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Quo Vadimus
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There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of
population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of
comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over
a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or sim-
ply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a
relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been
done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history
studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations
of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can
introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-
defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families,
etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the
kinds of questions that can be asked of a database of life history studies.

Keywords: biological reference points, data selection bias, empirical relationships, Fmsy, hierarchical Bayesian models, indirect methods, intrin-
sic rate of population growth, life history correlates, mixed effects models, steepness parameter, stock-recruit relationships.

Introduction
The models used by resource assessment biologists, ecosystem

modellers and other applied scientists frequently require values of

certain key parameters that are difficult to estimate reliably and

precisely. In these cases, it is natural to examine similar situations

for guidance on possible values of the parameters. Such guidance

can be derived from observations from similar locations, species,

time periods, observation systems (e.g. fisheries), and so forth.

Indeed, even when an estimate of a parameter is believed to be re-

liable and precise, it is prudent to check its reasonableness by
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comparing it to estimates in the realm of experience. For ex-

ample, Hewitt et al. (2007) estimated the natural mortality rate of

blue crabs (Callinectes sapidus) from field data and compared the

results to values obtained from several methods based on com-

parative life history studies.

Sometimes, a parameter can be estimated within a population

dynamics model but the estimates may be imprecise and highly

correlated with those of other parameters. In this case, it may be

of interest to provide additional information about the parameter

to the modelling process. In a Bayesian analysis, auxiliary infor-

mation can be used to develop a prior distribution for the param-

eter which is incorporated into the estimation scheme; the prior

distribution may be developed on the basis of comparative life

history data (see Hamel, 2015). Another approach is to assess sev-

eral stocks simultaneously, allowing the parameter to be esti-

mated as a compromise between what the data say about an

individual stock and what other stocks say about the parameter

value (Punt et al., 2011). In essence, a penalty is imposed for de-

parture from a shared value; the amount of penalty decreases as

the information about the particular species of interest increases.

The problem of obtaining values for these difficult to estimate

parameters can be of tremendous importance. For example, the in-

stantaneous natural mortality rate, M, enters into almost all aspects

of fishery stock assessment but can be difficult to estimate.

Consequently, a number of indirect methods based on life history

correlations have found widespread use. One, due to Pauly (1980),

has been cited over 2400 times and another, due to Hoenig (1983),

has been cited almost 1100 times according to Google Scholar

(http://scholar.google.com/, accessed 5 March 2016).

Another example of a widely used parameter that is difficult to

estimate is the intrinsic rate of population increase (maximum

per capita rate of population growth). This parameter occurs in

surplus production models of yield, is directly related to the fish-

ing mortality rate that gives maximum sustainable yield (Fmsy),

and occurs in methods for calculating allowable biological catch

and for formulating stock rebuilding plans. It also occurs in mod-

els of population dynamics of low fecundity species and in Lotka-

Volterra and similar models of predator-prey interactions.

Although this parameter can be estimated in a surplus production

model, the estimates tend to be imprecise especially when obser-

vations are available over only a limited range of population size.

The intrinsic rate of population increase can also be estimated by

observing population growth at low population density, or by

observing growth rate at two or more population densities and

extrapolating down to the depleted state (Gedamke et al., 2007),

among other methods. Reliable, precise estimates are difficult to

obtain. The intrinsic rate of increase is inversely related to adult

body mass, as evidenced in organisms ranging from viruses, bac-

teria and protozoa up to large cetaceans (Blueweiss et al., 1978).

Pauly (1984) demonstrated that this relationship also holds over

a much narrower range of body sizes (fish and cetaceans, Figure

1). It is also inversely related to generation time and to reproduct-

ive output per generation (Heron, 1972; Figure 2).

A third example is the characterization of stock-recruitment

relationships. These relationships are used to determine the max-

imum sustainable yield and the fishing mortality generating such

yield and thus to derive an allowable biological catch, to forecast

catches, in population viability analysis (where the importance of

density-dependent mortality is key) and in management strategy

evaluations based on simulating population responses to exploit-

ation. They are also crucial for interpreting trends in population

abundance resulting from historical fishing activity. Stock-

recruitment data typically display apparently weak structural rela-

tionships although this may be due to high measurement error of

both stock and recruitment (Walters and Ludwig, 1981). A range

of stock sizes must be observed in order to determine how re-

cruitment varies as a function of stock size. Because of the diffi-

culty in estimating stock-recruitment curves and derived

parameters (such as steepness, slope at the origin, and unfished

equilibrium) there is interest in looking for patterns and general

properties in collections of parameter estimates (Myers, 2001;

Dorn, 2002). To this end Myers et al. (1995) assembled data on

over 700 fish stocks.

Another important problem in fisheries science is the predic-

tion of potential fish yields on a per area basis. This can be

Figure 1. Regression of the logarithm of the intrinsic rate of
population increase on the logarithm of adult body weight. From
Pauly (1984).

Figure 2. Regression of the logarithm of the intrinsic rate of
population increase (per day) on the logarithm of the generation
time for several levels of reproductive output per generation, Ro. The
parallel lines represent values of Ro from 2 to 105. From Heron
(1972).
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accomplished by modelling the relationship between fish produc-

tion and biological, physical, chemical or other predictors of fish

productivity. A widely used empirical model for freshwater fishes

in northern North America is the morphoedaphic index which

predicts total fish yield based on mean depth of a lake and total

dissolved solids (Ryder, 1965, 1982; Ryder et al., 1974). Fryer and

Iles (1972, cited in Jones, 1982) also showed a decline in annual

fish yields per unit area with depth in African lakes. There are

many additional freshwater examples (e.g. SPOF, 1982;

Welcomme, 1985; Lester et al., 2004). In the marine context, for

fisheries on the continental shelf, Marten and Polovina (1982)

showed a negative relationship between maximum sustainable

yields of some multispecies demersal fisheries and depth and be-

tween some tropical pelagic fisheries and productivity. Although

these studies related a key parameter to environmental character-

istics, as opposed to relating it to life history characteristics of the

species, the approach uses the same logic as comparative life his-

tory studies and the issues raised in this article are pertinent to

this kind of study as well.

There are other uses of comparative life history studies beyond

obtaining parameter estimates for newly considered species or

stocks. Such studies can provide insights into ecological, physio-

logical, evolutionary, and other processes (Charnov, 1993; Myers

and Mertz, 1998; Thorson et al., 2013). For example, Liermann

and Hilborn (1997) applied Bayesian hierarchical meta-analysis

to stock-recruit data to evaluate the evidence for the existence of

depensation (Allee effect) in fish populations. These aspects are

important but beyond the scope of this paper which focuses on

prediction of parameter values.

Given the importance of these relationships it is surprising

how little work has been done to establish the logic behind com-

parative life history studies and establish methods and procedures

for characterizing relationships and evaluating their performance

in predicting parameter values in new situations. Reporting the

findings of a 2009 workshop on estimation of natural mortality

rate, Brodziak et al. (2011) called for a thorough evaluation of

natural mortality estimators that are based on comparative life

history studies. As the use of comparative studies is widely used

in studies of natural systems, it is important that key issues asso-

ciated with the development and use of such studies are identi-

fied, and appropriate methods are developed to evaluate the

performance of the relationships derived from those studies.

Indirect (Empirical) vs. Direct Methods
Life history parameter estimation methods may be characterized

as direct or indirect, depending on the source of the information

utilized by the estimator. Hewitt et al. (2007) defined direct

methods as those that use just data pertaining to the species (or

stock) of interest. Examples would be the estimation of mortality

rate in an unexploited population from the age composition or

from mark-recapture data. In contrast, an indirect method makes

use of a relationship across a variety of species between the par-

ameter of interest (e.g. M) and one or more life history or envir-

onmental variables. An example would be the regression of M in

over 200 fish stocks versus the corresponding oldest known age

for the stock (Then et al., 2015); the regression line can then be

used to predict M in a species for which just the oldest age is

known (Figure 3). Thus, the term indirect method pertains to an

estimator based on comparison of life histories across species. An

alternative and equivalent term would be empirical method, e.g.

Cubillos et al. (1999).

The distinction between direct and indirect can be subtle. For

example, various researchers have used relationships of the form

M¼ c/tmax where c is a constant (i.e. a parameter) and tmax is the

oldest known age. It has been suggested that tmax corresponds to

the age at which a cohort has been reduced to 5% of its initial

size; this leads to a value for c of �3.0. This is a direct estimator

for M according to the terminology of Hewitt et al. (2007)

(though it has little to recommend it because the 5% criterion,

and thus the value of c¼ 3.0, is arbitrary and the results will vary

systematically with the choice of the percentage). On the other

hand, Hewitt and Hoenig (2005) showed that a value of 4.22 was

optimal for c in the sense of minimizing the sum of squared dif-

ferences between direct estimates of M collated by Hoenig (1983)

from the literature and predicted values from c/tmax [an updated

analysis of this relationship appears in Then et al. (2015)].

Because this involved data from a variety of species the method

makes use of a comparative life history study and the estimator is

indirect.

The choice of model to fit to empirical data may well come

from theoretical considerations. For example, Charnov et al.

(2013) derived on theoretical grounds an equation for predicting

fish weight-specific values of natural mortality rate from growth

and maturity parameters:

M ¼ 0:41ðW=WaÞ�1=2
A Wa

�1=3

where A¼ 3 K W1
� 1/3, Wa is the mass of a fish at first reproduc-

tion, K and W1 are parameters of the von Bertalanffy growth

equation for weight, and weight is assumed to be proportional to

the cube of length. Predictions from this model could be com-

pared with empirical studies of weight-specific natural mortality

if such estimates were available. In doing so, one would want to

distinguish between within-species and among-species departures

of empirical observations from theoretical predictions. For ex-

ample, all sizes of all species may have observations above the the-

oretical predictions suggesting that the coefficient 0.41 might

need adjusting. Another possibility is for all species to have a

similar pattern to the residuals over weight; yet another
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Figure 3. Regression of the logarithm of natural mortality rate M on
the logarithm of maximum age tmax. Also shown are the 95%
confidence interval (dashed lines) and 95% prediction interval
(dotted lines). Data on 215 species of fish from Then et al. (2015).
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possibility is that some species have positive residuals for all

weights while others have negative residuals. The different pat-

terns of residuals suggest ways in which the theory may need revi-

sion. This underscores the need for a logical approach to

evaluating comparative life history studies. However, at present it

may be difficult to obtain enough weight-specific estimates of

natural mortality to perform this evaluation. An alternative might

be to compare weighted averages of the weight-dependent mor-

talities predicted by theory for lightly fished stocks with the aver-

age values estimated from catch curve or tagging data for those

stocks (e.g. as reported by Lorenzen, 1996).

Key issues and answerable questions
The issues surrounding comparative life history studies for pre-

diction include the following.

(i) The parameters of interest may be ill-defined idealizations

of the real world

(ii) True values of the parameter(s) are not known for any

species

(iii) Selecting data based on the quality of the estimates can

introduce a host of problems

(iv) The estimates that are available for comparison constitute a

non-random sample of species from an ill-defined popula-

tion of species of interest; and, in general, we wish to make

predictions for a particular species, not a randomly selected

species

(v) The hierarchical nature of the data (e.g. stocks within spe-

cies within genera within families, etc., with multiple obser-

vations at each level) warrants consideration

These issues are not trivial but neither are they insurmountable.

Their solution depends on establishing a logical framework to de-

fine the multiple questions of interest, synthesize life history in-

formation, and devise appropriate methodology for deriving

estimators, evaluating their performance, and comparing compet-

ing estimators.

The questions we consider in this article, in the context of the

above five issues, are:

(i) How well does a given method predict parameter values re-

ported in the literature? Would the performance of the esti-

mator benefit substantially from an increase in sample size

(number of life histories considered)?

(ii) In what circumstances does a method work? Does it work

for subsets of the data? Does it withstand the test of time?

(iii) How do we devise a fair comparison of methods for esti-

mating a parameter from life history information?

(iv) What can we say about the performance of an estimator for

a particular prediction?

We focus on how comparative life history studies for the purpose

of estimating parameters should be done: their logic, the ques-

tions that can be answered and the methodology appropriate to

the various questions. We focus primarily on the problem of pre-

dicting M because this problem is important and of widespread

interest, there are diverse approaches in the literature to using life

history information to estimate this parameter, and there is much

work to be done to evaluate and improve the methods that have

been proposed.

Dealing with the key issues
Issue 1. The parameter(s) of interest may be ill-defined idealiza-
tions of the real world
Life history parameters may vary by year, time within a year, loca-

tion, component of the population (e.g. age, sex, reproductive

condition), and so forth. Yet, it is often useful to treat a param-

eter as a constant because the variability of the parameter may

not be of practical significance over a wide segment of the popu-

lation or treating the parameter as variable may render the prob-

lem of parameter estimation intractable, or both. For example,

M likely varies with the age (or size) of the animal, over time in

response to climatic and other changes in environmental condi-

tions and changes in population density of both the species of

interest and its predators, by habitat, by sex, and so forth.

Assessment models in which mortality rates vary over time based

on the density of predators are sometimes used in fisheries stock

assessment, particularly for forage species (e.g. Tyrrell et al.,

2008). Yet it has generally been found useful to assume for most

species that, after a certain age, M can be treated as a constant

(see Johnson et al., (2015) for an example of extensive simula-

tions to address this question). As another example, the gener-

ation of surplus production (i.e. potential growth of population

biomass) may also vary by year, season, location, and age com-

position yet a single value of the intrinsic rate of increase is usu-

ally estimated. George E.P. Box famously remarked: ‘All models

are wrong, but some are useful’. The point is that, while studies

of particular, well-studied species may be able to estimate changes

in life history parameters across time and space, comparative life

history studies often treat the parameter of interest as being a

constant for each species, and such a simplistic treatment of life

history often has utility.

Issue 2. True values of the parameters are not known for any
species
It is not possible to answer the questions ‘How well does a given

indirect method estimate a parameter?’ and ‘Which indirect

method best estimates a parameter?’ if the true value of the par-

ameter is not known for any species. (It is possible, using math-

ematical analysis or simulation, to evaluate the performance of an

estimator under specific (i.e. hypothesized) conditions. However,

it is rarely if ever possible to know the true conditions of a popu-

lation, i.e. whether the assumptions of the analysis are met.)

Some would argue that some parameter estimates are quite pre-

cise and are unbiased as evidenced by the standard errors of the

estimates and from careful consideration and testing of assump-

tions. We do not dispute there are some high quality estimates

(though establishing such is the case is not easy). But, we argue

that a precise, unbiased estimate of a parameter such as M would

represent a snapshot of a single place, time, and set of conditions

and that a large series of repeated studies might well demonstrate

variability, and thus uncertainty, about the true (average) param-

eter value.

We can, however, address the questions ‘How well does an in-

direct method reproduce what is known about a parameter?’ and

‘Which indirect method best reproduces what we do know about

a parameter?’ The key is to view what is known about the param-

eter as the collection of estimates that are available in the
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scientific literature plus those estimates that can be derived from

unpublished reports and databases available from various govern-

mental and scientific organizations. These, for all their faults and

limitations, are the values used in practice (for assessment and

management of resources, for ecosystem modelling, etc.). Hence,

because this collection of estimates is of obvious value, it is rea-

sonable to ask how similar information can be collected more

easily and to ask if the indirect-method surrogates could provide

estimates similar to those of more advanced, i.e. direct methods.

It should be borne in mind that the indirect estimate may be bet-

ter than a direct estimate if the direct estimate is poorly done.

Indeed, indirect estimates are often used to judge whether a direct

estimate is reasonable (e.g. a high estimate of M does not seem

consistent with a high longevity). This is an important point to

which we return below when we discuss Answerable Question A:

How well does a given method predict parameter values in the

literature?

Maunder and Wong (2011), based on Pascual and Iribarne

(1993), commented that estimates of M based on relationships

with life history parameters are too imprecise to be useful in stock

assessments. Kenchington (2014) also struggled with the issue of

what constitutes reliable information about natural mortality and

seemingly drew the opposite conclusion. He criticized ‘regression

estimators’—i.e. those indirect methods that relate direct esti-

mates of M to easier to estimate life history parameters—because

of their reliance on the estimates of M in the literature which he

deems uncertain. But, the values of M in the literature are used

for managing fisheries so there is a de facto general acceptance

that these estimates constitute valuable information; it is reason-

able to use the estimates to develop predictors using regression

analyses.

The objection that parameter estimates in the literature (the

dependent variable) are subject to uncertainty is not a persuasive

argument against regression analysis. A regression analysis expli-

citly incorporates uncertainty in the dependent variable in the

model as an error term. The error term can be specified in various

ways to accommodate distributional assumptions, dependence

on other factors, etc. Furthermore, statistical theory provides

methods for evaluating performance; if the estimates of M in the

literature are too uncertain to be useful one would expect that the

performance of the various models relating M to life history vari-

ables would be poor. Yet high correlations have been obtained in

regression analyses relating life history parameters to each other

in general, and to M in particular.

This is not to say there are not additional factors to consider

such as the quality of individual estimates and the representative-

ness of the available estimates. But, these issues can be resolved,

as described below. In summary, the information in the scientific

literature constitutes what is known about M and it is worthwhile

seeing which empirical methods can best reproduce the collection

of literature values.

Issue 3. Selecting data based on the quality of the estimates can
introduce a host of problems
The issue of quality control involves more than a trade-off be-

tween accepting more data of lesser quality—or of poorly known

quality—vs. accepting less data that are of higher quality.

Rejection of some studies can introduce selection bias. For ex-

ample, when predicting M, elimination of studies using length-

based methods (as opposed to age-based methods or tagging

studies) to estimate M may eliminate studies of tropical species of

fish disproportionately. Elimination of poorly studied species

may eliminate low-valued fish which may be from lower trophic

levels than species of greater commercial value (see ‘Issue 4’ below

for a discussion of selection bias). An additional consideration

beyond bias is that elimination of select studies reduces the likeli-

hood that the data considered span the range of variability in life

history patterns; this, in turn, has two consequences. First, it re-

duces the ability to estimate the parameters of a structural model.

That is, one cannot measure (well) the change in y per unit

change in x if x does not vary (much). Second, elimination of

studies limits the ability to test the applicability of derived rela-

tionships across a range of conditions, (e.g. taxonomic groups,

ecological guilds, habitats).

From a statistical viewpoint, there are two aspects of the esti-

mates in the data to consider—variance and bias. Suppose that all

estimates of the key parameter (dependent variable), y, are un-

biased estimates but the variance varies (say, according to sample

size used in the individual studies). If one wished to construct a

regression estimate, and one had estimates of the variance for

each y value, one could perform a weighted regression. Failure to

assign proper weight to the data points does not induce bias in

the estimated regression coefficients. However, the estimates of

the regression coefficients are not of minimum variance and the

confidence intervals for the regression coefficients may not be re-

liable. Of more concern is that some of the estimates of the key

parameter in the database may come from biased estimators and

it may be difficult to quantify or identify the bias.

Clearly, it is important to inspect comparative life history data

for quality control purposes. It may be possible to develop object-

ive criteria for accepting or rejecting studies (e.g. Gislason et al.,

2010) but the degree of stringency is a subjective judgment.

Because researchers may differ in the criteria they apply, the con-

clusions will only be widely accepted if they are robust to choice

of criteria for filtering the data. If all data are made freely avail-

able, interested researchers can apply their own selection criteria

to investigate the sensitivity of the results to selection criteria.

Therefore, we believe that a necessary condition for a compara-

tive life history study is to make all data considered available for

scrutiny and filtering by other researchers. It is best if all studies

considered, including those that were rejected, are included, and

reasons for rejection are documented. However, few studies

document data sources that were rejected. The study by Zhang

and Megrey (2006) provides a good example of the importance of

documenting data. They published the data for 91 species that

they used in their study of an estimator of M based on maximum

age (tmax) and growth parameters. Examination of their data re-

veals that one third of their supposedly independent, direct esti-

mates of M are, in fact, calculated as 3/tmax. (The authors noted

that many of their estimates came from the study by Ault et al.

(1998), and that study was not clear about the origins of the

M estimates.)

Issue 4. The estimates that are available for comparison
constitute a non-random sample of species from an ill-defined
population of species of interest
Consider the prediction of M of fishes based on life history traits

such as growth parameters, water temperature, longevity, and age

or size of maturation. What is the population of interest? That is,

for which species do we wish to make predictions? Is it the
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population of commercially and recreationally exploited species?

All coastal, estuarine, and freshwater fishes? What about pelagic

and hadal species? Clearly, different researchers will be interested

in different groups of fishes. For most comparative studies, the

population of interest has not been defined.

Some comparative life history studies have focused on a well-

defined taxonomic group. For example, Bayliff (1967) examined

the relationship between longevity and M in the fish family

Engraulidae and Ohsumi (1979) examined this relationship

among the cetaceans. Although authors rarely have a random

sample of the species in the group of interest (or data for every

species in the group) it may not be hard to imagine that the re-

sults are applicable to the entire group in some cases.

In general, however, comparative life history studies are con-

ducted using whatever data are available and thus the data do not

constitute a random sample of species from the population of

interest. It is then difficult to know if the results can be validly

extrapolated to a larger population of species.

If a comparative life history study gives rise to a general rela-

tionship that holds across all taxonomic groups and all environ-

mental conditions then the definition of the target population is

irrelevant. One way to evaluate the representativeness of the re-

sults of the comparative study is to look at how the resulting

model predicts values of the key parameter for subsets of the data

defined by taxonomic position, ecological role, habitat, etc. (e.g.

Beverton and Holt, 1959). Analysis of residuals is a way to detect

problems with the assumption that the model being fitted has

some universal applicability over a wide range of species and con-

ditions. For example, Pauly (1980) recognized this; he found that

his model for predicting M needed adjustment for polar fishes

and clupeoids but generally appeared to be widely applicable

based on tests of universality (sign tests on the residuals). A cav-

eat is that the greater the number of tests of universality that is

conducted, the more exceptions to the prediction rule will be

found because of pure sampling error (when 20 statistical tests

are done at a¼ 0.05, the expected number of significant results is

one when none of the null hypotheses is false). Thus, one needs

to be careful about concluding that separate estimators are

needed for select groups. Nonetheless, examination of the per-

formance of an estimator over subgroups is a logical way to as-

sure that lack of random sampling of species from the population

of interest is not a fatal flaw of the study. We expand on this idea

in the next paragraph.

The non-random selection of species likely introduces bias

into the estimated regression coefficients because the probability

of a species being sampled is likely to be correlated with the re-

sponse variable (Nakagawa and Freckleton, 2008). Consider the

regression of log(natural mortality rate) on log(maximum age).

Then et al. (2015) had values of M up to 5.07 y�1, corresponding

to small fish (as short as 49 mm) with short lifespans (as short as

38 weeks). Suppose they wished to evaluate the relationship be-

tween M and maximum age for species of economic importance.

They might restrict their attention to species for which M (the re-

sponse variable) is estimated to be less than 1.0 y�1. This would

cause selection bias (Figure 4a). On the other hand, if they re-

stricted attention to species with a maximum age (i.e. explanatory

variable) >2 years, this would not cause selection bias (Figure

4b). (Lest the reader get the impression that comparative studies

are hopelessly biased, we point out that Figure 4a represents an

extreme in selection bias with one group having a sampling prob-

ability of 1.0 and the other having a sampling probability of zero.

The bias would be less if, say, one group had a sampling probabil-

ity of 0.7 and the other had 0.3.) Now suppose that species with

high values of M are less likely to be sampled (i.e. studied) be-

cause most species for which mortality has been estimated are im-

portant to either recreational or commercial fisheries, and

fisheries tend to focus on the larger species within taxonomic

groups which tend to have lower M and higher longevities. Thus,

selection is not on the basis of M (response variable) or longevity

(explanatory variability) but on some other (unspecified) variable

such as economic importance. The selection is on the basis of a

variable (or variables) that is (are) correlated with both the re-

sponse and explanatory variable. This causes statistical bias. An

example of selection biased by the value of the response of inter-

est is given by Best (1993) who reported that observations on rate

of population increase of baleen whales at low population size

were restricted to populations that had increased enough to make

it feasible to monitor the populations.

Statistical methods exist that could be used to extract unbiased

estimates of regression coefficients when the probability of a spe-

cies being sampled (studied) varies by species. This missing data

Figure 4. Regression models fitted to partial data sets where data
are missing (a) depending on the value of Y or (b) depending on the
value of X, after Nakagawa and Freckleton (2008). The bold line is
the true regression, the thin line is the regression calculated from
only the solid points, and the dashed line is the regression calculated
from only the open points.
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problem is statistically similar to the problem of estimating spe-

cies richness from field surveys when the species have different

probabilities of being detected (given that the species is present in

the sampled site), and detection probability may be correlated

with taxonomic group, body size, or habitat preferences (Dorazio

et al., 2006; Kery and Royle, 2008; Royle and Dorazio, 2008). A

similar problem exists in mark-recapture studies in which the

probability of an animal being captured varies with body size, sex

or other characteristics (Royle, 2008, 2009), and in surveys of ani-

mal abundance that expand in area over time (Schmidt et al.,

2009). In all of these cases, the missing response data (e.g. species

occurrence) can be imputed either as a random effect or as a

function of variables that have been observed. The probability of

detection (of a species or individual) can also be modelled as a

function of covariates (Royle, 2009). Although the bias caused by

non-random sampling has been addressed in a meta-analysis of

fishery management systems (Melnychuk et al., 2012; Thorson

et al., 2013), to our knowledge, such methods have not been used

for comparative life history studies. It may be possible to reduce

the bias in such studies by modelling the probability of a species

being studied as a function of the species’ importance to fisheries,

or variables such as size, region, latitude, family, habitat type, or

trophic level.

For example, we extracted all the species for which both tmax

and Lmax were available from Fishbase (Froese and Pauly, 2015),

and used this dataset to evaluate the propensity of each species to

have an M value in the database of Then et al. (2015). Whether a

species was studied (i.e. was included in the database of Then

et al.) was modelled with logistic regression with two fixed effects

explanatory variables of whether or not the species was fished (as

reported in Fishbase) and Lmax, and with a random effect of fam-

ily. Each species’ propensity to be studied was calculated as the

predicted probability of being studied from this model. To evalu-

ate whether propensity to be studied was related to the M values,

indicating that the missing data were not missing at random, we

ran a linear regression of M against propensity to be studied for

those species included in the Then et al. database. The results in-

dicate that fish species with a higher propensity to be

studied have a lower natural mortality rate (solid regression line

in Figure 5); furthermore, the variability in estimates of M de-

creases with increasing propensity score. Species that are unfished

(circles) have a lower propensity score and are extremely variable

in their natural mortality rates compared with species that are

fished (triangles). If species with low propensity to be sampled

are eliminated from consideration then there does not appear to

be a relationship between natural mortality rate and propensity

(dashed regression line). Estimates of the parameter c in the

model M¼ c/Tmax are similar when computed with and without

the low-propensity data indicating that the amount of low pro-

pensity data is not sufficient to have a large effect on the model

for estimating M. However, application of the model to a new

species with a low propensity score is likely to give poor results;

thus, one should check the propensity score before estimating M.

Issue 5. The hierarchical nature of the data (e.g. stocks within
species within genera within families, etc., with multiple
observations at each level) warrants consideration
Often, multiple sets of estimates of parameters will be available

for some species, e.g. commercially or recreationally important

species and species that are easy to study. Including multiple

estimates for some species weights the results towards those spe-

cies; this may affect the representativeness of the results to a wider

population of interest unless a hierarchical model is used to parti-

tion the variance between measurement error and variation

among populations of the same species. Also, to the extent that

the multiple estimates within a species have less variability than

the between-species variability one will be misled into thinking

one has better predictive ability than is warranted unless a hier-

archical model is used.

Nonetheless, there is value in compiling multiple estimates for

species because this can provide insight into the fineness (scale)

of inference that can be made. For instance, in comparative stud-

ies of M, Pauly (1980) had a total of nine estimates of M and cor-

responding parameters for the Atlantic cod (Gadus morhua)

while Hoenig (1983) included eight estimates for the cisco

(Coregonus artedii). For a single species, the range of actual vari-

ability in life history correlates is likely to be less than that among

different species, genera, families, etc. (although there are a num-

ber of examples of freshwater fishes exhibiting high variability in

growth and other parameters; see Donald and Alger, 1989; Shuter

et al., 1998; McDermid et al., 2010; Helser and Lai, 2004). Hence,

it is of interest to see if the range of variability observed in life his-

tory parameters, say tmax, within a taxonomic group can explain

the range in the M estimates for that group. Ideally, the range of

M estimates for a taxon can be accounted for by the variation in

the explanatory life history traits instead of measurement errors.

That is, it is of interest to see if an indirect method can use subtle

variation in life history traits to predict the variability in M

among members of a restricted taxonomic group such as an indi-

vidual species.

The same considerations pertain to higher order taxonomic

groups (genera, families, etc.). Well-studied groups will receive

more weight in the development of estimators unless techniques

Figure 5. Natural mortality rate plotted against propensity to be
studied for the species in the database of Then et al. (2015).
Propensity scores are computed from the mixed effects logistic
regression of whether or not the species is in the database of Then
et al. (response variable) on the fixed effect explanatory variables
Lmax and whether or not the species is fished, and on the random
effect for family. Circles represent unfished species and triangles
represent fished species. The solid line is a regression across all of the
data, and the dashed line is a regression including only data with a
propensity >0.15.
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which partition variability into measurement error and variability

associated with taxonomic group are used. Two approaches are

available: mixed effects models and hierarchical Bayesian models.

We will give examples of the latter but we note that the former

can accomplish the same goals except in a classical rather than

Bayesian framework.

Hierarchical models have been used to evaluate stock-recruit

relationships (Myers, 2001; Dorn, 2002), and occasionally for

growth (Helser and Lai, 2004; Zhang et al., 2009) and mortality

studies (Zhou et al., 2012). Such models generally find important

differences among taxonomic groups in life history parameters

and the relationships between them. Thorson et al. (2013) pro-

vide an excellent review of the use of hierarchical models for

meta-analysis in fisheries science.

Hierarchical models treat the differences between sample units,

such as populations or species, as random effects, drawn from a

distribution with an estimated variance (Royle and Dorazio,

2008; Thorson et al., 2013). For models of life history parameters,

random effects can be estimated at multiple taxonomic levels,

such as population, species, genus, family, and order. Additional

explanatory variables such as environmental conditions or loca-

tion can also be included in the model as fixed effects at an ap-

propriate taxonomic level. Errors in variables and multivariate

correlation structure among parameters can be incorporated into

the hierarchical framework (Helser and Lai, 2004; Zhou et al.,

2012; Thorson et al., 2014). As a practical matter, the dataset will

not be extensive enough to model all the variance components

for many of the parameters we wish to predict. Nevertheless, it is

often possible to estimate random effects for at least the higher

taxonomic levels such as order and family (Zhou et al., 2012).

Random effects at the level of species or population can also be

useful. Because the variance among taxonomic groups (e.g. spe-

cies) and the sampling error variance (e.g. variation among stud-

ies of the same species) can be distinguished (at least in theory) in

the hierarchical model, the model can appropriately weight data

from groups that have different numbers of studies. This poten-

tially allows all available data to be included in the model (after

screening for data quality and differences in estimation

methodology).

In effect, a model with random effects at some taxonomic level

is intermediate between the two extremes of pooling all the data

for regression and regressing data from each taxonomic group

separately. A hierarchical model will estimate separate regression

coefficients for each group, but the values at the group level will

be drawn from a shared distribution. Thus, the coefficients for

each group tend to shrink toward the mean coefficients. Gelman

and Hill (2007) refer to this effect as ‘partial pooling’. Taxonomic

groups with a larger sample size will experience less pooling

(shrinkage towards the mean) than will groups with a smaller

sample. This partial pooling is useful because it allows less studied

groups to borrow information from well-studied groups [what

Punt et al. (2011) call the ‘Robin Hood’ approach]. On the other

hand, for a very well-studied taxonomic group, an independent

model may be preferable to a hierarchical model if borrowing in-

formation from other groups is not necessary or desirable (it

might not be desirable because it introduces stronger assumptions

into the analysis).

In the case that there is significant variation among taxonomic

groups in their life history parameters and the relationships

among them, a hierarchical model may produce more accurate

predictions of life history parameters for unstudied species within

taxonomic groups that are included in the dataset that was used

to fit the model (Thorson et al., 2013). This is illustrated using

simulation of Bayesian hierarchical models in Appendix 1. Also,

because hierarchical models partition variance at multiple taxo-

nomic levels, they can give more accurate estimates of the vari-

ance associated with a prediction at any given taxonomic level.

To expand upon this idea, we first review the distinction be-

tween prediction intervals and confidence intervals. In a regres-

sion of an independent variable y on a predictor variable x, there

is a cloud of points and a best fitting line (in some sense). The

line describes the average value of y for each value of x. Of course,

not all data points constitute average cases, i.e. there are differ-

ences among cases (stocks, species, etc.). This has two implica-

tions. First, there is uncertainty where the average lies, and this

uncertainty is described by the confidence interval. Second, there

is the fact that individual observations are not the same as the

average because of individual variability. The uncertainty in

where a new observation will lie, given the value of x, is described

by a prediction interval, which is wider than the confidence inter-

val since it contains the uncertainty in the mean and the deviation

of individual observations from the mean (see section on answer-

able question D below for a further discussion of this).

Thus, e.g. if a model includes family- and species-specific ran-

dom effects, the expected value of the mean for an unstudied spe-

cies in a studied family will include the family effect. In both the

cases of single and of multiple observations per species, the pre-

diction interval contains the sampling error (among-studies vari-

ability) and the among-species variability within a family. In the

case of no multiple studies of species, the sampling error and

among-species variability are lumped together and are not separ-

ately estimable, so the prediction interval would be about the

same for both the case of one study per species and multiple stud-

ies for some species. However, the confidence interval for the ex-

pected value of a new species in the case with multiple studies per

species would not include the among-studies variance, so it

would be narrower than if there is only one study for each species.

When making a prediction for a new species in a studied family,

given multiple studies per species, it makes sense to characterize

the uncertainty in the prediction by using the confidence interval

because it includes the variability among species but not the vari-

ability among studies of the same species. Having multiple studies

of species would be necessary to separate the variances to make

this possible. If a prior distribution is needed for a parameter, the

confidence interval of the mean prediction would probably be

reasonable for an unstudied species, because it would include in-

dividual variation among species, but not sampling error. See

Appendix 1 for details.

For cross-species comparisons of life history parameters, non-

hierarchical regression models have been more commonly used

than hierarchical models, perhaps in part because existing datasets

have not been considered sufficient to estimate variances at mul-

tiple hierarchical levels. Nevertheless, considering that some life his-

tory traits do appear to vary taxonomically (Zhou et al., 2012), it

would be worth developing hierarchical models where data allow,

and also comparing the results of hierarchical models to the more

commonly used regression approaches. There may be very little dif-

ference between regression and hierarchical models in the predic-

tion for a species from an unstudied taxon. For unstudied taxa, the

hierarchical model may not have any benefit to justify the extra

model complexity. The benefit of the hierarchical model is to give

better predictions for an unstudied species from a studied taxon.
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As an example, consider the dataset on natural mortality rates

compiled by Then et al. (2015) available at http://www.vims.

edu/research/departments/fisheries/programs/mort_db/index.php.

Bayesian estimates for the model M̂ ¼ c K , where K is the von

Bertalanffy growth coefficient and c is a parameter to estimate,

were computed using uninformative priors for c and for residual

variance. Next, models were fitted with either family or order

treated as a normally distributed random effect with an estimated

variance. Additionally, a two-level hierarchical model with family

and order was fitted. In this model, order effects are random devi-

ations from the mean slope parameter c, and family effects are

random deviations from the mean of the corresponding order ef-

fect. The model with just family effect performed best based on its

having the lowest DIC (Deviance Information Criterion) value.

The point estimate for a new species in a new family from the

model with family effects, and the point estimate from the model

without family, were very similar. However, the point estimates

for the species in studied families differed by family (Figure 6).

Thus, the model with family effects may improve prediction for

new species in a studied family, especially if the number of studied

species in the family is high.

Answerable questions
(A) How well does a given method predict literature values?
What is the appropriate measure of performance (absolute or
relative error)?
The focus of this article is on predicting values of a parameter for

a new (previously not considered) species rather than on model-

ling the structural relationship between the expected (average)

value of a variable of interest and possible explanatory variables.

Therefore, we seek a way to evaluate predictive ability.

One way to do this is to look at the average ‘discrepancy’ be-

tween predictions and ‘observed values’ where an ‘observed value’

is an independent (direct) estimate of the parameter and ‘discrep-

ancy’ can be the absolute difference between a predicted value

and an observed value or the squared difference between the pre-

diction and the observed value (e.g. root mean squared error).

For example, consider the estimator of M developed by Hoenig

(1983) in which the logarithms of independent estimates of M

were regressed on the logarithms of the maximum ages known

for 134 stocks of fish, mollusks and cetaceans. We could look at

the average squared deviation of the data points (independent es-

timates of M) from the predictions (regression line). However, it

is well known that this assessment is too optimistic because the

same data that were used to fit the model (the training data) were

used to evaluate the predictive performance (the checking data).

Therefore, it is common to divide the data into two groups

and use the data in one group to fit the model and the data in the

other group to evaluate the model. Typically, k-fold cross-

validation prediction error is computed where the data are ran-

domly divided into k folds (groups) and the model is fitted

k times, each time leaving out one fold. The omitted fold then

serves as the independent, checking data for evaluation of pre-

dictive ability. Typical values for k range from 10 to n (the num-

ber of data points) with n-fold cross-validation consisting of a

‘leave one out’ scheme.

There are three key points about k-fold cross-validation. The

first is that it does not say how well we can predict the parameter,

e.g. M, because the true values of the parameter are unknown.

Rather, it tells us how well we can predict (reproduce) the exist-

ing estimates. It is not clear if the prediction error (the discrep-

ancy) is due to the prediction being bad or if it is due to the

estimate being predicted being bad. In essence, this procedure is

getting at the question: If, instead of doing time consuming, ex-

pensive or tedious studies to estimate a parameter directly, we

rely on a simpler, indirect method, how close can we come to the

direct method (on average)?

The second point about cross-validation is that it does not esti-

mate exactly what is desired (Hastie et al., 2009). We want it to

estimate the conditional prediction error but it estimates the un-

conditional prediction error. The conditional prediction error

quantifies the expected error when the existing model (condi-

tioned on the comparative life history data used to fit the model)

is applied to a randomly selected new set of life history param-

eters. The unconditional prediction error refers to: if we were to

collect other data sets like the one we have at hand, and use them

to develop indirect estimators, how well would the new estima-

tors predict a new direct estimate. Bootstrapping is an alternative

to cross-validation but it, too, does a better job at estimating the

unconditional than the conditional error rate (Hastie et al.,

2009). Nonetheless, these techniques provide the best indication

of prediction error and are valuable.

The third point is that random sampling is not operative in the

selection of species to develop the estimator nor is it operative in

the selection of the new species to which the estimator is to be

applied. Thus, the usual statistical theory governing properties of

the estimator may not hold. For example, as the sample size of spe-

cies used to develop an estimator increases the regression coeffi-

cients may not converge to stable values—this might arise if the

underlying model is not universally applicable to all species groups.

In this case, formal modelling of the probability of a species being

sampled as a function of, e.g. body size or importance to fisheries,

may help to mitigate this problem, given sufficient data.

(B) In what circumstances does a method work? Does it work
for subsets of the data? Does it withstand the test of time?
As we have seen, studying a universally applicable relationship

avoids problems with defining populations and selecting data. It

Figure 6. Original data from Then et al. (2015) (points) showing the
relationship between natural mortality rate, M, and von Bertalanffy
growth coefficient (K), predicted values by family (solid lines) for a
hierarchical model with a random effect of family, and predicted
values from a non-hierarchical model (dashed line).
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is thus important to assess the applicability of any relationship

among life history parameters. Techniques such as analysis of re-

siduals should be applied to multiple subsets of the data reflecting

taxonomy, ecology, physiology and other factors that might be

relevant. The possibility that measurements depend on method-

ology should also be examined. For example, improvements in

methods for determining the age of fish have led to increases in

maximum known age for many species. If methodological

changes are significant, then apparent relationships among life

history parameters may not be stable over time. In performing

these tests it is important to remember that the more tests that

are performed, the greater the chances of finding spurious differ-

ences among groups.

(C) How do we devise a fair comparison of methods for
estimating a parameter?
It is important to compare estimators on as level a playing field as

possible. We believe parameter estimators should be tested (com-

pared) on the same set of species. In this way, outliers in the re-

sponse variable will affect all methods, and the non-random

collection of species for which data are available will at least be

the same for all methods. The disadvantage of this approach is

that the sample size is reduced because you can only use species

for which all life history characters needed for all methods are

known. It may be desirable to perform pairwise comparisons of

estimators so that sample size is reduced minimally.

(D) What can we say about the performance of an estimator
for a particular prediction?
Although there are many uses for comparative life history studies,

the focus of this paper is on the prediction of parameter values in

new situations. Researchers then want to know how well an esti-

mator is likely to perform for the particular stock or species of

interest rather than how well it works on average. As noted above,

cross-validation tells us about how well an indirect estimator can

replicate values from direct estimators, not how close to true par-

ameter values we can come.

One might think that standard regression theory can provide

guidance. Consider the regression of the logarithm of M on the

logarithm of maximum known age in Figure 3. Clearly there is a

relationship between the dependent and independent variables.

For what follows, we will assume there is no error in the inde-

pendent variable, no uncertainty in the model being linear, and

the residual errors are independent and identically distributed

normal random variables. Also shown in Figure 3 are 95% confi-

dence bands for the regression and 95% prediction intervals for a

new prediction. The question is: why don’t the data points fall on

the line and, thus, why doesn’t a particular data point of interest

fall on the line?

There are two extreme cases to consider. First, suppose that

the true values of log(M) fall on a (true, but unknown) regression

line. The confidence interval describes in some sense the uncer-

tainty in the regression line and thus in the prediction of the M

for a new situation. By implication, for this case, direct estimates

of M should be replaced by the predicted values from the regres-

sion because the regression estimates are better than the direct es-

timates upon which the regression is based.

At the other extreme, suppose there is no measurement

error—all of the data points are correct. The 95% prediction

interval describes where 95% of new (future) observations should

fall and hence gives a range of plausible values (for this case) for

M given a value of maximum age.

In reality, species with a given longevity vary in M and there is

uncertainty about every estimate of M. Hence, the uncertainty in

a new prediction is probably more than what is indicated by the

confidence band and less than what is indicated by the prediction

interval. (Theoretically, we could obtain multiple estimates of M

for each of several species (by conducting multiple studies) to

examine the very interesting question of the extent to which de-

partures from the regression line are due to measurement error

versus individual variability in the functional relationship be-

tween longevity and mortality.) Given data, at least some of this

can be addressed with a hierarchical model. Any variability that

can be attributed to random effect differences among taxonomic

groups will not be attributed to sampling error (Appendix 1).

There may be more than one empirical method for estimating

a parameter. Thus, it may be tempting to average predictions or

to develop an estimator based on multiple predictor variables. To

date, attempts to do this for the estimation of natural mortality

rate do not appear to have met with much success (Then et al.,

2015; see also Hamel, 2015).

Often, one’s interest is focused on a particular stock. It is then

natural to judge a prediction for the stock in the context of auxil-

iary information such as taxonomic position, habitat or ecolo-

gical role. Such considerations can be accommodated in

hierarchical models, such as in Figure 6 where it is seen that sep-

arate relationships can be developed for individual taxonomic

groups (but, because all data are considered in a hierarchical

model, the data from each group lends strength to, i.e. influences,

the estimated relationship for every other group). However, if a

new model is developed because one is dissatisfied with a particu-

lar prediction from a standard (established) model one loses ob-

jectivity and the prediction interval for the particular estimate

from the new model becomes hard to interpret.

Conclusions and Recommendations
Comparative life history studies, at least in an informal sense, are

a basic part of routine stock assessment activities. That is, scien-

tists routinely judge the reasonableness of parameter estimates in

terms of the realm of experience with similar stocks. In a more

formal sense, regression estimators, e.g. to estimate natural mor-

tality rate, are used in many if not most stock assessments.

Perhaps the biggest obstacle to more widespread development

and use of comparative life history studies is a widespread misun-

derstanding of what these studies accomplish. The average dis-

crepancy between a regression prediction and a direct estimate is

often taken as a measure of the (in)accuracy of the regression

model. Thus, there are statements in the scientific literature that

empirical estimators are highly imprecise, perhaps too imprecise

to be used for stock assessment purposes. However, this is only

true if the direct estimates are correct and the error is entirely or

largely in the regression model. But, this is an unwarranted and

unverified assumption. Certainly, an indirect regression estimate

may be preferable to a poor direct estimate. And, it is certainly

possible that a regression estimator provides more accurate and

precise results than can be found in the collection of individual

estimates in the literature.

We are now moving beyond simple regression analysis and

using hierarchical models, mixed effect models, empirical Bayes

estimators and data-mining techniques. The field of comparative

life history studies is likely to grow because this approach
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provides information needed for fundamental tasks of stock

assessment.

We offer the following guidelines for conducting comparative

life history studies.

(i) Outline the structure of the available data including fixed

and random effects variables and hierarchies, e.g. taxo-

nomic, that are likely to affect the predictions of a life his-

tory parameter.

(ii) Based on available data and a list of all potentially sample-

able units, determine what units are being excluded from

sampling; this is a fundamental step in determining the

population about which inferences are to be made, e.g. all

fishes versus fishes in certain habitats or taxonomic

positions.

(iii) Document and make publicly available all data encountered,

including data that are rejected as unsuitable, as well as the

data screening procedures adopted; explore the conse-

quences of using various subsets of the data

(iv) Consider the effects of hierarchies in the data on predictions

(v) Examine the possibility of data selection bias, both in the lit-

erature and through quality control procedures, and its

consequences
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Appendix 1. Hierarchical modelling of life history
relationships
Methods
To illustrate the effect of using hierarchical models versus sim-

ple regression models, we generated a simulated dataset that

included variation in regression parameters between species and

between taxonomic groups (Figure A1). Hierarchical and

non-hierarchical models were fitted to these data and used to

predict life history parameter Y (say, natural mortality) for a

new species with a known value of the life history parameter X

(say, inverse longevity). We considered the case where the

new species was from a taxonomic group already studied and

where it was from a taxonomic group not included in the

analysis.

Data were generated for n studies of Y with the following model:

Yi ¼ b0;gðiÞ þ b1;gðiÞXi þ aspðiÞ þ �i (A1)

where i denotes the study, b0;gðiÞ is the intercept term and b1;gðiÞ is

the slope for taxonomic group g (a family or genus, say) corres-

ponding to study i, aspðiÞ is a species effect for the species in study

i, and �i is a normally distributed random error

�i � Normal 0; r2
error

� �� �
, which, for simplicity, is the same for all

studies of all species (Table A1). The intercepts, slopes and species

effects are random effects drawn from independent normal distri-

butions with specified means (lb0
, lb1;

and 0) and variances (r2
b0

,

r2
b1;

and r2
a), respectively, with the random effect across species

having the same distribution for all taxonomic groups. The simu-

lated dataset was generated with 25 species in 5 taxonomic

groups, and 4 studies per species (n¼ 500), so that the data were

informative to estimate all of the parameters.

The models fitted to the data were: (i) a simple linear regression,

(ii) a one-level hierarchical model with species as a random effect,

(iii) a two-level hierarchical model including both species and

group effects, and (iv) a one-level hierarchical model with a ran-

dom effect of group. All models were fitted using a Bayesian stat-

istical framework with uninformative priors. However, similar

results could be obtained using linear mixed models in a classical

statistical framework. The regression model treated all data points

equally and estimated a single intercept, slope, and error variance:

Yi ¼ b0 þ b1Xi þ �i (A2)

The one-level hierarchical model was the same as the regression,

except that it also included a normally distributed random effect

of species ðaspðiÞÞ with a mean of zero and an estimated variance

asp � Normal 0;r2
a

� �� �
:

Yi ¼ b0 þ b1Xi þ aspðiÞ þ �i : (A3)

Table A1. Values of the parameters used to generate the simulated data (‘true’) and the values estimated by the three models

Parameter Description True Regression Species effect Two-level Group effect

rerror Error SD 0.050 0.144 0.053 0.054 0.055
ra SD in intercept between species 0.030 NA 0.142 0.020 NA
rb0

SD in intercept between groups 0.070 NA NA 0.120 0.125
rb1

SD in slope between groups 0.600 NA NA 0.797 0.833
lb0

mean intercept between groups 0.040 0.023 0.023 0.052 0.058
b0;1 intercept of group 1 0.099 NA NA 0.114 0.114
b0;2 intercept of group 2 0.031 NA NA 0.030 0.030
b0;3 intercept of group 3 �0.026 NA NA �0.054 �0.054
b0;4 intercept of group 4 0.024 NA NA 0.023 0.023
b0;5 intercept of group 5 0.081 NA NA 0.147 0.147
lb1

mean slope between groups 3.000 3.237 3.242 2.961 2.898
b1;1 slope of group 1 2.051 NA NA 1.997 1.659
b1;2 slope of group 2 2.940 NA NA 2.888 2.888
b1;3 slope of group 3 2.835 NA NA 3.032 3.065
b1;4 slope of group 4 2.561 NA NA 2.655 2.611
b1;5 slope of group 5 4.674 NA NA 4.225 4.273
a1 species effect for species 1 0.017 NA �0.032 0.000 NA
a2 species effect for species 2 0.002 NA 0.036 0.011 NA
a3 species effect for species 3 �0.046 NA �0.086 �0.017 NA
a4 species effect for species 4 0.013 NA 0.056 0.011 NA
a5 species effect for species 5 �0.008 NA �0.067 �0.004 NA

Only the first 5 of the 25 species effects are shown.

Figure A1. Hierarchical structure of simulated data. There are
studies (smallest boxes) within species nested within a higher
taxonomic group such as genus or family or order nested within an
even higher taxonomic group. From the perspective of predicting
the dependent variable Y for a new species, the key question is
whether there are significant differences in Y associated with the
group identity.
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The two-level hierarchical model had the same structure that was

used to simulate the data (Equation A1), with random effects of

species, and random effects for the intercept

b0;g � Normal 0; r2
b0

� �h i
and slope b1;g � Normal 0;r2

b1

� �h i
of

the regression at the group level:

Yi ¼ b0;g ið Þ þ b1;g ið ÞXi þ asp ið Þ þ �i (A4)

The last model included a random effect of group on both the

slope and the intercept, but no species effect:

Yi ¼ b0;gðiÞ þ b1;gðiÞXi þ �i (A5)

To evaluate the implications of these different model structures

on the prediction of Y for a new species, we calculated predictions

from all the models for a hypothetical unstudied species with an

arbitrary value of X. At that value of X, we calculated, with each

model, both the credible interval of the mean of Y (i.e. the range

from the 2.5 percentile to the 97.5 percentile of the posterior dis-

tribution of the mean of Y at the specified value of X) and the

prediction interval (i.e. the range from the 2.5 percentile to the

97.5 percentile of the posterior distribution of a hypothetical new

data point at the same X value; this is wider than the credible

interval of the mean because it includes observation error). For

the regression model and the one-level hierarchical model with a

species effect, the taxonomic group of the new species does not

influence the prediction. For the models with random effects of

group, we predicted values for all the groups that were included

in the dataset, and for a species from a new taxonomic group. For

a species within one of the studied groups, the expected value of

Y would be calculated as:

Yi ¼ b0;gðiÞ þ b1;gðiÞXi þ asp;new (A6)

for the two-level model, using the values of b0;gðiÞ and b1;gðiÞ for

that group. Because the value of asp;new for a new species is not

known, values from this parameter are randomly drawn from the

estimated distribution of species random effects

asp � Normal 0; r2
a

� �� �
, so that the estimated posterior distribu-

tion of Yi includes the uncertainty in this parameter. For a species

in a new taxonomic group, b0;gðiÞ and b1;gðiÞ would also be drawn

from their respective distributions, further increasing the uncer-

tainty in Yi.

Simulations were conducted in R, and models were fit using the

Bayesian software JAGS (Lunn et al., 2013). The JAGS software

uses the MCMC algorithm to estimate the marginal posterior dis-

tribution of each estimated parameter or prediction. The values

of all the predictions are calculated at each iteration of the

MCMC algorithm, so that the uncertainty in all the estimated

parameters and the expected variances at the level of species and

group are integrated to give the posterior distribution of the

predictions.

Results
The simulated data had quite different relationships between X

and Y in the different taxonomic groups (Figure A2a, Table A1).

Because of this, the predicted value of Y for a new species would

be highly dependent on its taxonomic group, even if the underly-

ing values of the regression parameters for each group were

known perfectly (Figure A2b, values labeled ‘true’ where, among

the five groups shown, Group 5 is much higher than the others).

When a simple linear regression was used to fit these data, the

variation between groups and between species was interpreted as

observation error (Figure A2b, Table A1). Thus, the credible

interval of the mean Y at X¼ 0.1 is quite narrow, but the predic-

tion interval is broad (Figure A2b: Regression) reflecting the fact

that the regression method does not utilize the information in the

group identity of the new species to predict Y. On the other hand,

Figure A2. (a) Simulated data for life history parameter (Y)
predicted by life history parameter (X), with both the slope and the
intercept varying by taxonomic group. Plotting symbols indicate the
species, lines are the true relationship between X and Y for each
group. The top line is group 5, followed by (at X¼ 0.1) groups 2, 1, 4
and 3. (b) Predicted values of Y for a new species with X¼ 0.1. Inner
bounds are the credible interval for the mean value of Y for a new
species. Outer bounds are the prediction interval for a new study of
a new species (including measurement error). Central value is the
posterior median. The values shown at the left are the ‘true’ values
calculated from the known parameter values for each group. On the
right are the predictions from a simple linear regression, a one-level
hierarchical model with a species random effect, a two-level
hierarchical model with both species and group random effects, and
a one-level hierarchical model with a group effect but no species
effect. For models with a group effect, predictions are shown for a
new species in each studied group, and for a new species in an
unstudied group.
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a one-level hierarchical model with a species random effect inter-

prets most of the variation in the data as differences between spe-

cies rather than sampling error (Figure A2b: Species effect). Thus,

although the one-level hierarchical model and the regression

model give very similar point estimates of Y and similar predic-

tion intervals, the credible intervals of the mean are very

different.

The two-level hierarchical model interprets much of the variation

in the data as differences between groups, so that both the vari-

ance between species and the sampling error variance are smaller

(Table A1, Figure A2b, 2-level). Therefore, when the two-level

hierarchical model is used to predict Y values for a new species in

one of the five studied groups, both the credible interval of the

mean and the prediction interval are narrow. On the other hand,

when the two-level hierarchical model is used to predict a value

for a new species in an unstudied group, the credible interval of

the mean and the prediction interval are broad, because they in-

clude the variation between groups.

Finally, when a one-level hierarchical model with a group effect

but no species effect is used, the model interprets differences be-

tween species within each group as being part of the differences

between groups (Figure A2b:Group effect). Thus, the credible

interval for the mean of a new species in one of the studied

groups is narrow, and the prediction interval is broad, compared

with the results from the model with both group and species ef-

fects. The credible interval and prediction interval for a new spe-

cies in an unstudied group are fairly similar for any of the

hierarchical models, because all the variation between groups and

species is included in the prediction interval.

Discussion
Which of these models is preferable (in general) for prediction

depends on whether there is significant variation between taxo-

nomic groups in the relationship between X and Y, and also on

the research question being asked. Models with different hier-

archical structures differ from each other mainly in how they par-

tition the variance in the data into observation error variance

versus random effect variance at the level of various groups. If the

researchers are only interested in producing a point estimate of Y

for a particular value of X for an unstudied species, the models

may give very similar results. In the case that there is no variation

between taxonomic groups, any of these model structures, includ-

ing the simple regression, will provide very similar point esti-

mates of Y at any particular value of X. In the case where

taxonomic groups vary, the models also produce very similar

point estimates if the prediction is for a species in an unstudied

group. The point estimates only differ for predictions within the

studied groups, when there are differences between the groups. In

that case, a hierarchical model that includes a group random ef-

fect can improve predictions for a new species in the studied

groups. Interestingly, including a species random effect has a neg-

ligible influence on the point estimate of Y for a new species in

the studied groups. Species effects may be difficult to estimate,

since it is necessary to have multiple studies for some species in

order to distinguish species effects from observation error.

However, our results indicate that it may not be necessary to esti-

mate species effects, if only point estimates are needed.

If researchers want credible intervals or prediction intervals as

well as point estimates, or if the partitioning of variance is of

interest, then the choice of hierarchical structure requires more

thought. In our simulated data example, there were differences

between groups and between species within groups. Without

hierarchical structure, the regression model overestimated the ob-

servation error variance. Thus, for the regression, the credible

intervals for the mean Y at any value of X are narrower than they

should be. The model that had only a species random effect pro-

vided a fairly accurate estimate of the observation error variance,

but greatly overestimated the variance between species, because it

was including all the differences between groups in the species ef-

fect. The two-level hierarchical model was able to estimate all of

the variance components, although it did somewhat overestimate

the difference between groups and underestimate the difference

between species (But, this observation pertains to the specific

dataset that was simulated and may not hold in general). The

model with only group effects was very similar to the two-level

hierarchical model. This implies that, as expected, if there is hier-

archical structure in the data, then a model that is able to estimate

the important elements of the structure will produce better esti-

mates of the variance components. In our simulated data, the dif-

ferences between groups were the most important hierarchical

component.

In an actual study of life history relationships among the fishes,

there may be important differences at multiple taxonomic levels

(order, family, genus, species, population) and data may not exist

to estimate random effects at more than one or two levels. These

simulation results seem to imply that capturing the differences

between groups at one or two levels can improve prediction, even

if some taxonomic levels have to be left out due to data

constraints.
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