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ABSTRACT

T h e  w ork included in th is th e s is  is in th re e  m ajor p a rts . First, in o rd e r to  
study  th e  function of long -range  m any-a tom  m otions on  cata ly tic  efficacy, w e 
d e s ig n e d  an d  im p lem en ted  a  m o lecu lar d y n am ics  sim ulation  u se d  to  s im u la te  
th e  varying d e g re e s  of conform ational freed o m  th a t am in o  acid  re s id u e s  
exhibit w h en  in d ifferent tertiary  s tru c tu re s  within an  en zy m e . S e c o n d , w e 
d e s ig n e d  th e  coupling of th is m o lecu lar d y n am ics  e n g in e  to  a  sp ec ia lized  
g en e tic  algorithm  with th e  goal of “evolving” catalytically  m o re  effective 
fluctuations by m odifying, th rough  th e  p ro c e ss  of se lec tio n , recom bination , and  
m utation c o n s is te n t with Darw inian evolution, th e  a rra n g e m e n t of stiff, 
in te rm ed ia te , an d  lo o se  in teractions. Third, th e  s tu d y  of th is  “evo lu tion”--using 
various d a ta  m ining te c h n iq u e s  a s  well a s  a  norm al m o d e  approx im ation--is 
p re se n te d .

A pproxim ately  2 4 ,0 0 0  different m odel e n z y m e s  a re  c re a te d  for study. 
T h e  le a s t “catalytically  fit” en zy m e  m a n a g e s  only 16 chem ica l e v en ts , while 
th e  fittest b o a s ts  253 . A norm al m o d e  approx im ation  len d s  insight into how 
low freq u en cy  m o d e s  g e n e ra te  and  m ain tain  beneficia l conform ational 
fluctuations. F urtherm ore , point m u ta tions fa r from  th e  ac tiv e-s ite  a re  show n 
to  h av e  a  significant de trim en ta l im pact on cataly tic  fitn ess , w hich re in fo rces 
th e  belief th a t effective ca ta ly sis  req u ire s  lo n g -ran g e  globally co rre la ted  
fluctuations.
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Chapter 1

1.1 Introduction

The primary questions driving this work are Why did enzym es evolve to be so 

large? and W hat role does this global structure have on conformational fluctuations?. 

Enzymes contain hundreds of amino acid groups folded into a complex three- 

dimensional structure. However, the business portion of this protein structure, the 

active site, is very small relative to the overall size of the enzym e. The role of the 

active site in transition s ta te  stabilization is well appreciated as  the hallmark for the 

amazing rate accelerations during enzym e catalysis.1,2,3 It is also well appreciated 

that large-scale domain motions are important to an enzym e’s  ability to capture and 

seq uester substrate  within the active site.4,5,6 These large domain structures of the 

enzym e are not simply motionless once the substrate is in the active site. In fact, the 

roles of atomic scale conformational fluctuations during reaction are not fully 

understood and are the focus of recent studies.7,8,9

Global correlated thermal fluctuations have been proposed to couple with the 

reaction coordinate thus improving catalysis.10 More specifically the enzym e- 

substrate complex’s three-dim ensional structure could have evolved to favor 

catalytically beneficial global motions while restricting those motions considered 

“useless” or “stray.”11 Additional literature further indicates that global fluctuations 

have an influence on catalysis, specifically that residues distal from the active site 

may facilitate the linkage of substrate  to catalyst.12,13 In fact, recent results suggest 

that motion from long range residues enhances the crossing of the chemical reaction
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barrier and further support a dynamical role of the protein even during catalysis.14 

While the cau se  of this motion is not identified, we believe that our model may lend 

insight into how th ese  correlated motions are generated and maintained.

This work attem pts to “tune” th ese  conformation fluctuations in order to evolve 

a model enzym e population that grows in catalytic efficacy. Experimental and 

computational results have shown that amino acid groups located in different tertiary 

dom ains of a protein exhibit differing deg rees of conformational freedom and can be 

studied and predicted using molecular dynam ics.15 Further experimental studies 

have been performed on conformational freedom induced by ligand binding.16 W e 

simulated th ese  varying degrees of freedom using a spatial distribution of “stiff’ and 

“loose” dom ains arranged to form a “toy” enzyme, which is then evaluated using 

molecular dynamics. A genetic algorithm then operates on this arrangem ent of 

dom ains via selection, crossovers, and mutations a s  it attem pts to improve catalytic 

function.

Alder and Wainwright created the MD simulation concept nearly fifty years 

ago .17 While many different “flavors” of MDs exist today with modifications for 

different applications and improvements, the universal concept is simple, using 

Newtonian force calculations to predict the motion of objects. Lattice models have 

been used in other protein modeling applications including investigations in protein 

dynamics and protein folding.18,19,20,21 Computational limitations make a “true” 

simulation of an enzym e nearly impossible since time considerations would only allow 

the MD to run for only a few nanoseconds of simulated time. S ince the chemical 

events of interest usually occur on a millisecond tim escale the enzym e must be 

simplified. By focusing on only the different degrees of conformation freedom 

dem onstrated by amino acid residues in different tertiary structures, “realistic”
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simulation of large-scale fluctuations is possible. The simpler model allows the MD 

simulation to run for much longer time periods allowing the capture of num erous 

chemical events. Currently, a single MD run takes approximately 4 minutes with our 

computational capability. B ecause of this severe bottleneck, running all possible 

combinations of “stiff’ and “loose” domains would take approximately 3 million days. 

For this reason the MD must be run with som e form of optimization method, in this 

case, a custom genetic algorithm.

The genetic algorithm (GA) used in this work w as designed specifically for the 

project and p o ssessed  som e unique modifications. T hese modifications were 

designed to improve and even maximize the efficiency of the GA. GAs attem pt to 

simulate evolution by selecting solutions with a probability based  on their relative 

fitness and act on those solutions in an attempt to create better so lu tions22 “GAs are 

stochastic m ethods which enforce the survival of the fittest paradigm of evolution 

along with the genetic propagation of characteristics.”22 This method of optimization 

has em erged from being just a concept to a very useful tool to computational 

chem ists for optimization and molecular design.22 While quantification of our GA’s 

efficiency would be difficult, it w as able to create a 15-fold increase in fitness within

12,000 generations. Since two individuals are created each  generation this is a total 

population of 24,000 individuals generated  from over a billion possible unique 

individuals allowed by the size of the system. This m eans the GA created only 

0.002% of the possible individuals to find what we now believe to be a potential 

maximum and minimum fitness for the system.
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For the purpose of better understanding the fluctuations p resent in the 

enzym e population a normal mode analysis w as created. The anharm onic and 

distance related properties of the chemical barrier present in the active site of the 

model force this analysis to exist only as an approximation. Even with this limitation, 

however, the analysis gave us extremely useful insights into what types of 

fluctuations are present and also how they are generated  and maintained.
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Part I 

Molecular Dynamics
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Chapter 2 

Molecular Dynamics Simulations

2.1 Molecular Dynamics Engine Design

Our Molecular Dynamics simulation is a simple lattice based  model, allowing 

control of all variables in the system . The three dimensional layout of the lattice is 

shown in f ig u re l The model enzym e consists of 168 thermally fluctuating subunits. 

T hese thermally fluctuating subunits are surrounded a stationary shell of residues, 

called phantom s (P), which serve to maintain the three dimensional sh ap e  of the 

enzyme. Those labeled “N” in figure 1 are known as  neutrals since the genetic 

algorithm does not modify them. The genetic algorithm does, however, operate on 

those subunits known a s  dynamics labeled “D” in figure 1, a s  well a s  the Catalytic 

and Substrate residues labeled “C” and “S ” respectively. Each “amino acid” in the 

system  has its own unique properties, including block number, global position, local 

position (scaled by equilibrium amino distance), velocity, type (either stiff or loose), 

and finally category (either Phantom (P -- stationary), Neutral (N), Dynamic (D -- type 

can change), Catalytic(C ) or S u b stra te (S )). The MD also requires information about 

the different spring properties (governed by the amino acid type); th ese  vary from 

loose, medium, to stiff. Thus two stiff domains interacting have a stiff spring between 

them while two loose dom ains contain a loose spring. Interactions betw een a stiff 

domain and a loose domain would utilize a medium spring. Run length and time step 

length must also be provided.

The molecular dynamics engine, hereafter referred to a s  MD, has several “m odes” 

requiring additional information or producing additional output:
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1) Detailed Mode:

a. Detailed information including position, velocity, temperature, and 

energies are outputted at defined intervals along the run length.

2) RMS Mode:

a. Root mean square values for all non-phantom blocks are written to a file.

3) Enzyme Mode:

a. Catalytic (C) and Substrate (S) residues have a unique non-spring 

interaction between them taking the form of a potential energy barrier 

(slope and size must be provided).

b. Also a fitness value is provided at the end of the run consisting of the 

number of times C and S overcome the potential energy barrier.

O nce all information is provided to the MD it must first be run for an 

equilibration run in order to allow the initial displacem ents to equilibrate into a 

G aussian distribution of velocities and stable ‘target’ tem perature. T hese  new 

velocities are the provided for the equilibrated run and the MD is run for a much 

longer length. Current MD settings are as  follows:

Time step:
Equilibration run: 
Equilibrated run:
Target Temperature 
Equilibrium spring length: 
Mass of amino acid:
Loose spring constant: 
Medium spring constant: 
Stiff spring constant: 
Number of dimensions: 
Size of system:
Number of Dynamics: 
Active site(C&S) location: 
Barrier Force:
Outer Barrier Force Range: 
Inner Barrier Force Range:

1e-14s
1e-11s
1.3e-09s
298K
1.523e-10m (carbon-carbon single bond) 
1.9943e-026 kg (single carbon atom)
2 J/m2 
25 J/m2 
50 J/m2 
3D
450 amino acids 
30
Center 
2e-10 J/A
1.0 times equilibrium distance 
0.7 times equilibrium distance
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2.2 Molecular Dynamic Engine Tests and Stability

Extensive preliminary tests  were conducted to m ake sure  all calculations were 

correct and the MD w as performing as  expected. Additional stability te sts  were 

performed to support this conclusion. First we m ade sure that the time step  w as 

sufficiently small enough to allow adequate  capture of motion. Using the largest k 

value contained in the system , equation 1 yields the characteristic frequency of the 

system . Inverting this value gave us the characteristic time step  of the system . 

Dividing this characteristic time step  by ten creates a molecular dynam ics time step 

capable of capturing system  motion.

Next the length of the equilibration run must be checked. O nce the system  

has reached equilibrium the potential energy of the system  will have stabilized in its 

normal oscillatory behavior. Figure 2 shows the stabilization of the potential energy 

with the p a ssag e  of time. The system  appears to be equilibrated after around 100 

steps equaling 5e-12 seconds, so our equilibration run length of 1e-11 seconds is 

adequate  to allow for equilibration.

Equation 1
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Figure 2: Equilibration of potential energy with time for the stiffest and loosest individuals.

The MD should also be stable to the initial configuration of displacem ents 

used to create  motion in the system . Three individuals w ere run ten times with 

random initial positions for each  amino acid and the resulting range of ‘hits’ with an 

average error of seven  percent w as well within our goal of ten percent error a s  shown 

in figure 3.
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Finally the rate at which the chemical events occur should also be stable 

across the entire length of the run. Figure 4 shows the two hom ogenous individuals 

(all stiff and all loose), the best, and the worse individual’s  chemical events divided 

into ten bins of time. T hese results dem onstrate that chemical events occur at regular 

intervals for all four individuals and the “hit stability” w as actually surprisingly high.

Also a histogram (figure 5) of an atom ’s positions through time yields a bell cu rv e - 

indicating that the atom ’s  average position is the center of the b lo ck -as  expected.
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Part II 

Genetic Algorithm
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Chapter 3 

Genetic Algorithm

3.1 Genetic Algorithm Design

Every G enetic Algorithm, abbreviated GA from hence forth, consists of three 

basic steps. First the “parents” must be selected based  on fitness, then they are 

m ated via seq u en ce  crossover and possible mutation, and finally any unique offspring 

must be evaluated for fitness (number of times C and S surm ount the potential 

energy barrier) and added to the population. “In GAs natural selection occurs by 

choosing solutions with a probability proportional to their relative fitness values by 

som e schem e.”22 The m ethods for doing this are almost as  infinite as  the imagination 

can allow, however, we believed that certain m ethods could lead to a more “efficient” 

GA.

For our purposes we used a 30 bit ‘binary’ GA, m eaning that each  individual is

characterized by a sequence  of 30 binary digits. With this seq uence  size the

potential num ber of possible individuals is very large (2A30 = 1,073,741,823)

reinforcing the need for efficiency. For increased efficiency the following initial

population w as used; containing all the possible ‘traits’ at every location

(heterogenous individuals) a s  well a s  the two extrem es (hom ogenous sequences).

Heterogeneous individual #1: 010101010101010101010101010101

Heterogeneous individual #2: 101010101010101010101010101010

Homogeneous individual #3: 000000000000000000000000000000

Homogeneous individual #4: 111111111111111111111111111111

First “potential parents” must be selected from the initial population. For our

purposes w e used  tournam ent selection where a  specified num ber (i.e. 10) of
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individuals are randomly selected be m em bers of a “potential parent population.”

Of these  randomly chosen m em bers the fittest two becom e the “mating” parents.

This method avoids the affects of a few large fitness m em bers towards those of 

simply ‘above av erag e’ fitness. This schem e is also more of a static selection 

procedure versus the other well-known “roulette wheel sch em e” resulting in a more 

constant probability of selection across multiple cycles. The tournam ent selection 

method seem s the best for our needs since it d ec reases  the likelihood that the sam e 

highly fit parents will be continually selected each cycle, thus preventing the chance 

that the GA will settle into a false optimum.

Next, the “m ating” parent’s sequences are crossed, creating two new 

“offspring” sequences. During each mating, existing parts or seq u en ces  are crossed 

to create new and possibly fitter individuals. The mating of parents presents many 

possible m eans to increase GA efficiency. W e used a modified single point crossover 

driven by catalytic coefficients. Crossovers occur at only one single point and the 

location is biased by the catalytic coefficients assigned to each  site. If a crossover at 

a particular site results in a large change in fitness then the coefficient w as increased 

and vice versa if only a small fitness change occurs. The higher the catalytic 

coefficient of a site the greater the chance it would be selected  as  the crossover site. 

Catalytic coefficient driven (single point) crossovers allowed for small modifications to 

the parent individuals at catalytically important sites. T hese  small modifications are 

more desirable than larger multiple site changes since our simple molecular dynamics 

engine design is very sensitive to even small system  changes. Thus small 

modifications allowed the GA to ‘m ove’ smoothly though the fitness gradient. These 

small changes did, however, increase the probability for the GA to settle into local 

optima. Various techniques involving how the catalytic factors are updated as well as
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how the crossover site w as selected attem pted to minimize the changes of a false 

optimum. Mutations at random locations were also used in order to allow the 

introduction of “traits” not present in the initial population.

Step three is to calculate the fitness of the new seq u en ces  (run the MD) and 

add the seq u en ces  to the general population if they are unique (i.e. not previously 

generated). Finally steps 1, 2, and 3 are simply repeated until the desired fitness or 

final population is achieved.
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3.2 Genetic Algorithm and Molecular Dynamics Coupling

The genetic algorithm operates only on the binary sequence  of num bers, 

which is interpreted by the MD as  different types of amino acids. A ‘0 ’ in the 

sequence  represen ts a stiff domain while a ‘T represents a loose domain. Before 

any MD can be run the input files required by it must be created. Thus the GA first 

creates the files and inserts the dynamic sequence of amino acids into to the three- 

dimensional structure of the lattice layout. Since every ‘m ock’ enzym e is unique to its 

dynamic seq u en ce  it is thereby identified by that binary sum of the binary dynamic 

sequence, hereafter, identified as  the enzym e ID.

Using this unique identifier a file system  for the GA-MD coupling is created.

For each  individual generated  by the GA, a folder is created nam ed by its enzym e ID 

number. The GA-MD coupling then places the input and initialization files required by 

the MD inside this folder. For clarity all files used or created by the MD use a prefix of 

a low ercase ‘m d’ and suffix of the enzym e id num ber and similarly those used or 

created by the GA use a low ercase ‘g a ’ prefix. So, for exam ple 

“mdEquilibratedRunlnfo-1073741823.txt” contains run info for the individual with all 

loose dom ains and “gaM asterLog.txt” contains log information pertinent to the GA. A 

detailed log of the GA w as created so that if the GA w as interrupted at any point in 

the run it could be restarted without loss of information. While the GA is a stochastic 

method and need  not necessarily be deterministic, the lost of information from time 

intensive MD runs would be detrimental. For further time optimization this coupling 

was designed to call and run two MDs at a  single time in order to m ake most efficient 

use  of our dual Intel Xeon processor system.
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3.3 Genetic Algorithm Results

Keeping track of the maximum, average, and minimum fitness for the 

population through time serves to quantify the genetic algorithm’s evolutionary 

progress. The GA by constantly selecting for fitter individuals drives the population 

towards increased fitness. Also by selecting for the less fit individuals the GA can be 

driven backw ards to obtain a potentially least fit individual. T hese two types of GA 

are hereafter revered to a s  “forward” and “reverse” GAs respectively. The 

perform ance of th e se  two optimization programs is shown in figure 6.
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Figure 6: Performance of the GAs
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Not shown in figure 6 is the minimum fitness for the forward GA or the 

maximum fitness for the reverse GA, however, it is important to note that the forward 

GA never created an individual less fit than the least fit individual present in the initial 

population and contrarily the reverse GA never found a more fit individual. This is 

powerful dem onstration of the efficiency of the GA, showing its ability to move 

effectively through the “fitness gradient” and not w aste computational time by creating 

very undesirable individuals.
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Part III

Analysis and Normal Mode Approximation
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Chapter 4

Analysis and Normal Mode Approximation

4.1 Early Analysis

Early analysis of catalytic efficiency consisted of using cross-correlation 

calculations, Fourier transforms, parametric plots, and even graphical movies of the 

enzym e’s motion.

Cross-correlation yielded som e interesting results and eventually we could 

successfully differentiate a bad enzym e (<50 hits) consisting of mostly loose domains 

from a good enzym e (>200 hits) consisting of mostly stiff domains. W e believed that 

the symmetry w as broken only in the x direction; a situation caused  by replacing the 

spring (in the x direction) betw een the catalytic and substrate  site with by a potential 

energy barrier. Using this assum ption we analyzed in detail uncoupled velocities in 

the x direction, hoping to see  an increase of anti-correlated velocities betw een the 

catalytic (C) and substrate  residues (S) demonstrating an increased probability of a 

‘catalytic event’ followed by the subsequent necessary  outward ‘breathing’ motion.

anti-correlated motion correlated motion

However, trying to perceive a quantitative difference betw een an enzym e with

average catalytic efficiency (~100 hits) and a very good enzym e proved near 

impossible.
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Fourier transform showed that, unsurprisingly, enzym es with more stiff 

dom ains operated at higher frequencies than those will more loose domains.

Enzyme efficiency, however, seem s to be a result of the geom etric placem ent of 

different dom ains since an enzym e with 19 stiff dom ains could be a s  mediocre as  136 

hits or a s  good 253 hits. Thus a mediocre and good enzym e, possessing  similar 

frequencies, would thus produce very similar frequency spectrum s despite the large 

difference in catalytic efficacy. W e needed to gain more insight into characteristics 

that existed within the enzym e population.
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4.2 Extensive Data Mining

This followed the early analysis in order give us som e direction in our search 

instead of constant probes in the dark. Three main data mining program s were 

designed, the first w as created to give us a plot of average num ber of hits vs. the 

num ber of stiff dom ains (figure 7).
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Figure 7: Average catalytic fitness as a function of the number of 0-subunits.

This plot told us several very important things, primarily, that the increase in catalytic 

efficacy in not just a  factor of increasing the num ber of stiff dom ains and 

consequentially increasing the frequency but instead depends on an arrangem ent of 

dom ains creating beneficial global fluctuations. Secondarily, it provided a 

visualization that optimum regions for both poor and good enzym es exists away from 

the two extrem es of all stiff and all loose as  well a s  not simply a 50/50 ratio of the two. 

Furthermore, the graph also showed us that there existed a large range in the
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num ber of stiff dom ains that can produce either a very good or very bad enzymatic

activity. This served to reinforce the conclusion that it is a combination of geometry,

fluctuations, and frequency that is required for optimum results.

The next program w as designed to provide insight into an unexpected

phenom enon that had occurred. The introduction of a barrier force acting only as

repulsive force (not containing the opposing restorative force present in a spring) had

resulted in a stretching of the average C-S distance. Data show ed that th ese  values

now ranged from 1.4 to 1.2 times the equilibrium distance rather than the expected
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Figure 8: Scaled C-S distance as a function of the number of 0-subunits.

It is apparent from figure 8 that there is a region (>16 stiff) w here the distance

rem ains the sam e and once you get below this approximate 50/50 ratio the enzym e

becom es loose enough to allow ‘slack’ from the potential energy barrier to be taken
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up by the dynamic blocks. Even mostly stiff individuals still have an average 

scaled C-S distance of 1.2, the remaining 0.2 of ‘slack’ that exists even with all stiff 

dom ains w as seen  to be absorbed by the w eak perim eter interactions of the 

phantom s and normals. This is an unexpected result from designing the perimeter 

forces to be very weak in order to simulate the large external ‘therm al’ fluctuations 

present in a real protein. Combining the knowledge obtained from figure 7 & 8 we 

realized the two plateaus in the first plot correspond to the fairly stable distance 

regions of the second plot.

The next question to be answ ered w as How does this C-S distance relates to 

the num ber of catalytic events?. If a simple decrease  in d istance w ere allowing for 

the increase in catalytic efficacy this would be a fairly uninteresting result. It is 

important to first mention that, due to the chaotic nature of such a simple molecular 

dynamics system  and our known error of around 7% in hit stability, it seem ed  

reasonable to “bin” those  individuals with similar fitness values together and average 

data over that “bin.” For the rem ainder of this work all charts showing a data se t in 

relation to the num ber of chemical events, individuals will be separa ted  into bins of 5 

hits. With this in consideration, the results of data-mining program are presented in 

figure 9, which shows the relationship between C-S distance and catalytic fitness.
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Figure 9: Scaled C-S distance as function of catalytic fitness. Data points are binned into 
groups of 5 hits and the distance is averaged. Standard deviation varies on this plot from

around 0.05 to negligible values.
Interestingly after around 120 hits the average distance betw een the catalytic and

substrate sites seem ed  to stabilize and level off. Something e lse  must be occurring

to allow for the continued increase in the num ber of chemical events with constant

distance.

Another result from the data mining results w as the realization that there were

actually four different ‘categories’ of enzym es existing in our genetic algorithms.

Type 1 (best):

Good Correlation :: Good C-S Distance

Type 2:

Poor Correlation :: Good C-S Distance

Type 3:

Good Correlation :: Poor C-S Distance

Type 4 (worst):

Poor Correlation :: Poor C-S Distance

We now know that differences between th ese  different types exist, but the detection

of this ‘good correlation’ had still evaded us.

X X  X
X

X X  X X  
X X X

X X X
X
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4.3.1 Design of Normal Mode Approximation

Since thermal noise m ade any analysis of position or velocity signals nearly 

impossible, we decided to attem pt a normal mode analysis. Any normal mode 

analysis would have to exist only a s  an approximation for several reasons, the 

primary being the anharm onic nature of the potential energy barrier betw een the C 

and S residues a s  well a s  its “on” and “off’ nature (i.e. it is only active betw een the 

equilibrium distance and 0.7 tim es the equilibrium distance). The normal mode 

analysis would consist of creating a normal m ode matrix, which would be used to find 

the eigenvalues and corresponding eigenvectors for each system . The first step  in 

this process is to populate the normal mode matrix with the proper values. An entry 

in the matrix consists of the second derivative of the potential energy equation 

evaluated at equilibrium, depending on the atom of reference, divided by the m ass of 

the atom. To explain, consider a simple three-dimensional example.

Figure 10: Geometry of a simple normal mode example. Atoms 5 and 6 extend out from the
page.

Each atom is represented  by a sphere  with a corresponding num ber ranging from 0 to 

6 and each  potential (spring) is labeled from k1 to k6. The Potential Energy (V) of 

this system  would be represented by the following equation.
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6

y  = j ^ m ( x l - x ,)2 +( y , - y0)2+(zl - z 0)2v - i j
i=1

Equation 2: Potential energy of simple system .

With leq representing the equilibrium length of the spring betw een atom /' and atom 0.

In order to allow the second derivative of this equation to be time independent, a 

transformation is required, so w e’ll let the following be true;

x\  =  X,. -  Xfe

y \  =  y t ~ y ie
z '  =  z . — z .i i te

Equation 3: Transformation to include displacement from equilibrium positions.

After substitution the potential energy equation looks like the following.

6

v  =  \  ^  K [ ( ( * !  +  **  -  * 0  - *0e)2 +  (y'i +  y ie - y 0 - y o e ) 2 + 0 ,' +  ** -  -  0̂e)2}2 - 4,]2
i=i

Equation 4: Equation 2 after substitution of term s from equation 3.

Combing x,e -  x0e into a  dxe, term (equilibrium distance in the x direction) and the

sam e substitution for y and z allows further simplification.

6

v  =  \  ^  ^  k i  [  { ( x !  ~ x o  +  d x e i  f  +  ( y !  -  T o + d y e ,  ) 2 +  ( A  -  z 0 +  d z e , ) 2 } 2 - K q f

/=i

Equation 5: simplified version of equation 4.

The second derivatives, after substituting 0 for the deviation from equilibrium term s 

and either 0, leq, or - leq for the equilibrium distance term s, are simply a combination of 

k values for the self term s and a single negative k value for the mixed terms. The



30
resulting matrix of entries would be a (d*r>)X(d*n) matrix (with n being the num ber 

of atom s (i.e. 7) and d being the num ber of dim ensions (i.e. 3) thus a 21x21 matrix).

xO yO zO x l y i z l x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6
xO k2+k4 0 0 0 0 0 -k2 0 0 0 0 0 -k4 0 0 0 0 0 0 0 0
yO 0 kl+k3 0 0 -kl 0 0 0 0 0 -k3 0 0 0 0 0 0 0 0 0 0
zO 0 0 k5+k6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -k5 0 0 -k5
x l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y i 0 -k l 0 0 k l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
z l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2 -k2 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y3 0 -k3 0 0 0 0 0 0 0 0 k3 0 0 0 0 0 0 0 0 0 0

z3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x4 -k4 0 0 0 0 0 0 0 0 0 0 0 k4 0 0 0 0 0 0 0 0

y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z5 0 0 -k5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k5 0 0 0

x6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z6 0 0 -k6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k6

Table H essian matrix for simple system  shown in igure 10

It is important to rem em ber that this is only a seven-atom  system  while our system  

contains 450 atoms, with 168 of them being free to move. The resulting normal mode 

matrix is considerably more complicated having dim ensions of 504X504. Also 

important to note is that all atom s were connected directly by a single spring in the 

simple exam ple, however, in the larger system there will be many atom s, which are 

not directly connected, thus their second derivatives will automatically be zero. 

Furthermore, since the barrier force present betw een C and S can not be simulated 

via normal mode, the 6VCXlsx (second derivative of the potential energy with respect to 

C and S in the x dimension) term is se t to zero. The justification for this is that on 

average C and S are outside the effective range of this barrier so  when C and S are 

at their average positions there is zero potential betw een them.
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4.3.2 Design of Normal Mode Analysis Program

Performing a normal mode analysis on each individual in a population of over 

24,000 by hand would simply be impossible. For this reason a program w as 

designed to create the H essian matrix for each individual in the GA’s population, 

gather statistics, and report results for the entire population. In order to know 

anything useful about the motion of the system the eigenvalues and corresponding 

eigenvectors must be generated  from the Hessian matrix. Since loading each  

individual into a math program such as  Matlab or M athematica would also be so time 

intensive a s  to m ake it impossible, the normal mode program must be linked with a 

scientific library capable of calculating the eigenvalues and eigenvectors. We chose 

the GNU Scientific Library or GSL (version 1.2) available from the GNU w ebsite 

(http://www.qnu.org/software/qsl/). “The GNU Scientific Library (GSL) is a numerical 

library for C and C++ program m ers. It is free software under the GNU General Public 

License.”23

The first s tep  in this analysis w as to create the H essian matrix for every 

individual in the population. The geometry and spring constants w ere generated  by 

loading the “mdUnequilibrated-*.txt” file for each individual. Using the symmetry of 

the H essian matrix to our advantage we divided the matrix entries into three classes.

• Class 1: Second derivatives of self terms for example 5Vx0,xo (second derivative 

with respect to the 0th atom in the x dimension). This position’s value is simply the 

sum of all springs in the dimension being considered. So for 5Vx0 xo all the spring 

in the x direction would be summed.

• Class 2: Second derivatives for mixed terms for example 5Vx0xi (second 

derivative with respect to the 0th and 1st atom in the x dimension). This position’s 
value is simply the negative value of the spring (in the dimension of reference) 
between the two atoms. C and S are a special case and the mixed term

http://www.qnu.org/software/qsl/
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containing these two blocks in the x direction is set to zero (for explanation see 

normal mode approximation design section).

•  Class 3: Second derivates for mixed terms for atoms not directly connected by a 

spring. This position’s value is automatically set to zero.

Using th ese  c lasses  a s  a guideline each  entry in the matrix is created  and stored in a

two dimensional matrix.

Eigenvalues and eigenvectors are obtained for each individual from their 

respective m atrices. Since each matrix is 504x504 there will be 504 eigenvalues 

each with an corresponding eigenvector containing 504 com ponents. The 

eigenvalues are  stored in a one-dimensional array and the eigenvectors in a two- 

dimensional array with columns represent which eigenvalues they correspond to and 

each row representing each  atom s x, y, and z com ponents. For the current system  

the x com ponent of the catalytic residue (C) and the substrate  residue (S) are 

contained in rows 249 and 252 respectively. Vector com ponents for C and S are then 

analyzed for all eigenvalues. “Good” and “bad” eigenvectors are stored for ail 

frequencies a s  well a s  for only the low frequencies. Low frequencies are  defined as  

being the lower half of the frequency spectrum  for an average individual. “Good” 

eigenvectors are those w here C and S are anti-correlated or when one (C or S) is 

moving while the other is stationary. “Bad” eigenvectors are those w here C and S are 

moving in a correlated fashion.
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This program also maintains other important statistics for the population.

For each  individual the following values are calculated and stored.

a) Number of catalytic events.

b) Number of good and bad eigenvectors for low frequencies

c) Number of good and bad eigenvectors for all frequencies.

d) Average C-S distance.

e) Number of stiff domains.

f) Rms value for C residue.

g) Rms value for S residue.

This allows the normal m ode analysis to serve as an overall analysis and data-mining 

program for any important data.
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4.3 .2  Normal Mode Analysis Results

Our results show that the num ber of beneficial frequencies—“good” 

correlation—increases with catalytic fitness. Specifically, this increase in beneficial 

frequencies occurs in the lower frequencies, i.e. those below the dominant frequency.

To clarify, there  are 504 eigenvalues each having a corresponding 

eigenvector. W hen looking at the Cx and Sx com ponents of the eigenvectors only a 

very few have significant com ponents. The num ber of eigenvectors with Cx and Sx 

com ponents above our threshold (0.00001) remains fairly constant at around 8 

vectors from a possible 504. This seem ed at first to be som ew hat uninteresting, 

however, realizing that cooperative motion is very often present in low frequencies 

while random uncoupled motion or “thermal noise” are naturally high frequency, we 

decided to isolate out low frequency vectors. Once we looked at the num ber of good 

correlated vectors present only in low frequencies we notice that there w as an 

increase in the num ber of th ese  vectors, however, a slightly inconsistent fashion as 

seen  in figure 11.
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Figure 11: Relationship between the number of beneficial vectors found in low frequencies to
catalytic fitness.

While the average num ber of beneficial eigenvectors present in all frequencies is 

constant across the entire population, this is not true for specific individuals or even 

small groups. This led us to believe that normalization w as necessary . For any 

particular group of individuals there are a num ber of eigenvectors with C and S 

com ponents (good or bad) above threshold as well as  the num ber of beneficial low 

frequency eigenvectors. Dividing this num ber of beneficial low frequency vectors by 

the num ber of total vectors above threshold provides a “catalytic sco re” representing 

a percent optimum value.

W hen plotting this catalytic score in figure 12, the relationship betw een the 

num ber of catalytic events and the num ber of beneficial vectors in low frequencies is
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much sm oother than the pre-normalization plot (figure 11). For statistical reasons 

any fitness bins containing less than 5 individuals are removed.
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Figure 12: Relation of "catalytic score" to catalytic fitness.
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Returning to the original four categories of enzym es d iscussed  in the Data 

Mining section of chapter four, we can now better understand th ese  four categories of 

enzym es. The following table shows exam ples of enzym es that fit the category 

requirements.

Type 1 (best): 253 Hits 

Good Correlation :: Good C-S Distance

Enzyme Id: 10711652 

Catalytic Score: 0.88 or 88%

Scaled C-S Distance: 1.27

Type 2: 112 Hits 

Poor Correlation :: Good C-S Distance

Enzyme Id: 1024 

Catalytic Score: 0.08 or 8%

Scaled C-S Distance: 1.25

Type 3: 92 Hits 

Good Correlation :: Poor C-S Distance

Enzyme Id: 1073724415 

Catalytic Score: 0.92 or 92%

Scaled C-S Distance: 1.45

Type 4 (worst): 16 Hits 

Poor Correlation :: Poor C-S Distance

Enzyme Id: 1018998707 

Catalytic Score: 0.25 or 25%

Scaled C-S Distance: 1.45
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Chapter 5

5.1 Discussion and Future Work

Conformation fluctuations (beneficial low frequencies) and active site 

orientation (catalytic distance) are key factors to evolving a high probability of 

chemical events and thus an effective catalyst. T hese beneficial frequencies and the 

distance between the catalyst and substrate  sub-units are a function of the number 

and distribution of stiff, intermediate, and loose dom ains present in the model 

enzyme. O nce the optimum active site orientation or d istance is established 

evolution acts to increase the num ber of low frequency beneficial m odes (i.e. m odes 

where catalyst and substrate  have an increased probability of overcoming the 

potential energy barrier betw een them). Furthermore, preliminary results show that 

single point mutations on residues distal from the active site have a profound impact 

on catalytic fitness, further supporting the belief that th ese  dynam ics are a global 

feature. Future work will entail detailed investigation into how point mutations 

influence catalytic efficacy and conformation fluctuations.
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