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Original Article

Estimating fishing and natural mortality rates, and catchability
coefficient, from a series of observations on mean length and
fishing effort
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Then, A. Y., Hoenig, J. M., and Huynh, Q. C. 2017. Estimating fishing and natural mortality rates, and catchability coefficient, from a series of
observations on mean length and fishing effort. – ICES Journal of Marine Science, 75: 610–620.
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Gedamke and Hoenig (2006) (Transactions of the American Fisheries Society, 135: 476–487) developed a non-equilibrium version of the
Beverton and Holt estimator of total mortality rate, Z, based on mean length and thereby increased the usefulness of length-based methods.
In this study, we extend their model by replacing period-specific Z parameters with the year-specific parameterization Zy ¼ qfy þ M where q
is the catchability coefficient, fy is the fishing effort in year y, F (¼qf) is the fishing mortality rate, and M is the natural mortality rate. Thus, the
problem reduces to estimating just three parameters: q, M and residual variance. We used Monte Carlo simulation to study the model behav-
iour. Estimates of q and M are highly negatively correlated and may or may not be reliable; however, the estimates of corresponding Z’s are
more precise than estimates of F and are generally reliable, even when uncertainty about the mean lengths is high. This length-based method
appears to work best for stocks with rapid growth rate. Contrast in effort data may not be necessary for reliable estimates of Z’s. This ap-
proach forms a bridge between data-limited models and more complex models. We apply the method to the Norway lobster Nephrops norve-
gicus stock in Portugal as an example.

Keywords: catchability coefficient, data limited, data-poor, fishing effort, mean length, natural mortality rate, Nephrops, non-equilibrium
conditions.

Introduction
Reliable and representative age information remains scarce for as-

sessing the status of many fished stocks. Size information, on the

other hand, is widely collected and much more readily available

for data-poor stocks. Utilizing the latter information to obtain

reasonably useful estimates of stock parameters, such as total

mortality rate, Z, is highly desirable especially when collection of

age data is highly resource-intensive or accurate aging is not pos-

sible. Hence continual research to improve and extend the utility

of existing length-based methods is warranted and urgently

needed for many unassessed stocks.

A number of length-based estimators of Z require restrictive

assumptions which are generally untenable for real fisheries

settings. One such estimator was developed by Beverton and Holt

(1956) to estimate Z from sample mean length and von

Bertalanffy growth parameters. The Beverton and Holt estimator

assumes equilibrium length composition such that the mean

length reflects the current Z rate experienced by the stock.

Gedamke and Hoenig (2006) modified the Beverton and Holt

estimator by relaxing the strict assumption of equilibrium. This

was done by modelling the transition of mean length from one

equilibrium period to the next, following step-wise changes in Z.

Using a time series of mean length observations, the Gedamke-

Hoenig estimator yields period-specific estimates of Z and the

corresponding years of change in mortality (Gedamke and

Hoenig, 2006). The number of parameters depends on the
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number of change points in Z. Using this methodology,

Cardinale et al. (2010) were able to detect a total of seven changes

in Z in the plaice stock of the Kattegat–Skagerrak area from a

century-long time series of mean length data.

The objective of this work is to increase the generality and reliabil-

ity of non-equilibrium length-based estimators. Specifically, our arti-

cle extends the work of Gedamke and Hoenig (2006) by utilizing

additional information from a time-series of fishing effort data, f, to

estimate Z rates. The data required to apply the model are length

measurements coupled with a time-series of standardized fishing ef-

fort or times series of catch and catch rates. Our model estimates

three parameters—the catchability coefficient, q, post-recruitment

natural mortality rate, M, and residual variance.

Gedamke and Hoenig (2006) showed that for a given change in

the mortality rate experienced in the population from Z1 to Z2, the

mean length requires a longer time to reach equilibrium (i.e. to re-

flect Z2) when the von Bertalanffy parameter K is low than when it is

high. This suggests that the non-equilibrium, length-based method

may be more useful for stocks with relatively higher K rates. Hence,

we utilize a simulation framework with realistic biological parame-

terizations and plausible scenarios to assess the accuracy and preci-

sion of the extended model. Generalizations and recommendations

for application of the extended method are provided. We then esti-

mate mortality rates for a stock of Norway lobster Nephrops norvegi-

cus in South and Southwest Portuguese waters (ICES areas FU28

and FU29) using mean lengths and effort as an example application.

Methods
Estimation procedure, assumptions, and data
requirements
We used an age-structured geometric decline model as the under-

lying population model in contrast to Gedamke and Hoenig

(2006) who used a continuous (exponential) model. For this

model formulation, we assume constant fishery recruitment such

that relative abundance at age of full recruitmentNtc
¼ 1. In prac-

tice, this assumption can be addressed when applying the model

to a stock with an available time-series of an index of recruitment

(see Gedamke et al. (2008) for an example with the barndoor

skate, Dipturus laevis). We also assume knife-edge selection of

lengths (flat topped selectivity curve) by the fishery gear, such

that all lengths � Lc corresponding to ages � tc are fully vulnera-

ble to the gear. Other model assumptions include:

(i) Mean length at age is known and constant over time.

(ii) There is no individual variability in growth.

(iii) Natural mortality M is independent of stock size and con-

stant with age and over time.

(iv) Catchability q is constant over time and over age for all ages

� tc.

Abundance (in numbers) at age t for a given year y, Nt,y (ex-

pressed as a fraction of the recruitment, assumed to be constant)

is modelled as:

Nt ;y ¼
1; t ¼ tc for all y

Nt�1;y�1e�Zy�1 ; t ¼ tc þ 1; . . .; 1; y ¼ 1; 2; . . .; n

(

(1)

with

Zy ¼ qfy þM (2)

where tc is the age at first capture; M is the instantaneous natural

mortality rate; q is the catchability coefficient; fy is the standard-

ized fishing effort in year y; Zy is the instantaneous total mortality

rate for year y, assumed to be linearly related to f.

Estimates of the mean length at each discrete age t are needed

for ages � tc. In this article, we used mean length-at-age �Lt from

the von Bertalanffy growth function (3):

�Lt ¼ L1 1� e �K t�t0ð Þð Þ
� �

(3)

Where K is the von Bertalanffy growth coefficient (yr�1); L1 is

the von Bertalanffy asymptotic length (scaling parameter); t0 is

the age-axis intercept (year); The growth parameters are assumed

to be constant over time. In practice, the mean length at age in-

formation can be obtained via other methods apart from the von

Bertalanffy growth function. The predicted mean length in year y

is modelled as

�Lpred;y ¼

P1
t¼tc

�Lt ;y � N̂ t ;y

� �
P1
t¼tc

N̂ t ;y

(4)

where N̂ t ;y is obtained from Equation (1) using estimates of Zy.

In theory, the age summations in Equation (4) extend to infin-

ity but, for computational purposes, the infinite summation can

be approximated to any desired degree of precision by choice of

an upper limit of summation, e.g. a specified maximum age. For

a long lived species with many age groups, this creates a theoreti-

cal problem of requiring a long time series of observations. As a

practical matter, the older age groups that are no longer abundant

become less important since less weight is given to these age

groups in computing the mean length.

To compute predicted mean length in year y, we need the fish-

ing efforts going back in time for an infinite number of years if

we assume an infinite number of cohorts are present [see

Equation (4)]. This creates a minor difficulty in specifying the

predicted mean lengths for the initial years of the time series. In

the absence of fishing effort information for years prior to the

first year of mean length observation, one approach is to assume

zero fishing effort. Hence the mortality rate depends solely on the

parameter M, which is estimable. Another approach is to assume

equilibrium conditions at the start of the time series and use the

(average) fishing effort(s) in the first year(s) of the time series as

the effort prior to the start of the time series. A third approach is

to divide the time series into two parts; the fishing efforts in the

first part of the time series are used to compute predicted mean

lengths in the second part. Essentially, the observed lengths in the

first part of the time series are disregarded. The third possibility

may not be a viable option if the time series is too short or the an-

alyst does not wish to ‘waste’ data. In practice, one could explore

all possible options and see if the results are very different from

each other. We note that as the time series grows longer, this

problem diminishes.

By the Central Limit Theorem, sample means will tend toward

a normal distribution with increasing sample size. Hence, the

sample mean length is modelled as being normally distributed,

i.e., �L � N l; r
2

m

� �
, with the associated probability density

Estimation of mortality rates and catchability coefficient 611
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function f ð�L; l;r2Þ ¼
ffiffiffi
m
pffiffiffiffiffiffiffiffi
2pr2
p :e�

m

2r2ð Þ: �L�lð Þ2 , where m is the

predicted mean length �Lpred;y from Equation (4) and m is the sam-

ple size of observed lengths > Lc. The product likelihood function

for n years of observed mean lengths with sample size my is given

as:

K ¼
Yn

y¼1

ffiffiffiffiffiffi
my
pffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

my

2r2ð Þ �L y�lyð Þ2 (5)

and my is a function of q and M. It should be noted that while

standard deviation of mean lengths is assumed as constant (yearly

sample sizes are used to weight the observations), it is also possi-

ble to make the standard deviation year-specific. Maximum likeli-

hood estimation is employed to estimate the parameters q and M

from the kernel of the log likelihood loge(K) which is propor-

tional to

– n • loger
� �

� 1

2r2

Xn

y¼1
my • �Ly � ly

� �2

: (6)

Year-specific Z is then obtained using Equation (2).

Diagnostic procedures
Two principal assumptions underlying the method in this article

are that the selectivity curve is flat topped above the length Lc and

that recruitment is constant. These assumptions can be examined

through diagnostic procedures outlined below.

To estimate mortality using the estimation procedure

described earlier, the data analyst first sets the value of Lc and

computes mean length of those animals above Lc. Suppose that

the selectivity curve is indeed flat topped (constant for all lengths

> Lc). Then if estimates of Z are computed for a series of increas-

ing values of Lc (to the right of the modal length) there should be

no trend in the estimates of Z for any particular year. This is

because the assumptions of the model are met for each of the

values of Lc. However, if Lc is set to be very large, a considerable

amount of length data is discarded so the estimates will become

unstable.

Now assume that the estimates of Z (for any particular year)

show an increasing trend with increasing values of Lc. This would

be consistent with a dome shaped selectivity curve; lower selectiv-

ity on the right accounts for the fish disappearing faster with

length than if the selectivity were constant; as length data on the

left (<specified Lc) are discarded, the effect of declining selectivity

on the right would be attributed to increasing mortality. This di-

agnostic procedure is not specific to errors in the assumption

about selectivity. If L1 is misspecified in the model, one can also

get trends in Z (for any given year) with changes in Lc. Thus,

trends in the estimates with change in Lc indicate a problem but

it is not clear what the problem may be. The absence of a trend

can be considered a quality control check.

An extreme year class moving through the annual length fre-

quency distributions over time can potentially cause bias in the Z

estimates, although this would be less of a problem in a suffi-

ciently long time series. One way to check for a moving year class

is to compare the modal value in the length frequency distribu-

tions from year to year. If the modal length is stable or varies ran-

domly about a mean there is no suggestion of a problem.

However, if the mode migrates successively to the right over a

period of several years this suggests that the effect of a dominant

year class may be confounded with the effects of mean length.

Both situations—stable modal length (in the first part of the time

series) and migrating modal length (in the second part) can be

seen in the length frequency distributions for hake (Merluccius

merluccius) in Figure 1 (ICES, 2015).

Simulation procedure and model evaluation
Various authors have found that estimates of the parameters q

and M are highly, negatively correlated when estimated within a

common model framework (e.g. Megrey, 1988; Wang, 1999; Fu

and Quinn II, 2000). These parameters are also difficult to esti-

mate reliably when there is little contrast in the catch or effort

data. Hence we used simulations to evaluate the performance of

our estimator under varying scenarios and to determine if the es-

timates of q, M and the corresponding Z’s (denoted as q̂ , M̂ , and

Ẑ ) are useful and reliable. Stock with parameters given in Table 1

was generated using Equations (1–4).

In addition to reflecting the underlying mortality rates, mean

length data are also subject to other sources of variability, i.e.

sampling and non-sampling errors, which we will refer to as

pooled errors. The former can be reduced by increasing sample

size m of measured lengths, but the latter, such as recruitment

variability, may not be accounted for in a like manner. To explore

Figure 1. Time series of length frequency distributions for the
northern stock of hake (Merluccius merluccius) from the northeast
Atlantic (ICES, 2015). The modal length frequency appears stable
from 2004 to 2006 but a pulse of strong recruitment can be seen to
migrate to the right in successive years after 2006.
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the effect of pooled errors in mean length on the reliability of the

model estimates, we added random errors e �N (0, r2/m) to gen-

erated mean length data with r=
ffiffiffiffi
m
p

(denoted henceforth as r’)

varying from 1 to 5 in magnitude. A single realization of mean

length data generated with three levels of r’ is shown in Figure 2

(top row). When r’ ¼ 1, the trend in mean length is clear; when

r’ ¼ 5, one can still see a decline in mean length although the de-

tails of when and how much are obscured.

For clarity, we present scenarios with a single change in Z over

the simulated time-series. Specifically, we simulated two levels of

fishing effort corresponding to two time periods with period-

specific constant F and Z. Our base case scenario is modelled after

a stock with high K subjected to increased fishing effort such that

the Z rate of that stock increased by 0.4 yr�1 from Z1 ¼ 0.6 to

Z2 ¼ 1.0 yr�1 (DZ ¼ þ 0.4). We present additional scenarios with

a single parameter modification to systematically examine the ef-

fect on the model performance (see Table 1 for details). It should

be noted that mean length takes a longer time to reach equilib-

rium for a decrease in Z, e.g. DZ ¼ �0.4 yr�1, than an increase in

the same magnitude (DZ ¼ þ 0.4 yr�1) (see Figure 3).

In our simulation, the age summations in Equation (4) were ar-

bitrarily approximated to an upper age limit tmax that corresponded

to 0.2% of the original population size when subjected to a constant

decline rate Z (¼min {Z1, Z2}). The underlying constants for all sce-

narios were: L1 ¼ 100 cm, t0 ¼ 0 year, M ¼ 0.2 yr�1, q ¼ 0.002

per unit effort, tc ¼ 1 year, tmax ¼ 10 years (i.e. exploitable life

span of 9 years), 15 years of mean length observations, and change

in fishing effort occurred at the start of the sixth year. The popula-

tion was in equilibrium (i.e. experiencing Z1) prior to the start of

the mean length data collection. These parameters and conditions

were used to generate mean length datasets using the population

and growth model outlined earlier. Predicted values of mean length

at the start of the time series were calculated consistent with the

Table 1. Parameters of total mortality rates Z (yr�1) and von
Bertalanffy growth coefficient K (yr�1) used in the simulations.

Scenario Z1 Z2

Changes in
Z (Z2/Z1

ratio)

von
Bertalanffy
K

No. of mean
length
observations,
n

(a) Base Case 0.6 1.0 þ0.4 (1.67) 0.4 15
(b) Low K 0.6 1.0 þ0.4 (1.67) 0.1 15
(c) Decreased Z 1.0 0.6 �0.4 (0.6) 0.4 15
(d) Less contrast

in Z
0.6 0.8 þ0.2 (1.33) 0.4 15

(e) Low K 0.6 0.8 þ0.2 (1.33) 0.1 15
(f) Low K, n¼ 20 0.6 1.0 þ0.4 (1.67) 0.1 20

Other parameter constants used in the simulation are natural mortality M ¼
0.4, catchability coefficient q ¼ 0.002 and the change in Z rates occurs in the
sixth year.

Figure 2. Simulated data and parameter estimates for the base case scenario (total mortality rates Z1 ¼ 0.6, Z2 ¼ 1, and von Bertalanffy
K ¼ 0.4). Top row: Generated mean length data with added variability (r’); a single realization is shown here for r’¼ (a) 1, (b) 3, and (c) 5.
Scatterplots of 5000 estimates of natural mortality rate M versus estimated catchability q (middle row) and corresponding Z2 versus Z1

(bottom row). Dashed lines denote the true parameter values simulated and the dotted lines denote the 2.5th and 97.5th percentiles of the
estimates. Insets of histogram (bottom row) show the ratio of Z2/Z1 estimates, with dashed lines denoting the ratio of 1 and the solid
triangles denoting the true ratio of Z2/Z1 estimates (¼1.67).
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data generation process, i.e. on the basis that the population was in

equilibrium to start. The mean length at the start of the time series

in the base case computed from nine age groups is 52.04 cm while

that computed from 50 age groups is 52.15 cm. This highlights the

negligible effect of truncating the age distribution in the summation

procedure earlier.

To evaluate the estimator’s performance in relation to variabil-

ity in mean length, other input parameters were fixed and as-

sumed to be known correctly when applying the estimator to the

generated dataset. To quantify the reliability of the resulting esti-

mates of the parameters of interest, h ¼ {q, M, Z1, Z2}, we used

the measures of percent bias % Bias ¼ 100 �
P

ĥ�hð Þ
n

=h

� �
, percent

root mean square error ð% RMSE¼
100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ĥ�hð Þ2

� �
=n

q
h

0
@

1
A

and the coefficient of variation (CV ¼ ratio of the SD to the

mean of ĥ) based on 5000 simulated datasets. The ratio of

Ẑ2=Ẑ1 was also examined because an estimator may be better at

capturing the trend of change in a parameter than it is in quanti-

fying the absolute value of the parameter. Ratio > 1 indicates an

increase in Z and vice versa.

All analyses and plotting were conducted using the R statistical

programming language (R Development Core Team, 2014). We

used the nlminb minimization routine for the maximum likeli-

hood estimation.

Application to Norway lobster
We illustrate use of the method using data for the Norway lobster

stock in South and Southwest Portugal [Functional Units (FUs) 28,

29]. The two FUs are currently assessed and managed as a single

stock. Previous assessments used data-rich methods but, due to

poor model performance, this stock is currently assessed using data-

limited methods (ICES, 2014). Landings, CPUE, and length compo-

sition data from the commercial trawl fleet were obtained from the

ICES Working Group for Data-Limited Stocks (WKLIFE V; ICES,

2015). Effective effort of the trawl fleet from 1998 to 2014 was calcu-

lated as the ratio of commercial landings and CPUE. Length com-

position data from 2000 to 2014 were sex-specific and mortality

rates were consequently estimated separately for both female and

male Norway lobster. The Lc was selected to be 32.5 mm carapace

length which is the mode of the length frequency distributions of

both sexes (Figure 4). However, the analysis was repeated for a series

of values of Lc above 32.5 as a diagnostic check on constant

selectivity and correct specification of L1. Annual length frequency

distributions were examined for trends in the modal length over

time to check on the constancy of recruitment. The annual mean

lengths above Lc were then calculated (Table 2).

For both sexes, models were fitted with the natural mortality

rate estimated or fixed to the assumed value used in previous as-

sessments (ICES, 2014). Natural mortality is generally assumed to

be lower for females based on the burrowing behaviour and im-

plied reduced predation risk. Sex-specific von Bertalanffy growth

parameters were also used in the model (Table 3). Effort prior to

1998 was assumed to be equal to that in the first year of the

model. Confidence intervals with accelerated bias correction

(BCa; Efron, 1987) for estimated and derived parameters were

obtained from 1,000 bootstraps.

Results
Simulations
Estimates of q and M were highly negatively correlated in all sce-

narios, with r2 � 0.8 (Figure 2, middle row). For the base case

Figure 4. Observed length frequency distribution by sex of Norway
lobster. Thick, vertical line indicates value of Lc chosen.

Figure 3. The contrasting responses in mean length to approach
equilibrium when subjected to conditions of (a) a single increase in
total mortality rate, Z, from 0.6 to 1.0 yr�1 (DZ ¼þ0.4 yr�1) versus
(b) a single decrease in Z from 1.0 to 0.6 yr�1 (DZ ¼�0.4 yr�1). The
stock shown here is simulated with the von Bertalanffy parameter
K ¼ 0.4 and L1 ¼ 100 cm.

Table 2. Mean lengths above the length at first capture, Lc ¼
32.5 mm, and effort data for the Norway lobster.

Year Effort

Mean length (mm)

Females Males

1998 3.75 – –
1999 3.49 – –
2000 4.57 38.1 42.5
2001 7.37 37.7 42.2
2002 5.76 37.5 41.9
2003 4.07 38.6 41.5
2004 4.74 37.3 40.5
2005 3.94 36.6 39.0
2006 3.28 37.1 40.3
2007 3.50 36.5 39.5
2008 2.50 37.9 42.6
2009 2.41 37.9 41.5
2010 2.24 38.0 41.6
2011 2.21 39.8 45.0
2012 2.87 36.3 38.3
2013 2.66 36.6 40.8
2014 2.40 37.9 42.32

Unit of effort is 104 trawl hours.
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scenario (Z1 ¼ 0.6, Z2 ¼ 1, Z2/Z1 ¼ 1.67), q̂ and M̂ were reliable

when r’ ¼ 1 (q: % Bias ¼ 0.06, % RMSE ¼ 7.4, CV ¼ 0.07; M: %

Bias ¼ �0.5, % RMSE ¼ 6.2, CV ¼ 0.06) but the reliability of the

estimates decreased with increasing r’ (see Figure 2, middle row).

With r’ ¼ 3, % RMSE ¼ 21.8 and 18.8 for q̂ and M̂ , respectively

and when r’ ¼ 5, the corresponding % RMSE ¼ 37.1 and 31.2.

The CV values increased from 0.22 (r’ ¼ 3) to 0.36 (r’ ¼ 5) for

q̂ and from 0.19 to 0.31 for M̂ .

The % RMSE increased linearly with increasing r’ across all

the scenarios simulated (Figure 5). Relative to the base case sce-

nario (Figure 5a, top row), the q and M parameters appeared to

be almost as well estimated when a reversed directional change in

Z of equal magnitude was simulated (Figure 5c, top row). With

less contrast in the change in Z (Figure 5d, top row), the q and M

parameters were less well estimated than the base case, especially

for q. The least favourable scenario for the performance of the es-

timator appeared to be the case of a low von Bertalanffy K

(Figure 5b, top row), with % RMSE as high as 73% for q̂ and

55% for M̂ when r’ ¼ 5. The model appeared to perform better

in the estimation of M rather than q across the simulation scenar-

ios based on the % RMSE.

However, Z1 and Z2 estimates were not correlated with each

other and were reliable even at high levels of r’ (Figure 2, bottom

row). For the base case scenario, % RMSE ranged from 2.2 to

11.3% for Ẑ1 and from 2.5 to 12.5% for Ẑ2 across the levels of r’.

The CV values were 0.02, 0.07, and 0.11 for Ẑ1 and 0.02, 0.07,

and 0.12 for Ẑ2 when r’ ¼ 1, 3 and 5 respectively. Histograms of

the ratio of Ẑ2=Ẑ1 indicated that the center of the distribution co-

incided with the true Z2/Z1 ratio and the model reliably predicted

an increase in Z over the time series (ratio> 1 100% of the time)

even with increasing r’ (Figure 2, bottom row).

Relative to the base case scenario (Figure 5a, middle row), the

Z1 and Z2 parameters were almost as well estimated in the scenar-

ios of decreasing Z (Figure 5c, middle row) and less contrast in Z

(Figure 5d, middle row) with % RMSE of no more than 15%.

However, Z1 and Z2 were less well estimated in the case of the low

K (Figure 5b, middle row), with % RMSE up to 27% when r’ ¼
5. Nevertheless Z1 and Z2 were reliably predicted across all the

scenarios simulated (ratio was >1 for scenarios with an increase

in Z and <1 for the scenario of a decrease in Z 100% of the time;

see Figure 5, bottom row).

From the scatterplots of Figure 5 (bottom row), we glean addi-

tional information on the behaviour of the estimator. Z1 was esti-

mated slightly better than Z2 when an increase in Z was simulated

(base case, see Figure 5a bottom row), but the opposite was ob-

served when a decrease of the same magnitude (DZ ¼ �0.4) was

Figure 5. % RMSE as a function of variability in mean length (r’), for the estimates of natural mortality rate M and catchability q (top row)
and corresponding Z2 and Z1 (middle row) for varying scenarios: (a) Base case, (b) Low K, (c) Decreased Z, and (d) Less contrast in Z (see
Table 1 for actual parameter values). Bottom row: Scatterplots of 5000 estimates of Z2 versus Z1, given r’ ¼ 3. Insets of histogram show the
ratio of Z2/Z1 estimates, with dashed lines denoting the ratio of 1 and the solid triangles denoting the true ratio of Z2/Z1 for each scenario.

Table 3. Life history values used in the Norway lobster application.

Parameter Female Male

Von Bertalanffy L1 (mm) 65 70
Von Bertalanffy K (yr�1) 0.065 0.200
Von Bertalanffy t0 (yr) 0 0
Natural mortality M (yr�1) 0.20 0.30
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simulated (Figure 5c bottom row). In addition, less contrast in Z

(DZ ¼ þ0.2, Figure 5d bottom row) did not appear to affect the

reliability of the Z estimates relative to the base case scenario.

Estimates of q were almost always positively biased in our sim-

ulation while M̂ may be biased negatively or positively depending

on the scenario. The magnitude of the % Bias for q̂ was greater

than that of M̂ . However, bias appeared to be a negligible compo-

nent in the RMSE as evidenced by a maximum of 10% bias in the

q̂ estimates and 5% in Ẑ when r’ ¼ 5 in the least favourable sce-

nario of a low K. Although the % RMSE of q̂ and M̂ can be very

high when the r’ levels are high, the % RMSE of Ẑ were often

<15% with the exception of the low K scenario.

We examined additional scenarios specifically in relation to a

low K situation. When less contrast in Z was simulated (Table

1e), the % RMSE for q̂ and M̂ increased; however the % RMSE

for Ẑ improved. When additional years of mean length and effort

data were included (Table 1f), the % RMSE for all parameters im-

proved, especially for q̂ and Ẑ2 . We also simulated scenarios with

increasing trend and decreasing trend in effort. In general, these

additional simulations are consistent with other scenarios, namely

the q and M estimates were correlated but estimates of Z still re-

mained relatively precise and uncorrelated. Results for these addi-

tional simulations are documented in the Supplementary

Material.

Application to Norway lobster
The effective effort showed a sharp increase from 1998 until 2001

followed by a gradual decrease over time (Table 2). The fits to the

mean length data were similar regardless of whether M was esti-

mated or fixed (Figure 6, top row). For male lobster, a slight re-

duction and increase in mean lengths was predicted by the model

runs during the time series concurrent with the increase and de-

crease in effort (Figure 6, top right panel). A similar trend was

predicted for the mean lengths of females but was less perceptible

(Figure 6, top left panel). When M was estimated for female lob-

ster, F (proportional to the effort) was estimated to be 0.09 at the

peak in 2001 and decreased to 0.03 in 2014, the most recent year

of the time series, with an estimated M of 0.25 (Table 4). With M

fixed at 0.2, the estimated F’s were higher, reaching 0.16 in 2001

and decreasing to 0.05 in 2014.

Mortality rates for males lobster were higher than for females.

When M was estimated, the peak F in 2001 was estimated to be

0.20 and decreased to 0.06 by 2014, with an estimated M of 0.36.

With M fixed at 0.30 in the model, the peak F in 2001 was higher

at 0.30 and generally decreased over time to 0.10 by 2014. For

both sexes, the current F is low relative to M.

For both sexes, there was high uncertainty around the point es-

timate for q, and consequently for the year-specific F’s, when M

was concurrently estimated (Table 4, Figure 7). However, there

Figure 6. Model output time series for female (left column) and male (right column) Norway lobster. Top row: observed (grey dots and
lines) and predicted (black lines) mean lengths when natural mortality is estimated (solid lines) or fixed (dashed lines). Bottom row:
estimated instantaneous fishing mortality rate (grey lines) and total mortality rate (black lines) when natural mortality is estimated (solid
lines) or fixed (dashed lines).

Table 4. Parameter estimates for the Norway lobster application
with 95% accelerated bias-corrected CIs obtained from bootstrapping
in parenthesis.

Parameter

Female Male

Estimate M Fix M Estimate M Fix M

q (10�2) 1.1 (0.00022, 6.6) 2.3 (1.6, 2.9) 2.7 (0.00088, 8.1) 4.2 (3.3, 5.4)
M 0.25 (0.01, 0.31) – 0.36 (0.15, 0.49) –
Correlation

q,M
�0.99 – �0.98 –

Fixed M values ¼ 0.2 (female) and 0.3 (male).
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was more certainty in the year-specific Z rates as confidence inter-

vals were narrower (Figure 7). This arose from the highly negative

correlation of the estimates of q and M (Table 4). Diagnostic

procedures failed to detect problems with the assumptions of a

flat-topped selectivity curve (Figure 8) and constant recruitment

(not shown).

Discussion
The model presented in this article extends the application of

non-equilibrium length-based estimators by utilizing additional

information on fishing effort. Our simulation study of the model

showed that the estimates of q and M are highly negatively corre-

lated and their reliability decreases with increasing error in mean

length information. This is not a surprising result given that other

authors have noted the same difficulty in simultaneous estimation

of q and M (e.g. Wang, 1999; Fu and Quinn II, 2000). It still may

be possible to obtain reliable estimates of q and M when the mean

length data closely reflect the expected true trend in mortality

changes, i.e. increasing mean length with decreasing Z and vice

versa.

However, even with poorly estimated q and M, the corre-

sponding estimates of Z appeared to be reliable. The mean length

will respond to a change in Z by equilibrating to the new Z more

rapidly when (i) the body growth rate is high, (ii) the magnitude

of change in Z is small, and (iii) the change in Z constitutes an in-

crease in Z rather than a decrease of the same magnitude. Hence

the proposed extended model appeared to be most promising

when applied to fisheries with such characteristics. These condi-

tions, however, are not prerequisites for reliable Z estimates.

Simulation results were also very promising with regard to the

model’s ability to capture correctly the trend in change of Z rates

even with large noise in the mean length data.

The model yields potentially more detailed information than

the original Gedamke and Hoenig (2006) model, i.e. year-specific

versus of period-specific mortality rates, while reducing the num-

ber of parameters (q and M versus pre- and post-change Z’s and

year(s) of change for each time period, depending on the assumed

number of breaks in the Gedamke and Hoenig model). By using

both length and effort data, this approach constitutes a bridge be-

tween data-limited models and more complex models and is po-

tentially useful for checking assessment results from complex

models.

Although the assumptions of constant q and M are rather ten-

uous, especially for stocks with a long history of exploitation and

diverse fishing patterns, the primary application of length-based

estimators is in the realm of data-poor fisheries where the ability

to obtain reliable estimates of time-varying q and M is unlikely.

Others have shown that, even with underlying time-varying M in

the fishery dynamics, the assumption and estimation of a con-

stant M in the model can be a useful and viable option (Deroba

and Schueller, 2013; Johnson et al., 2015).

In the absence of direct fishing effort data, one could estimate

effort from total commercial catch and a catch rate series. In

practice, it may be difficult to obtain a time series of standardized

fishing effort because of multiple and changing fishing gears. The

Figure 8. Effect of varying the values of Lc on the resulting estimates of M and q for female and male Nephrops. The vertical line on the left
represents the value of Lc adopted for the stock assessment while the vertical line on the right represents the value of Lc corresponding to the
use of 13% of the length observations on the right.

Figure 7. Estimates of fishing (F, grey squares) and total mortality rates (Z, black triangles) with 95% CIs (dot-and-dash lines) when the
natural mortality rate is estimated.
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availability of research survey effort data presents a potential solu-

tion to this problem via the equation of Total Catchcommercial

CPUEsurvey

¼ Effective Effort where effective effort is defined as the fishing

effort required by the commercial fleet to obtain the given catch

if all the fishers are fishing in a similar manner as that of the sur-

vey boat. Hence, the corresponding estimated q in the model will

be the survey catchability coefficient.

As mentioned earlier, the extent to which the constant q as-

sumption is met is dependent on the ability to standardize effort.

Typically, covariates that affect q are identified and their effects

are removed using generalized linear models (Lo et al., 1992;

Maunder and Punt, 2004). This standardization procedure is im-

portant in situations where the effect of the covariates is not con-

stant and the behaviour of the fishery has changed over time. For

example, improvements in fishing efficiency, such as the use of

more efficient hook types (Stewart and Martell, 2014) or the rela-

tive experience of active fishers (van Poorten et al., 2016), can ad-

ditively increase the effective q of a nominal unit of fishing effort

over time. Standardization relies on identifying effort associated

with and without these covariates. However, if these data are not

collected, the effect of covariates cannot be de-trended from the

overall effort time series. Similarly, if reporting has changed over

time, then the trend in nominal effort is likely to be biased. It is

important to note that even with proper standardization of effort,

the CPUE may still not be proportional to abundance (Walters,

2003; Ellis and Wang, 2006).

In a data-limited model, one can explore alternative hypothe-

ses to evaluate the importance of this constant q assumption. If

one conceivably has working knowledge of the year or time pe-

riod in which q in the fishery has shifted, one could partition the

dataset into two parts and fit the model with different q estimates

for each time period. Similarly, the division of the time series

with break points in q can decrease error associated with a trend

in q over time. One can then compare the models with and with-

out breakpoints using a likelihood-ratio test for parsimony and

model selection. It is recommended that this comparison be con-

ducted routinely as a diagnostic procedure given that the time se-

ries is sufficiently long. On the other hand, our simulation studies

showed that it is relatively harder to obtain reliable estimates of q

than M when estimated simultaneously; hence one could reduce

the number of parameters by fixing the value of M in the model

in the interest of estimating q.

Due to the strict functional form of Z as a linear function of ef-

fort, the overall trend of the mean lengths and effort can be infor-

mative and be resilient to occasional strong cohorts. On the other

hand, a strong trend in recruitment can create conflicting signals

between the mean length and effort. For example, effort in the

North Sea dab (Limanda limanda) trawl fishery was estimated to

have decreased, which suggested a decrease in mortality over time

(Section 4.6.4.2 of ICES, 2016), yet a lack of trend in mean length

was observed. The mean length with effort model would have

produced conspicuous residual patterns. However, a linear in-

crease in recruitment (fourfold over the observed time series) was

also observed in the recruitment index. The increased recruitment

balanced the decreased effort to keep mean length constant. In

this case, the use of the recruitment index rather than the con-

stant recruitment assumption resulted in better model

performance.

Other factors such as the effects of sex-specific differences in

growth and varying recruitment were not considered in the simu-

lations for this article, but can be incorporated when such

information is readily available as in the Norway lobster example

(discussed further below). An analyst with knowledge of the fish-

ery can parameterize the model specifically to the fishery for fur-

ther simulation studies of the model performance.

The Norway lobster population
The application of the mean length and effort model to Norway

lobster generally supports the simulation results regarding the re-

liability of the estimates of Z. For both sexes, similar model fits to

the mean lengths are observed when M is estimated and fixed

(Figure 6). There is little trend in the observed mean lengths over

time which suggests that Z has not changed much. Despite this,

Z’s can be estimated well from the mean length data and are con-

sistent regardless of whether M is estimated or fixed (Figure 6).

With a fixed M, the estimated q is small so that the estimated F’s

are small relative to M. On the other hand, the estimate of q used

to estimate the magnitude of F is much less precise due to the low

contrast in Z. As a result, there is low precision in the year specific

F’s based on the wide confidence intervals. An improved estimate

of q would require more precision and contrast in the mean

length data or a reliable estimate of an externally obtained M.

Additionally, the availability of sex-specific length composition

and life history data allowed for the analysis of sex-specific mor-

tality rates. Higher M and F’s were estimated for males relative to

females and the estimated M rates were similar to the values pre-

viously assumed in the ICES assessment (ICES, 2014). This is

consistent with the life history of the stock, with decreased vul-

nerability to fishing pressure and predation risks for females due

to their burrowing behaviour.

Further methodological developments
Guiding principles for the development of new methods for as-

sessing data-limited stocks may be expressed in terms of the fol-

lowing desiderata:

(i) Relaxed assumptions

(ii) Diagnostics

(iii) Model flexibility and the integration of diverse data types

(iv) Bridges to (more) data-rich methods

Relaxed assumptions refers to models that require fewer assump-

tions or are robust to failures of assumption, or can handle fail-

ures of assumption, e.g. by estimating extra parameters. For the

method described in this article, a concern may be that catchabil-

ity is assumed constant over time. However, technological im-

provements may result in increasing gear efficiency (effort creep)

or a change in survey vessel can result in a change in catchability.

Approaches to address this issue had been discussed earlier. In

general, there are enough degrees of freedom to allow for more

than one catchability parameter to be estimated so that separate

q’s can be estimated for each of several time stanzas or a func-

tional form for the variability in q over time can be imposed.

Similarly, variation in natural mortality rate with time or age can

be modelled. However, it is not possible to let q and M vary to-

gether without external information to inform the parameter

estimation.

The quantification of uncertainty in assessment results is ex-

tremely important but is usually conditional on the underlying

model being correct. Consequently, diagnostic procedures are
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extremely important in identifying areas of uncertainty. The as-

sumptions of constant recruitment and knife edge selectivity in

the model presented here can be checked using the diagnostic

procedures described in this manuscript. In general, the incorpo-

ration of additional types of data into the model requires addi-

tional assumptions to be made. However, by incorporating

additional data, one will likely have enhanced diagnostic capabili-

ties. For example, Huynh et al. (2017a) considered a model with

observations on mean length and aggregate catch rate over time.

They noted that variable recruitment tended to cause the length

residuals and catch rate residuals to be of opposite sign—this af-

forded the opportunity to detect the effects of an extreme recruit-

ment event.

It is an accepted principle that a stock assessment should con-

sider all information available even if some information is dis-

counted as less reliable than other information. Thus, an

assessment model should afford the opportunity to incorporate

various types of information. A rich set of models can be devel-

oped from the basic non-equilibrium model for mean length de-

scribed by Gedamke and Hoenig (2006) and the extended model

utilizing effort data presented here. If an index of recruitment is

available, it can be incorporated into either model to relax the as-

sumption that recruitment is constant over time (see Gedamke

et al., 2008; ICES, 2016). Huynh et al. (2017a) incorporated an

aggregate catch rate over time. Models have also been developed

for multi-species and multi-stock inference (Punt et al., 2011). In

the former, changes in mortality rate can be made synchronous

as, for example, changes in fishing effort in a trap fishery; the ef-

fort change can be expected to affect the entire assemblage of fish

simultaneously (Huynh et al., 2017b). In the latter, parameters

such as natural mortality rate can vary among stocks but may be

assumed to be drawn from a distribution.

The last desideratum refers to the evolution of a stock assess-

ment from data-poor to data-rich methods. The method pre-

sented in this article uses mean length and effort observations

over time; effort might be obtained by dividing total catch by

catch per unit effort. Catch and effort data can form the basis of a

surplus production model if the time series is long enough and

has enough contrast. The use of the model described in this arti-

cle can thus serve as a bridge between the data-poor and data-

rich worlds, providing immediate benefit from the collection of

catch and effort (or catch rate) data while leading in the long

term to the integration of a production model with mean length

observations.

Summary
The extended, non-equilibrium, mean length-based estimator

presented in this article appears to be a promising tool in assess-

ing relatively data-limited stocks. Even if one cannot obtain reli-

able estimates of the parameters q and M because considerable

noise is present in the mean length data, the corresponding esti-

mates of Z may be useful. If fisheries and stock assessors are inter-

ested primarily in trends in changes of Z over the time series, this

method appears to be able to capture this information accurately,

given that the other assumptions of the method are met.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of this article.
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