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 17 

Abstract 18 

We present a new 3D unstructured-grid model (SCHISM) which is an upgrade from an existing model (SELFE). 19 
The new advection scheme for the momentum equation includes an iterative smoother to reduce excess mass 20 
produced by higher-order kriging method, and a new viscosity formulation is shown to work robustly for generic 21 
unstructured grids and effectively filter out spurious modes without introducing excessive dissipation. A new higher-22 
order implicit advection scheme for transport (TVD

2
) is proposed to effectively handle a wide range of Courant 23 

numbers as commonly found in typical cross-scale applications. The addition of quadrangular elements into the 24 
model, together with a recently proposed, highly flexible vertical grid system (Zhang et al. 2015), leads to model 25 
polymorphism that unifies 1D/2DH/2DV/3D cells in a single model grid. Results from several test cases 26 
demonstrate the model’s good performance in the eddying regime, which presents greater challenges for 27 
unstructured-grid models and represents the last missing link for our cross-scale model. The model can thus be used 28 
to simulate cross-scale processes in a seamless fashion (i.e. from deep ocean into shallow depths). 29 

 30 

Key words: SCHISM; eddying regime; baroclinic instability; general circulation; Black Sea  31 

 32 

1 Introduction 33 

For the past two decades, great progress has been made in the application of unstructured-grid (UG) models to 34 
coastal ocean processes. The superior boundary fitting and local refinement/derefinement ability of UG models 35 
make them ideally suited for nearshore applications involving complex geometry and bathymetry. In particular, the 36 
authors have previously demonstrated the great utility of UG models based on implicit time stepping schemes as the 37 
latter effectively bypass the stringent CFL constraint and thus removes one of the most severe restrictions in UG 38 
models (Zhang and Baptista 2008, hereafter ZB08); other time stepping methods such as predictor-corrector method 39 
have also been proposed with somewhat stricter time step limit than ours (but more relaxed than the explicit mode-40 
splitting models) (Danilov 2012). The implicit UG models are free of mode-splitting errors and of the associated 41 
filter to prevent modes aliasing. 42 

Despite the great success of implicit UG models for barotropic problems (e.g., tides, storm surge and tsunami 43 
inundations etc; Zhang et al. 2011, Bertin et al. 2014), their success for baroclinic problems remains modest so far 44 
due to some unique challenges in such applications (e.g. pressure-gradient errors, diapycnal mixing etc), which 45 
warrants further research effort. In fact, the success of UG models in the eddying regime has been very limited so far 46 
compared to their structured-grid counterpart, and one of the reasons is that the larger velocity space compared to 47 
the elevation space in UG models results in stronger spurious inertial modes that must be carefully controlled (Le 48 
Roux 2005; Ringler et al. 2010; Danilov 2012). Note that the spurious modes appear in all models (structured or 49 
unstructured), and can be excited from a variety of perturbation sources (Cotter and Ham 2011; Le Roux 2012), but 50 
they are particularly severe in larger depths and along steep slopes. 51 

We have been systematically improving the baroclinic capability of our UG model, and this paper serves as a 52 
summary of the progress we have made in this endeavor for the past 5 years. Our experience suggests that for an UG 53 
model to work well in the baroclinic regimes from shallow to large depths, it has to strike a careful balance between 54 
accuracy, efficiency and robustness. For instance, the eddying regime sets a high standard for numerical dissipation 55 
and stability (control of modes), whereas the order of numerical schemes is less important in the estuarine 56 
applications, as the strong forcing therein favors stable and often lower-order numerical schemes. For such 57 
applications, more emphasis should be placed on faithfully resolving geometric and bathymetric features that act as 58 
the 1

st
-order forcing for the underlying processes. The rich diversity of the processes as found from shallow to large 59 

depths likely precludes a ‘one-size-fits-all’ approach, and different numerical options may prove to be useful in 60 
different regimes. This has been the guiding principle when we built our cross-scale model. 61 

As far as the model (SELFE) we have been developing for the past 15 years is concerned, we have made steady 62 
progress in the baroclinic regime in the shallows (ZB08; Burla 2010). Although all implicit models have inherent 63 
numerical diffusion, SELFE seems to have struck a good balance between numerical dissipation (due to implicit 64 
time stepping), numerical dispersion (due to Finite Element Method), and stability demanded by such type of 65 
applications. However, the following areas need to be improved before it can become a bona fide cross-scale model. 66 
First, the stratification is often under-estimated. This is related to the transport scheme as well as the vertical grid 67 
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system used (which is a hybrid system with part terrain-following S coordinates and part Z coordinates). The 68 
situation improves significantly with the introduction of TVD scheme for transport, and recently a flexible LSC

2
 69 

vertical grid (Zhang et al. 2015). Second, the model has not been applied in the eddying regime, which represents 70 
the last missing link for a truly cross-scale model. One of the main focuses of this paper is on improving the model 71 
in the eddying regime. 72 

We have been working on a derivative product of the original SELFE model (v3.1dc; 73 
http://www.stccmop.org/knowledge_transfer/software/selfe; last accessed Sept. 17, 2015), mostly due to license 74 
disputes. However, the renaming of the model is probably long overdue as many important differences have 75 
emerged between our branch of SELFE and the original SELFE for the past 3 years. The new model, SCHISM 76 
(Semi-implicit Cross-scale Hydroscience Integrated System Model; www.schism.wiki, last accessed Sept. 17, 2015) 77 
is being distributed with an open-source Apache v2 license, and has been operationally tested by Central Weather 78 
Bureau of Taiwan (http://www.cwb.gov.tw/V7e/forecast/nwp/marine_forecast.htm;  last accessed Sept. 17, 2015), 79 
California Department of Water Resource 80 
(http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/bay_delta_schism/; last accessed Sept. 17, 81 
2015), and National Laboratory of Civil Engineering, Portugal (LNEC; http://ariel.lnec.pt/node/40; last accessed 82 
Sept. 17, 2015). Although the original focus of SCHISM is the same as SELFE, i.e., hydrodynamic applications, it 83 
has since evolved into a comprehensive modeling framework (Fig. 1), courtesy of other developers and user groups 84 
(http://ccrm.vims.edu/schism/team.html, last accessed Sept. 17, 2015). At the moment the SCHISM modelling 85 
system includes: a wind-wave model (Roland et al 2012), 3 sediment transport models (Community Sediment 86 
Transport Model (Pinto et al. 2012), SED2D (Dodet 2013), and TIMOR (Zanke 2003)), 2 biological/ecological 87 
models (EcoSIM (Rodrigues et al. 2009) and CoSiNE, (Chai et al. 2002)), 2 oil spill models (Azevedo et al. 2014), 88 
an age tracer model based on the work of Shen and Haas (2004), a generic tracer model, and a water quality model 89 
(CE-QUAL-ICM, Cerco and Cole 1993). All modelling components have been parallelized using domain 90 
decomposition MPI with generally good scalability. 91 

For clarity, we list out the main new features of SCHISM as compared to SELFE v3.1dc: 92 

1)  Vertical grid system (LSC
2
, Zhang et al. 2015); 93 

2)  Mixed triangular-quadrangular horizontal grid; 94 

3)  Implicit advection scheme for transport (TVD
2
); 95 

4)  Advection scheme for momentum: optional higher-order kriging with ELAD filter;  96 

5)  A new horizontal viscosity scheme (including bi-harmonic viscosity) to effectively filter out inertial spurious 97 
modes without introducing excessive dissipation. 98 

The 1
st
 feature has been reported in Zhang et al. (2015), and the rest will be the subject of this paper. 99 

To prepare for the introduction of the new SCHISM features, we will first briefly review some key formulations in 100 
SELFE in Section 2, with the focus on the treatment of momentum advection. We then present the main differences 101 
and new developments of SCHISM in Section 3, including the new advection schemes for momentum and transport 102 
equations, and a filter-like bi-harmonic viscosity. Section 4 shows the extension of the formulations to mixed 103 
triangular-quadrangular grids. Several challenging test cases are presented in Section 5 to benchmark the model in 104 
the eddying regime. Together with previously demonstrated model capability in the non-eddying regimes, the new 105 
capability in the eddying regime brings forth a seamless cross-scale model that is equally skillful from shallow to 106 
deep oceans. Section 6 concludes the paper. 107 

 108 

2. SELFE formulation 109 

To clearly show the new revisions in SCHISM, in this section we briefly review some key formulations in SELFE 110 
v3.1dc (ZB08). SELFE solves the Reynolds-averaged Navier-Stokes equation in its hydrostatic form and transport 111 
of salt and heat: 112 

Momentum equation: F
uu

















  g

zztD

D
,  (1) 113 

Continuity equation in 3D and 2D depth-integrated forms:  114 

http://www.stccmop.org/knowledge_transfer/software/selfe
http://www.schism.wiki/
http://www.cwb.gov.tw/V7e/forecast/nwp/marine_forecast.htm
http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/bay_delta_schism/
http://ariel.lnec.pt/node/40
http://ccrm.vims.edu/schism/team.html
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Transport equations: 117 
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D/Dt material derivative 121 

(x,y) horizontal Cartesian coordinates 122 

z vertical coordinate, positive upward 123 

t time 124 

),,( tyx
 free-surface elevation 125 

),( yxh
 bathymetric depth 126 

( , , , )x y z tu
 horizontal velocity, with Cartesian components (u,v) 127 

w vertical velocity 128 

F other forcing terms in momentum (baroclinic gradient ( 
 

  
     

 

 
), horizontal viscosity, 129 

Coriolis, earth tidal potential, atmospheric pressure, radiation stress) 130 

g acceleration of gravity, in [ms
-2

] 131 

C tracer concentration (e.g., salinity, temperature, sediment etc) 132 

 vertical eddy viscosity, in [m
2
s

-1
] 133 

 vertical eddy diffusivity, for tracers, in [m
2
s

-1
] 134 

Fh horizontal diffusion and mass sources/sinks 135 

The differential system (1-4) is closed with turbulence closure of the generic length-scale model of Umlauf and 136 
Burchard (2003), and proper initial and boundary conditions (B.C.) for each differential equation. 137 

The 3D domain is first discretized into triangular elements in the horizontal and a series of vertical layers (using 138 
hybrid SZ coordinates). The unknown variables are then staggered on triangular prisms as shown in Fig. 2, which 139 
resembles a CD grid (Arakawa and Lamb 1977) as well as the P

1
-P

NC
 element configuration (Le Roux et al. 2005). 140 

In the first step, SELFE solves the coupled equations (1) and (3) together with their boundary conditions, with a 141 
semi-implicit Galerkin Finite Element method (FEM). The linear pair of P

1
-P

NC
 element configuration is used to 142 

approximate the elevation and horizontal velocity respectively. The implicit terms include elevation gradient, 143 
vertical viscosity, the bottom B.C. for Eq. (1), and the divergence term in Eq. (3), all of which impose severe 144 
stability constraints. The time stepping is done using a 2

nd
-order Crank-Nicolson method, i.e., with the implicitness 145 

factor being 0.5 (in practice a value slightly larger than 0.5 is used for robustness). The unknown velocities (defined 146 
at side centers) are first eliminated from the equations with the aid from the bottom boundary layer, resulting in an 147 
integral equation for the unknown elevations alone, which can be efficiently solved with a parallel solver (Jacobian 148 
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Conjugate Gradient) (ZB08). The momentum equation is then solved with a Galerkin FEM along each vertical 149 
column of a side. After the horizontal velocity and elevation are found, the vertical velocity is then solved from Eq. 150 
(2) with a Finite Volume method (FVM) along each prism. The volume conservation ensured by FVM serves as the 151 
foundation for the mass conservative transport solver, which also employs a FVM (with either 1

st
-order upwind or 152 

2
nd

-order explicit TVD method; see Casulli and Zanolli 2005), because the volume conservation guarantees 153 
constancy condition for the transport equation. Note that the volume conservation in SCHISM is only approximate 154 
in the sense that there is a closure error for the vertical velocity due to the different methods used to solve the two 155 
forms of the continuity equation (FEM for Eq. (3) vs FVM for Eq. (2)). Solution of the 2.5 turbulence closure 156 
equations and update of the vertical grid (including the marking of wetting and drying nodes/sides/elements) 157 
constitute the remaining operations in a time stepping loop. More details can be found in ZB08. 158 

The CD grid used in SELFE is instrumental in its ability to easily maintain geostrophic balance, as both velocity 159 
components (u,v) are explicitly modelled. This is a key difference from UnTRIM-family of models (Casulli and 160 
Cattani 1994) which uses a C grid, where special treatment has to be made to properly maintain the geostrophic 161 
balance (Zhang et al. 2004; Ham et al. 2007). In addition, due to the finite-difference method used in the UnTRIM-162 
family of models, only orthogonal UG grids can be used, which proves to be restrictive in practice. On the other 163 
hand, the FEM framework used in SELFE (and SCHISM) allows generic non-orthogonal UG’s to be used. In fact, 164 
the model has a high tolerance for skew (non-orthogonal) elements. 165 

A critical feature of SELFE is the use of Eulerian-Lagrangian method (ELM) to treat the momentum advection term: 166 

t

tt

D

D nn






 ),(),(

t

*1
xuxuu

 (5) 167 

where ‘n’ and ‘n+1’ denote time step levels, t is the time step, x is a shorthand for (x,y,z), and x
*
 is the location of 168 

the foot of characteristic line (FOCL), calculated from the characteristic equation: 169 

u
x


tD

D
 (6) 170 

The location x
*
 is found via a backtracking step, standard in an ELM, via backward integration of Eq. (6) starting 171 

from a given location (x), which is in our case a side center at whole level where the horizontal velocity u is defined. 172 
The fixed starting location (Eulerian framework) followed by a Lagrangian tracking step gives the name Eulerian-173 
Lagrangian method. Therefore the ELM consists of two major steps: a backtracking step (Fig. 3a) and an 174 
interpolation step at FOCL (Fig. 3b). We further sub-divide the tracking step into smaller intervals (based on local 175 
flow gradients), and use a 2

nd
-order Runge-Kutta method (mid-point method) within each interval, in order to 176 

accurately track the trajectory (cf. the ELM test in Section 3). Although exact integration methods have been 177 
proposed (Ham et al. 2006), their implementation is complicated for a 3D (triangular and quadrangular) prism and in 178 
the exceptional cases of wetting and drying interfaces. The interpolation step serves as an important control for 179 
numerical diffusion/dispersion in the ELM, and we therefore experimented with several options as shown below. 180 
However, before we get to this, we first explain how SELFE converts the velocities at sides to the velocities at 181 
nodes, as the latter are required in the interpolation of the velocities along the characteristic line and at FOCL (Fig. 182 
3ab).  183 

As explained by Danilov (2012), the conversion method used bears important ramifications: judicious averaging 184 
(e.g., from side to elements or to node etc.) may greatly reduce the need later on for filters to remove the inertial 185 
spurious modes while still keeping the inherent numerical dissipation low. In fact, one could have used the 186 
discontinuous velocity calculated within each element to carry out the backtracking, but this would introduce 187 
insufficient amount of dissipation to suppress the inertial modes. 188 

In the first approach (‘MA’ hereafter), we use inverse distance weights to interpolate from velocities at surrounding 189 
sides onto a node (Fig. 4a). This introduces diffusion which may be excessive in our experience, and therefore no 190 
further stabilization (via filters or viscosity) is required for this approach (see the discussion of stabilization in 191 
Danilov 2012). This approach works well in shallow waters especially for the inundation process, as numerical 192 
stability often trumps the order of accuracy there. The 2

nd
 approach (‘MB’ hereafter) is more elegant and utilizes the 193 

(linear) shape function in FEM within each element to calculate the node velocities. This is equivalent to using the 194 
P

NC
 non-conformal shape function (Le Roux et al. 2005) as one essentially interpolates based on information at sides 195 

(Fig. 4b). Because each element produces a velocity vector at each of its 3 nodes, the final node velocity is the 196 
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simple average of the values calculated from all of the surrounding elements (Fig. 4b). As we will demonstrate with 197 
a simple test in the next section, this approach introduces much less dissipation, but does exhibit inertial spurious 198 
modes. As a result, further stabilization is required. To this end, SELFE uses a 5-point Shapiro filter (Shapiro 1970) 199 
as illustrated in Fig. 5a; the velocity at a side ‘0’ is filtered as: 200 

 )4(
4

~
0432100 uuuuuuu 


, (7) 201 

with the strength usually set as =0.5. We will show that the filter is analogous to a viscosity implementation in the 202 
next section. It proves to be very effective in removing the sub-grid scale inertial spurious modes; however, it 203 
introduces too much dissipation in the eddying regime, and we’ll present a better alternative in SCHISM in the next 204 
section. 205 

Once the node velocities are found via MA or MB, the interpolation at the FOCL is carried out in 3D space. A 206 
simple linear interpolation is used in the vertical dimension as the results from the cubic-spline interpolation turned 207 
out to be similar, due to more confined spatial scales and smaller grid sizes in the vertical. The horizontal 208 
interpolation can be done using either a simple linear shape function based on all of the nodes of the containing 209 
element (‘LI’ hereafter; Fig. 3b), or a higher-order dual kriging method (‘KR’ hereafter) suggested by Le Roux et al. 210 
(1997). The latter requires larger stencil around the FOCL, and for best parallel efficiency we use a 2-tier 211 
neighborhood as shown in Fig. 3b. Given a total of N nodes available in the 2-tier neighborhood, the interpolation 212 
function is constructed as (Le Roux 1997): 213 





N

i

ii

h rKyxyxf
1

321 )()(),(   (8) 214 

where the first 3 RHS terms inside the parentheses represent a mean drift (modeled as a linear function), and the 2
nd

 215 
terms is the fluctuation part, j, i are unknown coefficients, and ri is the distance between (x,y) and (xi,yi), with i 216 
being a node. The following forms of the generalized covariance function are commonly used (Le Roux et al. 1997): 217 

7532   ,  ,  ),log(  ,)( rrrrrrrK   (9) 218 

with increasing dispersion for the higher-degree functions; therefore in practice, the last two functions are seldom 219 
used. In the following we will refer to the first 3 functions as ‘KR1’, ‘KR2’ and ‘KR3’ respectively. 220 

The equations to solve for the unknown coefficients are: 221 
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 (10) 222 

where di are given data at each node. The 1
st
 equation in (10) indicates that the dual kriging is an exact interpolator, 223 

and the other 3 equations are derived from minimization of the variance of estimation error (Le Roux et al. 1997). 224 
Note that the matrix of Eq. (10) is dependent only on geometry and therefore can be inverted and stored before the 225 
time stepping loop to achieve greater efficiency. After the coefficients are found, the interpolation at FOCL is done 226 
via Eq. (8). 227 

The smaller stencil used here compared to that used by Le Roux et al. (1997) leads to larger numerical dispersion. 228 
Therefore an effective method must be found to control the dispersion, and we will show how this is done in 229 
SCHISM in the next section. 230 

We conclude this section by noting that the various schemes presented above can be freely combined, resulting in 231 
schemes like ‘MA-LI’, ‘MB-KR2’ etc. 232 
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 233 

3. Revisions in SCHISM 234 

In this section we present new advection schemes for the transport and momentum equations used by SCHISM. Our 235 
focus is on the eddying regime but the reduced dissipation enabled by the new schemes proves largely beneficial for 236 
the shallow environment as well and we have successfully tested these schemes in the non-eddying regime (Ye et al. 237 
submitted).  238 

3.1 Tracer advection scheme: TVD
2
 239 

The 2
nd

-order TVD scheme in SELFE is explicit in 3D space and thus subject to the Courant condition, which 240 
comprises of horizontal and vertical fluxes across each of the prism faces (Casulli and Zanolli 2005). The restriction 241 
related to the vertical fluxes is especially severe due to smaller grid size used in the vertical dimension, and therefore 242 
a large number of sub-cycles within each time step are usually required. To partially mitigate the issue, a hybrid 243 
upwind-TVD approach can be used in which the more efficient upwind scheme, with an implicit treatment of the 244 
vertical fluxes, is used when the flow depth falls below a given threshold (with the assumption that stratification is 245 
usually much smaller in the shallows). However, this approach does not work in deeper depths of eddying regime, as 246 
large vertical velocities are not uncommon along steep bathymetric slopes. Together with the fact that a large 247 
number of vertical levels are usually required in the eddying regime, the explicit scheme leads to subpar 248 
computational performance and usually takes over 90% of the total CPU time. 249 

We therefore develop an implicit TVD scheme in the vertical dimension in SCHISM. We start from the FVM 250 
formulation of the 3D transport equation (4) at a prism i: 251 
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where Cj is the concentration at the neighboring prism of i across a prism face          , with S
+
/S

-
 denoting 254 

outflow/inflow faces (which can be horizontal or vertical) respectively, Vi is the prism volume, Ai is the area of the 255 
associated surficial triangular element, and Qj is the flux at a face. In Eq. (11) we have utilized the volume 256 
conservation in a prism (which is enforced by the solution of the vertical velocity):                    . We 257 
have also approximated the concentration at a face as the sum of an upwind and a correction part as: 258 

jrjupj
CCC  . (12) 259 

Note that in the 2
nd

 term of RHS of Eq. (11), we have Cj =Cjup as j is an inflow face. In addition, we have 260 
intentionally left out the time level in some terms in (11) as they will be treated explicitly or implicitly in the 261 
following. 262 

We split the solution of Eq. (11) into 3 sub-steps: 263 
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   (15) 266 

The 1st step Eq. (13) solves the horizontal advection part (for all 3D prisms i), the 2
nd

 step Eq. (14) deals with the 267 
vertical advection part (where kb is the bottom level index and Nz is the surface level index), and the last step Eq. 268 
(15) tackles the remaining terms. We could have combined the 1

st
 and 3

rd
 steps into a single step at the expense of 269 

efficiency, because sub-cycling is used in the 1
st
 step. In Eq. (13), sub-cylcing in M sub-steps is required because of 270 
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the horizontal Courant number condition, tm is the sub-time step used, and 
m

ĵ  is a standard TVD limiter function. 271 

Eq. (13) is then solved with a standard TVD method. The last step (15) requires the solution of a simple tri-diagonal 272 
matrix. So we will only focus on the 2

nd
 step. 273 

Following Duraisamy and Baeder (2007, hereafter DB07), we use two limiter functions in Eq. (14): j is the space 274 
limiter and j is the time limiter  thus the name TVD

2
. The origin of these two limiters is the approximation Eq. 275 

(12) via a Taylor expansion in both space and time (DB07): 276 

11112/1 ][
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Note that the interface value is taken at time level n+1/2 to gain 2
nd

-order accuracy in time. The vector r points from 278 

prism center jup to face center j. Due to the operator splitting method, C
n+1

 now actually corresponds to C
~

. 279 
Customary in a TVD method, we then replace the last 2 terms with limiter functions: 280 
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and so: 282 
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where ‘jD’ stands for the downwind prism of i along the face j, and j and  j are 2 limiter functions in space and 284 
time respectively. Note that j=j =1 leads to 2

nd
-order accuracy in both space and time. 285 

Substituting Eq. (18) into (14) and after some algebra we obtain a nonlinear equation for the unknown 286 
concentration: 287 
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where rp and sq are upwind and downwind ratios respectively: 289 
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DB07 showed that a sufficient TVD condition for Eq. (19) is that the coefficient of the 2
nd

 LHS term be non-291 
negative, i.e.: 292 
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where  is a small positive number. Eq. (21) can be satisfied with any choice of standard limiter functions in space, 295 
and Eq. (22) must be solved together with Eq. (19) iteratively, because  and sq are functions of   . We need to 296 
discuss 3 scenarios for prism i:  297 

(1) vertically convergent flow: in this case, the outer sum in Eq. (22) is 0, so the inequality is always true;  298 

(2) divergent flow: the numerator of the 2
nd

 LHS term in Eq. (19) is 0, and so       
   ; 299 

(3) uni-directional flow (either upward or downward): in this case, prism i has exactly 1 inflow and 1 outflow face 300 
vertically, so a sufficient condition for Eq. (22) is: 301 
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Therefore we choose the following form for the limiter: 303 
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  (24) 304 

where we have imposed a maximum of 1 in an attempt to obtain 2
nd

-order accuracy in time. Note that the limiter is a 305 
function of the vertical Courant number: it decreases as the Courant number increases. Eqs. (19) and (24) are then 306 
solved using a simple Picard iteration method starting from =0 everywhere, and fast convergence within a few 307 
iterations is usually observed. 308 

Simple benchmark tests indicate that TVD
2
 is accurate for a wide range of Courant numbers as found in typical 309 

geophysical flows (Ye et al. submitted). The accuracy and efficiency of TVD
2
 will also be shown in Section 5. It 310 

works equally well in eddying and non-eddying regimes, from very shallow to very deep depths, and is thus ideal for 311 
cross-scale applications. 312 

 313 

3.2 Viscosity 314 

Danilov (2012) demonstrated the importance of the momentum advection and stabilization schemes in the eddying 315 
regime for UG models. Beside accuracy consideration, prevention of spurious modes is an important goal, which 316 
can be done via viscosity, filtering, and/or averaging of velocity fields (e.g., from element to node etc). As the 317 
Shapiro filter, which is designed to remove the spurious modes in SELFE, is too dissipative in the eddying regime, 318 
we replace it with an effective horizontal viscosity scheme in SCHISM.  319 

Most geophysical fluid dynamic models use horizontal viscosity to add dissipation to the numerical scheme in order 320 
to control sub-grid scale instabilities, e.g. due to cascading of enstrophy toward the smallest resolved scales (Griffies 321 
and Hallberg 2000). In other words, one of the main goals of the viscosity is to remove the unresolved sub-grid 322 
scales but preserve the resolved scales as much as possible. The new viscosity scheme presented here is therefore 323 
designed more to filter out spurious modes than to represent the actual physical horizontal mixing process.  324 

We start with a demonstration that the traditional Laplacian viscosity loses its effectiveness on generic UGs. While 325 
there are different ways to implement the Laplacian viscosity on UGs, we present a particular way catered to the 326 
specificity of SCHISM; nevertheless the conclusion here applies to other implementations as well. Consider the 327 
stencil depicted in Fig. 5a; the horizontal viscosity term at the side center ‘0’ is given by: 328 
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where  is the boundary PQRS (Fig. 5a), and we assume the viscosity 0 to be constant in the stencil. The formula 330 
for the viscosity term for the v-velocity is similar. The derivatives are evaluated using the linear shape functions 331 
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defined inside the 2 smaller triangles formed by joining the 3 side centers (012 and 034 in Fig. 5a), and are constant 332 
within each triangle: 333 
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 (26) 334 

with a similar form for element II. The final form for the viscosity is then: 335 
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  (27) 336 

where proper linear vertical interpolation has been made to bring um (m=1,..,4) onto the same horizontal plane as u0. 337 
For uniform grid with equilateral triangles, Eq. (27) becomes: 338 
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  (28) 339 

which is equivalent to the 5-point Shapiro filter (cf. Eq. (7)), with filter strength   
     

    
 

  

  
 (with D being a 340 

diffusion number). However, for obtuse triangles, some coefficients of um (m=1,2,3,4) in Eq. (27) become negative, 341 
and the viscosity then behaves like an amplifier (Shapiro 1970), and thus loses its utility of smoothing. This calls for 342 
a filter-like viscosity implementation as in Eq. (28) for UGs, and we use this equation to replace the Shapiro filter 343 
for generic UG’s. Danilov and Androsov (2015) used a similar form for viscosity. For boundary sides the viscosity 344 
term is omitted as B.C. is applied there instead. 345 

The bi-harmonic viscosity is often superior to the Laplacian viscosity as it is more discriminating in removing sub-346 
grid instabilities without adversely affecting the resolved scales of flow (Griffies and Hallberg 2000). The bi-347 
harmonic viscosity can be implemented by applying the Laplacian operator twice. Referring to Fig. 5c, we have: 348 
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 (29) 349 

where  is a hyper viscosity in m
4
/s,             and       

    is a diffusion-number-like dimensionless 350 
constant. We found that in practice          is sufficient to suppress inertial spurious modes, and so in this paper 351 
we set 2=0.025 for all test cases. 352 

 353 

3.3  Momentum advection scheme 354 

As we discussed in Section 2, the interpolation method used at FOCL has important ramifications. Since the dual 355 
kriging interpolators generate numerical dispersion (over-/under-shoots or excess mass field), we need an effective 356 
method to control the excess mass field; otherwise the dispersion would severely aggravate the inertial spurious 357 
modes. We use the ELAD method of Shchepetkin and McWilliams (1998) for this purpose. The essence of ELAD is 358 
to iteratively diffuse the excess field, instead of the original signal, using a diffusion operator/smoother. The 359 
viscosity scheme presented in the previous sub-section is used as the diffusion operator. The procedure is 360 
summarized as follows: 361 
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1)  Find the local max/min at FOCL. Assuming that the prism at FOCL starting from a side j and level k is 362 
(kf,nf),  where nf is the element index and kf is the vertical index, the max/min are found in the prism (kf,nf) 363 
as: 364 
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 (30) 365 

where im() enumerates 3 nodes of an element. 366 

2)  The excess field associated with (k,j) is: 367 
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where 
1,1

,

n

jku  is the interpolated value at FOCL. 369 

3)  Apply a global diffusion operator to   to obtain estimated velocity at the next iteration: 370 
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,     (32) 371 

and we use the 5-point filter with maximum strength (cf. (Eqs. (7,28)): 372 
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 (33) 373 

where subscripts 1-4 are the 4 adjacent sides of j (Fig. 5a); 374 

4)  Calculate the new excess field using 
2,1

,

n

jku  in 2) and apply the filter 3) again to find the velocity at the next 375 

iteration 
3,1

,

n

jku . Iterate until the excess field falls below a prescribed threshold. In practice, 10 iterations 376 

are usually sufficient to bring the excess field below an acceptable level (10
-4

 m/s); the remaining excess 377 
field is then further smoothed with the viscosity. 378 

The filter in Eq. (33) is conservative in the sense that it only redistributes excess mass and does not introduce any 379 
additional mass. This is similar in spirit to the conservative scheme of Gravel and Staniforth (1994) but appears 380 
simpler in implementation. At a boundary side j, Eq. (33) is modified in order to maintain the conservation: 381 
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 (34) 382 

where subscripts ‘1’ and ‘2’ are the 2 adjacent sides of j (Fig. 5d). Note that since the linear interpolation scheme 383 
(LI) does not introduce local extrema, ELAD is not applied there. 384 

 385 

3.3.1 A convergence test 386 

A combination of filter and higher-order advection schemes is often used in ocean models. Due to the use of filter, 387 
the actual order of convergence may be lower than what the original scheme is intended, and should be numerically 388 
derived using benchmark tests. As ELM is not a conventional method and direct comparison with upwind-type 389 
methods is often lacking in the literature, we demonstrate the order of convergence of various ELM schemes 390 
employed in SCHISM using a rotating Gauss hill test. In this test, we fix the advective velocity field as: 391 
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with the period of rotation T0=3000s,  and angular frequency =2/T0. We then use the temperature as a proxy for 393 
the velocity; in other words, we define the temperature at side centers and whole levels (just like velocity), convert 394 
the side temperature to node temperature, interpolate its value at FOCL, and apply ELAD (for dual kriging ELM) in 395 
exactly the same way as we did for velocity. Since we are only concerned with pure advection problem, no viscosity 396 
is applied to the ‘temperature’. This way we can study the momentum advection schemes in isolation from other 397 
parts of the model. Initially the Gauss hill of unit amplitude is defined as: 398 
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T  (36) 399 

where x0=0, y0=1800m, and =850m. We generate a circular grid of radius of 3600m with essentially uniform 400 
triangles using DistMesh (Persson and Strang 2004). The side length of triangles is varied in the convergence study 401 
as 400m, 200m, 100m, and 50m. The time step used is 300s for x=400m and adjusted for other cases such that the 402 
Courant number remains constant, and the 2

nd
-order Runge-Kutta method is used to calculate the characteristic line. 403 

For kriging interpolators (‘KR’), ELAD is applied with a threshold of 10
-4

 and maximum of 10 iterations (we have 404 
also tried a maximum of 100 iterations and the results are similar). 405 

The results with x=50m after 1 rotation from various advection schemes are compared with each other and the 406 
exact solution in Fig. 6. The two MA schemes have almost no under-/over-shoots (MA-KR3 has a very small 407 
undershoot on the order of -10

-20
), whereas all MB schemes have some dispersion. MB-LI and MB-KR1 have no 408 

overshoots, but have undershoots of -2.e-4 and -1.e-4 respectively. On the other hand, MB-KR2 and MB-KR3 lead 409 
to much larger overshoots (~0.027; note the distortion near the center of the hill) and smaller undershoots of -4.e-5 410 
and -6.e-5 respectively. These results are an indication of larger numerical diffusion/dissipation inherent in all MA 411 
schemes. Note that ELAD is not applied to MB-LI or MA-LI. 412 

The convergence curves from various schemes are summarized in Fig. 7. Highest convergence rate (~1.93) is 413 
achieved with MB-KR2 and MB-KR3. However, this is mostly due to the larger errors at coarser resolutions. In 414 
terms of RMSE, the best accuracy is achieved with MB-LI followed closely by MB-KR1. The discrepancy between 415 
the convergence rate and absolute error as shown here is probably not uncommon in ocean models and has 416 
important implications. The leading-order truncation error consists of two parts: a coefficient and an exponential 417 
term, and both are equally important. Since the order of convergence is only related to the 2

nd
 part, a ‘lower-order’ 418 

scheme such as MB-LI can still achieve better accuracy if it has a smaller ‘coefficient’. While some higher-order 419 
methods may theoretically lead to better convergence rate, their accuracy may require an unrealistically fine 420 
resolution. Another important consideration is that the use of ‘smoothers’ in the higher-order methods may also 421 
degrade the convergence rate. Despite their relatively lower convergence rates (~1.5), the smaller RMSE and 422 
superior shape-preserving ability achieved by MB-LI and MB-KR1 as demonstrated in Figs. 6 &7 make them better 423 
choices for practical applications with SCHISM. Although the test is done with a simple case here and the values of 424 
RMSEs might not directly translate to realistic cases, our experience suggests that the relative performance of each 425 
scheme revealed from this simple test is also representative in realistic cases. We therefore use MB-LI for the rest of 426 
the paper. However, we should remark that the superior stability of MA schemes makes them ideal for shallow-427 
water environment, and the better accuracy achieved by MA-KR3 may partially mitigate the induced numerical 428 
dissipation. Therefore a judicious combination of MA and MB schemes may be ideal for some applications, and this 429 
will be explored in future research.  430 



 

Zhang et al. Page  13 

 431 

4. Extension to mixed grids 432 

Quads are computationally more economical and in the case of a FEM model like SCHISM, the bilinear shape 433 
function associated with quad elements also gives better accuracy than that for triangular elements. Since the ratio 434 
between the velocity and elevation spaces becomes smaller with the quad grid, the inertial spurious modes can also 435 
be reduced (Danilov and Androsov 2015). 436 

Most schemes in SCHISM are agnostic with respect to element type and therefore their extension to quads is 437 
straightforward. The main changes are summarized below. For FEM formulation, bilinear shape function is used for 438 
quads, and the integrals are evaluated either analytically or using a 4-point (cubic) Gauss quadrature. Note that the 439 
idea of LSC

2
 and shaved cell technique can be trivially adapted to quads as well. The changes to TVD

2
 are minimal 440 

due to the FVM used. Therefore in the following we focus on the new viscosity and ELAD schemes. 441 

For the reason explained in Section 3.2 (i.e. to prevent negative coefficients), we will derive the viscosity form on 442 
uniform quads. Referring to Fig. 5b, the viscosity term is: 443 
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  (37) 444 

And the normal derivatives are evaluated inside the 2 smaller squares formed by the dashed lines. For convenience 445 
we rotate the coordinate frame so that the x- and y-axes are perpendicular to lines (0,1) and (1,2) respectively and the 446 
origin is located at the center of element I (note that the viscosity term is invariant under coordinate rotation). The 447 

transformation from (x,y) to local coordinates (,) is then simply: x=b and y=b, where         and a is the 448 
element side length. The 4 shape functions associated with points 0,1,2,3 are:  449 
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where |i|=|i|=1 are the local coordinates of the 4 points. Unlike in the case of triangles, the derivatives of u are no 451 
longer constant within each square but need to be evaluated using the derivatives of the shape functions (38). The 452 
final form is: 453 

 0643140
4)( uuuuuu    (39) 454 

where 4=0/(2a
2
). Note the absence of points 2 and 5 here. Eq. (39) is analogous to the traditional 5-point Laplacian 455 

operator for structured-grids and also to the 5-point viscosity for the triangles Eq. (28). Therefore the viscosity for a 456 
mixed grid involves only the 4 nearest adjacent sides, regardless of whether the element is triangular or 457 
quadrangular. The bi-harmonic viscosity for mixed triangular-quadrangular elements can be readily derived using 458 
Eq. (39) and the first half of Eq. (29). Since the ELAD operator is built on the Laplacian viscosity, Eqs. (33,34) can 459 
be easily extended to include quad elements as well.  460 

The combination of LSC
2
 vertical grid (Zhang et al. 2015) and horizontal mixed-element grids results in an 461 

extremely flexible grid system that has great practical applications. We demonstrate this with a toy problem for 462 
coastal ocean-estuary-river system depicted in Fig. 8. Since the tracer concentrations are defined at the prism 463 
centers, a row of quads and 1 vertical layer resembles a 1D model (Fig. 8c). Similarly, a row of quads with multiple 464 
vertical layers leads to 2DV configuration (Fig. 8c). Some parts of the shoals that are sufficiently shallow are 465 
discretized using 1 vertical layer (Fig. 8b), which is a 2DH configuration. The deeper part of the domain is 466 
discretized using full 3D prisms, but with a larger number of layers in the deeper depths than in the shallow depths, 467 
in a typical LSC

2
 fashion (Fig. 8a; Zhang et al. 2015). Different types of grids are seamlessly welded into a single 468 

SCHISM grid, resulting in greatest efficiency. With some care taken of the consistent bottom friction formulations 469 
across 1D, 2D and 3D (we used a constant drag coefficient of 0.0025 here), the model results show no discontinuity 470 
across different types of grids (Fig. 9). The use of 1D or 2D cells in shallow areas also enhances numerical stability, 471 
as they are well suited and more stable for inundation process than 3D cells; e.g., the crowding of multiple 3D layers 472 
in the shallow depths is not conducive to stability. 473 

 474 
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5. Numerical experiments 475 

The SCHISM model, with the new developments detailed in previous sections, has been successfully applied by Ye 476 
et al. (submitted) to the Chesapeake Bay, by Zhang et al. (2016) to North Sea-Baltic Sea system, and by Stanev et al. 477 
(in preparation) to the Black Sea-Turkish Straits system. Here we will focus on benchmarking its performance in the 478 
eddying regime, which is the last missing link for our cross-scale model. The 1

st
 case is a simple lock exchange 479 

experiment that has been previously used for inter-model assessment. The 2nd case deals with baroclinic instability 480 
in a zonally re-entrant channel, and the 3rd case is focused on mesoscale eddies and meanders in the Black Sea. We 481 
conclude this section with a brief discussion on the strategy for cross-scale applications. 482 

5.1 Lock exchange test 483 

Ilicak et al. (2012) assessed the spurious dianeutral mixing in 4 structured-grid models through 5 tests, and found 484 
that the amount of spurious dianeutral mixing is proportional to the grid Reynolds number and is also influenced by 485 
the viscosity. 486 

Their 1
st
 is a simple lock exchange experiment, for which theoretical results for the propagation speed of the gravity 487 

current are available (Benjamin 1968). They presented model results from various horizontal and vertical resolutions 488 
and used an isopycnal-coordinate model (GOLD) as benchmark. In addition they suggest that the reference potential 489 
energy can be used as an effective tool to detect spurious dianeutral mixing. 490 

Here we use as close a model set-up to their 1
st
 test as possible in order to help assess the relative performance of 491 

SCHISM for this test. The domain is 64km long with a constant depth of 20m and initially each of two water masses 492 
of 5

o
C and 35

o
C occupies half of the domain. A linear equation of state is used where the water density is linearly 493 

dependent on the temperature alone. A main difference in our model set-up is that a larger time step (200s) is used in 494 
SCHISM, as it is an implicit model.  495 

We conduct convergence study with respect to horizontal and vertical grid resolution as in Ilicak et al. (2012). For 496 
simplicity uniform horizontal grids and uniform  layers are used. Fig. 10(a-d) shows the temperature snapshots 497 
from refining the vertical grid. In comparison to Figs. 1 and 2 of Ilicak et al. (2012), we remark that SCHISM results 498 
show less noise (using GOLD results as benchmark) especially at higher resolution. The high-resolution SCHISM 499 
results also show a thinner pycnocline compared to some of the other models, suggesting acceptable amount of 500 
numerical dissipation and dispersion. We have also used two smaller time steps (t=150s, 100s) to further test the 501 
model sensitivity, and Fig. 10(e&f) reveals only some subtle differences, mostly in the form of a smaller 502 
propagation speed of the fronts than that from t=200s (Fig. 10d). Decreasing the time step further would eventually 503 
degrade the model skill as the CFL number becomes too small (Zhang et al. 2015). 504 

The predicted front locations from different horizontal and vertical resolutions are illustrated in Fig. 11ab. With the 505 
exception of the coarsest vertical resolution (2 layers), SCHISM results compare favorably with other models, 506 
especially at the highest resolution (with the error within 1% of the theoretical value) (Fig. 11a). With the exception 507 
of the coarsest horizontal resolution (4km), the model results show only small sensitivity to the horizontal resolution 508 
(Fig. 11b). The model’s accuracy, convergence and low inherent dissipation are well demonstrated for this 509 
baroclinic test. 510 

5.2 Reentrant channel 511 

Danilov (2012) and Danilov and Wang (private communication) used this case to demonstrate the ‘geometric’ issues 512 
associated with various types of grid-variable arrangements. The domain is essentially a zonal band occupying 513 
between 30

o
N and 45

o
N. Since periodic boundary condition, which is required if we were to use their smaller 514 

domain (20
o
 to 40

o
 long in the zonal direction), is not available in SCHISM, here we use the entire zonal band (from 515 

180
o
W to 180

o
E), which results in a much larger grid. Note that a quasi-periodic solution is expected for the larger 516 

domain (cf. Fig. 13). 517 

Initially the salinity is constant at 35PSU (and remains so throughout the simulation), and there is a linear gradient 518 
of temperature along the meridional and vertical directions. In addition, a small amount of ‘noise’ is added to the 519 
initial temperature along the zonal direction in order to speed up the development of baroclinic instability (Danilov 520 
2012). Therefore the initial temperature is given as: 521 

)/2cos()(25)0( 03021 LztT    (40) 522 
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where 1=8.2x10
-3

 
o
C/m,  2=0.5566 

o
C/(degree latitude), 3=0.01

o
C, L0=20

o
,   is the latitude, 0 =30

o
N, and  523 

is the longitude. The flow is forced by relaxing temperature to its initial distributions in two 1.5
o
-wide southern and 524 

northern relaxation zones near the boundary, with the relaxation scale linearly decreasing from 3 days to zero within 525 
these zones. The bottom drag coefficient is kept constant at 0.0025. 526 

In the SCHISM set-up, we use the spherical coordinate option implemented with local coordinate frame 527 
transformations (Comblen et al. 2009) and the same resolution as in Danilov (2012): 1/7

o
 along zonal and 1/6

o
 along 528 

meridional directions. In the vertical dimension we use 24 S levels to cover the (constant) 1600m depth, with 529 
spacing constants of hc=30m, b=0, f=5 in order to better resolve the surface layers. We use a time step of 300s, and 530 
a bi-harmonic viscosity (see Section 3). No explicit horizontal diffusivity is used and the vertical viscosity and 531 
diffusivity are calculated from the generic length-scale model with a k-kl configuration (implemented from the 532 
formulation of Umlauf and Burchard (2003)). The horizontal grid has 229K nodes, and the simulation runs ~200 533 
times faster than real time on 216 Intel Xeon cores.  534 

Eddies and filaments develop quickly within 0.5 years, and the mean kinetic energy (MKE) reaches a quasi-steady 535 
level after ~1 year (Fig. 12). The maximum MKE from SCHISM (~0.07 m

2
/s

2
) seems to be close to the scheme MC 536 

(~0.07 m
2
/s

2
) but smaller than A-grid (~0.1 m

2
/s

2
) of Danilov (2012); the amplitude of oscillation is also smaller. 537 

The snapshots of Sea-Surface Height (SSH) shows certain periodicity along the zonal band but the wavelength is 538 
shorter than that used in the initial noise (i.e. 20

o
; Eq. (40)) (Fig. 13). To facilitate qualitative comparison with 539 

Danilov (2012) and Danilov and Wang (private communication), snapshots, in a 30
o
 zonal band, of SSH and 540 

temperature and vortcitiy at 100m depth are presented in Fig. 14. Qualitatively similar looking eddies and filaments 541 
structures are evident in this figure, although our temperature is slightly lower (Fig. 14b). Our filaments also seem to 542 
be a little shorter than their best results (Danilov 2012), suggesting slightly larger numerical dissipation in our 543 
model. The differences between our and their results may also be partly due to the larger domain we have used. 544 

 545 

5.3 Black Sea 546 

The Black Sea, our realistic-model laboratory used in this study to validate the outcome of the numerical methods 547 
proposed here, is a nearly enclosed basin of estuarine type (Fig. 15). The run-off from its catchment area (about five 548 
times the basin area) is large (10000-20000m

3
/s) relative to the basin volume (5.4×10

5
 km

3
). The sea is connected 549 

with the Mediterranean Sea through the Turkish Straits System (the Bosphorus Strait, the Sea of Marmara and the 550 
Dardanelles Strait). Because the straits are very narrow and shallow the Black Sea is almost completely isolated 551 
from world’s ocean (Özsoy and Ünlüata 1997; Stanev 2005; Stanev and Lu 2013). The large freshwater flux and the 552 
small water exchange with the Mediterranean support a distinct vertical layering limiting the vertical exchange and 553 
create a unique chemical and biological environment (the Black Sea is the worlds’ largest anoxic basin). Thus this 554 
sea can be considered as a natural playground to study geophysical hydrodynamics in the presence of pronounced 555 
vertical stratification (salinity changes from ~18PSU at sea surface to ~21PSU at 180 m depth).  556 

The Black Sea is a deep estuarine basin. The continental slope in the Black Sea is very variable (Fig. 15b). It is mild 557 
in the north-western part, very steep in the southern and eastern part and is carved by deep canyons along the 558 
southern coast. This natural setting is also very favorable to study the interaction between stratification and 559 
topography as well as the role of planetary and topographic beta-effects (Stanev and Staneva 2000). This interplay 560 
results in a general circulation that follows the continental slope and is usually structured in two connected gyre 561 
systems encompassing the basin (the Rim Current). This jet-current system is associated with a difference of ~0.2 m 562 
between sea levels in the coastal and open sea, with seasonal amplitudes of ~10 to 20 cm, and inter-annual variations 563 
of ~5 to 10 cm (Stanev and Peneva 2002).  564 

A comprehensive presentation of SCHISM results for the Black Sea-Turkish Strait System (BS-TSS) is beyond the 565 
scope of this paper and has been reported elsewhere (Stanev et al., in preparation). Here we will only focus on 566 
assessing the model performance in the eddying regime in the Black Sea. The main DEM source we used is from the 567 
GEBCO Digital Atlas (IOC, IHO and BODC 2003). To initialize the model, we use a monthly climatology of 568 
salinity and temperature for Black Sea. The 0.2

o
 ECMWF product is used for atmospheric forcings: wind, 569 

atmospheric pressure, and air temperature. The 36-km CFSR product (http://rda.ucar.edu/datasets/ds093.1/, last 570 
accessed Sept. 17 2015) is used for heat and precipitation fluxes due to the lack thereof in the ECMWF product. 571 
Discharges at 6 rivers around Black Sea (Fig. 15a) are from monthly mean values, and the (constant) long-term 572 
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mean flows are used for the 2 major rivers in Azov Sea (Kuban and Don). The excess river flow is compensated by 573 
an equivalent outflow through the Bosporus Straits.  574 

We generate a mixed triangular-quadrangular grid of 101K nodes and 172 K element (Fig. 15d). An essentially 575 
uniform resolution of 3km is used here to exclude the influence of variable grid resolution on mesoscale processes 576 
(see Danilov and Wang (2015) for a detailed discussion on the effects of variable grid resolution on eddies). The 577 
refinement near the Bosphorus exit is done for the on-going work that includes the Turkish Strait System. Once the 578 
model is fully validated on this grid, we plan to create an UG of variable resolution to refine some coastal areas. 579 
Even though the bottom slope is very steep at the shelf break, no bathymetry smoothing is done to stabilize the 580 
model. A measure of ‘hydrostatic consistency’ (Haney 1991) is given by the Hannah-Wright ratio, defined as 581 
         , where.      is the minimum depth in an element, and    is the maximum difference of depths at nodes 582 
in the element (Hannah and Wright 1995). An upper limit of 0.1 for this ratio is usually recommended for terrain-583 
following coordinate models, but Fig. 15c indicates that the ratio is generally much larger than this threshold near 584 
the shelf break. We use a LSC

2
 grid in the vertical, with maximum of 53 levels (in the deepest part of Black Sea) 585 

and average of 35.4 levels. The time step is set at 120s, and a constant 0.5mm bottom roughness is used. The same 586 
bi-harmonic viscosity and vertical viscosity/diffusivity schemes as in Section 5.2 are used here. The model runs 130 587 
times faster than real time on 144 CPUs. In contrast, the real-time ratio is reduced to 50 with the explicit TVD 588 
method.  589 

Fig. 16a shows a typical progression of eddies and meanders inside Black Sea. The Rim Current is accompanied by 590 
a series of eddies on both sides, with the anticyclonic mesoscale eddies located between the continental slope and 591 
the coast. Their typical radius is between 50 and 100 km as determined by internal radius of deformation. Growing 592 
in size some of them detach and propagate into the open sea, e.g., the eddy that is displaced from the south-eastern 593 
coastal area and stagnated along the Caucasian coast. Sub-basin scale eddies such as Batumi and Sevastopol eddies, 594 
which are the well-known representatives of vorticity field (Stanev et al. 2000), are also well replicated by the 595 
model. Because the transition between summer (less organized) and winter (almost one-gyre) circulation is 596 
controlled by the baroclinic eddies (Stanev and Staneva 2000), the present simulation by SCHISM that resolves well 597 
the eddy variability has a potential to successfully treat these basic aspects of seasonal evolution. 598 

The patterns of sea surface shown every 5
th

 day agree well with earlier numerical simulations using structured-grid 599 
models (Stanev 2005). The number of coastal anticyclones of about 8 compares well with the number of observed 600 
ones, which is derived from the statistics using SSALTO/ DUACS data product  601 
(http://www.aviso.altimetry.fr/en/data/product-information/information-about-mono-and-multi-mission-602 
processing/ssaltoduacs-multimission-altimeter-products.html; last accessed Jan 29, 2016). Similarly to those 603 
previous results, the meandering activity is especially intense near steeper slopes, e.g. in the northern, eastern and 604 
southern coasts. The loop current and eastern and western gyres in the middle of the basin are clearly visible. 605 

The model’s ability to resolve the baroclinic instability is contrasted below with SELFE results using the same initial 606 
data and forcing, and a similar horizontal and vertical resolution (21S+30Z layers) (Fig. 16b); the SELFE results 607 
represented the best we were able to obtain from this model. There are apparent similarities between the two models:  608 
the shape of the cyclonic gyre in the middle is similar, and the contrast of sea levels between coastal and open sea is 609 
comparable, although the eddy-resolving SCHISM simulation shows a steeper sea-surface slope. The performance 610 
of the two models in the area of the shallow Azov Sea, where the process is mostly driven by propagating 611 
atmospheric disturbances and dominated by friction, is also similar. However a number of major differences 612 
between the two models are apparent, and the most pronounced among them is the clockwise circulation in the 613 
eastern-most part of the Black Sea predicted by SELFE versus the formation of an eddy dipole in SCHISM. SELFE 614 
is also not in a position to adequately simulate the counter-current along the west coast, which is commonly 615 
observed in this area; the well-known Sebastopol eddy is totally missing in this model as well. A number of smaller 616 
eddies in the north and south coasts are also successfully captured by SCHISM but not by SELFE. The smoother 617 
SSH produced by SELFE is mostly a symptom of the larger dissipation inherent in the model, although the lack of 618 
LSC

2
 grid therein is also partially responsible (SCHISM results with the same SZ grid indicate only mild 619 

degradation of model skill; not shown). Since SELFE does not have implicit TVD
2
 solver, its efficiency for this case 620 

is similar to SCHISM with the explicit TVD method. 621 

Differences in the surface heights associated with these eddies between SELFE and SCHISM are 5-10 cm, which is 622 
comparable to the anomalies caused by eddies (Stanev et al. 2000). Therefore we conclude that SELFE filters out 623 
baroclinic instability, especially eddies with diameter of about 100 km, which are the characteristic scales of eddies 624 
seen in altimeter, drifter and color data (Ozsoy et al. 1993; Stanev 2005). The meanders predicted by SCHISM on 625 

http://www.aviso.altimetry.fr/en/data/product-information/information-about-mono-and-multi-mission-processing/ssaltoduacs-multimission-altimeter-products.html
http://www.aviso.altimetry.fr/en/data/product-information/information-about-mono-and-multi-mission-processing/ssaltoduacs-multimission-altimeter-products.html
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the Rim Current propagate with a speed of about 20 cm/s, and in some specific areas, such as the area east of 626 
Sakarya Canyon (29-31 E), the propagation speed often exceeds 1 m/s. These are also consistent with the 627 
observations (Ozsoy et al. 1993). 628 

5.4 Outlook: from creek to ocean 629 

The satisfactory performance of SCHISM in the eddying regime as demonstrated in the previous test cases, and in 630 
the non-eddying regime as demonstrated previously, makes it potentially capable of seamlessly simulating processes 631 
from deep ocean to shallow environment in estuaries, rivers, creeks and lakes. We remark that the time step we used 632 
for the realistic field case of Black Sea, North Sea-Baltic Sea (Zhang et al. 2016) and Kuroshio (Zhang et al. 2015) 633 
falls in the same range as that for the non-eddying regime, i.e. 100-200sec, and therefore a single time step can be 634 
used for cross-scale applications. Our experience so far demonstrates that as long as one pays attention to smooth 635 
transition of grid resolution from eddying to non-eddying regimes, and adds back some numerical dissipation in the 636 
non-eddying regime (e.g. via a larger viscosity locally or filter), SCHISM is capable of simulating creek-to-ocean 637 
system as a whole without the need for grid nesting. Demonstration of such a seamless capability is on-going for 638 
BS-TSS, South and East China Seas, and US east coast and will be reported in upcoming publications. 639 

 640 

6. Conclusions 641 

We have developed a new cross-scale unstructured-grid model (SCHISM) by revamping key formulations in an 642 
older model (SELFE). Major revisions include: (1) a new implicit transport solver (TVD

2
) using 2 limiter functions 643 

(in space and in time), which has been demonstrated to be accurate and efficient for a wide range of Courant 644 
numbers; (2) a new horizontal viscosity formulation for generic unstructured grids; (3) a new higher-order scheme 645 
for momentum advection coupled with an iterative smoother to reduce excess mass; (4) addition of quad elements, 646 
which in conjunction with the flexible vertical grid system used in SCHISM leads to an advantageous polymorphism 647 
(with 1D/2DV/2DH/3D cells being unified in a single model grid). 648 

These new revisions prove crucial in SCHISM’s capability in successfully simulating processes in the eddying 649 
regime, as demonstrated by the results from the 2 challenging test cases, mainly due to the much reduced numerical 650 
dissipation and enhanced efficiency. Recently the seamless cross-scale capability of SCHISM has also been 651 
successfully tested with several other applications..  652 

Ongoing work focuses on some transitional issues between eddying and non-eddying regimes as well as enabling 653 
variable resolution in the eddying regime. Our and other’s experience (Danilov, private communication) suggests 654 
that numerical schemes designed for eddying regime may not be ideal for non-eddying regime, and therefore 655 
transition of schemes might be desirable. In our case, the combination of MB-LI and MA-KR3 holds most promise, 656 
as the latter is ideal for shallow and inundation processes. 657 
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 669 

Figure captions 670 

Fig. 1: SCHISM modelling system. The modules that are linked by arrows can exchange internal data directly 671 
without going through the hydrodynamic core in the center.  672 

Fig. 2: Staggering of variables in SELFE/SCHISM. The elevation is defined at node (vertex) of a triangular element, 673 
horizontal velocity at side center and whole levels, vertical velocity at element centroid and whole level, and tracers 674 
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at the prism center. The variable arrangement on a quad prism in SCHISM is similar. The top and bottom faces of 675 
the prism may not be horizontal, but the other 3 faces are always vertical. 676 

Fig. 3: Two steps in Eulerian-Lagrangian method. (a) The characteristic equation (6) is integrated backward in 677 
space and time, starting from a side center (the green dot). The characteristic line is further subdivided into smaller 678 
intervals (bounded by the red dots), based on local flow gradients, and a 2nd-order Runge-Kutta method is used 679 
within each interval. The foot of characteristic line is marked as a yellow dot. Note that the vertical position of the 680 
trajectory is also changing and so the tracking is in 3D space. (b) Interpolation is carried out at FOCL (yellow dot), 681 
based on either the nodes of the containing elements (blue dots), or the 2-tier neighborhood (blue plus red dots; the 682 
latter are the neighbors of the blue dots) using a dual kriging method. Proper linear vertical interpolation has been 683 
carried out first to bring the values at each node onto a horizontal plane before the horizontal interpolation is done. 684 

Fig. 4: Two methods of converting side velocities to a node velocity. (a) Inverse distance interpolation from sides 685 
(blue dots) to node (yellow dot); (b) use of FEM shape function to find the node velocity within each element first 686 
(the red arrow), i.e. u1=uII+uIII-uI, followed by a simple averaging method to calculate the final value from all of its 687 
surrounding elements (dashed arrows). 688 

Fig. 5: Shapiro filters for (a) triangular and (b) quadrangular elements. The same stencils are used to construct the 689 
viscosity. ‘I’ and ‘II’ are 2 adjacent elements of side of interest (‘0’). The extended stencil used in constructing bi-690 
harmonic viscosity is shown in (c). The special case of a boundary side is shown in (d).  691 

Fig. 6: Temperature after 1 rotation in the rotating Gauss hill test from various schemes with x=50m. ELAD filter 692 
is applied to all ‘KR’ schemes. 693 

Fig. 7: Convergence curves of various advection schemes. The equations in each panel are linear regression fit. The 694 
intersection with x-axis in each equation is related to the coefficient of leading-order truncation error, and MB-LI 695 
has the smallest value. 696 

Fig. 8: Model polymorphism illustrated with a toy problem. The mixed triangular-quadrangular grid and the 697 
bathymetry are shown in the foreground. The vertical transect grid along the redline going from deep ocean into 698 
estuary (‘shipping channel’) is shown in insert (a). The 3D view of the grid near the head of estuary is shown in 699 
insert (b), with few layers on the shallow shoals. The grid near the upstream river is shown in insert (c), where 700 
transition from 2DV to 1D grid can be seen. In the test, a M2 tide is applied at the ocean boundary, and fresh water 701 
discharges are imposed at the heads of the river and estuary. 702 

Fig. 9: Snapshot of velocity (a&c) and salinity (b&d) along the river transect (cf. Fig. 8c) showing the transition 703 
from 2DV to 1D region (i.e. the flat portion on the left). (a&b) correspond to a peak flood and (c&d) a peak ebb. The 704 
uni-directional river flow can be seen even during flood, and the tilt of isohaline line in (b) into the 1D zone is due to 705 
the linear interpolation of colors used in plotting; otherwise the 1D zone shows a uniform salinity/velocity along the 706 
vertical column. The burgundy line in (a&c) is the bottom.  707 

Fig. 10: Vertical transects of temperature at t=17 hours, with t=200s and vertical resolution of 10, 5, 2 and 1m in 708 
(a-d), and two different time steps (e&f). The horizontal resolution is fixed at 500m.. 709 

Fig. 11: Time history of front location from (a) different vertical resolution (with horizontal resolution fixed at 710 
500m); (b) different horizontal resolution (with vertical resolution fixed at 1m). The time step is fixed at 200s. The 711 
theoretical results of Benjamin (1968) are also shown. 712 

Fig. 12: Simulated mean kinetic energy (doubled kinetic energy scaled by mass) over time. 713 

Fig. 13: Snapshot of SSH for the entire grid showing periodicity along the zonal band. 714 

Fig. 14: Snapshot of (a) SSH, (b) temperature at 100m depth, and (c) relative vorticity (scaled by local Coriolis 715 
parameter) at 100m depth.  716 

Fig. 15: (a) Black Sea bathymetry. Also shown are major geographic names and rivers around Black Sea (Sakarya, 717 
Kizilirmak, Rioni, Dniepr, Dniestr, and Danube) and Azov Sea (Don and Kubon). (b) Bottom slope 718 

(                  ) of Black Sea, with values larger than 0.05 (1:20) being highlighted. (c) Hannah-Wright 719 
ratios, with values larger than 0.1 being highlighted. (d) SCHISM grid for Black Sea showing the placement of 720 
nodes. Uniform resolution of 3km is used except near the exit to Bosphorus Strait.   721 
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Fig. 16:  Snapshots of SSH from (a) SCHISM; (b) SELFE. The time stamps are shown near the top of each panel. 722 
Major eddies in Black Sea can be seen in (a) and compared with Stanev (2005). 723 
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Fig. 1: SCHISM modelling system. The modules that are linked by arrows can exchange internal data directly 

without going through the hydrodynamic core in the center.  
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Fig. 2: Staggering of variables in SELFE/SCHISM. The elevation is defined at node (vertex) of a triangular 

element, horizontal velocity at side center and whole levels, vertical velocity at element centroid and whole level, 

and tracers at the prism center. The variable arrangement on a quad prism in SCHISM is similar. The top and 

bottom faces of the prism may not be horizontal, but the other 3 faces are always vertical. 
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Fig. 3: Two steps in Eulerian-Lagrangian method. (a) The characteristic equation (6) is integrated backward in 

space and time, starting from a side center (the green dot). The characteristic line is further subdivided into smaller 

intervals (bounded by the red dots), based on local flow gradients, and a 2nd-order Runge-Kutta method is used 

within each interval. The foot of characteristic line is marked as a yellow dot. Note that the vertical position of the 

trajectory is also changing and so the tracking is in 3D space. (b) Interpolation is carried out at FOCL (yellow dot), 

based on either the nodes of the containing elements (blue dots), or the 2-tier neighborhood (blue plus red dots; the 

latter are the neighbors of the blue dots) using a dual kriging method. Proper linear vertical interpolation has been 

carried out first to bring the values at each node onto a horizontal plane before the horizontal interpolation is done. 
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Fig. 4: Two methods of converting side velocities to a node velocity. (a) Inverse distance interpolation from sides 

(blue dots) to node (yellow dot); (b) use of FEM shape function to find the node velocity within each element first 

(the red arrow), i.e. u1=uII+uIII-uI, followed by a simple averaging method to calculate the final value from all of its 

surrounding elements (dashed arrows). 
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Fig. 5: Shapiro filters for (a) triangular and (b) quadrangular elements. The same stencils are used to construct the 

viscosity. ‘I’ and ‘II’ are 2 adjacent elements of side of interest (‘0’). The extended stencil used in constructing bi-

harmonic viscosity is shown in (c). The special case of a boundary side is shown in (d).  
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Fig. 6: Temperature after 1 rotation in the rotating Gauss hill test from various schemes with x=50m. ELAD filter 

is applied to all ‘KR’ schemes. 
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Fig. 7: Convergence curves of various advection schemes. The equations in each panel are linear regression fit. The 

intersection with x-axis in each equation is related to the coefficient of leading-order truncation error, and MB-LI 

has the smallest value. 
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Fig. 8: Model polymorphism illustrated with a toy problem. The mixed triangular-quadrangular grid and the 

bathymetry are shown in the foreground. The vertical transect grid along the redline going from deep ocean into 

estuary (‘shipping channel’) is shown in insert (a). The 3D view of the grid near the head of estuary is shown in 

insert (b), with few layers on the shallow shoals. The grid near the upstream river is shown in insert (c), where 

transition from 2DV to 1D grid can be seen. In the test, a M2 tide is applied at the ocean boundary, and fresh water 

discharges are imposed at the heads of the river and estuary. 
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Fig. 9: Snapshot of velocity (a&c) and salinity (b&d) along the river transect (cf. Fig. 8c) showing the transition 

from 2DV to 1D region (i.e. the flat portion on the left). (a&b) correspond to a peak flood and (c&d) a peak ebb. 

The uni-directional river flow can be seen even during flood, and the tilt of isohaline line in (b) into the 1D zone is 

due to the linear interpolation of colors used in plotting; otherwise the 1D zone shows a uniform salinity/velocity 

along the vertical column. The burgundy line in (a&c) is the bottom.  
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Fig. 10: Vertical transects of temperature at t=17 hours, with t=200s and vertical resolution of 10, 5, 2 and 1m in 

(a-d), and two different time steps (e&f). The horizontal resolution is fixed at 500m. 

 



 

 

Fig. 11: Time history of front location from (a) different vertical resolution (with horizontal resolution fixed at 

500m); (b) different horizontal resolution (with vertical resolution fixed at 1m). The time step is fixed at 200s. The 

theoretical results of Benjamin (1968) are also shown. 
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Fig. 12: Simulated mean kinetic energy (doubled kinetic energy scaled by mass) over time. 
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Fig. 13: Snapshot of SSH for the entire grid showing periodicity along the zonal band. 
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Fig. 14: Snapshot of (a) SSH, (b) temperature at 100m depth, and (c) relative vorticity (scaled by local Coriolis 

parameter) at 100m depth.  
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Fig. 15: (a) Black Sea bathymetry. Also shown are major geographic names and rivers around Black Sea (Sakarya, 

Kizilirmak, Rioni, Dniepr, Dniestr, and Danube) and Azov Sea (Don and Kubon). (b) Bottom slope 

(                  ) of Black Sea, with values larger than 0.05 (1:20) being highlighted. (c) Hannah-Wright 

ratios, with values larger than 0.1 being highlighted. (d) SCHISM grid for Black Sea showing the placement of 

nodes. Uniform resolution of 3km is used except near the exit to Bosphorus Strait.   
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Fig. 16:  Snapshots of SSH from (a) SCHISM; (b) SELFE. The time stamps are shown near the top of each panel. 

Major eddies in Black Sea can be seen in (a) and compared with Stanev (2005). 
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