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ABSTRACT

Bacillus licheniformis, a soil bacterium capable of degrading feathers in the 
laboratory, has been isolated from the plumage of wild-caught birds. Microbial 
degradation may have led to the evolution of avian molt and plumage characteristics.
This study focuses on determining the carriage rate of potentially keratinolytic bacilli 
through culture of 8 avian species from a total population of 567 wild-caught birds. 
Samples were cultured at 50°C on 7.5% NaCl plates and in 7.5% NaCl nutrient broth as 
well as at 30°C on skim milk plates to select for the desired bacilli. Potentially 
keratinolytic bacilli were isolated from 35% of 40 American Redstarts (Setophaga 
ruticilla), 43% of 58 Black-throated Blue Warblers (Dendroica caerulescens), 35% of 65 
Gray Catbirds (Dumetella carolinensis), 21% of 44 Hermit Thrushes (Catharus 
guttatus), 59% of 51 Northern Saw-whet Owls (Aegolius acadieus), 58% of 40 Dark­
eyed Juncos (Junco hymenalis), 27% o f 60 White-throated Sparrows (.Zonotrichia 
albicollis), and 33% of 103 Yellow-rumped Warblers. The total sample population 
produced a carriage rate of 38%. Identification of 98 isolates, accomplished by 
amplifying and sequencing a 900 bp region of the 16s rrnA gene, indicated that 68 were 
Bacillus lichenformis (69%). At a lower frequency, two other documented keratinolytic 
bacilli, Bacillus subtilis and Bacillus pumilis, were isolated as well as three additional 
species belonging to the genus Bacillus, B. megaterium, B. flavothermus, and B. sp., that 
have not yet been characterized as keratinolytic. Kocuria roseus was also isolated, which 
has been reported to be keratinolytic.

These results suggest that potentially keratinolytic bacilli are present within the 
plumage of a large number individuals and that B. licheniformis is an important member 
of the keratinolytic consortium of microbes in plumage. Genetic-fingerprinting analysis 
performed on isolates identified as B. lichenformis isolated from three avian species may 
suggest that Northern Saw-whet Owls obtain B. licheniformis through contamination 
from the surrounding environment instead o f solely through transfer between 
conspecifics. In contrast, B. licheniformis found on Gray Catbirds and Yellow-rumped 
Warblers was comprised of fewer strains. There was no overwhelming evidence for one 
method of bacterial transmission between birds.
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INTRODUCTION

Plumage maintenance is paramount to avian survival. Flight, protection from the 

environment (Hood and Healy 1994) and a variety of social behaviors depend upon well- 

maintained plumage. Although feathers are composed of p-keratin, a highly durable 

protein, a variety of feather-degrading organisms have been isolated from the plumage of 

living birds (Noval and Nickerson 1959, Pugh 1964, 1965, Hubalek 1976, Takiouchi et 

al. 1984, Singh et al. 1997, Burtt and Ichida 1999). However, evolution of adequate 

avian defense strategies to combat these potential ectoparasites may have ensured that 

feathers remain in good condition while on a living bird.

By damaging plumage, these feather-degrading symbionts potentially decrease the 

host's fitness. In response to a decrease in fitness, host species may have evolved 

mechanisms to reduce damage to their plumage, such as preening, anting, dusting or molt 

(Hart 1997). It has been proposed (Burtt and Ichida 1999) that Bacillus licheniformis 

may be an important member of a consortium of keratinolytic microbes that have 

contributed to the evolution o f feather shedding and plumage strengthening through 

increase in melanin content, as well as other traits that might increase fitness in the face 

of microbial assault on the plumage. Yet, Burtt and Ichida (1999) report a low carriage 

rate (8%) of keratinolytic bacilli within the plumage of 1,588 birds sampled. This 

carriage rate may be too low to cause sufficient damage to feathers and result in the 

evolution of avoidance behaviors to maintain the plumage.

Avian plumage is a home to numerous microbes, some of which are capable of 

degradation of feathers, therefore an understanding of molt requires an understanding of 

feather-degrading microbes. As a step toward achieving that goal, I examined the

2
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carriage rate o f Bacillus licheniformis and related microbes to test the hypothesis that 

feather-degraders are present on a high proportion of individual birds. I also examined 

whether the B. licheniformis present on an individual bird were of one or many strains to 

better understand the mode of bacterial transmission between birds. If one strain or a 

consistent set of strains is present on a species that would suggest transmission between 

related birds, perhaps occurring in the nest. Understanding if the birds randomly acquire 

the bacteria from the environment (i.e. contamination) or if the bacteria is passed on by 

contact of one bird to another related bird (i.e. infection) is critical to determine the 

potential for coevolution between the birds as hosts and the bacteria as parasites.

Infection, as defined in this study, results from passing one strain or a group of strains
*

from one individual to another. Contact is most likely to happen between parent and 

offspring, female parent and male parent, or conspecifics in competiton for a resource.

As these contacts are made, the same strain(s) o f bacteria are passed throughout the same 

species of bird. As these strains are associated with one species of bird, the strains may 

become adapted to live on specific avian species. Meanwhile, the avian species may 

become more adept at dealing with those particular strains. The host and symbiont may 

thus evolve together over the period of time that they are in close contact with each other. 

By differentiating the strains found on individuals within one avian species compared to 

those on other avian species, we can determine the likelihood of coevolution.

Evolutionary Response to Feather-degraders

Birds shed their plumage and grow new feathers annually or semi-annually. This 

process, termed molt, renders them flight-impaired (Swaddle and Witter 1997, Tucker
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1991) and bears numerous costs (Payne 1972, Murphy et al. 1990, Murphy and King 

1992, Lindstrom et al. 1993). Molt is an energetically costly endeavor and leaves birds 

vulnerable to predators, disease and the environment during this period (Cherel et al.

1994, Swaddle and Witter 1997). Despite the energetic cost o f molt, it occurs at least 

once, and often twice annually. Birds molt their entire plumage once a year, as well as 

plumage grown specifically for breeding purposes. The growth and shedding of feathers 

may be partially explained through the process of sexual selection. Mate choice underlies 

a process by which favorable aspects, behaviors or resources, are chosen as a signal of 

mate fitness. The immunocompetence theory of sexual selection proposes that females 

choose males according to secondary sex characteristics (e.g. bright plumage) because 

they are honest signals of the mate’s health and resistance to disease and parasites 

(Clayton, D.H. 1991, Hamilton and Zuk 1982). Various examples of sexual selection 

occur in avian systems and several have been linked to an increased immune efficiency 

(Linstrom and Lundstrom 2000, Keyser and Hill 1999, Hill 1999) and a small parasite 

load (Thompson et al. 1997, Blanco 1999). If a female can accurately assess the health 

of the male based upon his parasite load in combination with his ability to produce 

elaborate ornaments (e.g. large tail on a peacock), she may accordingly choose to mate 

with him (Hamilton and Zuk 1982).

The immunocompetence theory may help explain the role o f feather degrading 

bacteria in avian biology. Because plumage parasites may cause increased feather 

destruction, the female may use this to asses the quality of a potential mate. Females may 

inspect the feathers of a male bird before mating with him, possibly looking for parasite 

damage (Shresta et al. 1997). Feather color and brightness have been documented as
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accurate signals of health. These obvious signals can be used by the female to determine 

the most fit male (Johnston 1981, Keyser and Hill 2000, Lindstrom and Lundstrom 2000, 

McGraw et al. 2001, Verhulst et al. 1999). Development of choice, as proposed by the 

immunocompetence theory, causes selective pressures to act against individuals 

expressing unfavorable traits (Hamilton and Zuk 1982). Those traits that are favorable, 

such as a strong immune system, are coupled with more obvious characteristics, such as 

brighter plumage or longer tail feathers because these birds possess the extra energy 

reserves to produce elaborate characteristics. Invoking the immunocompetence theory, 

molt may have arisen as a method to rid the males of an unfavorable trait (high parasite 

loads). New, undamaged feathers may have made the male birds more reproductively 

successful, leading to the evolution of molt.

Obtaining greater reproductive success does not explain all variations in feather color. 

Darker plumage on birds, especially those of the same species located in different 

habitats has been described in the past by Gloger’s rule. Gloger proposed that the darkest 

colored birds tend to live in the warmest, most humid environments and the lightest 

colored live in the coolest and driest environments (Gloger 1833). Both temperature and 

relative moisture may affect the degree of avian coloration (James 1970, Aldrich and 

James 1991). A variety of organisms, including 50 species of North American birds, 

follow Gloger’s coloration cline (Zink and Remsen 1986). Song Saprows (Melospiza 

melodia) living in desert environments tend to be paler than conspecifics living in the 

humid Pacific Northwest (Burtt 1999). Feathers containing more melanin resist 

degradation better than those that are pale (Burtt and Ichida 1999, Kose and Moller 1999, 

Ward et al. 2002). Bacteria thrive in moist habitats so Burtt suggests that the avian
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species living in humid environments may grow darker feathers to avoid a high degree of 

degradation. Avian species inhabiting drier habitats may not have invested in a defense 

mechanism involving melanin because feather-degrading bacteria may not thrive in these 

arid environments.

Feather Degradation

Feather damage occurs during normal activities performed throughout the life of the 

bird and causes visible effects such as a frayed appearance at the edge and tips of the 

feathers and fading of the color of the feather due to UV exposure (Clayton and 

Tompkins 1995, Davidson et al. 1989, Rogers 1990, Van de Wetering and Cooke 2000). 

Mechanical abrasion occurring during flight is thought to be a major contributor to 

feather damage. Since the morphological structure contributes greatly to the strength of 

the feather (Bonser 1995, Coming and Biewener 1998), mechanical abrasions may make 

the feather more susceptible to further breakdown. Feathers are stronger at the tip than at 

the proximal portion presumably as the result of selection to reduce damage (Bonser 

1995, Coming and Biewener 1998). Pigmentation also adds strength to feathers (Burtt 

and Ichida 1999), but producing feather colors is costly due to the energy to manufacture 

the pigment and/or the energy put into searching for the food that contains the desired 

pigment (Hill 1999).

In addition to costly endeavors such as molting and producing more melanin, some 

behaviors may serve to maintain the plumage, such as anting and dusting. Anting 

consists of applying an ant to the base of the feather in an attempt to acquire some of the 

formic acid from the body of the ant. Formic acid has antimicrobial activity (Hefetz and 

Blum 1978, Erlich et al 1986, Wenny 1998), and is a chemical irritant to both vertebrates
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and invertebrates (Rossini et al. 1997). Formic acid is used as a defense mechanism by 

one of the 16 subfamilies of ants, Formiciniae (Hefetz and Blum 1978, Bolton 1992, 

Grimaldi and Agosti 2000). This subfamily of ants includes 48 genera and 3,000 species 

including some of the more common, ecologically important ants, such as the carpenter 

(Camponotus) and wood ants {Formica) (Grimaldi and Agosti 2000). Instead of the 

ability to sting, as with other ants, the Formiciniae ants are capable of spraying formic 

acid from a gland that has replaced the pygidial gland (Holldobler and Wilson 1990, 

Grimaldi and Agosti 2000). Although most of the evidence is anecdotal, by applying the 

ants to plumage or encouraging the ants to spray them, the birds may utilize the 

antimicrobial activity of the formic acid to decrease parasite loads.

The behavior referred to as dusting consists of the bird covering iteslf with dry soil in 

what is commonly interpreted as an attempt to desiccate the feathers (Clayton 1999). The 

lack of moisture as well as mechanical removal may clear the feathers of parasites, 

including keratinolytic bacteria that require high humidity.

Preening may also be a way of ridding the plumage of parasites. Preening removes 

larger organisms such as feather ticks and mites (Clayton 1999). However, these 

organisms must be within reach of the beak or foot to be removed. Bacteria are orders of 

magnitude smaller than the ticks and mites and so this behavior is of doubtful importance 

in decreasing bacterial load.

Parasitic organisms such as feather mites and flies as well as the keratinolytic fungi 

and bacteria may cause a high degree of damage to the feathers if present within the 

plumage at high rates and in metabolically active forms. According to one study, B. 

licheniformis is found most commonly on the distal portion o f the feather (Muza et al.
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2000) where it may increase the risk of mechanical breakage during flight (Bonser 1995, 

Coming and Biewener 1998). Degradation of the proximal (downy) portion of feathers, 

may conceivably also cause a decrease in fitness. By depleting the amount of air trapped 

next to a bird's body, the degradation of down may cause the bird to be chilled and 

weakened. This, in turn, might make it more susceptible to infections by other bacteria 

and viruses (Clayton 1999) or require it to spend more time staying warm and less time 

feeding or breeding. An ideal environment for the degradation of downy feathers may be 

on a rainy summer day. As a bird huddles to avoid rain, it may create a moist, warm 

habitat for the bacteria within the plumage. Destmction of insulating feathers during 

summer months may cause adverse effects during winter months if  molt did not occur. 

Molting damaged feathers and parasites before the winter months may provide birds with 

better insulation to protect them during the winter.

Biology of Bacillus licheniformis

Until 1990, B. licheniformis was considered a typical soil bacterium, but Williams et 

al. (1990) isolated this bacterium from a poultry waste digester and characterized its 

feather-degrading (keratinolytic) capabilities. A poultry waste digester, utilizing 

mechanical and chemical degradation, is used to break down all the wastes produced by 

the harvesting of chickens at poultry production facilities. Feathers are a large 

component of this waste. Williams et al. (1990) found that this bacterium can utilize 

feathers as a source for energy, carbon and sulfur. A few species of fungi (Pugh 1964, 

Hubalek 1976, Salfranek and Goos 1982, Bahuguna and Kushwaha 1989, Rajak et al. 

1991), several species o f Streptomyces, (Noval andNicherson 1959, Sinha 1991, 

Kitadokoro et al. 1994, Bockle et al. 1995, Chitte et al. 1999, Szabo et al. 2000), Bacillus
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pumilis (Burtt and Ichida 1999), Bacillus subtilis (Evans et al. 2000), a gram-negative 

bacterium in the family Vibrionaceae (Sangali and Brandelli 2000) and one strain of 

Escherichia coli (Lin et al. 1995) are also capable of feather degradation. Feathers are 

mainly composed o f a unique form of keratin, which exists in p-pleated sheets, in 

contrast to the a-helix formation of hair and nails (Pauling and Corey 1951, Rintoul et al.

2000). This type of keratin is known to be extremely resistant to degradation in nature 

(Hood and Healy 1994, Cheng et al. 1995, Szabo et al. 2000). However, B. 

licheniformis secretes a protease that targets the (3-keratin of feather and rapidly breaks 

down feathers in the laboratory (Williams et al. 1990, Cheng et al. 1995, Lin et al. 1999).

Until recently, interest in the capability o f B. licheniformis to degrade (3-keratin lay 

primarily in the field of poultry science. As commercial poultry species are harvested, 

the waste is not easily recycled due to the durability of (3-keratin. Recycling is usually by 

means of chemical breakdown and the result is not a high-quality protein that can be used 

as a livestock meal (Burtt and Ichida 1999, Ichida et al. 2001). Poultry science 

researchers strive to understand the means by which feathers are degraded in nature, but a 

poor understanding of (3-keratin degradation prevents this process from being applied for 

recycling poultry feathers. Other than B. licheniformis, no other keratinolytic species has 

been shown to degrade feathers with the efficiency necessary to recycle the feathers back 

into livestock feed (Lin et al 1995, Kao and Lai 1995, Ichida et al. 2001). Chemical 

methods may either denature the proteins or leave traces of toxic substances in the 

digested keratin (Hood and Healy 1994). Although other species of bacteria and a few 

species of fungi are capable of feather degradation, B. licheniformis was demonstrated to 

degrade feathers quickly when grown at optimal temperature, 45°C (Williams et al.
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1990, Lin et al. 1992, 1995,1999, Wang and Shih 1999). This discovery generated 

further interest in the enzymes produced by B. licheniformis.

Bacillus licheniformis is a gram positive, facultatively aerobic bacterium most 

commonly found in soil environments. It is most closely related to the well-studied 

bacterium, Bacillus subtilis, also a soil bacterium, and the two share many similarities 

such as temperature range, proteolytic capabilities, and genetic make-up (Duncan et al. 

1994). At least 3 species of Bacillus are known to degrade p-keratin including B. 

licheniformis, B. subtilis (Evans et al. 2000), and B. pumilis (Burtt and Ichida 1999). As 

with other bacillus species found within the soil, B. licheniformis has the capability of 

degrading a variety o f different substrates by secreting an assortment of enzymes 

(Onifade et a l  1998, Schmidt et al. 1995) many of which have industrial applications 

(Ferrero et al. 1996, Sonenshein 2000). Bacillus spp. secrete proteases used in laundry 

detergents as well as amylases and isomerases used to produce com syrup and dextrose 

(Sonenshein 2000). Although common in the soil, Bacilli species can be found in niches 

that are very specialized such as the gut of arthropods, cattle and humans, or sewage 

sludge (Sonenshein 2000). In the laboratory, B. licheniformis can grow in most media 

and at temperatures ranging from 32°C to 60°C. B. licheniformis can also maintain 

growth at a pH as high as 9.0. Optimal growth in nutrient broth occurs at 50°C and a pH 

of 7.5 (Williams et al 1990, Cheng et al. 1995). Resistance to antibiotics is high and the 

generality of the bacterium makes it well adapted to environments that undergo frequent 

changes in physical parameters.

An important aspect of B. licheniformis that allows it to thrive in the ever- 

changing soil is its capability to produce endospores. Endospores are metabolically inert



(Makino and Moriyama 2002) and are resistant to dessication, radiation, UV light, 

chemical treatment, and extreme temperatures (Nicholson et al 2000). When 

environmental conditions are poor and moisture levels are low, spore-forming bacterial 

species are more likely to survive than those bacterial species that have no defense 

against environment changes. Sporulation provides an advantage to bacteria because 

spores survive harsh conditions that metabolically active, reproducing "vegetative” cells 

cannot overcome (Gerhardt and Marquis 1989). In the presence of high numbers of 

bacteria and a limiting carbon source, sporulation will occur. Sporulation is thought to be 

triggered by low levels of a nutrient source. During sporulation, the cell becomes 

desiccated, resulting in a loss of 75% of the moisture levels of the vegetative cell, and 

becomes a small, round, endospore consisting of a core and protective coats (Beaman et 

al. 1982, Popham et al. 1996, Nicholson et al. 2000 , Driks 2001). The core houses all 

necessary ingredients for germination. When favorable conditions and germination 

coincide, the bacteria will proliferate in a more favorable environment with potentially 

less competitors as they have been removed during the unfavorable environmental 

conditions. This gives B. licheniformis an advantage over the non-spore forming bacteria 

within the soil. The irreversible process of sporulation (Gonzalez-Pastor et al. 2003) can 

last up to 8 hours, and results in a cell that is incapable of producing enzymes because it 

is in a metabolically inert state (Sonenshein 2000).

As metabolically inert spores, bacillus species cannot proliferate in a particular niche. 

Non-sporulating bacteria may take advantage of a quick change back to favorable 

conditions and thus have an advantage over competitors locked in the process of 

sporulation. Germination, the process of returning from a spore form to the vegetative
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state, is not as well characterized as sporulation, but may be induced by particular 

nutrients, such as alanine (Foster and Johnstone 1989, Nicholson et al. 2000, Makino and 

Moriyama 2002), and is rapid in comparison to sporulation (Atrih et al. 1996, Driks

2001). Returning to the vegetative state would be detrimental if the cells germinate at an 

inopportune time, such as when environmental conditions are still disadvantageous or 

when the niche is full due to the proliferation of non-sporulating bacteria. Sporulation 

may benefit keratinolytic organisms that are incidentally transferred from the usual 

habitat of soil to the plumage of a bird. If plumage, as microhabitat, does not promote a 

thriving ecosystem for keratinolytic bacilli, the bacteria may survive within the plumage 

by sporulating. When more hospitable conditions arise, such as plumage becoming 

damp, or birds molting, which would carry bacteria back to the preferable environment of 

the soil, the bacteria may germinate and begin degrading the plumage.

Although degradation of keratin by bacilli during residence in the plumage of 

wild birds is a possibility, sporulation due to adverse conditions may be equally likely. 

Keratinase secreted through the membrane of bacteria diffuses out into the environment. 

A release of nutrients may occur during degradation of p-keratin, but the bacteria that 

released the keratinase may not be close enough to the spot of degradation to benefit from 

the enzymatic event. To coordinate gene expression and avoid inappropriate synthesis of 

enzymes, many bacteria use a process known as quorum sensing to determine the relative 

population of related bacteria in the area (Fuqua and Winans 1994, Schneider et al. 2002, 

Dunny and Winans 1999). As the population increases, the bacteria detect the population 

density due to secreted pheromones. When population levels reach a critical threshold 

density (quorum), gene expression may be induced to secrete a particular enzyme
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(Schneider et al. 2002). Therefore, if  only a small population of bacteria is transferred 

from the soil to the plumage of a bird, keratin degradation may not occur. Sporulation 

may be a more likely event since a readily available food source may not be present 

within the plumage upon initial colonization.

Along with sporulation, the ability of gram-positive bacteria to secrete proteins 

directly into the environment via the general secretory pathway, makes B. licheniformis 

more adept at living within the plumage. This pathway is sufficient to secrete proteins 

directly into the environment because gram positive bacteria, unlike gram-negative 

bacteria, have only to translocate secreted materials across a single lipid bilayer. A 

nascent protein to be exported is targeted for export by an amino-terminal signal 

sequence, which possesses a cleavage site such that it can be removed after translocation 

across the cytoplasmic membrane (Harper and Silhavy 2001). The Sec protein group, 

which is necessary to transport the protein across the membrane, is made up of both 

soluble proteins and cytoplasmic membrane proteins. One Sec protein (SecA) binds the 

protein to be exported while SecB chaperones the protein destined for export to the 

membrane and keeps the protein from folding within the cytoplasm, a requirement for 

secretion. The Sec proteins also aid in the initial contact of the proteins with the 

membrane as well as insertion into the membrane. ATP hydrolysis is used repeatedly to 

move the protein through the membrane and into the external environment. Signal 

peptidase cleaves the protein, thus freeing the translocated mature protein into the 

external environment (Harper et al. 2001).

B. licheniformis secretes a proteolytic enzyme, keratinase, that is capable of degrading 

(3-keratin, the main constituent of feathers (Williams et al. 1990). Two other species
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within the genus Bacillus known to degrade p-keratin are B. subtilis, and B. pumilis 

(Burtt and Ichida 1999). The optimal temperature for keratin hydrolysis is 45 °C and B. 

licheniformis most efficiently utilizes feathers as a source of nutrients in an aerobic 

environment although some degradation may occur in anaerobic conditions (Williams et 

a l 1990). The enzyme functions in a range of temperatures similar to the range for the 

bacterium (45°- 60°C), as well as in an anaerobic environment (Lin et al. 1996). 

Keratinase is not capable of breaking down all substrates and some soluble proteins will 

actually halt the production of keratinase and B. licheniformis will secrete a protease that 

targets the most available substrate (Ferrero et a l 1996, Lin et al. 1999, Heineken and 

O’Conner 1972). This control mechanism allows for the degradation o f alternative 

substrates and implies that B. licheniformis is not restricted solely to plumage, but is 

perhaps an ecological generalist.

Keratinase is also structurally similar to a previously characterized protein, subtilisin 

Carlsberg (Evans et al. 2000), consisting of a peptide chain o f274 residues (Smith et al. 

1996). Subtilisins, naturally and industrially produced have been shown to degrade the 

keratin of feathers. There is a difference of only a single amino acid between the 

Carlsberg gene from a variety of B. subtilis strains and the kerA gene from strains o f B. 

licheniformis (Evans et al. 2000). B. licheniformis has been documented to produce 

antimicrobial agents (Jacobs 1985, Lebbadi et al. 1994, and can kill several other gram- 

positive competitors, such as B. megaterium (Lebbadi et al. 1994) and B. subtilis in the 

environment by forming pores in the membrane (Breukink et a l 1999, Stein et al. 2002). 

The ability to kill closely related bacteria in a new environment, such as may be the case 

when soil microbes are transferred to dry plumage of a bird, would benefit a keratinolytic
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organism. If the keratinolytic organisms present within avian plumage are degrading P- 

keratin, the ability of B. licheniformis to kill competitors may give it an advantage in a 

potentially crowded niche.

Objectives

As stated earlier, Burtt and Ichida (1999) proposed that keratinolytic bacteria may be 

degrading feathers within the plumage and could have caused the evolution of avoidance 

behaviors, such as molt. Based on this hypothesis, I predicted that a colonization rate 

greater than 8% would be required to significantly affect the evolution of molt, 

pigmentation, or behavioral changes. My first objective was to determine if the previous 

estimate of 8% colonization rate of birds by keratinolytic bacilli was accurate (Burtt and 

Ichida 1999).

My second objective was to determine the mode of bacterial transmission by B. 

licheniformis between hosts. Genetic-fingerprinting of B. licheniformis strains cultured 

from wild-caught birds was used to study the genetic diversity found within the B. 

licheniformis strains of each o f three avian species. Repetitive extragenic palindromic 

polymerase chain reaction (REP-PCR) has been used to differentiate strains of a variety 

of bacillus species (Brumlik et a l 2001, Herman and Heyndrickx 2000) and differentiates 

B. licheniformis isolates well. This procedure will help differentiate between 

colonization of birds by B. licheniformis resulting from contamination or resulting from 

infection.
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METHODS 

Sampling

To detennine that carriage rate of bacillus species within the plumage of wild-caught 

birds, 594 birds were mist netted during routine bird banding operations of the Coastal 

Virginia Wildlife Observatory in Kiptopeke State Park, Virginia between 5 September, 

2001 and 18 March, 2002. These were sampled by rubbing a sterile cotton-tipped 

applicator through the feathers. The applicators were saturated in isotonic saline and 

sterilized by autoclaving (120°C/15 PSI, 20 minutes) before sampling. Two consecutive 

samples were taken from the same individual bird with separate applicators. The cotton- 

tipped applicator was continually rotated during sampling to ensure optimal contact 

between the applicator and feathers. The applicator was rubbed through the feathers of 

the right side of the head, over the top of the head and through the feathers of the left side 

of the head. The applicator was then rubbed down the ventral side, through the tail and 

across the rump. The applicators used in sampling were then stored frozen at -80°C until 

they were cultured.

Culturing

A. Differential Culturing (Isolation of Proteolytic Bacteria)

To determine if bacteria capable of secreting proteases, such as keratinase, were 

present on each individual bird, one applicator from each bird was applied to a nutrient 

agar medium containing 1% skim milk (SMM) and incubated at 37°C for 24 hours. All 

growth showing evidence of proteolytic activity, defined as a visible zone of clearing 

around the colony indicating proteolytic cleavage of casein, was then transferred from the
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SMM to high salt medium (7.5% NaCl Nutrient Agar) and incubated at 50°C to assess

the halotolerance and thermotolerance of each proteolytic isolate (see below).
\

B. Selective Culturing (Isolation of Halotolerant, Mildly Thermophilic Bacteria)

To select for bacteria that can tolerate high salt, the applicator was also used to 

inoculate nutrient media containing 7.5% NaCl. This inoculated high salt medium 

(HSM) was incubated at 50°C in a humidified chamber for up to 7 days to select for 

mildly thermophillic bacteria. This selective step of the culturing process eliminated the 

growth of a wide variety of bacteria, especially any gram-negative bacteria that may have 

resulted from fecal contamination.

After inoculation of SMM and HSM, the tip of the applicator was cut off and placed 

into a 15 ml glass tube containing 5 ml of high salt nutrient broth (7.5% NaCl w/v). The 

growth from the HSM was also transferred to the plates containing skim milk and 

incubated at 37°C to determine the proteolytic capabilities of the thermophillic, 

halotolerant isolates.

The colonies capable of casein hydrolysis (proteolytic) that could tolerate the high salt 

environment at high temperatures (50°C) were then gram stained to determine 

morphology and gram reaction status. Those determined to be gram-positive proteolytic, 

halotolerant, thermophillic bacilli were considered to be potentially keratinolytic and 

stored on nutrient broth agar slants at room temperature.

Lysis of Isolates

To obtain genomic DNA (gDNA) for further species identification, isolates of 

thermophilic, halotolerant, proteolytic bacilli were grown in 10 ml Luria-Bertani (LB) 

media and incubated overnight at 37°C with aerobic aeration and then lysed with the
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following method. The pelleted cells were resuspended in 300 pi of lOmM Tris-HCl (pH 

8.0) and incubated for 48 hrs with 10% lysozyme at 55°C. The lysis solution was then 

incubated at 100°C for 10 min. The lysed isolates were then centrifuged at 14,000 x g for 

5 min and the supernatant was transferred to a sterile tube. Polymerase chain reaction 

(PCR) was performed using 5 pi of the supernatant as template (see details below). 

Identification of Isolates

Isolates were identified to ensure that the selective and differential culture scheme 

used was efficient at isolating potentially keratinolytic bacilli. A highly conserved 

section (-900 bp) of the 16S rrnA was amplified from lysates by polymerase chain 

reaction (PCR). The 50 pi reaction consisted of lx  Reaction Buffer (Promega), 2 mM 

Mg2+, 0.2 mM each dATP, dCTP, dGTP, dTTP, 400 ng of reverse primer 

(5'CCCGGGATCCAAGCTTACGGCTACCTTGTTACGACTT-3' ), 400 ng of forward 

primer (S'-CCGAATTCGTCGACAACAGAGTTTGATCCTGGCTCAG^'), and 2.5 U 

Taq DNA polymerase (Promega). The thermal cycling conditions used were 25 cycles of 

94°C for 30 seconds, 54°C for 30 seconds, 72°C for 1.5 minutes.

The PCR amplicon was purified using the Qiagen PCR purification kit by 

manufacturers suggested protocol. A 20 pi Fluorescent Dye Terminator sequencing 

reaction (Big-Dye Terminator, ABI PRISM) was performed on the purified 16S-PCR 

product using 500 ng o f the PCR amplicon, lx  Ready Reaction mix, and 200 ng of the 

reverse primer. The following thermal cycling conditions were used: 25 cycles of 96°C 

for 10 seconds, 50°C for 5 seconds, 60°C for 4 minutes. The reaction was then purified 

using a DTR Gel Filtration Cartridge kit (Edge Biosystems). Complete sequencing 

reactions were processed in an ABI 3100 Avant Gene Sequencer.
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BOXA1R-PCR

BOX-PCR, a method of Repetitive Extragenic Palindromic Polymerase Chain 

Reacion (REP-PCR), was used to differentiate strains o f B. licheniformis. BOX-PCR 

utilizes a single primer to produce a strain specific array of bands by amplifying the 

sequences between repetitive extragenic repeats conserved throughout most bacterial 

genomes. The 50 pi reaction consisted of lx  Reaction Buffer (Promega), 2 mM Mg2+ , 

0.2 mM each dATP, dCTP, dGTP, dTTP, 400 ng of primer 

(5'CTACGGCAAGGCGACGCTGA3') (Van Belkum et al. 1996), and 2.5 U Taq 

polymerase (Promega). The thermal cycling conditions used were 30 cycles of 94°C for 

30 seconds, 50°C for 30 seconds, 72°C for 1.5 minutes. The strain specific banding 

patterns were visualized on 5% neutral polyacrylamide gels stained with ethidium 

bromide. Polyacrylamide gel electrophoresis (PAGE) is a method of separating nucleic 

acids by fragment length with high resolution using a constant voltage in a vertical 

electrophoresis chamber.

RESULTS 

Carriage Rate

This portion of the study focused on determining the carriage rate of mildly 

thermophillic, halotolerant, proteolytic bacilli through culture of a sampling base of eight 

wild-caught avian species of 40 or more individuals (Table 1). These characteristics were 

chosen because they are characteristics of known keratinolytic species of bacteria. We 

hypothesized that these phenotypic characteristics, together, may serve to select for 

keratinolytic bacilli. Each individual sampled was cultured at 50°C on 7.5% NaCl plates



and in 7.5% NaCl nutrient broth as well as at 30°C on skim milk plates to select for the 

putative keratinolytic species. The total sample population, including all eight avian 

species, produced a carriage rate of 38% (n= 461) for potentially keratinolytic bacteria.
9

The carriage rates of the various avian species did not differ statistically (Table 2). 

Although a previous study suggested that ground-dwelling birds are more likely to be 

colonized by B. licheniformis (Burtt and Ichida 1999a), our results did not support that 

idea. Instead, our sample, which included ground-dwellers, arboreal species and a bird of 

prey, suggest that all of the avian species we sampled were colonized to similar extents 

by potentially keratinolytic bacilli (x2=2.58,df=l,P=0.11).

Identification of Isolates

To determine whether our selective and differential culture scheme was effective in 

isolating potentially keratinolytic bacilli, we identified 98 out o f approximately 500 

isolates to the species level. Identification of the isolates, accomplished by amplifying 

and sequencing a -900 bp portion of the 16s rrnA genes, indicated that 68 isolates (69%) 

were B. lichenformis. About 92% of isolates were determined to be keratinolytic bacillus 

(Table 3) species. The keratinolytic capabilities o f these species have been demonstrated 

previously (Burtt and Ichida 1999, Kim et al. 2001, Suh and Lee 2001). Our results 

demonstrate the effective nature of our differential and selective culturing scheme as well 

as the efficacy of casein hydrolysis as a surrogate for keratin hydrolysis. Differential and 

selective culturing was based on our hypothesis that B. licheniformis may have been a 

minor component of a keratinolytic bacterial microbiota of avian plumage. However, the 

identification o f those isolates revealed that the majority of mildly thermophilic, 

halotolerant, proteolytic Bacilli found within the plumage were B. licheniformis. We also
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isolated, albeit at a much lower frequency, two congeneric bacterial species known to 

degrade keratin, Bacillus subtilis (Suh and Lee 2001) and Bacillus pumilis (Burtt and 

Ichida 1999). Also isolated were three additional species that have not been 

characterized as keratinolytic: Bacillus megaterium, Bacillus flavothermus, Virgibacillus 

sp. (Table 3). Finally, we isolated one gram positive coccus, Kocuria roseus, which has 

been characterized as keratinolytic (Vidal et al. 2000). The 98 isolates that were 

sequenced consisted of 6 species: Bacillus licheniformis, Bacillus megaterium, Bacillus 

pumilis, Bacillus subtilis, Bacillus flavothermus, Virgibacillus sp., and Bacillus sp. (Table

3).

Mode of Bacterial Transmission 

Northern Saw-Whet Owls

Seventeen isolates from Northern Saw-Whet Owls, were identified as B. licheniformis 

(Table 3) via 16s rrnA sequencing. Fifteen of those 17 isolates were used in genetic- 

fingerprinting. BOXA1R-PCR is a repetitive extragenic polymorphic polymerase chain 

reaction (REP-PCR), which amplifies the regions of DNA found between commonly 

repeated sequences found throughout all gram-negative and most gram-positive bacteria 

(Van Belkum et al. 1996). BOXA1R-PCR produced complex and easily identifiable 

banding patterns for all 15 isolates. Eight distinct strains were identified from the 15 

isolates cultured from nine individual birds. Seven of the 15 isolates were isolated from 

the same bird and produced four distinct amplicon array patterns suggesting that four 

genetically distinct strains of B. licheniformis were isolated from one bird. The 

remaining eight isolates were isolated from eight different birds. Of the isolates found on
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different birds, four of the eight isolates produced identical band patterns, indicating that 

these four isolates are genetically indistinguishable strains of B. licheniformis (Fig 1).

Gray Catbirds

Inoculation o f Gray Catbird samples produced 27 isolates of B. licheniformis, as 

determined by 16s rrnA sequencing (Table 3). Twenty of those 27 isolates were used in 

BOXA1R-PCR. The 20 isolates were grouped into six strain types that are genetically 

indistinguishable. In some cases, the same strain was cultured from multiple birds (Fig 

2). Culturing of four of the birds (labeled 15156, 15190, 12894, 12878, Fig 2) produced 

two isolates per bird, of which one pair comprised strains that were not identical (labeled 

12894-land 12894-2, Fig 2). The other three sets were comprised of two strains that were 

identical to one another. The overall genetic diversity o f the Gray Catbird isolates 

appeared lower than that found on Northern Saw-whet Owls.

Yellow-rumped Warblers

Strains of B. licheniformis isolated from Yellow-rumped Warblers yielded results 

similar to those obtained from the Gray-Catbird. Twenty isolates were determined to be 

B. licheniformis (Table 3). Of the 6 isolates of Bacillus licheniformis, examined by 

BOXA1R-PCR, 3 distinct strains were identified (Fig 3). Two isolates were cultured 

from one bird (labeled 31391, Fig 3) and determined to be the genotypically 

indistinguishable. Cultures of two isolates from two different birds, one labeled 31395 

and a second labeled 31388 (Fig 3), were determined to be the same strain based on DNA 

fingerprinting.
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DISCUSSION 

Carriage Rate

The 8% carriage rate determined by Burtt and Ichida (1999) may be inadequate to 

generate sufficient damage to the plumage to contribute to the evolution of avoidance 

behaviors such as molt and dusting. I hypothesized that the carriage rate o f keratinolytic 

bacilli within the plumage of birds is higher than 8%. To test this hypothesis, I developed 

a selective and differential culture scheme that isolated all mildly thermophilic, 

halotolerant, proteolytic, gram-positive (potentially keratinolytic) bacilli from samples of 

migratory birds. This culture scheme isolated potentially keratinolytic bacilli from the 

plumage of 38% of the 8 avian species sampled. Further investigation into the 

identification of the isolates demonstrated that B. licheniformis was the dominant member 

of the keratinolytic consortium present within the plumage, which demonstrates that our 

culture scheme was effective in culturing keratinolytic bacilli.

The carriage rates among wild-caught avian species ranged from 21% to 59%, but 

frequencies did not differ significantly from one another, including when I compared 

ground-dwellers to all other species. Each species used to determine carriage rate 

consisted of 40 or more individuals, so if a "medium" or "large" difference in frequency 

had existed (as defined by Cohen 1988), I had a >80% chance of detecting it in my 

statistical comparison. I would not have detected "small" differences, as defined by 

Cohen (1988) because the statistical power was too low (e.g., I would have needed -200 

birds to achieve power = 0.80 for small diferences). Because I had sufficient power for 

these comparisons, I conclude that any difference in carriage rate between species is quite 

small and probably of little biological significance.
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The carriage rate study I performed was different than that performed by Burtt and 

Ichida (1999). Site location, the time of year that samples were taken, sampling 

technique and culture technique varied between the two studies. Any one of these 

differences may have resulted in the higher carriage rate that I reported.

Burtt and Ichida sampled from May 18,1993 to December 7, 1996 at locations in 

Ohio, Massachusetts, and Manitoba. My samples were collected between September 5, 

2001 and March 18, 2002. Sampling in Burtt's study was accomplished by rubbing 3 

separate dacron-tipped applicators through the feathers. Each applicator was used to 

sample a different area o f the plumage. My sampling was performed using one swab to 

obtain bacteria from the entire bird. Burtt and Ichida (1999) cultured keratinolytic bacilli 

in modified nutrient broth (7.5% NaCl) at 50°C. Our culture scheme consisted o f using 

two types o f media and incubation temperatures. In addition to applying the applicator to 

high salt agar incubated at 50°C, I also struck the applicator across skim milk media 

(SMM), which was incubated at 37°C. The addition of the SMM allowed some bacteria 

to grow that may otherwise not have grown when removed from the bird and cultured 

under harsh conditions (high salt, mildly-thermophilic). The differences in location, 

sampling and culturing methods may explain the higher carriage rate found in this study.

Although we have detected high carriage rates, our method of culture fails to 

distinguish between vegetative cells and spores. The prediction that a higher carriage rate 

results in increased damage to feathers may be incorrect because of the ability of bacilli 

to sporulate. Our culture methods may have detected bacilli that were in spore form 

within the plumage and awaiting molt or the bird’s demise to initiate germination and 

feather degradation on the ground.
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We found no trend in carriage rate of keratinoltyic species according to feeding guild 

as was suggested in the study performed by Burtt and Ichida (1999). Samples taken from 

the Northern Saw-whet Owl produced a 58% carriage rate and those from the Dark-eyed 

Junco produced a carriage rate of 59%. These two avian species have very different 

natural histories. While the owl spend the majority of the day in trees, feeds on mice, and 

nests in cavities, the Dark-eyed Junco is a ground-feeder and nester. Clearly, the carriage 

rate data did not show a trend of carriage rate correlating with feeding guild as was 

reported by Burtt and Ichida (1999).

Mode of Bacterial Transmission

After concluding that the carriage rate of B. licheniformis by wild birds may be higher 

than a previous report suggested, I next investigated the genetic diversity o f the B. 

licheniformis cultured from three avian species. I hypothesized that if B. licheniformis is 

growing vegetatively in the plumage of birds and degrading feathers, then we would see 

evidence of a clonal population of B. licheniformis indicative o f an infection. A clonal 

population (infection) may result from vertical transfer of B. licheniformis, i.e. from 

parent to offspring, or horizontally from adult to adult. The presence of a clonal 

population of isolates from the same bird, or members of the same species might suggest 

an initial acquisition and subsequent spread throughout the plumage and other avian 

conspecifics.

The alternative mechanism would be contamination, which is the random acquisition 

of B. licheniformis isolates through contact with the environment. In the case of 

contamination, a bird or species of bird may acquire a heterogeneous population of B. 

licheniformis isolates through repeated contact with a variety of sources including, but
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not limited to, the soil, vegetation and predators. The natural history of the bird may 

determine the variety o f substrates from which B. licheniformis could be obtained. I 

utilized BOXA1R-PCR, a method of REP-PCR, to examine the genetic diversity of B. 

licheniformis isolates from the plumage of wild-caught birds. Each of the 98 isolates 

used in the genetic-fingerprinting assay were identified as B. licheniformis. This genetic 

diversity analysis did not provide conclusive evidence for either infection or 

contamination.

Although we hypothesized that there would be evidence for infection, clonal 

populations were only seen in the B. licheniformis isolates cultured from Gray Catbirds 

and Yellow-rumped Warblers. There is a dominant amplicon array pattern found within 

the Gray Catbird isolates (Fig 2). This pattern can also be found in the isolates of B. 

licheniformis cultured from Yellow-rumped Warblers (Fig 3). This dominant amplicon 

array pattern may be evidence of infection. However, the sample size of the Yellow- 

rumped Warbler isolates is low and further analysis would be necessary to determine if 

infection is the mode of bacterial transmission in Gray Catbirds or Yellow-rumped 

Warblers.

The isolates from Northern Saw-whet Owls appeared to be more genetically diverse 

than the isolates from either passerine species analyzed. One individual owl carried at 

least seven genetically distinct strains. However, the same B. licheniformis pattern could 

be found on four different owls, which contradicts the evidence for a heterogeneous 

population found on the one individual. The data for all three avian species does not 

provide conclusive support for either the theory of infection or contamination. Further 

research is needed to test this hypothesis properly.
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Although researchers have historically believed that most infectious diseases were the 

result o f a clonal infection, recent evidence suggests otherwise (Lord et al. 1999, Read et 

al. 2000, Thompson 2000). Genotyping studies such as those performed on Plasmodium 

falciparum , the etiologic agent o f malaria, have provided evidence that more than one 

genetically distinct population may be thriving within a diseased organism (Daubersies et 

a l 1996, Mercereau-Puijalon 1996) and that those clones are competing with one another 

(Snounou et al. 1996, Taylor et al. 1997, Read et al. 2002). Competition between these 

genetically distinct populations occurs as they attempt to utilize the same nutrient source. 

Competitive interaction results in evolution of beneficial traits and may influence disease 

severity. The on-going process o f strains competing with other strains may result in a 

high degree of damage to a host (Read et al. 2001).

These same theories may be applied to the host-parasite interactions between bird and 

kertinolytic bacteria. Diversity of B. licheniformis strains was found on the Northern 

Saw-whet Owls sampled in this study and although the genetic-fingerprinting data 

suggests lower diversity of isolates found on both Gray Catbirds and Yellow-rumped 

Warblers, these avian species still had a variety of B. lichenformis isolates within their 

plumage. One strain could monopolize the plumage and become highly adapted to this 

niche, because fewer measures are needed for competition. However, if a variety of 

strains of B. licheniformis are competing with each other within the plumage of birds, 

they may out-compete each other by becoming better adapted to conditions within the 

plumage, such as secreting a more efficient protease. Ecological studies o f avian 

parasites have shown that ectoparasites that are transferred from parents to offspring 

(vertically), are often cause less damage to the host than those passed horizontally
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(Anderson and May 1982, Ewald 1983, Clayton and Tompkins 1995, Tompkins et al. 

1996). These horizontally-passed parasites may show greater diversity than those passed 

vertically. This may also be the case with bacteria, resulting in a benign infection of 

bacteria passed between conspecifics.

Although this study provides evidence that keratinolytic bacilli are present within the 

plumage, it does not address whether bacteria are growing vegetatively while in the 

plumage. At least three scenarios may be hypothesized when a bird becomes colonized 

with B. licheniformis. The first model is that, although capable of degrading feathers, 

Bacillus species may sporulate while within the plumage and germinate again when the 

conditions are closer to optimal for growth on such a substrate. These favorable 

conditions may exist when the bird is living, but there is a possibility that this habitat may 

not be suitable until the bird is no longer living or the feather has been molted. The 

plumage may be unfavorable a majority of the time since it is often kept dry and the body 

temperature of a bird is about 40°C, which is lower than the documented optimal 

temperature (45°C) for feather degradation by B. licheniformis (Lin et al. 1992).

However, once the feathers have reached the soil, the habitat may be prime for 

keratinolysis due to increased moisture or a more optimal temperature that may be 

achieved in an environment where temperatures rise due to the metabolic action of a large 

number of biomass degrading bacteria, as occurs in compost heaps. The bacteria may 

also be incidental “hitch-hikers” that sporulate once in the plumage. As the bird comes 

into contact with the soil again through various behaviors such as feeding or dusting, the 

bacterial spore may be transferred from the plumage back to the soil having never 

secreted keratinase or degraded a feather. The bacterium has thus been transferred to a
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new portion of soil, possibly from a crowded or unfavorable habitat to a less crowded or 

more favorable habitat. A third possible theory is that B. licheniformis may grow 

vegetatively within the plumage of live birds, resulting in damage to the feathers of a 

living bird. This last theory would involve implications for both avian and microbial 

ecology. The current study cannot address which of these competing hypotheses may be 

correct, but paves the way for such experiments by establishing that numerous strains of 

B. licheniformis are present on each avian species and that keratinolytic bacteria are 

present on more than one-third of birds across a variety of species.

Further culturing data including species with more diverse natural histories such as 

waterfowl, predatory birds, and passerines would provide more information as to the 

specificity of B. licheniformis isolates to avian hosts. Developing an efficient and quick 

molecular method to detect keratinolytic organisms, such as PCR, may also provide more 

conclusive data on the colonization rate of these organisms within the plumage. A more 

complete inventory of keratinolytic bacteria may be accomplished if selective and 

differential methods are developed to isolate gram-negative bacteria, gram-positive cocci, 

and fungi capable of feather degradation. Isolating other potentially keratinolytic 

microbes, such as Micrococcus species, may reveal that other microbes are also 

widespread on wild-caught birds and have an equally important role in feather 

degradation. Finally, because Bacillus were abundant within the plumage of wild-caught 

birds, determining the potential for sporulation of keratinolytic bacilli after arrival within 

the plumage, would provide information as to the possibility of selection pressures by 

feather-degrading microbes on avian behaviors involving plumage maintanence.
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Table 1. Avian Species Sampled for Keratinolytic Bacteria

Those 8 species in bold typing were used to culture for carriage rate o f mildly 
thermophilic, halotolerant, proteolytic bacilli. These species were selected due to the 
higher number o f individuals sampled per species (n > 40).

Yellow-rumped Warbler 1031
Gray Catbird 65
White-throated Sparrow 60
Black-throated-Blue Warbler 58
Northern Saw-whet Owl 51
Hermit Thrush 44
American Redstart 40
Dark-eyed Junco 40
Black-and-White Warbler 19
Magnolia Warbler 19
Song Sparrow 14
Field Sparrow 12
Swamp Sparrow 5
Chipping Sparrow 4
Palm Warbler 7
Ruby-crowned Kinglet 4
Blue Jay 3
Cardinal 3
Sharp-shinned Hawk 3
Tufted Titmouse 3
Northern Mockingbird 2
Swainson's Thrush 2
Veery 2
Gray-cheeked Thrush 1
Northern Water-thrush 1
Ovenbird 1
Red-breasted Nuthatch 1
Total 567
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Table 2. Percent of Avian Species Colonized with Potentially Keratinolytic
Members of the Genus Bacillus.

Mildly thermophilic, halotolerant, proteolytic Bacillus species were cultured from each 
avian sample. The percent colonization rates of the various avian species were not 
significantly different from one another (df=7, %2 = 7.815, P > 0.05).

Avian Species Colonization Rate Habitat

Northern saw-whet Owl 59% (n=51) Aboreal
Dark-eyed Junco 58% (n=40) Ground
Black-throated Blue Warbler 43% (n=58) Aboreal
Gray Catbird 35% (n=65) Ground
American Redstart 35% (n=40) Aboreal
Yellow-rumped Warbler 33% (n=103) Aboreal
White-throated Sparrow 27% (n=60) Ground
Hermit Thrush 21% (n=44) Ground
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Table 3. Species of Bacillus Isolated from Avian Samples Using Selective and
Differential Culture Methods.

Isolates of potentially keratinolytic Bacillus spp. cultured through selective and 
differential culture techniques were identified to the species level through sequencing of a 
900 bp portion of the 16s rrnA.

Avian
Species Total B . l 1 B. nu2 B, p.3 B .s ,4 B. spp,5 B .f .6

V.
spp.7

Northern 
Saw- 
whet Owl 27 17 5 1 0 4 0 0
Gray
Catbird 31 27 0 1 0 3 0 0
Yellow-
rumped
Warbler 25 20 1 2 2 0 0 0
Dark­
eyed
Junco 15 4 0 7 2 0 1 1

Total 98 68(69%) 6(6%) 11(11%) 4(4%) 7(7%) 1(1%) 1(1%)

1 2 3 4Bacillus licheniformis, Bacillus megaterium, Bacillus pumilis, Bacillus subtilis,
5Bacilli that cannot be identified at the species level, 6Bacillus flavothermus, 7An a isolate
of the genus Virgibacillus that cannot be identified at the species level.
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A B C D E F G H I  J K L M N O P Q R S  T

Figure 1

BOX-AIR PCR analysis of a subset of B. licheniformis isolates from Northern Saw-whet 
Owls. Each isolate was isolated via the selective and differential media developed during 
the current study (see Methods) and identified as B. licheniformis via sequencing of a 900 
bp section of thel6s rrnA gene. The BOXA1R- PCR was run on a 5% polyacrylamide 
gel. The box that encloses the 7 lanes F,G, H, I, L, and M indicates that those lanes are 
isolates from the same bird and all of the other isolates are each from different birds. A.
1 kB DNA ladder B. 89080-39 C. 89083-31 D. 89084-44 E. 89088-2 F. 89088-5 G. 
89088-8 H. 89088-101. 89088-11 J. 100 bp DNA ladder K. 100 bp ladder L. 89088-14 
M. 89088-15. N. 89091-35 O. 54859-27 P. 25475-30 Q. 57529 R. 57519-33 S. Blank T. 
100 bp DNA ladder.
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A B C D E F G  H I J K  L M N O P Q R S T  U V

Figure 2

BOX-AIR PCR analysis of a subset of B. licheniformis isolates from Gray Catbirds. 
Each isolate was isolated through selective and differential media and identified as B. 
licheniformis via sequencing of a 900 bp section of thel6s rrnA gene. The BOXA1R- 
PCR was run on a 5% polyacrylamide gel. Each colored * represents strains that are 
genetically distinct. Each box encloses two strains that were isolated from the same 
individual.

A. 100 bp ladder B. 15156-1 C. 15156-2 D. 15091 E. 15190-1 F. 15190-2 G. 15153 H. 
15138 I. 12938 J. 12937 K. 12929 L. 12928 M. 12927 N. 12917 O. 12898 P. 12896 Q. 
12894-1 R. 12894-2 S. 12893 T. 12878-1 U. 12878-3 V. 100 bp ladder.
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A B C D E F G

Figure 3

BOX-AIR PCR analysis of a subset of B. licheniformis isolates from Yellow-rumped 
Warblers. Each isolate was isolated through selective and differential media and 
identified as B. licheniformis via sequencing of a 900 bp portion of the 16s rrnA gene. 
The BOXA1R- PCR was run on a 5% polyacrylamide gel. Each colored * represents 
strains that are genetically distinct. The box encloses two strains that were isolated from 
the same individual.

A. 100 bp ladder B. 31388 C. 31389 D. 31391-1 E. 31391-2 F. 13195 G. 31833
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