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Abstract

Dinophysis acuminata, a producer of toxins associated with diarrhetic shellfish poisoning (DSP) 

and/or pectenotoxins (PTXs), is a mixotrophic species that requires both ciliate prey and light for 

growth. Linkages have been described in the literature between natural abundances of the predator 

Dinophysis and its prey, Mesodinium rubrum, and culture experiments have demonstrated that 

prey, in addition to light, is required for toxin production by Dinophysis acuminata; together these 

suggest Mesodinium is a critical component for Dinophysis growth and toxicity. However, little is 

known about the role of dissolved inorganic nutrients on Mesodinium growth or that of toxin-

producing Dinophysis. Accordingly, a series of experiments were conducted to investigate the 

possible uptake of dissolved nitrate and phosphate by 1) Dinophysis starved of prey, 2) Dinophysis 
feeding on Mesodinium rubrum, and 3) M. rubrum grown in nutritionally-modified media. All 

single-clone or mixed cultures were monitored for dissolved and particulate nutrient levels over 

the growth cycle, as well as growth rate, biomass, and toxin production when appropriate. D. 
acuminata did not utilize dissolved nitrate or phosphate in the medium under any nutrient regime 

tested, i.e., nutrient-enriched and nutrient-reduced, in the absence or presence of prey, or during 

any growth phase monitored, i.e., exponential and plateau phases. Changes in particulate 

phosphorus and nitrogen in D. acuminata, were instead, strongly influenced by the consumption of 

M. rubrum prey, and these levels quickly stabilized once prey were no longer available. M. 
rubrum, on the other hand, rapidly assimilated dissolved nitrate and phosphate into its particulate 

nutrient fraction, with maximum uptake rates of 1.38 pmol N/cell/day and 1.63 pmol P/cell/day. 

While D. acuminata did not benefit directly from the dissolved nitrate and phosphate, its growth 

(0.37±0.01 day−1) and toxin production rates for okadaic acid (OA), dinophysistoxin-1 (DTX1) or 

pectenotoxin-2 (PTX2), 0.1, 0.9 and 2.6 pg /cell/day, respectively, were directly coupled to prey 

availability. These results suggest that while dissolved nitrate and phosphate do not have a direct 

effect on toxin production or retention by D. acuminata, these nutrient pools contribute to prey 

growth and biomass, thereby indirectly influencing D. acuminata blooms and overall toxin in the 

system.

Correspondence to: Mengmeng Tong.

HHS Public Access
Author manuscript
Aquat Microb Ecol. Author manuscript; available in PMC 2016 October 07.

Published in final edited form as:
Aquat Microb Ecol. 2015 ; 75(2): 169–185. doi:10.3354/ame01757.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Dinophysis acuminata; Mesodinium rubrum; Diarrhetic Shellfish Poisoning (DSP); okadaic acid 
(OA); dinophysistoxin (DTX); pectenotoxins (PTXs); dissolved inorganic nutrients; nitrate; 
phosphate

Introduction

Dinophysis acuminata Claparède & Lachmann, an obligate mixotrophic dinoflagellate, 

obtains energy for maintenance and growth through a combination of autotrophy and 

heterotrophy (Park et al., 2006; Kim et al., 2008; Riisgaard and Hansen, 2009). Mixotrophy 

is a common phenomenon in the euphotic zone of estuarine and oceanic waters, with 

mixotrophic species differing in feeding behavior, light requirements and the uptake of 

dissolved inorganic nutrients (Stoecker, 1999). As D. acuminata is a producer of okadaic 

acid (OA) and dinophysistoxins (DTXs) responsible for diarrhetic shellfish poisoning (DSP), 

in addition to pectenotoxins (PTXs), there is a history of attempted culturing experiments 

aimed at investigating the physiology and toxicity of the dinoflagellate; in these studies, 

experimental growth media were prepared with artificial or enriched natural seawater with 

additions of vitamins, glycolic acid (Sampayo, 1993), trace inorganic elements, dissolved 

organic materials, or food organisms (bacteria, pico- and nanoplankton, and yeast, Maestrini 

et al., 1995). Despite these additions, researchers were unable to establish viable cultures of 

Dinophysis, suggesting that Dinophysis spp. were unable to utilize these chemical forms in a 

manner sufficient to support cell division. Soon thereafter, it was discovered that Dinophysis 
acuminata could be maintained in the laboratory using a specific three-stage food chain: the 

cryptophyte Teleaulax amphioxeia is fed to the ciliate Mesodinium rubrum, which in turn, is 

fed to Dinophysis under sufficient light (Park et al., 2006). Subsequent laboratory studies 

determined that the mixotrophic D. acuminata required nutrients and chloroplasts from its 

prey to sustain photosynthesis (Park et al., 2006; Kim et al., 2008; Riisgaard and Hansen, 

2009).

Several Dinophysis species, along with a few Prorocentrum spp., are responsible for the 

diarrhetic shellfish poisoning (DSP) syndrome (Lee et al., 1989; Dickey et al., 1990). Now 

that multiple isolates of D. acuminata have been successfully maintained in culture, recent 

studies have found that both prey and light are required for cell growth and DSP toxin 

production and that toxin production is further dependent upon growth stage; highest 

production rates occurred during exponential growth and the highest toxin quotas were 

coincident with early-mid stationary phase (Tong et al., 2011; Smith et al., 2012). 

Conversely, production of pectenotoxin-2 does not appear to be directly linked to irradiance 

or prey consumption in D. acuminata (Nielsen et al., 2012). Kamiyama et al. (2010) found 

that the growth rate of D. acuminata from Japan increased with increasing temperature from 

10–22°C but that pectenotoxin-2 (PTX2) toxin cell quotas showed an inverse trend at these 

temperatures. No relationship was detected between temperature and okadaic acid (OA) or 

dinophysistoxin-1 (DTX1) cell quotas. Additionally, it has been determined that toxin 

profile and content can vary between isolates of D. acuminata (Blanco et al., 2007; 

Kamiyama and Suzuki, 2009; Kamiyama et al., 2010; Fux et al., 2011; Nielsen et al., 2012).
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Numerous field studies have demonstrated that Dinophysis spp. are adapted to a wide range 

of chemical, biological and physical conditions, making them geographically wide-spread, 

with toxic populations reported from western Europe, East and Southeast Asia, South 

America, North America, Central America, Southern Africa, New Zealand and Australia 

(Van Dolah, 2000; Reguera et al., 2012). Dinophysis spp. are tolerant of a large range of 

temperatures (5 – 22°C) and salinities (5 – 34.5‰) (Reguera et al., 1993; Nishihama et al., 
2000; Setälä et al., 2005; Lindahl et al., 2007). The vertical distribution of Dinophysis 
extends to as deep as 110 m (Fux et al., 2010) ranging from the surface to below the 

euphotic zone (Gisselson et al., 2002), suggesting that the genera are tolerant of high and 

low light conditions. Dinophysis growth is often associated with a stable water column 

(Maestrini, 1998; Seeyave et al., 2009; Reguera et al., 2012) and cells have often been 

shown to accumulate in thin layers or patches due to horizontal and vertical migration, 

transport driven by wind or currents (Mackenzie, 1991, 1992; Xie et al., 2007), or biological 

behavior to locate prey or avoid predators (Maestrini, 1998; Campbell et al., 2010; 

Gonzalez-Gil et al., 2010; Sjoqvist and Lindholm, 2011, Hattenrath-Lehmann et al., 2013). 

Populations have also been documented within systems containing a range of ambient 

dissolved nutrient levels: total dissolved nitrogen, 2 – 21 µM; silicate, 0 – 10 µM, and 

phosphate, 0 – 0.24 µM (Delmas et al., 1992; Maestrini, 1998). Seeyave et al., (2009) further 

determined that D. acuminata was most abundant under nitrogen-deplete conditions, 0.1 – 

0.5 µM NO3
−, along the western coast of South Africa, and displayed a greater affinity for 

NH4
+ and urea, relative to NO3

−, based on incubation uptake experiments with field 

material. Johansson et al. (1996) reported that limitation by dissolved nitrate may promote 

toxin production by D. acuminata and D. acuta in field incubations of natural populations in 

the absence of prey, and Nagai et al., (2011) found that the addition of dissolved organic 

substances (ciliate prey exudate) to culture medium enhanced toxin production. Despite this 

collection of investigations into Dinophysis ecology, no work has yet investigated the 

relationships between ambient nutrient concentrations, prey availability, D. acuminata 
abundance, and toxicity in one comprehensive study complicating efforts to understand this 

species’ distribution and potential for impact.

Similar to D. acuminata, M. rubrum is also a mixotroph that feeds on cryptophytes 

(Gustafson et al., 2000; Yih et al., 2004) and bacteria (Moeller et al., 2011) to acquire 

organelles or growth factors (Gustafson et al., 2000; Hansen and Fenchel, 2006; Johnson et 
al., 2007; Park et al., 2007) but relies primarily on phototrophy for growth. Moreover, M. 
rubrum was reported to assimilate nitrate, ammonium and dissolved organic nitrogen in the 

field (Wilkerson and Grunseich, 1990; Kifle and Purdie, 1993). However, no investigations 

have been conducted in the laboratory quantifying the uptake rate of dissolved nutrients by 

M. rubrum.

Thus, to better understand the nutritional ecology of D. acuminata, is it essential to 

understand the relationship between ambient dissolved inorganic nutrients, prey growth and 

dependence upon inorganic nutrients, and Dinophysis growth and toxicity. To address these 

questions, we quantified changes in particulate and dissolved nutrients over growth in batch 

cultures of D. acuminata, in the absence and presence of M. rubrum, and in batch cultures of 

M. rubrum alone under different nutrient regimes.
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Material and Methods

Culture maintenance

Dinophysis acuminata (DAMV01) was isolated from coastal waters near Martha’s Vineyard 

island (41.0° N, 70.5° W), Massachusetts, USA in August of 2008. The ciliate Mesodinium 
rubrum and cryptophyte Teleaulax amphioxeia were isolated from Inokushi Bay (131°89’ E, 

32°79’ N) in Oita Prefecture, Japan, in February of 2007 as described in Nishitani et al. 
(2008). All cultures were maintained in modified f/6 medium, which was prepared with 1/3 

nitrate, 1/3 phosphate, 1/3 metals, and 1/5 vitamins of modified f/2-Si medium whereby 

H2SeO3 was added and CuSO4 was reduced to concentration of 10−8 M each (Anderson et 
al., 1994). Cultures were maintained at 15°C with an irradiance of 65 µmol photons m−2 

sec−1 on a 14h light: 10h dark photocycle.

To maintain cultures of the ciliate, M. rubrum, the culture was transferred every two weeks, 

by mixing 70 mL of two-week old culture (~10,000 cells/mL) and 2 mL of T. amphioxeia 
(containing 1.2–1.6 × 106 cells), with 150 mL of modified f/6 medium. T. amphioxeia 
culture was maintained by inoculating 1 mL of the culture (6.0–8.0 × 105 cells/mL) into 25 

mL of modified f/6 medium. The Dinophysis cells were fed a “clean” (cryptophyte free) M. 
rubrum cell suspension every week and transferred every four weeks by adding 2 mL of M. 
rubrum (~10,000 cells mL−1) and 2 mL D. acuminata (~1,800 cells mL−1) to 20 mL of 

modified f/6 medium.

Experimental conditions

Here we investigated uptake of dissolved nitrate and phosphate by M. rubrum (without prey 

or predator) and Dinophysis (both in presence and absence of prey) and the effect on growth, 

toxin production, and particulate nutrient quotas. This was accomplished through a series of 

experiments growing monocultures of M. rubrum in nutrient-enriched medium, 

monocultures of D. acuminata in nutrient-enriched and nutrient-reduced medium, and mixed 

cultures of the ciliate and dinoflagellate in nutrient-enriched medium.

M. rubrum monoculture experiment—To examine nutrient uptake by M. rubrum in the 

absence of cryptophyte prey or dinoflagellate predators, a volume of the ciliate maintenance 

culture, 220 mL, was transferred into fresh f/6-Si medium, following complete consumption 

of the cryptophyte cells. The nutrient concentration of the experimental medium (fresh f/6-Si 

medium in sterile-filtered seawater + nutrient carry over from the M. rubrum inoculum) 

contained 200.80±0.59 µM nitrate and 13.32±0.02 µM phosphate (mean ± STD, n=3). The 

ciliate monoculture was monitored for growth rate, biomass, dissolved nitrate/nitrite and 

phosphate, and particulate nitrogen and phosphorus quotas over culture growth. The 

inclusion of ammonium, 2.08±0.31 µM, in the experimental culture medium was an artifact 

of the filtered seawater used to make the medium; however, we quantified this nutrient in the 

initial culture medium and monitored it over the experiment to observe any changes in this 

additional pool of available nitrogen; this holds true for all experiments presented herein. 

Concurrently, a second volume of M. rubrum culture, 220 mL, was inoculated with D. 
acuminata in fresh f/6-Si medium to begin the mixed culture experiment, i.e., feeding 

experiment, as described below.
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Mixed culture experiment—To quantify the utilization of dissolved nitrate and 

phosphate by Dinophysis during periods of rapid division (i.e., in the presence of prey), we 

conducted a time-course experiment using late plateau phase M. rubrum as prey, containing 

96.6±2.2 pmol/cell of carbon, 13.1±1.1 pmol/cell of nitrogen and 0.7±0.01pmol/cell of 

phosphorus (mean ± STD, n=3), in fresh nutritionally-modified f/6 medium. The final 

nutrient concentrations of the experimental medium for the mixed culture (fresh f/6-Si 

medium + nutrient carry over from the inoculum M.rubrum and D.acuminata cultures) were 

222.06±3.05 µM nitrate, 0.75±0.22 µM ammonium and 11.85±0.06 µM phosphate (mean ± 

STD, n=3). The mixed experimental cultures of D. acuminata and M. rubrum were 

maintained for 40 days, to include early exponential to late-plateau growth phases. Triplicate 

Fernbach flasks were inoculated with ca. 2,000 and 100 cells mL−1 of M. rubrum and D. 
acuminata (inoculated from early plateau phase), respectively, to achieve a total volume of 

1,400 mL. The mixed culture was monitored for growth rate of both organisms, biomass, 

dissolved nitrate/nitrite, ammonium, and phosphate, particulate nitrogen and phosphorus 

quotas over culture growth, and toxin production. In preliminary trials, we also conducted 

the feeding experiment under nutrient deplete conditions (filtered seawater); however, the 

culturing of M. rubrum and T. amphioxeia in seawater resulted in no growth and accelerated 

death (data not shown). Therefore, nutrient uptake of D. acuminata with sufficient prey was 

only possible in nutrient enriched medium.

D. acuminata monoculture experiment—To quantify the utilization of dissolved 

nitrate and phosphate by Dinophysis during periods when ciliate prey were not available, we 

monitored growth, the concentration of dissolved nitrate/nitrate, ammonium, and phosphate 

concentrations in the medium, particulate nitrogen and phosphorus quotas, and toxin 

production in the monoculture over time. The monoculture experiment was conducted in two 

types of nutritionally-modified medium: nutrient enriched (~f/8-Si medium) and nutrient 

reduced (~f/15-Si medium), to determine whether dissolved nitrate and phosphate influence 

the growth and toxin content of Dinophysis. Nutrient-enriched medium (including fresh f/6-

Si medium in sterile-filtered seawater + nutrient carry over from the M. rubrum inoculum) 

consisted of 1.70±0.35 µM ammonium, 198.73±2.22 µM nitrate and 10.01±0.45 µM 

phosphate (mean ± STD, n=3). The nutrient-reduced medium (including sterile-filtered 

seawater + nutrient carry over from the M. rubrum inoculum) had initial concentrations of 

1.65±0.24µM ammonium, 108.49±2.02µM nitrate, and 5.09±0.50µM phosphate (mean ± 

STD, n=3). More specifically, triplicate Fernbach flasks were inoculated with 800 mL of 

initial culture and 600 mL of either fresh f/2-Si medium or sterile-filtered seawater, 

depending on the treatment, to reach cell concentrations of 1,500 cells/mL of the 

dinoflagellate and the desired concentrations of dissolved nitrate and phosphate to begin the 

D. acuminata monoculture experiments.

Cell enumeration

Triplicate 1.5 mL subsamples were taken for M. rubrum and D. acuminata enumeration; 

subsampling occurred daily at the beginning of the experiments, every other day through the 

middle of the experiment, and once a week near the end of the incubation. Samples were 

fixed with a 0.2% v/v Acid Lugol’s (Tong et al., 2010) and enumerated in a Sedgewick-

Rafter chamber using a microscope at 100X total magnification.
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Nutrient sample collection and preparation

Culture was harvested for particulate and dissolved nutrient analyses from each replicate 

flask and processed separately during the experimental period. Initial particulate nutrient 

samples were also collected from the inoculum cultures of both M. rubrum and Dinophysis. 

For M. rubrum, samples for nutrient analysis were collected around 2PM daily the first 4 

days and every three days thereafter.

To ensure that the particulate nutrient analyses only reflected those nutrients accumulated by 

D. acuminata in the feeding experiment, the second time point, early plateau phase, was 

collected following the complete consumption of prey by D. acuminata on day 7. Starved 

Dinophysis samples were harvested every two days during the first week and then once a 

week for the remaining four weeks.

For nutrient analyses, 25 – 50 mL of culture, dependent upon the amount of biomass in the 

culture, was collected through pre-combusted GF/F filters (450°C for 4 hours, 0.8µm, 

25mm) for total particulate organic carbon/nitrogen analysis (CHN). Another 25 – 50 mL of 

culture was collected through membrane filters (PALL Supor R-800, 0.8µm, 25mm) for the 

determination of total particulate phosphorus. Filtrate from the CHN samples was collected 

for dissolved inorganic nutrient analysis (NO3
−/NO2

−, NH4
+ and PO4

3−). After collection, 

all filters were placed in a 60°C drying oven for 24 hours and then were stored at −20°C. 

The particulate phosphorus filters were hydrolyzed by adding 5 mL of 5% potassium 

persulfate and 10 mL of Milli-Q water and autoclaved (121°C) for 20 min. After 

hydrolization, all particulate phosphorous was converted to, and was measured as, dissolved 

orthophosphate (PO4
3−). Dissolved inorganic nutrient samples, which were stored frozen at 

−20°C until analysis, were analyzed on a Lachat QuickChem 8000 at Woods Hole 

Oceanographic Institution (Woods Hole, MA) using standard US EPA approved methods. 

For solid phase carbon and nitrogen determination, the particulate CHN samples were 

analyzed on a Flash EA1112 Carbon/Nitrogen Analyzer using a Dynamic Flash Combustion 

technique.

Toxin sample collection and preparation

Both Dinophysis cells and media samples in the mixed and monoculture treatments were 

analyzed for toxin at eight time points as described above for nutrient analysis. Cells (ca. 

180,000) were separated from medium using a 15-µm Nitex sieve. The cells and sieved 

filtrate were thereafter processed separately. The cells were rinsed with fresh seawater, kept 

wet on the sieve (to minimize cell breakage) and rinsed into a pre-weighed 15-mL centrifuge 

tube. Triplicate, 200-µL aliquots were pipetted from the mixed sample into separate micro-

centrifuge tubes containing 1.3 mL of filtered seawater and 3 µL Acid Lugol’s solution 

(0.2% v/v, Tong et al., 2010) to later determine the cell concentrations in the harvested cell 

concentrate. The 15-mL tube was reweighed to determine the volume of harvested 

Dinophysis cells (sample weight divided by the density of seawater, 1.03 g/mL) and frozen 

at −20 °C.

The toxin extraction process was described in Smith et al. (2012). In brief, the cell samples 

were thawed at room temperature, sonicated in a water bath (Fisher ultrasonic cleaner, 
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Model FS30H) for 15 min and well mixed by Vortex-Genie 2 mixer before being passed 

through a solid phase extraction filter (SPE). The filters (Oasis HLB 60 mg; Waters, Milford, 

MA) were conditioned with methanol (3 mL) and Milli-Q water (3 mL) and then loaded 

with the cell samples at a flow rate of 1 mL/min, washed with Milli-Q water (6 mL) and 

eluted with methanol (1 mL) into 1.5-mL high recovery LC vials. The extracts were stored at 

−20 °C until analysis. The filtrate was immediately loaded onto an Oasis HLB cartridge (60 

mg) after sieving, and eluted and stored the same way as the cell extracts. Eluates from the 

cell and filtrate samples were heated at 40 °C in a heating block, dried under a stream of N2, 

and re-suspended in 1 mL of methanol for toxin analysis.

Toxin analysis

Toxin analyses were performed on a Quattro Ultima triple quadrupole mass spectrometer 

(TQ) (Waters Micromass) coupled to an Agilent 1100 HPLC. Separation was achieved on a 

C8 Hypersil column (50 × 2.1 mm; 3.5 µm particle size) maintained at 20 °C. The flow rate 

was set at 0.25 mL min−1 and a volume of 10 µL was injected. Binary mobile phase was 

used, with phase A (100% aqueous) and phase B (95% aqueous LC-MS grade acetonitrile), 

both containing 2 mM ammonium formate and 50 mM formic acid. A gradient elution was 

employed, starting with 30% B, rising to 100% B over 9 min, held for 3 min, then decreased 

to 30% B in 0.1 min and held for 3 min to equilibrate at initial conditions before the next run 

started. The TQ was operated in multiple reaction monitoring (MRM) mode and the 

following transitions were monitored: OA, m/z 803.5>255.5 and 803.5>803.5; DTX1, m/z 

817.5>255.5 and 817.5>817.5 in negative ionization mode and PTX2, 876.5>213.0 in 

positive ionization mode. OA and DTX1, or PTX2 were quantified against 8 level 

calibration curves obtained with OA or PTX2 reference solutions (NRC- Canada), 

respectively.

Calculations

Growth and ingestion rate—The average growth rates of D. acuminata and the ciliate 

prey, M. rubrum, were calculated using the model by Guillard (1973):

(1)

In this equation, C1 and C2 are the concentrations of cells at time 1 and time 2 (cells/mL), 

respectively. t is the experimental time (day) and µ (day−1) is the growth rate. The growth 

rate was calculated over the culture’s exponential phase of growth.

The ingestion rate of D. acuminata, U (cells predator−1 d−1), was calculated using the 

formula developed by Jakobsen and Hansen, (1997):

(2)
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(3)

This assumes that the predator concentration y (D. acuminata) and prey x (M. rubra) have an 

exponential increase, with the growth rate constants µy and µx, respectively.

Nutrient concentration and uptake rate—The total particulate phosphorous and 

nitrogen content of D. acuminata and M. rubrum were presented in units of amount of 

nutrient (mol) per cell. Dissolved inorganic nutrients were reported as µM (µmol/L). 

Nutrient uptake rate θ (amount of nutrient mol/cell/day) was calculated using the formula:

(4)

where N1 and N2 are the dissolved inorganic contents of nutrient, i.e. nitrogen (NO3
−, NO2

− 

and NH4
+) and phosphate (PO4

3−), at time 1 and time 2 (µM), respectively. C̅ is the natural 

logarithm (ln) average of the D. acuminata cell concentration (Anderson et al., 1990):

(5)

Toxin content, concentration, and production rate—Intracellular (particulate) 

content or quotas of OA, DTX1, and PTX2 are presented as toxin per cell of Dinophysis, 

calculated by dividing the toxin concentration by the cell density at each time point of the 

incubation. Extracellular (dissolved) toxin concentrations and total toxin concentrations 

were presented as toxin per mL; the latter was calculated by adding the particulate and 

dissolved toxin concentrations together. The net toxin production rate Rtox (amount toxin/

cell/d) was determined using intracellular quotas with the equation (Anderson et al., 1990; 

Tong et al., 2011):

(6)

Statistical analysis—After the determination of normality, the effect of dissolved nitrate 

or phosphate concentrations on the growth rate, biomass, particulate nutrient quotas, toxin 

content, and total toxin concentration of Dinophysis was examined over time using two-way 

Repeated Measures ANOVA (Sigma Plot, version 12.5). Dissolved nitrate data for D. 
acuminata in the mixed culture were log-transformed prior to analysis. Dissolved 

ammonium was analyzed for changes over time using a one-way Repeated Measures 

ANOVA. All measurements were collected in triplicate and alpha was set at 0.05 for all 

analyses.
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Results

Nutrient uptake and growth of M. rubrum in monoculture

After complete consumption of its cryptophyte prey, M. rubrum was transferred into fresh 

medium where it grew continuously as a monoculture, but slowly, over the seven-day 

sampling period (Fig. 1a) with mean values (n=3) of 0.062 day−1 in the nutrient-enriched 

medium. When M. rubrum was grown in the absence of prey or predator, the ciliate took up 

dissolved nitrate and phosphate from the medium and assimilated them into particulate N 

and P (Fig. 1 b-g). The particulate nitrogen content (PN) and particulate phosphorous (PP) 

of M. rubrum was 13.1 pmol/cell (Fig. 1b) and 0.7 pmol/cell (Fig. 1c) respectively in the 

initial monoculture. Within one day of being inoculated into fresh medium, in the absence of 

food, there was a dramatic increase in both particulate N (28.8 pmol/cell) and P (3.7 pmol/

cell) within M. rubrum with a subsequent decrease in dissolved nitrate (Fig. 1d) and 

dissolved phosphate concentrations (Fig. 1e). The removal of nitrate from the medium (Fig. 

1d, 1f) was pronounced, with nitrate uptake rates of 1.38 pmol N/cell/day on Day 1. 

Mesodinium rubrum maintained a cell quota of about 27.8 pmol N/cell over the rest of the 

experimental period. There was also significant uptake of dissolved phosphate on Day 1, 

1.63 pmol P/cell/day by M. rubrum during the monoculture experiment. Cell P quotas of M. 
rubrum, however, rapidly declined with the exhaustion of the dissolved phosphate in the 

medium and subsequent cell division (Fig. 1c).

Utilization of nutrients by D. acuminata in the mixed culture

In mixed cultures, the mean exponential growth rate of D. acuminata was 0.37±0.01 day−1 

over the first 9 days after inoculation of predator and prey. This exponential growth 

continued for two days after ciliate prey were completely grazed from the cultures, Day 7 

(Fig.2a). Cultures continued to grow, but at a slower rate, 0.11±0.002 day−1, for the 

following 7 days, reaching a maximum cell concentration of 3,986 cells/mL. The average 

cell density of M. rubrum in the mixed culture upon inoculation was 2,296 cells/mL (Fig. 

2a).

D. acuminata directly acquired nitrogen and phosphorus through the consumption of ciliate 

prey (Fig. 2b and 2d). As such, nitrogen accumulation by D. acuminata significantly 

increased during the period of prey consumption, rising during early exponential growth 

from 12.4±2.7 in the initial inoculum culture, to 47.1±7.3 pmol/cell (Mean ± STD, n=3) on 

Day 7 when the ciliate prey was completely consumed in the mixed culture (Fig. 2a and 2b). 

Thereafter, cellular particulate nitrogen (PN) in Dinophysis decreased as the result of 

continued cell division and lack of food; Dinophysis particulate N fell to near-initial levels 

of 15.4 pmol/cell in the later stages of the experiment.

The particulate phosphorous (PP) content of D. acuminata did not change as dramatically as 

particulate N through the course of the experiment, with P quotas ranging from 1.6 – 2.4 

pmol/cell. Unlike the pattern observed with particulate N (Fig. 2b), the particulate 

phosphorus content of D. acuminata cells remained constant during exponential growth. 

After the consumption of prey, P quotas in D. acuminata then followed that of nitrogen and 

decreased as a result of continued cell division and lack of food (Fig. 2c).

Tong et al. Page 9

Aquat Microb Ecol. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Particulate carbon (PC) followed much the same pattern as particulate phosphorous in the 

first 26 days of the experiment with no significant change in cell quotas (average of 320.9 

pmol/cell, n= 18). At the end of the mixed culture experiment, however, PC in Dinophysis 
increased to 410.7 pmol/cell (mean value, n=3) on Day 33, and finally reached 536.4 pmol/

cell (mean value, n=3) on Day 40 (Fig. 2d).

Dissolved inorganic nitrogen (NO3
−/NO2

−, NH4+, Fig. 2e) concentrations in the mixed 

culture medium were constant during the exponential growth phase of Dinophysis. The 

concentration of dissolved phosphate, on the other hand, decreased in the medium while M. 
rubrum prey were present in the mixed culture and actively utilizing this dissolved nutrient, 

from day 0 (11.87±0.06 µM) to Day 7 (6.41±0.20 µM, Fig. 2f). Upon the removal of ciliate 

prey from the mixed culture on Day 7, concentrations of dissolved phosphate stabilized. 

Both dissolved nitrate and phosphate then remained constant until late plateau phase, when 

concentrations increased in the medium of the mixed culture.

By applying the measured nutrient uptake rates in M. rubrum monocultures to the mixed 

culture experiment, we were able to show that M. rubrum was solely responsible for the 

uptake of dissolved phosphate during co-incubation with D. acuminata (Table 1); dissolved 

nitrate concentrations in the medium did not change during co-incubation, however, we 

calculate that M. rubrum could have depleted the source by 6.9 µM in 7 days. Similarly, M. 
rubrum had the potential to decrease the dissolved phosphate pools in the mixed culture by 

6.5 µM in 7 days. As there was only an absolute decrease in dissolved phosphate of 5.5 ± 0.3 

µM from the medium during this period, we conclude that M. rubrum was solely responsible 

for the removal of dissolved inorganic phosphorus from the medium during the initial stage 

of the mixed culture treatment. A 7-day timeframe was chosen as this represents the period 

of co-incubation before M. rubrum was completed consumed by Dinophysis, and therefore, 

were able to impact the dissolved nutrient concentrations through uptake. This result 

supports the conclusion that the mixotrophic dinoflagellate, D. acuminata acquires both 

nitrogen and phosphorus from prey consumption, and not from the uptake of dissolved 

nitrate and phosphate in the culture media (Fig. 2f).

Utilization of dissolved nutrients by D. acuminata in monoculture

In the absence of prey, Dinophysis had minimal growth, 0.002 and 0.003 day−1, under both 

nutrient regimes, nutrient enriched and nutrient reduced, respectively (Fig. 3a).

Similar to the mixed culture experiment, monocultures of D. acuminata did not utilize 

dissolved nitrate or phosphate in the culture media: dissolved inorganic nitrogen (NO3
−/

NO2
−, NH4

+) and phosphate concentrations held constant through the duration of the 

experimental period (Fig. 3d and 3e). At the start of the monoculture experiment, i.e., the 

inoculation of well-fed D. acuminata into fresh nutrient-enriched and nutrient-reduced 

media, initial particulate nitrogen concentrations in Dinophysis were 24.2±3.1 and 23.4 ±1.2 

pmol/cell (Mean ± STD, n=12), respectively, and remained constant for at least 6 days. By 

day 12, particulate nitrogen significantly decreased to 8.1 ±1.9 and 14.9±5.6 pmol/cell 

(Mean ± STD, n=12) in the two treatments, respectively, and then again remained relatively 

constant for the remainder of plateau phase. An exception occurred on day 19, when 

particulate nitrogen decreased further to 6.8±4.6 and 7.4±2.1 pmol/cell (Mean ± STD, n=6) 
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(Fig. 3b), respectively. Particulate phosphorus, however, remained steady during the entire 

experimental period (Fig. 3c), with the average cellular levels of 2.08±0.29 and 1.98 ± 0.19 

pmol/cell (Mean ± STD, n=24) in the nutrient-enriched and nutrient-reduced treatments, 

respectively.

Toxin production

When incubated with prey, Dinophysis displayed similar patterns of OA, DTX1 and PTX2 

production, whereby cell quotas (pg/cell) remained low during exponential growth, and rose 

during early (PTX2) to mid-plateau phase (DSP toxins) (Fig. 4). Interestingly, OA and 

DTX1 toxin quotas continued an increasing trend over the remainder of plateau phase, while 

PTX2 cell quotas decreased as the culture aged. Maximum OA, DTX1, and PTX2 quotas 

were 0.59±0.03, 8.82±0.23 pg/cell, and 15.30±1.76 pg/cell, respectively (Fig. 4a, 4b, 4c). 

Dissolved OA and DTX1 accumulated in the medium over exponential and early plateau 

phase (Fig.4d, 4e), and then either continued to increase or plateaued as the culture aged. 

Concentrations of dissolved PTX2, instead, peaked at early to mid-plateau phase (Days 20–

30) and rapidly declined into late plateau phase (Days 30–40, Fig. 4f). For each toxin, 

production rates were greatest during exponential growth of D. acuminata (Fig. 4g, 4h, and 

4i). Maximum production rates were 0.065 pg OA/cell/day; 0.86 pg DTX1/cell/day; and 

2.61 pg PTX2/cell/day in the mixed culture experiment.

Patterns of toxin accumulation in the cells and medium varied between the mixed and 

monoculture experiments with Dinophysis; however, we observed no effect of nutrient 

regime on toxin production or exudation in the Dinophysis monoculture trials, suggesting 

prey availability was critical to toxin production, not the uptake of dissolved nutrients. 

Unlike in the mixed cultures, where toxin quotas and concentrations changed with growth 

phase, experiments consisting of monocultures of Dinophysis, with reduced growth rates and 

biomass, displayed only minimal changes in OA, DTX1 or PTX2 toxin quotas, 

concentrations, and total toxin over the experimental period. Cellular OA, DTX1, and PTX2 

levels were relatively constant over the starvation period, or plateau phase, with slight 

decreases in toxin contents on the last day of sampling (Fig. 5a, 5b, 5c). Concentrations of 

dissolved OA, DTX1, and PTX2 were similarly constant over time in the starvation 

treatments (Fig. 5d, 5e, 5f), and this lack of variation was reflected in similarly stable total 

toxin concentrations for each toxin quantified (Fig. 5g, 5h, 5i). The total OA, DTX1 and 

PTX2 concentrations at the end of incubation reached 140.9, 2,357 and 2,799 ng/mL, 

respectively. We were unable to detect a significant difference in any of the parameters 

tested (intracellular, extracellular and total OA, DTX1 or PTX2) between the nutrient-

enriched and nutrient-reduced treatments in the monocultures of Dinophysis, i.e., in the 

absence of prey.

No DSP toxins or PTXs were detected in M. rubrum cultures, confirming that toxins were 

indeed produced by D. acuminata and not prey.

Discussion

These experiments investigated the role of dissolved nitrate and phosphate in two 

mixotrophic organisms, Dinophysis acuminata and Mesodinium rubrum, in regards to 
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growth, particulate nutrient content, and toxin production under conditions of varying 

nutrient and prey availability. This was accomplished through a series of experiments 

growing monocultures of M. rubrum in nutrient-enriched medium, monocultures of D. 
acuminata in nutrient-enriched and nutrient-reduced medium, and mixed cultures of the 

ciliate and dinoflagellate in nutrient-enriched medium. The extensive and rapid decline in M. 
rubrum biomass that occurred within days upon inoculation of the ciliate into sterile-filtered 

seawater, prohibited us from including nutrient-reduced treatments of mixed culture or M. 
rubrum monoculture. Nonetheless, the collection of treatments and experiments conducted 

conclusively determined that M. rubrum utilized dissolved nitrate and phosphate in the 

medium immediately upon inoculation, whereas D. acuminata, alternatively, incorporated 

nitrogen and phosphorus through the ingestion of prey. We did not detect a direct effect of 

dissolved nitrate and phosphate on toxin production by D. acuminata.

Nutrient uptake by M. rubrum

M. rubrum, a planktonic ciliate, incorporates plastids (Johnson and Stoecker, 2005; Hansen 

and Fenchel, 2006; Johnson et al., 2007) and acquires additional growth factors by ingesting 

cryptophyte algae (Gustafson et al., 2000). This organism can also survive and grow for long 

periods at low irradiance without feeding (Johnson and Stoecker, 2005; Smith and Hansen, 

2007) although bacteria may potentially provide an important source of organic material 

under light-limited conditions (Moeller et al., 2011). Dissolved organic nitrogen (Wilkerson 

and Grunseich, 1990) as well as dissolved nitrate and phosphate (this study) can be utilized 

by M. rubrum for enhanced growth when plastids and other promotional factors were 

previously obtained from their cryptophyte prey, Teleaulax/Geminigera spp. Using isotope 

uptake experiments, 15N, with field material from the upper euphotic zone off the coast of 

Peru, Wilkerson and Grunseich (1990) measured average nitrate uptake rates by M. rubrum 
to be 2.08±1.42 µg/L/h under various irradiance conditions. In our laboratory study, not 

utilizing 15N, the nitrate uptake rate, 1.38 pmol N/cell/day, equates to 1.61 µg/L/h (when M. 
rubrum concentration was 2,000 cells/mL in the monoculture), falling within the range of 

the previous field-based study. Dissolved phosphate was removed from culture medium at a 

maximum rate of 1.63 pmol P/cell/day in the monoculture.

Under nutrient-enriched conditions, monocultures of M. rubrum achieved stabilized nitrogen 

and phosphorous quotas, 25–30 pmol N/cell and 3–4 pmol P/cell, respectively, within two 

days of inoculation into fresh medium (Fig. 1b and 1c). These values equate to an N:P ratio 

of 8–10 (Fig. 6a), suggesting that either a higher cell quota of phosphorous, or lower quota 

of nitrogen, is desired by this ciliate relative to other “Redfield ratio (16:1) species”. Another 

mixotrophic, dinoflagellate Gyrodinium galatheanum (Li et al., 2000) (Gymnodinium 
galatheanurn, Nielsen 1996) reportedly had similarly low N:P ratios, indicating that this 

species had a large storage capability for phosphorus. Our data suggest that M. rubrum may 

also be able to luxuriously utilize phosphorus (Fig. 1e, 2f), skewing its ratio below Redfield 

values (Fig. 6a), requiring its predator to then assimilate nitrogen at a greater rate to balance 

nutrient availability and support division.

In the monoculture, particulate carbon quotas in M. rubrum were constant as cell 

concentrations increased, suggesting that the ciliate was able to maintain internal carbon 
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levels during cell division in the absence of prey, i.e., M. rubrum can assimilate carbon by 

other methods such as by photosynthesis or the uptake of dissolved or particulate organic 

matter (Johnson and Stoecker, 2005; Smith and Hansen, 2007; Moeller et al., 2011). 

Previous studies have found that the ingestion of cryptophytes represents less than 5% of the 

required carbon requirements for M. rubrum growth and maintenance (Yih et al., 2004; 

Johnson and Stoecker, 2005), indicating that plastid transfer is the primary benefit of grazing 

by M. rubrum. As a result of this acquired photosynthetic capability, it requires prey only 

when ambient nutrients are not sufficient for autotrophic growth. This is characteristic of the 

organisms classified by the mixotrophy model IIIA (Stoecker, 1998).

Nutrient uptake by D. acuminata

Unlike M. rubrum which can utilize dissolved nitrate and phosphate, our results demonstrate 

that D. acuminata cannot directly assimilate these dissolved nutrients, and instead is a 

mixotrophic species that must continually acquire its nutrition and plastids from prey to 

grow photosynthetically (Park et al., 2006; Kim et al., 2008; Tong et al., 2010). Our 

calculations reveal that M. rubrum was solely responsible for the uptake of dissolved 

phosphate in the mixed experimental cultures with Dinophysis, as determined by comparing 

nutrient utilization by M. rubrum in the monoculture experiment (Table 1). Interestingly, 

there was no discernable decrease in dissolved nitrate or ammonium in the mixed culture 

when M. rubrum prey was present (Fig. 2e) even though M. rubrum rapidly removed 

dissolved nitrate from culture medium when grown as a monoculture (Fig, 1d). We do not 

have an explanation for why the ciliate would utilize dissolved nitrate in monoculture, but 

not in the presence of a predator, but suspect that the observed contradiction may be 

correlated to the recycling between pools of bioavailable nitrogen in the system. Isotope-

enrichment experiments could provide additional information regarding uptake rates and 

nutrient recycling in the medium, and should be considered as a future research direction.

Nitrogen content in Dinophysis rapidly increased with the consumption of prey, with no 

apparent increase in cellular phosphorus (Fig. 2b and 2c), suggesting a preferential 

assimilation of nitrogen by the dinoflagellate despite its phosphorus-rich ciliate prey (see 

above). After the removal of prey from the mixed culture, cellular nitrogen in D. acuminata 
rapidly declined as dinoflagellate cells continued to divide, albeit at a slower rate. This 

finding may help explain why Dinophysis in the mixed culture appeared to demonstrate 

“luxury” uptake of nitrogen, relative to phosphorus, bringing its N:P ratio temporarily above 

16:1 (Fig. 6b). In contrast, Dinophysis appeared to only assimilate enough phosphorus to 

hold internal quotas constant in dividing cells, as demonstrated in the strain’s inefficient 

uptake of particulate nutrients from prey (Table 2). Based on our calculations, D. acuminata 
only assimilated 65 and 25 % of the prey’s particulate N and P, respectively, into their own 

biomass. Gisselson et al. (2001) investigated intracellular nutrient variation in field isolates 

of Dinophysis norvegica, showing that N and P quotas were 11.7 – 24.3 pmol/cell and 1.1 

pmol/cell, respectively, with N:P ratios ranging from 6.26 – 36.3. In our study, D. acuminata 
possessed comparable quotas of cellular N and P (11.5 – 47.1 pmol N/cell, 1.6 – 2.4 pmol P/

cell) and a comparable range of N:P ratios (5.7 – 21.5). And in agreement with our findings, 

cellular P quotas in D. norvegica were stable over time (1.1 pmol/cell, see Table 1 in 
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Gisselson et al., 2001), suggesting that the phosphorus content of Dinophysis is far less 

variable than cellular N quotas.

At the end of the mixed culture experiment, i.e., during late plateau phase, cellular quotas of 

N, P, and C increased. This increase in nutrient concentrations is likely not solely a 

reflection of Dinophysis cell quotas, as these cells were transitioning from late plateau to 

decline, but instead, includes increased heterotrophic bacterial growth promoted by cell 

exudates and detrital matter in the aged, mixed batch culture that could contribute to our 

bulk measurements of particulate CNP, i.e., during filtration of culture (Nielsen et al. 2012; 

2013). The presence of heterotrophic bacteria in all of our non-axenic batch cultures likely 

contributed to the particulate and soluble N and P concentrations during late-plateau phase, 

resulting from the breakdown and remineralization of cell exudates and detrital matter. For 

example, the concentrations of dissolved nitrate and phosphate remained relatively constant 

in the mixed culture until late plateau phase, when they both increased (Fig. 2e and 2f) 

perhaps due to the biotransformation of organic exudates from Dinophysis and/or M. rubrum 
into NO3

−, NO2
−, NH4

+, and PO4
3− (Tezuka 1989; John and Flynn 1999; Collos et al., 

2004). In contrast to the mixed culture experiment, dissolved nitrate and phosphate did not 

increase in the aged Dinophysis monoculture, likely reflecting a lack of organic debris 

available for remineralization. Dinophysis biomass was significantly reduced in the 

monoculture relative to the mixed culture, and ciliate organic matter and cellular exudates 

were removed and/or significantly diluted upon inoculation into fresh nutrient-enriched and 

nutrient-reduced, leaving relatively little material for bacterial remineralization (Fig. 3d, 3e).

Seeyave et al. (2009) determined that D. acuminata had a higher affinity for ammonium and 

urea, relative to nitrate in a field incubation experiment using natural populations. The 

cultures used in our study were only exposed to very low background concentrations of 

ammonium, and as such, it is difficult to determine if they could indeed utilize this form of 

nitrogen. However, our data provide convincing evidence that dissolved nitrate and 

phosphate are not assimilated by D. acuminata when incubated in the presence or absence of 

its prey. Given this uncertainty, additional studies into Dinophysis nutritional ecology, with a 

focus on ammonium, urea and other forms of organic nitrogen, should be considered, 

especially in light of the findings of Nagai et al. (2011), who report on the utilization of 

filtered ciliate exudate by Dinophysis.

Toxin production by D. acuminata

Prey and light, and not dissolved nitrate and phosphate, are the direct drivers of growth and 

toxin production in this northwestern Atlantic strain of D. acuminata. An increase in the 

number of D. acuminata cells, in the presence of prey, led to elevated total toxin 

concentration (intra + extracellular toxins, ng/mL of culture, Fig. 5) of OA, DTX1 and 

PTX2. Simply put, more Dinophysis cells in the system resulted in more total toxin. In the 

absence of prey, Dinophysis growth rates slowed or ceased, and not surprisingly, no changes 

in intracellular or extracellular toxin were observed. Together, these results suggest that prey 

availability influenced the total amount of OA, DTX1, and PTX2. This finding is in 

agreement with previous reports on other species of Dinophysis in the field and in culture 

(Kim et al., 2008; Riisgaard and Hansen, 2009; Campbell et al., 2010; Gonzalez-Gil et al., 
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2010; Minnhagen et al., 2011; Sjoqvist and Lindholm, 2011; Hattenrath-Lehmann et al., 
2013), that reported maximum abundances of Dinophysis spp. occurring shortly after the 

peak and subsequent depletion of prey. With the use of an automated imaging sampler, 

Campbell et al. (2010) further linked prey and Dinophysis abundance to toxicity, and with 

the help of shellfish toxicity data (Deeds et al., 2010), documented the first Dinophysis-

related DSP closure in North America, Gulf of Mexico, TX, USA.

Dissolved nitrate and phosphate concentrations in the medium did not affect toxin profiles or 

quotas in D. acuminata or the exudation of toxins into the medium (Fig. 5). In agreement 

with previous findings (Fux et al., 2011), the toxin profile of the Martha’s Vineyard D. 
acuminata isolate, DAMV01, contained OA, DTX1, and PTX2 in all treatments (Figs. 4 and 

5). Toxin quotas of OA and DTX1 showed similar patterns over the growth of D. acuminata 
in the mixed culture, with the lowest toxin quotas occurring during early exponential phase 

and increasing by early to mid-plateau phase (Fig. 4a and 4b). Intracellular levels of PTX2 

peaked earlier and reached a maximum during late exponential phase to early plateau phase 

(Fig. 4c). This general pattern and dependency of toxin content upon growth stage has been 

documented previously for another northwestern Atlantic isolate of D. acuminata (Tong et 
al., 2011) and multiple studies have shown that during plateau phase, or bloom maintenance, 

the most toxic cells are found (Pizarro et al., 2009; Nagai et al., 2011). Toxin production 

rates of OA, DTX1 and PTX2 in the mixed culture were also in agreement with previous 

findings, with maximum rates occurring during exponential growth and quickly declining 

upon transition into plateau phase (Fig. 4g, 4h, and 4i). In the absence of prey, no difference 

was observed in cellular, dissolved or total OA, DTX1 or PTX2 values over time (Fig. 5). A 

new finding, however, was that significantly more OA and DTX1 was retained in the cell, 

possibly as a carbon resource, when cells were lacking food (80% of toxins were 

intracellular) versus when prey were available (27.2% – 49.9% OA; 31.5% – 64.2% DTX1). 

In agreement with Nielsen et al. (2012), intracellular PTX2 quotas were similar between the 

starved and food-sufficient Dinophysis cultures.

Dissolved DSP toxins consistently, but slowly, accumulated as the Dinophysis cultures aged 

(Fig. 4d, 4e, 5d, 5e); however, the cell concentration data do not support extensive cell death 

during plateau phase (Fig. 2a, Fig. 3a). As we have calculated previously (Smith et al., 
2012), concentrations of dissolved toxins can be overestimated during the late plateau phase 

due to artificial cell lysis during the harvesting of cells for toxin analyses, i.e., sieving, 

and/or during periods of rapid growth when smaller cells were not retained by the sieve. 

This error was minimal, i.e., did not lead to any significant changes over-time.

Toxin quotas and profiles produced by cultured Dinophysis spp. can vary greatly among 

isolates. In the present study, our isolate of D. acuminata from the northwestern Atlantic was 

characterized as having low levels of OA (0.18 – 0.58 pg/cell) and DTX1 (2.2 – 8.8 pg/cell), 

but moderate amounts of PTX2 (7.8 – 15.3 pg/cell). In contrast, D. acuminata isolated from 

Japan had high levels of OA (2.1 – 12.2 pg/cell) and PTX2 (14.7 – 107.1pg/cell), and low 

DTX1 content (0.2 – 4.8 pg/cell) (Kamiyama and Suzuki, 2009; Kamiyama et al., 2010; 

Nagai et al., 2011). An isolate from Denmark had a unique toxin profile, only producing 

PTX2, with toxin quotas ranging from 12.7 to 35.6 pg PTX2/cell (Nielsen et al. 2012). 

These isolates were grown under similar experimental conditions, e.g., temperature (14 – 
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18°C) and light intensity (65 – 100 µmol photons m–2 s–1), in the presence of Mesodinium 
spp. and sampled at similar growth stages, suggesting that toxin production and retention is 

controlled by intrinsic factors specific to a Dinophysis acuminata strain or a driver that has 

not yet been investigated (e.g., prey isolate or prey nutritional quality).

In summary, while D. acuminata did not utilize dissolved nitrate and phosphate in our study, 

these pools of inorganic nutrients supported M. rubrum growth and elevated biomass. 

Additionally, active toxin production by Dinophysis was only observed in the presence of 

ciliate prey. Together these data suggest that while dissolved nitrate and phosphate do not 

have a direct effect on toxin production or retention by D. acuminata, these nutrient pools 

may contribute to prey growth and biomass, thereby indirectly promoting D. acuminata 
blooms and overall toxin in the system. In light of recent work by Nagai et al. (2011) 

demonstrating a direct relationship between the uptake of organic substances by D. 
acuminata and increased toxin concentration, we conclude that prey abundance and 
dissolved inorganic and organic nutrients should be considered in monitoring or modeling D. 
acuminata bloom dynamics and toxicity.
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Fig 1. 
The monoculture growth response of Mesodinium rubrum in nutrient-enriched medium, 

expressed as (a) cell concentration, and the particulate and dissolved nutrient levels and 

uptake rates of M. rubrum: (b) particulate nitrogen and (c) particulate phosphorus; (d) 

dissolved concentrations of nitrate/nitrite and ammonium, and (e) phosphate in the medium 

(Mean ± STD, n=3); (f) uptake rates of nitrogen and (g) phosphorus by M. rubrum during 

the experimental growth period.
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Fig 2. 
The mixed culture growth response of D. acuminata and M. rubrum in nutrient-enriched 

medium, expressed as (a) cell concentrations, and the associated particulate and dissolved 

nutrient levels: (b) particulate nitrogen, (c) particulate phosphorus and (d) particulate carbon 

in D. acuminata; (e) dissolved concentrations of nitrate/nitrite and ammonium, and (f) 

phosphate in the medium (Mean ± STD, n=3). One way repeated measurement ANOVA was 

run for the statistical analysis of the particulate and dissolved inorganic nutrient levels (2b–f) 
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and significance is indicated with uncommon letters. No significance was detected in panel 

2c.
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Fig 3. 
The monoculture growth response of D. acuminata under two nutrient regimes (nutrient-

enriched medium and nutrient-reduced medium), expressed as (a) cell concentration, and the 

associated particulate and dissolved nutrient levels: (b) particulate nitrogen and (c) 

particulate phosphorus of D. acuminata; (d) dissolved concentrations of nitrate/nitrite and 

ammonium, and (e) phosphate in the medium (Mean ± STD, n=3). One way repeated 

measurement ANOVA was run for the statistical analysis of the particulate and dissolved 
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inorganic nutrient levels (3b–e) and significance is indicated with uncommon letters. No 

significance was detected in panels 3c, 3d and 3e.
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Fig 4. 
Intracellular (a, b, c) toxin quotas, (d, e, f) extracellular toxin concentrations in the medium, 

and (g, h, i) toxin production by D. acuminata in the mixed culture, i.e., in the presence of 

ciliate prey (Mean ± STD, n=3). Toxins quantified include okadaic acid (OA), 

dinophysistoxin-1 (DTX1), and pectenotoxin-2 (PTX2).
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Fig 5. 
Intracellular (a, b, c) toxin concentrations, (d, e, f) extracellular toxin concentrations in the 

medium, and (g, h, i) total toxin concentration (intra + extracellular) in the D. acuminata 
monoculture experiments, i.e., in the absence of ciliate prey. Monocultures were conducted 

under two nutrient regimes (nutrient-enriched medium and nutrient-reduced medium; Mean 

± STD, n=3). Toxins quantified include okadaic acid (OA), dinophysistoxin-1 (DTX1), and 

pectenotoxin-2 (PTX2).
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Fig 6. 
Nitrogen to phosphorus ratio (N:P) of (a) M. rubrum in monoculture (b) and D. acuminata in 

the mixed culture in nutrient-enriched medium (Mean ± STD, n=3). Arrows indicate the N:P 

Redfield ratio of 16:1.

Tong et al. Page 27

Aquat Microb Ecol. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 28

Ta
b

le
 1

Pr
ed

ic
te

d 
am

ou
nt

 o
f 

di
ss

ol
ve

d 
ni

tr
at

e 
(*

N
m

) 
an

d 
ph

os
ph

at
e 

(*
Pm

) 
th

at
 c

ou
ld

 b
e 

ut
ili

ze
d 

by
 M

. r
ub

ru
m

 d
ur

in
g 

th
e 

fi
rs

t s
ev

en
 d

ay
s 

of
 th

e 
m

ix
ed

 c
ul

tu
re

 

ex
pe

ri
m

en
t, 

ba
se

d 
up

on
 th

e 
M

. r
ub

ru
m

 m
on

oc
ul

tu
re

 e
xp

er
im

en
t.

D
ay

 1
D

ay
 2

D
ay

 3
D

ay
 5

D
ay

 7
To

ta
l

θN
(p

m
ol

/c
el

l/d
)

1.
38

1.
03

1.
06

0.
85

0.
38

θP
(p

m
ol

/c
el

l/d
)

1.
63

0.
80

0.
92

0.
45

0.
48

C
̅

(c
el

ls
/m

L
)

20
55

17
25

15
01

77
1

10
5

*N
m

(µ
M

)
2.

84
1.

78
1.

59
0.

66
0.

04
6.

91

*P
m

(µ
M

)
3.

35
1.

38
1.

38
0.

35
0.

05
6.

51

θN
: o

bs
er

ve
d 

ni
tr

og
en

 u
pt

ak
e 

ra
te

 o
f 

M
. r

ub
ru

m
 in

 m
on

oc
ul

tu
re

θP
: o

bs
er

ve
d 

ph
os

ph
or

us
 u

pt
ak

e 
ra

te
 o

f 
M

. r
ub

ru
m

 in
 m

on
oc

ul
tu

re

C
̅ : n

at
ur

al
 lo

ga
ri

th
m

 (
ln

) 
av

er
ag

e 
of

 th
e 

ob
se

rv
ed

 M
. r

ub
ru

m
 c

el
l c

on
ce

nt
ra

tio
n 

in
 th

e 
m

ix
ed

 c
ul

tu
re

 a
s 

th
ey

 a
re

 c
on

su
m

ed
 b

y 
D

. a
cu

m
in

at
e

Aquat Microb Ecol. Author manuscript; available in PMC 2016 October 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 29

Ta
b

le
 2

In
ge

st
io

n 
ra

te
, c

al
cu

la
te

d 
an

d 
ob

se
rv

ed
 n

ut
ri

en
t u

pt
ak

e,
 a

nd
 f

ee
di

ng
 e

ff
ic

ie
nc

y 
of

 D
in

op
hy

si
s 

du
ri

ng
 th

e 
7-

da
y 

fe
ed

in
g 

pe
ri

od
 o

f 
th

e 
m

ix
ed

 c
ul

tu
re

 

ex
pe

ri
m

en
t.

A
ve

ra
ge

 D
in

op
hy

si
s 

pr
ey

in
ge

st
io

n 
du

ri
ng

 t
he

 7
-d

ay
fe

ed
in

g 
pe

ri
od

(M
es

od
in

iu
m

/D
in

op
hy

si
s)

A
ve

ra
ge

 c
el

lu
la

r
nu

tr
ie

nt
 c

on
te

nt
 o

f
M

es
od

in
iu

m
(p

m
ol

/M
es

od
in

iu
m

)

C
al

cu
la

te
d 

nu
tr

ie
nt

up
ta

ke
 b

y 
D

in
op

hy
si

s
as

su
m

in
g 

10
0%

fe
ed

in
g 

ef
fi

ci
en

cy
(p

m
ol

/D
in

op
hy

si
s)

*

O
bs

er
ve

d 
nu

tr
ie

nt
co

nt
en

t 
of

D
in

op
hy

si
s 

be
fo

re
fe

ed
in

g
(p

m
ol

/D
in

op
hy

si
s)

O
bs

er
ve

d 
nu

tr
ie

nt
co

nt
en

t 
of

D
in

op
hy

si
s 

af
te

r
fe

ed
in

g
(p

m
ol

/D
in

op
hy

si
s)

O
bs

er
ve

d 
nu

tr
ie

nt
up

ta
ke

 b
y

D
in

op
hy

si
s 

du
ri

ng
th

e 
7-

da
y 

fe
ed

in
g

pe
ri

od
**

(p
m

ol
/D

in
op

hy
si

s)

F
ee

di
ng

ef
fi

ci
en

cy
**

*

N
itr

og
en

6.
72

26
.2

4
17

6.
33

12
.4

47
.1

11
5.

35
65

.4
2%

Ph
os

ph
or

us
2.

93
19

.6
9

2.
17

2.
19

4.
94

25
.0

9%

* C
al

cu
la

te
d 

nu
tr

ie
nt

 u
pt

ak
e 

of
 D

in
op

hy
si

s 
as

su
m

in
g 

th
at

 n
ut

ri
en

t a
ss

im
ila

tio
n 

fr
om

 p
re

y 
to

 p
re

da
to

r 
is

 1
00

%
 =

 a
ve

ra
ge

 D
in

op
hy

si
s 

pr
ey

 c
el

l d
ur

in
g 

th
e 

7-
da

y 
fe

ed
in

g 
pe

ri
od

 m
ul

tip
lie

d 
by

 th
e 

av
er

ag
e 

ce
llu

la
r 

nu
tr

ie
nt

 c
on

te
nt

s 
of

 p
re

y.

**
O

bs
er

ve
d 

as
si

m
ila

tio
n 

of
 p

ar
tic

ul
at

e 
nu

tr
ie

nt
s 

by
 D

in
op

hy
si

s 
=

 (
O

bs
er

ve
d 

nu
tr

ie
nt

 c
on

te
nt

 o
f 

D
in

op
hy

si
s 

af
te

r 
fe

ed
in

g 
m

ul
tip

lie
d 

by
 th

e 
nu

m
be

r 
of

 D
in

op
hy

si
s 

af
te

r 
fe

ed
in

g 
- 

O
bs

er
ve

d 
nu

tr
ie

nt
 c

on
te

nt
 o

f 
D

in
op

hy
si

s 
be

fo
re

 f
ee

di
ng

 m
ul

tip
lie

d 
by

 th
e 

nu
m

be
r 

of
 D

in
op

hy
si

s 
be

fo
re

 f
ee

di
ng

) 
di

vi
de

d 
by

 th
e 

av
er

ag
e 

nu
m

be
r 

of
 D

in
op

hy
si

s 
du

ri
ng

 th
e 

7 
da

y 
fe

ed
in

g 
pe

ri
od

.

**
* Fe

ed
in

g 
ef

fi
ci

en
cy

 =
 O

bs
er

ve
d 

nu
tr

ie
nt

 u
pt

ak
e 

di
vi

de
d 

by
 th

e 
ca

lc
ul

at
ed

 n
ut

ri
en

t u
pt

ak
e 

as
su

m
in

g 
th

at
 n

ut
ri

en
t a

ss
im

ila
tio

n 
fr

om
 p

re
y 

to
 p

re
da

to
r 

w
as

 1
00

%

Aquat Microb Ecol. Author manuscript; available in PMC 2016 October 07.


	Role of dissolved nitrate and phosphate in isolates of Mesodinium rubrum and toxin-producing Dinophysis acuminata
	Recommended Citation

	Abstract
	Introduction
	Material and Methods
	Culture maintenance
	Experimental conditions
	M. rubrum monoculture experiment
	Mixed culture experiment
	D. acuminata monoculture experiment

	Cell enumeration
	Nutrient sample collection and preparation
	Toxin sample collection and preparation
	Toxin analysis
	Calculations
	Growth and ingestion rate
	Nutrient concentration and uptake rate
	Toxin content, concentration, and production rate
	Statistical analysis


	Results
	Nutrient uptake and growth of M. rubrum in monoculture
	Utilization of nutrients by D. acuminata in the mixed culture
	Utilization of dissolved nutrients by D. acuminata in monoculture
	Toxin production

	Discussion
	Nutrient uptake by M. rubrum
	Nutrient uptake by D. acuminata
	Toxin production by D. acuminata

	References
	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Table 1
	Table 2

