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ABSTRACT

Bivalve species, especially mussels, are biomass dominants in many deep-sea 
chemosynthetic ecosystems. As in shallow-water environments, parasites are likely to be 
important factors in the population dynamics of bivalve populations in chemosynthetic 
ecosystems, but there has been little study of parasitism in deep-sea seep or vent 
molluscs.

In this study, parasite types, diversity, prevalence, infection density, and non
infectious indicators of stress or disease as related to host age, reproductive condition, 
and endosymbiont density were assessed in mussels (B. heckerae) from two seeps sites 
and mussels (B. puteoserpentis) from two vent sites. Ten microbial or parasitic agents 
were identified in histological sections. Parasite types included three viral-like gut 
inclusions, two rickettsia-like gill inclusions, a rickettsia-like mantle inclusion, a bacterial 
gill-rosette, a chlamydia-like gut inclusion, gill-dwelling ciliates, and an unidentified 
inclusion in gut tissues. Parasite species richness was greater in seep mussels compared 
to vent mussels, with the seep mussels possessing 9 types of parasites compared to 2 in 
the vent mussels. One of the viral-like inclusions infecting the seep mussel B. heckerae 
was pathogenic, causing lysis of the digestive tubules. The prevalence and intensity of 
infection by this pathogen were greater in hosts with shell lengths less than 100 mm. 
Mussels from all four sites also exhibited intense infiltration of tissues and blood spaces 
by abnormal hemocytes. The hemocytic infiltration (hemocytosis) showed variable 
degrees of severity that were not associated with other host factors examined.



PARASITISM IN DEEP-SEA CHEMOSYNTHETIC MUSSELS



INTRODUCTION

Parasitic infections can impair growth, reproduction, competitive ability, stress 

tolerance, and survival of host species (Kautsky 1982, Price et al. 1986, Esch et al. 1990, 

Calvo-Ugarteburu & McQuaid 1998). In addition, parasites may regulate host population 

structure and influence coexisting species, such as the host’s prey, predators or 

competitors (Anderson 1978, Anderson & May 1978, Price et al. 1986, Calvo-Ugarteburu 

& McQuaid 1998). Parasitism is thus an important factor to consider in studies of the 

ecology and dynamics of populations within any ecosystem (Esch at al. 1990, Powell at 

al. 1999, Montaudouin et al. 2000). The paucity of studies of parasitism in organisms 

living in bathyal environments is a consequence of both the relative inaccessibility of the 

deep sea and the low biomass and abundance of the organisms living there.

Chemosynthetic environments (hydrothermal vents and cold seeps) in the deep sea are 

celebrated for the high biomass and abundance of organisms adapted for life under 

extreme conditions, yet surprisingly little is known about parasitism in organisms living 

in these environments.

Hydrothermal vents are submarine hot springs located along mid-ocean ridges. 

They are dynamic, ephemeral ecosystems characterized by metal-rich fluids and 

temperatures elevated above those of the ambient deep sea (see Van Dover 2000). Deep- 

sea seeps are located primarily on continental margins where reduced compounds diffuse
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from the sea floor into the overlying water column. Seeps occur in a variety of settings 

(Sibuet Sc Olu 1998) and include petroleum seeps, which are common in the Gulf of 

Mexico (MacDonald et al. 1990), brine seeps found on the Florida Escarpment (Pauli et 

al. 1984), and gas-hydrate seeps, including the methane-hydrate seep at Blake Ridge, off 

the coast of South Carolina (Van Dover et al. 2003). In contrast to hydrothermal vents, 

seeps are thought to be more stable, longer-lived ecosystems (Sibuet & Olu 1998). 

Ecological studies in these environments are still in their infancy and investigations of 

parasite burdens, pathology, and disease in species living at seeps and vents are scarce.

Bathymodiolin mussels (f. Mytilidae) are one of the dominant megafaunal taxa 

found at seeps and vents. Bathymodiolin mussels at vents typically live in water between 

5-15°C (Van Dover 2000); mussels at seeps are generally at ambient sea-water 

temperatures (~ 2°C; Sibuet & Olu 1998). Mussels play key roles in seep and vent 

ecosystems: they serve as physical habitats for other invertebrates, and they house 

chemoautotrophic, endosymbiotic bacteria within gill epithelial cells called bacteriocytes 

(Cavanaugh 1983, Le Pennec & Hily 1984). The endosymbionts account for a large 

proportion of the primary production in seep and vent communities. The energy required 

for carbon-dioxide fixation is obtained by oxidation of reduced compounds in the 

endosymbionts; fixed carbon is translocated to the host mussel (Cavanaugh 1983). 

Bathymodiolin mussels can obtain nutrition from single (e.g., thiotrophic bacteria) or dual 

(e.g. thiotrophic and methanotrophic bacteria) symbioses. Healthy mussels retain a 

functional gut and an ability to filter feed on particulate organic matter (Le Pennec et
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al. 1990), but in the absence of reduced compounds, gill condition deteriorates (Raulfs et 

al. in press). Although diseases of commercially valuable intertidal bivalves have been 

extensively studied, little is known about parasites in bivalves found at deep-sea seeps, 

and nothing is known of parasites in bivalves found at hydrothermal vents. Extreme 

conditions in chemosynthetic ecosystems include high concentrations of metals at vents, 

brines and hydrocarbons at some seeps, and sulfide-rich effluents or pore-waters. 

Organisms endemic to chemosynthetic environments have adapted to these environments 

and require what would normally be considered noxious conditions.

Powell et al. (1999) examined the relationship between elevated concentrations of 

polycyclic aromatic hydrocarbons (PAH) and parasite burdens in mussels, Bathymodiolus 

sp., from 4 hydrocarbon seep sites in the Gulf of Mexico (depth 550-650 m). In coastal 

mussels, PAHs disrupt membranes, damage lysozymes, and inhibit hemocyte phagocytic 

ability (Pipe & Coles 1995, Femley et al. 2000). Unlike shallow-water mussels, the 

mussels from hydrocarbon seeps were obligately associated with high PAH 

concentrations. Five types of parasites were documented in the hydrocarbon-seep 

mussels, including extracellular gill ciliates, bacterial gill rosettes, Bucephalus-like 

trematodes, and chlamydia/rickettsia-like gill and gut inclusions (Powell et al. 1999). In 

comparison to mussels from intertidal sites, the mussels from hydrocarbon seeps had 

similar types of parasites, but were more heavily parasitized. Infections of Bucephalus- 

like trematodes caused severe castration of hydrocarbon-seep mussels, leaving 40 % of 

the populations in the study reproductively compromised (Powell et al. 1999).
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To explore further the relationship between parasite burdens in bathymodiolin 

mussels and chemosynthetic environments, we conducted a comparative study of parasite 

burdens in Bathymodiolus heckerae from two deep-sea seeps and B. puteoserpentis from 

two deep-sea hydrothermal vents. Both species contain methanotrophic and thiotrophic 

endosymbiotic bacteria. Differences in types of parasites and abundance of parasites 

were documented between the two geologically and ecologically distinct habitat types. 

Prevalence, infection densities, and noninfectious indicators of stress or disease as they 

relate to age, reproductive condition, and an index of endosymbiont density were also 

assessed.



MATERIALS AND METHODS

Specimens of Bathymodiolus heckerae were collected using the deep-sea 

submersible Alvin from two seep sites: a cold-water, saline site at the Florida Escarpment 

(26° 2'N 84° 55 'W, 3300 m; sampled in October 2000) and a gas-hydrate site off the 

Carolina coast (Fig. 1; Blake Ridge 32° 31'N 76° 12 W , 2155 m; sampled in September 

2001). Species of B. puteoserpentis were collected from the Logatchev (15° 45 'N 44° 

58'W, 3300m, sampled in July 2001; Batuyev et al. 1994) and Snake Pit (23° 22'N 44°

56'W, 3600m, sampled in July 2001; Karson & Brown 1988).

Mussels were sorted by length and 30 to 32 specimens were systematically 

selected to represent an even distribution across the range of sizes available. Shell lengths 

were recorded for each specimen. Within 3 hr of collection, mussels were removed from 

the shell, tagged, fixed in Davidson’s solution (Humason 1972) for 24 hr, and stored in 

70 % ethanol. Number and lengths of commensal polychaetes (.Branchipolynoe 

seepensis) in the mantle cavities of the mussels were determined.

Wet weight was determined for whole, fixed mussels without the shell. An 

oblique, ~ 5 mm-thick, transverse tissue slice, containing mantle, gonad, digestive tract, 

and gill was dissected from each specimen. This tissue slice was dehydrated in a graded 

ethanol series, embedded in paraffin, and transverse sections were taken at 5-6 pm.
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FIGURE 1

LOCATIONS OF THE FLORIDA ESCARPMENT (FE) AND BLAKE RIDGE (BR) 
SEEP SITES AND THE LOGATCHEV (L) AND SNAKE PIT (SP) VENT SITES



Sections were stained with Gill’s hematoxylin and eosin (H&E; Stevens 1990) or 

Ordway-Machiavello for rickettsia (Humason 1972) to identify parasite types and 

prevalence (# of host individuals infected with any parasite; Margolis et al. 1982) using 

light microscopy. A Spot camera (Diagnostic Instruments) was used for capturing images 

for light microscopy. Contrasts were adjusted and photomosaics were generated using 

Adobe Photoshop (Adobe Systems).

Using an ocular grid, parasite densities (number of parasites per area standardized 

to 500 pm2 of tissue; Margolis et al. 1982) were determined for infected individuals. Five 

grids were examined per section for three sections that were separated by ~1 mm or more. 

Body burden (mean infection densities for all parasitic infections) of infected individuals 

was also determined. A quantitative measure of bacterial endosymbiont density was 

determined for Bathymodiolus puteoserpentis by measuring the area of the gill 

bacteriocytes occupied by the endosymbiotic bacteria to derive a ratio of the area 

occupied by the endosymbiotic bacteria to the area of the gill bacteriocytes. Cells used to 

measure bacterial endosymbiont density were located on sections of the transverse gill 

filaments in approximately the same region of each mussel. Host sex and gonad stage 

were measured. Semi-quantitative scales were assigned for intensity of hemocyte 

infiltration per cross-section (Table 1; Fig. 2a & b) and density and stage of development 

of gonads (Table 2) and the presence of neoplastic tumors in the gill epithelia were 

recorded. Statistical tests were performed using MINITAB software, version 13.20,

2000. Comparisons of means among sites were determined using Kruskal-Wallis.
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TABLE 1

INDEX OF INTENSITY OF HEMOCYTE INFILTRATION

Intensity Description

0 No areas of infiltration

1 Slight infiltration, small, focal, usually only around
intestine

o Several small foci of infiltration or a few larger areas;
sometimes occurring in more than one type of tissue

Disseminating foci ranging from small to large areas;
3 infiltration extensive and usually in several or all types of

tissue

A A few blood vessels enlarged due to heavy infiltration of
hemocytes

5 Most blood vessels enlarged due to massive infiltration
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FIGURE 2 

HEMOCYTE INFILTRATION

a) Heavy infiltration o f  hemocytes (arrows) around the digestive diverticula and intestine.Scale bar = 200  
fim. b) Healthy visceral mass tissue without hemocyte infiltration. Scale bar = 200 fim
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TABLE 2

INDEX OF GONADAL DEVELOPMENT

Gonad Stage Description

1 Undifferentiated; few areas in visceral mass with gonad

2 Early stages of developing gametes; several areas of visceral 
mass with small regions of gonadal development

3 Approximately equal proportions of developing and mature 
gametes; large areas of visceral mass taken up by gonads

4 Early stages of gametogenesis rare; follicles contain mature 
gametes; visceral mass densely packed with gonad
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If significant results (p < 0.05) were obtained, ANOVA and Tukey’s pairwise 

comparisons were used to evaluate significant differences among sample pairs. Multi

dimensional scaling (MDS; PRIMER v5; Clarke & Gorley 2001) was used to examine 

similarities among individuals based on the parasite type- density matrix, using Bray- 

Curtis coefficients calculated from non-transformed data. The 16 individuals not infected 

by any parasite were excluded from the MDS analysis. MDS plots position individuals 

on a unit-less 2-dimensional map; closely spaced points represent the most similar 

individuals in a multivariate space based on parasite types and density. Analysis of 

similarity (ANOSIM subroutine of PRIMER v5) was used to determine significant 

differences between groups of individuals evident in MDS plots. ANOSIM provides R 

statistics, where R > 0.75, groups are well-separated; when 0.75 > R > 0.5, groups are 

over-lapping but clearly different; when R < 0.25, groups are not separable (Clarke and 

Gorley, 2001). Factors contributing to these differences of parasite infection densities 

were determined from similarity percentages (SIMPER subroutine in PRIMER v5). The 

Shannon-Weiner diversity index (H'log(e)) was calculated using the DIVERSE subroutine 

in PRIMER v5. This diversity index takes into account both species richness (the number 

of parasite types) and evenness (the distribution of individuals among species; Hayek and 

Buzas 1997).



RESULTS

The parasite fauna

Ten types of parasites (9 in Bathymodiolus heckerae, 2 in B. puteoserpentis) were 

identified in histological sections: three viral-like inclusions in the gut, two rickettsia-like 

inclusions in the gill, rickettsia-like inclusions in the mantle, bacterial rosettes in the gill, 

chlamydia-like inclusions in the gut, gill ciliates, and an unidentified inclusion in the gut.

One of the viral-like inclusions in the gut, referred to hereafter as viral inclusion I, 

was observed only in the vent mussel Bathymodiolus puteoserpentis, where it occurred in 

the digestive diverticula (Fig. 3a). These eosinophilic inclusions were generally spherical 

in shape with an average diameter of 20 pm (n = 20; Fig. 3b). Occasionally, the cell 

contents were peripherally located in the host cell or the cell was hypertrophied (Fig. 3b).

Two viral-like inclusions in the gut were associated with the seep mussel 

Bathymodiolus heckerae. One, hereafter referred to as viral inclusion II, occurred in the 

nuclei of stomach and intestinal epithelia of mussels from the Florida Escarpment (Fig. 

3c). The inclusion had a waxy, eosinophilic appearance and was oval or spherical in 

shape with an average diameter of 11 pm (n = 20). The inclusion was surrounded by 

what we infer to be the hypertrophied nuclear envelope of the host cell. Lighter staining 

rings were occasionally visible within the inclusion (Fig. 3d). No obvious tissue 

pathology was associated with this infection.

13
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A third viral-like inclusion in the gut, referred to as viral inclusion III, infected the 

epithelial nuclei of the digestive diverticula and intestines of B. heckerae from both seep 

sites (Fig. 3e). Infections were characterized by small (4.8 pm diameter; n = 25) 

eosinophilic spherical bodies within host cells, free in the lumen of the digestive tract 

(Fig. 3e & f), or occasionally in the connective tissue of the visceral mass. The spherical 

bodies showed no internal structure at the level of light microscopy. Severe tissue 

pathology was often associated with infection by viral inclusion El (Fig. 3e, f, & g). In 

moderately or heavily infected mussels, infected cells had either lysed or had sloughed 

into the lumen of the digestive tubules (Fig. 3g). Widespread necrosis of the digestive 

tissue was evident with large regions of the digestive tissue destroyed, leaving a mass of 

viral inclusions among the remnants of the cells (Fig. 3e & f). In adjacent healthy mussel 

tissues, nuclei were basally located and individual cells were easily distinguishable (Fig. 

3h).

One of the rickettsia-like inclusions in the gill, referred to as gill rickettsia I, was 

found in both mussel species from all four sites. These basophilic, intracytoplasmic 

inclusions were spherical, with an average diameter of 20 pm (n = 20) and could be found 

in all cell types along the entire length of the gill filament (Fig. 4a & b). Many inclusions 

had a filamentous internal structure (Fig. 4b) while other inclusions appeared smooth.
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FIGURE 3

VIRAL-LIKE INCLUSIONS FROM BATHYMODIOLUS SPP.

a) An individual heavily infected with viral inclusion I in the digestive diverticula. Scale bar = 200 pm. b) 
Viral inclusion I in the digestive diverticula causing hypertrophy and necrosis o f  the host cell (asterisk). 

Scale bar = 20 pm. c) Viral inclusion II infecting stomach epithelial cells. Scale bar = 50pm. d) Detail o f  
viral inclusion II showing the hypertrophied nuclear envelope (arrow). Scale bar = 10 pm. e) Viral 

inclusion III infecting digestive diverticula and intestinal tissue. Viral-like inclusion bodies visible in the 
lumen and tissues with necrotic areas o f  digestive diverticula. Scale bar = 200 pm. f) Viral inclusion III 
within two tubules o f  the digestive diverticula. Scale bar = 10 pm. g) Digestive diverticula infected with 

viral inclusion III with necrotic tissue caused by the virus. A mass o f  viral-like inclusions and necrotic 
cells are visible in one tubule (asterisk). Scale bar = 60 pm. h) Uninfected digestive diverticula for 

comparison. Scale bar = 50 pm. bm, basement membrane; dd, digestive diverticula; i, intestine; 1, lumen; 
ne, nuclear envelope; nu, nucleus; s, stomach; vi I, viral inclusion I; vi II, viral inclusion II; vi III, viral

inclusion III
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A second type of rickettsia-like inclusion in the gill, referred to as gill rickettsia II 

was found only in Bathymodiolus heckerae from the Florida Escarpment. The 

intracytoplasmic inclusions were basophilic and were found along the entire length of 

thegill filament within the host bacteriocytes (Fig. 4c). These inclusions were 

morphologically different from gill rickettsia I, being larger (average diameter 37 pm; n = 

20) and more irregular in shape (Fig. 4c & d). These inclusions also had a filamentous 

internal structure (Fig. 4d). Both types of gill rickettsia were capable of displacing the 

endosymbiotic bacteria to the periphery of the host cell.

The third type of rickettsia-like inclusion, referred to as mantle rickettsia, was 

found in the cytoplasm of mantle epithelial cells in Bathymodiolus heckerae. These 

inclusions were morphologically similar to gill rickettsia I, but due to their different 

location within the host, they were considered a different parasite. No obvious tissue 

pathology was observed with this parasite.

Bacterial gill rosettes similar to those described by Powell et al. (1999) were 

observed in bacteriocytes. They were associated with the host bacteriocytes of 

Bathymodiolus heckerae, averaged 9 pm (n = 15) in diameter, and were located within or 

penetrating the membrane of the host gill cell (Fig. 4e). The rosette structures were 

composed of groups of 30 or more basophilic, spherical bodies, each with an average 

diameter of 2.8 pm (n = 25; Fig. 4f). No tissue damage was observed except where 

rosettes penetrated the gill cell membranes.

Chlamydia-like intracytoplasmic inclusions occurred in epithelial cells of the
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FIGURE 4

BACTERIA-LIKE INFECTIONS IN BATHYMODIOLUS SPP.

a) Moderate infection with gill rickettsia I. The rickettsial inclusions are located in gill bacteriocytes. 
Scale bar = 50 pm. b) Gill rickettsia I with a filamentous internal structure. Scale bar = 10 pm. c) 
Gill filament infected with both gill rickettsia I and gill rickettsia II. Note the difference in size and 

shape o f  the two inclusions. Scale bar = 30 pm. d) Gill rickettsia II with a filamentous internal 
structure and irregular shape. Scale bar = 20 pm. e) Gill rosettes located among bacteriocytes o f  

the host gill filament. The gill rosette appears to be breaking through the host gill cell (arrowhead). 
Scale bar = 30 pm. f) A gill rosette composed o f  several spherical bodies with an average diameter 

o f  2.8 pm. Scale bar = 10 pm. g) A tightly compacted chlamydia-like inclusion in the digestive 
diverticula. Scale bar =  40 pm. h) A more diffuse chlamydia-like inclusion in the intestine. Scale 

bar = 40 pm. be, bacteriocytes; bm, basement membrane; ch, chlamydia-like inclusion; dd, 
digestive diverticula; gf, gill filament; gr, gill rosette; i, intestine; 1, lumen; ri I, gill rickettsia I; ri II,

gill rickettsia II
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stomach, intestine, and digestive diverticula of Bathymodiolus heckerae. These parasites 

were basophilic, finely granular, and irregular in shape and size (average diameter 5 pm; 

n = 20). The finely granular inclusions appeared either tightly compacted (Fig. 4g) or 

diffuse (Fig. 4h). Host cells were hypertrophied or lysed by the inclusion (Fig. 4g & h).

Ciliates were found among the gills of Bathymodiolus heckerae (Fig. 5a). They 

had an average length of 30 pm (n = 15) and were associated with, but did not appear to 

be attached to, the gill filaments of the host mussel (fig. 5a). No obvious tissue pathology 

was observed.

An unidentified parasite occurred only in Bathymodiolus heckerae. It was 

characterized by a slightly reffingent, intracytoplasmic, basophilic, spherical inclusion 

with an average diameter of 8 pm (n = 10; Fig 5b). These inclusions were located in the 

epithelial cells of the intestine and digestive diverticula of the host. With the exception of 

a slight hypertrophy of the host cell, no obvious tissue pathology was observed.

Polychaetes

Commensal polynoid polychaetes (Branchipolynoe seepensis) were retained 

between the gill filaments of 2 vent mussels and subsequently sectioned (Fig. 6a). 

Displacement of gill filaments and some physical trauma of the filaments resulting in 

necrosis or poor condition were attributed to the polychaetes. In Bathymodiolus 

puteoserpentis, the commensal polychaete had a prevalence of 30-40 %. An even greater 

prevalence of the commensal polychaete was observed in B. heckerae from the Florida
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FIGURE 5

GILL CILIATES AND AN UNIDENTIFIED PARASITE FROM 
BATHYMODIOLUS SPP.

a) Gill ciliate showing a micro- and macro-nucleus. Scale bar = 30 gm. b) Unidentified 
intracytoplasmic inclusion (arrowhead) in a digestive diverticulum. Scale bar = 20 gm. be, 

bacteriocytes; dd, digestive diverticula; gc, gill ciliate; 1, lumen; ma, macro-nucleus; mi, micro-nucleus
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FIGURE 6

COMMENSAL POLYCHAETES IN BATHYMODIOLUS SPP.

a) Polynoid polychaete, Branchipolynoe seepensis, between gill filaments o f  the vent mussel B. 
puteoserpentis. Scale bar = 200 pm. b) Nautiliniellid polychaete between the demibranchs (asterisks) 
o f  B. heckerae from Florida Escarpment. Scale bar = 200 pm. c) Viral-like inclusions in the intestine 

o f  the nautiliniellid. Scale bar = 20 pm. gf, gill filaments; i, intestine; 1, lumen; nu, nucleus; p,
polychaete; vi, viral-like inclusion
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Escarpment seep site (>60 %). Branchipolynoe seepensis was not observed in 

Bathymodiolus heckerae from the Blake Ridge seep.

In 3 Bathymodiolus heckerae from the Florida Escarpment, 4 nautiliniellid 

polychaetes (possibly Laubierus mucronatus based on characteristics of the setae) were 

observed in section (Fig. 6b). The polychaetes were located between the ascending and 

descending filaments of the demibranchs. Little evidence of damage on the surrounding 

filaments was observed, although cells in the adjacent gill tissue were detached from the 

filament or the tissue was in poor condition. Three of the polychaetes were infected with 

viral-like inclusions in the digestive tract (Fig. 6c).

Parasite diversity and abundance

Parasite diversity (FT) was highest (FT = 0.92) in Bathymodiolus heckerae from 

the Florida Escarpment (Table 3). Parasite diversities at the other 3 sites were 

considerably lower, with FF values of < 0.20. Species richness (number of parasite types) 

was greater B. heckerae than in B. puteoserpentis (Table 3 & Fig. 7a). Mussels from the 

Florida Escarpment were infected with 9 different types of parasites and B. heckerae from 

the Blake Ridge were infected with a subset of at least 6 of these. Viral inclusion I was 

unique to B. puteoserpentis at the vents. Gill rickettsia I was observed in both mussel 

species at all four sites.

The number of parasite types in infected individuals (Fig. 7b) was species and site 

dependent. Bathymodiolus heckerae from Florida Escarpment seeps had ~ 4 times more
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TABLE 3

PREVALENCE AND DENSITIES OF INFECTION

Prevalence (% o f  individuals infected) and densities o f infection per 500 pm2 o f tissue for parasitic 
agents and data on polychaete infestations, n = number o f individuals sampled._____________________

Bathymodiolus heckerae 
Seep Sites 

FI. Escarpment Blake Ridge

Bathym odiolus puteoserpentis 
Hydrothermal Vent Sites 

Logatchev Snake Pit

n 32 32 32 30
Gill R ickettsia I

Prevalence 94 % 13 % 87 % 20 %
Density (± s.d.) 0.3 (±0.34) 0.1 (± 0.09) 1.1 (± 1.20) 0.06 (± 0.04)

Gill Rickettsia II

Prevalence 69 % 0 0 0
Density (± s.d.) 0.3 (± 0.34) 0 0 0

M antle Rickettsia

Prevalence 3 % 3 % 0 0

Density (± s.d.) 0.03 0.7 0 0

Bacterial G ill R osette

Prevalence 34% 0 0 0

Density (± s.d.) 0.2 (±0.35) 0 0 0

C hlam ydia-like Inclusion

Prevalence 21 % 3 % 0 0
Density (± s.d.) 0.3 (± 0.56) 0.25 0 0

Gill C iliate

Prevalence 40% 3 % 0 0
Density (± s.d.) 0.04 (± 0.05) 0.02 0 0

U nidentified Gut Inclusion

Prevalence 50% 12 % 0 0
Density (± s.d.) 0.08 (±0.05) 0.03 (± 0.02) 0 0

B. seepensis polychaetes

Prevalence 62 %
# polychaetes per individual 1.5 (± 1.26)

0
0

31 %

1.1 (±0.55)
40 %

1.7 (± 1.24)
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FIGURE 7

PARASITE SPECIES RICHNESS AND MEAN SPECIES RICHNESS PER
INFECTED MUSSEL
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Florida Escarpment, n = number o f individuals
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parasites per individual on average than did B. heckerae from Blake Ridge (Kruskal- 

Wallis: p < 0.001). Infected individuals of B . puteoserpentis from the Logatchev vent had 

a slightly but significantly greater number of parasites per individuals on average (Fig.

7b) than did infected individuals from Snake Pit (1.1; Kruskal-Wallis: p = 0.017).

More than 70 % of the mussels sampled from all four sites were parasitized by 

one or more types of parasites. At the Florida Escarpment site, 100 % of the mussels 

were infected with at least one type of parasite (Table 3 & Fig. 8a). Despite large 

numbers of infected individuals, total body burdens were relatively low except in mussels 

from the Blake Ridge seep (Tukey’s, p < 0.001; Fig. 8b). Individuals from the four sites 

mapped as significantly different groups on MDS plots based on the parasite type-density 

matrix (Fig. 9; ANOSIM, R > 0.40; excluding uninfected hosts). Differences in parasite 

burdens between Bathymodiolus heckerae and B. puteoserpentis ( R > 0.8) and between 

B. heckerae from Florida Escarpment and Blake Ridge (R = 0.43) were attributable to 

infection by viral inclusion III, which accounted for an average of 68 % of the differences 

(SIMPER). B. heckerae from the Florida Escarpment mapped into two significantly 

different groups (R = 0.58; ANOSIM; Fig. 9). Infection with viral inclusion III accounted 

for 67 % of the difference between these groups (SIMPER). B. heckerae individuals 

infected with viral inclusion III mapped closest to the B. heckerae individuals from Blake 

Ridge that were also infected with the virus (Fig. 9). Viral-like gut inclusions occurred in 

mussels from all four sites, but Bathymodiolus heckerae had a greater prevalence of viral 

inclusions than B. puteoserpentis (Fig. 10a). Sixty percent of B. puteoserpentis at Snake
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FIGURE 8 

PREVALENCE AND BODY BURDEN
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FIGURE 9

BODY BURDENS OF ALL MUSSELS INFECTED WITH AT LEAST ONE
PARASITE ANALYZED BY MDS
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Pit were infected with viral inclusion I, but less than 30 % of the mussels from the 

Logatchev site were infected with the same or similar viral inclusion I. More than 90 % 

of the B. heckerae from Florida Escarpment were infected with either viral inclusion II or 

viral inclusion III; of these, 53 % were infected by both viruses. Almost 90 % of B. 

heckerae from Blake Ridge were infected with the pathogenic viral inclusion III- 

Infection density of viral inclusion III was significantly greater in B. heckerae from Blake 

Ridge than from the Florida Escarpment (Tukey’s: p < 0.001; Fig. 10b). Host size was an 

important factor in infection in B. heckerae. Mean infection density for viral inclusion III 

was greater in individuals with shell lengths less than 100 mm (Kruskal-Wallis with 

outlier, 0.005; Kruskal-Wallis without outlier: p < 0.007; Florida Escarpment, Fig 11a; 

Blake Ridge, Fig. 1 lb). Mussels with shell lengths greater than 100 mm were not 

infected or only slightly infected with viral inclusion m  (Fig. 1 la  & b).

Gill rickettsia I was present in both species of mussels, but its prevalence varied 

between habitats. Bathymodiolus puteoserpentis from Logatchev vents had a 

significantly higher density of gill rickettsia I than B. puteoserpentis or B. heckerae from 

the other sites (Tukey’s: p < 0.02).

Noninfectious diseases

Heavy hemocyte infiltration (Fig. 2a) occurred in mussels from all four sites 

(Table 4). Neoplastic gill epithelial tumors were observed in B. puteoserpentis from the 

Logatchev vent site and Bathymodiolus heckerae from the Blake Ridge seep site (Fig.



28

FIGURE 10

PARASITE PREVALENCE AND INFECTION DENSITIES OF MUSSELS 
INFECTED WITH VIRAL-LIKE GUT INCLUSIONS
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FIGURE 11

INFECTION DENSITY OF VIRAL INCLUSION III IN RELATION TO MUSSEL
SHELL LENGTH
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12a & b). Hemocyte infiltration was observed in the majority of mussels (107 of 126) 

and in 42 of these mussels, massive hemocyte infiltration resulted in abnormal expansion 

of blood vessels (Fig. 12c & d). Most hemocytes appeared to be enlarged, with the nuclei 

displaced to the side of the cells (Fig 12d). A positive relationship (Pearson’s: p < 0.002) 

was observed between hemocyte infiltration and host length in mussels from all four 

sites.

Index o f gonad development

Gonads of Bathymodiolus heckerae from Florida Escarpment were more 

developed than those of B. heckerae from the Blake Ridge (Kruskal-Wallis: p < 0.001).

In B. heckerae from the Florida Escarpment, individuals were more evenly distributed 

across the four categories of gonad development with only 18 % individuals possessing 

undifferentiated gonads. In B. heckerae from Blake Ridge, 81 % of individuals sampled 

had undifferentiated gonads. There was a negative correlation between total parasite 

body burden and degree of gonad development in B. heckerae (Pearson’s: p < 0.030); the 

density of viral inclusion III was negatively correlated with gonad development 

(Pearson’s: p < 0.040). There was no difference in gonadal development in B. 

puteoserpentis from Snake Pit and Logatchev.

Index o f endosymbiont density

In Bathymodiolus puteoserpentis, endosymbiont density was positively correlated
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TABLE 4

NONINFECTIOUS INDICES OF DISEASE

Prevalence of individuals with gill epithelial tumors and hemocyte infiltration and intensity of 
infiltration per 500 pm2 of tissue, n = number of individuals sampled

Bathymodiolus
heckerae

Bathym odiolus 
puteoserpentis

Seep Sites Hydrothermal Vent Sites

FE BR L SP

n 32 32 32 30

Prevalence of gill epithelial tumors 9%  31% 3 % 6 %

Prevalence of hemocyte infiltration 91 % 97 % 63 % 90 %

Mean hemocyte infiltration (± s.d.) 2.2 (± 1.4) 2.9 (±2.0) 2.3 (±1.5) 2.8 (±1.6)

Mean gonad development (± s.d.) 2.3 (±0.97) 1.3 (±0.70) 3 (± 1.13) 2.5 (± 1.10)
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FIGURE 12

NONINFECTIOUS INDICATORS OF DISEASE

a) Gill filaments with areas o f  neoplasia (arrowheads) among normal gill filaments (asterisks). Scale 
bar = 200 pm. b) Neoplasia o f  gill filament (between arrowheads) demonstrated in figure 11 a. Scale 

bar = 50 pm. c) Hemocytic infiltration causing enlargement o f  blood vessels (intensity o f  5; arrow 
heads) in visceral mass. Scale bar = 200 pm. d) Enlarged blood vessel filled with abnormal hemocytes. 
The hemocytes were enlarged with the nuclei displaced to the side o f  the cells. Scale bar =  50 pm. bv,

blood vessel; d, dorsal; he, hemocytes; v, ventral
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with infection density of gill rickettsia I (Pearson’s: p < 0.020; Fig 13a). In B. 

puteoserpentis from Snake Pit, endosymbiont density also decreased with greater total 

body burdens of parasites in individual mussels and with an increase in infection density 

of viral inclusion I (Pearson’s: p < 0.020; Fig. 13b).
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FIGURE 13

RELATIONSHIPS BETWEEN INFECTION DENSITIES AND INDEX OF 
ENDOSYMBIONT DENSITY IN THE VENT MUSSEL BATHYMODIOLUS
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a) Infection density o f gill rickettsia I (per 500 pm2 o f tissue) in mussels from Logatchev in relation to 
the index o f  endosymbiont density. A similar relationship was observed in mussels from Snake Pit. b) 
Infection density o f viral-inclusion I (per 500 pm2 o f  tissue) in mussels from Snake Pit in relation to the 

index o f endosymbiont density (Pearson’s: p = 0.013). This relationship was not observed in mussels
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DISCUSSION

Parasitism in seep and vent mussels

Nine different types of parasites were observed in Bathymodiolus heckerae from 

the seep sites; only two types of parasites were found in B. puteoserpentis from the vent 

sites. Only one type of parasite, gill rickettsia I, was common to mussels from both seep 

and vent habitats. We speculate that the ephemeral and extreme nature of vents may limit 

colonization and transmission of parasites, resulting in low parasite diversity in vent 

organisms (viz., Esch et al. 1990, Price 1990). Low diversity of invertebrates at vents 

compared to seeps has been attributed to the more ephemeral nature of vents (Craddock et 

al. 1995, Sibuet & Olu 1998) and to the potential for greater barriers to invasion of vent 

habitats due to their more extreme conditions (e.g., elevated metal concentrations, greater 

sulfide flux; Tumipseed et al. 2003). Other factors might also be implicated in 

determining the lower parasite diversity at hydrothermal vents. For example, invasion of 

deep-sea habitats by ancestral, shallow-water host species and their parasites may be a 

function of proximity to shallow-water sites. The Florida Escarpment and Blake Ridge 

seep sites, located along the continental margins of eastern North America, are closer to 

shallow-water habitats than are the Logatchev and Snake Pit vent sites. Seep habitats,

35
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with a higher diversity of invertebrate taxa, are more likely to have higher parasite 

diversity due to the greater number of potential hosts than vent habitats (Price 1990).

In shallow-water systems, species richness generally decreases as environmental 

stressors increase (Warwick & Clarke 1995, Menge & Branch 2001). Environmental 

stress, such as pollutants may affect the physiology of the host organism, thus negatively 

affecting a host response to disease-causing agents or restricting available habitat within 

the host for parasitic agents (Laird 1961, Lauckner 1983, Cheng 1988, Winstead & Couch 

1988). Parasites themselves can also be affected by environmental extremes. Deep-sea 

vent and seep sites have noxious compounds such as sulfides, brines, and metals. These 

compounds may act as barriers to invasion by parasites and limit infections to microbial 

agents, as few protozoan and no metazoan parasites other than commensal polychaetes 

were found in these deep sea mussels.

Pathogenicity: Viral inclusion III

Viral-like infections were the most significant potential disease-causing agents 

found in the seep and vent mussels. Several lines of evidence, including relationships 

between mussel size and infection intensities of viral inclusion III, tissue destruction 

associated with viral inclusion III, undeveloped gonads in mussels infected by viral 

inclusion III, and in situ observations of extensive mussel mortality, suggest that viral 

inclusion III may be a significant pathogen with a potentially adverse affect on mussel 

populations at the Blake Ridge seep. Infection by viral inclusion HI was pathogenic,
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causing significant damage to the digestive diverticula and connective tissues in the 

visceral mass. Although bacterial endosymbionts provide most of the nutrition to seep 

and vent mussels (Felbeck et al. 1981, Cavanaugh 1983, Childress et al. 1986), 

bathymodiolin mussels retain the ability to filter feed, which presumably provides some 

nutrition to the mussels (Le Pennec & Hily 1984, Page et al. 1991). Viruses that form 

intranuclear inclusion bodies, such as those observed for viral inclusion III, can result in 

reduced food uptake in bivalves due to necrosis within the digestive tract (see Lauckner 

1983). The high prevalence of mussels with undifferentiated gonads from Blake Ridge 

may be a result of castration by viral infection III or resorption of gonads by an infected 

host, which is a common response in molluscs to disease (Lauckner 1983).

Several patches of empty valves have been observed in mussel populations from 

the Blake Ridge, suggesting that mass mortalities have occurred at this site (Van Dover et 

al. 2003). While the mortality could not be attributed to a specific cause, the valves were 

relatively uniform in size, suggesting a common cause of death. The mortality was 

attributed to shifting foci of seepage (Van Dover et al. 2003), but the pathogenicity of 

viral inclusion in  suggests an alternative hypothesis, namely that viral infection may have 

contributed to the mortality. Mussels with shell lengths greater than 100 mm were either 

lightly infected or uninfected with viral inclusion III and may represent a subset of the 

population that was immune to infection or strong enough to overcome the infection. 

Alternatively, viral inclusion III maybe an opportunistic parasite infecting stressed hosts.
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Pathogenicity: Hemocytic infiltration

Heavy infiltration by abnormal hemocytes was observed in the majority of 

mussels sampled. The predominant mechanism of molluscan internal defense involves 

phagocytosis by circulating hemocytes (Pipe & Coles 1995); and infiltration by 

hemocytes is part of the immune response to parasitic infection in molluscs (Quayle 

1969, Lauckner 1983, Pipe & Coles 1995,). Abnormal hemocytes, as seen in 

Bathymodiolus heckerae and B. puteoserpentis, may impair host immune function. The 

extreme infiltration by hemocytes into tissues and blood vessels was comparable to that 

observed in diseased, shallow-water bivalves (reviewed in Lauckner 1983). Although 

hemocyte infiltration can increase with parasitic infection, no correlation was observed 

between parasite infection densities and hemocyte infiltration in B. heckerae or B. 

puteoserpentis. While hemocytes are important in molluscan internal defense, heavy 

hemocyte infiltration can hinder the normal flow of hemolymph, give rise to a reduction 

of host tissues needed for vital functions, and has been suggested as a possible cause of 

mass mortalities (Lauckner 1983, Villalba et al. 1997, Lee et al. 2001).

Prevalences o f parasites

Fifty percent of the parasite types observed in Bathymodiolus heckerae (gill 

rickettsia I & II, gill ciliates, gill “rosettes,” and gut chlamydia) were similar to parasites 

present in mussels {Bathymodiolus sp.) of relatively shallow (550-650 m) hydrocarbon
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seeps (Powell et al. 1999), and all but the gill rosettes are similar to common parasites 

found in coastal-zone mussels (Kim et al. 1998). Parasites resembling gill rosettes occur 

in the shallow-water lucinid clam Loripes lucinalis, which also hosts chemoautotrophic, 

endosymbiotic bacteria in its gills (Johnson & Pennec 1995, Powell et al. 1999). 

Trematodes (Bucephalus-like), which were the most pathogenic parasite observed by 

Powell et al. (1999) and which can be common in intertidal mussels (Lauckner 1983, Kim 

et al. 1998, Montaudaouin et al. 2000), were entirely absent in B . heckerae and B. 

puteoserpentis from the deeper vents and seeps. Trematodes were also absent in limpets 

from deep-sea hydrothermal vents and a deep-sea seep site (Terlizzi pers. comm.). Larval 

trematodes have a high host specificity and use molluscs as their first intermediate hosts 

(see Lauckner 1983, Mouritsen et al. 1997). Transmission and infection by trematodes 

are affected by locality, season and host (Lauckner 1983, Montaudaouin et al. 2000). The 

absence of trematodes in this study could be the result of factors such as depth, 

susceptibility to heavy- metal toxicity in trematode larval stages, or the lack of suitable 

intermediate and definitive hosts.

Polychaetes

Polychaetes are commonly found within the mantle cavities and between the gills 

of bathymodiolin mussels (Van Dover et al. 1999), but their true relationship with the 

host mussel is unknown. Gill flatworms (e.g., Urastoma cyprinae) are also common
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inhabitants of mantle cavities in coastal mussels (Villalba et al. 1997). Flatworms can 

disrupt the structure of gill filaments, cause necrosis of gill tissue, and thereby reduce the 

feeding capacity of the host resulting in loss of condition. From these observations, 

Villalba et al. (1997) concluded that the flatworms were parasitic. Both the polynoid 

(Branchipolynoe seepensis) and the nautliniellid (Laubierus mucronatus) polychaetes 

found in vent and seep mussels cause minor tissue damage to the gills and displacement 

of gill filaments, but there is no strong evidence for a detrimental effect on host condition. 

This is consistent with observations of Fisher et al. (1988), who found that a species of 

commensal polynoid polychaete in mussels at the Rose Garden hydrothermal vent 

(Galapagos Spreading Center; eastern Pacific Ocean) did not cause gross lesions in soft 

tissues of the infected mussels. The polychaetes likely consume bacterial-laden mucus or 

pseudofeces, or free-living bacteria rather than tissues of the host mussel.



SUMMARY

In summary, parasite burdens were greater in mussels at seeps than at vents. In 

some instances, parasites may affect reproductive output and overall health of the mussel 

populations, as is observed in shallow-water bivalve populations. We suggest that 

infection by viral inclusion m  influences population dynamics of Bathymodiolus 

heckerae at the Blake Ridge seep site, possibly causing widespread mortalities in juvenile 

mussels. Mussels from both seep and vent sites suffered from severe hemocytic 

infiltration by abnormal hemocytes. Hemocytic infiltration may be a symptom of disease 

or it may be an independent agent of mortality. How parasitic infections and hemocytic 

conditions affect individual mussels and the invertebrate communities associated with 

deep-sea mussel beds remains to be determined. Therefore, parasitological studies are a 

necessary addition to the more traditional ecological approaches used in order to obtain 

an accurate representation of the factors affecting community structure.
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