five, with the working group stating that there was
not enough information available on the length distribution of
older ages to justify splitting the catch-at-size data into ages .5
(International Commission for the Conservation of Atlantic
Tunas, 2011). From Figure 1, patterned after swordfish, it likewise
seems unlikely that we would be able to estimate age composition
accurately for ages higher than 5. However, if our goal is to

Figure 5. Simulation results from the high growth rate scenario (K ¼ 0.4 year21). The left panel indicates per cent bias in the estimate of Z, and the
right panel indicates per cent RMSE in the estimate of Z. The black vertical lines present in the left and right panels indicate 0% bias and 0% RMSE,
respectively. The numbers and letters represent the first age in the plus group: 5, 5 years; 7, 7 years; 9, 9 years; A, 11 years; B, 13 years; and C, 15 years.
The grey numbers and letters are results from the Chapman–Robson estimator and the black numbers and letters are results from the weighted
regression estimator. Solid horizontal grey lines divide results from scenarios with high, medium, and low length-at-age error. Dotted horizontal grey
lines divide results from scenarios with high, medium, and low recruitment error.
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perform a catch curve analysis, our results show that the derived age
composition provides information on the mortality rate even if the
first age in the plus group is high (see the last line in Figure 4). In fact,
if we look at our results in the context of swordfish, which is charac-
terized by the parameters outined in Table 1, we notice that plus
group selection can matter. If the weighted regression method is
being used to estimate Z, then switching from a plus group starting
at 10 to a plus group starting at 5 would inflate the RMSE from 7 to
40%, or even higher if recruitment variability for the species is
higher than the case simulated here (Figure 4, last three lines pertain-
ing to weighted regression estimator). However, if the Chapman–
Robson method is being used, the practitioner has more flexibility
in defining the plus group since the estimator, under this set of par-
ameter values, shows little sensitivity to plus group selection
(Figure 4). Overall, the best estimate of Z is obtained by using the
weighted regression method with a plus group starting at 15
(Figure 4). Thus, proper care should be given in selecting
an appropriate estimator and plus group given the variables at
hand. The ICCAT working group performed both catch curve ana-
lysis and catch-at-age analysis (extended survivors analysis;
International Commission for the Conservation of Atlantic Tunas,
2011). Our results are pertinent to the former. In a larger context,
the choice of plus group is also influenced by the need to be able
to estimate spawning biomass; this is made more difficult if the
plus group contains immature fish. Also, it is advantageous to
define a plus group that is homogeneous with respect to exploitation
rate. It is thus fortunate that the simulations indicate there is some
flexibility in the choice of plus group definition.

Though it is clear that cohort slicing will give biased estimates of
age composition, it is not known how these biases will propagate
through the stock assessment process. There is a need to explore
the implications of such bias for management recommendations.
Kell and Kell (2011) pointed out that negatively biased estimates
of Z at younger ages from catch-at-age obtained from cohort
slicing resulted in an overestimation of biological reference points.
As our simulation results suggest, when Z is high, it is likely to be
underestimated regardless of the estimation technique used. This
is of particular concern for stocks with mortality rates approaching
the target identified by management bodies, because if the bias
causes Z to be below the identified target, it could give a false indi-
cation that the stock is healthy and could lead to total allowable
catches being set too high. If mortality is consistently being under-
estimated year after year, this could lead to long-term detrimental
effects for the stock in question, as was experienced with North
Atlantic groundfish stocks (Steele et al., 1992). Of less concern for

conservation would be if the opposite situation were to happen: Z
is low so using the weighted regression estimator leads to high
positive biases in Z estimates. This situation is less likely to be detri-
mental to the stock as it would lead scientists to take a more precau-
tionary approach than is necessary; but the result may be
detrimental to the fishery. It may cause confusion in the stock assess-
ment process as other variables may indicate that the stock is in fact
stable or rebuilding. The confusion could also create conflict among
stakeholders as inappropriate management decisions would be
reached for the stock and for neighbouring stocks if the stock was
part of a large-scale mixed stocks management complex (Tuckey
et al., 2007). Porch (2000) furthermore called attention to the fact
that since signs of changes in year-class strength or mortality rates
are made harder to discern through cohort slicing, it may lead scien-
tists into thinking a population is in fact stable, which is likely to
result in inappropriate management recommendations for the
stock (International Commission for the Conservation of Atlantic
Tunas, 2010; Kell and Kell, 2011).

Several important pelagic species, among them swordfish, are
managed based on the results from an age-structured model con-
ducted on age compositions derived from cohort slicing. It
becomes important to examine how errors propagate from cohort
slicing to catch-at-age analysis to revision of biological reference
points and quota setting, and how these errors are affected by the
choice of plus group. Such an evaluation can be accomplished by
simulating an “actual” population, drawing a set of samples to deter-
mine “perceived” stock status, calculating catch quotas based on the
assessment results, and the harvest control rule, then feeding the
harvest, recruitment, and other parameters back into the simulation
of the actual population to arrive at the next population state. This
process could, additionally, involve updating the biological refer-
ence points and harvest control rule based on the latest information.
The process is alternated between population updates and popula-
tion assessment to determine long-term behaviour of the assess-
ment and management procedure; the whole simulation is
repeated many times to characterize the variability arising from
random events (recruitment, sampling, etc.). Especially when the
perception of the stock dynamics does not match the actual stock
dynamics closely, it becomes necessary to simulate many possible
states of nature to ensure that the conclusions are generally applic-
able rather than dependent on the particular stock dynamics
chosen for the simulation. It may also be necessary to evaluate alter-
native harvest control rules if the status quo does not appear to
perform well, e.g. simulate control rules that reduce the target
exploitation rate.

Table 2. Summary table of recommendations on which estimator and plus group to use for estimating Z depending on the magnitude of K, Z,
and sl assumed for the population under study.

Low K High sl Medium sl Low sl

High Z CRa CRa CRa

Medium Z CR low plus group CRa CR high plus group
Low Z WR highest plus group WR highest plus group WR highest plus group
High K High sl Medium sl Low sl

High Z WR intermediate to low plus group WR intermediate to low plus group WR intermediate to low plus group
Medium Z WR intermediate plus group WR intermediate plus group WR intermediate plus group
Low Z CR lowest plus group CR intermediate to low plus group CR intermediate to low plus group

CR stands for Chapman–Robson and WR for weighted regression methods. Recruitment variability, sr, was not included in this summary table because
increasing sr was either not influential or exacerbated per cent bias and per cent RMSE in nearly all scenarios but did not change conclusions concerning the
best method and plus group to use in the estimation of Z.
aResults are not sensitive to the choice of plus group.
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Cohort slicing is a crude method for estimating age composition
and its performance can be good or bad, depending on circum-
stances. It remains useful in specific areas, especially stock assess-
ments in data-limited fisheries. It can also provide a test of the
reasonableness of results from other methods. However, because
its performance varies considerably from one situation to the
next, care must be taken in the use and interpretation of the
results from cohort slicing.
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