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Original Article
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Conservation concerns and new management policies such as the implementation of ecosystem-based approaches to fisheries management are
motivating an increasing need for estimates of mortality associated with commercial fishery discards and released fish from recreational fisheries.
Traditional containment studies and emerging techniques using electronic tags on fish released to the wild are producing longitudinal mortality-
time data from which discard or release mortalities can be estimated, but where there may also be a need to account analytically for other sources of
mortality. In this study, we present theoretical and empirical arguments for a parametric mixture-distribution model for discard mortality data. We
show, analytically and using case studies for Atlantic cod (Gadus morhua), American plaice (Hippoglossoides platessoides), and winter skate
(Leucoraja ocellata), how this model can easily be generalized to incorporate different characteristics of discard mortality data such as distinct
capture, post-release and natural mortalities, and delayed mortality onset. In simulations over a range of conditions, the model provided reliable
parameter estimates for cases involving both discard and natural mortality. These results support this modelling approach, indicating that it is well
suited for data from studies in which fish are released to their natural environment. The model was found to be less reliable in simulations when
there was a delay in discard mortality onset, though such an effect appears only in a minority of existing discard mortality studies. Overall, the model
provides a flexible framework in which to analyse discard mortality data and to produce reliable scientific advice on discard mortality rates and
possibilities for mitigation.

Keywords: discard mortality, natural mortality, parametric survival analysis, post-release mortality simulation study.

Introduction
A large proportion of worldwide commercial fishery catches are
discarded for economic or regulatory reasons, with rates varying
by region, species, and gear type (Alverson, 1997; Harrington
et al., 2005). Discarding is typically a wasteful practice that may
have far reaching consequences on populations and ecosystems

(e.g. Kappel, 2005; Bellido et al., 2011). Meanwhile, catch-and-
release in recreational marine and freshwater fisheries is becoming
a more common practice given an increasing conservation ethic
among anglers and the implementation of management measures
that require such behaviour; however, mortality rates and thus
the resulting conservation benefits from such practices can vary
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greatly by region and species (e.g. Cooke and Schramm, 2007; Cowx
et al., 2010).

Many fisheries management agencies are trying to limit discard-
ing by improving gear selectivity to reduce incidental catch, or by in-
stituting regulations that minimize discarding. In some instances,
the amount of bycatch in a fishery has been capped either overall
or as a percentage of directed species catch. Additionally, some fish-
eries management bodies have instituted mandatory landing of fish
that would otherwise be discarded, as will occur under the revised
European Union Common Fisheries Policy (CFP; European
Union, 2013). Such landing obligations provide a strong incentive
for harvesters to reduce incidental catch; however, they can also
have the unintended consequence of increasing fishing mortality
if the survival rate of otherwise discarded fish is high. In recognition
of this, the CFP has provisions that allow for discarding in instances
where there is a demonstrated high likelihood of survival. Conse-
quently, additional studies on discard mortality will be required
to this end. The need for such studies is also being motivated else-
where by the desire to establish management measures that can
improve the likelihood of successful live release, such as for pro-
tected or depleted species (e.g. Grant and Hiscock, 2014) or in rec-
reational fisheries (e.g. Cooke and Schramm, 2007), as well as the
need to account for discard-related losses of incidentally captured
fish in population assessments (e.g. Benoı̂t, 2013).

Many experimental approaches have been used to estimate
discard or post-release mortality rates. These methods typically
involve fish that are obtained on-board commercial or recreational
fishing vessels, during scientific research trips that are designed to
approximate typical fishing operations, or from simulated fishing
activities in the laboratory (Pollock and Pine, 2007; Gilman et al.,
2013; ICES, 2014). The fate of these fish is then observed by
keeping them in captivity (aquaria or sea cages; e.g. Mandelman
et al., 2013), inferred via recaptures of conventionally tagged fish
(e.g. Wilson and Burns, 1996; Kaimmer and Trumble, 1998), or
from the inferred activity of fish tagged with acoustic transmitters
(e.g. Yergey et al., 2012; Baktoft et al., 2013) or pop-up satellite arch-
ival tags (PSATs; e.g. Campana et al., 2009). While varied in their ex-
perimental design, all approaches generate one of the two types of
mortality data. “Cross sectional” data take the form of the
numbers of dead and live animals at one or more fixed points in
time. In contrast, “longitudinal” mortality data are made up of
the times at which individuals died or at which they were last
observed alive. Ongoing tracking of the fate of individuals is
required to obtain these event times. Individuals that were alive
when last observed at time t provide right-censored observations
in that their time of death is only known to occur after t. In fact,
cross sectional data are merely a special case of longitudinal data,
in that individuals that are alive at time t are right-censored observa-
tions, while dead ones are left-censored observations, that is, obser-
vations for which the time of death is only known to have occurred
before t [e.g. see application in Benoı̂t et al. (2013)]. Compared with
cross sectional data, longitudinal data have the advantage that they
describe survivorship over time (the survivor function), providing
information on the mechanisms affecting mortality and potentially
helping to distinguish different sources of mortality. Furthermore,
some form of longitudinal data is required to ensure full accounting
of discard mortality (Davis, 2002).

Traditionally used methods for the analysis of longitudinal data
generally fall under the class of survival or event analysis. They model
survival as a function of time using non-parametric [e.g. Kaplan–
Meier (KM) method], semi-parametric (e.g. Cox proportional-

hazards regression), or parametric forms (Cox and Oakes, 1984).
Non-parametric models have the advantage of making very few
assumptions about the survivor function, but cannot make predic-
tions beyond the range of the data and inferences on the mechanisms
underlying the shape of the survivor function are necessarily sub-
jective. In contrast, parametric models allow predictions beyond
the range of the observations and models can be built based on
assumed forms of survivorship, including forms with mechanistic
interpretations for survival patterns over time. Models making dif-
ferent assumptions about mechanisms can then be compared ob-
jectively using data. This is a particularly useful feature for the
analysis of discard mortality data, where researchers are often ultim-
ately interested, for example, in parsing out the effects of discard and
background (or natural) mortality, in distinguishing capture and
post-release mortality, and in objectively determining how long
after release fish in a sample will continue to die as a direct result
of capture and release events.

In this study, we elaborate on a parametric survival analysis
model that appears particularly well suited for the analysis of
discard and release mortality data (hereafter termed discard mortal-
ity data). This model, which comprises a latent mixture of survivor
functions, was first applied to this field of study by Benoı̂t et al.
(2012). We begin by briefly describing this basic mixture model
and by presenting supporting arguments and examples. We then
show, analytically and by three brief case studies, how this model
can be generalized to incorporate different characteristics of
discard mortality data such as distinct capture, post-release and
natural mortalities, and delayed mortality onset. We also use simu-
lations to evaluate whether and under what conditions the model
can reliably estimate the parameters for two challenging cases: sep-
arating fishing-related and natural mortalities and survival func-
tions that include a delay in the onset of mortality.

The model
Basic structure
The cornerstone for the generalized model is a basic parametric
survivor function. Here, we have chosen the commonly used
Weibull-type survival function (Cox and Oakes 1984, chapter 2):

S(t) = exp[−(a · t)g], (1)

where S(t) is the survival probability to time t, and a and g are,
respectively, the scale and shape parameters of the underlying
Weibull distribution. This simple function is particularly attractive
due to its flexibility, whereby different values ofa andg can produce
a range of survival function shapes commonly encountered in eco-
logical data such as Deevey’s (1947) Type I, II, and III survival func-
tions (Figure 1). Notably, exponential mortality, typically assumed
in stock assessments, is a special case of Equation (1) for g ¼ 1. The
Weibull model has been successfully applied to discard survival data
in many studies (e.g. Neilson et al., 1989; Campana et al., 2009;
Depestele et al., 2014).

A basic assumption of Equation (1) and of other basic parametric
survivor functions is that they represent a mortality process that
begins at time t ¼ 0 and for which S(t) is continuously decreasing
as a function of t. To the extent that discard mortality data
conform to a basic parametric survivor function, and that the mor-
tality is believed to result solely from the capture, handling, and
release (CHR) process, the analyst must conclude that discard-
related mortality is complete and survival is nil. While this may be
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the case in some instances, it is not the norm [see review presented in
Figure 4 of Benoı̂t et al. (2012)]. Instead, many longitudinal discard
mortality studies have revealed a pattern of initial loss of individuals
during the first hours or days of the study, followed by little or no
losses of the remaining survivors.

To account for these patterns, Benoı̂t et al. (2012) relaxed the as-
sumption that S(t) is the same for all individuals in a sample of dis-
carded animals, instead assuming that the sample was composed of a
latent mixture of two groups of individuals; those that were adverse-
ly affected by the CHR process and which will die as a result, and
those that were unaffected (i.e. immune individuals). Mathematically,
this can be written as

S(t) = p · SA(t) + (1 − p) · SI(t), (2)

where S(t) is the overall survival function for the sample,p is the prob-
ability that an individual is adversely affected, and SA(t) and SI(t) are the
survival functions for the affected and immune groups, respectively.
Benoı̂t et al. (2012) were interested in the short-term (scale of days)
mortality of fish held for observation in captivity following capture
and handling under commercial fishery-like conditions. At such a
short time-scale relative to natural longevity, and given the exclusion
of predators, the authors assumed SI(t)¼ 1; that is the likelihood of
death during the experiment for individuals that were not adversely
affected by CHR was essentially nil. This assumption enhances model
identifiability when fitting to data. Clearly, the validity of this assump-
tion declines if experimental subjects are exposed to predators and as the
duration of the observation period increases, thereby increasing the like-
lihood of mortality from natural causes during the span of the experi-
ment. Below we show how this assumption can be relaxed.

Using Equation (2), modelling SA(t) using the Weibull survival
function as in Equation (1) and setting SI(t) ¼ 1, we obtain

S(t) = p · exp[−(a · t)g] + (1 − p). (3)

From which it is easy to see that as t � 1, S(t) � 1 2 p, wherep is
the discard mortality rate. Whenp ¼ 1, all individuals are said to be

adversely affected by the fishing event, such that S(t) ¼ SA(t) and
the ultimate CHR survival rate is 0. With Equation (3), there is no
need to arbitrarily define a time at which to evaluate S(t) such as
to provide an estimate of discard mortality (e.g. Neilson et al.,
1989). In fact, Equation (3) can be re-arranged to solve for t and
therefore provide an estimate of the time when essentially all (e.g.
99.9%) of the CHR-related mortality has occurred

tS(t) ≈ 1−p = −(a · g)−1 log(0.001). (4)

The influence of covariates believed to influence discard mortality
can be incorporated in SA(t), typically by including them in the a
term, in p, or both (Benoı̂t et al., 2012; Depestele et al., 2014). An
exponential function is typically used for covariate effects on a,
a = exp(X′

1b1), whereas a logistic function is used for p,
p = [1 + exp(−X′

2b2)]−1, where X1 and X2 are design matrices
for the covariates and b1 and b2 are vectors of parameters for the
effect of the covariates. The same set of covariates need not be
used for the effects on a and on p, as indicated by the different sub-
scripts for the two generic design matrices above.

Researchers are increasingly modelling discard mortality as a
function of semi-quantitative status indicators that summarize the
degree of injury of individuals just before release, the degree of im-
pairment of movement and response to stimuli, or a combination of
the two which is often termed vitality or condition (e.g. Richards
et al., 1995; Campana et al., 2009; Benoı̂t et al., 2012; Depestele
et al., 2014). These measures (hereafter, status indicators) are
known to be good predictors of eventual mortality (Davis and
Ottmar, 2006; Humborstad et al., 2009; Davis, 2010), and are par-
ticularly useful in scaling up the results of small-scale CHR experi-
ments to the fishery-wide level (Richards et al., 1995; Benoı̂t et al.,
2012; ICES, 2014).

Benoı̂t et al. (2012) found strong support for the model in
Equation (3) with status indicator effects on p for four of the five
species they studied (e.g. Figure 2c and d), which included
Atlantic cod (Gadus morhua), two flatfish species, and skates
(Rajiidae spp.). Similarly, Depestele et al. (2014) also found
support for four species captured in a North Sea commercial
fishery (cod, skates, and two flatfish). Further support for this
model is also evident in the data for discarded blue sharks
(Prionace glauca), whose fate was inferred using data from PSATs
(Figure 2a; Campana et al., 2009), and in recent data for scallops
(Placopecten magellanicus) captured in a commercial dredge
fishery and held for observation in ship-board refrigerated seawater
tanks (Figure 2b; Knotek et al., pers. comm.). In all of these cases,
patterns in survivorship are characterized by initial loss of in-
dividuals during the first few hours or days after release to the
water, followed by the absence of mortality thereafter (Figure 2).
Furthermore, in each case, the level at which survivorship asymp-
totes, 1 2 p (the discard survival rate), is inversely related to an
individual’s semi-quantitative pre-release status.

Generalization of the basic model
While the mixture-distribution model in Equation (3) appears
appropriate for discard mortality data across a diversity of taxa,
the contexts to which it applies are limited to cases where all indi-
viduals are alive at time t ¼ 0, some individuals begin dying soon
after t ¼ 0 and there is no additional mortality [i.e. SI(t) ¼ 1].
However, simple modifications to the model can be made to relax
these assumptions.

Figure 1. Examples of the form of the Weibull survival function as a
function of its rate (a) and shape (g) parameters, illustrating patterns
comparable to Deevey’s (1947) Type I (dashed grey line), Type II (solid
grey), and Type III (black) survivorship curves.
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First, a parameter t can be added to account for mortality occur-
ring before release:

S(t) = t · (p · exp[−(a · t)g] + (1 − p)), (5)

where 12t is the probability that an individual died during capture
or handling. While this mortality could be estimated separately, with
the post-release mortality estimated using Equation (3) only for
those individuals that were alive at release (e.g. Benoı̂t et al.,
2012), joint estimation of t with the other parameters provides an

estimate of covariance among all parameters. Under this formula-
tion, 1 − t+ tp is the total CHR (discard) mortality probability.

Second, a delay in the onset of the post-release mortality can be
incorporated by subtracting the time delay, t0, from t in Equation (5):

S(t) = t · (p · exp[−(a · (t − t0))g] + (1 − p)). (6)

This delay reflects the time interval following discarding before any
mortality occurs, and is not part of the among-individual variability
in times of death that occurs normally due to attrition. Such a delay

Figure 2. Examples of longitudinal discard survival functions for a diversity of taxa, as a function of the degree of injury, shell damage, or pre-release
vitality: (a) blue sharks released from commercial longlines and tagged with PSATs [redrawn from Campana et al. (2009)], (b) scallops captured in a
commercial dredge fishery and released into on-board refrigerated seawater tanks for monitoring (Knotek et al., unpublished results), and (c)
Atlantic cod and (d) winter flounder captured in bottom-trawls and held for monitoring [redrawn from Benoı̂t et al. (2012)]. In each plot, the
shaded areas are the 95% confidence band for estimated injury/vitality-specific non-parametric KM survivor functions, the solid lines are estimates
from the survival mixture model [Equation (3)], and the circles indicate the occurrence and relative frequency (circle size) of censored observations
(plotted along the estimated survival curves for ease of presentation). The KM estimates are presented as a means of demonstrating model fit, given
that the KM estimates are non-parametric representations of the patterns in the data. The horizontal span of the KM bands indicates the span of the
data. The numbers in parentheses in the legend indicate the number of (dead, censored) observations for each injury or vitality class.
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may occur, for example, if initial capture-induced metabolic pertur-
bations progress and/or are not resolved (Wood et al., 1983), or, if
captivity represents an additive stressor that eventually induces mor-
tality in the sample (e.g. Mandelman and Farrington 2007).

Third, it may be important to model not only discard-related
mortality but also natural or background mortality, for instance if
individuals are released back into their natural environment which
contains predators, pathogens, and other sources that might lead to
mortality in the absence of CHR. Assuming an exponential function
for the natural mortality, M, as is common in stock assessments and
population modelling, we obtain

S(t) = t · (p · exp[−(a · (t − t0))g]+(1−p)) · exp(−M · t). (7)

The influence of the natural mortality function differs from that of t
with respect to its time dependence. In this formulation, M is
assumed to act equally on both the affected and unaffected compo-
nents and is therefore an independent additional mortality source.
Any increase in predation risk that results from being affected by
the CHR process, a component of discard mortality, is subsumed
in the mortality modelled by the Weibull function.

As with other parameters of the model, it is possible to model these
additional parameters as a function of status indicators or other cov-
ariates. The parameters t0 or M can be written as a linear function of
the covariates with a log-link to ensure that these parameters take on
strictly positive values. For the t parameter, a linear predictor with a
logit link could be used to ensure that the parameter is bounded in the
interval [0,1]. Of course, it is unlikely that all three of these additional
parameters t0, M, or t will be pertinent for a given study. They are
shown together in Equation (7) to illustrate the basic flexibility of
the model, which of course could be modified in other ways to accom-
modate the particularities of a study, species, or context.

Material and methods
Special cases of Equation (7) were fit to three case studies to illustrate
the use and relevance of the model. The goal is illustration and not to
draw specific conclusions about the results of each study in the
context in which they were conducted. Consequently, the
methods for each study are presented with only enough detail for
the reader to understand the application of the model. The first
case study uses data from published research and further details
on the study and its conclusions can be found in Benoı̂t et al.
(2012). The other two case studies are from yet to be published
experiments. Further methodological details and more fulsome
analysis will be available in forthcoming papers.

Model fitting via maximum-likelihood and simulations were all
undertaken using the R statistical computing software (R Core
Team, 2014). Optimization of the log-likelihood functions for the
models (Appendix) was undertaken using the R optim function.

Case study I: distinguishing capture and handling mortality
from post-release mortality
Benoı̂t et al. (2012) examined the mortality of American plaice,
H. platessoides, caught using a bottom-trawl in the southern Gulf
of St Lawrence (Canada, NW Atlantic) under conditions similar
to those in the local commercial fisheries. Fish were caught in
hauls lasting 1–2 h, dumped on deck and handled in a manner com-
parable to that used by harvesters. They were then individually mea-
sured, scored with respect to vitality class, tagged using streamer
tags, and placed in on-board refrigerated seawater tanks. The vitality
classes used by the authors were: 1—excellent (lively fish with minor

injuries only), 2—good (injured and with weak body movements),
3—poor (injured and unresponsive but ventilating), and 4—
moribund (unresponsive and apparently not ventilating). Tanks
were monitored regularly, and dead animals were removed from
the tanks and their time of mortality was recorded. Fish were held
for holding periods of up to 110 h, and the holding times for indi-
viduals that were still alive at the end of a given holding period
were treated as right-censored observations. All event times were
in hours.

The authors undertook the analysis of their data in two parts.
First, capture and handling mortality was modelled using a binomial
model. Individuals that were dead when the tanks were first moni-
tored after an initial 30- to 60-min holding period were assumed
to have been dead before being placed in the tanks. These were all
fish that had been classified as moribund. Second, the authors mod-
elled the conditional in-tank mortality of individuals considered to
have been alive when they were placed in tanks (i.e. post-release sur-
vival) using Equation (3), with vitality scores as covariates.

Here, we modelled the data for American plaice using a variant of
Equation (7) that includes capture and handling mortality and a
vitality effect on p:

S(t) = t · (p · exp[−(a · t)g] + (1 − p))

with p = [1 + exp(−X′b)]−1 and

t =
1, vitality [ (1, 2, 3)
t0, vitality = 4

( )
,

(8)

where X is a design matrix for the injury scores, t0 is a parameter to
estimate and the other parameters are as defined above. Capture and
handling mortality applies only to moribund individuals (vitality¼ 4)
by definition. Furthermore, natural mortality was not included in
the model because the fish were held in tanks sheltered from preda-
tors and the duration of the study was too short for other mortality
risks to be of importance. To fit the model, individuals that were
dead when first monitored in the tanks were treated as left-censored
observations, consistent with the fact that their time of mortality is
only known to have occurred before the first observation period.
This approach remains closer to the true nature of the data, com-
pared with Benoı̂t et al.’s (2012) assumption that the fish were neces-
sarily dead before release to the tanks. For all other individuals, the
mortality or censoring times used by Benoı̂t et al. (2012) were used.

Case study II: distinguishing discard mortality from natural
mortality
In 2013, Capizzano et al. (C. Capizzano, pers. comm.) studied the
post-release mortality of Atlantic cod captured in the recreational
rod-and-reel fishery that occurs on Jeffreys Ledge in the Gulf of
Maine (USA, NW Atlantic). One hundred and thirty captured fish
were brought to the surface, measured, tagged with an external
acoustic transmitter with a depth-sensor (Vemco# V9P-1H),
assessed for their degree of injury on an ordinal four-level scale
(none, minor, moderate, and severe), and released alive. The
release area was monitored by an array of 31 acoustic receivers
(Vemco VR2W) that were spaced �1.1 km apart, covering ca.
35 km2. Acoustic transmitters emitted a unique, coded signal and
depth measurement every 2 min for the first 7 d, every 5 min for
the next 23 d, and then every 15 min until transmissions terminated
at 365 d. Fish that exhibited minor vertical and horizontal move-
ments, such as those observed for known dead fish that were
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D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/72/6/1834/921232 by VIR
G

IN
IA IN

STITU
TE O

F M
arine Science user on 30 O

ctober 2018



tagged as a reference, were considered dead. The time of onset of
those limited movement patterns was taken as the time of death.
The other fish were monitored until they left the array, at which
point they were considered right-censored observations. In a few
instances, fish were detected by receivers in the surrounding area
or were captured in fisheries. The times of these later observations
were considered as the censoring times. All event times were in days.

Here we modelled these data using

S(t) =(p · exp[−(a · t)g] + (1 − p)) · exp
−M · t

365

( )
with

p = [1 + exp(−X′b)]−1,

(9)

where X is a design matrix for the injury scores.
Delayed mortality onset was not included in the model because

there was no evidence of this effect in the KM survivor functions
for these data. Furthermore, the KM survival functions for fish clas-
sified as being uninjured or having minor injuries only before release
were statistically indistinguishable (log-rank test:x2

df=1 = 0.01, p ¼
0.859) and therefore those two categories were combined. The
natural mortality rate M was scaled by 365 in Equation (9) to esti-
mate an annual instantaneous rate that could then be compared
with values used in stock assessments or predicted from meta-
analyses, as a means of validating the model estimates.

Case study III: delayed onset of discard mortality
Knotek et al. (R. Knotek, pers. comm.) undertook a study similar to
that of Benoı̂t et al. (2012). The discard mortality rate for three skate
species captured in scallop dredge fisheries on Georges Bank (USA,
NWAtlantic) was assessed by placing individuals in on-board refri-
gerated seawater tanks. Here, we consider only the results for winter
skate (L. ocellata). Individuals were captured and handled under
conditions typical of the fishery, with dredge hauls that varied in
duration between 10 and 90 min. Individuals were measured,
tagged, and attributed a semi-quantitative physical injury score
(none/minor, moderate, and severe) before being placed in the
tanks for a target holding period of 72 h. Event times were in hours.

Preliminary analyses using the non-parametric KM method
revealed a delay in the onset of mortality. The magnitude of this
delay appeared to be inversely related to the severity of injury.
Skates were placed in the tanks alive (i.e. no capture and handling
mortality) and given the experimental conditions it appeared rea-
sonable to assume M ¼ 0. Therefore, the post-release survival of
winter skate from the experiment was modelled as

S(t) = p · exp[−(a · (t − t0))g] + (1 − p)

with p = [1 + exp(−X′b1)]−1 and t0 = exp(X′b2),
(10)

where the notationb1andb2is used to distinguish two distinct vectors
of parameters, and X is the design matrix for the injury scores.

To ensure that all calculations remained defined in light of
logarithms used during the fitting process, we removed five right-
censored observationsthat were made before the first mortality obser-
vations. Assuming there truly is a delay in mortality onset, fish
removed from the experiment before any mortality is observed con-
tribute no information to define the shape of the survivor function.

Simulations
Simulations were undertaken to evaluate whether and under what
conditions it is possible to reliably estimate the parameters for a
model involving discard mortality and natural mortality [Equation
(9)], or for a model with delayed mortality onset [Equation (10)].
These two special cases of Equation (7) present the greatest potential
model fitting challenges given possible confounding among the
parameters that determine discard mortality and parameters for
either natural mortality or mortality delay. Limiting the simulations
to these two special cases kept the number of simulations tractable.
The model fitting associated with the simulations was always done
assuming the correct model structure. The goal was to establish
whether correct parameter estimates could be recovered. Exploring
the extent to which the model is robust to misspecification is a sep-
arate issue and is beyond the scope of this paper.

Two sets of simulations were undertaken: one aimed at replicat-
ing the conditions for case studies II and III, and a second generic set
to consider the effects for a diversity of conditions. For the first set of
simulations, injury group-specific sample sizes and study durations
were matched to those of the case studies, and the parameter esti-
mates obtained from the analyses of the case studies were used as
the “true” parameter values for the simulation.

For the generic simulations, three status classes of fish were simu-
lated, each defined by a discard mortality rate that was common across
the simulations: p1 ¼ 0.75, p2 ¼ 0.50, or p3 ¼ 0.25. Three groups of
generic simulations were undertaken. In the first, discard mortality
with additional natural mortality was modelled using Equation (9).

Table 1. Parameters used for each generic simulation (case).

Case Nsim Tmax a g MAll M1 M2 M3 T0, 1 T0, 2 T0, 3

1 100 200 0.10 1.99 0.25 — — — — — —
2 30 200 0.10 1.99 0.25 — — — — — —
3 10 200 0.10 1.99 0.25 — — — — — —
4 100 25 0.10 1.99 0.25 — — — — — —
5 100 18 0.10 1.99 0.25 — — — — — —
6 100 12 0.10 1.99 0.25 — — — — — —
7 30 25 0.10 1.99 0.25 — — — — — —
8 30 18 0.10 1.99 0.25 — — — — — —
9 30 12 0.10 1.99 0.25 — — — — — —
10 100 200 0.03 1.99 0.82 — — — — — —
11 100 200 0.03 1.99 2.71 — — — — — —
12 100 200 0.10 1.99 — 0.25 0.15 0.09 — — —
13 30 200 0.10 1.99 — 0.25 0.15 0.09 — — —
14 100 200 0.10 1.99 — 0.61 0.37 0.08 — — —
15 30 200 0.10 1.99 — 0.61 0.37 0.08 — — —
16 100 200 0.10 1.99 — 2.71 1.65 0.05 — — —
17 30 200 0.10 1.99 — 2.71 1.65 0.05 — — —
18 100 200 0.03 1.99 — — — — 1 8 15
19 100 200 0.02 7.39 — — — — 1 8 15
20 100 60 0.03 1.99 — — — — 1 8 15
21 100 200 0.03 1.99 — — — — 1 25 50
22 100 200 0.02 7.39 — — — — 1 25 50
23 100 60 0.03 1.99 — — — — 1 25 50

In each case, three status classes of fish were simulated, each containing Nsim

fish and each defined by a discard mortality rate that was common to all
simulations p1 ¼ 0.75, p2 ¼ 0.50, and p3 ¼ 0.25. The duration of the study
period (Tmax) was varied between cases, as were the parameters of the
Weibull survival function for the affected fish (a and g). Cases 1–11 are
simulations with additional natural mortality common to all status classes
(MAll), cases 12–17 are simulations with status-dependent natural mortality
(M1, M2, and M3), and cases 18–23 are simulations with status-dependent
delays in mortality onset (T0,1, T0,2, and T0,3).
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In the second, discard and natural mortalities were also modelled, but
with status class-dependent natural mortalities [i.e. assuming
M = exp(X′b) in Equation (9)]. This was done to evaluate model
robustness for cases where the assumption of a common natural
mortality for affected and immune individuals is not met (refer to
“Generalization of the basic model”). This would occur if there are
long-term survivorship differences between status classes that are
not subsumed in the rapidly depleting survivor function for affected
individuals. For these two groups of generic simulations, we looked
at the effect on estimation robustness of differences in sample size,
studyduration,andtherelativemagnitudeofdiscardand natural mor-
tality (cases 1–17 in Table 1 and Figure 3a and b). In the third group of
generic simulations, discard mortality with delayed onset was mod-
elled using Equation (10), assuming an inverse relationship between
class-dependent discard mortality and delay. For this third group of
simulations, we looked at the effect on estimation robustness of differ-
ences in study duration, the shape of the discard mortality function,
and the magnitude of delays (cases 18–22 in Table 1 and Figure 3c).

A modification of the method of Bender et al. (2005) was used for
the simulations. For each simulated individual, i, a value of S(t)i was
drawn from a uniform distribution:

S(t)i ˜U(0, 1).

The associated survival time ti was then obtained by solving the simu-
lated survival function equation using the Newton–Raphson algo-
rithm. For each individual, a censoring time was also simulated, and
the lesser of the survival and censoring times was used as the simulated
observation for that individual. For simulations of case study II and for
all the generic simulations, censoring times were drawn from a modi-
fied Beta distribution (a ¼ 0.7, b ¼ 1.4 and with support rescaled to
185 days), chosen to broadly reflect the observed distribution of cen-
soring times in case study II (Figure 4, black line). We used this single
distribution to keep the number of simulations tractable and because
the preliminary results obtained using other reasonable censoring
functions produced very comparable results. A separate case-specific
modified Beta distribution (a ¼ 1.8, b¼ 0.2 and with support
rescaled to 75 h) was used to simulate censoring times for the simula-
tions of case study III (Figure 4, grey lines).

Once the observations for all individuals were simulated, the
relevant survival model was fit to the data to estimate parameter
values. Each simulation comprised 1000 iterations, from which
the mean, median, 2.5th, and 97.5th percentiles of estimated param-
eter values were calculated. For the case study-specific simulations,
relative bias (RB) for each parameter was also calculated as

RB = 100

n

∑n

i=1

û i − utrue

utrue
,

where n is the number of iterations, ûi is the estimate of the param-
eter for iteration i, and u true is the simulated “true” value for the
parameter. RB was not calculated for the results of the generic simu-
lations because those results were summarized only in a graphical
form and bias can be inferred from those graphs.

Results
Case study I: distinguishing capture and handling mortality
from post-release mortality
The model in Equation (8) fits the estimated KM survivor functions
for the American plaice data very well (Figure 5a), suggesting that the

model provides an adequate description of those data. Relatively large
samples sizes in each vitality class resulted in narrow confidence inter-
vals for the KMestimates and the parametersof the parametric model.
Discard mortality was lowest for fish with excellent vitality, increasing
with worsening vitality across classes (Table 2). The total mortality
probability for moribund plaice was very high at 0.962. Most of the
observed mortality in this vitality class occurred during the capture
and handling process.

Case study II: distinguishing discard mortality from natural
mortality
The mixture-distribution model that included M [Equation (9)]
provided a substantially better fit to the cod data compared with
the model that excluded M [Equation (3)], with a reduction in the
value of the Akaike Information Criterion corrected for small

Figure 3. Survival functions used in the generic simulations, as defined
by the parameters in Table 1. Status-specific functions are distinguished
by shading for all simulated cases with discard mortality and (a) a single
overall natural mortality, (b) status-specific natural mortalities, or (c)
delays in discard mortality onset.
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sample size, DAICc, of 18.9. The favoured model fit the estimated
KM survivor functions well (Figure 5b), suggesting that the model
provides an adequate description of the data. The estimates of
CHR mortality increased with the severity of injury among classes
(Table 3). The precision of the estimates was low for the moderate
and severely injured classes, as a function of low sample sizes. The
estimate of M from the favoured model was similar to the values
assumed in a recent assessment of Gulf of Maine cod (0.2 or 0.4;
NEFSC, 2013), as well as with the values predicted from empirical
life history approaches: assuming von Bertalanffy parameters for
cod of k ¼ 0.15 and L1 ¼ 110 (Froese and Pauly, 2014), M ¼ 0.30
using Jensen’s (1996) estimator, and M ¼ 0.46 using Gislason
et al.’s (2010) estimator for a mean length of 47 cm.

Case study III: delayed onset of discard mortality
Fitting the model with injury-specific mortality delays to data was a
little less straightforward than for the other case studies. Achieving
model convergence and obtaining an invertible Hessian required
that initial parameter values for the mortality delay parameters be
close to the first observed mortality times, and that a range of
values be examined. There were strong correlations (r ≥ 0.93)
among the estimates of the Weibull shape parameter (ĝ) and the
three parameters that define the t0’s, as well as among the three para-
meters that define the p’s. The former set of correlations can be
explained by the fact that delays are constrained to occur before
the first observed mortalities. Estimates of the delay are therefore
derived from a backwards projection of the shape of the subsequent
survivor function, leading to a strong confounding between the
magnitude of delay and the parameters that shape the post-delay
survivorship function.

The model fits the KM estimates of the survivor function well
(Figure 5c). The estimated magnitude of the delay was inversely
related to the severity of injury, though the estimates did not
differ statistically (Table 4). A lack of mortality observations soon
after the initial onset of mortality may largely explain the wide con-
fidence intervals for the estimates of t0. As with the other examples
presented here, estimates of discard mortality varied inversely with
the severity of injury (Table 4). Confidence intervals on those

estimates were wide given that mortality had yet to level off over
the time span in which the data were collected.

Simulations
The simulated survival functions for the cod case study (Figure 6a)
produced patterns comparable to the original observations
(Figure 5b). The means and medians of parameters obtained from
the simulations were essentially identical with the simulated
values with a very little estimation bias (Table 3). Furthermore,
the 2.5th and 97.5th quantiles for the estimated parameters from
the simulations were comparable to estimated 95% confidence
intervals for the original parameter estimates. Taken together, this
suggests that the properties of the empirical dataset for case study
II were simulated reasonably well, and that the model could reliably
estimate the parameters.

The simulated survival functions for the winter skate case study
(Figure 6b) produced patterns that also were comparable to the ori-
ginal observations (Figure 5c), again suggesting that the simulations
were reasonably accurate. The simulations indicated that there were
estimation biases particularly for the delay parameters for all three
injury classes and the discard mortality parameter for the moderate-
ly injured class (pModerate; Table 4). Among the simulations, there
were high densities of estimated delay parameters with values near
zero (Supplementary Figure 1). Likewise, there were high densities
of extreme values for the CHR parameters for the uninjured and
severely injured classes (pNone/Minor and pSevere). These results
occurred even when initial parameter values were set in a manner
similar to what was done in the analysis of the winter skate case
study. However, while careful attention was paid to model fitting
for the case study (e.g. visual assessment of the fits and examination
of a range of initial values), this degree of rigour was not replicated in
the simulation study. Had this degree of rigour been implemented, it
is likely that estimation problems would have been flagged for most
simulation iterations for which the delay parameter estimates were
close to zero (indicative of poor fits to the data).

In the generic simulations that included natural mortality, the
discard mortality parameters were estimated accurately in almost
all cases examined and even when the estimates were biased, the
magnitude of RB was no more than 20% (Figure 7). The estimates
were slightly biased when the study duration (Tmax) was less than
the time it took for the survival functions to level off (cases 5, 6, 8,
and 9). A moderate bias was present when the rates of loss for
discard and natural mortality were of similar magnitude (cases 10
and 11), or when there were large absolute differences in natural
mortality rates between status classes and sample sizes were small
(case 17). Reductions in sample size resulted in predictable increases
in the dispersion of simulated estimates (e.g. compare cases 1, 2,
and 3). Simulated estimates of the natural mortality parameter were
also generally accurate and always had a skewed distribution. Bias in
parameter estimates was greater when the simulated discard and
natural mortality rates were of similar magnitude (cases 10 and 11).
Parameter estimates were also biased when there were large differences
in class-specific natural mortality rates (cases 16 and 17), particularly
when sample sizes were smaller (case 17).

In the generic simulationsthat included a delay indiscard mortality
onset, the discard mortality parameters were accurately estimated
when the study duration included the asymptote of the survival func-
tions and when there was moderate variation among classes in the
magnitude of the delay (cases 18 and 19; Figure 8). Estimates were
biased whenvariationinthe delay was greater (cases 21–23), especially
when Tmax occurred before the survival functions reached their

Figure 4. Cumulative distributions of observed censoring times in the
cod case study (time in days; black circles) and the winter skate case
study (time in hours; grey circles), and the modified Beta distributions
used to generate censoring times in the simulations for each (solid black
and grey lines, respectively). The distribution described by the black line
was used for the generic simulations.
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asymptote (case 23). Biases were of similar magnitude whether
the simulated Weibull function for affected individuals followed a
Deevey type II curve (e.g. case 18) or a Deevey type I curve (e.g. case
19). Estimates of the delay terms were highly biased in all simulated
cases (Figure 7). These problematic results are like those obtained
in the simulations mimicking the winter skate case study (Table 4),
probably also as a reflection of poor data fits in many iterations,
likely resulting from sensitivity to initial parameter values.

Discussion
In this study, we present theoretical arguments and empirical
support for parametric mixture-distribution models for the analysis

Figure 5. Non-parametric (KM; shaded areas) and estimated parametric survival functions for the three case studies: (a) American plaice captured
by bottom-trawls and monitored in refrigerated seawater tanks (model with distinct capture/handling mortality and post-release mortality; Benoı̂t
et al., 2012), (b) Atlantic cod captured in a recreational fishery and released with acoustic tags (model with distinct discard and natural mortalities;
Capizzano et al., pers. comm.), and (c) winter skate captured in a commercial scallop dredge fishery and held for monitoring (model with delayed
mortality onset; Knotek et al., pers. comm.). The interpretation of the contents of the plots is described in Figure 2.

Table 2. Parameter estimates and associated confidence intervals for
Case study I, American plaice captured using a bottom-trawl.

Parameter N Estimate 95% CI

pExcellent 129 0.113 0.067–0.177
pGood 86 0.315 0.232–0.413
pPoor 59 0.532 0.405–0.649
CHMoribund 664 0.851 0.819–0.877
CHRMoribund 0.962 0.945–0.975

Results are presented for the vitality class-specific discard mortality
probability estimates (p’s for excellent, good, and poor vitality classes;
CHRMoribund = 1 − t+ tpMoribund for the moribund vitality class), the
capture and handling mortality rate for moribund individuals (CHMoribund),
and the number of fish in each injury class (N).
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of longitudinal discard mortality data. A common feature of these
data is an eventual asymptote in mortality in the absence of other
mortality sources. We are aware of few current alternative modelling
approaches that can satisfactorily deal with this property in light of
the need to provide scientific advice on discard mortality. While
non-parametric and semi-parametric (e.g. Cox proportional-
hazards) models can adequately fit the data, these models cannot
be used to parse out different mortality sources (capture/handling,
post-release, and M), nor do they provide mechanistic interpret-
ation for the shape of the survival function. Multiphase or change-
point models, in which survivorship is modelled with different
survival functions (and therefore different underlying mechanisms)
over time (e.g. Arani et al., 2001), are a possible alternative; however,
the underlying assumption of these models seems unlikely for
post-release mortality. Rather, the impacts of CHR should be man-
ifested continuously, and not involve distinct interventions over
time unless there are plausible external or physiological reasons to
expect them. Of course, our model with a mortality onset delay is
a type of multiphase model; however, reasonable biological explana-
tions are possible for the two phases as noted earlier in this paper.

We have also shown how the mixture model can be generalized
to accommodate key aspects common to survival data, as illustrated
by the case studies. Using simulations, we demonstrated that special
cases of the generalized model can provide robust estimates of
discard mortality rates with little or no bias when there is additional
low-to-moderate natural mortality. Moderate estimation bias
occurred when the natural mortality rate was large (M . 1.5), with
values representative of short-lived species, not of the species consid-
ered in our case studies. Furthermore, under many conditions M was
also reliably estimated, with biases occurring mainly when M was
large, in which case some natural mortality was incorrectly attributed
to discard mortality. Surprisingly, discard mortality and M para-
meters were reasonably well estimated even when observations were
terminated before the survival functions showed signs of levelling-off.

Table 3. Parameter estimates and associated confidence intervals for Case study II, cod released from a recreational rod-and-reel fishery, and a
summary of results from a simulation based on those estimated parameter values (mean, median, 2.5th, and 97.5th percentiles [95% interval],
and RB).

Parameter N

Study results Simulation results

Estimate 95% C.I. Mean Median 95% Interval RB

pNone/Minor 101 0.071 0.031–0.150 0.070 0.070 0.031–0.150 20.83
pModerate 17 0.329 0.144–0.597 0.325 0.311 0.086–0.617 1.91
pSevere 10 0.699 0.293–0.938 0.696 0.700 0.257–0.999 1.61
M 0.173 0.056–0.564 0.197 0.171 0.001–0.616 21.80

The injury class-specific discard mortality parameters (p’s) and the natural mortality parameter (M) are presented, along with the number of fish in each injury class (N).

Table 4. Parameter estimates and associated confidence intervals for Case study III, winter skate captured in a scallop dredge, and a summary
of results from a simulation based on those estimated parameter values (mean, median, 2.5th, and 97.5th percentiles [95% interval], and RB).

Parameter N

Study results Simulation results

Estimate 95% CI Mean Median 95% interval RB

pNone/Minor 26 0.341 0.042–0.870 0.362 0.250 0.011–0.999 19.2
pModerate 39 0.500 0.169–0.831 0.393 0.303 0.105–0.952 231.4
pSevere 46 0.998 0.048–1.000 0.924 0.998 0.586–0.999 25.5
t0,None/Minor 39.4 12.8–115.6 20.9 7.0 0.0–63.0 248.3
t0,Moderate 28.6 11.7–69.9 8.6 2.6e24 0.0–46.2 271.3
t0,Severe 2.7 0.0 –51.7 1.8 1.3e22 0.0–11.2 248.8

The injury class-specific discard mortality parameters (p’s) and mortality onset delay parameters (t0’s) are presented, along with the number of fish in each
injury class (N)

Figure 6. Injury class-specific underlying survival functions (thick lines)
and examples of KM estimates for 20 simulation iterations (thin lines with
crosses to indicate censored observations) for (a) the cod case study and
(b) the winter skate case study. Injury classes are distinguished using
colours: red/orange ¼ none/minor, green¼moderate, and black/
grey¼ severe. Note how the variability among KM curves scales with
sample size, for example by comparing the results for the simulated none/
minor (N¼ 101) and severely injured (N¼ 10) classes in (a).
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The model presented here is therefore likely to be highly useful given
the move towards a greater ecological realism in discard and post-
release mortality studies (Raby et al., 2014).

The model that incorporated a delay in mortality presented some
challenges. Fitting the model required attention to starting param-
eter values, in contrast to the model with M, which was largely
insensitive to starting values. The simulations for the “delay model”
indicated that the discard mortality rates were only accurately esti-
mated when mortality delays were at most moderate. However,
the delay parameters were generally underestimated, as the estimation
procedure tended towards delays close to nil for many simulation

iterations. In effect, the estimations tended towards implied very
low probabilityof mortalities during the early partof the experiments,
rather than consistently estimating a nil probability of mortality as
was simulated. Unfortunately, there will be very little information
in the data during the initial part of an experiment to distinguish
between these two possibilities. However, using information from
past studies or knowledge of physiological processes to derive inform-
ative priors for the delay parameters would certainly improve estima-
tion for models fit under the Bayesian paradigm. More generally,
our results suggest that diligence is required when fitting models
with mortality delays, and we recommend the use of case-specific

Figure 7. Summary of the results of the generic simulations with discard and natural mortalities [based on Equation (9)]. Results for the different
simulated cases are presented along the y-axis. The mean (square), median (x), and 95 percentile interval (horizontal line) are presented for the
estimated discard mortality rate parameter for each of the three status classes (distinguished by shading) in the left panel and for the global (cases
1–11) or class-specific (cases 12 –17) natural mortality rates (M ) in the right panel. In each panel, the vertical dashed lines indicate the simulated
value of the parameter. The numbers on the left indicate the value of the simulated parameters other than M that were varied among cases. Details
on the parameters used in the simulations can be found in Table 1, and the shapes of the simulated survival functions that generated these results
are in Figure 3a and b.
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simulations to explore the robustness of the model for the situation at
hand. Despite the preceding, it must be noted that delays in mortality
onset appear rare in the available literature on discard mortality, with
no cases identified in the review of longitudinal studies undertaken by
Benoı̂t et al. (2012). The above considerations may therefore only
apply to a limited number of cases.

Here, we paid little attention to multi-model comparison; that is,
comparing the evidence for a suite of models based on the data.
Multi-model comparisons can guide the selection of the most
probable model(s) to have generated the observed data, in light of
data variability, and are considered good practice (Hilborn and
Mangel, 1997; Burnham and Anderson, 2002). We have reserved
this type of analysis for the detailed examinations of the case
studies (Benoı̂t et al. 2012; C. Capizzano in prep; R. Knotek in prep).
Additionally, we did not consider the consequences of model mis-
specification. A logical next step for longitudinal discard mortality
modelling research would be to use simulations to study the conse-
quences for discard mortality estimates of assuming an incorrect
model. Identifying the most robust models would help ensure that
scientific advice on discard mortality is as reliable as possible.

Though the generalized model presented here can provide esti-
mates of natural mortality, given appropriate data, these estimates
may not accurately reflect actual rates. For example, for acoustic
transmitters, if a predator consumes a tagged fish and carries the
tag outside of the array, the individual will be assumed to provide
a censored observation and predation mortality (part of the discard
mortality for ‘affected’ individuals or part of M for “immune” indi-
viduals) will be underestimated. Such an effect, combined with the
estimation variability, means that the present approach may not be
suitable for providing reliable independent estimates of M for stock
assessments. However, the approach does appear to provide an esti-
mate that is of the correct scale. It is also worth noting that if tags are
shed before fish die or become censored observations, mortality
(discard or natural) is likely to be overestimated, and scientists may

need to account for such effects in their study design or perhaps
during analysis to ensure accurate estimation of mortality terms.

In summary, we have provided theoretical arguments, and em-
pirical support via simulations and case studies for the generalized
mixture model to estimate discard mortality from longitudinal
data. This model appears particularly well suited for this field of
study and performed well for the cases most likely to be encoun-
tered: CHR-mortality only, CHR-mortality with additional natural
mortality, and distinct CH and post-release mortalities. As the case
studies illustrate, this model approach—assuming satisfaction of
assumptions—is conducive to both shorter term enclosure studies
or more temporally extended electronic tagging and telemetry
studies where animals are at liberty. Because this model is founded
on a basic parametric survival function, it can easily be adapted to
include othereffects not modelled here, and can be fit using maximum-
likelihood or Bayesian methodologies. Furthermore, model fitting can
readily incorporate both left- and right-censored data thereby allowing
data from cross sectional studies to be readily combined with longitu-
dinal data to improve estimation of key parameters (e.g. Benoı̂t et al.,
2013). We believe that these properties, taken together, result in a
powerful framework in which to analyse discard mortality data and
to produce reliable scientific advice on discard mortality rates and pos-
sibilities for mitigation.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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for the class-specific delay parameters in the right panel. In each panel, the vertical dashed lines indicate the simulated value of the parameter and
the numbers on the left indicate the value of the simulated parameters other than the delay parameters that were varied among cases. Details on the
parameters used in the simulations can be found in Table 1, and the shapes of the simulated survival functions that generated these results are in
Figure 3c.
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Appendix
Description of the likelihood function used to fit the model
The log-likelihood function for the generalized mixture model is
made up of three functions: the survival distribution function, the
probability density function, and the mixture weight function [for
the derivation, see Ibrahim et al. (2001)]. The survival distribution
function, S(t), is defined as the probability that an individual i sur-
vives to a time Ti . t. For the model in Equation (7), the survival
distribution functions for affected and immune individuals are
respectively given by

SA(t) = t exp(−Mt − [a · (t − t0)]g), (A1)

SI(t) = t exp(−Mt), (A2)

where t is the survival time, t models capture and handling mortal-
ity, and a and g are, respectively, the scale and shape parameters of
the Weibull distribution.

The probability density function, f(t), is the probability of dying
at t and is the first derivative of 1 2 S(t). For affected and immune
individuals, the density functions are respectively given by

fA(t) = (a · g(a · (t − t0))g−1 + M) · SA(t), (A3)

fI(t) = M · SI(t). (A4)

Themixturedensity,m(t), for uncensored observations is then givenby

m(t) = p · fA(t) + (1 − p) · fI(t), (A5)

where p is the probability that an individual is adversely affected.
The mixture probability for right-censored observations is

mR(t) = p · SA(t) + (1 − p) · SI(t) (A6)

and the mixture probability for left-censored observations is

mL(t) = p · (1 − SA(t)) + (1 − p) · (1 − SI(t)). (A7)

Now, let u denote the vector of unknown parameters, y denote the
set of b independent observed event times (mortality or censorship,
as the case may be) indexed by i, d is the vector for a binary variable
that denotes whether observations are left-censored (di ¼ 1) or not
(di ¼ 0), and let e be a vector for a binary variable denoting whether
observations are right-censored. The resulting full log-likelihood
function to be minimized is then given by

log L(u|y, d, e) =
∑b

i=1
−(1 − di) · (1 − ei) · log(m(t)i) .

−ei log(mR(t)i) − di log(mL(t)i)

. (A8)

Handling editor: Shijie Zhou
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