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ABSTRACT

The work included in this thesis is in three major parts. First, in order to
study the function of long-range many-atom motions on catalytic efficacy, we
designed and implemented a molecular dynamics simulation used to simulate
the varying degrees of conformational freedom that amino acid residues
exhibit when in different tertiary structures within an enzyme. Second, we
designed the coupling of this molecular dynamics engine to a specialized
genetic algorithm with the goal of “evolving” catalytically more effective
fluctuations by modifying, through the process of selection, recombination, and
mutation consistent with Darwinian evolution, the arrangement of stiff,
intermediate, and loose interactions. Third, the study of this “evolution”--using
various data mining techniques as well as a normal mode approximation--is
presented.

Approximately 24,000 different model enzymes are created for study.
The least “catalytically fit" enzyme manages only 16 chemical events, while
the fittest boasts 253. A normal mode approximation lends insight into how
low frequency modes generate and maintain beneficial conformational
fluctuations. Furthermore, point mutations far from the active-site are shown
to have a significant detrimental impact on catalytic fitness, which reinforces
the belief that effective catalysis requires long-range globally correlated
fluctuations.

vi



EVOLUTION AND ANALYSIS OF A CATALYTICALLY
EFFECTIVE MODEL ENZYME:
The importance of active site orientation and tuned conformational

fluctuations.



Chapter 1

1.1 Introduction

The primary questions driving this work are Why did enzymes evolve to be so
large? and What role does this global structure have on conformational fluctuations?.
Enzymes contain hundreds of amino acid groups folded into a complex three-
dimensional structure. However, the business portion of this protein structure, the
active site, is very small relative to the overall size of the enzyme. The role of the
active site in transition state stabilization is well appreciated as the hallmark for the

® ltis also well appreciated

amazing rate accelerations during enzyme catalysis."*
that large-scale domain motions are important to an enzyme’s ability to capture and
sequester substrate within the active site.**® These large domain structures of the
enzyme are not simply motionless once the substrate is in the active site. In fact, the
roles of atomic scale conformational fluctuations during reaction are not fully
understood and are the focus of recent studies.”®°

Global correlated thermal fluctuations have been proposed to couple with the
reaction coordinate thus improving catalysis.'® More specifically the enzyme-
substrate complex’s three-dimensional structure could have evolved to favor
catalytically beneficial global motions while restricting those motions considered
“useless” or “stray.”’' Additional literature further indicates that global fluctuations
have an influence on catalysis, specifically that residues distal from the active site

12,13
t.

may facilitate the linkage of substrate to catalys In fact, recent results suggest

that motion from long range residues enhances the crossing of the chemical reaction



barrier and further support a dynamical role of the protein even during catalysis.
While the cause of this motion is not identified, we believe that our model may lend
insight into how these correlated motions are generated and maintained.

This work attempts to “tune” these conformation fluctuations in order to evolve
a model enzyme population that grows in catalytic efficacy. Experimental and
computational results have shown that amino acid groups located in different tertiary
domains of a protein exhibit differing degrees of conformational freedom and can be
studied and predicted using molecular dynamics.'® Further experimental studies
have been performed on conformational freedom induced by ligand binding.” We
simulated these varying degrees of freedom using a spatial distribution of “stiff’ and
“loose” domains arranged to form a “toy” enzyme, which is then evaluated using
molecular dynamics. A genetic algorithm then operates on this arrangement of
domains via selection, crossovers, and mutations as it attempts to improve catalytic
function.

Alder and Wainwright created the MD simulation concept nearly fifty years
ago."”” While many different “flavors” of MDs exist today with modifications for
different applications and improvements, the universal concept is simple, using
Newtonian force calculations to predict the motion of objects. Lattice models have
been used in other protein modeling applications including investigations in protein
dynamics and protein folding.'®'®?*?! Computational limitations make a “true”
simulation of an enzyme nearly impossible since time considerations would only allow
the MD to run for only a few nanoseconds of simulated time. Since the chemical
events of interest usually occur on a millisecond timescale the enzyme must be
simplified. By focusing on only the different degrees of conformation freedom

demonstrated by amino acid residues in different tertiary structures, “realistic”
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simulation of large-scale fluctuations is possible. The simpler model allows the MD

simulation to run for much longer time periods allowing the capture of numerous
chemical events. Currently, a single MD run takes approximately 4 minutes with our
computational capability. Because of this severe bottleneck, running all possible
combinations of “stiff” and “loose” domains would take approximately 3 million days.
For this reason the MD must be run with some form of optimization method, in this
case, a custom genetic algorithm.

The genetic algorithm (GA) used in this work was designed specifically for the
project and possessed some unique modifications. These modifications were
designed to improve and even maximize the efficiency of the GA. GAs attempt to
simulate evolution by selecting solutions with a probability based on their relative
fitness and act on those solutions in an attempt to create better solutions.?> “GAs are
stochastic methods which enforce the survival of the fittest paradigm of evolution
along with the genetic propagation of characteristics.”*® This method of optimization
has emerged from being just a concept to a very useful tool to computational
chemists for optimization and molecular design.??> While quantification of our GA’s
efficiency would be difficult, it was able to create a 15-fold increase in fitness within
12,000 generations. Since two individuals are created each generation this is a total
population of 24,000 individuals generated from over a billion possible unique
individuals allowed by the size of the system. This means the GA created only
0.002% of the possible individuals to find what we now believe to be a potential

maximum and minimum fitness for the system.



For the purpose of better understanding the fluctuations present in the
enzyme population a normal mode analysis was created. The anharmonic and
distance related properties of the chemical barrier present in the active site of the
model force this analysis to exist only as an approximation. Even with this limitation,
however, the analysis gave us extremely useful insights into what types of

fluctuations are present and also how they are generated and maintained.
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Molecular Dynamics



Chapter 2
Molecular Dynamics Simulations

2.1 Molecular Dynamics Engine Design

Our Molecular Dynamics simulation is a simple lattice based model, allowing
control of all variables in the system. The three dimensional layout of the lattice is
shown in figure1. The model enzyme consists of 168 thermally fluctuating subunits.
These thermally fluctuating subunits are surrounded a stationary shell of residues,
called phantoms (P), which serve to maintain the three dimensional shape of the
enzyme. Those labeled “N” in figure 1 are known as neutrals since the genetic
algorithm does not modify them. The genetic algorithm does, however, operate on
those subunits known as dynamics labeled “D” in figure 1, as well as the Catalytic
and Substrate residues labeled “C” and “S” respectively. Each “amino acid” in the
system has its own unique properties, including block number, global position, local
position (scaled by equilibrium amino distance), velocity, type (either stiff or loose),
and finally category (either Phantom (P -- stationary), Neutral (N), Dynamic (D -- type
can change), Catalytic(C ) or Substrate(S) ). The MD also requires information about
the different spring properties (governed by the amino acid type); these vary from
loose, medium, to stiff. Thus two stiff domains interacting have a stiff spring between
them while two loose domains contain a loose spring. Interactions between a stiff
domain and a loose domain would utilize a medium spring. Run length and time step
length must also be provided.

The molecular dynamics engine, hereafter referred to as MD, has several “modes”

requiring additional information or producing additional output:



1) Detailed Mode:
a. Detailed information including position, velocity, temperature, and
energies are outputted at defined intervals along the run length.
2) RMS Mode:
a. Root mean square values for all non-phantom blocks are written to a file.
3) Enzyme Mode:
a. Catalytic (C) and Substrate (S) residues have a unigque non-spring
interaction between them taking the form of a potential energy barrier
(slope and size must be provided).
b. Also a fitness value is provided at the end of the run consisting of the

number of times C and S overcome the potential energy barrier.

Once all information is provided to the MD it must first be run for an

equilibration run in order to allow the initial displacements to equilibrate into a

Gaussian distribution of velocities and stable ‘target’ temperature. These new

velocities are the provided for the equilibrated run and the MD is run for a much

longer length. Current MD settings are as follows:

Time step: 1e-14s

Equilibration run; 1e-11s

Equilibrated run: 1.3e-09s

Target Temperature 298K

Equilibrium spring length: 1.623e-10m (carbon-carbon single bond)
Mass of amino acid: 1.9943e-026 kg (single carbon atom)
Locse spring constant: 2 Jim?

Medium spring constant: 25 Jim?

Stiff spring constant: 50 J/m?

Number of dimensions: 3D

Size of system: 450 amino acids

Number of Dynamics: 30

Active site(C&S) location: Center

Barrier Force; 2e-10 J/A

Outer Barrier Force Range:

Inner Barrier Force Range:

1.0 times equilibrium distance
0.7 times equilibrium distance



Figure 1: Three Dimensional Layout of MD simulation
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2.2 Molecular Dynamic Engine Tests and Stability

Extensive preliminary tests were conducted to make sure all calculations were
correct and the MD was performing as expected. Additional stability tests were
performed to support this conclusion. First we made sure that the time step was
sufficiently small enough to allow adequate capture of motion. Using the largest k
value contained in the system, equation 1 yields the characteristic frequency of the
system. |nverting this value gave us the characteristic time step of the system.
Dividing this characteristic time step by ten creates a molecular dynamics time step

capable of capturing system motion.

_1 |k
2 \m
Equation 1

Next the length of the equilibration run must be checked. Once the system
has reached equilibrium the potential energy of the system will have stabilized in its
normal oscillatory behavior. Figure 2 shows the stabilization of the potential energy
with the passage of time. The system appears to be equilibrated after around 100
steps equaling 5e-12 seconds, so our equilibration run length of 1e-11 seconds is

adequate to allow for equilibration.
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Figure 2: Equilibration of potential energy with time for the stiffest and loosest individuals.

The MD should also be stable to the initial configuration of displacements
used to create motion in the system. Three individuals were run ten times with
random initial positions for each amino acid and the resulting range of ‘hits’ with an
average error of seven percent was well within our goal of ten percent error as shown

in figure 3.
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Finally the rate at which the chemical events occur should also be stable
across the entire length of the run. Figure 4 shows the two homogenous individuals
(all stiff and all loose), the best, and the worse individual’'s chemical events divided
into ten bins of time. These results demonstrate that chemical events occur at regular
intervals for all four individuals and the “hit stability” was actually surprisingly high.
Also a histogram (figure 5) of an atom’s positions through time yields a bell curve--

indicating that the atom’s average position is the center of the block--as expected.
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Chapter 3
Genetic Algorithm

3.1 Genetic Algorithm Design

Every Genetic Algorithm, abbreviated GA from hence forth, consists of three
basic steps. First the “parents” must be selected based on fithess, then they are
mated via sequence crossover and possible mutation, and finally any unique offspring
must be evaluated for fithess (number of times C and S surmount the potential
energy barrier) and added to the population. “In GAs natural selection occurs by
choosing solutions with a probability proportional to their relative fitness values by
some scheme.”?* The methods for doing this are almost as infinite as the imagination
can allow, however, we believed that certain methods could lead to a more “efficient”
GA.

For our purposes we used a 30 bit ‘binary’ GA, meaning that each individual is
characterized by a sequence of 30 binary digits. With this sequence size the
potential number of possible individuals is very large (230 = 1,073,741,823)
reinforcing the need for efficiency. For increased efficiency the following initial
population was used; containing all the possible ‘traits’ at every location
(heterogenous individuals) as well as the two extremes (homogenous sequences).

Heterogeneous individuai #1:  010101010101010101010101010101
Heterogeneous individual #2:  101010101010101010101010101010
Homogeneous individual #3: 000000000000000000000000000000
Homogeneous individual #4: MMMt 1111111111111

First “potential parents” must be selected from the initial population. For our

purposes we used tournament selection where a specified number (i.e. 10) of
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individuals are randomly selected be members of a “potential parent population.”

Of these randomly chosen members the fittest two become the “mating” parents.
This method avoids the affects of a few large fithess members towards those of
simply ‘above average’ fitness. This scheme is also more of a static selection
procedure versus the other well-known “roulette wheel scheme” resulting in a more
constant probability of selection across multiple cycles. The tournament selection
method seems the best for our needs since it decreases the likelihood that the same
highly fit parents will be continually selected each cycle, thus preventing the chance
that the GA will settle into a false optimum.

Next, the “mating” parent’s sequences are crossed, creating two new
“offspring” sequences. During each mating, existing parts or sequences are crossed
to create new and possibly fitter individuals. The mating of parents presents many
possible means to increase GA efficiency. We used a modified single point crossover
driven by catalytic coefficients. Crossovers occur at only one single point and the
location is biased by the catalytic coefficients assigned to each site. If a crossover at
a particular site results in a large change in fitness then the coefficient was increased
and vice versa if only a small fitness change occurs. The higher the catalytic
coefficient of a site the greater the chance it would be selected as the crossover site.
Catalytic coefficient driven (single point) crossovers allowed for small modifications to
the parent individuals at catalytically important sites. These small modifications are
more desirable than larger multiple site changes since our simple molecular dynamics
engine design is very sensitive to even small system changes. Thus small
modifications allowed the GA to ‘move’ smoothly though the fithess gradient. These
small changes did, however, increase the probability for the GA to settle into local

optima. Various techniques involving how the catalytic factors are updated as well as



17
how the crossover site was selected attempted to minimize the changes of a false

optimum. Mutations at random locations were also used in order to allow the
introduction of “traits” not present in the initial population.

Step three is to calculate the fitness of the new sequences (run the MD) and
add the sequences to the general population if they are unique (i.e. not previously
generated). Finally steps 1, 2, and 3 are simply repeated until the desired fithess or

final population is achieved.
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3.2 Genetic Algorithm and Molecular Dynamics Coupling

The genetic algorithm operates only on the binary sequence of numbers,
which is interpreted by the MD as different types of amino acids. A ‘0’ in the
sequence represents a stiff domain while a ‘1’ represents a loose domain. Before
any MD can be run the input files required by it must be created. Thus the GA first
creates the files and inserts the dynamic sequence of amino acids into to the three-
dimensional structure of the lattice layout. Since every ‘mock’ enzyme is unique to its
dynamic sequence it is thereby identified by that binary sum of the binary dynamic
sequence, hereafter, identified as the enzyme ID.

Using this unique identifier a file system for the GA-MD coupling is created.
For each individual generated by the GA, a folder is created named by its enzyme ID
number. The GA-MD coupling then places the input and initialization files required by
the MD inside this folder. For clarity all files used or created by the MD use a prefix of
a lowercase ‘md’ and suffix of the enzyme id number and similarly those used or
created by the GA use a lowercase ‘ga’ prefix. So, for example
“mdEquilibratedRuninfo-1073741823.txt” contains run info for the individual with all
loose domains and “gaMasterLog.txt” contains log information pertinent to the GA. A
detailed log of the GA was created so that if the GA was interrupted at any point in
the run it could be restarted without loss of information. While the GA is a stochastic
method and need not necessarily be deterministic, the lost of information from time
intensive MD runs would be detrimental. For further time optimization this coupling
was designed to call and run two MDs at a single time in order to make most efficient

use of our dual Intel Xeon processor system.
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3.3 Genetic Algorithm Results

Keeping track of the maximum, average, and minimum fitness for the
population through time serves to quantify the genetic algorithm’s evolutionary
progress. The GA by constantly selecting for fitter individuals drives the population
towards increased fitness. Also by selecting for the less fit individuals the GA can be
driven backwards to obtain a potentially least fit individual. These two types of GA
are hereafter revered to as “forward” and “reverse” GAs respectively. The

performance of these two optimization programs is shown in figure 6.

300
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Generation

Figure 6: Performance of the GAs
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Not shown in figure 6 is the minimum fitness for the forward GA or the

maximum fitness for the reverse GA, however, it is important to note that the forward
GA never created an individual less fit than the least fit individual present in the initial
population and contrarily the reverse GA never found a more fit individual. This is
powerful demonstration of the efficiency of the GA, showing its ability to move
effectively through the “fitness gradient” and not waste computational time by creating

very undesirable individuals.
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Chapter 4

Analysis and Normal Mode Approximation

4.1 Early Analysis

Early analysis of catalytic efficiency consisted of using cross-correlation
calculations, Fourier transforms, parametric plots, and even graphical movies of the
enzyme’s motion.

Cross-correlation yielded some interesting results and eventually we could
successfully differentiate a bad enzyme (<50 hits) consisting of mostly loose domains
from a good enzyme (>200 hits) consisting of mostly stiff domains. We believed that
the symmetry was broken only in the x direction; a situation caused by replacing the
spring (in the x direction) between the catalytic and substrate site with by a potential
energy barrier. Using this assumption we analyzed in detail uncoupled velocities in
the x direction, hoping to see an increase of anti-correlated velocities between the
catalytic (C) and substrate residues (S) demonstrating an increased probability of a

‘catalytic event’ followed by the subsequent necessary outward ‘breathing’ motion.

anti-correlated motion correlated motion

However, trying to perceive a quantitative difference between an enzyme with
average catalytic efficiency (~100 hits) and a very good enzyme proved near

impossible.
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Fourier transform showed that, unsurprisingly, enzymes with more stiff

domains operated at higher frequencies than those will more loose domains.

Enzyme efficiency, however, seems to be a result of the geometric placement of
different domains since an enzyme with 19 stiff domains could be as mediocre as 136
hits or as good 253 hits. Thus a mediocre and good enzyme, possessing similar
frequencies, would thus produce very similar frequency spectrums despite the large
difference in catalytic efficacy. We needed to gain more insight into characteristics

that existed within the enzyme population.
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4.2 Extensive Data Mining

This followed the early analysis in order give us some direction in our search
instead of constant probes in the dark. Three main data mining programs were
designed, the first was created to give us a plot of average number of hits vs. the

number of stiff domains (figure 7).
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Figure 7: Average catalytic fitness as a function of the number of 0-subunits.

This plot told us several very important things, primarily, that the increase in catalytic
efficacy in not just a factor of increasing the number of stiff domains and
consequentially increasing the frequency but instead depends on an arrangement of
domains creating beneficial global fluctuations. Secondarily, it provided a
visualization that optimum regions for both poor and good enzymes exists away from
the two extremes of ali stiff and all loose as well as not simply a 50/50 ratio of the two.

Furthermore, the graph also showed us that there existed a large range in the
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number of stiff domains that can produce either a very good or very bad enzymatic

activity. This served to reinforce the conclusion that it is a combination of geometry,
fluctuations, and frequency that is required for optimum results.

The next program was designed to provide insight into an unexpected
phenomenon that had occurred. The introduction of a barrier force acting only as
repulsive force (not containing the opposing restorative force present in a spring) had
resulted in a stretching of the average C-S distance. Data showed that these values
now ranged from 1.4 to 1.2 times the equilibrium distance rather than the expected
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Figure 8: Scaled C-S distance as a function of the number of 0-subunits.

It is apparent from figure 8 that there is a region (>16 stiff) where the distance
remains the same and once you get below this approximate 50/50 ratio the enzyme

becomes loose enough to allow ‘slack’ from the potential energy barrier to be taken
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up by the dynamic blocks. Even mostly stiff individuals still have an average

scaled C-S distance of 1.2, the remaining 0.2 of ‘slack’ that exists even with all stiff
domains was seen to be absorbed by the weak perimeter interactions of the
phantoms and normals. This is an unexpected result from designing the perimeter
forces to be very weak in order to simulate the large external ‘thermal’ fluctuations
present in a real protein. Combining the knowledge obtained from figure 7 & 8 we
realized the two plateaus in the first plot correspond to the fairly stable distance
regions of the second plot.

The next question to be answered was How does this C-S distance relates to
the number of catalytic events?. If a simple decrease in distance were allowing for
the increase in catalytic efficacy this would be a fairly uninteresting result. Itis
important to first mention that, due to the chaotic nature of such a simple molecular
dynamics system and our known error of around 7% in hit stability, it seemed
reasonable to “bin” those individuals with similar fitness values together and average
data over that “bin.” For the remainder of this work all charts showing a data set in
relation to the number of chemical events, individuals will be separated into bins of 5
hits. With this in consideration, the results of data-mining program are presented in

figure 9, which shows the relationship between C-S distance and catalytic fithess.
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Interestingly after around 120 hits the average distance between the catalytic and

substrate sites seemed to stabilize and level off. Something else must be occurring

to allow for the continued increase in the number of chemical events with constant

distance.

Another result from the data mining results was the realization that there were

actually four different ‘categories’ of enzymes existing in our genetic algorithms.

Type 1 (best):

Good Correlation :: Good C-S Distance

Type 2:

Poor Correlation :: Good C-S Distance

Type 3:

Good Correlation :: Poor C-S Distance

Type 4 (worst):

Poor Correlation :: Poor C-S Distance

We now know that differences between these different types exist, but the detection

of this ‘good correlation’ had still evaded us.
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4.3.1 Design of Normal Mode Approximation

Since thermal noise made any analysis of position or velocity signals nearly
impossible, we decided to attempt a normal mode analysis. Any normal mode
analysis would have to exist only as an approximation for several reasons, the
primary being the anharmonic nature of the potential energy barrier between the C
and S residues as well as its “on” and “off” nature (i.e. it is only active between the
equilibrium distance and 0.7 times the equilibrium distance). The normal mode
analysis would consist of creating a normal mode matrix, which would be used to find
the eigenvalues and corresponding eigenvectors for each system. The first step in
this process is to populate the normal mode matrix with the proper values. An entry
in the matrix consists of the second derivative of the potential energy equation
evaluated at equilibrium, depending on the atom of reference, divided by the mass of

the atom. To explain, consider a simple three-dimensional example.

Figure 10: Geometry of a simple normal mode example. Atoms 5 and 6 extend out from the
page.

Each atom is represented by a sphere with a corresponding number ranging from 0 to
6 and each potential (spring) is labeled from k1 to k6. The Potential Energy (V) of

this system would be represented by the following equation.
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6

V=2 E LG~ %) + (3, — yo) + (2, — 2)} 2 ~ 1, P

i=1

Equation 2: Potential energy of simple system.
With /e, representing the equilibrium length of the spring between atom i and atom 0.

In order to allow the second derivative of this equation to be time independent, a

transformation is required, so we’ll let the following be true;

X, = X, = X,
!

Yi=Yi™ Vi
z!= 2z — 2z

i i ie
Equation 3: Transformation to include displacement from equilibrium positions.

After substitution the potential energy equation looks like the following.

[
1 ! ’ 7 l
V=E E ki[{(‘xi+xie-x0_x0e)2+(yi+yie_yO_yOe)z +(Zi +Zie_20_209)2}2 _qu]z

i=l
Equation 4: Equation 2 after substitution of terms from equation 3.

Combing Xie — Xoe into a dxe; term (equilibrium distance in the x direction) and the

same substitution for y and z allows further simplification.

6

1
V=% E KLY, = %o + dxe,)? + (] = yy +dve,)? +(z) — zo +dze,)?}2 — 1, ]

i=l
Equation 5: simplified version of equation 4.
The second derivatives, after substituting 0 for the deviation from equilibrium terms

and either 0, /o4, or /4 for the equilibrium distance terms, are simply a combination of

k values for the self terms and a single negative k value for the mixed terms. The
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resulting matrix of entries would be a (d*n)X{(d*n) matrix (with n being the number

of atoms (i.e. 7) and d being the number of dimensions (i.e. 3) thus a 27x27 matrix).

x0 | yO | 20 | x1 | yl zl x2 y2 | 22 | x3 | y3 | 23 | x4 | y4 | 24 | x5 | y5 | 25 | x6 | y6 | 26
x0jk2+k4 0 0 0 0 0 k2 0 0 0 0 0 | k4] 0O 0 0 0 0 0 0 0
yo| 0 |kI+k3| 0O 0 | klI|] O 0 0 0 0 |-k3] 0 0 0 0 0 0 0 0 0 0
2] 0 0 |k5+k6] © 0 0 0 0 0 0 0 0 0 0 0 0 0 -k5 0 0 -kS
xi| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ylf 0 | -kl] 0O 0 kl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zl| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2| k2| 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y2| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y3] 0 F-k3| O 0 0 0 0 0 0 0 k3 0 0 0 4 0 0 0 0 0 0
3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x4] k4| 0 0 0 0 0 0 0 0 0 0 0 | k4 0 0 0 0 0 0 0 0
y4f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x5] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y5| © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25} 0 0 | ks| o 0 0 0 0 0 0 0 0 0 0 0 0 0 | kS 0 0 0
x6] 0 0 0 0 0 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y6| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6] 0 0} k6| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | k6

Table 1: Hessian matrix for simple system shown in figure 10.

It is important to remember that this is only a seven-atom system while our system
contains 450 atoms, with 168 of them being free to move. The resulting normal mode
matrix is considerably more complicated having dimensions of 504X504. Also
important to note is that all atoms were connected directly by a single spring in the
simple example, however, in the larger system there will be many atoms, which are
not directly connected, thus their second derivatives will automatically be zero.
Furthermore, since the barrier force present between C and S can not be simulated
via normal mode, the §V, s« (second derivative of the potential energy with respect to
C and S in the x dimension) term is set to zero. The justification for this is that on
average C and S are outside the effective range of this barrier so when C and S are

at their average positions there is zero potential between them.
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4.3.2 Design of Normal Mode Analysis Program

Performing a normal mode analysis on each individual in a population of over
24,000 by hand would simply be impossible. For this reason a program was
designed to create the Hessian matrix for each individual in the GA'’s population,
gather statistics, and report results for the entire population. In order to know
anything useful about the motion of the system the eigenvalues and corresponding
eigenvectbrs must be generated from the Hessian matrix. Since loading each
individual into a math program such as Matlab or Mathematica would also be so time
intensive as to make it impossible, the normal mode program must be linked with a
scientific library capable of calculating the eigenvalues and eigenvectors. We chose
the GNU Scientific Library or GSL (version 1.2) available from the GNU website

(http://www.gnu.org/software/gsl/). “The GNU Scientific Library (GSL) is a numerical

library for C and C++ programmers. It is free software under the GNU General Public

License.”®

The first step in this analysis was to create the Hessian matrix for every
individual in the population. The geometry and spring constants were generated by
loading the “mdUnequilibrated-*.txt” file for each individual. Using the symmetry of
the Hessian matrix to our advantage we divided the matrix entries into three classes.

e Class 1: Second derivativés of self terms for example OV, 0 (second derivative
with respect to the 0™ atom in the x dimension). This position’s value is simply the
sum of all springs in the dimension being considered. So for OV, 4 all the spring
in the x direction would be summed.

e Class 2: Second derivatives for mixed terms for example OV,o,1 (second
derivative with respect to the 0" and 1% atom in the x dimension). This position’s

value is simply the negative value of the spring (in the dimension of reference)
between the two atoms. C and S are a special case and the mixed term


http://www.qnu.org/software/qsl/
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containing these two blocks in the x direction is set to zero (for explanation see

normal mode approximation design section).
e Class 3: Second derivates for mixed terms for atoms not directly connected by a
spring. This position’s value is automatically set to zero.
Using these classes as a guideline each entry in the matrix is created and stored in a

two dimensional matrix.

Eigenvalues and eigenvectors are obtained for each individual from their
respective matrices. Since each matrix is 504x504 there will be 504 eigenvalues
each with an corresponding eigenvector containing 504 components. The
eigenvalues are stored in a one-dimensional array and the eigenvectors in a two-
dimensional array with columns represent which eigenvalues they correspond to and
each row representing each atoms x, y, and z components. For the current system
the x component of the catalytic residue (C) and the substrate residue (S) are
contained in rows 249 and 252 respectively. Vector components for C and S are then
analyzed for all eigenvalues. “Good” and “bad” eigenvectors are stored for all
frequencies as well as for only the low frequencies. Low frequencies are defined as
being the lower half of the frequency spectrum for an average individual. “Good”
eigenvectors are those where C and S are anti-correlated or when one (C or S) is
moving while the other is stationary. “Bad” eigenvectors are those where C and S are

moving in a correlated fashion.
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This program also maintains other important statistics for the population.

For each individual the following values are calculated and stored.

a)
b)
c)
d)
e)
f)
9)

Number of catalytic events.

Number of good and bad eigenvectors for low frequencies.
Number of good and bad eigenvectors for all frequencies.
Average C-S distance.

Number of stiff domains.

Rms value for C residue.

Rms value for S residue.

This allows the normal mode analysis to serve as an overall analysis and data-mining

program for any important data.
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4.3.2 Normal Mode Analysis Results

Our results show that the number of beneficial frequencies—“good”
correlation—increases with catalytic fitness. Specifically, this increase in beneficial
frequencies occurs in the lower frequencies, i.e. those below the dominant frequency.

To clarify, there are 504 eigenvalues each having a corresponding
eigenvector. When looking at the Cx and Sx components of the eigenvectors only a
very few have significant components. The number of eigenvectors with Cx and Sx
components above our threshold (0.00001) remains fairly constant at around 8
vectors from a possible 504. This seemed at first to be somewhat uninteresting,
however, realizing that cooperative motion is very often present in low frequencies
while random uncoupled motion or “thermal noise” are naturally high frequency, we
decided to isolate out low frequency vectors. Once we looked at the number of good
correlated vectors present only in low frequencies we notice that there was an
increase in the number of these vectors, however, a slightly inconsistent fashion as

seen in figure 11.
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Figure 11: Relationship between the number of beneficial vectors found in low frequencies to
catalytic fitness.

While the average number of beneficial eigenvectors present in all frequencies is
constant across the entire population, this is not true for specific individuals or even
small groups. This led us to believe that normalization was necessary. For any
particular group of individuals there are a number of eigenvectors with C and S
components (good or bad) above threshold as well as the number of beneficial low
frequency eigenvectors. Dividing this number of beneficial low frequency vectors by
the number of total vectors above threshold provides a “catalytic score” representing
a percent optimum value.

When plotting this catalytic score in figure 12, the relationship between the

number of catalytic events and the number of beneficial vectors in low frequencies is



much smoother than the pre-normalization plot (figure 11). For statistical reasons

any fitness bins containing less than 5 individuals are removed.
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Figure 12: Relation of "catalytic score" to catalytic fitness.
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Returning to the original four categories of enzymes discussed in the Data

Mining section of chapter four, we can now better understand these four categories of

enzymes. The following table shows examples of enzymes that fit the category

requirements.

Type 1 (best): 253 Hits Type 2: 112 Hits

Good Correlation :: Good C-S Distance Poor Correlation :: Good C-S Distance

Enzyme Id: 10711652 Enzyme Id: 1024
Catalytic Score: 0.88 or 88% Catalytic Score: 0.08 or 8%
Scaled C-S Distance: 1.27 Scaled C-S Distance: 1.25

Type 3: 92 Hits Type 4 (worst): 16 Hits

Good Correlation :: Poor C-S Distance Poor Correlation :: Poor C-S Distance

Enzyme Id: 1073724415 Enzyme Id: 1018998707
Catalytic Score: 0.92 or 92% Catalytic Score: 0.25 or 25%
Scaled C-S Distance: 1.45 Scaled C-S Distance: 1.45
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Chapter 5

5.1 Discussion and Future Work

Conformation fluctuations (beneficial low frequencies) and active site
orientation (catalytic distance) are key factors to evolving a high probability of
chemical events and thus an effective catalyst. These beneficial frequencies and the
distance between the catalyst and substrate sub-units are a function of the number
and distribution of stiff, intermediate, and loose domains present in the model
enzyme. Once the optimum active site orientation or distance is established
evolution acts to increase the number of low frequency beneficial modes (i.e. modes
where catalyst and substrate have an increased probability of overcoming the
potential energy barrier between them). Furthermore, preliminary results show that
single point mutations on residues distal from the active site have a profound impact
on catalytic fitness, further supporting the belief that these dynamics are a global
feature. Future work will entail detailed investigation into how point mutations

influence catalytic efficacy and conformation fluctuations.
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