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Abstract. The Ross Sea is a region characterized by high pri-
mary productivity in comparison to other Antarctic coastal
regions, and its productivity is marked by considerable vari-
ability both spatially (1–50 km) and temporally (days to
weeks). This variability presents a challenge for inferring
phytoplankton dynamics from observations that are limited
in time or space, which is often the case due to logistical
limitations of sampling. To better understand the spatiotem-
poral variability in Ross Sea phytoplankton dynamics and
to determine how restricted sampling may skew dynamical
interpretations, high-resolution bio-optical glider measure-
ments were assimilated into a one-dimensional biogeochem-
ical model adapted for the Ross Sea. The assimilation of
data from the entire glider track using the micro-genetic and
local search algorithms in the Marine Model Optimization
Testbed improves the model–data fit by ∼ 50 %, generating
rates of integrated primary production of 104 gCm−2 yr−1

and export at 200 m of 27 gCm−2 yr−1. Assimilating glider
data from three different latitudinal bands and three differ-
ent longitudinal bands results in minimal changes to the sim-
ulations, improves the model–data fit with respect to unas-
similated data by ∼ 35 %, and confirms that analyzing these
glider observations as a time series via a one-dimensional
model is reasonable on these scales. Whereas assimilating
the full glider data set produces well-constrained simula-
tions, assimilating subsampled glider data at a frequency
consistent with cruise-based sampling results in a wide range
of primary production and export estimates. These estimates
depend strongly on the timing of the assimilated observa-
tions, due to the presence of high mesoscale variability in this
region. Assimilating surface glider data subsampled at a fre-

quency consistent with available satellite-derived data results
in 40 % lower carbon export, primarily resulting from opti-
mized rates generating more slowly sinking diatoms. This
analysis highlights the need for the strategic consideration of
the impacts of data frequency, duration, and coverage when
combining observations with biogeochemical modeling in
regions with strong mesoscale variability.

1 Introduction

Phytoplankton blooms in the Ross Sea are responsible for
some of the highest rates of productivity in the South-
ern Ocean (Arrigo et al., 2008), and yet the phytoplankton
assemblage exhibits considerable spatiotemporal variabil-
ity (DiTullio and Smith, 1996; Hales and Takahashi, 2004;
Smith et al., 2010). This heterogeneity, and the spatial or tem-
poral limitations of observations due to logistical challenges
of sampling, may affect the inferred phytoplankton dynam-
ics and produce biases in productivity or export estimates.
The magnitude of the underlying ecosystem variability that
contributes to these potential biases is not well understood,
nor is it well known how the use of different observational
platforms in the Ross Sea might affect the inferred dynam-
ics. Acquiring data with an appropriate resolution is impor-
tant for assessing phytoplankton variability in the Ross Sea
(Hales and Takahashi, 2004).

Over the past several decades, biogeochemistry in the Ross
Sea has been observed by ship and satellite, providing data
at different temporal and spatial resolutions. Since Ross Sea
phytoplankton became a focus of scientific research in the
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late 1970s, water column measurements have primarily come
from research vessels (e.g., El-Sayed et al., 1978; Smith and
Nelson, 1985; Vaillancourt et al., 2003). Typically, sampling
stations are separated by tens of kilometers (Hales and Taka-
hashi, 2004), and although vessels may return to resample
a station, they typically do not return more than once or twice
in a single year. During the 1990s, the use of remote sensing
was expanded to look more closely at the Ross Sea bloom
(Arrigo and McClain, 1994), and satellite retrievals have con-
tinued to provide valuable insights into characteristics of the
phytoplankton assemblage (Arrigo et al., 1998; Arrigo and
van Dijken, 2004; Peloquin and Smith, 2007; Schine et al.,
2015). Satellite observations offer a synoptic view of spatial
regions at frequencies that are within the timescale of biolog-
ical changes (e.g., growth); however, the presence of sea ice
and clouds often obscures remote-sensing measurements in
the Ross Sea (Arrigo et al., 1998).

On the mesoscale (days–weeks, 1–10 km), gliders are
a relatively new and effective means to characterize phyto-
plankton variability, and the development of ice-avoidance
algorithms has enabled the use of gliders in the Ross Sea
for these purposes. For example, a glider equipped with bio-
optical sensors was directed along a section near 76◦40′S
in austral summer 2010–2011 and provided valuable esti-
mates of biomass variability on short timescales (Kaufman
et al., 2014). Estimates of the POC : Chl ratio from the glider
optical sensors suggested a transition from a Phaeocystis
antarctica (P. antarctica) to a diatom-dominated assemblage
over several days (Kaufman et al., 2014; Thomalla et al.,
2017). Moreover, Jones and Smith (2017) used glider ob-
servations from austral summer 2012–2013 to distinguish
three phases of the Ross Sea bloom and identified high-
frequency (hours) associations between wind-driven mixing
and biomass. A perennial challenge when using glider data
(as well as ship-based data), however, is separating the ef-
fects of time and space (Kaufman et al., 2014; Little, 2016).

Numerical models are another approach for examining
phytoplankton variability in the remote Ross Sea, providing
an effective means for coordinating knowledge and under-
standing the underlying system complexities (Leonelli, 2009;
Vallverdú, 2014). Furthermore, numerical simulations offer
the possibility for experimental manipulations that would be
impractical or impossible in the real system. Such manip-
ulations were implemented in the scenario experiments de-
scribed by Kaufman et al. (2017a) to investigate how pro-
jected climate changes might alter the dynamics of the phy-
toplankton assemblage. These experiments showed that ear-
lier availability of low light resulting from sea ice reduction
was the primary driver of projected increases in production
and export and composition change over the next century.

Data assimilation, which refers to methodologies that sys-
tematically combine a mathematical model with observa-
tions, is often used in biogeochemical applications (Hof-
mann and Friedrichs, 2001, 2002) to improve estimates of
model parameters that are frequently poorly known (Law-

son et al., 1995, 1996; Matear, 1995; Fennel et al., 2001;
Friedrichs, 2002; Schartau and Oschlies, 2003; Hemmings
et al., 2004; Bagniewski et al., 2011; Doron et al., 2013; Xiao
and Friedrichs, 2014a, b; Melbourne-Thomas et al., 2015;
Song et al., 2016; Gharamti et al., 2017; Schartau et al.,
2017). This entails a smoothing or optimization procedure, in
which elements of the model are adjusted to minimize differ-
ences between the model output and the observations. Typi-
cally, an aggregate measure of the differences between obser-
vations and model output is provided by calculation of a cost
function, defined as the model–data misfit, and an optimiza-
tion algorithm searches for model parameters that minimize
the value of this cost function.

In this study, data assimilation is used to obtain an optimal
representation of Ross Sea lower trophic levels. Specifically,
observations from an autonomous glider are assimilated into
a biogeochemical model of the Ross Sea (Kaufman et al.,
2017a) to better understand the spatial and temporal variabil-
ity in phytoplankton in this region. Assimilation experiments
also examine how the space and time characteristics of ob-
servational sampling frequency impact the ability of obser-
vations to produce optimal system representations.

2 Methods

2.1 One-dimensional biogeochemical model

Numerical experiments were conducted with the Model of
Ecosystem Dynamics, nutrient Utilisation, Sequestration and
Acidification for the Ross Sea (MEDUSA-RS; Kaufman
et al., 2017a), a regionally adapted version of MEDUSA-1.0
(Yool et al., 2011). Three phytoplankton groups are repre-
sented in the MEDUSA-RS model: colonial P. antarctica,
solitary P. antarctica, and diatoms. Phytoplankton growth
in the model is temperature dependent as well as limited
by light and nutrient availability. Colonial P. antarctica, di-
atoms, and detritus all sink at distinct rates. The model han-
dles the sinking of large detrital particles implicitly as a fast-
sinking group to avoid issues related to the scale of the model
time step and to avoid the need for an additional tracer. A bal-
last scheme is used to allow inorganic materials to “pro-
tect” a variable fraction of the sinking organic material from
degradation. The model is configured to focus on dynamics
within the euphotic zone with a vertical resolution of 5 m
from the ocean surface to 200 m. A full description of the
model and its setup within the Marine Model Optimization
Testbed (MarMOT; Hemmings and Challenor, 2012), as well
as the physical forcings derived from glider observations, are
documented in Kaufman et al. (2017a, b).

2.2 Data for assimilation

In situ observations used for the assimilation experiments
came from an iRobot Seaglider equipped with a Wet
Labs ECO Puck sensor and are available in the Biologi-
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Figure 1. Southern Ross Sea showing transect locations where the
glider was at the surface. The color of each glider dive indicates
the date. Bathymetric contours are shown at 200 m intervals, as ob-
tained from the bedmap2 bathymetric data (Fretwell et al., 2013).

cal and Chemical Oceanography Data Management Office
data repository (Smith, 2005). Glider dives from 22 Novem-
ber 2012 to 1 February 2013 covered a horizontal area
spanning 76.83–77.44◦ S and 168.9–171.97◦ E (Fig. 1). Data
spanning the upper 200 m of the water column were binned
by means into hourly, 5 m vertical bins. Concentrations
of chlorophyll (Chl) and particulate organic carbon (POC)
were derived, respectively, from fluorescence and optical
backscatter counts measured by the sensor and converted us-
ing regression equations (Kaufman et al., 2017a). These bio-
optical quantities were used for calculating model–data mis-
fits during assimilation (Kaufman et al., 2017c).

2.3 Cost function

The “cost function” (J ), defined as a measure of misfit be-
tween a particular model simulation and observational data,
is computed as a weighted average of the squared differences
between simulated and observed values:

J =
1
N

N∑
i=1

(
1
σ 2

chl

(
xi, chl− yi, chl

)2
+

1
σ 2

poc

(
xi, poc− yi, poc

)2)
,

where N is the number of observation points, xi is the sim-
ulated value of either chlorophyll or POC at the ith obser-
vation point, and yi is its observed value; σ is the standard
deviation (SD) of the specific observation set assimilated in
a particular experiment. Using the SD of the observations to
define a characteristic scale of variation for each variable is
a technique used in previous studies (e.g., Friedrichs et al.,
2006; Xiao and Friedrichs, 2014a, b). It is designed to weight
the relative misfit contribution of each variable appropriately
when there are insufficient data to define a comprehensive er-
ror model. Such a model would require reliable information
about the uncertainty associated with observation errors (in-

strument error and error of representativeness) and nonpara-
metric errors in the simulation such as forcing errors (Schar-
tau et al., 2017). The use of different cost function weighting
schemes in plankton modeling, including the characteristic
scale technique, is explored in more detail by Hemmings and
Challenor (2012).

2.4 Cost function minimization

Model parameters were optimized in MarMOT by finding
the minimum of the cost function (Sect. 2.3) through a com-
bination of the micro-genetic algorithm (µGA) and Powell’s
non-gradient direction set algorithm. The µGA runs first and
identifies sets of parameter values that produce low-cost val-
ues; this is achieved by “evolving” a population of various
parameter sets over successive iterations, called generations.
The low-cost parameter sets identified by the µGA are then
used as starting points for the direction set method, which
performs successive linear searches to identify nearby lower
cost solutions.

Genetic algorithms, including the µGA, are a subtype of
computational methods known as evolutionary algorithms,
so-called because of their inspiration from, and similarity to,
biological evolution. Described using this analogy, a genetic
algorithm procedure modifies a population of candidate so-
lutions over successive generations by variation and selec-
tion processes to converge on a single solution or solution
area. Genetic algorithms (GAs) have several advantages for
optimization, including their intrinsic parallelism, suitability
for systems with multiple local minima, and their general-
izability (Bajpai and Kumar, 2010; Ward et al., 2010). The
µGA uses three steps to transition from one generation to the
next, described following the biological analogy as selection,
crossover, and resampling (Krishnakumar, 1990; Črepinšek
et al., 2013). An advantage of the µGA is its reduced risk
of premature convergence, resulting from re-initializing after
each convergence, and generating new random populations
while maintaining the best fit individual from the previous
set (Schmitt, 2001).

In this µGA implementation, optimizations begin with
a population of five individual parameter sets randomly gen-
erated for the first µGA generation. The constituent pa-
rameter values are selected randomly from within a pre-
determined range of allowable values (Sect. 2.5.1). An eval-
uation of the cost function for each model solution indicates
the “fitness” of each individual. A binary tournament proce-
dure is then followed to select parents from this population
for the next generation. The most-fit individuals (i.e., those
with the lowest cost function values) are paired with one an-
other and undergo recombination of the bits representing pa-
rameter values. After each generation, the proportion of bits
differing from those of the fittest individual is calculated to
determine whether the population can be deemed converged
(though this does not necessarily indicate closeness in pa-
rameter space). After the threshold for convergence has been
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achieved, the population is re-initialized to random individu-
als, although the fittest individual is maintained. The µGA is
terminated upon the first convergence occurring after a min-
imum number of generations has been reached.

Once convergence has been achieved after a minimum
number of µGA generations, Powell’s non-gradient direc-
tion set algorithm performs a local search using the µGA
solutions as starting points. The direction set method per-
forms sequential minimizations in iterative directions, updat-
ing the search direction after each iteration (Powell, 1964;
Press et al., 1992). Although the µGA is well suited for global
search problems partly because of its stochasticity, Powell’s
direction set algorithm is well suited to searching for a local
optimum. Brent’s method, which combines root-bracketing
with secant and inverse quadratic interpolation (Brent, 1973),
is used to numerically locate cost minima between neigh-
boring function evaluations along each direction identified
by the Powell algorithm. The direction set algorithm stops
when a cost function minimum is located or when a maxi-
mum number of iterations is reached. The optimized param-
eter values are those that generated the cost function mini-
mum.

2.5 Selection of parameters to be optimized

Ideally, optimal values are identified for all parameters in
a model, however, uncertainty in the parameter estimates
from an algorithmic optimization increases as the num-
ber of parameters included in that optimization increases
(Friedrichs et al., 2007; Ward et al., 2010). Although the op-
timization of more parameters generally lowers the assimi-
lated cost, the increasing potential for equifinality with more
parameters means the optimization may find equivalent low-
cost solutions with substantially different parameter values.
Therefore, before assimilating observations and optimizing
parameters, a subset of “free” or “optimizable” model pa-
rameters must be chosen. In this study, the parameters to be
optimized are selected through a three-step process: defining
a range of permitted values for every parameter (Sect. 2.5.1),
identifying the parameters to which model outputs are most
sensitive (Sect. 2.5.2), and evaluating how many of these sen-
sitive parameters can be reasonably optimized when assimi-
lating the available data (Sect. 2.5.3). Initial values for each
parameter, prior to the assimilation, were set to values iden-
tified in Kaufman et al. (2017a).

2.5.1 Parameter ranges

Upper and lower bounds of the allowable range for each
free parameter were defined loosely following Hemmings
et al. (2015). Bounds were set to be geometrically symmetric
(factor of 4 for rates; factor of 5 for half-saturation concen-
trations) around the initial values. For fractional parameter
values, limits were set to ±0.25 their initial values, although
not allowed to exceed 0.05 or 0.95. Ranges for parameters

not expressed as fractions were log-transformed for sampling
purposes.

2.5.2 Sensitivity analysis

Parameters to which model outputs are highly sensitive are
important and useful to optimize. In contrast, it is futile to
optimize parameters to which model outputs of interest are
not sensitive; no amount of varying these parameters will
result in improved model performance. Therefore, the first
criterion used to designate a parameter as optimizable was
the sensitivity of model outputs to the values of that param-
eter. Model sensitivities were evaluated for assimilated vari-
ables (Chl and POC) and carbon fluxes of interest (primary
production (PP) and carbon export at 200 m). To quantify
the sensitivities of these outputs to each of the 80 parame-
ters in the model, a series of runs were conducted follow-
ing the approach of Hemmings et al. (2015). Each run used
a unique sample of parameter values drawn from within the
specified parameter ranges (Sect. 2.5.1) using a Latin hyper-
cube. This approach provides more even coverage of the pa-
rameter space than Monte Carlo sampling methods that can
result in clustered values and unsampled regions (Appendix
A). One thousand values were drawn from sequential inter-
vals throughout the range for each parameter. Using this tech-
nique, unique parameter sets were constructed such that over
the course of all runs, the full range of values for each pa-
rameter was represented.

The model was run 1000 times, each time using one of
the unique parameter sets resulting from Latin hypercube
sampling of the full parameter space. Sensitivity was quan-
tified by evaluating the amount of variance in the output di-
agnostics explained by each parameter (i.e., by computing
the coefficient of determination (r2) between each parameter
and each of the four output variables of interest; Fig. 2). All
four model outputs (Chl, POC, PP, and export) were most
sensitive (r2

≥ 0.01) to attenuation of blue-green light by
phytoplankton pigments, diatom maximum growth rate, and
C : Chl ratio for solitary P. antarctica. Three additional pa-
rameters (maximum growth rate of P. antarctica colonies,
maximum growth rate of solitary P. antarctica, and micro-
zooplankton maximum grazing rate) exhibited r2

≥ 0.01 for
both chlorophyll and POC. The 21 parameters with r2

≥ 0.01
(Fig. 2) were selected for further evaluation (Sect. 2.5.3).

2.5.3 Using twin experiments to select optimizable
subset

After selecting the 21 potentially optimizable parameters,
numerical twin experiments (NTEs) were conducted to iden-
tify an optimizable subset by evaluating the extent to which
known values of sensitive parameters could be recovered
given the data available for assimilation. The implementa-
tion of NTEs involves four primary steps (Hofmann and
Friedrichs, 2001). First, the chosen model is run forward in

Biogeosciences, 15, 73–90, 2018 www.biogeosciences.net/15/73/2018/



D. E. Kaufman et al.: Assimilating bio-optical glider data 77

Figure 2. Variance explained in model outputs by parameters during sensitivity tests using Latin hypercube sampling of parameter space.
Only parameters with at least one r2 value greater than or equal to 0.01 (vertical dotted line) are shown.

time to create a simulation using a known, “true” parame-
ter set. Second, output from this simulation is subsampled to
create a so-called “synthetic” data set. Third, the synthetic
dataset is then assimilated to optimize model parameters.
Fourth, the optimized parameter set is compared to the true
parameter set. The assimilation is successful if the optimized
values recover the true parameters used to generate the as-
similated synthetic data.

There is a limit to the number of parameters that can be
independently constrained by the available observations be-
cause varying different parameters can often have similar ef-
fects on the cost function. Optimizing a larger set increases
the potential for correlation between the effects of different
parameters, reducing the algorithm’s effectiveness in identi-
fying unique optimal parameter sets. This, combined with
the increased potential for over-fitting associated with the
greater model degrees of freedom, can reduce the ability of
an optimized model to reproduce independent data (Matear,
1995; Friedrichs et al., 2007; Xiao and Friedrichs et al.,
2014b). The limitation on the number of optimizable param-
eters applies to both µGA and variational adjoint optimiza-

tions (Ward et al., 2010). In fact, rather than being a function
of the optimization algorithm, it is dependent on the available
data and the design of the cost function (Löptien and Dietze,
2015). A larger or richer observation set can help to constrain
more parameters. The impact of cost function design is more
complicated because an improved cost function may allow
for greater uncertainty in the observations and/or nonpara-
metric uncertainty in the simulation, leading to weaker but
more realistic constraints on the parameters (Hemmings and
Challenor, 2012).

The procedure followed here for determining the subset of
optimizable parameters is similar to that used by Friedrichs
et al. (2007). First, a reference simulation was generated us-
ing the initial parameter set, and chlorophyll and POC es-
timates from this reference simulation were subsampled to
generate a synthetic data set. Starting with a parameter space
defined by the set of 21 parameters deemed sensitive in the
Latin hypercube tests (Fig. 2), a series of sequential NTEs
was then performed with a progressively smaller number of
optimized parameters: after each NTE, the optimized param-
eter that was most different from its “true” value was re-
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Figure 3. (a) Minimum costs and (b) normalized parameter val-
ues in numerical twin experiments, illustrating that the assimilation
procedure is unable to successfully recover the true parameter val-
ues when more than eight parameters are optimized. One data point
in three of the experiments (19, 20, and 21) exceeds the y axis upper
limit in panel (b).

moved from the optimizable parameter set. Thus, after each
NTE the number of optimized parameters was reduced by
one. The series of NTEs was evaluated to identify the largest
parameter set for which the original parameter values were
recoverable and for which the cost function remained essen-
tially 0. From this analysis (Fig. 3), it was determined that
optimizing eight parameters would be ideal (Table 1) because
values of these eight parameters were recovered much better
than larger parameter sets and model–data misfit (cost) re-
mained low.

2.6 Assimilation experiments

The µGA optimization procedure was used to assimilate
glider data in two sets of experiments that explored aspects
of spatiotemporal variability and data availability. Estimates
of depth- and time-integrated PP and time-integrated carbon
export at 200 m were computed from the full model simula-
tion in each experiment.

2.6.1 Experiment 1

The first set of experiments examined the differences in
model simulations resulting from assimilating Chl and POC
data from different spatial regions. In Experiment 1a, glider
observations were assimilated from the upper 50 m of the
full temporal and spatial domain, referred to hereafter as the
“Full Assimilation” case (Table 2). (Comparisons showed

only minor differences between assimilating data from the
upper 50 m vs. the full upper 200 m.) Observations from dif-
ferent spatial areas of the glider track were also assimilated.
Observations from the glider track were divided into three
latitudinal bands (northern, central, and southern bands) as
well as into three longitudinal areas constituting eastern, cen-
tral, and western bands. Glider data from each of these three
latitudinal and longitudinal bands were assimilated in Exper-
iments 1b and 1c, respectively (Table 2, Fig. 4), resulting in
three cost functions for each of these experiments.

2.6.2 Experiment 2

The second set of experiments investigated the assimila-
tion of data at different resolutions mimicking different data
sources. In Experiment 2a, glider data were subsampled at
∼ 12 h intervals (Table 2). The subsampling was repeated
12 times, with each iteration offset from the previous by +1,
2, 3,. . . 11 h, to generate a series of 12 glider observation sets.
The assimilation of these 12 time series yields the “Glider
Assimilation” case. In Experiment 2b, glider data were sub-
sampled at a reduced temporal resolution similar to cruise
sampling (Table 2). Sampling during cruise missions often
takes place for a few days in one location before moving else-
where, and the ship sometimes returns to the first location
after a number of weeks. To roughly mimic this sampling
pattern, daily vertical profiles (again down to 50 m) were as-
similated for 3 days in a row, starting from the first day of
available glider data (22 November), and then 3 days of data
were assimilated 2 weeks later. Shifting this pattern forward
1 week at a time generated a series of eight cruise-based ob-
servation sets for assimilation in this “Cruise-Based Assimi-
lation” case. In Experiment 2c, glider data were assimilated
only from the upper 5 m surface layer to produce a data set
resembling satellite-derived data. These data were then sub-
sampled at 2-week intervals, to represent typical data return
from remote-sensing observations of ocean color in the Ross
Sea, where the availability of satellite image retrieval is fre-
quently limited by excessive, though variable, cloud cover
(Arrigo and van Dijken, 2004). The 2-week subsampling pat-
tern covered the entire period of glider data (22 November–
1 February) and was sequentially shifted forward 1 day at
a time to generate a series of 14 satellite-based observation
sets for assimilation in this “Satellite-Based Assimilation”
case (Table 2).

2.7 Predictive cost assessment

In addition to the assimilative cost (JA) calculated during
the optimization procedure using assimilated data, a predic-
tive cost (JP) was calculated to assess model–data misfit
computed using the unassimilated data in each experiment.
Because predictive costs represent model–data misfit from
unassimilated data only (Friedrichs et al., 2006; Ward et al.,
2010), it is an objective measure of the skill of an optimized
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Table 1. Eight parameters optimized in this analysis.

Parameter name Initial value
(Kaufman et al., 2017a)

Bounds
(lower, upper)

Diatom max. growth rate at 0 ◦C 0.375 (d−1) 0.09375, 1.5
P. antarctica solitary cells C : Chl ratio 30 (gCgChl−1) 7.5, 120
P. antarctica colonies max. growth rate at 0 ◦C 0.5 (d−1) 0.125, 2
P. antarctica solitary cells max. growth rate at 0 ◦C 0.5 (d−1) 0.125, 2
Diatom C : Chl ratio 150 (gCgChl−1) 37.5, 600
Fast detritus sinking fraction of diatom losses 0.75 0.5, 0.95
P. antarctica colonies max. sinking rate 20 (md−1) 5, 80
P. antarctica colonies C : Chl ratio 40 (gCgChl−1) 10, 160

Figure 4. Locations of glider observations assimilated in (a) Experiment 1b – latitudinal bands – and (b) Experiment 1c – longitudinal bands.
Colors represent the three spatial bands of data assimilated.

model in reproducing observations at different points in time
or space (Gregg et al., 2009). In this case, the aim of these ex-
periments is to assess the skill of each optimized simulation
regardless of which subset of the available data is assimi-
lated. By computing the mean and median predictive cost for
each experiment (other than the Full Assimilation case), the
skill of the resulting simulations can be compared directly
with one another.

3 Results

3.1 Experiment 1

The assimilation of the glider data over the full temporal and
spatial domain (Full Assimilation case) improves the model–
data fit of both Chl and POC (Fig. 5a and b) and reduces
the cost by nearly half (47 %) compared to the a priori simu-
lation without assimilation (No Assimilation case; Table 3).
Average Chl and POC concentrations in the upper 50 m are
both slightly lower (8 and 12 %, respectively) in the opti-
mized simulation. The contribution of each phytoplankton
group to total chlorophyll remains similar to the No Assimi-
lation case (Fig. 6a and c), but colonial P. antarctica carbon

is lower and diatom carbon is higher in December and early
January (Fig. 6b and d). Compared to the No Assimilation
case, PP is only slightly lower (7 %), whereas export flux
is nearly 50 % higher (Table 3; Fig. 7). Compared to their
initial values, colonial P. antarctica parameters change the
most as a result of the optimization, with reductions between
40 and 70 % for the colonial P. antarctica maximum growth
rate, maximum sinking rate, and C : Chl ratio (Table 4). In
contrast, the diatom maximum growth rate and C : Chl ratio
increased (∼ 10 and 20 %, respectively).

Chlorophyll and POC time series exhibit only minor dif-
ferences between latitudinal band experiments when data
from the northern, central, and southern sections are as-
similated independently (Fig. 5c and d) or when data from
the eastern, central, and western sections are assimilated
(Fig. 5e and f). Specifically, the optimal simulations for Chl
and POC exhibit similar seasonal cycles across the three lat-
itudinal and longitudinal bands, with only slightly higher
Chl and POC concentrations when assimilating data from
the southern band (Fig. 5c and d) and higher Chl from the
western band (Fig. 5e and f). Mean costs are much lower for
the latitudinal and longitudinal experiments than for the No
Assimilation case, and only slightly higher than the Full As-
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Table 2. Spatiotemporal resolution of glider-based observations of Chl and POC assimilated for each experiment.

Experiment Depth Temporal resolution Spatial area(s)
(m)

Expt 1a: Full Assimilation 0–50 Hourly Full glider track
Expt 1b: Latitudinal Assimilation 0–50 Hourly North, central, south latitudinal bands
Expt 1c: Longitudinal Assimilation 0–50 Hourly East, central, west longitudinal bands
Expt 2a: Glider Assimilation 0–50 ∼ twice per day, separated at a

minimum of 12 h.
Full glider track

Expt 2b: Cruise-Based Assimilation 0–50 3 days in a row, and then another 3
consecutive days 2 weeks later

Full glider track

Expt 2c: Satellite-Based Assimilation 0–5 1 day every 2 weeks Full glider track

Figure 5. Upper 50 m mean concentrations of (a, c, e) Chl and (b, d, f) POC for various experiments assimilating the full glider and from
different spatial areas (Table 2): (a, b) Experiment 1a, (c, d) Experiment 1b – latitude bands – and (e, f) Experiment 1c – longitude bands. For
reference, glider data (black lines) with shading (gray) representing 1 SD (from the upper 50 m) are included in each panel. Colored boxes at
the top of each panel indicate times of assimilated observations.

similation case (Table 3). This indicates that data sampled
from within only one spatial band improved the match be-
tween modeled and observed variables in the unassimilated
areas as well. Average estimates of PP and export in both the
latitudinal and longitudinal experiments are only slightly less
(< 5 %) than the Full Assimilation estimate (Fig. 7, Table 3).

3.2 Experiment 2

The assimilation of data subsampled at a frequency 1/12
that of the original glider data (Experiment 2a) results in 12
model simulations, all of which are similar to the Full As-
similation case, with Chl and POC time series closely fol-
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Figure 6. Upper 50 m mean concentrations of the three phytoplankton groups in terms of (a, c) Chl and (b, d) POC for the No Assimilation
case (a, b) and the Full Assimilation case (c, d). The glider data are shown (black line) with shading (gray) that represents 1 SD daily.

Table 3. Depth- and time-integrated (over the length of the simulation, representing yearly rates) primary production (PP), carbon export
flux at 200 m, and costs for the No Assimilation run (cost: 0.77), Experiment 1, and Experiment 2. Costs provide a measure of the misfit
between a particular model simulation and observations, and the costs shown represent mean ±1 SD of assimilative runs. The assimilative
and predictive costs are computed from the assimilated and unassimilated data, respectively.

Simulation name PP Export Predictive Assimilation
(gCm−2yr−1) (gCm−2yr−1) cost (JP) cost (JA)

No Assimilation 111.7 18.8 – –
Expt 1a: Full Assimilation 104.2 27.2 – 0.41
Expt 1b: Latitudinal Assimilation 101.8± 3.3 26.1± 2.1 0.49± 0.13 0.43± 0.14
Expt 1c: Longitudinal Assimilation 103.2± 2.1 26.9± 2.1 0.50± 0.10 0.46± 0.13
Expt 2a: Glider Assimilation 103.7± 1.8 27.0± 1.2 0.43± 0.01 0.43± 0.03
Expt 2b: Cruise-Based Assimilation 113.1± 22.3 24.8± 6.6 1.24± 0.95 0.52± 0.19
Expt 2c: Satellite-Based Assimilation 114.1± 10.7 16.7± 2.7 1.04± 0.36 0.26± 0.16

lowing the observed seasonal pattern (Fig. 8a and b). Mean
assimilative and predictive costs in the Glider Assimilation
case are close to the cost of the Full Assimilation case (Ta-
ble 3). Mean PP and export estimates are also close to es-
timates from the Full Assimilation case. The mean optimal
parameter values obtained from the Glider Assimilation case
are generally within 1 SD of the optimal values from the Full
Assimilation case (Table 4).

The assimilation of data subsampled with a frequency
typical of cruise observations (Experiment 2b) results in
a wide range of solutions, with several Chl and POC time
series exhibiting markedly different peak bloom timings
(Fig. 8c and d). Two of the solutions yield substantially
higher concentrations of POC in November, and Chl peaks

range from mid-November to early January. The mean pre-
dictive cost from this experiment (1.24) is roughly 3 times
the assimilative cost for the Full Assimilation case (0.41) and
3 times the predictive cost for the Glider Assimilation case
(0.43; Table 3). The PP estimates from the Cruise-Based As-
similation case span a broad range (92 to 156 gCm−2 yr−1)
around the Full Assimilation estimate but are generally
higher (Fig. 7a). This experiment similarly yields a very large
range of export estimates (11 to 33 gCm−2 yr−1) encom-
passing the results from Experiment 1 (Fig. 7b). Optimal pa-
rameter values obtained from the Cruise-Based Assimilation
case are generally less well constrained (higher SDs) than the
Glider Assimilation case (Table 4).
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Table 4. Initial parameter values (No Assimilation) and optimal parameter values after conducting the Full Assimilation, Glider Assimilation,
Cruise-Based Assimilation, and Satellite-Based Assimilation experiments.

Parameter name Initial
value

Expt 1a
Full
Assimilation

Expt 2a
Glider∗

Expt 2b
Cruise-
Based∗

Expt 2c
Satellite-
Based∗

Diatom max. growth rate at 0 ◦C
(d−1)

0.375 0.40 0.43± 0.01 0.42± 0.15 0.41± 0.09

P. antarctica solitary cells
C : Chl ratio (gCgChl−1)

30 29.7 25.84± 5.16 37.3± 26.7 51.5± 26.8

P. antarctica colonies
max. growth rate at 0 ◦C (d−1)

0.5 0.29 0.22± 0.10 0.45± 0.58 0.29± 0.17

P. antarctica solitary cells max.
growth rate at 0 ◦C (d−1)

0.5 0.39 0.45± 0.06 0.75± 0.70 0.79± 0.51

Diatom C : Chl ratio
(gCgChl−1)

150 176.4 166.6± 50.17 252.4± 164.28 374.86± 187.82

Fast detritus sinking fraction of
diatom losses

0.75 0.87 0.86± 0.05 0.86± 0.11 0.62± 0.14

P. antarctica colonies max.
sinking rate (md−1)

20 10.7 10.1± 3.66 20.1± 20.5 12.8± 9.27

P. antarctica colonies
C : Chl ratio (gCgChl−1)

40 14.0 14.2± 2.29 42.7± 41.6 34.3± 26.5

∗ Mean ± 1 SD of assimilative runs.

The assimilation of data subsampled as satellite-based ob-
servations from the surface layer (Experiment 2c) results in
Chl and POC concentrations generally higher than the Full
Assimilation case (Fig. 8e and f). The predictive costs are
similar on average to those of the Cruise-Based Assimilation
experiment; however, there is less variation (Table 3). The
median integrated production is higher (9 %) than the Full
Assimilation estimate and the Cruise-Based Assimilation es-
timate (Fig. 7a; Table 3); however, the range of PP estimates
for this Satellite-Based Assimilation case is smaller than
those for the Cruise-Based Assimilation case (Fig. 7a). Most
notably, despite generally higher PP and higher POC con-
centrations, carbon export from the Satellite-Based Assimi-
lation case is substantially lower (41 %) than the Full Assim-
ilation estimate (Fig. 7b; Table 3). In fact, export estimates
from individual runs in this experiment are all lower (−19 to
−56 %) than the Full Assimilation estimate (Fig. 7b). Again,
the range of export estimates is smaller for the Satellite-
Based Assimilation than for the Cruise-Based Assimilation.
When assimilating data at a resolution similar to that of
satellite-based observations, mean optimal parameter val-
ues were similar to those obtained in the Glider Assimila-
tion and Cruise-Based Assimilation cases, with the exception
of the fast detritus sinking fraction for diatoms, which was
significantly lower in the Satellite-Based Assimilation case
(0.62± 0.14) than in the other experiments (Glider Assimi-
lation Case: 0.86± 0.05). In contrast to this sinking param-
eter for mortality from diatoms, the mean maximum sink-
ing rate of colonial P. antarctica in the Satellite-Based As-
similation case was not significantly different than its value

in either the Full Assimilation or Cruise-Based Assimilation
cases (Table 4). Standard deviations of optimal parameters
for the Satellite-Based Assimilation case were generally sim-
ilar to or lower than those for the Cruise-Based Assimilation
case, except for the C : Chl ratio for diatoms, which produced
a very high optimal value and was particularly poorly con-
strained (375± 187 gCgChl−1; Table 4).

4 Discussion

4.1 Ross Sea simulation resulting from the assimilation
of glider data

Data assimilation is a valuable tool for efficiently utilizing
limited observational data in remote regions like the Ross
Sea. In this study, glider data consisting of both fluorescence-
derived chlorophyll and backscatter-derived POC were as-
similated into a one-dimensional marine biogeochemical
model developed for the Ross Sea. Eight ecosystem param-
eters, including phytoplankton growth and sinking rates and
C : Chl ratios, were optimized resulting in a simulation with
a 50 % reduced model–data misfit. This Full Assimilation run
yielded lower P. antarctica carbon concentrations and higher
diatom carbon concentrations, resulting in higher carbon ex-
port compared to those generated by the No Assimilation
run (Kaufman et al., 2017a), despite slightly lower estimates
of overall annual primary production. Changes in chloro-
phyll concentrations of diatoms and P. antarctica were mi-
nor. This Full Assimilation simulation was obtained largely
via changes in the C : Chl ratios: the colonial P. antarc-
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Figure 7. Distributions of (a) depth- and time-integrated production
and (b) carbon export flux at 200 m for each assimilation experi-
ment (Table 2). The median value for each experiment is indicated
by a horizontal light-blue line. Each box extends vertically from the
first to third quartile, and the whiskers extend from the lowest to
highest values. Individual values are shown as gray dots. For ref-
erence, production and export estimates from the No Assimilation
(dashed gray line) case is included in each panel.

tica ratio of C : Chl was lower and the diatom C : Chl was
higher than in the original simulation. Although modified
from their initial values, the relative differences between
these optimized C : Chl ratios for P. antarctica and diatoms
are consistent with shipboard measurements of C : Chl ra-
tios, which found higher C : Chl in diatom-dominated wa-
ters compared to P. antarctica-dominated waters: ∼ 200 vs.
90 gCgChl−1 (DiTullio and Smith, 1996) and ∼ 50–100 vs.
20–50 gCgChl−1 (Mathot et al., 2000). Although the au-
thors are not aware of any specific estimates in the litera-
ture for the fraction of diatom mortality that becomes fast-
sinking detritus, other optimal rate parameters are consistent
with those previously reported in the literature. For exam-

ple, the optimized growth rates (0.29–0.4 d−1) are similar to
measured values in the Ross Sea (Smith and Gordon, 1997;
Smith et al., 1999; Mosby and Smith, 2015), and the op-
timized sinking rate of P. antarctica colonies (14 md−1) is
similar to previous estimates (Asper and Smith, 1999, 2003;
Smith et al., 2011).

The high number of model evaluations in each optimiza-
tion case (roughly 4000–5000) makes such direct optimiza-
tion impractical for large-scale models; however, the param-
eters identified in a 1-D model by these techniques can be
used in larger models, and indeed locally optimized parame-
ters have been previously shown to improve the skill of 3-D
models in other regions (Oschlies and Schartau, 2005; Kane
et al., 2011; McDonald et al., 2012; St-Laurent et al., 2017).
It is expected that the optimized parameter values found in
the one-dimensional assimilation experiments described here
will be of value in a future 3-D biogeochemical modeling
analysis of the Ross Sea and, through model intercompar-
isons, provide a basis for examining the dependence of these
parameter values on model structure and level of complex-
ity, as has been done elsewhere (Friedrichs et al., 2007; Bag-
niewski et al., 2011; Ward et al., 2013; Irby et al., 2016).

4.2 Spatial variation within the glider track

Phytoplankton in the Ross Sea exhibit both spatial and tem-
poral variability. Cruise transects across the continental shelf
show a marked spatial variability in both the east–west and
north–south direction over short periods of time (Smith et al.,
2013). Within the Ross Sea polynya, ship-based observations
show biochemical gradients that suggest patchiness of phyto-
plankton dynamics on the mesoscale (Hales and Takahashi,
2004; Smith et al., 2017). Nutrient pools have been found
to exhibit gradients from both north to south and east to
west (DiTullio and Smith, 1996; Sedwick et al., 2011; Smith
et al., 2013; Marsay et al., 2014), and phytoplankton assem-
blage composition is not necessarily uniform across longi-
tudes (DiTullio and Smith, 1996; Garrison et al., 2003; Smith
et al., 2013). In addition, cold and fresh eddies have been ob-
served along the ice shelf edge potentially reshaping the phy-
toplankton assemblage on short timescales (< 10 days) and
space (< 20 km) scales (Li et al., 2017).

When analyzing glider data in regions characterized by
high mesoscale variability, it is often not apparent whether
observed patterns represent spatial or temporal variability.
As Rudnick (2016) discusses, “because gliders can occupy
lines, their data can be viewed as traditional sections, such
as those measured from a ship. However, because high-
frequency variability is projected onto a spatial structure,
it is sometimes more convenient to think of the data as
a time series from a mooring.” This ambiguity led Kaufman
et al. (2014) to concede “both spatial and temporal gradients
may have played a role in the observed variability” when an-
alyzing physical–biological relationships from glider data in
the southern Ross Sea.
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Figure 8. Upper 50 m mean concentrations of (a, c, e) Chl and (b, d, f) POC for various experiments assimilating subsets characteristic of
the original glider data, cruise-based observations and satellite-based observations (Table 2): (a, b) Experiment 2a – glider observations; (c,
d) Experiment 2b – cruise-based observations; and (e, f) Experiment 2c – satellite-based observations. For reference, model results for the
Full Assimilation case (orange lines) and glider data (black lines) with shading (gray) representing 1 SD (from the upper 50 m) are included
in each panel.

Although both temporal and spatial gradients may be
present, observations can be presented as either primarily
spatial or temporal patterns with simple tests guiding the de-
cision. For example, a comparison of means and SDs across
spatial sections and time periods was previously used to iden-
tify time as the dominant dimension of variability in the
2012–2013 glider observations (Jones and Smith, 2017). In
this study, a similar conclusion was reached, using a very dif-
ferent methodology. The assimilation of glider data from six
different subareas of the study region (separated latitudinally
or longitudinally by ∼ 20 km) indicated that the seasonal cy-
cle is similar in phase throughout the region of the glider
track. The assimilation of glider data from each of the nine
regions yielded similar estimates of POC and Chl, generally
within the variance of the glider observations (gray areas of
Fig. 5c–f), and similar estimates of temporally averaged pri-
mary productivity and export. This further supports the ap-
proach of using the glider data as a time series and suggests

that temporal patterns on this scale play a greater role than
spatial patterns in structuring variability in the phytoplank-
ton assemblage. Moreover, the similarity between predictive
and assimilative costs when assimilating the latitudinal and
longitudinal bands of data suggests that the parameters are
not being over-fit for these experiments. Thus, temporally re-
solved observations in any of these regions might be expected
to provide similar constraints on modeled temporal patterns
of the phytoplankton.

4.3 Differences between assimilating glider,
satellite-derived, and cruise-based data

Results from experiments that assimilated data at different
spatial and temporal resolutions suggest that assimilating
only surface observations, as are typically available from
remote-sensing platforms, underestimates carbon export and
more weakly constrains estimates of productivity relative to
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the assimilation of depth-resolved glider data. The lower es-
timates of carbon export occurred because the optimal di-
atom fraction for fast-sinking detritus obtained via the as-
similation of surface-only data (0.62± 0.14) was signifi-
cantly lower than that obtained via the assimilation of data
throughout the upper 50 m (Experiment 2a: 0.86± 0.05; Ex-
periment 2b: 0.86± 0.11). These results highlight the im-
portance of assimilating subsurface measurements and of
modeling diatom aggregation when estimating carbon ex-
port; similar findings were reported in 1-D biogeochemi-
cal optimization experiments using data from Lagrangian
floats in the North Atlantic (Bagniewski et al., 2011). Exper-
imental results also indicate that the assimilation of satellite-
derived data provides a weaker constraint on productivity
estimates, as seen by the larger range of estimates (114±
11 gCm−2 yr−1), as compared to the assimilation of glider
data (104±2 gCm−2 yr−1). Although not statistically signif-
icant, the higher productivity estimates generated by the as-
similation of satellite-derived data are consistent with those
of Gregg (2008), who found that the assimilation of satellite-
based chlorophyll estimates into a three-dimensional global
biogeochemical model overestimated primary production. In
contrast, results from assimilating satellite-derived chloro-
phyll concentrations into a one-dimensional model in the
equatorial Pacific produced underestimates of primary pro-
ductivity compared to in situ observations (Friedrichs, 2002).

Although both chlorophyll and POC were assimilated in
the present study, chlorophyll alone has been the dominant
satellite data product used in biogeochemical assimilation,
although other data types are available and can impact the as-
similation results. For instance, a study investigating the as-
similation of different types of satellite-derived data, includ-
ing POC and size-fractionated chlorophyll, found that the as-
similation of satellite-derived POC estimates worsened the
model estimates of chlorophyll, whereas the assimilation of
chlorophyll did not substantially impact the POC estimates
(Xiao and Friedrichs, 2014b). Additionally, satellite-based
sampling bias could be reduced by concurrently assimilating
export flux data derived from sediment trap measurements
(Friedrichs et al., 2007) or by assimilating satellite mea-
surements such as remote-sensing reflectance directly (Jones
et al., 2016). It is also worth noting that when assimilating
actual satellite data, the biases suggested by this study re-
sulting from the assimilation of only surface data would be
compounded with biases inherent in the satellite retrieval al-
gorithms (Saba et al., 2011; Stukel et al., 2015).

Assimilating cruise-based data in the highly variable Ross
Sea may also yield potentially large errors in primary pro-
duction, as well as in carbon export estimates, depending on
which specific days are sampled. Estimates of bloom timing
from the assimilation of cruise-based observations may also
vary substantially (Fig. 8c and d). This echoes the results of
a series of reduced resolution data interpolations, from which
Hales and Takahashi (2004) reported that cruise-based obser-
vations in the Ross Sea were likely able to capture average

conditions well but miss some mesoscale phenomena. Like-
wise, a subsampling analysis of physical–biological correla-
tions from 2010 Ross Sea glider data demonstrated the pos-
sibility of lower-resolution data obscuring or biasing biogeo-
chemical interpretations (Kaufman et al., 2014). The results
provided by the data assimilative study described here can be
used to help guide decisions of when and how long to sam-
ple certain locations in the Ross Sea; this is especially im-
portant given the limitations of ship-based sampling in such
a remote region (Smith et al., 2014). In fact, the use of data
collection from other sampling platforms may decrease the
pressure to conduct repeated transects by ship and allow lim-
ited vessel-time to be used for more thorough process-based
investigations uniquely suited for research vessels.

5 Summary and conclusions

A series of experiments investigating spatiotemporal vari-
ability in the phytoplankton assemblage and potential ef-
fects of assimilating data from different observation plat-
forms highlighted the benefits and challenges of combining
data and biogeochemical models in the Ross Sea. The as-
similation of glider data reduced model–data misfit by 50 %,
and resulted in reduced depth-integrated primary production
and higher carbon export at 200 m. Additional experiments
for different spatial regions reduced predictive costs with re-
spect to unassimilated data by ∼ 35 %, suggested that the
model parameters were well constrained, and implied that
using glider data as time series in these local studies is a rea-
sonable approach. This may further suggest the value of us-
ing moorings or buoys or even deploying gliders in a “virtual
mooring” mode. However, the effects of mesoscale variabil-
ity were apparent when assimilating data at a frequency char-
acteristic of cruise-based sampling, which resulted in a wide
range of primary production and export estimates depend-
ing on the sampling times. Results of assimilating data char-
acteristic of satellite-based sampling suggest that assimilat-
ing satellite-derived data will result in underestimated car-
bon export. These findings can be used to help avoid poten-
tial sources of error when using ship-based or satellite-based
observations alongside the development, calibration, or run-
ning of biogeochemical models. The combination of high-
resolution glider data and modeling in this study underscores
the importance of considering how the timing at which obser-
vations are collected affects the subsequent interpretations.
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Appendix A: Latin hypercube sampling (Sect. 2.5.2)

Latin hypercube sampling (LHS) and Monte Carlo sampling
are both techniques that can be used to randomly draw a fi-
nite number of samples from input distributions in order to
approximate a full multidimensional distribution. The LHS
incorporates stratified random sampling, i.e., in each dimen-
sion each sample is drawn randomly from within a different
interval (also called a stratification or layer) of the distribu-
tion (McKay et al., 1979). Intervals are chosen with reference
to the probability distribution such that each represents an
equally probable range. In contrast, Monte Carlo sampling
proceeds in each dimension with each sample drawn ran-
domly from the entire distribution. Stratified random sam-
pling with intervals of uniform probability ensures a good
representation of the distribution, reducing the risk of sam-
ples being clustered in one or a small number of areas. In
LHS sampling, if the sample size is n, each dimension is di-
vided into n intervals such that in multidimensional space
each interval of each dimension is sampled once and once
only. This is based on the idea of a Latin square in which an
individual symbol appears once in each row and each col-
umn. It ensures that a good representation of the distribution
is achieved for all dimensions.
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