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ABSTRACT
Transformation of landscapes for human use underlies most conservation 

problems. Biologists are increasingly using human footprint models with massive 
global and national spatial datasets to gauge the effects of humans on 
ecosystems. These models use spatial data to estimate the influence of human 
activities on natural landscapes. We examined 3 models to determine how 
accurately human footprint models predict effects of land use on ecological 
processes. Models were evaluated using bird data and anuran data from the 
eastern United States, as well as Breeding Bird Survey data and invasive 
cheatgrass data from the western United States. Bird and anuran species were 
organized into guilds and the incident rate for each guild was related to the 
human footprint intensity. We mapped occurrence of invasive species to 
compare to human footprint intensity. We predicted that when human footprint 
intensity was low incident rates of bird and anuran species that are sensitive to 
human activities should be highest and there should be fewer occurrences of 
invasive species. We found that Leu et al.’s (2008) model was the best at 
predicting all synanthropic species, while Theobald et al.’s (2012) model was the 
most accurate at predicting invasive species and avian species that are sensitive 
to humans. None of these models were accurate at predicting anuran guild 
abundance. The results of this study can inform future land-use decisions with 
potential to influence the spread of invasive species or the occurrence of species 
that are sensitive to anthropogenic land use, spread of invasive species, and 
future land use decisions.

Human-land modification is widespread and occurs throughout every land- 
cover type in the United States. How a species might respond to human land 
modification varies; human-dependent species thrive in anthropogenic land- 
cover, while species that are sensitive to human-dominated landscapes tend to 
avoid certain aspects of land use. Which particular features of human dominated 
land-cover are avoided across species (e.g. agriculture, highways, urban areas, 
etc.). We compared how different anthropogenic features predicted where certain 
species occurred. We extracted land-cover data from USGS Landfire (2013) 
datasets and compared them to data collected from the Breeding Bird Survey 
(BBS) for the entire conterminous United States. We compared natural and 
anthropogenic land-cover types to species occurrence of a human dependent 
species, the European starling (Sturnus vulgaris), and a sample of thought to be 
associated with unaltered habitats: bushtit (Psaltriparus minimus), marsh wren 
(Cistothorus palustris), swainson’s thrush (Catharus ustulatus), hermit thrush 
(Catharus guttatus), northern parula (Parula americana), ovenbird (Seiurus 
aurocapillus), and grasshopper sparrow (Ammodramus savannarum). The 
species were chosen because they are thought to be sensitive to anthropogenic 
disturbance where their preferred breeding land-cover type was available and 
avoided high levels of human development. These results will enable land 
managers to improve current human footprint models and create habitat 
suitability models for species in relation to human landscapes.
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Chapter 1: Introduction

One of the first publications depicting how humans change landscapes and the 

subsequent effects on ecological processes was Man and Nature (Marsh 1864). In that 

early publication, Marsh (1864) described the extent of human impacts on the 

environment and the need to understand the complex interactions between man and the 

environment (Turner et al. 1990). Recent studies have proposed that by 2100, land-cover 

change will be the largest stressor for terrestrial ecosystems (Sala et al 2000), altering 

ecosystems and reducing biodiversity throughout the world (Vitousek et al. 1997). In 

their landmark study, Wilcove et al. (1998) state that the most common cause of faunal 

extinction is loss of land-cover, followed by over exploitation, the introduction of 

invasive species, pollution, and disease; all directly or indirectly influenced by the 

creation o f human-dominated landscapes.

Human population growth has been extensive from 1950 to 2000 (Brown et al 

2005). The human population has surpassed seven billion people in 2013 and is projected 

to reach eleven billion by 2100 (U.S. Census 2010). The need to provide food, fiber, 

water, and shelter to the increasing human population drives the conversion of “natural” 

landscapes (i.e. intact landscapes where dispersal is not impeded) to anthropogenic 

landscapes (Foley et al. 2005). Croplands, pastures, plantations, and urban areas have 

expanded in recent decades, accompanied by large increases in energy, water, and 

fertilizer consumption resulting in considerable losses o f biodiversity (Foley et al. 2005).

The most common land use conversions in the United States are urban 

development (Brown et al. 2005), agriculture (Foley et al. 2005) and most recently,
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energy production (Krijgsveld et al. 2009). Although urban areas likely have the largest 

effect on wildlife, areas of rural development incur reduced species survival and 

reproduction near homes. Native species richness (i.e. total number of species in an area) 

generally drops with increased rural development (Hansen et al. 2005; Merenlender et al. 

2009). Areas of human housing also increase the number of synanthropic species (i.e., 

species that are commonly associated with humans [Johnston et al. 2001]), which have 

negative effects on population growth and survival of the native fauna that are sensitive 

to anthropogenic features. American crows (Corvus brachyrhynchos), raccoons (Procyon 

lotor), rats (Rattus sp .), and many others are all commonly associated with human 

dominated land cover.

Roads and traffic directly affect animal populations through decreasing natural 

land cover amount and quality, increasing mortality due to collisions with vehicles, and 

preventing access to resources. Roads also indirectly affect populations by subdividing 

them into smaller and more vulnerable subpopulations (Jaeger et al. 2004). Roads also 

have an effect zone, which is an area over which significant ecological effects extend 

outward. Larger, busier roads will have a greater effect zone than smaller local roads 

(Forman and Alexander 1998).

Areas of heavy agriculture can be as detrimental to a species as an urban 

landscape. Agriculture intensification has led to declines in biological diversity among 

several taxa (Benton et al. 2003). For example, an area dominated by natural land cover 

can turn into a land cover dominated by invasive alien plants if existing grasslands are 

converted into an agricultural field for com. These land-cover types can subsequently
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become an ecological sink for wildlife. Donal et al. (2001) found that population declines 

in species and range contractions were significantly greater in areas of intensive 

agriculture.

Several modeling approaches have been developed to measure and weigh the 

effects of land use on ecological processes. These models can be used to provide valuable 

information for land use, transportation, conservation, and urban planning efforts 

(Girvetz et al. 2000). Sanderson et al. (2002) assigned impact values to each human 

feature based on landscape modifications, whereas Leu et al. (2008) created models to 

evaluate the effects of anthropogenic habitat features on anthropogenic predators and 

habitats. Lastly, Theobald (2012) evaluated the ability of species to move through 

different land-cover types to model human land use effects spatially.

While human footprint models have the potential to be important planning tools to 

land managers and biologists, they all have assumptions, which in turn are based on 

expert opinion or studies conducted outside of the inference space of a human footprint 

model (Theobald 2010). The first objective of our study is to compare different human 

footprint models' abilities to predict effects of human stressors on ecological processes. 

Specifically, we will compare human footprint model intensity to avian guild presence 

using point counts, the Breeding Bird Survey (BBS), anuran survey data, and occurrence 

o f an invasive species. This method of validating footprint intensity based on different 

anthropogenic components to actual ecological processes has not been done across 

multiple taxa before.
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Anthropogenic activity varies across ecosystem types and the response of the 

species within that ecosystem varies based in part on their tolerance toward humans 

(Vitousek 2006). By looking at the functional response of species to human-dominated 

land-cover types, we can create a model of the biological response of each species to 

anthropogenic features. If we can potentially make parallels between certain types of 

species concerning what predicts their occurrence, we can parameterize human footprint 

models based on empirical data.

As the human population continues to increase, species that avoid human 

dominated land-cover will likely experience a reduction in populations (Wilcove et al. 

1997). Zuidema et al. (1996) found that proximity to urban centers affects many aspects 

of the ecosystem including water supply, wildlife, habitat availability, and overall habitat 

quality. However, human impact on natural land-cover types can be minimized if the 

species requirements are known (Matlack 1993). It is therefore important to know 

minimum land -cover requirements and determents for sensitive species and whether 

there are any parallels in those requirements among species that are sensitive to 

anthropogenic land-cover. The second objective of this study was to evaluate if there are 

underlying minimum requirements that predict the occurrence of sensitive species.

We created models based on land-cover classification for seven species that avoid 

anthropogenic land-cover and one species that predominately exists in anthropogenic 

land-cover. The species we analyzed include the bushtit (Psaltriparus minimus), marsh 

wren (Cistothoruspalustris), Swainson’s thrush (Catharus ustulatus), hermit thrush 

{Catharus guttatus), northern parula {Parula americana), ovenbird {Seiurus
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anrocapillus), and grasshopper sparrow (Ammodramus savannarum) . We compared these 

species to the European starling (Sturnus vulgaris), which is common throughout land- 

cover heavily dominated by anthropogenic features.

Modeling European starling occurrence served to compare how land-cover 

preferences and avoidances between the different species compare in model weight. From 

this comparison, we can determine if anthropogenic land-cover types are ranked highly 

and negatively in species that are sensitive to human dominated land-cover types and 

positively for species that thrive in anthropogenic land cover.

In addition, by finding parallels between sensitive species and land-cover types, a 

more species specific and biologically accurate human footprint model can be created. 

Land managers and city planners can also potentially incorporate more natural and 

biologically diverse habitats into urban and suburban designs. Even small changes in the 

spatial patterning of resources can produce dramatic ecological responses, like an 

increase in biodiversity (Turner and Gardner 1991).

Proper planning by land managers and regional planners can also reduce the 

inclusion and subsequent spread of invasive species into urban and suburban areas 

(Kowarik 2008). Previous research has suggested that the inclusion of diverse plant 

communities in anthropogenic land-cover increased wildlife species diversity (Vale and 

Vale 1976). With the information obtained from this study, the amount, type, and quality 

of land-cover required for sensitive species occurrence can be determined and evaluated 

for future regional planning.
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In addition, by looking into how effective human footprint models are at 

predicting ecological processes and whether there are particular land-cover elements that 

influence the occurrence o f species that are sensitive to humans, land managers can 

improve habitats for species that are declining as a result of anthropogenic activities. As 

the human population continues to increase and more land cover becomes influenced by 

land use, it will be ever more important to protect land-cover important for species that 

avoid human dominated land-cover types (Robinson et al. 2005).
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Chapter 2: Can Human Footprint Models Accurately Predict Human Impact on 

Ecological Processes? 

Introduction

The three most well documented global changes from humans are: alterations of 

biogeochemistry of the global Nitrogen cycle, increasing Carbon concentrations in the 

atmosphere, and the process of land-cover and land use change (Vitousek 1994). Humans 

have altered the Nitrogen cycle through fertilizer production and agriculture practices and 

increased Carbon concentrations primarily through combustion of fossil fuel. Humans 

have converted “natural” land-cover (i.e. intact landscapes where floral and faunal 

dispersal is not impeded) to croplands, pastures, plantations, and urban areas, 

accompanied by an increase in demands for energy, water, and fertilizer (Foley et al. 

2005). Global increase in land-cover change and increased consumption of limited 

resources result in biodiversity loss and reduction in ecosystem health (Vitousek 1994; 

Wilcove et al. 1998).

Effects of humans on ecological processes are delineated in human footprint 

models (Sanderson et al. 2002). Spatially explicit models that delineate and predict land- 

cover change were first created by theoretical ecologists to document species presence 

and movement (Kareiva and Wennergren 1995). Recent advances in satellite imagery 

classification and availability of spatial data sets delineating land use and anthropogenic 

features, such as roads and power lines, resulted in an explosion of human footprint 

models. Human footprint models have been created, for example, at a global extent for
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terrestrial (Sanderson et al. 2002) and marine environments (Halpem et al. 2008), at 

national extents, such as for the conterminous United States (Theobald 2010; Theobald et 

al. 2012), at the sub-national extent (Leu et al. 2008; Nunez et al 2012), and at the 

ecosystem level (Davis and Hansen 2011; Wade et al. 2011; Portman et al. 2012; Walston 

et al. 2012). Human footprint models have also been developed to predict the impacts of 

specific human land use practices, including, construction activities in wetlands (Fuertes 

2013) and the impact of industrial processes on the local environment (Li and Hui 2001). 

In conjunction with increasing availability of human footprint models, land managers and 

environmental planners are using them increasingly to predict species presence, habitat 

availability, and the cost of humans to the functioning of environmental services 

(Bicknell et al. 1998; Moran et al. 2008).

While human footprint models have the potential to be important planning tools to 

land managers and biologists, they are based on expert opinion or on studies conducted 

outside of the inference space of a human footprint model (Theobald 2010). If these 

models do not accurately predict human impacts on ecological processes, their use could 

result in ineffective land use planning or management of species of concern (van Kooten 

and Bulte 2000; Fiala 2008). It is therefore important to test whether these models 

accurately predict effects of human land use on ecological processes.

In this paper, we evaluate the predictive abilities of three human footprint models, 

by Sanderson et al. (2002), Leu et al. (2008), and Theobald et al. (2012). These models 

have been used by land managers and environmental planners to develop remediation 

plans, define suitable habitat for endangered species, predict the spread of invasive



species, and create corridors for species movement. Published studies based on 

Sanderson et al.’s (2002) model include modeling the potential spread of invasive species 

(Bean et al. 2012), mapping of the human influence on mountain ecosystems (Rodriguez- 

Rodriguez et al. 2012), and linking fragmented landscapes (Alagador 2012). Leu et al.’s 

(2008) model has been specifically used to model persistence of greater sage-grouse leks 

(Centrocercus urophasianus) (Knick et al. 2013) and factors influencing the distribution 

of chytrid fungus (Batrachochytrium dendrobatidis) presence, associated with declines in 

Pacific-Northwest frog populations (Adams et al. 2011). Theobald et al.’s (2012) paper 

was a recent publication and has not yet directly been used by other authors, but methods 

similar to Theobald et al. (2012) have been used to estimate land-cover permeability 

(Nunez et al 2012; Galic et al 2013).

The objectives of this study were to compare predicted human footprint intensity 

o f three models (Sanderson et al. 2002; Leu et al 2008; Theobald et al. 2012) to four 

avian guild incident rates, two anuran guild incident rates, and the occurrence of an 

invasive plant, cheatgrass (Bromus tectorum). We evaluated these models at the extent of 

the conterminous United States, and two of the three models (Sanderson et al. 2002, 

Theobald et al. 2012) were also tested at the regional extent, in the state of Virginia, and 

the eastern United States.

We compared human footprint intensity predicted by the three models to species 

guild responses. For birds, we assigned species to four different guilds, depending on 

how species utilize human land use (Johnston et al. 2001). For anurans we assigned 

species to conservation status based on classifications by Nature Serve (2013) and
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International Union of Conservation (IUCN 2013), and for the invasive cheatgrass we 

used occurrence data used from satellite imagery for the western United States (GAP 

Analysis Program, 2004).

We used Johnston et al.’s (2001) avian synanthrope classification to classify bird 

species into four guilds: “full synanthrope”, species that depend on anthropogenic 

features throughout their entire annual cycle; “casual synanthrope” species that exploit 

anthropogenic features; “tangential synanthrope”, species that occasionally exploit 

anthropogenic features; and “non-synanthrope” (anthrophobic), species that avoid 

anthropogenic features. As human footprint intensity increases, we predict an increase in 

incident rate for synanthropic species and a decrease for anthrophobic species. For full 

synanthropes, we predict that incident rate relates positively and linearly to human 

footprint intensity. For casual synanthropes we predict a logarithmic function between 

incident rate and human footprint intensity. As human footprint intensity increases, there 

will be an initial increase in incident rate but the incident rate will remain constant at 

higher human footprint intensity. For tangential synanthropic species we predict a 

quadratic function between incident rate and human footprint intensity because these 

species do not use areas where human footprint intensity is low or high. For anthrophobic 

species we predict that as the human footprint value increases, there will be a decrease in 

incident rate.

We classified anuran species into two guilds, common and sensitive (includes 

locally declining, threatened, near threatened, and imperiled species). Several studies 

have found that the presence of suitable land cover plays the most important role in
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anuran species presence (Cushman 2006; Birx-Raybuck et al. 2009; Adams 2011; Mushet 

et al. 2012). We predicted that as the human footprint intensity increases, richness of 

species that are sensitive to land use or are habitat specialists will decrease. We predicted 

for anuran species that are more common and are habitat generalists, including some 

anthropogenic land-cover types, such as storm water retention ponds, should increase as 

human footprint intensity increases.

Cheatgrass was identified as present or absent at each survey location (GAP 

Analysis Program 2004). The presence of cheatgrass has been called one o f the most 

dramatic land-cover changes observed in western landscapes (Billings 1994; Alldredge et 

al. 2007; Hanser et al. 2011). Nielsen-Pincus et al. (2010) found that this change in land- 

cover to cheatgrass dominance has been primarily caused by land-cover disturbance and 

degradation through intensive livestock grazing and heavy off-road vehicle use.

Methods

Human footprint models

We analyzed how three different human footprint models from Sanderson et al. 

(2002), Leu et al. (2008), and Theobald et al. (2012) performed when evaluated against 

synanthropic avian guilds, amphibian conservation guilds, and occurrence of cheatgrass. 

Each model was built using different methods, land-cover classification, resolution, 

anthropogenic features, and human impact calculations (Table 1).

Sanderson et al. (2002) created a human impact model built on human land-cover 

modification. The authors summed anthropogenic features based on four types of human
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influence on the environment: population density, land transformation, accessibility, and 

electrical power infrastructure. The scores for each variable were summed across the 

model, resulting in a model that ranged from 1 to 1000 in human impact.

Leu et al. (2008) created seven models, based on anthropogenic features, 

anthropogenic predators, and habitat. The seven models included three top-down predator 

models (domestic dogs, domestic cats, and corvids) and four bottom-up models (exotic 

plant invasion, human-caused fires, wildland fragmentation, and energy extraction). The 

authors then standardized all models and binned them into 10 classes, creating a model 

that ranged from 1 to 10 in human impact.

Theobald et al. (2012) created a human impact model that included anthropogenic 

features that affect wildlife movement, creating a landscape connectivity map. The 

authors modeled least-cost calculations based on the ability of an animal to move through 

different land-cover types. The final model ranged in values from 1 to 1000.

Datasets Used in Model Validation

We validated human footprint models using point counts, North American 

Breeding Bird Survey (BBS) data, North American Amphibian Monitoring Program 

(NAAMP) data, and invasive cheatgrass occurrence (GAP Analysis Program 2004). For 

the avian validation, we derived guild incident rates from BBS data and guild abundance 

using point count surveys. Guilds were assigned from Johnston et al.’s (2001) avian guild 

classification (Appendix 1). Anuran validation was based on calling indexes for each 

guild (Nelson and Graves 2004, NAAMP). Guilds were assigned from the Nature Serve 

(2013) and International Union of Conservation (IUCN 2013) (Appendix 2). Cheatgrass
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validation was classified as presence/absence based on vegetation surveys used to 

classify satellite imagery (GAP Analysis Program 2004).

Point count data were collected over a 3 year period, 2 years of point counts 

(2012-2013) were collected from the Virginia Peninsula and 2 years (2011 and 2012) 

from the Shenandoah Valley (Figure 1). Locations of point counts were stratified 

randomly across deciduous, coniferous and riparian forest land cover. Each point was 

visited once (between the end of May to June) in the Shenandoah Valley and four times 

during the season (between the end of May to July) in the Virginia Peninsula. Point 

counts were conducted over 8 min, during which all birds seen or heard were recorded 

(Ralph et al. 1995). Observers estimated the distance to each object using a laser range 

finder (800 LH, Opti-Logic). All point counts were conducted during the morning hours 

of peak bird activity (15 min after sunrise to 10:00 A.M.) (Robbins 1981).

Breeding bird survey routes were obtained from the USGS 

(ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/DataFiles/). The model developed by Leu et 

al. (2008) covers the entire western United States, for this reason, the routes used in this 

analysis are located in the western United States (Figure 2). BBS routes were visited once 

a year, either by the same or a different observer each year. Each survey route was 39.4- 

km long with stops at 800 m intervals. At each stop, a 3 min point count was conducted 

where all birds seen and heard within a 400 m buffer were recorded (BBS 2013).

We validated models using anuran survey datasets that were provided by 

NAAMP. Survey routes used in this analysis were located within the eastern United 

States (Figure 3). Each route consists of 10 stops and is surveyed based on land-cover
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present. In wetland land cover, surveys stops are spaced at least 0.80-km apart. Survey 

routes not located in wetland land cover are stratified by bodies of water including, 

ponds, vernal pools, road side ditches, etc. (NAAMP).

Invasive plant species comparison datasets were obtained from vegetation surveys 

that were used to inform satellite land-cover classification (GAP Analysis Program 

2004). Survey points were located throughout the western United States (Figure 4). On 

each survey point, percent cheatgrass cover was estimated. Samples were then verified 

independently using satellite imagery.

Response Metrics

To compare the human impact intensity to the avian point count datasets, we first 

eliminated the possibility of spatial auto-correlation at the resolution of Sanderson et al.’s 

(2002) model. We placed a 1-km grid on the point count locations within Sanderson et 

al.’s (2002) map and randomly selected one point count from those included within each 

1-km" area. The total number of point count locations used in the analysis were 87 for the 

Virginia Peninsula and 466 for the Shenandoah Valley.

For the point count avian analysis, we used program Distance (2009) to calculate 

the effective detection radius, or the distance in which an object is as likely to be missed 

as it is detected beyond the distance, for each species (Appendix 3). All observations that 

were outside a species’ effective detection radius were not included in analyses. We then 

calculated the total abundance of individuals for each guild at each point count location to 

estimate the representation of each guild type at each point count location. Full
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synanthrope species were not observed enough times across all years to be included as a 

response metric, as result, we omitted the full synanthrope guild from our analysis.

For the BBS avian analysis, all three human footprint models were validated 

using BBS data from 2009 to 2012. The most recent model, Theobald et al.’s (2012) 

oldest dataset is from 2006. To incorporate lag effects (Perkins 2012; Manning et al. 

2013), we added an additional 3 years and included the most recent BBS data available. 

A total of 949 BBS routes were used for analysis. We included the area of each buffer as 

a covariate, as the different shapes of the routes could affect the size of the buffer.

We included only BBS routes that were surveyed more than 70% of the total 

survey years. We found that the numbers of route visits closer to cities were not more 

likely visited than routes located in rural areas. We used an Incident Rate (IR) to 

eliminate the possibility of observer bias in sampling, where the IR for each guild is the 

proportion of times the guild was observed along the route compared to all other guilds 

observed at that route. For example, if the anthrophobic guild was observed 2 times and 

the casual synanthrope was observed 1 time over all survey years, the IR of the 

anthrophobic guild would be 0.5 and the casual synanthrope would be 0.25.

We reduced the original amphibian broad-resolution datasets to eliminate the 

potential for spatial auto-correlation in GIS (Esri 2013) by removing any routes that had 

overlapping buffers. This resulted in a total of 888 survey routes for the analysis. In the 

anuran analysis we again included the area of each buffer. We used the calling index to 

estimate the abundance of each guild at each survey route. The calling index ranked the 

calling intensity of each frog species on a scale of 1-3. A score of “ 1” indicated that
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individuals can be counted and there was space between calls, “2” calls of individuals can 

be distinguished but there was some overlapping of calls, and “3” represented a full 

chorus, calls were constant, continuous and overlapping (NAAMP, 

http://www.pwrc.usgs.gov/naamp). IR was estimated by summing the calling index 

scores for each guild at each route and then dividing by the total calling index for both 

guilds on each route. For example, if the sensitive species guild had 3 instances of a level

2 calling index that would total to 6. If the common species guild had 4 instances of level

3 calling index, that would total to 12. The incident rate of the sensitive species guild at 

that particular route would be 6 divided by the total of 18, or 0.33.

Cheatgrass survey points were reduced from the original 79483 points surveyed to 

1985 survey points to eliminate the potential for spatial auto-correlation. We selected 

survey points to maintain the same proportion of points as the original sampling extent. 

Cheatgrass data collection was calculated in percent cover. We changed all percent cover 

classifications to cheatgrass occurrence at each location. If cheatgrass was observed at a 

survey point, it was counted as an occurrence 

Statistical Analysis

We buffered survey routes and points by 200 m, 1 km, 2 km, and 3 km, but 

limited the buffer to 200 m for the point-count analysis in ArcGIS 10.1 (ESRI, 2013). We 

chose buffers sizes to incorporate the variation in dispersal distances (Katherina and Peter 

2001; Berven and Grudzien 1990; Funk et al. 2005), territory, and home range sizes for 

avian species (Anich et al. 2009), and dispersion distances for cheatgrass (Feis 2013). All 

species, even those with limited mobility that function at relatively small spatial extents
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will have life histories that require examination across multiple scales (Funk et al. 2002). 

Human footprint intensity was averaged for each buffer using zonal statistics in ArcGIS 

10.1 (ESRI 2013) and Geospatial Modelling Environment (Beyer 2012).

All statistical analyses and modeling were conducted using the R statistical 

language v. 2.13.2 (R Development Core Team 2011). We examined the variation in 

guild IR and abundance indices for avian point counts, BBS routes, and anuran survey 

routes in relation to human footprint intensity values using a general linear model. We 

used logistic regression to analyze the presence/absence of the cheatgrass within each 

survey point. Tests for normality indicated that datasets were not normally distributed. 

We transformed the data using log-transformation or square-root transformation to meet 

assumptions o f normality. We compared model fit using Akaike’s Information Criterion 

(AIC; Akaike 1974, Lebreton et al. 1992; Burnham and Anderson 2002). We chose the 

model with the lowest AIC value as the most parsimonious model with the best fit to the 

data.

Results

Avian Validation Results

For the point count analysis, Theobald et al.’s (2012) model outperformed 

Sanderson et al.’s (2002) and the null model for all guilds (AAIC>54 for casual 

synanthropes; AAIC>9 for tangential synanthropes; AAIC>77 for anthrophobic) 

(Appendix 2). Sanderson et al.’s (2002) model performed worse than the null model for 

the causal and anthrophobic guild (Appendix 2). Model performance did not differ
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between our predicted linear relationships, a logarithmic shape for casual synanthropes, 

and a quadratic shape for tangential synanthropes (Table 2; Appendix 2).

For the BBS analyses, Leu et al.’s (2008) model outperformed Sanderson et al.’s 

(2002), Theobald’s et al.’s (2012) and the null model for every guild except the 

anthrophobic guild (AAIC>37 for full synanthropes; AAIC>29 for casual synanthropes; 

AAIC>25 for tangential synanthropes; Table 3 and Appendix 3), in which Theobald et 

al.’s (2012) model was the best predictor (AAIC>13). Results differed slightly across 

resolutions for all guilds (Appendix 3). For the full synanthrope guild, Leu et al.’s model 

performed best at the 1-km neighborhood, outperforming other models on every 

neighborhood when corrected for area of BBS route. Sanderson et al.’s (2002) model also 

greatly outperformed the null model at all resolutions for full synanthropes (AAIC>50), 

while Theobald et al.’s (2012) model did not outperform the null model at any 

neighborhood size (null AAIC>996). For the casual synanthropes, Leu et al.’s (2008) 

model performed best at the 200-m neighborhood with our predicted threshold 

relationship between human footprint intensity and species observations. Leu et al.’s 

(2008) model outperformed other models at all neighborhood with the exception of the 3- 

km neighborhood, where Sanderson et al.’s (2002) model outperformed the other models. 

All models outperformed the null model at every neighborhood (AAIC>7). Leu et al.’s 

(2008) model also performed best at the 200-m neighborhood for the tangential 

synanthropes, again matching our prediction of a quadratic relationship between human 

footprint intensity and species present. Leu et al.’s (2008) outperformed all models for all 

neighborhood sizes, with the exception of the 3-km neighborhood, where Theobald et
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al.’s (2012) model performed the best. All models outperformed the null model except 

for Sanderson et al.’s (2002) model when the area variable was included for both the 

linear and quadratic predicted relationships. Theobald et al.’s (2012) model outperformed 

every model at every neighborhood size for the anthrophobic guild (AAIC>13), whereas 

Leu et al.’s (2008) and Sanderson et al.’s (2002) model performed worse than the null 

model at any neighborhood size (Appendix 3).

Anuran validation results

Neither Theobald et al.’s (2012) model nor Sanderson et al.’s (2002) model 

performed better than the null model for either guild at any neighborhood (AAIC<2;

Table 4).

Invasive species validation results

Theobald et al.’s (2012) model outperformed all models at every neighborhood 

for predicting the occurrence of cheatgrass (AAIC>13). Neither Leu et al.’s (2008) model 

nor Sanderson et al.’s (2002) model outperformed the null model at any neighborhood 

(AAIC<2; Table 5).

Discussion

Our validation and comparison of different human impact models to ecological 

processes is the first such systematic comparison in the literature. Although Leu et al. 

(2008) tested model predictions for different inputs (i.e., synanthropic predator model and 

exotic invasion model), and human footprint model, evaluation of predictions were 

limited to birds and exotic plants.
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We evaluated human footprint intensity predictions across three taxa. In our 

analysis, we found that human footprint models can be used to predict certain ecological 

processes. Leu et al.’s (2008) model was a superior predictor for all avian species that use 

anthropogenic land-cover types whereas Theobald et al.’s (2012) model was best at 

predicting anthrophobic species, fine-resolution point count avian guilds, and invasive 

species occurrence. However, none of the models functioned as a completely predictive 

model.

In the point count analyses, Theobald et al.’s (2012) model outperformed 

Sanderson et al.’s (2002) model and the null model for all guilds. This could be due to 

differences in model resolution, Theobald et al. (2012) model input data were at a 

resolution of 30 m and 120 m, while Sanderson et al. (2002) model input data was at a 1- 

km resolution. The maximum distance for a species’ effective area surveyed was 159.33 

m for the American crow (Corvus brachyrhynchos). This is much smaller than the 

resolution of Sanderson et al.’s (2002) model. The difference in resolution and species 

detection could have resulted in the incorrect predictions from their model. Cooper and 

Belmaker (2010) argued that differences in forest habitat use could not be detected unless 

habitat types are more finely classified. The Sanderson et al. (2002) model was created at 

not only a larger resolution, but he also had a narrower classification of land-cover types. 

Land cover was classified into 5 types, “built-up”, “agriculture”, “mixed-use”, and a few 

natural types. The “built-up” areas, which represented the largest cities as polygons in the 

National Imagery and Mapping Agency (NIMA) database, were assigned a score of 10. 

Scores 6-8 were assigned to different types of agricultural land, depending on level of
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input. Lower scores of 4 were assigned to mixed-use cover, and a value of 0 was given to 

other land-cover types, such as forests, grasslands, and Mediterranean ecosystems. 

Sanderson et al. (2002) also stated that given their method of land-cover classification, 

the land-cover types with a value of 0 were also subjected to various kinds of land uses. 

Given that some land-cover types classified as natural likely had some degree of 

anthropogenic disturbance, these classifications may have been too narrow to accurately 

predict where certain guilds would occur. Theobald et al.’s (2012) fmer-scale resolution 

and more detailed land-cover classification likely made it a superior model at predicting 

avian species guilds at a fine-scale resolution.

In the BBS analyses, Leu et al.’s (2008) model outperformed Sanderson et al.’s 

(2002), Theobald’s et al.’s (2012) and the null model for every guild except the 

anthrophobic guild, in which Theobald et al.’s (2012) model was the best predictor. The 

better fit for the other guilds could be due to the submodels incorporated into Leu et al.’s 

(2008) analysis. In their analysis, Leu et al. (2008) focused on the presence of 

synanthropic species, as well as land-cover change from humans including presence of 

invasive plant species and habitat fragmentation. Both of these habitats are likely to hold 

edge and generalist species (Klaus et al. 2004; Lampila et al 2005) which fall into the 

synanthropic, casual, and tangential synanthrope guilds. However, Leu et al.’s (2008) 

model was not the best predictor for casual synanthropes or tangential synanthropes at the 

3-km neighborhood. Sanderson et al.’s (2002) model performed the best at the 3-km 

resolution and predicted a positive linear relationship for casual synanthropes. This model 

was based on comparatively larger resolution and more generalized land-cover types,
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which may increase predicative capabilities of this model for casual synanthropes. In 

addition, Theobald et al.’s (2012) model outperformed all other models at the 3-km 

neighborhood for the tangential synanthropes, predicting a negative linear relationship. 

Averaging the human footprint intensity to the larger neighborhoods may have resulted in 

Theobald et al.’s (2012) model predicting that tangential synanthrope species would have 

a similar relationship to human footprint intensity as anthrophobic species.

Leu et al.’s (2008) model emphasized land-cover types that were dominated by 

anthropogenic features and risks from anthropogenic predators, fires, and invasive 

species. The authors did not incorporate models that emphasized habitat suitable for 

anthrophobic species. Theobald et al.’s (2012) model, in contrast, incorporated land- 

cover features that were not dominated by anthropogenic land-cover features, including 

canopy cover, which has been suggested to serve as an accurate predictors for bird 

biodiversity (Radford et al 2005; Philpott and Bichler 2012). Sanderson et al.’s (2002) 

model may not predict well due to generalized land cover classifications. Although 

Sanderson et al.’s (2002) model performed better than the null model at predicting 

synanthrope and casual synanthrope species, the generalized land-cover classifications 

likely made their model a poor predictor in comparison to Leu et al.’s (2008) and 

Theobald et al.’s (2012) models.

In the anuran validation, neither Theobald et al.’s (2012) model nor Sanderson et 

al.’s (2002) model performed better than the null model for either guild at any resolution. 

This could be a result o f models not including variables important to capture variation in 

amphibian movement across the landscape (Eigenbrod 2008). Neither model included
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agricultural ditches as potential habitat; ditches often serves as amphibian habitat for 

multiple species (Bonin et al. 1997; Ouellet et al. 1997). In addition, the time frame in 

which the data were collected (2000-2010) included three droughts in 2001, 2007, and 

2008 (Cook et al. 2009). This may have affected amphibian distributions, which could 

have contributed to population decreases of the species in the survey areas at different 

times (Adams et al. 2011).

Theobald et al.’s (2012) model was the only model that validated well with the 

presence of invasive cheatgrass, despite Leu et al.’s (2008) model incorporating exotic 

plant invasion in a submodel. The differences in model prediction could be that the 

survey sites for cheatgrass were located in low human impact areas of Theobald et al.’s 

(2012) model. Rivera et al. (2011) found that the main predictors o f cheatgrass spread 

and invasion did not include just land use, but also temperature, humidity, precipitation, 

and elevation. The combination of including topography, multiple agriculture land-cover 

types, sparse grassland, disturbed lands, and roads Theobald et al.’s (2012) model may 

have improved validation.

Overall, the models performed better than the null model in most validations. 

Sanderson et al.’s (2002) model had a better fit than the null model for the full and casual 

avian synanthropes, but did not validate with other taxa. This is particularly worrisome 

given that this model was cited the most for use in studies involving conservation of 

sensitive species (Alagador 2012; Bean et al. 2012; Rodriguez-Rodriguez et al. 2012) Leu 

et al.’s (2008) model performed the best for synanthrope, casual, and tangential 

synanthrope avian species, but was not accurate in predicting anthrophobic species or
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cheatgrass presence. Theobald et al.’s (2012) model proved to be the best model in the 

point count analysis at predicting all avian guilds (full synanthropes were not included), 

anthrophobic avian species in the BBS analysis, and presence of cheatgrass. The 

differences in model fit could be due to the input variables or the scales at which they 

were evaluated (Table 1). There was disagreement in spatial datasets included in three 

models, and we did not break down each model to compare input variables. Further 

analysis on what factors are more likely to contribute to species distribution is 

recommended. Although we did not compare individual model inputs, variables that 

likely increased the model accuracy included finer resolution; Leu et al. (2008) and 

Theobald et al. (2012) both used finer resolution (180m and 30m/120 resolution, 

respectively) than Sanderson et al.’s (2002) 1-km resolution. Detailed land-cover 

classification, including variation in types o f agriculture also appeared to be important 

variables in a model’s predictive capabilities. This level of detail used by Leu et al.

(2008) was important for predicting all avian guilds that used anthropogenic habitat.

Each model incorporates critical information of the human footprint on the 

landscape and has the potential to cast preliminary forecasts of the effects of land use 

change on the environment (Theobald 2010). As the human population continues to 

increase and land-cover change expands, it is becoming even more important to set aside 

important landscapes and refuges for species that are sensitive to human sprawl 

(Robinson et al. 2005). Human footprint models provide a spatial representation of land 

uses, allowing land managers and environmental planners to develop priorities at the 

local and potentially regional scales (Leu et al. 2008). These models have proven to be an
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important tool in predicting where certain species are likely to occur. However, with the 

degree o f variability in landscapes and climate, the use of these models as predictors must 

be applied cautiously (Kareiva and Wennergen 1995) as we found that not all models are 

created equal; model inputs and seasonal variability greatly affect how well each model 

performs. Species’ occurrence can be affected by more than just proximity to urban areas. 

Distances to road, suburban land-cover, elevation, intensity of agricultural, amongst other 

variables all have profound effects on ecological processes (Citation). The resolution of 

each study area is also an important factor to include in any use of these models for 

management purposes.

As humans continue to overuse finite resources, the importance of understanding 

how specific species respond to human dominated landscapes will become essential in 

maintaining ecosystem health (Foley 2005). Human footprint models have the potential 

to be used to link fragmented landscapes (Alagador 2012), create species suitability 

models (Nunez et al 2012; Galic et al 2013; Knick et al. 2013), observe the spread of 

disease in anuran populations (Adams et al. 2011), and predict the spread of 

contamination (Li and Hui 2001; Fuertes 2013), among many other uses. With the right 

input variables, these models have the potential for habitat design and great predictive 

capabilities, provided that land-cover detail and species specific responses are included.
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Gulf of Mexico

K ilo m ete rs

Figure 1. Location of avian point count survey data. Blue dots represent surveys 
conducted in the Shenandoah Valley (n=466), red dots represent surveys conducted in the 
Virginia Peninsula (n=67).
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Figure 2. Breeding bird survey (BBS) route locations. Each line denotes a single BBS 
route (n=949).

27



Gul f  of  Mexi co
I Kilo m e ter :;

Figure 3. Location o f N A AMP survey routes. Each line denotes a single route (n=888).
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Figure 4. Location o f the cheatgrass survey points. Each point denotes a single survey 
location (n=1984).
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Table 5. Comparison of human footprint model performance based on occurrence of 
cheatgrass (Bromus tectorum) against human footprint intensity derived from Gap 
Analysis data. Shown are all models. For each models log likelihood (LL), slope (Beta), 
standard error for slope, AIC, and AIC weight ( W j )  are shown.

Model Scale LL Beta
Standard

Error AIC
delta
AIC w,

Theobald 2km 724.783 0.200 0.07739 1453.6 0 0.434163
Theobald 1km 724.852 0.196 0.07581 1453.7 0.1 0.412989
Theobald 3 km 725.903 0.165 0.07655 1455.8 2.2 0.14452

Leu 1km 730.427 0.118 0.06697 1464.9 11.3 0.001527

Leu 3 km 730.629 0.103 0.06698 1465.3 11.7 0.00125
Leu 2 km 730.130 0.122 0.06621 1464.3 10.7 0.002061

Null - - - - 1465.6 12 0.001076

Sanderson 3 km 731.221 0.068 0.07371 1466.4 12.8 0.000721

Sanderson 2km 731.346 0.057 0.07294 1466.7 13.1 0.000621
Sanderson 1km 731.484 0.043 0.07185 1467.0 13.4 0.000534
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Appendix 1. Johnston et al. (2001) Classification for species observed on BBS routes. 

Common Name Scientific Name Classification
Montezuma Quail Cyrtonyx montezumae Non-Synanthrope
Northern Bob white Col in i is ri rgin ian i is Casual synanthrope
California Quail Callipepla calif arnica Casual synanthrope
Gambel's Quail CaiIipcpla gam be Iii Non-Synanthrope
Scaled Quail Call ipcpla squamata Non-Synanthrope
Mountain Quail Oreortyx pictns N on-Synanthrope
Chukar A lector is chukar Non-Synanthrope
Gray Partridge Perdix pcrdix Non-Synanthrope
Ring-necked Pheasant Phas iamis colch ic i is Non-Synanthrope
Spruce Grouse Falcipennis canadensis Non- S ynanthrope
White-tailed Ptarmigan La go/) us leucura Non-Synanthrope
Ruffed Grouse Bonasa umbellus Non-Synanthrope
Sharp-tailed Grouse Tympanuchus phasianellus Non-Synanthrope
Lesser Prairie-Chicken Tympanuchus pallidicinctus Non-Synanthrope
Greater Prairie-Chicken Tympanuchus cupido Non-Synanthrope
Gunnison Sage-Grouse Centrocercus minimus Non-Synanthrope
Greater Sage-Grouse Centrocercus urophasianus Non-Synanthrope
Wild Turkey Sphyrapicus thyroideus Tangential synanthrope
Mourning Dove Zenaida macroura Tangential synanthrope
White-winged Dove Melcagris gallopavo Casual synanthrope
Eurasian Collared-Dove Streptopelia dccaocto Casual synanthrope
Spotted Dove Spilopelia chinensis Non- S ynanthrope
Inca Dove Scardafel/a inca N on- Synanthrope
Ruddy Ground-Dove Columbina talpacoti Non-Synanthrope
Common Ground-Dove Coliimbina passerina Non-Synanthrope
Rock Pigeon Columba livia lull synanthrope
Band-tailed Pigeon Palagioenas fisc  i at a Casual synanthrope
Yellow-billed Cuckoo Coccyzus americanus Tangential synanthrope
Black-billed Cuckoo ( 'occyzus eryt hr opt halm us Non-Synanthrope
Greater Roadrunner Geococcyx californianus Non-Synanthrope
Common Poorwill Phalaenoptiliis nuttalIii Tangential synanthrope
Mexican Whip-poor-will Caprimulgus arizonae Non-Synanthrope
Common Nighthawk Chordeiles minor Tangential synanthrope
Lesser Nighthawk C 'hordedes acutipennis Non-Synanthrope
Vaux's Swift Chaetura vauxi Non-Synanthrope
Chimney Swift Chaetura pelagica full synanthrope
Black Swift Cypseloides niger Non-Synanthrope
White-throated Swift A eronautes saxatalis N on- S ynanthrope

35



Violet-crowned Hummingbird 
Broad-billed Hummingbird 
Blue-throated Hummingbird 
Magnificent Hummingbird 
Anna's Hummingbird 
Costa's Hummingbird 
Black-chinned Hummingbird 
Calliope Hummingbird 
Broad-tailed Hummingbird 
Allen's Hummingbird 
Rufous Hummingbird 
Elegant Trogon 
Belted Kingfisher 
Acorn Woodpecker 
Red-headed Woodpecker 
Lewis's Woodpecker 
Gila Woodpecker 
Williamson's Sapsucker 
Red-breasted Sapsucker 
Red-naped Sapsucker 
Downy Woodpecker 
Hairy Woodpecker 
American Three-toed 
Woodpecker
Black-backed Woodpecker 
Nuttall's Woodpecker 
Ladder-backed Woodpecker 
Arizona Woodpecker 
White-headed Woodpecker 
Gilded Flicker
(Red-shafted Flicker) Northern 
Flicker
Pileated Woodpecker 
Northern Beardless-Tyrannulet 
Greater Pewee 
Olive-sided Flycatcher 
Western Wood-Pewee 
Eastern Wood-Pewee 
Pacific-slope Flycatcher 
Cordilleran Flycatcher 
Willow Flycatcher

A mazilia vio/iceps 
Cymmthus lalirostris 
L amp am  is cl e m e / ic iae 
Eugenes fill gens 
Calypte anna 
Calyple costae 
Archilochus alexandri 
Si ell ula calliope 
Selasphorus platycereus 
Selasphorns sasin 
Selasphorus rufiis 
Trogon elegans 
Megaceryle alcyon 
Melanerpes formicivorus 
Melanerpes erythrocephalus 
Me Iane i pes Ie\v is 
Melanerpes uropygialis 
Sphyrapicus thyroideus 
Sphyrapicus ruber 
Sphyrapicus nuchal is 
Picoides puhescens 
Picoides villosus

Picoides dorsalis

Pico ides arctic its 
Picoides nuttallii 
Picoides scalaris 
Picoides arizonae 
Pico ides albolarvat i is 
( \) I apt es chr)-so ides

Co/aptes auralus

Dryocopus pilea! us 
Camptostoma imherhe 
Conlopus pertinax 
Conlopus cooperi 
Con to pus sordidulus 
Conlopus virens 
Empidonax difficilis 
Empidonax occidental is 
Empidonax trail Hi

Non-Synanthrope 
Non-Synanthrope 
Non-Synanthrope 
Non-Synanthrope 

Tangential synanthrope 
Non-Synanthrope 
Non-Synanthrope 

Tangential synanthrope 
Tangential synanthrope 

Non-Synanthrope 
Tangential synanthrope 

Non-Synanthrope 
Non-Synanthrope 
Non-Synanthrope 
Non-Synanthrope 

Tangential synanthrope 
Non-Synanthrope 

Tan g e n t i a 1 s y n an t h ro pe 
Tangential synanthrope 
Tangential synanthrope 
Tangential synanthrope 
Tangential synanthrope

Non-Synanthrope

Non-Synanthrope 
Tan gent i a 1 sy nant hrope 

Non-Synanthrope 
Non-Synanthrope 
Non-Synanthrope 
Non-Synanthrope

Tangential synanthrope

Non- S ynanthrope 
Non-Synanthrope 
Non-Synanthrope

Tangential synanthrope 
Tangential synanthrope 

Non-Synanthrope 
Tangential synanthrope 
Tangential synanthrope 
Tangential synanthrope
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Alder Flycatcher Empidonax alnonim Non-Synanthrope
Least Flycatcher Empidonax minimus Tangential synanthrope
Hammond's Flycatcher Empidonax hammondii Tangential synanthrope
Dusky Flycatcher Empidonax oberholseri Tangential synanthrope
Gray Flycatcher Empidonax wrightii Tangential synanthrope
Buff-breasted Flycatcher Empidonax fulvifrons Non-Synanthrope
Black Phoebe Sayornis nigricans Tangential synanthrope
Eastern Phoebe Sayornis phoebe Tangential synanthrope
Say's Phoebe Sayornis say a Ta n ge n t i a 1 s v n a n t hro pe
Vermilion Flycatcher Pyrocephalus rubinus Non-Synanthrope
Dusky-capped Flycatcher Myiarchus tuberculifer Non-Synanthrope
Ash-throated Flycatcher Myiarchus cinerasccns Tangential synanthrope
Brown-crested Flycatcher Myiarchus tyr annul us Non-Synanthrope
Thick-billed Kingbird Tyrannus a •assirostris Non-Synanthrope
Eastern Kingbird Tyr annus tyr am i us Non-Synanthrope
Tropical Kingbird Tyrannus melancholicus Non-Synanthrope
Cassin's Kingbird Tyrannus vociferans Non-Synanthrope
Western Kingbird Tyrannus vertical is Non-Synanthrope
Scissor-tailed Flycatcher Tyr a nn i is forfleaf us N on- Synanthrope
Sulphur-bellied Flycatcher Myiodynastes luteiventris Non- S ynanthrope
Loggerhead Shrike Tanius ludovicianus Tange n t i a 1 s y n a nt hro pe
Gray Vireo Vireo vicinior Non-Synanthrope
Red-eyed Vireo Vireo olivaceus t angential synanthrope
Warbling Vireo Vireo gilvus Tangential synanthrope
Bell's Vireo Vireo bellii Tangential synanthrope
Hutton's Vireo Vireo hull on i Tangential synanthrope
Plumbeous Vireo Vireo plumbeus Non-Synanthrope
Cassin's Vireo Vireo cassinii Non-Synanthrope
Blue-headed Vireo Vireo solitarius Non-Synanthrope
Steller's Jay Cyanocitta stelleri Tangential synanthrope
Blue Jay (''yanocitta cristata Tangential synanthrope
Western Scrub-Jay A phelocoma calif arnica Fan gent i a 1 sy nant hro pe
Mexican Jay A phelocoma wollweheri Non-Synanthrope
Gray Jay Perisoreus canadensis Tangential synanthrope
Pinyon Jay Gymnorhinus cyanocephalus Non-Synanthrope
Clark's Nutcracker Nucifraga columbiana Tangential synanthrope
Black-billed Magpie Pica hudsonia Tangential synanthrope
Yellow-billed Magpie Pica nuttalli Non-Synanthrope
Common Raven Corvus cor ax Tangential synanthrope
Chihuahuan Raven Corvus cryptoleucus Non-Synanthrope
American Crow C 'orvus brachvrhynchos fangenti al synanthrope
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Northwestern Crow C 'orvus caurinus Non-Synanthrope
Homed Lark Eremophila alpestris Casual synanthrope
Purple Martin Progne subis full synanthrope
Northern Rough-winged 
Swallow Stelgidopteryx serripe/mis Tangential synanthrope

Bank Swallow Riparia riparia Tangential synanthrope
Violet-green Swallow Tachycineta {halassina Non-Synanthrope
Tree Swallow Tachy 'duel a hi color Tangential synanthrope
Cliff Swallow Pet roc he I idon pyrrhonota Tangential synanthrope
Cave Swallow Petrochelidon fulva Tangential synanthrope
Bam Swallow Hinmdo rustica Tangential synanthrope
Bridled Titmouse Baeolophus wollweberi Non-Synanthrope
Oak Titmouse Baeoloph us i nor mil us Non-Synanthrope
Juniper Titmouse Baeolophus ridgwayi Non-Synanthrope
Black-capped Chickadee Poecil e atricapil I us Tangential synanthrope
Mountain Chickadee Poecile gambeli Non-Synanthrope
Boreal Chickadee Poecilc hudsonicus Tangential synanthrope
Mexican Chickadee Poecile sc I uteri Non-Synanthrope
Chestnut-backed Chickadee Poecile rufescens Non-Synanthrope
Verdin A uripariis flui ’icejis Non-Synanthrope
Bushtit Psaltriparus niinimus Non-Synanthrope
Red-breasted Nuthatch Sitta canadensis Tangential sy nanth ro pe
White-breasted Nuthatch Silt a carol inensis Tangential synanthrope
Pygmy Nuthatch Sitta pygmaea Non-Synanthrope
Brown Creeper Certhia americana Tangential synanthrope
Bewick's Wren Thryomanes bewickii Non-Synanthrope
House Wren T'rogloc h ;tes aec Ion Tangential synanthrope
Sedge Wren Cistothorus platens is Non-Synanthrope
Marsh Wren (" is tot horns palustris Non-Synanthrope

Cactus Wren ( 'ampyl orhynch us 
brunneicapillus Non-Synanthrope

Rock Wren Salpinetes obsoletus Non-Synanthrope
Canyon Wren C 'alherpes mexicanus Non-Synanthrope
American Dipper ( ’inclus mexicanus Tangential synanthrope
Wrentit Chamaea fasciala Non-Synanthrope
Golden-crowned Kinglet Regal us satrapa Tangential synanthrope
Ruby-crowned Kinglet Regains calendula Tan ge ntial sy nan t hrope
California Gnatcatcher Polioptila californica Non-Synanthrope
Black-tailed Gnatcatcher Polioptila melanura Non-Synanthrope
Blue-gray Gnatcatcher Pol i opt i la cue m l e a Non-Synanthrope
Townsend's Solitaire Myadestes t o was end i Tangential synanthrope

38



Mountain Bluebird 
Western Bluebird 
Eastern Bluebird 
Varied Thrush 
American Robin 
Veery
Swainson's Thrush

Sialia currucoides 
Sialia mexiccma 
Sial i a sial is 
Ixoreus naevius 
Turd us m igratori us 
Catharus fuscescens 
Catharus ustulatus

Tangential synanthrope 
Tangential synanthrope 

Non-Synanthrope 
Tangential synanthrope 

Casual synanthrope 
Non-Synanthrope 
Non-Synanthrope
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Appendix 2. Nature Serve (2014) and IUCN (2014) Classification for species observed 
on NAAMP routes.

Common Name Scientific Name Classification
American Bullfrog Lithobates catesbeianus common
American toad Anaxyrus americanus common
Barking tree frog Hyla gratiosa Sensitive
Barking Treefrog Hyla gratiosa Sensitive
Boreal Chorus Frog Pseudacris maculata Sensitive
Brimley's Chorus Frog Pseudacris brimleyi common
Cajun Chorus Frog Pseudacris fouquettei common
Canadian toad Anaxyrus hemiophrys Sensitive
Carolina Gopher Frog Lithobates capito Sensitive
Carpenter Frog Lithobates virgatipes Sensitive
Cliff Chirping Frog Eleutherodactylus marnockii common
Coastal Plain Toad Incilius nebulifer common
Cope's gray tree frog Hyla chrysoscelis common
Couch's Spadefoot Scaphiopus couchii common
Crawfish Frog Lithobates areolatus Sensitive
Cuban Treefrog Osteopilus septentrionalis common
Eastern Narrow-mouthed Toad Gastrophryne carolinensis common
Eastern Spadefoot Scaphiopus holbrookii common
Florida Bog Frog Lithobates okaloosae Sensitive
Fowler's toad A naxyrus fowler i Sensitive
Giant Toad Rhinella marina common
Gray Treefrog
Great Plains Narrow-mouthed

Hyla versicolor common

Toad Gastrophryne olivacea common
Great Plains toad Anaxyrus cognatus common
Green Frog Lithobates clamitans Sensitive
Green Treefrog Hyla cinerea common
Greenhouse Frog Eleutherodactylus planirostris common
Hurter's Spadefoot Scaphiopus hurterii common
Hyla avivoca Hyla avivoca common
Illinois Chorus Frog Pseudacris illinoensis Sensitive
Little Grass Frog Pseudacris ocularis common
Mink Frog Lithobates septentrionalis common
Mountain Chorus Frog Pseudacris brachyphona common
New Jersey chrous frog Pseudacris kalmi Sensitive
Northern cricket frog Acris crepitans common
Northern Leopard Frog Lithobates pipiens common
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Oak toad Anaxyrus quercicus common
Ornate Chorus Frog Pseudacris ornata common
Pickerel Frog Lithobates palustris common
Pig Frog Lithobates grylio common
Pine Barrens Treefrog Hyla andersonii Sensitive
Pine Woods Treefrog Hyla femoral is common
Plains Leopard Frog Lithobates blairi Sensitive
Plains Spadefoot Spea bombifrons 

Eleutherodactylus
common

Rio Grande Chirping Frog cystignathoides common
Rio Grande Leopard Frog Lithobates berlandieri common
River Frog Lithobates heckscheri common
Southern Chorus Frog Pseudacris nigrita common
Southern cricket frog Acris gryllus common
Southern Leopard Frog Lithobates sphenocephalus common
southern toad Anaxyrus terrestris common
Spotted Chorus Frog Pseudacris clarkii Sensitive
spring peeper Pseudacris crucifer common
Squirrel Treefrog Hyla squire I la common
Strecker's Chorus Frog Pseudacris streckeri common
Upland Chorus Frog Pseudacris feriarum common
Western Chorus Frog Pseudacris triseriata Sensitive
Wood frog Lithobates sylvaticus Sensitive
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Appendix 3. Comparison of human footprint model performance based on regressing 
incident rate of four synanthropic avian guilds against human footprint intensity derived 
Theobald et al. (2012) model. Shown are all models. For each models log likelihood 
(LL), AIC, and AIC weight ( W j )  are shown.

Guild Model LL Scale AIC deltaAIC w ,

Full Leu 2777.90 A rea+1 km -5577.2 0.0 5.3E-01

Full Leu 2790.66 1km -5575.3 1.9 2.0E-01

Full Leu 2790.46 200m -5574.9 2.3 1.7E-01

Full Leu 2777.90 Area+200m -5573.9 3.3 1.0E-01

Full Leu 2777.90 Area+2km -5562.8 14.4 3.9E-04

Full Leu 2781.46 2 km -5556.9 20.3 2.1E-05

Full Leu 2777.90 Area+3km -5547.8 29.4 2.2E-07

Full Leu 2772.86 3km -5539.7 37.5 3.8E-09

Full Sanderson 2535.80 Area+3km -5063.6 513.6 1.6E-112

Full Sanderson 2534.83 Area+2km -5061.7 515.5 6 .1E -113

Full Sanderson 2532.71 200m -5059.4 517.8 1.9E-113

Full Sanderson 2533.71 Area+lkm -5059.4 517.8 1.9E-113

Full Sanderson 2532.23 3 km -5058.5 518.7 1.2E-113

Full Sanderson 2532.18 1km -5058.4 518.8 1.2E-113

Full Sanderson 2531.97 2km -5057.9 519.3 9.1E-114

Full Sanderson 2532.75 Area+200m -5057.5 519.7 7 .4E -114

Full Null - -4980.5 596.7 1.4E-130

Full Theobald 2009.85 Area+2km -4014.2 1563.0 0.0

Full Theobald 2008.05 Area+3km -4010.6 1566.6 0.0

Full Theobald 2005.69 A rea+1 km -4006.1 1571.1 0.0

Full Theobald 2004.03 2km -4005.5 1571.7 0.0

Full Theobald 2002.16 1km -4001.6 1575.6 0.0

Full Theobald 2000.83 3 km -3999.2 1578.0 0.0

Full Theobald 1989.64 200m -3976.3 1600.9 0.0

Full Theobald 1990.08 Area+200m -3975.0 1602.2 0.0

Casual-Threshold Leu -547.95 200m 1101.9 0.0 7.1E-01

Casual-Threshold Leu -547.94 Area+200m 1103.9 2.0 2.6E-01

Casual-linear Leu -553.02 200m 1112.0 10.1 4.6E-03

Casual-linear Leu -553.02 Area+200m 1114.0 12.1 1.7E-03

Casual-Threshold Leu -558.00 1km 1122.0 20.1 3.1E-05

Casual-Threshold Leu -557.87 Area+lkm 1123.7 21.8 1.3E-05

Casual-linear Leu -560.90 1km 1127.8 25.9 1.7E-06

Casual-linear Leu -569.53 Area+lkm 1129.4 27.5 7.6E-07

Casual-linear Sanderson -663.46 3 km 1131.8 29.9 2.3E-07

Casual-linear Sanderson -665.26 Area+1 km 1138.5 36.6 8.1E-09
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Casual-Threshold Sanderson -664.06 A rea+1 km 1138.5 36.6 8.1E-09

Casual-Threshold Leu -566.85 Area+2km 1141.7 39.8 1.6E-09

Casual-Threshold Leu -568.02 2 km 1142.0 40.1 1.4E-09

Casual-linear Leu -560.71 Area+2km 1142.2 40.3 1.3E-09

Casual-linear Leu -568.48 2km 1143.0 41.1 8.5E-10

Casual-linear Leu -569.53 Area+3km 1147.1 45.2 LIE-10

Casual-Threshold Leu -570.24 Area+3km 1148.5 46.6 5.4E-11

Casual-linear Leu -571.82 3km 1149.6 47.7 3 .1 E -1 1

Casual-Threshold Leu -571.82 3 km 1150.5 48.6 2.0E-11

Casual-linear Theobald -652.70 Area+3km 1301.7 199.8 2.9E-44

Casual-linear Theobald -648.70 Area+2km 1302.8 200.9 1.7E-44

Casual-linear Theobald -648.33 2 km 1303.3 201.4 1.3E-44

Casual-linear Theobald -648.58 3 km 1303.8 201.9 1.0E-44

Casual-linear Theobald -648.93 1km 1304.5 202.6 7.2E-45

Casual-linear Theobald -646.99 A rea+1 km 1306.1 204.2 3.3E-45

Casual-linear Theobald -652.85 200m 1312.3 210.4 1.5E-46

Casual-linear Theobald -646.42 Area+200m 1314.0 212.1 6.3E-47

Casual-Threshold Theobald -653.71 Area+3km 1316.2 214.3 2.1E-47

Casual-Threshold Theobald -655.36 2 km 1317.3 215.4 1.2E-47

Casual-Threshold Theobald -654.31 Area+2km 1317.4 215.5 1.1E-47

Casual-Threshold Theobald -655.49 3 km 1317.6 215.7 1.0E-47

Casual-Threshold Theobald -655.90 1km 1318.4 216.5 6.9E-48

Casual-Threshold Theobald -655.76 Area+lkm 1320.2 218.3 2.8E-48

Casual-Threshold Theobald -659.50 200m 1325.6 223.7 1.9E-49

Casual-Threshold Theobald -659.24 Area+200m 1327.1 225.2 9.0E-50

Casual-linear Sanderson -663.90 2km 1333.9 232.0 3.0E-51

Casual-linear Sanderson -663.22 Area+3km 1334.4 232.5 2.3E-51

Casual-Threshold Sanderson -665.38 Area+3km 1334.4 232.5 2.3E-51

Casual-Threshold Sanderson -664.64 3 km 1335.3 233.4 1.5E-51

Casual-linear Sanderson -664.24 200m 1335.9 234.0 1.1E-51

Casual-linear Sanderson -664.15 1km 1336.1 234.2 1.0E-51

Casual-Threshold Sanderson -665.08 2km 1336.1 234.2 1.0E-51

Casual-linear Sanderson -664.22 Area+2km 1336.5 234.6 8.1E-52

Casual-Threshold Sanderson -661.88 Area+2km 1336.5 234.6 8.1E-52

Casual-Threshold Sanderson -665.33 1km 1336.7 234.8 7.4E-52

Casual-Threshold Sanderson -665.38 200m 1336.8 234.9 7.0E-52

Casual-linear Sanderson -665.06 Area+200m 1338.1 236.2 3.7E-52

Casual-Threshold Sanderson -663.96 Area+200m 1338.1 236.2 3.7E-52

Casual-linear Null - - 1346.2 244.3 6.4E-54

Casual-Threshold Null - - 1346.2 244.3 6.4E-54

Tangential-X Leu 1110.37 200m -2212.7 0.0 3.8E-01
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Tangential-X2 Leu 1110.37

Tangential-X+X2 Leu 1110.51
Tangential-
Linear Leu 1107.01
Tangential-
Linear Leu 1107.09

Tangential-X Leu 1102.68
Tangential-X2 Leu 1102.68
Tangential-
Linear Leu 1101.03
Tangential-X+X2 Leu 1102.68
Tangential-
Linear Leu 1101.04
Tangential-
Linear Leu 1097.37
Tangential-
Linear Leu 1096.02
Tangential-
Linear Theobald 1096.62
Tangential-
Linear Theobald 1096.46
Tangential-
Linear Theobald 1094.75
Tangential-
Linear Theobald 1096.83
Tangential-
Linear Theobald 1093.73
T angential-X+X2 Leu 1096.14

Tangential-X Theobald 1097.04

Tangential-X2 Theobald 1097.04
Tangential-
Linear Theobald 1097.29
Tangential-X Theobald 1096.72
Tangential-X2 Theobald 1096.72
Tangential-
Linear Leu 1095.61
Tangential-X+X2 Theobald 1075.78
T angential-X+X2 Theobald 1075.80
Tangential-X Theobald 1096.49
Tangential-X2 Theobald 1096.49
Tangential-X+X2 Theobald 1075.67
Tangential-
Linear Theobald 1093.69
Tangential-
Linear Leu 1096.02

Tangential-X Leu 1097.81

200m - - -
Area+200m -2211.0 1.7 1.6E-01

200m
-2208.0

4.7 3.7E-02

Area+200m
-2206.2

6.5 1.5E-02
1km -2197.4 15.3 1.8E-04

1km - - -

1km
-2196.1

16.6 9.6E-05

A rea+1 km -2195.4 17.3 6.7E-05

Area+lkm
-2194.1

18.6 3.5E-05

2 km
-2188.7

24.0 2.4E-06

Area+2km
-2187.4

25.3 1.2E-06

1km
-2187.2

25.5 LIE-06

2 km
-2186.9

25.8 9.6E-07

3 km
-2186.6

26.1 8.3E-07

Area+2km
-2186.6

26.1 8.3E-07

Area+3km
-2186.6

26.1 8.3E-07
Area+2km -2186.2 26.5 6.8E-07

1km -2186.1 26.6 6.4E-07

1km - - -

A rea+1 km
-2185.7

27.0 5.3E-07

2km -2185.4 27.3 4.5E-07
2 km -2185.4 27.3 4.5E-07

3 km
-2185.2

27.5 4.1E-07

Area+2km -2185.2 27.5 4.1E-07

Area+3km -2185.1 27.6 3.9E-07
3km -2185.0 27.7 3.7E-07
3 km - - -

A rea+1 km -2184.5 28.2 2.9E-07

200m
-2184.4

28.3 2.8E-07

Area+3km
-2184.0

28.7 2.3E-07

2km -2183.5 29.2 1.8E-07



Tangen al-X2 Leu 1097.81 2 km - - -

Tangen al-X Leu 1095.76 3 km -2183.5 29.2 1.8E-07
Tangen al-X2 Leu 1095.76 3 km - 29.2 1.8E-07

Tangen al-X +X 2 Leu 1096.14 Area+3km -2182.3 - -

Tangen al-X Theobald 1094.75 200m -2181.5 31.2 6.5E-08
Tangen al-X2 Theobald 1094.75 200m -2181.5 31.2 6.5E-08
Tangen al-X +X 2 Theobald 1075.94 Area+200m -2179.6 33.1 2.5E-08
Tangen
Linear

al-
Theobald 1097.32 Area+200m

-2179.5
33.2 2.4E-08

Tangen al-X Sanderson 1075.67 1km -2143.3 69.4 3.3E-16
Tangen al-X2 Sanderson 1075.67 1km - - -

Tangen al-X Sanderson 1075.61 200m -2143.2 69.5 3.1E-16
T angen al-X2 Sanderson 1075.61 200m - - -

Tangen
Linear

al-
Sanderson 1074.57 3km

-2143.1
69.6 3.0E-16

Tangen al-X Sanderson 1075.50 2 km -2143.0 69.7 2.8E-16
Tangen al-X2 Sanderson 1075.50 2km - - -

Tangen al-X Sanderson 1075.43 3 km -2142.9 69.8 2.7E-16

Tangen al-X2 Sanderson 1075.43 3km - - -

Tangen
Linear

al-
Sanderson 1074.11 2 km

-2142.2
70.5 1.9E-16

Tangen al-X +X 2 Sanderson 1075.80 Area+200m -2141.9 70.8 1.6E-16
Tangen
Linear

al-
Sanderson 1073.88 1km

-2141.8
70.9 1.5E-16

Tangen
Linear

al-
Sanderson 1074.88 Area+3km

-2141.8
70.9 1.5E-16

Tangen
Linear

al-
Null

-2141.7
71.0 1.5E-16

Tangen al-X Null - - -2141.7 71.0 1.5E-16
Tangen al-X2 Null - - - - -

Tangen al-X +X 2 Sanderson 1075.78 Area+2km -2141.6 71.1 1.4E-16
Tangen al-X +X 2 Sanderson 1075.94 Area+3km -2141.6 71.1 1.4E-16
Tangen al-X +X 2 Sanderson 1075.67 Area+1 km -2141.3 71.4 1.2E-16
Tangen
Linear

al-
Sanderson 1073.56 200m

-2141.1
71.6 LIE-16

Tangen
Linear

al-
Sanderson 1074.33 Area+2km

-2140.7
72.0 8.9E-17

Tangen
Linear

al-
Sanderson 1073.94 Area+200m

-2139.9
72.8 6.0E-17

Tangen
Linear

al-
Sanderson 1073.89 A rea+1 km

-2139.8
72.9 5.7E-17

Anthrophobic Theobald -563.38 Area+3km 1135.5 -0.5 6.8E-01
Anthrophobic Theobald -564.53 3 km 1136.0 0.0 5.3E-01
Anthrophobic Theobald -564.20 Area+lkm 1136.0 0.0 5.3E-01
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Anthrophobic
Anthrophobic

Anthrophobic
Anthrophobic

Anthrophobic

Anthrophobic

Anthrophobic
Anthrophobic

Anthrophobic
Anthrophobic

Anthrophobic

Anthrophobic
Anthrophobic
Anthrophobic
Anthrophobic

Anthrophobic
Anthrophobic

Anthrophobic

Anthrophobic
Anthrophobic

Anthrophobic
Anthrophobic

Theobald -564.62 lkm

Theobald -563.78 Area+2km

Theobald -563.60 Area+200m

Theobald -564.78 2km

Theobald -565.18 200m

Leu -570.72 Area+3km

Leu -571.17 Area+2km

Sanderson -571.52 Area+3km

Leu -570.72 A rea+1 km

Null
Sanderson

Sanderson

Leu
Sanderson

Leu

Leu

Leu
Sanderson
Sanderson

Sanderson

Leu
Sanderson

'571.77

-571.84
-570.72

-571.89
-573.02

-573.36
-573.12

-573.53

-573.63
-573.65

-573.66
-573.68

Area+200m  

Area+2km  

Area+200m  

A rea+1 km 

3 km 

lkm 
2 km 
3km 

200m  

2km 

200m  

lkm

1136.2 0.2 4.8E-01

1136.3 0.3 4.5E-01

1136.4 0.4 4.3E-01

1136.6 0.6 3.9E-01

1137.4 1.4 2.6E-01

1149.4 13.4 6.5E-04

1150.3 14.3 4.1E-04

1151.0 15.0 2.9E-04

1151.0 15.0 2.9E-04

1151.4 15.4 2.4E-04

1151.5 15.5 2.3E-04

1151.7 15.7 2.1E-04

1151.7 15.7 2.1E-04

1151.8 15.8 2.0E-04

1152.0 16.0 1.8E-04

1152.2 16.2 1.6E-04

1152.2 16.2 1.6E-04

1153.1 17.1 1.0E-04

1153.3 17.3 9.2E-05

1153.3 17.3 9.2E-05

1153.3 17.3 9.2E-05

1153.4 17.4 8.8E-05
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Chapter 3: Linking Sensitive Species Occurrence to Land Cover Types

Introduction

Nearly half of the world's population lives in urban areas (Watson 1993). The 

proportion of the population living in cities has grown from 29% in 1950 to 50% in 2010 

(UN 2011). By 2050, 69% or 6.3 billion people are projected to be living in urban areas 

and nearly as many humans will occupy cities as inhabit the earth today (Brown et al. 

1995; UN 2011). Near the end of the last century, human settlements covered 1-6% of the 

earth’s surface; agriculture covered another 12% (Meyer and Turner 1992). This 

conversion of land cover from natural to urban has been documented to produce some of 

the greatest local extinctions of native species (Marzluff 2001; McKinney 2002). The 

conversion of land cover to urbanization is often more lasting than other types of habitat 

loss (McKinney 2002). The infrastructure involved in creating skyscrapers, houses, 

power lines, and roads have permanent and lasting effects on ecosystem functioning 

(Hooke and Martin-Duque 2012).

As human populations continue to increase, there will be subsequent increases in 

urban areas, suburban areas, roads, and agriculture. Global croplands, pastures, 

plantations, and urban areas have expanded in recent decades, accompanied by large 

increases in energy, water, and fertilizer consumption compounded with considerable 

losses of biodiversity (Foley et al. 2005). The need to provide food, fiber, water, and 

shelter to the increasing human population drives the conversion of “natural'’ landscapes 

(i.e. intact landscapes where dispersal is not impeded) to anthropogenic landscapes 

(Foley et al. 2005).



The loss of habitat to urbanization has pronounced effects on native fauna. Large 

areas o f land cover are first converted, creating degraded fragments and land cover 

dominated by exotic invasive plants. Over time, fragments continue to decrease in size 

and the spread of invasive species further degrades the landscape (Marzluff 2001).

It is the responses of individual organisms to a change in land cover that can 

disrupt ecosystem function, which can further compound the effects of the initial land 

cover change (Hansen et al. 2001). Species abundance and distribution are influenced by 

land use and land-cover quality (Pulliam 1988). Land-cover change also fragments 

habitats, which further increases the distances among habitat patches, and limits the 

ability of species to move across the landscape (Primack and Miao 1992; Andren 1992; 

Hansen et al. 2001). Anthropogenic changes in land cover have direct effects on the 

species living within that area. Therefore, it is important for land managers to be able to 

predict which species will likely occur in a landscape (Lichstein 2002). While there are 

several studies that have addressed the need for understanding species response to land 

cover availability, additional studies are needed to further evaluate habitat use regarding 

amount and size of preferred land cover (Hansen and Urban 1992; Andren 1992).

Habitat use depends on the area and type of land cover (Forman et al. 1976; Galli 

et al. 1976). Forman et al. (1976) found that the number of forest songbirds increased 

with increasing forest patch size and Mazerolle and Villard (1999) found that landscape 

characteristics were significant predictors of species presence. Identifying minimum land 

cover composition and configuration requirements for species that respond similarly to 

anthropogenic land cover can provide important information on species’ population 

viability. Wood et al. (in press) found that there was an increase in synanthropic species



associated with suburban developments but an overall decrease in species richness, even 

when those suburban developments were within protected reserves. Miller et al. (2003) 

found that bird species diversity decreased from rural to urban riparian areas. Identifying 

common habitat requirements among species improves management for species of 

concern, species richness, and diversity.

It is well established that some species are more sensitive to human-dominated 

landscapes than others. Johnston et al. (2001) classified avian species depending on their 

use of human-dominated land cover: “full synanthrope”, species that depend on 

anthropogenic features throughout entire annual cycle; “casual synanthrope” species that 

exploit anthropogenic features; “tangential synanthrope”, species that occasionally 

exploit anthropogenic features; and “non-synanthrope” (anthrophobic), species that avoid 

anthropogenic features.

As the human population continues to increase, species that avoid human- 

dominated land cover, anthrophobic species, may decline. It is therefore important to 

know minimum land cover requirements for sensitive species and whether there are 

parallels in land cover requirements among sensitive species. The objectives of this study 

were to evaluate 1) if there are underlying minimum land cover requirements for 

sensitive species and 2) the degree to which anthropogenic features and human land use 

influence the distribution of these species.

We created models based on land cover classification for seven anthrophobic 

species and one synanthropic species, for comparison. The anthrophobic species we 

selected included the bushtit (Psaltriparus minimus), marsh wren (Cistothorus palustris), 

Swainson’s thrush (Catharus ustulatus), hermit thrush (Catharus guttatus), northern



parula (Parula americana), ovenbird (Seiurus aurocapillus), grasshopper sparrow 

(.Ammodramus savannarum). We compared these species to a full synanthropic species, 

one that is commonly found in areas dominated by anthropogenic land features, the 

European starling (Sturnus vulgaris). This species served as a control to evaluate signal 

strength of habitat-species interactions based on coarse-scale bird survey data and 

satellite imagery derived land-cover classifications. Moreover, we included the European 

starling to evaluate whether human land-cover types have similar weight in species 

occurrence models. From this comparison, we can determine if anthropogenic land-cover 

types are ranked highly for both anthrophobic species avoidance and on full synanthrope 

occurrence.

The results of this study will provide land managers and regional planners 

information on how natural and biologically diverse land cover can be integrated into 

urban and suburban designs. Even small changes in the spatial patterning of land cover 

can produce dramatic ecological responses (Turner and Gardner 1991). The information 

obtained from this study on the amount, and type of land cover required by sensitive 

species can be implemented for regional planning.

Methods

Study Area

Our study area included the conterminous United States (Figure 5). The 

cumulative species ranges included in our analysis spanned the conterminous United 

States and all major land cover types.



Avian Data

We used Breeding Bird Survey (BBS) data from 2005-2012 to estimate species 

occurrence. We used eight years of BBS data to derive robust species occurrence 

estimates. BBS routes were obtained from the USGS

(ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/DataFiles/) for the conterminous United 

States (Figure 5). BBS routes were visited once a year, either by the same or a different 

observer. Each survey route was 39.4 kilometers long with stops at 800-m intervals. At 

each stop, a 3 min point count was conducted in June where all birds seen and heard 

within a 400 m buffer were recorded (BBS, 2013).

The American bushtit is a year-round resident in the western United States 

ranging from coastal Washington to Utah, to western Texas (Figure 6). It breeds in 

deciduous woodland, coniferous forests, oak woodland, chaparral, scrub, and residential 

neighborhoods, often near streams (Alderfer 2006; Audubon 2014). The marsh wren is a 

resident along the coasts o f the United States and breeds throughout the northern part of 

the conterminous United States (Figure 7). It prefers emergent vegetation for nesting 

habitat and inhabits freshwater and saltwater marshes, roadside ditches, and small 

agricultural runoff sites (Audubon 2014). The Swainson’s thrush breeds throughout the 

Pacific Northwest and the Atlantic Northeast (Figure 8). Its breeding habitat includes 

coniferous woodlands with dense undergrowth and deciduous wooded areas in the Pacific 

Northwest and mixed forests in the Atlantic Northeast (Clements 2001; Audubon 2014). 

The hermit thrush breeds throughout the northern conterminous United States, along the 

West Coast and mountain regions in the Northwest (Figure 9). The hermit thrush breeds 

typically in conifer-dominated forests and deciduous forests, usually in areas with little

ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/DataFiles/


undergrowth (Alderfer 2006). The northern parula breeds throughout the eastern United 

States from Maine to eastern Texas (Figure 10). This species is primarily a forest- 

dwelling species that breeds in habitat consisting of high tree diversity, variable canopy 

height, coniferous forests, and swamps (Ehrlich et al. 1988). The ovenbird breeds 

throughout the Northeast and northern plains, from Maine to Arkansas, to Montana 

(Figure 11). It breeds in mature deciduous and mixed forests, especially in areas with 

little undergrowth (Sibley 2000). The grasshopper sparrow breeds throughout most the 

conterminous United States, excluding the Southwest and parts of the Northwest (Figure 

12). Preferred habitats include upland meadows, pastures, hayfields, and croplands 

(Arbib 1988; Vickery 1996; Smith 2008). The European starling breeds in human 

dominated habitats throughout the conterminous United States (Figure 13). This species 

is common in agriculture, suburban, and urban areas (Sibley 2000).

Land cover dataset

We obtained 706 land-cover types from the Landfire (USGS 2013) data set and 

reclassified some land-cover types in GIS (ESRI 2013) into natural and anthropogenic 

land cover that may be used by species included in the analysis. In this study, 

anthropogenic land cover is defined as any land cover that was classified as “developed”, 

while natural land cover included all other types. We reclassified the land cover types 

into forest, grassland, shrubland, riparian, wetland, high development, medium 

development, low development, open development, developed grassland, developed 

forest, and agriculture. We also included extent of highways and secondary roads 

throughout each species’ breeding range (TIGER 2000).

Statistical Analysis



We reduced the analyses extent to states where the species is known to breed 

(Sibley 2013; Figures 5-13). We also included the latitude demarking the center of each 

BBS route habitat use could change along latitudinal gradients.

We included only the BBS routes that were surveyed more than 70% of the total 

survey years from 2005-2012. We chose an 8-year interval to remove the possibility of 

observer bias in occurrence estimates. If a species was observed at least 70% of the time, 

that route was given a “ l ”and a “0” if a specie was observed less that 70% of the time. 

For example, if a bushtit was observed on a particular route 6 out of 8 years, a 75% 

occurrence, we code that route as “ 1”. We chose the threshold of 70% because it 

eliminates observer bias and is most indicative that a species is present in this location.

We buffered BBS routes by 200 m, 1 km, 2 km, and 3 km to analyze proportion 

o f land cover types. Buffers reflect within season movement for studied species. Wiens 

and Rotenberry (1987), Wittenberger (1991), and Pearson (1993) found that birds 

respond to their environment at multiple spatial scales, ranging from local scales to 

regional scales. Donovan et al. (1997) also found that it is important to look at multiple 

scales because the relative importance of different scales varies depending on land cover 

suitability. To calculate the proportion of land cover within each scales we used focal 

statistics in ArcGIS (ESRI 2013). We addressed the possibility of spatial autocorrelation 

by removing any route where 3-km buffers overlapped.

For each species we first ran a Spearman Rank correlation to check for 

multicolinearity among land cover types or buffers. We scaled all variables to allow 

comparison of parameter estimates. We then ran univariate general linear models to 

identify best scale for each land cover type and human disturbance. We included all



variables that had a lower AIC value than the null model and did not correlate in the final 

models. If variables correlated, we chose the variable with the lowest AIC value for the 

analysis. All statistical analyses and modeling were conducted using the R statistical 

language v. 2.13.2 (R Development Core Team 2011).

We used the dredge function (MuMni package) to obtain the weight for each 

variable. To derive the final model for each species, we model averaged parameter 

estimates across all models whose combined AIC weights totaled 0.95(Burnham and 

Anderson 2004). To evaluate final model predictive capability, we calculated the area 

under the curve (AUC; pROC package). Calculating the AUC is a way to test the 

accuracy o f the model; the scale of the AUC ranges from 0 to 1, where a value of 1 

signifies a perfect model (Darlington 1990). For models with an AUC greater than 0.7 

(Darlington 1990), we compared directionality and magnitude of parameter estimates to 

determine if there were any parallels in land cover type and scale.

Results

Developed Medium land cover was highly correlated to Developed High among 

all models. Developed Open land cover was highly correlated to Developed Low for all 

species but not the European starling. In addition, we removed Developed Open land 

cover from all models as it overlapped with less than 10% of BBS routes.

Bushtit

Correlations existed between Shrubland2km and Shrubland3km with Grassland2km 

and Grassland3km- The 95% candidate variable set included Agriculture2oom,

Agriculture ikm, Development Medium ikm, Forest2km, Secondary Roads2oom, Grassland3km,



Riparian3km, Latitude, and Shrubland2oom, and Shrubland3km- Variables with the highest 

AIC weights included Agriculturei km, Development Medium2km, and Shrubland2oom 

(Figure 14). A total of 4 models were used for the final model (Appendix 3):

Bushtit occurrence (SE) = -4.93 (0.21) -1.69 (0.05) Agriculture ikm -0.63 (0.03) 

Developed Mediuni2km -1.05 (0.03) Forest2km + 0.17 (0.10) Secondary Roads2oom + 0-72 

(0.03) Shrubland2oom

The Bushtit model predicted well with an AUC value of 0.84. This model 

accurately predicts the species’ occurrence.

Marsh wren

The 95% candidate variable set included Shrubland3km, Wetland2oom, Highway3km, 

Development High3km, Riparian2oom, Riparian3km, Secondary Roads ikm, Agriculture2oom, 

Agriculture ikm, Grassland3km, and latitude. Variables with the highest AIC weights 

included Shrubland3km and Latitude (Figure 15). A total of 12 models were used for the 

final model (Appendix 4):

Marsh wren occurrence (SE) = -6.98 (0.11) -1.67 (0.03) Shrubland3km -1.67 (0.03) 

Latitude + 0.33 (0.01) \Vetland200m -0.90 (0.02) Development High3km - 0.56 (0.02) 

Riparian2oom -1.11 (0.03) Secondary Roadsikm

The marsh wren model predicted well with an AUC value of 0.87. This model 

accurately predicts the species’ occurrence.

Swainson's thrush

Variables included in the 95% candidate variable set were Ruparian2oom, 

Riparian2km, Riparian3km, Forest3km, Shrubland2oom, Wetland2oom, Developed Grassland3km, 

Agriculture3km, Secondary Roads2oom, Highways ikm, Developed Forest2km, Grassland2oom,



Grasslandikm, and Development Highikm- Variables with the highest weights included 

Shrubland2oom, Riparian2oom, and Latitude (Figure 16). A total of 12 models were used for 

the final model (Appendix 5).

Swainson’s thrush occurrence (SE) = -4.32 (0.07) - 0.63 (0.05) Shrubland2oom + 

0.98 (0.07) Ripariarnoom -1.43 (0.10) Latitude -1.44 (0.10) Wetland2oom+ 0.09 (0.01) 

Forest2km -0.11 (0.01) Developed Grassland3km -0.11 (0.01) Highway]km

The Swainson’s thrush model had an AUC value of 0.39. This model does not 

accurately predict the species’ occurrence.

Hermit thrush

Variables included in the 95% candidate model were Latitude, Agriculture2oom, 

Developed Mediuny^m, Wetland ikm, Grassland2oom, Secondary Roads3km, Shrubland2oom, 

Highway3km, Riparian ikm, Developed Grassland2oom, Developed Forest2oom, and 

Forest2oonv Variables with the highest weight included; Riparianikm, Agriculture2oom, 

Wetlandikm (Figure 17). A total of 8 models were used for the final model (Appendix 6): 

Hermit thrush occurrence (SE) = -3.91 (0.40) + 1.17 (0.11) Riparianikm -1.82 

(0.08) Agriculture2oom -2.66 (0.12) Wetlandikm + 0.32 (0.02) Shrubland2oom -1.07 (0.06) 

Development High3km -0.32 (0.02) Secondary road3km -0.21 (0.01) Highways3km 

The hermit thrush model had an AUC value of 0.29. This model does not 

accurately predict the species’ occurrence.

Northern Parula

Correlations existed between all buffers for Agriculture and Riparian, with the 

exception of the 200 m buffer. Variables included in the 95% candidate variable set were 

Forest2oom, Agriculture2oom, Development High3km, Riparian2oom, Highway3km,



Wetlanc^oom, Developed Forest2oo, Riparian3km, Secondary Roads3km, Shrublandikm, and 

Developed Grassland2km- Variables in the final averaged model had equal weights, with 

the exception of Wetlandikm and Highways3km (Figure 18). A total of 3 models were used 

for the final model (Appendix 7):

Northern parula occurrence (SE) = -4.52 (0.63) + 0.75 (0.09) Development 

High3km + 0-75 (0.09) Developed Forest2km - 0.89 (0.12)Shrubland2oom + 0.85 (0.12) 

Riparian2oom + 0.78 (0.11) Latitude - 0.50 (0.09) Wetlandikm - 0.30 (0.09) Highways3km 

The northern parula model predicted well with an AUC value of 0.91. This model 

accurately predicts the species’ occurrence.

Ovenbird

Correlations existed between Agriculture ikm, Agriculture2km, and Agriculture3km 

with Riparian2km» and Riparian3km- Variables included in the model analysis were 

Grassland2oom, Forest2oo, Forest]km, Forest2km, Forest3km, Agriculture2oom, Developed 

Highikm, Secondary Roads ikm, Developed Grassland2km, Riparian2oom, Riparian3km, 

Highways3km, Developed Forest lkm, Shrubland3km, and Wetland3km- Variables had 

equal weight in the model, with the exception of Agriculture2oom, which had a slightly 

less weight (Figure 19). A total of 2 models were used for the final averaged model 

(Appendix 8):

Ovenbird occurrence (SE) = -3.78 (0.23) - 1.67 (0.27) Grassland2oom + 0-28 (0.09) 

Forest2oom - 1-43 (0.10) Latitude - 1.44 (0.10) Wetland2oom + 0.09 (0.01) Forest2km -0.11 

(0.01) Developed Grassland3km - 0.11 (0.01) Highways]km



The ovenbird model predicted well with an AUC value of 0.85. This model 

accurately predicts the species’ occurrence.

Grasshopper Sparrow

Correlations existed between A g r ic u l tu re  and Riparian3km- The candidate 

variable set included Developed Mediuirkm, Riparian2oom, Developed Forestikm, 

Secondary Roads3km, Highways3km, Shrubland3km, Agriculture3km, and Developed 

Grassland2oom- Variables with the highest AIC weights were A g ric u ltu ra l, \Vetland3km, 

Riparian2oom, and Latitude (Figure 20). A total of 4 models were used for the final model 

(Appendix 9).

Grasshopper sparrow occurrence (SE) = -3.91 (0.40) + 1.17 (0.17) A g r ic u l tu r e  

- 1.71 (0.17) + Developed Mediuni2km 0.43 (0.05) Wetland3km - 0.96 (0.10) Riparian2oom - 

0.37 (0.04) Latitude - 0.26 (0.04) Highways3km + 0.01 (0.003) Developed Grassland2oom 

The grasshopper sparrow model predicted well with an AUC value of 0.87. This 

model accurately predicts the species’ occurrence.

European Starling

The candidate variable set included in the model average were Forest2oom, 

Agriculturoom, development_High3km, Grassland2oom, Riparian2oom, Highway3km, 

\Vetland200m, Developed Forest2oom, Shrubland2km, and Development Low ie- All 

variables had equal AIC weights, with the exception of Development L o w ie , which had 

a slightly smaller weight (Figure 21). A total of 2 models were used for the final model 

(Appendix 10).

European Starling occurrence (SE) = 0.14 (0.05) + 0.48 (0.07) A griculturoo 

-0.36 (0.08) Developed Forest2oom + 0.54 (0.07) Developed Ehglrm + 0.24 (0.08)



Developed Lowikm - 0-66 (0.09) Riparian2oom + 0.37 (0.06) Shrubland2km - 0.51 (0.07) 

Wetland2oom

The European starling model predicted well with an AUC value of 0.81. This 

model accurately predicts the species’ occurrence.

Discussion

There were a few patterns and parallels between the species we modeled. Natural 

land cover types that each species was known to breed in generally had high AIC 

weights. Anthropogenic covariates commonly included in models were either 

Development High or Development Medium. Our analyses are consistent with previous 

research that suggests anthrophobic birds avoid highly developed areas (Galli et al. 1976; 

Beck and George 2000; Proppe et al. 2013). Highways and secondary roads were 

included in the models for grasshopper sparrow, marsh wren, and northern parula. These 

results are similar to previous research that suggests most species do not occur along 

roads and highways (Baumgartner 1934; Kuitunen 1998).

Natural land cover covariates with high weights occurred at the smaller buffer 

sizes of 200 m and 1 km. In contrast, Development High and Medium covariates occurred 

at large buffer size classes of 1 km and 3 km. Road covariates also occurred at larger 

scales, ranging from 1 km to 3 km. These results suggest that breeding habitat use for 

species analyzed in this study occurs at smaller scales but that these species respond to 

development and roads at larger scales.

Human development covariates also had high model weight with the European 

starling; this suggests that human development is one of the biggest drivers for species’



occurrence in all of the species we modeled. In addition, every type of natural land cover 

in the European starling model related negatively to occurrence.

Our models performed very well (AUC >0.8), with the exception of the hermit 

thrush (AUC = 0.29) and the Swainson’s thrush (AUC = 0.39). Previous research has 

shown that habitat suitability models often do not perform well when tested on thrushes. 

Rittenhouse et al. (2010) found that habitat suitability indexes based on land cover 

requirements were inaccurate at predicting where wood thrush (Hylocichla mustelina) 

would occur. Thrushes could be keying in on more fine-scaled habitat features such as 

leaf litter (Laughlin et al. 2013), stem density (Chisholm and Leonarda 2008), or 

microhabitat foliage (Beck and George 2000).

The grasshopper sparrow occurrence model was also an outlier (Figure 20). 

Presence o f agriculture and wetlands had the highest model weight. Developed 

grasslands, to a lesser extent, were also an indicator of species occurrence. Johnston et al. 

(2001) may have incorrectly identified the grasshopper sparrow as an anthrophobic 

species; several studies show that this species can successfully breed in pasture and hay 

field land cover (Wiens 1973; Benoit et al. 2008; Benoit et al. 2010; Irvin 2013). A 

further breakdown of the agriculture land cover types might add more insight into which 

types of agriculture this species uses during the breeding season.

Our results suggest that anthrophobic species avoid areas of high human 

development. These results are consistent with previous literature on rare and sensitive 

species occurrence (With and Crist 1995; McKinney 2000; Marzluff et al. 2001). This is 

problematic because urban areas are increasing in size. Since the 1950s, humans have 

been increasingly moving back to urban areas (UN 2011). This trend of more populated



urban areas is occurring all over the world. Africa, for example, has the fastest rate of 

urbanization in the world (UN 2011). As cities continue to grow at a rapid rate, and 

merging together, it is becoming very important for regional planners to include habitat 

for local native species (Marzluff et al. 2001).

Several studies evaluated how to best manage urban land cover to promote native 

species. Beck and George (2000) found that the varied thrush (.Ixoreus naevius) was more 

likely to occur near human settlements if the forest did not have an abrupt edge. Also, 

Zurita and Bellocq (2012) found that including variable tree height and tree densities in 

parks increases bird diversity. Smooth transitions from natural land cover to human 

settlement as well as diversity in land cover may have the potential to increase native 

species and biodiversity in land cover with anthropogenic influence. If regional planners 

and land managers make an effort to manage green spaces and rural lots for native 

species, there is potential for greater native bird diversity in anthropogenic land cover. 

Miller et al. (2003) studied riparian woodlands that were located within and outside 

human settlements. They found that as development increased, riparian woodlands had 

less native trees and shrubs, less ground cover and shrub cover, and lower bird species 

richness. This indicates a potential for better management of green spaces in areas of 

human development. Improved management practices can increase biodiversity, reduce 

the spread of invasive species, and increase the overall health of that ecosystem as well as 

surrounding ecosystems (McKinney 2002).

The results of this study can also be used to parameterize human footprint models 

that incorporate the biological response of species to anthropogenic land cover and land 

managers can incorporate these requirements into landscape management. Creating



human footprint models that are based on biological response will be an important 

planning tool to gauge the effects of anthropogenic land cover types on anthrophobic 

species and ecological processes.
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Figure 5. Breeding bird survey (BBBS) route locations. Each line denotes a single BBS 
route (n=3229).
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Figure 6. Breeding bird survey routes included in within the home range of the bushtit 
(Psaltriparus minimus) (n=1046).
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Figure 7. Breeding bird survey routes included in within the home range of the marsh 
wren (Cistothorus palustris) (n=2398).
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Figure 8. Breeding bird survey routes included in within the home range of the 
Swainson’s thrush (Catharus ustulatus) (n=1209).
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Figure 9. Breeding bird survey routes included in within the home range of the hermit 
thrush (Catharus guttatus) (n=1813).
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Figure 10. Breeding bird survey routes included in within the home range o f the northern 
parula (Parula americana) (n=1913).
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Figure 11. Breeding bird survey routes included in within the home range o f the ovenbird 
(Seiurus aurocapillus) (n=1778).

69



pus
m m„.* i" *y ,.>̂ -*

= -V
ife r-:- 'ivjV'-

ih '  T-r % -' ' " x 'iz&C' ?<•.“' fc* j5' - '’V

(/••,'*-v-s ' 1 ir/M r-v V iV  k i L . .... «W,.. t r. f y  / » J - l

' 1 i_\L

|Kilcmet<
1,500 2.000

Figure 12. Breeding bird survey routes included in within the home range o f the 
grasshopper sparrow {Ammodramus savannarum) (n=2988).
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Figure 13. Breeding bird survey routes included in within the home range o f the 
European starling (Sturnus vulgaris) (n=3229).
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1

A g ric u ltu re  1km 0= -1.77 (0.41)

-

S h r u b la n d  2 0 0 m 0= 0.71 (0.25)

-

F o r e s t  1km 0= -1.19 (0.36)

D e v e l o p m e n t

M e d iu m  2k m 0= -0.74 (0.36)

c 0.2 0.4 0.6 0.8 1 1.2

Figure 14. The relative effects of covariate on occupancy at the breeding life-history scale 
for the bushtit (Psaltriparus minimus); displayed as the cumulative AIC weights o f the 
covariates falling within the confidence set, 95% of the highest Akaike weight, with the 
corresponding model averaged coefficients and standard errors (AICc 150.97; AUC = 
0.85).
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Shrubland 3km P= -1.67( 0.03)

Latitude P= -1.67 (0.03)

W etland 200m P= 0.33 (0.01)

D eve lop m en t  High 3km P= -0.90 (0.02)

Riparian 200m p= -0.59 (0.02)

Secondary Roads 1km p= -1.11 (0.03)

0.2  0 .4  0 .6  0 .8 1.2

Figure 15. The relative effects of covariate on occupancy at the breeding life-history scale 
for the marsh wren (Cistothorus palustris); displayed as the cumulative AIC weights of 
the covariates falling within the confidence set, 95% of the highest Akaike weight, with 
the corresponding model averaged coefficients and standard errors (AICc = 138.80; AUC 
= 0.90).
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Shrubland 200m  

Ripariran 200m  

Latitiude 

W etland 200m  

Forest 2km  

D eveloped  Grassland 3km  

Highways 1km

0= 0.09 (0.01)

0= -0.11 (0.01)

0= -0.11 (0.01)

0= -0.63(0.05)

0= 0.98 (0.07)

0= -1.43 (0.10)

0= -1.44 (0.11)

0.2 0.4 0.6 0.8 1.2

Figure 16. The relative effects o f covariate on occupancy at the breeding life-history scale 
for the Swainson’s thrush (Catharus ustulatus); displayed as the cumulative AIC weights 
o f the covariates falling within the confidence set, 95% of the highest Akaike weight, 
with the corresponding model averaged coefficients and standard errors ( AICc = 277.82; 
AUC = 0.39).
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Riparian 1km 3= 1.04 (0.05)

Agriculture 200m 3= -1.82 (0.079)
-

W etland 1km (3= -2.66 (0.12)
-

Shrubland 200m 3= 0.32 (0.02)
-

D ev e lo p m e n t  High 3km 3= -1.07 (0.06)
_

Secondary  Road 3km 3= -0.32(0.02)

Highways 3km 3= -0.21 (0.01)

0 0.2 0.4 0.6 0.8 1

Figure 17. The relative effects of covariate on occupancy at the breeding life-history scale 
for the hermit thrush (Catharus guttatus); displayed as the cumulative AIC weights of the 
covariates falling within the confidence set, 95% of the highest Akaike weight, with the 
corresponding model averaged coefficients and standard errors (AICc = 437.31, AUC = 
0.29).
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D e v e lo p m e n t  High 3km 3= -0.67 (0.09) 11
-

D eve loped  Forest 2km B= 0.75 (0.09)
-

Shrubland 200m B= -0.89 (0.12)
-
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-

Latitude 3= 0.78 (0.11) ■
-

W etland 1km 3= -0.50 (0.09) S
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Highways 3km 3=-0.30 (0.08) I a

c
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Figure 18. The relative effects of covariate on occupancy at the breeding life-history scale 
for the northern parula {Parula americana); displayed as the cumulative AIC weights of 
the covariates falling within the confidence set, 95% of the highest Akaike weight, with 
the corresponding model averaged coefficients and standard errors (AICc = 405.10; AUC 
= 0.91).
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0= -1.67 (0.27)Grassland 20 0 m

0= 0.28 (0.09)Forest 20 0 m

Forest 1km 0= 0.80 (0.22)

D ev e lo p m e n t  High 1km

Agriculture 2 00m

1.20.2 0.6 0.80.4

Figure 19. The relative effects of covariate on occupancy at the breeding life-history scale 
for the ovenbird (Seiurus aurocapillus); displayed as the cumulative AIC weights of the 
covariates falling within the confidence set, 95% of the highest Akaike weight, with the 
corresponding model averaged coefficients and standard errors (AICc = 604.48; AUC = 
0.85).
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D e v e l o p m e n t  M e d iu m  2km

A g ricu ltu re  3k m

W e t la n d  3k m

Riparian 2 0 0 m

L atitud e
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3= -1.71 (0.17)

3= 1.17 (0.12)

3= 0.43 (0.05)

3= -0.96 (0.10)

3= -0.39 (0.04)

3= -0.26 (0.04)

3= 0.01 (0 .002)

0.2 0.4 0.6 0.8 1.2

Figure 20. The relative effects of covariate on occupancy at the breeding life-history scale 
for grasshopper sparrow (Ammodramus savannarum)’, displayed as the cumulative AIC 
weights o f the covariates falling within the confidence set, 95% of the highest Akaike 
weight, with the corresponding model averaged coefficients and standard errors (AICc = 
405.10; AUC = 0.91).
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Figure 21. The relative effects of covariate on occupancy at the breeding life-history scale 
for European starling (Sturnus vulgaris); displayed as the cumulative AIC weights o f the 
covariates falling within the confidence set, 95% of the highest Akaike weight, with the 
corresponding model averaged coefficients and standard errors (AICc = 2535.86, AUC = 
0.81).
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