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FORUM
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Summary

1. Mapping diversity indices, that is estimating values in all locations of a given area from some sampled loca-

tions, is central to numerous research and applied fields in ecology.

2. Two approaches are used to map diversity indices without including abiotic or biotic variables: (i) the indirect

approach, which consists in estimating each individual species distribution over the area, then stacking the distri-

butions of all species to estimate and map a posteriori the diversity index, (ii) the direct approach, which relies on

computing a diversity index in each sampled locations and then to interpolate these values to all locations of the

studied area formapping.

3. For both approaches, we document drawbacks from theoretical and practical viewpoints and argue

about the need for adequate interpolation methods. First, we point out that the indirect approach is prob-

lematic because of the high proportion of rare species in natural communities. This leads to zero-inflated

distributions, which cannot be interpolated using standard statistical approaches. Secondly, the direct

approach is inaccurate because diversity indices are not spatially additive, that is the diversity of a studied

area (e.g. region) is not the sum of the local diversities. Therefore, the arithmetic variance and some of its

derivatives, such as the variogram, are not appropriate to ecologically measure variation in diversity indi-

ces. For the direct approach, we propose to consider the b-diversity, which quantifies diversity variations

between locations, by the mean of a b-gram within the interpolation procedure. We applied this method,

as well as the traditional interpolation methods for comparison purposes on different faunistic and floristic

data sets collected from scientific surveys. We considered two common diversity indices, the species rich-

ness and the Rao’s quadratic entropy, knowing that the above issues are true for complementary species

diversity indices as well as those dealing with other biodiversity levels such as genetic diversity.

4. We conclude that none of the approaches provided an accurate mapping of diversity indices and that further

methodological developments are still needed.We finally discuss lines of research that may resolve this key issue,

dealingwith conditional simulations andmodels taking into account biotic and abiotic explanatory variables.

Key-words: interpolation methods, map, quadratic entropy, spatial statistics, species diversity,

species richness, b-diversity

Introduction

Given the increasing rate of change in biological diversity,

mediated by ever increasing direct human pressures and global

environmental change, species diversity is of major interest

both in theoretical and applied studies (Lavergne et al. 2010;

Sterling, Gomez & Porzecanski 2010; Dawson et al. 2011;

Thuiller et al. 2011; Cardinale et al. 2012). In this context,

accurate mapping of diversity indices is a key tool to study

spatio-temporal variations in natural communities, to identify

priority areas of protection and to support effective conserva-

tion planning (Devictor et al. 2010; Merckx et al. 2010; Thuil-

ler et al. 2011, Stuart-Smith et al. 2013).

Mapping a diversity index consists in estimating values of

the index at all locations of a given area in which only some

locations have been sampled. Ecologists used two main

approaches for spatial interpolation of diversity index and its

mapping without including abiotic or biotic variables: the indi-

rect and direct approaches. However, both approaches have

some drawbacks from theoretical and practical viewpoints.

The indirect approach, called ‘predict first, assemble later’

(Ferrier &Guisan 2006), consists in layering presence or abun-

dance of each individual species (which have been modelled)

and then computing a posteriori a diversity index by combining*Correspondence author. E-mail: granger.vica@gmail.com
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all layers. However, the scarcity of many species in natural

communities leads to a high proportion of zero-inflated distri-

butions, which can hardly be interpolated using standard

interpolation techniques, such as kriging (Heilbron 1994;

Morfin et al. 2012) and more generally, all regression tech-

niques. This clearly makes the indirect approach difficult to

apply in practice.

The direct approach, called ‘assemble first and predict later’

(Ferrier, Watson & Pearce 2002; Ferrier &Guisan 2006; Mok-

any et al. 2011), consists in computing directly a diversity index

at sampled locations and then in interpolating those values at

unsampled locations in each grid point of the studied area.

Although scientific literature provides a plethora of interpola-

tion techniques (e.g. James&McCulloch 1990), their use needs

particular cautious when dealing with diversity indices. Unlike

other quantitative variables, diversity indices are not spatially

additive, that is the diversity of a studied area (e.g. region) is

not the sumof the local diversities. Note that, even though they

are connected, the (spatial) additivity to which we refer here is

not the additive partitioning of regional c-diversity into the

mean local a-diversities and b-diversity as described by Lande

(1996). Additivity of indices has been discussed from a theoret-

ical point of view (Keylock 2005; Hoffmann 2006), but consid-

ering this property in a mapping context is lacking. For

instance, let us consider the species richness at two locations A

and B being equal to 5 and 2, respectively, while 2 species are

shared between the two locations. If the species richness would

be additive, its value for the pooled area of locations A and B

would be equal to 7 (Carrasco et al. 2008). However, since

these two locations have two species in common, the actual

species richness is equal to 5. This simplistic example shows

that the species richness of an area that includes several loca-

tions is different than the sum of the species richness in all loca-

tions if some locations share similar species. This index would

be additive only if all the locations have no species in common

(e.g. Keylock 2005; Hoffmann 2006), which is a very restrictive

situation in natural communities. This problem is thus related

to the similarity in species composition between locations, that

is b-diversity (Magurran 2004; Anderson et al. 2011; Pavoine

2012).

Spatial additivity is particularly critical for interpolation

techniques (and thusmapping), as they rely on linear combina-

tions of values of diversity indices (Michalakopoulos & Pana-

giotou 1997; Rivoirard et al. 2000). When applied on additive

variables, such as absolute abundance, traditional spatial inter-

polationmethods (such as kriging, distance weighting) are con-

sistent with the fact that the index value of an area composed

of several pooled locations is equal to the mean value of the

index in these locations. Thus, considering arithmetic mean of

interpolated diversity indices would be accurate only if the

index is spatially additive, regardless of the interpolation

method being applied. To circumvent this problem, we pro-

posed, in the frame of the direct approach, to combine geosta-

tistical techniques and b-diversity concept to interpolate local

a-diversity indices over a given area (Couteron & Pelissier

2004). This goal is not to estimate the ‘total species richness of

an area’ (c-diversity, e.g. Ugland et al. 2003).

Note that the lack of spatial additivity does not only affect

the number of species, but also the relative abundance (propor-

tion) that are used in other facets of species diversity. Appendix

S1 summarizes results of a simple test of additivity conducted

on other complementary widely used diversity indices.None of

them strictly respect this property. Therefore, we applied the

direct and the indirect approaches using two common diversity

indices (the species richness and the Rao’s quadratic entropy)

and four data sets of different faunistic and floristic groups col-

lected from scientific surveys. We finally discuss lines of

research thatmay resolve the problems raised.

Materials andmethods

DATA

We considered four different data sets.

• The first data set reports demersal fish abundance in the Gulf of

Lions (France) located in north-western Mediterranean Sea (3°W to

5�2°E; 42�5–43�8°N). The 66 scientific bottom trawls analysed have

been carried out in 2012, in the frame of the international MEDITS

program (Bertrand et al. 2002). A total of 186 species properly sampled

by the fishing gear were considered during this program (Gaertner

et al. 2010, 2013). Abundance was standardized to 1 km2, for each spe-

cies caught (Morfin et al. 2012;Gaertner et al. 2013).

• The second one reports woody plant species abundance in the cen-

tral Western Ghats region, Karnataka, India (74�25°–75�5° E; 15�25°–
13�5° N) in a network of 96 sampling sites. These data provide abun-

dance on 334 tree species collected in 96 sampling sites during 1996–

1997 (merged for this study) (Ramesh et al. 2010).

• The third data set reports butterfly diversity and abundance in Boul-

der County Open Space, Colorado, USA (105�1°–105�3° W; 39�9°–
40�1°N) collected over 66 sites in the years 1999 and 2000 (merged for

this study). The data contain butterfly species diversity and individual

species’ abundance of 58 species from five butterfly families (Oliver,

Prudic &Collinge 2006).

• The fourth data set consists of vascular plant and bryophyte spe-

cies composition and plant and soil biogeochemical data in Great

Britain (6�3° W to 1�25° E; 50�5°N to 60�2°N) collected over 56 acid

grasslands in 2002. These data provide abundance on 391 vascular

species plants (Stevens et al. 2011).

DIVERSITY INDICES

Generally, more than one index is necessary to describe species diver-

sity (Pavoine & Bonsall 2011). Different indices indeed allow to quan-

tify different facets, mainly species number, evenness, or more complex

variations considering taxonomic, phylogenetic and/or functional dif-

ferences between species (Devictor et al. 2010; Meynard et al. 2011;

Pavoine 2012; Stuart-Smith et al. 2013).Here, we considered twodiver-

sity indices widely used in ecology of communities and in diversitymap-

ping studies (e.g. Devictor et al. 2010; Stuart-Smith et al. 2013),

knowing that the spatial additivity issue is true for other indices as well

as those dealing with other biodiversity levels, such as genetic diversity

(see end of the Introduction section and Appendix S1). First, we com-

puted species richness, the most intuitive and popular index in both

marine and terrestrial diversity studies. This index was applied on all

four above data sets.

The second application dealt with Rao’s quadratic entropy index

(Rao 1982), which gained popularity because of its mathematical

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 688–696
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proprieties and its wide range of applications (Pavoine 2012). This

index is defined as:

Q ¼
XS

i¼1

XS

j¼1

pipjdij

where pi and pj are the relative abundance of the ith and jth species, dij
the difference (e.g. taxonomic, phylogenetic or functional dissimilar-

ity/distance) between two species i and j stored in a distance matrix. In

our study, distances between species were constructed using the Lin-

naean taxonomic classification. The distance between two species

from the same genus was set to 1, two species from the same family

but different genus was 2, and so on. We considered a taxonomy

including five levels (species, genus, family, order and class). Taxo-

nomic distances were normalized between 0 and 1, providing an

index’s range between these values. This index was applied only on

the first data set of demersal fish abundance in the Gulf of Lions (data

set A), due to availability of taxonomic data to compute quadratic

entropy.

STATIST ICAL ANALYSIS

The direct approach

The direct approach aims thus at modelling directly the diversity

indices. In other words, the local a-diversity values at all locations

of an area are mapped through an explicit spatial linear interpola-

tion method. Spatial autocorrelation of the index (the statistical

relationship among points) is the main element for producing

maps in geostatistical interpolation by a self-sufficient method

(without explanatory variables). Among spatial interpolation

methods, kriging is the best linear estimator (Matheron 1963), that

is the one of minimum variance. It is based on the spatial structure

of the a-diversity which is quantified by the empirical semivario-

gram (i.e. computed on sampled data, Matheron 1963; Wagner

2003):

VðhÞ ¼ 1

2jNðhÞj
X

NðhÞðaSi
� aSj

Þ2 eqn 1

where N(h) is the number of pairs of locations separated by a distance

h, aSi and aSj are the values of the a-diversity in locations i and j. Then,

a theoretical variogram (e.g. linear, spherical or Gaussian variogram

model) fitting the empirical variogram is used as the interpolation

function, that is to estimate values between locations (Matheron 1963;

Wagner 2003).

However, the variogram, that is arithmetic spatial variance of

index value between locations (a-diversity), does not quantify eco-

logically diversity variations (see example described in the intro-

duction). Thus, replacing it by a b-diversity (i.e. an adequate

measure of species replacement among locations) should ensure a

more accurate quantification of diversity variation among loca-

tions. We thus propose an alternative methodological framework

for interpolating diversity indices, called b-kriging. It consists in

replacing the weighting function usually expressed as the spatial

variance above (i.e. theoretical variogram) by a spatial b-diversity
model fitting the empirical b-diversity model previously proposed

(Couteron & Pelissier 2004). We call it b-gram, which is defined

as:

bðhÞ ¼ 1

jNðhÞj
X

NðhÞ bðSi � SjÞ eqn 2

Equation 2 can be viewed as an empirical variogram, but represent-

ing the average pairwise diversity variation between locations separated

by a distance h, with b(si–sj) being the variation (b-diversity) between
each pair of locations (Appendix S2 provides details on the b-kriging
procedure). Independently of the index used to measure the diversity,

c-diversity (here considered as the total diversity of two locations) can

be partitioned into local a-diversity (i.e. mean of diversity of the two

locations) and b-diversity reflecting the variation in diversity between

the two locations (Magurran 2004; Anderson et al. 2011). Two parti-

tions are commonly considered to compute b-diversity: the additive

(Lande 1996) and the multiplicative partitioning (Whittaker 1972)

(Appendix S3). The advantage of such partitioning is that they can be

applied to a wide range of indices. Because both led to the same results

for the direct/indirect approach, we focused on the additive partitioning

where c ¼ �aþ b (Lande 1996, for the related results see Appendix S3

formore details).

We applied kriging and b-kriging methods on species richness and

Rao’s quadratic entropy indices.

The indirect approach

This approach consists in modelling each species distribution and then

computing a posteriori a diversity index by combining all species distri-

butions of the community. We interpolated species distributions by

inverse distance weighting. Estimates were obtained as a weighted aver-

age of the density values from the neighbouring values, their contribu-

tion being weighted as an inverse function of the distance to the kernel.

We applied inverse distance weighting which allowed modelling distri-

bution of all species in Mediterranean fish data set without modelling

their spatial autocorrelation, in contrast to kriging. We thus made the

assumption of a unique weighting function for all species distributions

(including the rare ones).

Methods performance

The performance of each interpolation technique, in terms of the accu-

racy in estimating diversity index value, was assessed by comparing the

deviations of estimates from the observed data through the use of the

leave-one-out cross-validation (Stone 1974). In such procedure, a given

sampled location is deleted from the data set and is estimated by per-

forming the method, using the remaining locations. The operation is

then repeated for all sampled locations. The estimated values are finally

compared to the observed field values by mean of scatter plots, devia-

tions from the first bisector (i.e. y = x, the case where observed and pre-

dicted values are equal), slopes of the linear regression and coefficients

of determinationR2.

Results

THE DIRECT APPROACH

Patterns between b-grams and variograms computed for the

direct approach based on species richness on the four data sets

were different (Fig. 1). Species replacement (i.e. b-diversity)
was relatively high at even very short distances (strong nugget

effects in the b-grams), while species richness was less con-

trasted at the same scale (see variograms in Fig. 1). The results

of the leave-one-out cross-validation procedure are presented

in Fig. 2. For all data sets, regression slopes between observed

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 688–696
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Fig. 1. Spatial structure of species richness measured by variogram and b-gram, for each data set. Y-axis: green continuous curves represent the

empirical variogram and the empirical b-diversitymodel computed from the additive partitioning for each pair of locations. The red dotted lines rep-

resent the theoretical continuous model (spherical or linear) fitted to the empirical variogram or b-gram. X-axis: distance between locations in

degree.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 688–696
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and estimated values ranged between 0�89 and 1�05 for kriging,
between 1�13 and 1�65 for b-kriging according to the data set

considered. R² values remained rather low (0�22 < R² < 0�41)
for both procedures. The scatter plots of observed values ver-

sus predicted values were highly dispersed around the first

bisector, showing that both classical kriging and b-kriging had
poor prediction performances. The range of estimated values

by b-kriging was different, and generally more restricted, than

by classical kriging. For instance about the Forest India data

set, while observed values ranged between 1 and 59 species, the

estimated values by kriging ranged between 17�32 and 43�88
species and between 7�75 and 34�41 species by b-kriging.

The differences in estimated values between classical kriging

and b-kriging directly came from the differences between

the theoretical b-gram and variogram (red dotted lines in

Fig. 1).

For Rao’s quadratic entropy, the direct approach was

applied only to theMediterranean fish data, due to availability

of species taxonomic differences data (see materials and meth-

ods section). The variogram and b-gram were also different

(see Fig. S2.1 in Appendix S2). Both interpolation methods

provided again poor prediction performances (Fig. 3a).

Regression lines for both kriging and b-kriging procedures pre-
sented a slope inferior to 1 (0�77 for kriging and 0�6 for b-kri-

Mediterranean fish Forest India

Butterfly USA Grassland GB
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Fig. 2. Results of leave-one-out cross-validation procedure for species richness. Procedure used to assess predictive performance of the direct

approach by classical kriging (in blue) and additive b-kriging (in red) for species richness. Species richness computed on four data sets of different fau-

nistic/floristic groups. The grey line represents the first bisector (i.e. y = x), the case where observed and predicted index values are equal.
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ging), and both intercepts for both regressions were equal to

0�13 and 0�24, respectively, again far from the first bisector.

Furthermore,R2 values were very low, that is equal to 0�15 and
0�08 for kriging and b-kriging scatterplots, respectively. The

estimated values ranged between 0�36 and 0�72 for b-kriging
and between 0�39 and 0�71 for classical kriging, while the

observed values were much wider, that is between 0�03 and

0�75 (Fig. 3a).

THE INDIRECT APPROACH

For Rao’s quadratic entropy, the indirect approach was

applied only to Mediterranean fish data set (see above). The

results are presented in Fig. 3b. The linear regression between

predicted and estimated Rao’s quadratic entropy by indirect

approach presented a slope of 0�6, and the same range of

regression values that those obtained by direct approach

(Fig. 2b). The intercept for the regression was equal to 0�21.
Furthermore, R2 value was equal to 0�04. The distribution of

observed quadratic entropy values ranged from 0�03 to 0�75,
while the predicted values only ranged between 0�5 and 0�72. In
addition, there is a bias close to 10%of the observedmean.

Discussion

In this study, we emphasized that interpolating and mapping

diversity indices (i.e. estimating values at all locations to map

the studied area from some sampled locations) is problematic,

and we illustrated this on several data sets collected from scien-

tific surveys.

First, we have seen that the traditional direct approach can-

not provide accurate mapping because of the lack of spatial

additivity of diversity indices. We thus proposed an alternative

procedure, called the b-kriging, by combining geostatistical

tools and b-diversity concept to model the spatial variations in

diversity index. However, even if b-kriging is more ecologically

founded, it does not really improve the predictions of species

richness or quadratic entropy indices made by classical kriging,

using a variogram.

Although b-kriging fails to predict accurately diversity

index, b-gram can be considered as an interesting tool to study

diversity variations between spatially distant locations of a

given area (Couteron & Pelissier 2004; Pavoine 2005; Shen

et al. 2013; Parmentier et al. 2014; P�elissier & Goreaud 2015).

Notably b-gram can be implemented to study the spatial struc-

ture of functional or phylogenetic diversity in the framework

of the spatial point processes (Shen et al. 2013), as proposed

by P�elissier & Goreaud (2015). For instance, the null hypothe-

sis of species equivalence (i.e. absence of spatial structure in

species relatedness) can be tested by using a Monte Carlo ran-

domization procedure shuffling the between-species distances

(i.e. permuting simultaneously the rows and columns in the dij

matrix). Then, the observed b-gram (i.e. diversity index com-

puted on each pairwise sampled locations in function of spatial

distances between these locations) is compared to the confi-

dence envelopes generated by the Monte Carlo randomization

to determine whether the null hypothesis can be, or not,

accepted (see for more details Shen et al. 2013; P�elissier & Go-

reaud 2015).

Secondly, regarding the indirect approach, most species of a

given assemblage and/or community are known to present low

to very low levels of abundance and/or occurrence (Gaston

1994; Martin et al. 2005). Modelling the spatial structure (e.g.

the variogram) and the spatial distributions (for instance
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Fig. 3. Results of leave-one-out cross-validation procedure for Rao’s quadratic entropy. Procedure used to assess predictive performance of the

direct and the indirect approaches for Rao’s quadratic entropy. Rao’s quadratic entropy computed only onMediterranean demersal fish data due to

availability in species taxonomic differences. (a) The comparison between classical kriging (in blue) and additive b-kriging (in red) procedure on

Mediterranean fish species, (b) the comparison between the direct approach by classical kriging (in blue) and the indirect approach (purple) by

inverse distanceweighting. The grey line represents the first bisector (i.e. y = x), the case where observed and predicted index values are equal.
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through kriging) of those rare species could hardly be

performed with traditional statistical tools (see examples of

experimental variograms for several species in Appendix S4).

For instance, for the MEDITS data set that include 186 fish

species, the probability of presence for each species shows that

the vast majority of species are rare or extremely rare (65% of

the species distributions get more than 95% of 0), or present

high punctual abundance (see Appendix S5). In this case, kri-

ging based on species spatial autocorrelation is no longer oper-

ational for spatial interpolation for most species, as already

stressed by Morfin et al. (2012). Note that the issue of zero-

inflated data is actually a common feature in ecological study,

and it is not restricted to marine assemblages (Martin et al.

2005).

The use of the indirect approach can further create a bias

in predicted index values relative to the observed ones (see

for instance the application on quadratic entropy). It can

be attributed to the fact that the indirect approach

smoothes the presence or abundance of the species and

their distribution range. In other words, it creates presence

in locations where species were not observed. Furthermore,

this smoothing can hardly capture some discontinuities in

the spatial distribution (e.g. highly fragmented and/or dis-

turbed area). In such situation, a k-nearest neighbours algo-

rithm’s method could be applied (Altman 1992), knowing

that the capacity of the method to deal with discontinuities

decreases with the increasing number of neighbours consid-

ered.

Consequently, the indirect approach could only be applied

on the most abundant (common) species in communities,

which seriously restraints the objectives of any diversity study

by shedding the light on a few species, and that may not be the

ones of conservation concern.

Perspectives

Following the above statements, we suggest two directions of

possible improvements.

First, the bias identified in the indirect approach comes

from interpolation method and more certainly from the fact

that diversity indices are nonlinear with regard to the indi-

vidual layers. For instance, in the case of the Rao’s qua-

dratic entropy index, there is a quadratic link between

species proportion and the index. A way of avoiding bias is

to simulate each species distribution conditionally on the

observed data (Chil�es and Delfiner, 2012; Journel, 1974)

and to use these simulations rather than the interpolations.

In the same way that the mean of log-transformed data is

not the log-transformed mean, the diversity index will be

estimated by the mean of the transformed simulations and

not by the transformed mean. It is worth remaining here

that the aim of a conditional simulation is to create a distri-

bution for each species that mimic the true spatial heteroge-

neity of the variable. This contrasts with interpolation (e.g.

kriging) which estimates the expected species distributions

(i.e. a smoothed version of the study variable). Conditional

simulations preserve the variance of the observed data with-

out smoothing and represent different equally possible spa-

tial distribution of the studied variable. It would be a viable

alternative when the spatial structure of each species is

known. However, this method is also challenged by zero-

inflated data to map rare species in the same ways as kri-

ging.

Secondly, an alternative strategy to map diversity indices is

to use models including abiotic and/or biotic explanatory vari-

ables (e.g. generalized linear or additive models GLM/GAM,

machine learning methods, co-kriging methods, Olden et al.

2008, Ballesteros-Mejia et al. 2013; Hern�andez-Stefanoni

et al. 2011). It is acknowledged that three main drivers act on

species distributions and diversity at different spatial scales,

that is (i) abiotic constraints, (ii) dispersal and (iii) biotic inter-

actions (e.g. predation, competition and facilitation, see Lo-

reau & Mouquet 1999; Sober�on 2007). Ignoring in models a

combination of these explicative variablesmay lead to a certain

part of unexplained variability (Boulangeat, Gravel & Thuiller

2012; Cavieres et al. 2014). However, some of these variable

values are not always known for every species in natural com-

munities (e.g. biotic interactions or dispersal limitations).

When biotic information is not available, it is usual to only

deal with abiotic predictors. For instance, Leathwick et al.

(2006) mapped species richness of demersal fish considering

only environmental variables inGAMs and boosted regression

trees (BRTs) for which the explained deviances varied between

45% and 60%. Bhattarai & Vetaas (2003) applied GLMs to

study variation in species richness of different groups of herba-

ceous in function of environmental variables for which

explained deviance of models highly varied according to the

group (between 14%and 62%).

When biotic information are available, the indirect

approach could benefit from the development of species inter-

action distributions models, using multispecies interactions

matrix (Kissling et al. 2012). Pellissier et al. 2013 proposed a

combined approach including both biotic and abiotic predic-

tors. They implemented food web models that can infer the

potential interaction links between species as a constraint in

species distribution models that include environmental predic-

tors. More broadly, Thuiller et al. 2013 proposed a promising

framework for species distribution modelling, derived from

metapopulation theory, which accounts for abiotic constraints,

dispersal, biotic interactions as well as local adaptation under

changing environmental conditions.

The difficulty to accurately map indices by the direct or indi-

rect approach is directly transposable to other levels of diver-

sity than species diversity, such as genetic diversity, for which

indices have different names and input data but identical math-

ematical formula. For instance, in genetic diversity, allelic rich-

ness, Nei and Π indices are the equivalent of species richness,

Simpson diversity 1-D and quadratic entropy, respectively

(Nei 1973; Nei &Li 1979).

In conclusion, we showed that mapping index by interpola-

tion methods used in the frame of direct or indirect approach

may not be accurate because diversity indices are not spatially

additive and many species in natural communities are rare.

The use of the indirect approach comes with the large burden

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 688–696
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of having to ignore or at least downplay the rarest species for

which individual species distribution model is hardly feasible.

Unfortunately, it differs from the crucial aim to consider all

species of communities, and these rare species are usually of

particular interest, notably from a conservation perspective,

but also for ecosystem functioning as recently demonstrated

(Mouillot et al. 2013). In the frame of the direct approach, the

b-gram can be an interesting tool to study diversity variations

between spatially distant locations of a given area, but the b-
kriging procedure failed to predict accurately diversity index,

as other traditional interpolation methods. Thus, considerable

progress has still to be made and we highlight that conditional

simulations and models taking into account biotic and abiotic

explanatory variables could provide a solution for an accurate

diversity indices mapping.

Acknowledgements

We thank the Editor Pedro Peres-Neto, two anonymous reviewers and S. Pavoine

for their comments on an earlier version of the manuscript. V.G. is supported by

a Presidency PhD grant of University Montpellier 2. This work is part of the

Groupe de Recherche (GDR) 3645 Statistical Ecology of CNRS. This paper is

Contribution No. 3448 of the Virginia Institute of Marine Science, College of

William&Mary.

Data accessibility

Demersal fish: contactAngelique.jadaud@ifremer.fr.

Woody plant: http://www.esapubs.org/archive/ecol/E087/061/metadata.htm.

Butterfly: http://esapubs.org/archive/ecol/E091/216/default.htm.

Vascular plant: http://esapubs.org/archive/ecol/E092/128/default.htm.

References

Altman, N. (1992) An introduction to kernel and nearest-neighbor nonparamet-

ric regression.TheAmerican Statistician, 46, 175–185.
Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone,

A.L. et al. (2011) Navigating the multiple meanings of b diversity: a roadmap

for the practicing ecologist.Ecology Letters, 14, 19–28.
Ballesteros-Mejia, L., Kitching, I.J., Jetz, W., Nagel, P. & Beck, J. (2013) Map-

ping the biodiversity of tropical insects: species richness and inventory com-

pleteness of African sphingid moths. Global Ecology and Biogeography, 22,

586–595.
Bertrand, J., De Sola, L., Papaconstantinou, C., Relini, G. & Souplet, A.

(2002) The general specifications of the MEDITS surveys. Scientia Mar-

ina, 66, 9–17.
Bhattarai, K. & Vetaas, O. (2003) Variation in plant species richness of different

life forms along a subtropical elevation gradient in the Himalayas, east Nepal.

Global Ecology and Biogeography, 12, 327–340.
Boulangeat, I., Gravel, D. & Thuiller, W. (2012) Accounting for dispersal and

biotic interactions to disentangle the drivers of species distributions and their

abundances.Ecology Letters, 15, 584–593.
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P.

et al. (2012) Biodiversity loss and its impact on humanity. Nature, 486,

59–67.
Carrasco, P., Chiles, J.-P. & Seguret, S. (2008) Additivity, Metallurgical Recov-

ery, and Grade. 8th International Geostatistics Congress, 1–5 December, San-

tiago, Chile.

Cavieres, L.A., Brooker, R.W., Butterfield, B.J., Cook, B.J., Kikvidze, Z., Lortie,

C.J. et al. (2014) Facilitative plant interactions and climate simultaneously

drive alpine plant diversity.Ecology Letters, 17, 193–202.
Chil�es, J.P. &Delfiner, P. (2012)Geostatistics: Modeling Spatial Uncertainty. Wi-

ley, NewYork, NY.

Couteron, P. & Pelissier, R. (2004) Additive apportioning of species diversity:

towardsmore sophisticatedmodels and analyses.Oikos, 107, 215–221.

Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M. (2011)

Beyond predictions: biodiversity conservation in a changing climate. Science,

332, 53–58.
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. &Mouquet, N.

(2010) Spatial mismatch and congruence between taxonomic, phylogenetic

and functional diversity: the need for integrative conservation strategies in a

changing world.Ecology Letters, 13, 1030–1040.
Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the commu-

nity level. Journal of Applied Ecology, 43, 393–404.
Ferrier, S., Watson, G. & Pearce, J. (2002) Extended statistical approaches

to modelling spatial pattern in biodiversity in northeast New South

Wales. I. Species-level modelling. Biodiversity and Conservation, 11, 2275–
2307.

Gaertner, J.-C.,M�erigot, B., R�elini, G., Bertrand, J.A.,Mazouni, N., Politou, C.-

Y. et al. (2010)Reproducibility of themulti-component aspect of species diver-

sity across different areas and scales: towards the constitution of a shortlist of

complementary indices for monitoring fish diversity? Ecography, 33, 1123–
1135.

Gaertner, J.-C., Maiorano, P., M�erigot, B., Colloca, F., Politou, C.-Y., Gil De

Sola, L. et al. (2013) Large-scale diversity of slope fishes: pattern inconsistency

betweenmultiple diversity indices.PLoSONE, 8, e66753.

Gaston,K.J. (1994)Rarity. Chapman etHall, London.

Heilbron, D. (1994) Zero-altered and other regressionmodels for count data with

added zeros.Biometrical Journal, 36, 531–547.
Hern�andez-Stefanoni, J.L., AlbertoGallardo-Cruz, J.,Meave, J.A., Dupuy, J.M.

& Gallardo-Cruz, J.A. (2011) Combining geostatistical models and remotely

sensed data to improve tropical tree richness mapping. Ecological Indicators,

11, 1046–1056.
Hoffmann, S. (2006) Concavity and additivity in diversity measurement: re-discov-

ery of an unknown concept. Univ., FEMM.

James, F.C. & McCulloch, C.E. (1990) Multivariate analysis in ecology and sys-

tematics: panacea or pandora’s box? (C.E.McCulloch, Ed.).Annual Review of

Ecology and Systematics, 21, 129–166.
Journel, A.G. (1974) Geostatistics for conditional simulation of ore bodies. Eco-

nomic Geology, 69, 673–687.
Keylock, C. (2005) Simpson diversity and the Shannon Wiener index as special

cases of a generalized entropy.Oikos, 109, 203–207.
Kissling,W.D., Dormann, C.F., Groeneveld, J., Hickler, T., K€uhn, I., Mcinerny,

G.J. et al. (2012) Towards novel approaches tomodelling biotic interactions in

multispecies assemblages at large spatial extents. Journal of Biogeography, 39,

2163–2178.
Lande, R. (1996) Statistics and partitioning of species diversity, and similarity

amongmultiple communities.Oikos, 76, 5–13.
Lavergne, S., Mouquet, N., Thuiller, W. &Ronce, O. (2010) Biodiversity and cli-

mate change: integrating evolutionary and ecological responses of species and

communities. Annual Review of Ecology Evolution and Systematics, 41, 321–
350.

Leathwick, J., Elith, J., Francis, M., Hastie, T. & Taylor, P. (2006) Variation in

demersal fish species richness in the oceans surrounding New Zealand: an

analysis using boosted regression trees. Marine Ecology Progress Series, 321,

267–281.
Loreau,M.&Mouquet,N. (1999) Immigration and themaintenance of local spe-

cies diversity.TheAmericanNaturalist, 154, 427–440.
Magurran, A.E. (2004) Measuring Biological Diversity. Blackwell Science,

Oxford.

Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-

Choy, S.J., Tyre, A.J. & Possingham, H.P. (2005) Zero tolerance ecology:

improving ecological inference by modelling the source of zero observations.

Ecology Letters, 8, 1235–1246.
Matheron, G. (1963) Principles of geostatistics. Economic Geology, 58, 1246–

1266.

Merckx, B., VanMeirvenne,M., Steyaert, M., Vanreusel, A., Vincx,M. &Vana-

verbeke, J. (2010) Mapping nematode diversity in the Southern Bight of the

North Sea.Marine Ecology Progress Series, 406, 135–145.
Meynard, C.N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F. & Mou-

quet, N. (2011) Beyond taxonomic diversity patterns: how do a, b and c
components of bird functional and phylogenetic diversity respond to envi-

ronmental gradients across France? Global Ecology and Biogeography, 20,

893–903.
Michalakopoulos, T. & Panagiotou, G. (1997) Information Technologies in the

Minerals Industry: Proceedings of theFirst International Conference on Infor-

mation Technologies in theMinerals Industry Via the Internet

Mokany, K., Harwood, T.D., Overton, J.M., Barker, G.M. & Ferrier, S. (2011)

Combining a and b diversity models to fill gaps in our knowledge of biodiver-

sity.Ecology Letters, 14, 1043–1051.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 688–696

Mapping diversity indices 695

http://www.esapubs.org/archive/ecol/E087/061/metadata.htm
http://esapubs.org/archive/ecol/E091/216/default.htm
http://esapubs.org/archive/ecol/E092/128/default.htm


Morfin,M., Fromentin, J.-M., Jadaud, A. & Bez,N. (2012) Spatio-temporal pat-

terns of key exploited marine species in the northwestern mediterranean sea.

PLoSONE, 7, e37907.

Mouillot, D., Bellwood, D.R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Viv-

ien,M. et al. (2013)Rare species support vulnerable functions in high-diversity

ecosystems.PLoSBiology, 11, e1001569.

Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings

of the National Academy of Sciences of the United States of America, 70, 3321–
3323.

Nei, M. & Li, W.H. (1979) Mathematical model for studying genetic variation in

terms of restriction endonucleases.Proceedings of the National Academy of Sci-

ences of theUnited States of America, 76, 5269–5273.
Olden, J.D., Lawler, J.J. & Poff, N.L. (2008) Machine learning methods without

tears: a primer for ecologists.TheQuarterly Review of Biology, 83, 171–193.
Oliver, J., Prudic, K. & Collinge, S. (2006) Boulder County Open Space butterfly

diversity and abundance.Ecology, 87, 85721.

Parmentier, I., R�ejou-M�echain, M., Chave, J., Vleminckx, J., Thomas, D.W.,

Kenfack, D., Chuyong, G.B. & Hardy, O.J. (2014) Prevalence of phylogenetic

clustering at multiple scales in an African rain forest tree community. Journal

of Ecology, 102, 1008–1016.
Pavoine, S. (2005)M�ethodes statistiques pour la mesure de la biodiversit�e. Ph. D.

thesis. Universit�e Lyon 1, 391p.

Pavoine, S. (2012) Clarifying and developing analyses of biodiversity: towards a

generalisation of current approaches. Methods in Ecology and Evolution, 3,

509–518.
Pavoine, S. & Bonsall,M.B. (2011)Measuring biodiversity to explain community

assembly: a unified approach. Biological Reviews of the Cambridge Philosophi-

cal Society, 2, 93–111.
P�elissier, R. & Goreaud, F. (2015) Ads package for R: a fast unbiased

implementation of the K-function family for studying spatial point pat-

terns in irregular-shaped sampling windows. Journal of Statistical Soft-

ware, 63, 1–18.
Pellissier, L., Rohr, R.P., Ndiribe, C., Pradervand, J.N., Salamin, N., Gui-

san, A. & Wisz, M. (2013) Combining food web and species distribution

models for improved community projections. Ecology and Evolution, 3,

4572–4583.
Ramesh, B.R., Swaminath,M.H., Patil, S.V., P�elissier, R., Venugopal, P.D., Ara-

vajy, S., Elouard, C. &Ramalingam, S. (2010) Forest stand structure and com-

position in 96 sites along environmental gradients in the centralWesternGhats

of India.Ecology, 91, 3118.

Rao, C. (1982) Diversity and dissimilarity coefficients: a unified approach. Theo-

retical Population Biology, 43, 24–43.
Rivoirard, J., Simmonds, J., Foote, K., Fernandes, P. & Bez, N. (2000)Geostatis-

tics for Estimating Fish Abundance. Blackwell Science Ltd, Oxford.

Shen, G., Wiegand, T., Mi, X. & He, F. (2013) Quantifying spatial phylogenetic

structures of fully stem-mapped plant communities. Methods in Ecology and

Evolution, 4, 1132–1141.
Sober�on, J. (2007) Grinnellian and Eltonian niches and geographic distributions

of species.Ecology Letters, 10, 1115–1123.

Sterling, E.J., Gomez, A.& Porzecanski, A.L. (2010) A systemic view of biodiver-

sity and its conservation: processes, interrelationships, and human culture. Bi-

oEssays News and Reviews in Molecular Cellular and Developmental Biology,

32, 1090–1098.
Stevens, C.J., Dupr�e, C., Dorland, E., Gaudnik, C., Gowing, D.J.G., Diekmann,

M. et al. (2011) Grassland species composition and biogeochemistry in 153

sites along environmental gradients in Europe.Ecology, 92, 1544.

Stone, M. (1974) Cross-Validatory Choice and Assessment of Statistical Predic-

tions. Journal of the Royal Statistical Society. Series B (Methodological), 36,

111–147.
Stuart-Smith, R.D., Bates, A.E., Lefcheck, J.S., Duffy, J.E., Baker, S.C., Thom-

son, R.J. et al. (2013) Integrating abundance and functional traits reveals new

global hotspots of fish diversity.Nature, 501, 539–542.
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B. & Araujo,

M.B. (2011) Consequences of climate change on the tree of life in Europe.Nat-

ure, 470, 531–534.
Thuiller, W., M€unkem€uller, T., Lavergne, S., Mouillot, D., Mouquet, N., Schif-

fers, K. & Gravel, D. (2013) A road map for integrating eco-evolutionary pro-

cesses into biodiversity models. Ecology Letters, 16, 94–105.
Ugland, K.I., Gray, J.S.&Ellingsen, K.E. (2003) The species-accumulation curve

and estimation of species richness. Journal of Animal Ecology, 72, 888–897.
Wagner, H.H. (2003) Spatial covariance in plant communities: integrating ordi-

nation, geostatistics, and variance testing.Ecology, 84, 1045–1057.
Whittaker, R.H. (1972) Evolution and measurement of species diversity. Taxon,

21, 213–251.

Received 22December 2014; accepted 23 February 2015

Handling Editor: Pedro Peres-Neto

Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Appendix S1.Additivity test.

Appendix S2. b-grammodel.

Appendix S3.The partitioning of b-diversity.

Appendix S4. Individual species experimental variogram.

Appendix S5.Distribution of species’ occurrence for the four datasets.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 688–696

696 V. Granger et al.


	Mapping diversity indices: not a trivial issue
	Recommended Citation

	Mapping diversity indices: not a trivial issue

