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ABSTRACT

Volatile organic compounds (VOCs), detrimental to human health, are 
present in many household environments, necessitating novel methods of 
detection. Copper(l) iodide (Cul) is an inexpensive, commercial, air-stable 
salt that spontaneously reacts with a variety of VOCs to produce 
luminescent adducts, making Cul a good prospective detector material. 
Microcrystalline films of Cul have been cast from solution onto glass. As 
cast, the films show almost no visible emission; however, upon exposure to 
VOC amines and sulfides, the films form surface adducts that display a 
variety of visible emission colors. Chemically related VOCs produce 
remarkably different Cul-adduct emission colors in some cases. The films 
are reusable due to facile removal of the VOC. The surface of Cul films 
have been characterized using optical microscopy, scanning electron 
microscopy with energy dispersive spectroscopy, and powder X-ray 
diffraction. Limits of detection have been studied for specific VOCs by 
exposing Cul films and measuring their emission using an LED/fiber-optic 
fluorimeter. Tetrahydrothiophene (THT) produced a variety of luminescent 
adducts with Cul films. As a result, the Cul-THT system was studied more 
closely. Five new Cul-THT phases, four of which are luminescent, were 
structurally characterized using X-ray diffraction. These phases were further 
characterized using thermogravimetric and chemical analysis.
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INTRODUCTION

Dangers of volatile organic compounds

Volatile organic compounds (VOCs) are a class of solid or liquid chemicals 

that emit vapor at room temperature. At sufficiently high concentrations, some 

VOCs can be harmful, making their detection vital to human safety in enclosed 

spaces where these high concentrations are often found. While acute VOC 

exposure is very dangerous, another concern is associated with chronic 

exposure resulting from the accumulation of VOCs indoors. VOCs are present in 

common household items such as paints, cleaning supplies, printers, office 

equipment, and furniture. Monitoring of VOCs is very important due to the 

ubiquitous occurrence of these potentially dangerous chemicals.1 The adverse 

health effects of VOCs vary from minor to severe, depending on both 

concentration and the nature of the chemical hazard. Typical negative health 

effects from exposure to VOCs are eye, nose, and throat irritation, headaches, 

loss of coordination, nausea, and damage to liver, kidney, and nervous system.1 

Due to the dangerous nature of some VOCs, their detection is necessary to 

ensure the safety of individuals exposed to them.

The ideal VOC detector should be inexpensive, discriminating, portable, 

sensitive, and reversible. Reversibility means, in this instance, that the detector 

substrate is reusable. Detector portability is important for on-site analysis of 

VOCs. On-site analysis offers more immediate results, allowing for more rapid 

response, because there is no need to take samples to a laboratory for analysis.
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This type of analysis also eliminates concerns about sample contamination or 

degradation because there is less sample handling and transportation. Despite 

the disadvantages noted above, off-site analysis often offers access to more 

reliable instrumentation. Although various techniques are available for VOCs 

detection, each of the current techniques has inherent limitations and 

weaknesses.

The choice of sensor required depends on the application. In some cases, 

a “general” sensor is sufficient. Such a device registers the concentration, or 

even merely a threshold alarm response for an aggregate of chemically-related 

analytes. Other applications may require a “specific” sensor which offers the 

identification and quantitation of one or more individual chemicals. An advantage 

of specific sensors is that they do not suffer from interference due to non-target 

compounds. Finally, there are many applications that require a sensor that 

features both general and specific characteristics, wherein multiple compounds in 

various chemical categories are quantified.

One currently available VOC detection strategy involves the use of 

electrochemical sensors.2 Electrochemical sensors detect gaseous compounds 

by oxidizing them at an electrode and measuring the resulting current. Most of 

these sensors are substance-specific, but more general electrochemical sensors 

have also been developed. However, there are no electrochemical sensors 

available that are both general and compound-specific.
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General detection strategies are of sufficient utility in the detection of 

combustible VOCs. The hot-bead pellistor, which is the most widely-used VOC 

detection technique, is an example of a combustible gas sensor.2 A schematic 

showing how this type of sensor works is displayed in Figure 1. These sensors 

also work through oxidation of the substrate gas. This oxidation at the active 

bead produces heating which is proportional to the amount of gas in the air. The 

heating of the active bead corresponds to an increase in resistance which 

corresponds to the lower explosive limit (LEL) on the display screen of the 

sensor. LEL indicates the lowest concentration of combustible gas in the air 

capable of creating a flash fire in the presence of an ignition source.

r

Figure 1. Schematic of a hot-bead pellistor-type combustible gas sensor

More sophisticated instrumental methods for VOC detection are also 

available. The two most widely used instruments for VOC detection are flame 

ionization (FID) and photoionization detectors (PID). As indicated by their names, 

both techniques rely on ionization of the VOCs in order to detect them. The 

difference between the two techniques lies in the method of ionization. Analyte 

ionization in an FID is caused by a hydrogen/air flame, while it is caused by 

ultraviolet light in PID.2 A disadvantage associated with FID detectors is their

V O C

Increase in 

Resistance  

Displayed  

as %LEL
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relative lack of portability. It is also often necessary to carry a heater with an FID 

system in order to heat the sample line to prevent VOCs from condensing in the 

transfer line.3 The need for the heater and a source of compressed hydrogen 

make maneuvering around a site cumbersome. PID systems are much easier to 

transport than FID and are often used when portability is paramount or when FID 

is ineffective for detection of a particular VOC. Much like the hot-bead pellistors, 

these techniques show good generality, but lack specificity.

In fact, the only technologies available that combine compound-specificity 

and generality are mass spectrometry (MS), gas chromatography (GC), or the 

combined technique GC/MS. GC separates and quantifies compounds. MS 

identifies compounds based on fragmentation patterns. Combining GC and MS 

enables the separation with identification of compounds. GC/MS is therefore able 

to detect multiple VOCs while maintaining compound-specificity. Portability was 

once a major issue for GC/MS techniques because a vacuum is needed; but 

advances in the technology have made it increasingly simple to analyze air 

samples using either on-site or off-site strategies. Unfortunately, GC/MS systems 

are relatively expensive and require expertise to operate and analyze the data 

obtained.

Wolfrum et al. have reported a method that shows a promising 

combination of generality and specificity amongst several VOCs.4 Wolfrum’s 

“electronic nose” technology features an array of sensors and a method for 

processing the sensor response. In this technique, VOCs are measured using a 

heated metal oxide as the sensing component and partial least squares
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regression for data processing. The latter is done by developing a multivariate 

calibration model based on the grouped sensor response. The sensing device in 

this study is capable of not only detecting and differentiating specific VOCs at 

sub-ppm concentration levels, but also quantifying them. The weakness 

associated with this detection method is that the calibration needed for these 

sensors would typically be too expensive and time-consuming.

Thus, while there are many techniques available for VOC detection, there 

remains a pressing need to develop systems that can both detect and 

differentiate between VOCs with low-cost and ease of use. The work described 

herein concerns VOC detection resulting from analyte adsorption by metal 

atoms. Metal centers have a well-known ability to spontaneously react with lone- 

pair bearing molecules. This ability can potentially be exploited in order to 

develop such a detection system.

Luminescent Detection

The formation of a photoemissive adduct on an inorganic substrate could 

conceivably be used as a sensing strategy for the detection of VOCs in the air 

(Figure 2). An important feature of such a sensor is that the substrate should 

remain non-emissive under UV exposure and become emissive only after 

exposure to a VOC. UV light would serve the purpose of visualizing the detector 

response, and would not be necessary for the VOC adsorption to the detector 

film. For such a detection system to be practical the inorganic substrate should 

be castable as a film and the sensing device response should offer response that
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is rapid, reversible, sensitive, and discriminating. Quick detector response is 

crucial when dangerous VOCs must be rapidly identified, for example in an 

industrial production facility. Sensitive sensors are also required when detecting 

VOCs that are harmful even at low concentrations. As discussed earlier, a 

combination of generality and compound-specificity is important depending on 

the application. Finally, (as noted above) reversible sensors are needed for cost- 

effectiveness. A sensor that can be reused will be less expensive to the 

consumer than one that is disposable. This feature would also make the 

detection system more environmentally friendly.

UV light UV light

Clean detector film Exposed detector film

Figure 2. Design of potential inorganic luminescence-based VOC detector.

Luminescence spectroscopy is a potentially powerful basis for chemical 

detection due to its inherent high sensitivity. Through the use of light-emitting 

diode (LED), fiber optic, and miniaturized grating technologies, luminescence 

spectroscopy lends itself well to application in portable handheld devices. As 

described herein, the Cul-ligand system offers a diverse array of photoemissive 

adducts in which emission wavelength is dependent on the ligand (L) present. 

VOC-specific emission wavelength offers the potential for discrimination between 

various VOC adducts at the Cul surface which would combine generality and 

compound-specificity, a combination that is imperative to many applications.
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EXPERIMENTAL

Materials

All reagents were purchased from Aldrich, Acros, or Strem Chemicals and 

were used as received. Cul used for films was purified using a literature 

procedure.52

Instrumentation

Single Crystal X-ray Diffraction

Crystals were mounted on glass fibers and analyzed at 100 K, except 

where noted differently. All measurements were made using graphite- 

monochromated Cu Ka radiation on a Bruker-AXS three-circle diffractometer, 

equipped with a SMART Apex II CCD detector.53 Initial space group 

determination was based on a matrix consisting of 120 frames. The data were 

reduced using SAINT+,54 and empirical absorption correction applied using 

SADABS.55

Structures were solved using SIR-9256 or SHELX.57 Least-squares 

refinement was carried out for all structures on F2 using SHELX-13 and 

ShelXle.58 The non-hydrogen atoms were refined anisotropically. In all cases, 

hydrogen atoms were located the Fourier difference map and then placed in 

theoretical positions.
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Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction (PXRD) data for 1, 2, 3a, and 3b were collected 

at George Washington Univ. using Rigaku Miniflex diffractometer with Cu Ka 

radiation. For compound 3b a 10 h scan was necessary due to weak response. 

In this case, the compound was mulled with Paratone N oil to prevent its 

conversion to 3a. Scans were carried out from 3 to 60° 2 theta at 2 deg./min. The 

data were processed using the MDI-Jade 6.1 software package.59

Powder X-ray diffraction (PXRD) data for 4 and 5 were collected using 

Bruker instrument described above as mulls using Paratone N oil. Cul films were 

also analyzed using this instrument. The films were adhered onto the X-ray 

sample mount with double sided tape. Three 180 s frames were collected, 

covering 5-60° 20. Frames were merged using the SMART Apex II software53 

and were further processed using DIFFRAC-Plus and EVA software.60 All 

calculated powder patterns from single crystal structural data were produced 

using Mercury software.61

Thermogravimetric Analysis (TGA)

Thermogravimetric analyses (TGA) were conducted using a TA 

Instruments Q500 in the dynamic (variable temp.) mode with a maximum heating 

rate of 50 °C/min to 800 °C under 60 mL/min N2 flow.
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Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was conducted using a TA 

Instruments Q20 in the ramp mode with a scanning rate of 3 °C/min from 0 to 50 

°C.

Chemical Analysis

Analysis for C and H were carried out by Atlantic Microlabs, Norcross, GA.

Optical Microscopy

Optical microscopy was carried out using an Olympus 1X71 inverted 

optical microscope capable of electronically viewing and capturing images. Film 

thickness estimates of the Cul films were also obtained used a calibrated z-stage. 

By noting the position of the z-stage when focusing on the glass cover slip and 

when focusing on the film surface, an approximate film thickness was determined.

Atomic Force Microscopy (AFM)

Atomic Force Microscopy (AFM) images were obtained using an Ntegra 

Prima Atomic Force Microscope (NT-MDT) used in semi-contact mode with an 

ACTA probe (AppNano, 40 N/m nominal spring constant).

Scanning Electron Microscopy with Energy Dispersive Spectroscopy 

(SEM/EDS)

SEM/EDS was performed on a Hitachi S-3400N scanning electron 

microscope equipped with a Bruker Quantax model 400 energy dispersive
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spectrometer using an XFIash® 5010 EDS detector with a 129 eV resolution. 

Samples were mounted on double-sided carbon tape affixed to an aluminum 

specimen holder. Images were taken at a working distance of 10 mm with an 

accelerating voltage of 15 kV. EDS spectra were also collected under the same 

conditions for 2 min live time.

Raman Spectroscopy

Raman spectroscopy measurements were performed on an inverted 

microscope. An excitation wavelength at 632.8 nm from a HeNe laser (Research 

Electro-Optics, LHRP-1701) was filtered (Semrock, LL01-633-25) and focused to 

the sample using a 20* objective (Nikon CFI, NA = 0.5). Scattering from the 

sample was collected through the objective, filtered (Semrock, LP02-633RS-25), 

focused to the entrance slit of the spectrograph (Princeton Instruments, SP2356), 

and dispersed using a 600 g/mm grating blazed at 500 nm. The observed Raman 

frequencies were calibrated using a cyclohexane standard. The excitation power 

(Pexc) and acquisition time (taq) were varied in order to maximize signal-to-noise 

ratios while avoiding molecular photobleaching.

Raman spectroscopy of neat pyridine, solid Cul, and solid Cu4UPy4 was 

performed using the Delta Nu Advantage Series 785 bench-top Raman 

spectrophotometer. The excitation wavelength was 785 nm and calibration was 

done using polystyrene.
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Luminescence Spectroscopy

Measurements were carried out at the Univ. of Maine. Steady-state 

photoluminescence spectra were recorded with a QuantaMaster-1046 

photoluminescence spectrophotometer from Photon Technology International. 

The instrument is equipped with two excitation monochromators and a single 

emission monochromator with a 75 W xenon lamp. Low temperature steady-state 

photoluminescence measurements were achieved by using a Janis St-100 

optical cryostat equipped with a Honeywell temperature controller. Liquid 

nitrogen was used as coolant. Spectra were collected as sequential emission 

scans to form a 3-D matrix with excitation as the x axis, emission on the y axis, 

and intensity on the z axis. The wavelength of the exciting light was run from high 

to low wavelength at increments of 3 nm between 500 and 200 nm to avoid 

photobleaching, oxidation or other forms of degradation.

For lifetime measurements at 293 K and 77 K, excitation was provided by 

an Opolette™ (HE) 355 II UV tunable laser operating at 335 nm. The 335 nm 

excitation was chosen since all samples could be excited at this wavelength. The 

laser has a Nd:YAG flashlamp pumped with a pulse repetition rate of 20 Hz and 

an average output power 0.3 mW. The detection system is composed of a 

monochromator and photomultiplier from a JobinYvon Ramanor 2000M Raman 

spectrometer. Data were collected by a Le Croy 9310C dual 400 MHz 

oscilloscope collecting data every 10 ns for 50 ps per sweep averaging 1000 

sweeps per sample. Each sample was run 3 times through this 1000 sweep cycle 

and the results were averaged. The decay curves from these measurements
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were fitted using an exponential decay fitting method in Origin Pro 8. The 

lifetimes were observed at the ideal emission wavelengths for compounds as 

determined by luminescence spectroscopy.

Static Partial Pressure-Dependent Fluorimetric Analysis System

Our in-house-built fiber-optic fluorimeter (Figure 11) utilizes a bundle 

consisting of six optical fibers around one. The six outer fibers carry 365 nm 

excitation light from an LED source, and the center fiber carries emission light to 

the detector (Figure 12). Data were processed with SpectraSuite software 

(Ocean Optics, Dunedin).
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Figure 11. Spectrofluorimeter for measurement of inorganic substrate/VOC 

emission response. (A) LED controller, (B) LED source and filter enclosure, (C) 

fiber optic bundle, (D) sample chamber, (E) detector; inset: (F) inside view of 

sample chamber

Figure 12. Schematic of fiber optic bundle consisting of six outer fibers carrying 

365 nm excitation light (blue circles) and one inner fiber carrying emission to the 

detector (red circle).
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Films were placed inside the sample chamber either pre-exposed or 

unexposed, depending on the experiment. The sample chamber contains an 

injection port so that unexposed films could be exposed to a set concentration of 

VOC, in this static system, and monitored using the spectrofluorimeter.

Flowing Partial Pressure-Dependent Fluorimetric Analysis System

The schematic for the flowing analysis system is shown in Figure 13. This 

system utilized the fiber optic bundle described above (Figure 12). A syringe 

pump provides a supply of VOC. Less than 1 mL of neat VOC was placed in the 

syringe. The headspace of the syringe provided a steady supply of analyte gas 

for the flowing system. The analyte gas was mixed with a carrier gas (N2) which 

continuously flows into the sample chamber. The gas then flows out of the 

sample chamber into the outlet tubes and into a vented fume hood.
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Figure 13. Spectrofluorimeter for measurement of inorganic substrate/VOC 

emission response in a flowing system. (A) Syringe pump, (B) mixing chamber 

for VOC and N2 gas, (C) flow meter, (D) sample chamber, (E) outlet gas tubes, 

(F) LED controller, (G) LED source and filter enclosure, (H) fiber optic bundle, (I) 

detector, (J) Cul film.

Synthesis

Film Casting

All films were cast on microscopy cover glasses that were pre-cleaned by 

dipping in concentrated nitric acid, rinsing with deionized water, and drying with 

acetone. 35 pL of a 100 mM Cul/MeCN solution were used for all film casting. 

Film casting was performed via evaporation with or without leveling by use of a 

doctor blade, or by spin coating. The evaporated films were cast by allowing the 

evaporation of the solution from the glass coverslip, leaving a uniform film. The 

doctor blade-leveled films were cast by running a doctor blade with a gap height
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of 0.635 mm across the solution on the glass slide followed by the evaporation of 

the remaining solution. The evaporation of the MeCN occurred within 5 min for 

both methods.

Spin-Coat Cul Film Casting

Spin-coat Cul films were produced using a Laurell Technologies 

Corporation Spin Coater Model WS-400BZ-6NPP/LITE (REV. MS) programmed 

in three stages and equipped with a N2 purge. In the first stage the spin coater 

was brought up to speed and set to 500 rpm for 5 s. The sample was applied at 

500 rpm over 5 s. Using a 100 pL FinnPipette F2 (Thermo Scientific), 100 pL of 

100 mM Cul solution were added to a glass cover slip during the second stage 

by applying the solution directly onto the spinning glass cover slip. Drying was 

carried out at 3000 rpm for 30 s. This method was repeated until the required 

multi-layer Cul film was obtained.

Cul Film Exposures to Saturated VOCs

Cul films were placed on an aluminum stand inside a 4 oz. glass jar 

(Figure 9). A few drops of VOC were added to the bottom of the jar, which was 

then sealed with a screw cap. The films were exposed for 10 min before being 

analyzed.
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Figure 14. Vapor exposure chamber for Cul films.

Cul-THT Product Synthesis

(Cul)4(THT)2, 1. 2.0 ml_ of 150 mM Cul in MeCN (0.30 mmol) and 2.0 ml_ 

of 250 mM THT in MeCN (0.50 mmol) were combined in a capped vial at 40 °C 

with stirring. A white precipitate with green luminescence formed immediately. 

The powder was collected by decanting, washed using ethyl ether, and vacuum 

dried (0.029 g, 0.031 mmol, 41%). Anal. Calcd. for C8Hi6Cu4l4S2 : C, 10.24; H, 

1.72. Found: C, 10.34; H, 1.66. TGA Calcd. for Cul: 81.2. Found: 81.6 (105-125 

°C). Crystals of 1 were produced by layering 1.0 ml_ of 150 mM THT in MeCN 

(0.15 mmol) over 0.40 ml_ of 150 mM Cul in MeCN (0.060 mmol) in a capped vial 

at 40 °C and allowing diffusional mixing at 40 °C.

(Cul)io(THT)7(MeCN), 2. 2.8 mL of 150 mM Cul in MeCN (0.42 mmol) and 

2.0 mL of 150 mM THT in MeCN (0.30 mmol) were combined in a capped vial at 

-10 °C with stirring. A white precipitate with yellow luminescence formed 

immediately. The powder was collected by decanting and immediately placing 

under vacuum for 2 h (0.065 g, 0.025 mmol, 60%). Anal. Calcd. for 

C30H59CU10NI10S7: C, 14.06; H, 2.32. Found: C, 14.17; H, 2.23. TGA Calcd. for 

Cul: 74.3. Found: 74.5 (80-125 °C). Crystals of 2 were produced by layering 2.0
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mL of 150 mM Cul in MeCN with 2.0 mL of 250 mM THT in MeCN and allowing 

diffusional mixing at room temp.

(Cul)4(THT)4 (orange emission), 3a. 2.0 mL of 150 mM Cul in MeCN (0.30 

mmol) and 2.0 mL of 400 mM THT in MeCN (0.80 mmol) were combined in a 

capped vial at room temp. A white precipitate with orange luminescence formed 

immediately upon stirring. The powder was collected by decanting and 

immediately placing under vacuum for 2 h (0.035 g, 0.031 mmol, 42%). Anal. 

Calcd. for C16H32CU4 I4S4 : C, 17.25; H, 2.87. Found: C, 17.12; H, 2.88. TGA 

Calcd. for (Cul)4(THT)2: 84.2. Found: 85.6 (90-100 °C). Calcd. for Cul: 68.4. 

Found: 70.6 (100-125 °C). Crystals of 3a were produced by layering 2.0 mL of 

150 mM Cul in MeCN with 2.0 mL of 250 mM THT in MeCN and allowing 

diffusional mixing at room temp.

(Cul)4(THT)4 (dull yellow emission), 3b. 1.5 mL of 150 mM Cul in MeCN 

(0.225 mmol) and 3.0 mL of 150 mM THT in MeCN (0.45 mmol) were combined 

in a capped vial at 0 °C. A white precipitate with dull yellow luminescence formed 

immediately upon stirring. The powder was collected by decanting and 

immediately placing on vacuum for 2 h (0.033 g, 0.030 mmol, 53%). Anal. Calcd. 

for C16H32CU4 LS4 : C, 17.25; H, 2.87. Found: C, 17.03; H, 2.79. TGA Calcd. for 

(Cul)4(THT)2: 84.2. Found: 84.5 (60-75 °C). Calcd. for Cul: 68.4. Found: 69.1 

(75-115 °C). Crystals of 3b were produced by layering 1.0 mL of 100 mM Cul in 

MeCN with 0.35 mL of neat THT and allowing diffusional mixing at 5 °C.

(Cul)3(THT)3-MeCN, 4. 0.80 mL of 150 mM Cul in MeCN (0.12 mmol) 

and 2.0 mL of 150 mM THT in MeCN (0.30 mmol) were combined in a capped



29

vial at -5  °C with stirring. A white precipitate with no luminescence formed 

immediately (0.012 g, 0.014 mmol, 34%). All attempts to isolate this product with 

drying caused traces of orange luminescence (indicative of 3a) to develop 

immediately, rendering elemental analysis impossible. TGA Calcd. for 

(Cul)4(THT)4: 95.3. Found: 95.2 (40-55 °C). Calcd. for (Cul)4(THT)2: 80.2. Found: 

79.7 (80-105 °C). Calcd. For Cul: 65.2. Found: 64.6 (125-140 °C). Crystals of 4 

were produced by layering 2.0 mL of 150 mM Cul in MeCN with 5.0 mL of 150 

mM THT in MeCN and allowing diffusional mixing at -8  °C.

(Cul)2(THT)4, 5. Cul (0.50 g, 2.6 mmol) was dissolved in 0.46 mL (5.3 

mmol) neat THT in a capped vial at room temp. A white precipitate with no 

luminescence formed upon sonication. The powder was collected on a frit under 

vacuum (0.84 g, 1.1 mmol, 88%). All attempts to isolate this product with drying 

caused traces of orange luminescence (indicative of 3a) to develop rapidly, 

rendering elemental analysis impossible. TGA Calcd. for (Cul)4(THT)4: 76.0. 

Found: 77.1 (45-75 °C). Calcd. For Cul: 51.9. Found: 52.7 (95-145 °C). Crystals 

of 5 were synthesized by producing a saturated solution of Cul in neat THT and 

storing at -8  °C.

Cul-L Crystallizations

(Cul)co(2-Chloropyridine)oo

Crystals were produced by layering 1.0 mL of 0.53 M 2-chloropyridine in MeCN 

with 1.0 mL of 25 mM Cul in MeCN and allowing diffusional mixing at room 

temperature. The crystals produced were colorless needles with blue 

luminescence.
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(Cul)o.(2-Bromopyridine)o.

Crystals were produced by layering 1.0 mL of 0.52 M 2-bromopyridine in MeCN 

with 1.0 mL of 25 mM Cul in MeCN and allowing diffusional mixing at room 

temperature. The crystals produced were colorless needles with blue 

luminescence.
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RESULTS AND DISCUSSION

Cul Film Characterization

Characterization of the Cul films was performed in order to determine the 

optimal method to make the films for use as a VOC sensor. One desired film 

characteristic was a consistent and uniform surface. Several methods of film 

casting were attempted, including evaporation, doctor blade-casting, and spin 

coating. In the evaporation casting method, Cul solution was micropipetted onto 

a clean glass cover slip and allowed to evaporate. In the doctor blade method of 

casting, Cul solution was micropipetted onto a clean glass cover slip, the doctor 

blade was pulled over the solution, and the solution was allowed to evaporate. 

The doctor blade shown in Figure 15 was used. An image of a doctor blade film 

is also shown in Figure 15. The spin coating-cast Cul films were cast using a spin 

coater which spun the glass coverslip as the Cul solution was micropipetted onto 

it. The morphology of the resulting films was analyzed using optical microscopy, 

AFM, and SEM.

Ilf I
Figure 15. The doctor blade and micropipette used for film casting (left) and an 

image of a doctor blade cast Cul film (right).
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The micrograph in Figure 16 shows the optical image of a doctor blade- 

cast Cul film. The Cul films are colorless; the optical microscopy images were 

rendered using false colors so that the morphology could be studied. The film 

was very consistent, with the exception of some black spots which were deemed 

to be holes in the film (Figure 16). These holes were apparently the result of dirt 

particles deposited from the air onto the glass substrate prior to film casting.

1 0 0  | im

Figure 16. Optical micrograph of doctor blade-cast Cul film (rendered using false 

colors).

The Cul films cast by evaporation were not as physically uniform as the 

doctor blade-cast films. Figure 17 illustrates the films cast using the evaporation 

films casting method. The evaporation-cast films were not only rife with holes, but 

also contained many crystallites. These crystallites suggested that solution 

evaporation was sufficiently slow to allow crystallization. It was determined that 

evaporative casting is not the optimal technique for making Cul films due to the 

inconsistencies observed in optical microscopy.



Figure 17. Optical micrographs of evaporation-cast Cul films (rendered using 

false colors).

Spin-coating was explored as an alternative method of film casting. 

Multiple spin-coated layers were attempted to optimize the process. The films 

displayed in Figure 18 were prepared with one coat and ten coats. The single 

coating on the first film was consistent in the center, but not toward the outside of 

the glass coverslip. The film with ten coatings was more consistent, but no more 

consistent than the doctor blade-cast films. The doctor blade-cast films were 

much more convenient to cast than the ten layered spin-coated films. So, doctor 

blade casting was retained as the optimal film casting method.



Figure 18. Optical micrographs of spin-coated Cul films, left: one coat, right: ten 

coats (rendered using false colors).

The morphology of the single-layer spin coat-cast Cul film was also 

investigated using AFM. This casting method produced the thinnest films, which 

allowed for analysis using this technique. It was hoped that these films would be 

sufficiently smooth to afford atomic resolution. The potential would then exist for 

looking at the film before and after exposure to VOC. Unfortunately, the film 

surface at the nanometer scale was found to be too rough to obtain atomic 

resolution (Figure 19).

Figure 19. AFM micrographs of a single spin coated Cul film.
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The film morphology of the doctor blade-cast films was further examined 

by other techniques because it was the most consistent and easy-to-cast film. 

SEM was used to probe the morphology of the Cul films. The EDS attachment to 

the SEM was also used to determine the consistency of the elemental distribution 

on the film. Figure 20 shows the SEM micrograph, as well as the EDS copper 

and iodine hypermaps. The SEM image further supports the consistency of the 

Cul films cast using the doctor blade. There is one abnormality in the center of 

this image, but a majority of the film surface was uniform. The EDS hypermaps 

represent elemental analysis maps of the film wherein copper is displayed in 

orange and iodide is displayed in blue. The SEM-EDS analysis indicated a 

uniform distribution of copper and iodine on the film.

OOkV 9 9mm x370 SE

Figure 20. SEM micrograph of doctor blade cast Cul films with Cu and I EDS 

hypermaps (upper right and lower right, respectively).

Raman spectroscopy was employed to better understand adducts formed 

on the Cul surface after exposure to VOCs. The Cul film was analyzed before 

and after exposure to saturated partial pressure of Py. It should be noted that
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Raman scattering intensity is inherently very weak, and without a very 

concentrated sample, it is difficult to obtain any signal at all. The exposed film 

produced a very weak Raman signal. The Raman spectra in Figure 21 are of the 

Cul film before and after exposure. Prior to exposure, only bands attributable to 

room light are evident. An additional peak at 1006 cm'1 appears after the Cul film 

is exposed to Py.



Raman Spectrum of Unexposed Cul Film
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Figure 21. Raman spectrum of Cul films before (top) and after (bottom) Py vapor 

exposure.
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Table 2. Raman results for unexposed and exposed Cul films, and for solid 

Cu4l4Py4 (room light peaks are excluded).

Bands (cm-1)

Cul film unexposed [none]

Cul film exposed 1006

Cu4l4Py4 1602 1214 1010 629

In order to better understand these results, solid Cu4l4Py4 and Cul powder 

having been exposed to saturated partial pressure of Py were analyzed using a 

desktop Raman spectrometer. No difference was evident between the Py- 

exposed Cul powder and the complex of Cu4l4Py4. The most striking peak match 

was for the most intense peak in Figure 22. The peaks appear at 1006 cm-1 and 

1010 cm-1 for the solid Cu4l4Py4 and the Cul film exposed to Py, respectively 

(Table 2). The frequency represents the ring breathing vibrational mode (Vi) in 

the 1B2 state of free pyridine.62'63 Thus, the bonding of Py to the Cul film surface 

was successfully observed from the studies using Raman spectroscopy.
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Figure 22. Desk-top Raman spectra of the Cu4l4Py4 and Cul solid exposed to Py.

The Cul films were further characterized using PXRD. The films were 

analyzed both before and after exposure to Py (Figure 23). Before exposure, the 

peaks were indexed which revealed the y-Cul phase presence on the Cul films. 

A few additional peaks appear after exposure to saturated partial pressure of Py. 

These peaks are relatively weak in intensity presumably because they are due to 

a Cu4l4Py4 phase that is found only at the surface of the film. Thus, the Cu4l4Py4 

surface adduct represents a new phase that is identifiable by PXRD
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Cul film on glass, unexposed
Cul film on glass, exposed to Py, 10 min.
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Figure 23. PXRD pattern of Cul film before and after exposure to saturated Py 

vapor.

TGA was another method used to characterize a single Cul film both 

before and after its exposure to saturated partial pressure of Py. Figure 24 shows 

the weight loss from the film irrespective of Py-exposure was less than 1.0%. 

Thus, the mass of the Cul film was found to be trivially small with respect to the 

mass of the glass coverslip. Moreover, any additional mass provided by 

adsorbed Py would lie far below levels detectable by TGA.
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TGA of Cul Films Before and After Exposure
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Figure 24. TGA traces for a Cul film before and after exposure to saturated Py 

vapor.

Cul Film VOC Exposure Luminescence Results

Saturated VOC Exposure

Cul films were exposed to the saturated vapor pressure of various VOCs 

at ambient temperature. After the exposure, the luminescence of these films 

excited by 365 nm light was determined (Figure 25). A diverse variety of 

emission wavelengths were found, depending on the type of VOC used in the 

exposure. Unexposed Cul has an emission wavelength just within the visible 

region (-415 nm), which gave a purple color. The pyridine derivative VOCs are 

all blue-green emissive with the exception of 2-phenylpyridine and 4-
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acetylpyridine (Figure 25 l-J). These VOC adducts emit in the orange-red region 

of the visible spectrum. The only other VOC adduct showing luminescence in the 

orange-red region was the Cul-THT adduct. The rest of the aliphatic amine and 

sulfide surface adducts had emission wavelengths in the blue, green, and yellow 

range.

Figure 25. VOC exposed Cul films under 365 nm excitation light: (A) no 

exposure, (B) Py, (C) 2-Methylpyridine, (D) 3-Methylpyridine, (E) 4- 

Methylpyridine, (F) 2-Bromopyridine, (G) 3-Chloropyridine, (FI) 3-Bromopyridine, 

(I) 2-Phenylpyridine, (J) 4-Acetylpyridine, (K) Piperidine, (L) N-Methylpiperidine, 

(M) N-Ethylpiperidine, (N) Morpholine, (O) N-Methylpyrrolidine, (P) N,N'- 

Dimethylpiperazine, (Q) N,N'-Diethylpiperazine, (R), Dimethylsulfide, (S) 

Diethylsulfide, (T) Tetrahydrothiophene (TFIT).

The emission wavelength for each of the VOCs in Figure 25 was 

determined using luminescence spectroscopy, wherein the excitation wavelength 

was varied to optimize emission response. The resulting emission wavelengths 

are shown in the spectra in Figures 26, 27, and 28. The aromatic amines lie 

within the range of 450 to 600 nm (Figure 26). The aliphatic amines have a wider
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range from 400 to 650 nm (Figure 27). The sulfide amines lie between 500 and 

600 nm (Figure 28).

A unique response was observed when the VOC tetrahydrothiophene 

(THT) was used. The exposure of Cul films to THT resulted in the formation of a 

various luminescent adducts on the same film. At room temperature, orange and 

green emission was observed. However, when the temperature was lowered to 

77 K, yellow luminescence was observed. The presence of multiple phases of 

Cul-THT on the film surface led to further study of the Cul-THT system. The 

details of this study will be discussed below.
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Figure 26. Ambient temperature luminescence spectra of Cul films after 

exposure to various VOCs. N-methylpiperidine (brown), morpholine (red), N,N'- 

diethylpiperazine (black), N-methylpyrrolidine (purple), piperidine (green), N,N'- 

dimethylpiperazine (blue), N-methylpiperidine (yellow)
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Figure 27. Ambient temperature luminescence spectra of Cul films after 

exposure to various VOCs. Pyridine (dark blue), 2-methylpyridine (green), 

4-methylpyridine (orange)
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Figure 28. Ambient temperature luminescence spectra of Cul films after 

exposure to various VOCs. Dimethyl sulfide (light green), diethyl sulfide (light 

blue)
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The diverse spectrum of luminescent colors observed from various VOCs 

suggested significant versatility for Cul as a sensor substrate. The Cul detector 

could use the compound-specific emission wavelengths observed to provide 

compound-specificity. The detector would also be a general sensor due to the 

ability of Cul to create adducts with amine and sulfide VOCs. Lastly, 

photoluminescence with a high quantum yield is sensitive and would make this 

detection design sensitive. The question remaining is whether or not the Cul 

detector can be used to detect VOCs at sufficiently low concentration to be 

useful.

Static Partial Pressure VOC Exposure

Ambient temperature saturation vapor pressure produced observable 

emission for the Cul adducts with a variety of VOCs. In order to determine the 

limits of detection, an experiment was designed in which the saturation pressure 

of the VOC was halved as the starting point for a series of partial pressure 

experiments. The partial pressure would be lowered in subsequent tests if 

luminescence was observed at half saturation pressure. Two aromatic amines, 2- 

methylpyridine (2-MePy) and pyridine (Py), were thoroughly tested. The ambient 

temperature saturation partial pressures for 2-methylpyridine and Py are 10 Torr 

and 20 Torr, respectively.

Luminescence emission was observed as low as 4 Torr for the 2- 

methylpyridine vapor exposures, using luminescent spectroscopy (Figure 29). At 

lower partial pressures, some regions of each Cul film became emissive, but the



46

results were extremely inconsistent. It was therefore determined that the lowest 

partial pressure detectable for 2-MePy using Cul film is 4 Torr or 20.1 ppm. 

There is no established threshold level value for 2-MePy, so formaldehyde was 

used as a benchmark for a regulated VOC. Because the maximum permissible 

workplace level for the VOC, formaldehyde, mandated by OSHA is 0.75 ppm,1 

the Cul detector substrate does not appear to be sensitive enough for use in 

VOC detection.
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Figure 29. Cul film 15 min. 2-methylpyridine exposure using the static partial 

pressure-dependent fluorimetric analysis system at various partial pressures 

(saturation pressure of 2-methylpyridine is 10 Torr).

The Cul film adduct limit of detection was also tested using pyridine. The 

lowest detectable partial pressure of pyridine was found to be 5 Torr or 21.2 ppm 

(Figure 30). Again, this level of detection may not be sufficient enough to be an
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effective sensor. However, before the Cul film could be eliminated as potential 

detector systems for trace level VOCs, another testing strategy was pursued.
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Figure 30. Cul film 15 min. pyridine exposure using the static partial pressure- 

dependent fluorimetric analysis system at various partial pressures (saturation 

pressure of pyridine is 20 Torr).

The flowing fluorimeter system was designed to ensure the Cul film was 

receiving a known concentration that would continuously flow over the film. The 

flow rate of the carrier gas and the flow rate of the analyte gas placed lower 

limitations on analyte gas flow. For this reason, this system was capable of 

providing a stream of pyridine at a maximum partial pressure of 2 Torr to the Cul 

film. No luminescence response on the Cul film was detected using the flowing 

system with pyridine at this pressure. After performing multiple tests on the Cul
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films with the flowing fluorimeter system, it was determined that these films most 

likely cannot detect VOCs at low enough partial pressures to be effective.

Cul-L Crystal Structures

Cul-halopyridine structures were of interest to us as part of our study of 

adducts made on the surface of the Cul film. Many Cul-halopyridine structures 

have as-yet unknown crystal structures. The two Cul-halopyridine structures in 

literature, (Cul)cc(3,5-diiodopyridine)«.64 and (Cul)«(5-bromopyridin-2-amine)oo65 

both have the stair step polymer crystal structure motif. In order to determine how 

common the stair step structures are for the Cul-halopyridine versus the cubane 

or dimer structure motifs, crystallization experiments were performed. As a result, 

two novel polymeric stair step crystal structures were solved: (Cul)»(2- 

bromopyridine)co and (Cul)«(2-chloropyridine)oo. Refinement details for these 

crystal structures are summarized in Table 3 and selected bond lengths and 

angles are given in Table 4.

Table 3. Crystal and structure refinement data for (Cul)co(2-bromopyridine)co and 

(Cul)co(2-chloropyridine)co.

(Cul)oo(2-

bromopyridine).

(Cul)oo(2-

chloropyridine),

color and habit colorless needle colorless needle

size, mm 0.29x0.04x0.04 0.36x0.11 x 0.05

Formula C5H4BrCulN C5H4CICuIN
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formula weight 348.44 303.98

space group P21212i P2i2i2i

a, A 4.0956(2) 4.08230(10)

b, A 11.5655(4) 11.4258(2)

c, A 16.3272(6) 16.4107(3)

a, deg 90 90

P, deg 90 90

Y, deg 90 90

volume, A3 773.38(5) 765.45(3)

Z 4 4

Pcaic, Mg m-3 2.993 2.638

Fooo 632 560

p(Cu Ka), mm'1 40.650 38.166

temperature, K 100 100

residuals:3 R; Rw 0.0136; 0.0320 0.0216; 0.0545

goodness of fit 1.012 1.116

Flack parameter 0.753(6) 0.624(7)
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Table 4. Selected bond lengths (A) and angles (°) for (Cul)co(2-bromopyridine)co 

and (Cul)cc(2-chloropyridine)».

(Cul)co(2-bromopyridine)«. (Cul)«,(2-chloropyridine)cc

Cu-I 2.6071(7)-2.6881(8) 2.6071 (7)-2.6881 (8)

Cu-N 2.060(4) 2.060(4)

Cu Cu 2.7348(8) 2.7348(8)

l-C u -l 100.87(2)-118.90(3) 100.87(2)-118.90(3)

l-Cu-N 100.13(12)-112.20(12) 100.13(12)-112.20(12)

Figure 31. (Cul)«(2-bromopyridine)» polymeric stair step crystal structure (right), 

packing diagram (left). Key: Copper and iodine atoms shown as spheres. 2- 

bromopyridine shown as wireframe. Color scheme for X-ray figures: orange = Cu, 

purple = I, tan = Br, grey = carbon, blue = N. Hydrogen atoms omitted.

The crystal structure for (Cul)=o(2-bromopyridine)« has a 1:1 stoichiometry, 

therefore, a ligand is attached at each copper site, as shown in Figure 31. The
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compound (Cul)co(2-bromopyridine)co crystallizes in the non-centrosymmetric 

orthorhombic space group P2i2-|2-|. The polymeric stair step crystal structure is 

essentially an open cubane or fused rhomboids that extends into an infinite 

chain. Tetrahedral geometry at the copper site is maintained. The same 

structural motif is observed in the previously discovered Cul-halopyridines, 

(Cul)co(3,5-diiodopyridine)«»66 and (Cul)M(5-bromopyridin-2-amine)co67. The Cu-I 

bond lengths (2.6071(7) -  2.6881(8) A) are typical compared to the literature 

range which is from 2.498 -  3.423 A. The l-C u-l bond angles (100.87(2) -  

118.90(3)°) are also within the typical range (85.08 -  126.371 °).

The same crystal motif is observed for the (Cul)«(2-chloropyridine)M 

complex, which is isomorphic with the 2-bromopyridine analog described above. 

(Cul)»(2-chloropyridine)co also crystallizes in the space group P2i2-|2-|. The 

structure is also a polymeric stair step, as seen in the known Cul-halopyridine 

structures, with tetrahedral geometry at the copper site (Figure 32). A ligand is 

attached to each copper site in this structure. The infinite stair step arrangement 

thus appears to be typical structural motifs for Cul-halopyridine complexes. The 

Cu-I bond lengths (2.6071(7) -  2.6881(8) A) and I—Cu—I angles (100.87(2) -  

118.90(3)°) lie within the ranges observed for Cul structures given above. Cul- 

THT complexes form a much more complex and diverse crystal system.
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Figure 32. (Cul)«(2-chloropyridine)co polymeric stair step crystal structure (left) 

and packing diagram (right). Key: Copper and iodine atoms shown as spheres. 2- 

chloropyridine shown as wireframe. Color scheme for X-ray figures: orange = Cu, 

purple = I, green = Cl, grey = carbon, blue = N. Hydrogen atoms omitted.

Cul-THT System

Crystal Structures

The unique behavior of Cul-THT on the film surface, as noted previously, 

led to a more extensive study of this system. Previously, only one structure from 

the Cul-THT structure was known: (Cul)2(THT)4.25 No photoluminescence data 

were reported on this compound, which proved to be non-emissive. Five novel 

structures, four of which are emissive, were discovered through an extensive 

study of the Cul-THT system.

Refinement details for these crystal structures are summarized in Table 5 

and selected bond lengths and angles are given in Table 6. The first novel crystal 

structure, (Cul)4(THT)2 (1) showed green luminescence under 365 nm irradiation. 

Complex 1 crystallized in the non-centrosymmetric orthorhombic space group
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P2i2i2-|. The repeat unit of 1 consists of a Cu4l4 cubane with two THT ligands. 

The THT ligands bridge through single sulfur atoms forming a 3-D cubane 

network, as shown in Figure 34. The closed cubane units are linked to form 

puckered (Cu4 l4)6(M2-THT) 6 rings. These rings come together at cubane nodes 

and are found in each of the three orthogonal directions. This type of bridging is 

rare having only been reported in [(Cul)4(Me2S)3] and [(Cul)4(Et2S)3] (Figure 

3 3 ) 33-36 y^ese structures differ from 1 due to their lack of true “closed” cubanes. 

Bridging through a single sulfur atom presumably caused crowding which is 

evident in some unusual compressed and open l-Cu-S bond angles, especially 

around Cu4 (range = 93.64(12) -  117.00(13)°) (Figure 35). The cuprophilic 

Cu Cu distances (2.636(3) -  2.759(3)A) are slightly shorter than the van der 

Waals radius sum of 2.8 A. Otherwise, the bond lengths and angles in 1 are 

relatively unremarkable.

Table 5. Crystal and structure refinement data3

1 2 3a

color and habit colorless block colorless prism colorless prism

size, mm 0.35 x  0.25 x  

0.23

0.38 x  0.12 x  

0.09

0.35 x  0.16 x  

0.15

Formula CsHi6Cu4l4S2 C30H59CuiolioNS7 Ci6H32Cu4l4S4

formula weight 938.09 2562.60 1114.41

space group P2-|2i2i(#19) P2i/m (#11) P2i/r? (#14)

a, A 11.7527(2) 11.9107(4) 9.5824(2)

b, A 11.8972(2) 12.2273(4) 34.9161(6)

c, A 13.3762(2) 21.0371(6) 17.9841(3)

a, deg 90 90 90



P, deg 90 97.434(2) 91.2810(10)

Y, deg 90 90 90

volume, A3 1870.32(5) 3038.00(17) 6015.62(19)

Z 4 2 8

Pcaic, Mg m-3 3.331 2.801 2.461

Fooo 1696 464 4160

p(Cu Ka), mm-1 58.888 46.043 38.037

temperature, K 100 123 250

residuals:3 R; Rw 0.0458,0.1169 0.0545; 0.1531 0.0476,0.1182

goodness of fit 1.080 1.140 1.064

Flack parameter 0.862(12) — —

aR = R1 = I||F 0| -  |FC||/ £ |F0| for observed data only. Rw = wR2 = { I  [w(F02 

Fc2)2)/1  [w(F02)2]}V2 for all data.

Table 5 cont.

3b 4

color and habit colorless prism colorless block

size, mm 0.31x 0.12x 

0.09

0.47 x 0.29 x 

0.19

Formula Cl6H32Cll4N4S4 CuH^CUsbNSs

formula weight 1114.42 876.86

space group R-1(#2) C2/c (#15)

a, A 9.5915(2) 22.7901(7)

b, A 10.8378(3) 13.2617(4)

c, A 15.7597(4) 16.0147(5)

a, deg 73.2170(10) 90

P, deg 72.4319(12) 90.1331(11)

Y, deg 69.2273(11) 90

volume, A3 1429.64(6) 4840.2(3)

Z 2 8



55

Pcaic, Mg m 3 2.589 2.407

Fooo 1040 3296

p(Cu Ka), m m '1 40.013 35.514

temperature, K 100 100

residuals:3 R; Rw 0.0501; 0.1621 0.0304; 0.0785

goodness of fit 1.163 1.175

Flack parameter — —

aR = R1 = I||F 0| -  |FC||/ I  |F0| for observed data only. Rw = wR2 = { I  [w(F02 -  

Fc2)2]! I  [w(F02)2]}V2 for all data.

Table 6. Selected bond lengths (A) and angles (°) for all Cul-THT complexes.

1 2b 3a

Cu-I 2.610(2)-2.756(3) 2.6098(14)-2.703(15) 2.6469(16)-2.709(3)

Cu-S 2.312(4), 2.317(4), 

2.325(4)

2.307(4)-2.361(6) 2.284(3)-2.380(7)

Cu Cu 2.636(3)-2.759(3) 2.650(5)-2.754(3) 2.6728(19)-2.837(3)

l-C u -l 107.31 (8)-118.02(9) 110.77(7)-120.76(11) 108.06(8)-116.29(6)

Cu-I-Cu 58.07(7)-62.20(7) 58.61 (7)-63.67(6), 

92.70(8), 97.58(7)

59.55(4)-64.09(5)

l-C u-S 93.64(12)-117.00(13) 98.04(9)-124.26(17) 87.44(17)-118.81 (16)

S-Cu-S 98.96(17), 99.08(15), 

105.39(19)

Cu-S-Cu 120.47(17),

124.08(18)

117.51 (18)-123.27(13)

aData from ref. 25. DBonding to CuS (10% occupancy) omitted.
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Table 6 cont.

3b 4 5a

Cu-I 2.650(3)-2.728(3) 2.5887(8)-2.6418(7) 2.637(1), 2.639(1)

Cu-S 2.292(4), 2.293(4), 

2.302(4), 2.306(4)

2.3187(11)-2.3517(10) 2.318(2), 2.331(3)

Cu Cu 2.639(3)-2.768(3) 2.9653(14), 2.9722(9) 2.675(2)

l-C u -l 109.67(9)-118.22(9) 110.40(2), 110.79(3), 

110.86(2)

119.08(4)

Cu-I-Cu 58.29(7)-62.30(7) 69.06(3), 69.27(2), 

69.43(2)

60.92(4)

l-C u-S 98.97(13)-114.32(13) 107.04(4)-113.51 (4) 104.6(1), 104.7(1), 

104.7(1), 109.6(1)

S-Cu-S 102.49(4), 104.10(4), 

104.64(5)

114.5(1)

Cu-S-Cu 120.26(5), 121.40(5), 

128.78(5)

aData from ref. 25. ^Bonding to CuS (10% occupancy) omitted.

Figure 33. Crystal structures of (Cul)4(Me2S)334 (left) and (Cul)4(Et2S)335 (right). 

Key: Copper and iodine atoms shown as spheres. THT are shown as wireframe. 

Color scheme for X-ray figures: orange = Cu, purple = I, yellow = S, grey = 

carbon, blue = N. Hydrogen atoms omitted.
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Figure 34. X-ray structure of (Cul)4(THT)2, 1. Key: Copper and iodine atoms 

shown as spheres. THT are shown as wireframe. Color scheme for X-ray figures: 

orange = Cu, purple = I, yellow = S, grey = carbon, blue = N. Hydrogen atoms 

omitted.
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Figure 35. Thermal ellipsoid diagram for 1 (50% ellipsoids).

The complex and unprecedented X-ray structure of (Cul)io(THT)7(MeCN) 

(2) (Figure 36) has a crystallographically independent unit that consists of eight 

unique Cu atoms, seven unique iodine atoms, and six unique THT ligands. This 

structure crystallizes in the centrosymmetric monoclinic P2^m space group. 

Disorder over two sites (Cu8 and Cu9) is present in the Cu atom bearing the 

MeCN ligand. There is significant disorder in three of the THT ligands which lie 

approximately on the crystallographic mirror plane. Two independent cubane 

units are present. An open cubane is formed by atoms Cu3, Cu4, Cu4' (prime 

indicates a mirror symmetry position), Cu5 and 12, 13, 14, l4'.The THT ligand on 

Cu5 is monodentate and Cu3 and Cu5 are bridged by p2-THT ligands to a central 

rhomboid dimer Cu2l2 (Cu1, Cu2, 11, and IT). Therefore, Cu5 has a l2S2
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coordination sphere and Cu3, Cu4, and Cu4' each have an l3S coordination 

sphere. Two more P2-THT ligands attach the other side of the rhomboid dimer to 

another cubane (Cu6, Cu7, Cu7', Cu8/9, 15, 16, 17, and 17'). When this cubane 

contains Cu8 (90% occupancy, see Figure 37), it is open. The cubane is 

“closed”, however, when it contains Cu9 (10% occupancy, see Figure 37). The 

MeCN ligand on Cu8 acts as a monodentate capping ligand and is analogous to 

the S3 THT in that way. A long 1-D chain is formed from the structure described, 

(Cu4l4)-(P2-THT)2-(Cu2l2)-(M2-THT)2-(Cu4l4), and these chains knit together like 

rungs on a ladder by bridging p2-THT ligands which link Cu4 and Cu7. The 

ladder rungs are in alternating directions. There is also a lack of crosslinking of 

the ladders, preventing the formation of 2-D sheets. All Cu Cu distances in 2 are 

less than the van der Waals sum value. The Cu Cu distances from the cubane 

Cu’s to the swung out Cu (Cu3 Cu5 = 2.691(4), Cu6 Cu8 = 2.601(4) A) do not 

significantly differ from those distances within the cubanes (Cu3 Cu4 = 2.700(3), 

Cu6 Cu7 = 2.680(3) A). The Cu Cu distance in the dimer (CuT Cu2) is 

somewhat longer (2.754(3) A) while still lying in the van der Waals sum value. 

The Cu-I-Cu bond angles lie within the range of 58 -  63° with two exceptions 

due to the opening of the cubanes: Cu8-I7-Cu7' = 192.70(8) and Cu5-I4-Cu4' = 

97.58(7) A.



Figure 36. X-ray structure of (Cul)io(TFU)7(MeCN), 2 with Cu8 (90% occupancy). 

Key: Copper and iodine atoms shown as spheres. THT are shown as wireframe. 

Color scheme for X-ray figures: orange = Cu, purple = I, yellow = S, grey = 

carbon, blue = N. Hydrogen atoms omitted.



Figure 37. X-ray structure of 2 (50% ellipsoids). Cu8-NCMe present at 90% 

occupancy and Cu9 (dashed) present at 10% occupancy.

Complexes 3a and 3b are polymorphs, each having the simple cubane 

formula (Cul)4(THT)4 (Figure 38). Compound 3a crystallizes in the 

centrosymmetric monoclinic P2^n space group and has two crystallographically 

independent cubanes units in the unit cell. One of the THT ligands in this 

structure is disordered so that two ligand positions are bonded to Cu8 (Figure 

39). The X-ray structure of 3a was analyzed at 250 K due to a destructive phase 

change that occurred at 213 K, producing a triclinic cell. Compound 3b 

crystallizes in the triclinic space group P- 1 with a single crystallographically 

independent cubane molecule. These polymorphs show different luminescence 

emission under 365 nm irradiation. Such different luminescent behavior in 

polymorphs was previously described for (Cul)4(PPh3)4.68 Compound 3a shows 

orange emission and compound 3b has dull yellow emission. There are no 

meaningful differences amongst the bond lengths and angles of the three
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cubanes, as demonstrated by overlaying the structures (Figure 40). For example, 

Cu-I distances in 3a are 2.651(2) -  2.710(2) and 2.647(2) -  2.709(3) A, and in 

3b are 2.650(3) -  2.728(3) A; and Cu Cu distances in 3a are 2.673(2) -  

2.761(2) and 2.669(2) -  2.837(3) A, and in 3b are 2.639(3) -  2.768(3) A.

Figure 38. X-ray structures of (Cul)4(THT)4 polymorphs 3a (left) and 3b (one 

molecule only shown, right). Key: Copper and iodine atoms shown as spheres. 

TFIT are shown as wireframe. Color scheme for X-ray figures: orange = Cu, 

purple = I, yellow = S, grey = carbon, blue = N. Flydrogen atoms omitted.

Figure 39. Thermal ellipsoid diagram of (a) 3a and (b) 3b (50% ellipsoids).



Figure 40. Wireframe overlay of 3a (orange, one independent molecule only) and 

3b (green).

(Cul)3(THT)3*MeCN (4) crystallizes in the centrosymmetric monoclinic 

C2/c space group and contains a non-coordinated MeCN molecule. It also shows 

bridging THT behavior leading to network formation, as seen in 1 and 2 (Figure 

41 and Figure 42). Six-membered Cu3S3 rings are formed by the linking of 

dimeric CU2 I2 units through p2-THT molecules. The six-membered rings are 

further overlaid into (Cu2 l2)6(THT)6 macrocycles which form nearly flat 2-D sheets 

with the THT rings pointing towards the center of the larger rings. The distance 

between the sheets is rather small (interplanar I" I distance = 4.3 A). The solvent 

molecule, MeCN, is trapped between the sheets and aligned with the center of 

the large rings. In this compound, the Cu "Cu interactions (2.9653(14), 2.9722(9)
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A) are longer than the van der Waals sum. This effect is further reflected in the 

relatively open Cu-I-Cu bond angles of 69.06(3) -  69.43(2)°. ̂&  S

W '  \  ^  '

Ky v

Figure 41. X-ray structure of (Cul)3(THT)3«MeCN, 4. Key: Copper and iodine 

atoms shown as spheres. THT are shown as wireframe. Color scheme for X-ray 

figures: orange = Cu, purple = I, yellow = S, grey = carbon, blue = N. Hydrogen 

atoms omitted.

p ?
r t a ° -  C 12 / 0  S2\ / V £ S

C15 C11

C10L /> "N 2 'c> Cu3
°  C 9\> 13

Figure 42. Thermal ellipsoid diagram of 4 (50% ellipsoids).
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Cul-THT Product Domain Diagram

Stirred crystallization experiments in capped vials containing various ratios 

of Cul and THT in MeCN at various temperatures were performed. All the 

experiments yielded white precipitates, with the exception of relatively Cul-rich 

mixtures at high temperatures, which failed to produce solids. The identity of the 

products from these stirred reactions was initially deduced from luminescence 

emission color observed. The solid products were later identified using PXRD 

and/or TGA. The resulting domain diagram in Figure 43 shows which Cul-THT 

phases are formed from MeCN at various temperatures and ratios of Cul THT. At 

high temperatures and Cul-rich conditions, the green-emitting phase, 1, was the 

result. At lower temperatures with the same Cul-rich conditions, the dull yellow- 

emitting compound 2 was produced. At around room temperature, but in THT- 

rich conditions, the orange-emitting 3a phase was formed. If the temperature is 

lowered from the domain of 2, the yellow-emitting phase, 3b will be produced. At 

temperatures below 0 °C and in THT-rich conditions, the dark phase 4 was 

formed. The only one of the six Cul-THT products now known that was not 

observed in this study is the previously reported, and non-emissive dimer 5 (see 

Figure 8b).25 Black light photos under 365 nm excitation for the four emissive 

phases 1, 2, 3a, and 3b are shown in Figure 44.
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Figure 43. Precipitate domains for Cul-THT in MeCN at various mixing ratios and 

temperatures.

Figure 44. Photos of emissive phase Cul-THT powders under 365 nm excitation.
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PXRD of Cul-THT Powders

Samples of all six Cul-THT compounds were prepared using the optimal 

conditions as given in the domain diagram (Figure 43). Compound 5 was 

synthesized by a modification of the literature procedure in which solid Cul 

(rather than Cu/KI) was dissolved in neat THT.25 These samples were then 

characterized using PXRD and the results compared to the calculated powder 

patterns from their respective crystal structures. Compounds 1, 2, 3a, and 3b 

were analyzed by PXRD at room temperature. Due to the loss of THT or solvent 

at ambient temperatures, 4 and 5 were analyzed at 100 K.

The PXRD pattern of 1 matches the calculated pattern extremely well 

(Figure 45). The PXRD pattern for 2 was more cluttered than the pattern for 1, 

but still appears to match the calculated pattern well, as seen in Figure 46. 

Another strong match between the calculated and experimental PXRD patterns is 

observed for 3a (Figure 47). Problems begin to arise with the PXRD patterns of 

3b, 4, and 5. Compound 3b does not diffract very well, thus it required a long run 

to get measurable intensity (Figure 48). Preferred crystallite orientation is also a 

potential source problem because this compound could not be ground without 

losing THT and converting to 1 (grinding studies are discussed below). This 

could explain the intensities for the calculated pattern being different than the 

experimental pattern. The matches for 4 and 5 are good as seen in Figures 49 

and 50, respectively, but each experimental trace possesses a peak that does 

not match the calculated pattern (each at around 22°). This peak could be the
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result of sample contamination or the appearance of another phase due to 

solvent or THT loss.

 J i

Experimental
Calculated

' I 1 ' I 1 I I 1 1 I I I I I I I I I I I I I »T- r p T r 'n T T TT T i T . r ! ■ i r I I
5 10 15 20 25 30 35 40 45 50

2 Theta, deg.

Figure 45. Experimental and calculated PXRD patterns for complex 1
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Experimental
Calculated

2 Theta, deg.

Figure 46. Experimental and calculated PXRD patterns for complex 2
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Figure 47. Experimental and calculated PXRD patterns for complex 3a
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Figure 48. Experimental and calculated PXRD patterns for complex 3b (ambient 

temperature, Paratone oil mull, 10 hour scan)
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Figure 49. Experimental and calculated PXRD patterns for complex 4 (100 K, 

Paratone oil mull)
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Figure 50. Experimental and calculated PXRD patterns for complex 5 (100 K, 

Paratone oil mull)

Thermogravimetric Analysis (TGA) of Cul-THT Powders

TGA was performed on all Cul-THT powders (Figure 51). For all the 

complexes, the % Cul left after 150 °C corresponded very closely with the 

theoretical % Cul based on the formula of the complex. The initial mass loss 

temperatures seen for the various complexes were consistent with the relative 

stability of the complexes during handling. So, 1, which was the most stable 

complex, did not lose any mass until 105 °C. The somewhat less stable 2 and 3a 

showed mass loses commencing below 100 °C. Compound 3b was found to be 

less stable to heating than its polymorph 3a by differential scanning calorimetry
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(DSC, see below). Thus, 3b underwent mass loss beginning 30 °C below the 

analogous point for 3a. Finally, the least stable compounds 4 and 5 experienced 

mass loss at very modest temperatures, with a clear MeCN loss step evident for

4. Carbon and hydrogen chemical analysis was also performed on 1,2, 3a, and 

3b. The % C and % H for all complexes corresponded well with the theoretical 

values (see Experimental Section).

100

3b
9 0 -

8 0 -

60 -

50 100 150 200 250 300

Temperature, deg C

Figure 51. TGA traces of Cul-THT phases.

Phase Conversion Studies

The interrelationship between the Cul-THT phases was investigated using 

differential scanning calorimetry (DSC), as well as grinding, vacuum, and low 

temperature studies. The relationship between 3a and 3b was probed first using
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DSC. An endothermic transition was apparent for 3b at 38 °C, as shown in 

Figure 52. The conversion seen was believed to be from 3b to 3a. The 

conversion from 3a to 3b was not observed in the DSC trace since it would 

require maintaining the sample at temperatures of under 38 °C (Figure 52). So, 

to confirm this hypothesis, a constant temperature study was performed using 

heated oil baths. Separate dry samples of 3a and 3b were heated in separate 

vials at 35 and 45 °C. Their luminescent colors were observed in order to 

determine when a phase conversion had occurred. Over the course of an hour, 

the dull yellow-emissive 3b was seen to convert to orange-emissive 3a at 45 °C, 

while the 3a sample remained unchanged. At 35 °C, 3a converted to 3b, and 3b 

remained unchanged. The transition at 35 °C required overnight heating due to 

significant activation energy in the solid state. In the stirred crystallization studies 

in MeCN, 3a also proved to be the favored polymorph at higher temperatures. 

The density of 3b (2.588 g/cm3) exceeds that of 3a (2.461 g/cm3). So according 

to Kitaigorodskii’s rule,69 the more stable complex at room temperature should be 

3b. Both DSC results and controlled-temperature solid state reactions support 

this assertion. The kinetically-favored polymorph, however appears to be 3a, 

based on the results of the grinding studies performed (see below).
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Figure 52. DSC trace for polymorphs 3a (orange) and 3b (green).

The mechanochemical conversions of the Cul-THT phases were studied 

using grinding experiments. Each compound was dry-ground separately. The 

result was the following set of conversion trends: 1 remained unchanged, 2 

converted to 1, 3a converted to a 3a/3b mixture, and 3b converted to 1. So, in 

the absence of THT, the most THT-rich phases convert to the most THT-poor 

phases by adding mechanical energy. The grindings were also performed in the 

presence of neat THT. With a sufficient amount of THT present, all phases 

converted to the most THT-rich phase, 5. These observations are consistent with 

the crystallization of 5 from neat THT. The grinding studies also support the facile 

loss of THT from 5 when left in the air to produce the orange luminescent phase 

3a. Additionally, each compound was placed under vacuum to study their
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behavior. Overnight vacuum treatment at 50 mTorr did not affect compounds 1 

and 2. However, both 3a and 3b convert to 1, the most THT-poor phase, under 

these conditions. The summarized results of the grinding and vacuum study are 

displayed in Table 7.

Table 7. Grinding and vacuum study results.

Initial

Compound

Dry

Grinding

Product

Grinding 

Product with 

Drop of THT

Grinding 

Product with 

Excess THT

Vacuum 

T reatment 
(50 mTorr)

1 1 3a 5 1

2 1 3a 5 2

3a 3a/3b 3a 5 1

3b 1 3a 5 1

Another phase transition was discovered when crystals of 3a were cooled 

on the X-ray diffractometer. Cooling these crystals to 100 K invariably caused 

them to crack. Thus, an experiment was performed to determine at what 

temperature the crystals experience the phase transition. A crystal of 3a was 

placed on the X-ray goniometer. The instrument was then programmed to collect 

a single diffraction frame per °C as the crystal was cooled at a rate of 1 °C/min. 

When the diffraction pattern changed, the temperature was noted. In this work it 

was discovered that the phase transition occurs at 213 K. The diffraction of this 

new phase was rendered of lower quality, even after the crystal was warmed 

back up. The orange emission of 3a persisted through this phase change, 

indicating that the new phase was not dull yellow-emissive 3b. Low temperature
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structural determination was not possible for 3a due to the low quality of the 

diffraction data, but the unit cell of this new phase (3a') was reliably indexed. A 

comparison of the unit cell parameters of 3a, 3a', and 3b is shown in Table 8. 

The major difference between 3a and 3a' is the loss of right angles at lower 

temperatures, producing a triclinic cell.

Table 8. Unit cell parameters for (Cul)4(THT)4 cubane polymorphic phases.

3a 3a,a 3b

Temp., K 250 200 100

Space group P21/n triclinic P P-1

a, A 9.5824(2) 9.69 9.5852(5)

b, A 34.9161(6) 16.38 10.8359(5)

c, A 17.9841(3) 36.39 15.7749(8)

a ,° 90 87.48 73.253(2)

91.2810(10) 88.27 72.470(2)

Y,° 90 88.66 69.213(2)

Volume, A6 6015.62(19) 5858 1430.15(12)

Z 8 (8) 2

aLimited data set, structure solution not pursued.

Luminescence Spectroscopy

As shown in Figure 44, four of the Cul-THT phases studied proved to be 

strongly photoluminescent. The distinct visible emission colors upon irradiation 

with UV light are of interest because spectroscopic distinctions can reveal 

differences in the electronic structure of the complexes. Of particular interest is 

the fact that polymorphs, 3a and 3b exhibit different emission wavelengths. 

Therefore, the luminescent behavior and lifetimes of 1, 2, 3a, and 3a were
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studied at ambient and liquid nitrogen temperatures. The results are summarized 

in Table 9 and in Figures 53 and 54. The excitation and emission traces at for 

each complex are shown in Figure 53 at 293 K and 77 K. From these traces, it is 

evident that thermochromism is occurring, as well as compound-specific 

behavior. Figure 54 displays the emission wavelengths of each phase at 77 K. 

Moderate peak excitation wavelengths resulted for all four complexes (335 -  359 

nm). In all cases, the emission seen was at low energies (LE band, 519 -  590). 

HE bands were uniformly absent due to the fact that THT lacks tr* ligand orbitals 

needed for XLCT or MLCT.39’42-44' 70-71

350250 450 550 650
Wavelength (nm)

650 350 450 550 650
Wavelength (nm)

3a

350250 450
Wavelength (nm)

550 650650

3b

650350 450 550
Wavelength (nm)

Figure 53. Luminescence spectroscopy of Cul-THT complexes at 293 K (top 

traces) and 77 K (bottom traces). Excitation wavelength (left) and emission 

wavelength (right) shown in each case. Dashed/solid line traces indicate linked 

excitation/emission pairs.
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3b
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Figure 54. 77 K emission spectra of luminescent Cul-THT complexes.

All complexes studied experienced modest and fully reversible 

thermochromic effects. Compound 1 showed single excitation and emission 

bands at 350 nm and 519 nm, respectively. These bands shifted at 77 K to 339 

nm and 528 nm. Compound 2 displayed similar behavior with ambient 

temperature excitation and emission wavelengths at 335 nm and 552 nm, shifting 

to 330 nm and 575 nm at 77 K. A broad emission band at 590 nm with a peak 

excitation at 344 nm was observed for compound 3a at ambient temperature. 

The broad emission peak and the excitation peak split at 77 K (345/583 nm and 

329/545 nm). Compound 3b showed similar behavior with ambient temperature 

excitation and emission bands at 346 nm and 541 nm split into two couple 

excitation/emission band pairs: 341/529 nm and 324/576 nm. As a reminder, 

compound 3a is actually at the lower symmetry 3a' at 77 K. So, the splitting of the
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emission bands could be the result of symmetry lowering at reduced 

temperatures.

Table 9. Luminescence behavior and lifetimes of the Cul-THT complexes.

Compound T (K) Aem (mil), [Aex 

(nm)]

Stokes Shift 

(cm'1)

Lifetime

(MS)
(Cul)4(THT)2, 1 293 519, [350] 9,700 12.1

77 528, [339] 10,600 10.4

(Cul)i0(THT)7(MeCN), 2 293 552, [335] 11,700 23.7

77 575, [330] 12,900 15.5

(Cul)4(THT)4, 3a 293 590, [344] 10,200 19.1

77 583, [345] 12,100 15.0

77 545, [329] 12,000 9.97

(Cul)4(THT)4, 3b 293 541, [346] 10,400 6.60

77 529, [341] 10,400 8.99

77 576, [324] 13,500 15.5

The compounds exhibit very similar wavelengths, but the subtle 

differences are instructive. Based on extensive precedent, the LE transitions 

seen can be attributed to 3CC behavior. The 3CC transition is itself a combination 

of XMCT and MC components according to previous studies.39,42-44 70-71 Three 

metrics may be used to evaluate the contribution of these components: (1) 

Stokes shift, (2) thermochromic emission shift, and (3) emission lifetime. A large 

Stokes shift results because of the distortion of the cluster due to XMCT involving 

a transition from a largely l-cluster based HOMO to a largely Cu-cluster [(Cul)n] 

based LUMO (n = 2, 4, 6). The increase in degree of bonding, due to excited
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state cluster distortion, stabilizes the excited state. The stabilization of the excited 

state also leads to a longer emission wavelength. A more heavily MC 

(3d10—>3d94p1) 3CC transition would show a lesser degree of Stokes shifting. The 

lifetimes of 3CC transitions are typically near 10-20 ps; in contrast longer 

lifetimes may be seen due to the more disruptive XMCT.

At reduced temperature, 3a and 3b show pairs of excitation/emission 

bands. For 3b at 77 K there are differences in the Stokes shift and lifetimes of its 

pair of coupled bands. The higher energy Stokes shift and longer lifetime (15.5 

vs. 8.99 ps) belong to the lower energy (LEi) 324/576 nm band which has yellow 

emission. The 3CC band for the higher energy band (LE2) 341/529 nm, showing 

green emission, has less 3XMCT character than the LEi band. The longer lifetime 

can reasonably be associated with the more disruptive 3XMCT process. Due to 

the conversion of 3a discussed previously, 3a' is the phase considered at 77 K. 

For 3a' LE2 is associated with the lower energy excitation band. The two bands 

for 3a' show similar Stokes shifts (LEi = 12,100 and LE2 = 12,000 cm-1), but 

different lifetimes (LEi = 15 ps and LE2 = 9.97 ps). Therefore, there appears to 

be a more even balance between 3XMCT and 3MC character in the CC bands for 

3a'. Another compound that shows a relatively high Stokes shift (12,900 cm-1) 

and a long lifetime (15.5 ps) at 77 K is compound 2. Therefore, it should be 

regarded as largely 3XMCT in character. A more modest Stokes shift and a 

shorter lifetime are observed for compound 1 at 77 K, indicating greater 3MC 

character.
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CONCLUSIONS

Cul films were investigated as a potential detector substrate for the 

detection of VOCs in the air. The optimum film casting method was determined 

by characterization of the film morphology. The most uniform and consistent films 

were cast from Cul in MeCN solution using a doctor blade followed by the 

evaporation of the solvent from the glass cover slip. Film surface morphology 

was evaluated using optical microscopy and SEM. The vapor-exposed and 

unexposed films were also compared using PXRD, TGA, and Raman 

spectroscopy. TGA was determined to be ineffective for determining the 

presence of surface adducts formed after exposure. The PXRD pattern after 

exposure was useful for identifying the presence of a new adduct phase. The 

presence of a Cul-L adduct on the surface of the film was also observed using 

Raman spectroscopy.

Saturation vapor pressure tests using aromatic amines, aliphatic amine, 

and sulfides showed a diverse array of photoluminescent adducts on the film 

surface. The luminescence color varied to some degree with the VOC used, 

suggesting the potential to differentiate between various VOCs. Partial pressure 

experiments were conducted on the Cul films, and demonstrated the capability of 

these films to detect pyridine and 2-methylpyridine down to 21.2 and 20.1 ppm, 

respectively. The detectable concentrations are not likely to be low enough for 

Cul to compete with existing sensor technology.
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The crystal structures of two previously unknown Cul-halopyridine 

structures were determined. (Cul)co(2-bromopyridine)=o and (Cul)«(2- 

chloropyridine)co have a stair step crystal structure motif. The unique Cul-THT 

system was also investigated. This system is comprised of at least six distinct 

phases: green-emitting (Cul)4(THT)2 (1), yellow-emitting (Cul)i0(THT)7(MeCN) 

(2), orange-emitting (Cul)4(THT)4 (3a), dull yellow-emitting (Cul)4(THT)4 (3b), 

non-emissive (Cul)3(THT)3-MeCN (4), and non-emissive (Cul)2(THT)4 (5). 

Compound 1 is a 3-D network consisting of Cu4l4 cubane units and p2-THT 

ligands. Compound 2 is a 1-D ladder consisting of {[Cu4l4(THT)](p2- 

THT)2(Cu2l2)(p2-THT)2[Cu4l4(NCMe)]} rungs connected by pairs of p2-THT links. 

Compounds 3a and 3b are simple (Cul)4(THT)4 molecules and are polymorphs. 

Denser triclinic 3b is more stable than monoclinic 3a phase at 25 °C, converting 

to 3a at >38 °C. 3a shows a transformation to a triclinic phase (3a1) that retains 

orange emission at -60 °C. Compound 4 is a 2-D sheet containing Cu3(THT)3 

rings trigonally linked by rhomboid Cu2l2 dimer units with MeCN solvent 

molecules occupying large (Cu2l2)6(THT)6 rings. The dimer 5 consists of a Cu2l2 

rhomboid core decorated with four THT ligands. Increasing temperature of the 

Cul/THT mixtures in MeCN shows a trend: 4 —► 3b —> 3a —► 1. THT-rich 

conditions favor 5 while THT-poor conditions favor 1.

The photoemissive compounds 1, 2, 3a, and 3b are excited by 335 -  350 

nm wavelengths at room temperature and have emission wavelengths from 519 

-  590 nm. These bands are attributed to cluster centered transitions which is a 

combination of halide-to-ligand (XMCT) and metal-centered (MC) components.



83

At 77 K, both 3a and 3b show splitting into coupled pairs of excitation/emission 

bands. It is hypothesized that the larger Stokes shift and longer lifetime features 

are a result of greater XMCT character.
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