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ABSTRACT

Experiments on visual acuity in the honeybee performed by Hertz 
(in 1929) led to the conclusion that honeybees cannot distinguish 
between simple patterns such as triangles, squares, circles and 
rectangles, because the patterns have approximately equal "brokenness" 
(contour density). She found they could, however, readily distinguish 
any of these from a figure which was slightly more complex such as a 
cross, a "Y”, a hollowed-out square or four closely spaced bars. She 
also found they could not distinguish between any of these more complex 
figures.

The present study reinvestigated the conclusions of Hertz by using 
similar test patterns but a different experimental design. Hertz 
trained bees to horizontally placed test patterns at feeding stations, 
whereas the present study employed an apparatus in which the bees were 
trained to a pattern centrally placed in a vertical position over the 
hive entrance. The bees were thus forced to fly through a hole in the 
center of the pattern to go in and out of the hive. Advantages of the 
latter method are the added dimensions of up and down and left and 
right, as well as greater motivation of the bees to learn a pattern 
(the urge to enter the hive being greater than that to feed at a particular 
station). Bees were trained to a particular pattern (standard), and then 
a series of preference tests were conducted between the standard and all 
other patterns.

In further tests with the same simple patterns, bees were given a 
choice between the horizontal and vertical components of a pattern.
Because bees tend to fly back and forth across the front of a pattern 
in the horizontal direction, the horizontal pattern should more closely 
resemble the training pattern in contour density.

Results demonstrate conclusively that bees can distinguish between 
simple patterns. In addition, bees given a choice between the horizontal 
and vertical elements of a pattern more often choose the horizontal 
component.



DISCRIMINATION OF SIMPLE PATTERNS BY THE 

HONEYBEE APIS MELLIPERA



INTÎ ODUCTION

Vision plays an important role in the life of the honeybee 

(Apis mellifera). "While foraging for food, a bee uses visual cues 

in making a choice between species of flowers, and when returning 

from foraging, she orients partly by recognizing landmarks in the 

vicinity of the hive (von Frisch, 1967). The visual acuity of the 

honeybee as it relates to light intensity and the size and motion 

of an object has been described (Hecht and Wolf, 1929; Wolf, 1933; 

Wolf and Zerrahn-Wolf, 193*0. Another aspect of visual acuity, the 

ability of bees to discriminate between different shapes, was first 

tested by Karl von Frisch (1915; as cited in von Frisch, 1950).

His results led him to conclude that bees cannot distinguish between 

simple geometric figures, probably because they do not encounter 

them in nature. Hertz (1929) continued the work of von Frisch, and 

using the eight simple shapes of Figure 1, found that bees could 

distinguish any figure in the top row from any figure in the bottom 

row. However, she was unsuccessful in training bees to discriminate 

between any two figures from the same row. The factor she believed 

to be most important in pattern discrimination is the degree of 

"brokenness" (contour density) of the shape. Since figures within 

the same row have approximately equal amounts of broken area, Hertz 

felt that they are too similar for discrimination by the honeybee.

Mazokhin-Porshnyakov (1969) states that insects respond more to



the totality of characteristics of a pattern than to individual 

parameters such as size, shape, and degree of brokenness. Postulating 

that Hertz could not train bees to recognize all eight shapes because 

the patterns were too large relative to the size of the bee, he 

redesigned some of the shapes into composites (Fig. 2). The bees 

were able to discriminate between them, but the question remains 

whether composite shapes can still be considered simple geometric 

figures.

Anderson (1972) was at first unable to train bees to distinguish 

between a square and a triangle. However, after training bees to 

figures along a continuum of decreasing contour density, he found 

they could distinguish between these two simple patterns. He stated 

that the innate preference of bees for broken patterns (Wolf and 

Zerrahn-Wolf, 1936) makes it impossible to train them to simple figures 

unless they are forced to focus their attention on other parameters.

Although most early work on pattern recognition was performed 

with the patterns in a horizontal position, Wehner (1967) has shown 

that vertically oriented figures are more useful in testing form 

perception. Using this type of design, he was able to demonstrate 

that bees can distinguish between two identical patterns inclined at 

different angles. These results indicate that the orientation of a 

shape must be important in pattern recognition, since the figures had 

equal contour density. Vertical pattern testing has also revealed 

that the lower median part of the visual field is most important for 

pattern recognition (Wehner, 1972). Results of tests by Anderson (1977) 

on the scanning of patterns by bees support this conclusion. Use of



vertically placed patterns allows for testing of the relative Importance 

of vertical and horizontal components of a shape in recognition. Using 

high-speed cinematography, Anderson (1977) has shown that the majority 

of runs made across the front of a pattern by bees are in the horizontal 

direction.

Another interesting aspect of pattern recognition in bees involves 

their innate preference for certain shapes. Although foraging bees 

overwhelmingly prefer broken patterns to solid ones, it has been 

demonstrated that bees flying homeward prefer solid figures (Jacobs- 

Jessen, 1959> as cited in von Frisch, 1967). This might be explained 

by the fact that foraging bees are seeking flowers, and thus would 

prefer broken contours. Homing bees, on the other hand, are seeking 

the hive entrance, which is more likely to be a smooth contour.

The following study was undertaken to determine conclusively 

whether or not bees are able to distinguish between simple patterns. 

Hertz (1929) stated they cannot, but Mazokhin-Porshnyakov (1969) 
stated they can. It is debatable, however, whether or not the composite 

patterns used by Mazokhin-Porshnyakov are simple patterns. Also, both 

Hertz and Mazokhin-Porshnyakov trained bees to a feeding station, 

and since foraging bees prefer broken patterns, this might interfere 

with the learning process. In addition, they trained bees to patterns 

placed in a horizontal plane, thus perhaps unintentionally eliminating 

cues which have since been found to be Important in pattern recognition. 

My experimental design utilized vertically oriented patterns and also 

takes into account the homing bees* preference for simple shapes.

For testing, I used the same shapes used by Hertz, with the exception



that they were larger. In addition to testing the ability of bees to 

discriminate between simple patterns, I tested the relative importance 

of the horizontal and vertical elements of a shape in pattern 

recognition.



FIGURE 1: Simple shapes as tested by Hertz (1929).
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Composite figures "a-e" used by Mazokhin-Porshnyakov (1969).



MATERIALS AND METHODS

Testing of honeybees occurred during the summers of 1974, 1975 

and 1976. Hives were located on the grounds of the Laboratory of 

Endocrinology and Population Biolog; at the College of William and 

Mary using the pattern recognition ; :iratus pictured in Figures 3S 

4, and 5. Two units were constructed so that one hive could be 

trained to a pattern while the other hive was being tested. Both 

units were painted flat white.

The hive rested on a table behind the large backboard, and was 

connected to the board by a screen funnel. A 4 cm hole in the center 

of the backboard led Into the screen funnel and served as the Mve 

entrance. The bees had to fly through the hole and thus through the 

center of the backboard to get into and out of the hive. The top and 

side boards forced the bees to make a fairly direct approach to the 

hive entrance, and therefore to the training pattern, standardizing 

their perception of the pattern to a large extent. The sides and 

roof of the apparatus also prevented shadows from obscuring the 

patterns. For testing, two 4 cm holes leading into false entrances 

were constructed equidistant from the center. The false entrances led 

into detachable funnels on the back of the apparatus. The funnels 

converged to the center of the apparatus and led Into a removable 

collecting cage. Circular boards, 43 cm in diameter with a 4 cm 

hole in the center, to which patterns could be attached, fitted over



the three entrances on the front of the backboard, thus allowing for 

simple changing of patterns during testing.

Forty-three cm diameter circles were cut from stiff white 

construction paper and utilized as a background on which to glue the 

patterns. These circles in turn could be attached to the circular 

boards with double-sided tape. The patterns could thus easily be 

attached and removed from the board as often as necessary during 

testing. The patterns used during the initial stages of this study 

were the eight originally employed by Hertz (1929)5 having approximately 

equal black area, and of the dimensions shown in Figure 6. Later 

tests utilized these same figures or parts of them. In the center of 

each pattern was a hole 1) cm in diameter to allow the passage of the 

bees.

The shape to which the bees were to be trained was hung over the 

hive entrance and not disturbed for at least one week. During this 

time, the bees trained themselves using their innate behavior to 

learn landmarks around the hive entrance. To begin each test, the 

training pattern was removed from the front of the hive and a piece of 

white paper taped securely over the entrance to allow only those bees 

returning from foraging to be tested. The bees knew where the true 

entrance was, and unless it was plugged, would not choose either test 

pattern. After covering the true hive entrance, test patterns were 

hung over each false entrance. In retesting Hertz’s work, the training 

pattern m s  also the standard against which the other seven patterns 

were tested. One test pattern was therefore a duplicate of the 

training pattern (never physically exposed to bees before), while the
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other pattern was any of the other seven of Hertz’s shapes. Once the 

patterns were hung over the false entrances, the bees could be counted 

as they flew up the funnels into the collecting cage on the back side 

of the apparatus. Hie choices of the first fifty bees to enter the 

collecting cage were recorded.

Preference of the bees for a particular side of the apparatus was 

observed during the initial testing, and in order to eliminate the 

effects of this bias, the following procedure was used. After 

recording the choices of the first fifty bees, the test patterns were 

each removed, and the training pattern replaced over the hive entrance. 

The funnels were checked to make sure no bees remained. The training 

pattern was then removed again, the hive entrance covered, and the same 

two patterns replaced over the false entrances, but this time on 

opposite sides to compensate for side bias. The choices of fifty 

more bees were then recorded. When the number of bees going to each 

pattern in this instance was added to the respective number for the 

tally of the first fifty bees, a percentage of bees choosing each 

pattern was obtained. The test patterns were again removed and the 

training pattern replaced over the hive entrance.

The remaining six figures were each tested against the standard 

in this fashion, thus obtaining one observation of 100 bees for each 

of the seven test patterns against the standard. The sequence was 

then repeated using the same series of test patterns until the standard 

was tested against each of the seven patterns at least five times.

Since each pattern was used as a training pattern and served as a 

standard against which the other seven patterns were tested, 56
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tests were performed in testing Hertz’s shapes.

The results of the experiments were submitted to a statistical 

analysis. A Mann-Whitney U-test (Sokal and Rholf, 1969) was performed 

to test for differences between a training pattern and each of the 

other patterns it had been matched against.

As stated earlier, bees were trained to a particular pattern 

and this pattern (standard) tested against the other seven patterns. 

Therefore for any one training pattern, seven independent tests were 

conducted (e.g., square vs. triangle, square vs. circle, square vs. 

rectangle, etc.). With this in mind, it is also interesting to 

look at the following problem: in reference to a common training

pattern, are certain shapes perceived as more similar to the training 

pattern than others? For this analysis, the data were grouped based 

on a common test pattern (standard), thus forming eight groups, each 

with seven sets of data. Since the data were collected as percentages, 

an arc sine transformation was first performed (Sokal and Rohlf, 1969), 
and an analysis of variance then run on each group. An a posteriori 

test (Student-Newman-Keuls test) was used to point out differences 

between patterns within a group.
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FIGURE 4: (above) Photograph

of front of testing apparatus.

FIGURE 5: (right) Photograph

of collecting cage and funnels 

at back of apparatus.
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FIGURE 6: Patterns' dimensions in centimeters.



RESULTS

Figures 7-22 illustrate the results of testing Hertz’s patterns.

In each figure, the pattern at the left is the standard against which 

the other patterns were tested. In every test, more than fifty 

percent of the bees chose the figure to which they had been trained.

Also, in every case, the standard was significantly different from 

the test pattern at a probability of less than .01 (Mann-Whitney U-test). 

It can therefore be concluded that bees can and do distinguish between 

all eight simple patterns.

Although the bees were able to discriminate between standard 

and test patterns in every case, it was noted that within each group 

of seven test patterns certain test figures were visited with unequal 

frequency by the bees. An ANOVA demonstrated that there was a signif

icant difference between patterns in each group of 7 patterns 

(Tables 1-8). A posteriori testing (Student-Newman-Kuels Test) showed 

statistically those test patterns between which there were no 

differences to the bees (Tables 1-8). The bees did not distinguish 

between the circle and the square in five out of six tests in which 

neither served as the standard (in which the triangle, open square,

Y, cross, and four bars were standards).

In four out of six tests (bar, square, cross, and Y as standards), 

the circle and the triangle were regarded as the same. The hollow 

square and the four parallel bars were perceived to be equivalent in

16



all six tests in which neither was the training pattern. Four tests 

out of six (bar, square, triangle, and hollow square as standards) 

demonstrated that the bees did not discriminate between the cross 

and the four parallel bar’s when they had been trained to another 

pattern.

The bees tended to differentiate more between solid shapes 

than broken ones. In each of the four tests where a solid figure 

was the standard, at least three of the broken patterns were 

perceived as equivalent by the bees. When the bees were trained to 

the four broken patterns, three or more solid patterns were treated 

equally in only two tests. In the other two tests, no more than 

two of the solid shapes were considered equivalent. It should be 

noted that a sample size of five or six might be too small to point 

out subtle differences.

Separate test revealed the relative importance of horizontal and 

vertical components of pattern recognition. Figure 23 shows the 

results of testing bees which were trained to a solid square. The 

left shape, the vertical components of the hollow square, was the 

standard. More bees chose the horizontal bars than the vertical ones, 

and when given a choice between the hollow square and the vertical 

bars, more chose the hollow square. Figure 2k illustrates the results 

of a test where bees were trained to a solid square and given a choice 

between a vertical and a horizontal rectangle. The horizontal 

rectangle was preferred. When trained to the hollow square and 

offered the horizontal and vertical components of the shape as the 

only choices, as in Figure 25 5 a significant number of bees chose the



horizontal bars. The cross was the training pattern in Figure 26. 

When tested vdth the horizontal and vertical bar, more than fifty 

percent of the bees chose the horizontal bar in each of the six test 

runs. From the above tests, it can be concluded that a significant 

number of bees find the horizontally oriented figure more closely 

resembles the training pattern.
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FIGURE 7: Bees were trained to the square which served as the standard

against which the three solid shapes were tested. Note that less than 

fifty percent of the bees chose the test pattern in each case. Each 

point represents the percent choice of 100 bees.
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FIGURE 8: Results of testing bees trained to the square, using the

square as the standard. Each point represents the percent choice of 

100 bees.
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FIGURE 9: Results of testing bees trained to the circle, using the
circle as the standard. Each point represents the percent choice of
100 bees.
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FIGURE 10: Results of testing bees trained to the circle, using the
circle as the standard. Each point represents the percent choice of

100 bees.
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FIGURE 11: Results of testing bees trained to the bar, using the bar
as the standard. Each point represents the percent choice of 100 bees.
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FIGURE 12: Results of testing bees trained to the bar, using the bar

as the standard. Each point represents the percent choice of 100 bees.
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FIGURE 13: Results of testing bees trained to the triangle, using the
triangle as the standard. Each point represents the percent choice of

100 bees.
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FIGURE 14: Results of testing bees trained to the triangle, using the

triangle as the standard. Each point represents the percent choice of
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FIGURE 15: Results of testing bees trained to the cross, using the

cross as the standard. Each point represents the percent choice of
100 bees.
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FIGURE 16: Results of testing bees trained to the cross, using the

cross as the standard. Each point represents the percent choice of
100 bees.
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FIGURE 17: Results of testing bees trained to the Y, using the Y

as the standard. Each point represents the percent choice of 100
bees.
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FIGURE 18: Results of testing bees trained to the Y, using the Y

as the standard. Each point represents the percent choice of 100
bees.
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FIGURE 19: Results of testing bees trained to the four parallel bars,
using the four parallel bars as the standard. Each point represents
the percent choice of 100 bees.
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FIGURE 20: Results of testing bees trained to the four parallel bars,

using the four parallel bars as the standard. Each point represents 

the percent choice of 100 bees.
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FIGURE 21: Results of testing bees trained to the hollow square, using
the hollow square as the standard. Each point represents the percent

choice of 100 bees.
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FIGURE 22: Results of testing bees trained to the hollow square, using

the hollow square as the standard. Each point represents the percent 

choice of 100 bees.
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FIGURE 23: Results of testing bees trained to the solid square, using

 ̂the vertical components of the hollow square as the standard. Each 

point represents the percent choice of 100 bees.
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FIGURE 24: Results of testing bees trained to the solid square,

given a choice between a horizontal and vertical rectangle. Each 

point represents the percent choice of 100 bees.
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FIGURE 25: Results of testing bees trained to the hollow square,

given the horizontal and vertical components of the shape as 

choices. Each point represents the percent choice of 100 bees.
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FIGURE 26: Results of testing bees trained to the cross, given a
choice between the horizontal and vertical bar,.. Each point represents
the percent choice of 100 bees.
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Table 1. ANOVA table for test where bar was the standard.

Results of A posteriori test on same data.

ANOVA TABLE

LEVEL SS DF MS FS
1 663.042 6 110.5070 16.2453

0 190.467 28 6.8024

Significant at p < .005

A posteriori test: Student-Newman-Keuls Test

Table of Sorted Means (Data in arcsine units):
anple N Mean Standard Error
Y 5 25.4949 0.90416
Bars 5 28.0631 0.96478
Hollow square 5 28.3411 1.04l8l
Cross 5 31.6534 1.90022
Square 5 31.9200 1.00645
Triangle 5 36.3687 0.98183
Circle 5 38.6311 1.04972

Maximum Nonsignificant Ranges:

Subset Samples
1 Bars through square
2 Y through hollow square
3 Triangle and circle

Significant at p < .05
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Table 2. ANOVA table for test where circle was the standard.

Results of A posteriori test on same data.

ANOVA TABLE

LEVEL SS DP MS PS

1 3000.433 6 500.0720 41.8187

0 334.827 28 11.9581

Significant at p < .001

A posteriori test: Student-Newman-Keuls Test

Table of Sorted Means (Data in arcsine units):

ample N Mean Standard Error
Y 5 14.6440 1.17861
Hollow square 5 16.5216 1.62498
Bars 5 19.8983 2.52322
Cross 5 27.0992 0.28485
Bar 5 29.3216 2.11753
Triangle 5 36.9382 1.04807
Square 5 40.6111 0.82552

Maximum Nonsignificant Ranges:

Subset Samples
1 Y through bars
2 Cross through bar
3 Triangle and square

Significant at p < .05



Table 3. ANOVA table for test where square was the standard.
Results of A posteriori test on same data.

41

LEVEL
1

0

ss

4382.066
755.206

ANOVA TABLE 
DF 

6

31

MS
730.3442

24.3615

FS

29.9795

Significant at p < .001

A posteriori test: Student-Newman-Keuls Test

Table of Sorted Means (Data in arcsine units)

MeanSample
Y
Bars

N
5
5

Hollow square 5 
Cross 5
Bar 5
Triangle 5
Circle 5

10.7248
11.5258
11.7575
12.4331
21.3181
33.0387
38.0513

Standard Error 
2.15471 
1.29915 
1.58547 
2.17774 
1.91083 
3.31551 
2.25997

Maximum Nonsignificant Ranges:

Subset Samples

1 Y through cross

2 Triangle and square

Significant at p < .05



Table ANOVA table for test where triangle was the standard.
Results of A posteriori test on same data.

ANOVA TABLE

LEVEL SS DF MS FS

1 773.670 6 128.9^50 13.7666

0 262.262 28 9.3665
Significant at p < .005

A posteriori test: Student-Newman-Keuls Test

Table of Sorted Means (Data in arcsine units):

ample N Mean ' Standard Error
Bars 5 25.1944 1.30047
Cross 5 25.8597 1.33448
Hollow square 5 27.8917 1.04807
Bar 5 32.̂ 205 0.92888
Y 5 34.4271 1.90295
Square 5 36.1128 1.28544
Circle 5 37.7881 1.55118

Maximum Nonsignificant Ranges:

Subset Samples

1 Bars through hollow square

2 Bar through square

3 Y through circle

Significant at p < .05
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Table 5. ANOVA table for test where Y was the standard.

Results of A posteriori test on same data.

ANOVA TABLE

DP MS FS

6 150.0333 17.8741

28 8.3939

Significant at p < .001

A posteriori test: Student-Newman-Keuls Test

LEVEL SS

1 900.200
0 235.028

Table of Sorted Means (Data in arcsine units)

Sample
Bars 5
Hollow square 5
Bar
Cross
Triangle
Square
Circle

Mean
26.75̂ 2
26.8053
30.3185
33.6064
36.3678
38.7487
40.1517

Standard Error 
0.97082 
0.98761 
1.03246 
1.44444 
1.98690 
1.36676
0.93023

Maximum Nonsignificant Ranges:

Subset

1

2
3
4

Samples 

Bars through bar 

Triangle through circle 

Bar and cross 

Cross and triangle

Significant at p < .05
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Table 6. ANOVA table for test where four parallel bars was the

standard.
Results of A posteriori test on same data.

ANOVA TABLE
LEVEL ss DF MS FS
1 1913.398 6 318.8997 24.9134

0 358.410 28 12.8003 

Significant at p < .001

A posteriori test: Student-Newman-Keuls Test 

Table of Sorted Means (Data in arcsine units):
Sample N Mean Standard Error
Triangle 5 11.7124 1.08174
Bar 5 13.4905 1.30821
Cross 5 14.2360 2.06640
Circle 5 18.2771 1.20881
Y 5 18.3736 2.28321
Square 5 28.1935 1.63762
Hollow square 5 32.9140 1.18862

Maximum Nonsignificant Ranges:
Subset Samples
1 Bar through Y
2 Triangle through cross

Significant at p < .05



Table 7. ANOVA table for test where hollow square was the standard.
Results of A posteriori test on same data.

ANOVA TABLE

LEVEL SS DP MS PS

1 1423.536 6 237.2560 17.9645
0 369.794 28 13.2069

Significant at p < .001

A posteriori test: Student-Newman-Keuls Test

Table of Sorted Means (Data in arcsine units) :

Sample N Mean Standard Error
Cross 5 21.4213 1.70917
Bar 5 22.7211 1.36733
Y 5 22.9399 1.12230
Triangle 5 24.2733 1.79252
Bars 5 27.6547 1.54803
Square 5 35.7209 1.96890
Circle 5 38.7357 1.71849

Maximum Nonsignificant Ranges:

Subset Samples

1 Cross through bars

2 Square and circle

Significant at p < .05
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Table 8. ANOVA table for test where cross was the standard.

Results of A posteriori test on same data.

LEVEL
1

0

ss

23*47.6*43

*1*40.6*47

ANOVA TABLE' 
DP 

6 

28

MS
391.2737

15.737*4

FS
2*4.8627

Significant at p < .001

A posteriori test: Student-Newman-Keuls Test

Table of Sorted Means (Data in arcsine units)
Sample N
Hollow square 5
Bars
Square
Circle
Triangle
Y
Bar

Mean
13.9155
13.9985
29.1054
29.1616
32.1261
32.9042
34.7683

Standard Error 
2.80076
0.93838 
1.5788*4 
1.39717 
2.33*483 
1.1852*4
1. *41650

Maximum Nonsignificant Ranges:
Subset Samples
1 Square through bar
2 Hollow square and cross

Significant at p < .05



DISCUSSION

The results conclusively demonstrate that honeybees can

discriminate between simple geometric patterns. Hertz and others

tested bees at feeding stations where the patterns were placed

horizontally. The design of this work placed patterns vertically,

adding the dimensions of up and down and left and right to the bees’

perception of the shape. The innate preference of the homing bee for

unbroken patterns possibly aided the bees in learning the simple

shapes. Mazokhin-Porshnyakov stated that Hertz’s figures were too

large relative to the size of the bee for discrimination. Figures

used in these tests were larger than those employed by Hertz; for
2example, her circle had an area of 23.75 cm , whereas mine was 

222*1.20 cm-. Therefore, at least in this method of testing, the size 

of the patterns does not prevent the bees from discriminating between 

them.

It Is possible that when bees are tested at feeding stations 

it is necessary to train them to figures of increasingly less contour 

density in order to have them distinguish simple shapes (Anderson,

1972). It was observed in this work that homing bees tended to 

differentiate more between the solid patterns than they did between 

the broken ones. In spite of this preference for solid shapes, however, 

they had no trouble distinguishing between the broken patterns. The 

fact that among test patterns solid figures were less often considered



48
equivalent when being tested against broken patterns than broken ones 

were when being tested against solid patterns tends to support the 

preference of homing bees for simple shapes.

The similarity in treatment of some of the test patterns might 

be explained by equivalent amounts of contour density or by the gross 

similarity of the shapes. The square and the circle, and the circle 

and the triangle closely approximate one another in both these respects. 

The hollow square and the four parallel bars have similar vertical 

components and nearly equal broken area. Although the cross and the 

four parallel bars both have vertical elements, they seem to lack an 

overall resemblance in shape, and the four bars would appear to have 

a higher contour density. It may be that the trends illustrated 

rely on more factors than contour density and a general likeness in 

shape.

When bees were trained to a pattern and then given a choice 

between two identical shapes, one oriented vertically and the other 

oriented horizontally, in all cases they chose the horizontal figure.

The design of these tests did not permit conclusions to be made 

regarding whether this observation relates to the dorsoventral 

asymmetry of the honeybee's visual field as described by Wehner (1972). 

It does lend support to Andersonfs findings that bees make more 

horizontal than vertical runs across the front of a pattern. This 

causes the bees to prefer a horizontally over a vertically extended 

pattern, because the latter appears to have a much higher contour 

density than a horizontally extended shape during a horizontal run 

across the pattern. In my tests, where the choice of the bees was



limited to isolated horizontal or vertical elements of the training 

pattern, the bees chose the horizontal shape, probably because it more 

closely approximates the degree of brokenness of the shape to which 

they were trained. As Anderson notes, the predominance of horizontal 

scans may in part be due to the design of the test apparatus. When 

the test patterns lie on a line, a bee flying from one to the other 

would by necessity cross the pattern horizontally.

A redesign of the original experimental method of testing simple 

pattern recognition in honeybees, these experiments demonstrate 

conclusively that honeybees can distinguish between simple shapes. 

Trends become evident in the similarity of certain shapes to the 

bees. The parameters which cause this similarity are not definitely 

known, but testing of vertical and horizontal components of some shapes 

demonstrates the preference of bees for the horizontal elements of a 

pattern. More tests are required to determine if this finding is a 

result mainly of the test design, or also holds true in nature.
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