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ABSTRACT

Transformation of landscapes for human use underlies most conservation
problems. Biologists are increasingly using human footprint models with massive
global and national spatial datasets to gauge the effects of humans on
ecosystems. These models use spatial data to estimate the influence of human
activities on natural landscapes. We examined 3 models to determine how
accurately human footprint models predict effects of land use on ecological
processes. Models were evaluated using bird data and anuran data from the
eastern United States, as well as Breeding Bird Survey data and invasive
cheatgrass data from the western United States. Bird and anuran species were
organized into guilds and the incident rate for each guild was related to the
human footprint intensity. We mapped occurrence of invasive species to
compare to human footprint intensity. We predicted that when human footprint
intensity was low incident rates of bird and anuran species that are sensitive to
human activities should be highest and there should be fewer occurrences of
invasive species. We found that Leu et al.’s (2008) model was the best at
predicting all synanthropic species, while Theobald et al.’s (2012) model was the
most accurate at predicting invasive species and avian species that are sensitive
to humans. None of these models were accurate at predicting anuran guild
abundance. The results of this study can inform future land-use decisions with
potential to influence the spread of invasive species or the occurrence of species
that are sensitive to anthropogenic land use, spread of invasive species, and
future land use decisions.

Human-land modification is widespread and occurs throughout every land-
cover type in the United States. How a species might respond to human land
modification varies; human-dependent species thrive in anthropogenic land-
cover, while species that are sensitive to human-dominated landscapes tend to
avoid certain aspects of land use. Which particular features of human dominated
land-cover are avoided across species (e.g. agriculture, highways, urban areas,
etc.). We compared how different anthropogenic features predicted where certain
species occurred. We extracted land-cover data from USGS Landfire (2013)
datasets and compared them to data collected from the Breeding Bird Survey
(BBS) for the entire conterminous United States. WWe compared natural and
anthropogenic land-cover types to species occurrence of a human dependent
species, the European starling (Sturnus vulgaris), and a sample of thought to be
associated with unaltered habitats: bushtit (Psaltriparus minimus), marsh wren
(Cistothorus palustris), swainson’s thrush (Catharus ustulatus), hermit thrush
(Catharus guttatus), northern parula (Parula americana), ovenbird (Seiurus
aurocapillus), and grasshopper sparrow (Ammodramus savannarum). The
species were chosen because they are thought to be sensitive to anthropogenic
disturbance where their preferred breeding land-cover type was available and
avoided high levels of human development. These results will enable land
managers to improve current human footprint models and create habitat
suitability models for species in relation to human landscapes.
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Chapter 1: Introduction

One of the first publications depicting how humans change landscapes and the
subsequent effects on ecological processes was Man and Nature (Marsh 1864). In that
early publication, Marsh (1864) described the extent of human impacts on the
environment and the need to understand the complex interactions between man and the
environment (Turner et al. 1990). Recent studies have proposed that by 2100, land-cover
change will be the largest stressor for terrestrial ecosystems (Sala et al 2000), altering
ecosystems and reducing biodiversity throughout the world (Vitousek et al. 1997). In
their landmark study, Wilcove et al. (1998) state that the most common cause of faunal
extinction is loss of land-cover, followed by over exploitation, the introduction of
invasive species, pollution, and disease; all directly or indirectly influenced by the
creation of human-dominated landscapes.

Human population growth has been extensive from 1950 to 2000 (Brown et al
2005). The human population has surpassed seven billion people in 2013 and is projected
to reach eleven billion by 2100 (U.S. Census 2010). The need to provide food, fiber,
water, and shelter to the increasing human population drives the conversion of “natural”
landscapes (i.e. intact landscapes where dispersal is not impeded) to anthropogenic
landscapes (Foley et al. 2005). Croplands, pastures, plantations, and urban areas have
expanded in recent decades, accompanied by large increases in energy, water, and
fertilizer consumption resulting in considerable losses of biodiversity (Foley et al. 2005).

The most common land use conversions in the United States are urban

development (Brown et al. 2005), agriculture (Foley et al. 2005) and most recently,



energy production (Krijgsveld et al. 2009). Although urban areas likely have the largest
effect on wildlife, areas of rural development incur reduced species survival and
reproduction near homes. Native species richness (i.e. total number of species in an area)
generally drops with increased rural development (Hansen et al. 2005; Merenlender et al.
2009). Areas of human housing also increase the number of synanthropic species (i.¢.,
species that are commonly associated with humans [Johnston et al. 2001]), which have
negative effects on population growth and survival of the native fauna that are sensitive
to anthropogenic features. American crows (Corvus brachyrhynchos), raccoons (Procyon
lotor), rats (Rattus sp.), and many others are all commonly associated with human
dominated land cover.

Roads and traffic directly affect animal populations through decreasing natural
land cover amount and quality, increasing mortality due to collisions with vehicles, and
preventing access to resources. Roads also indirectly affect populations by subdividing
them into smaller and more vulnerable subpopulations (Jaeger et al. 2004). Roads also
have an effect zone, which is an area over which significant ecological effects extend
outward. Larger, busier roads will have a greater effect zone than smaller local roads
(Forman and Alexander 1998).

Areas of heavy agriculture can be as detrimental to a species as an urban
landscape. Agriculture intensification has led to declines in biological diversity among
several taxa (Benton et al. 2003). For example, an area dominated by natural land cover
can turn into a land cover dominated by invasive alien plants if existing grasslands are

converted into an agricultural tield for corn. These land-cover types can subsequently



become an ecological sink for wildlife. Donal et al. (2001) found that population declines
in species and range contractions were significantly greater in areas of intensive
agriculture.

Several modeling approaches have been developed to measure and weigh the
effects of land use on ecological processes. These models can be used to provide valuable
information for land use, transportation, conservation, and urban planning eftorts
(Girvetz et al. 2000). Sanderson et al. (2002) assigned impact values to each human
feature based on landscape modifications, whereas Leu et al. (2008) created models to
evaluate the effects of anthropogenic habitat features on anthropogenic predators and
habitats. Lastly, Theobald (2012) evaluated the ability of species to move through
different land-cover types to model human land use effects spatially.

While human footprint models have the potential to be important planning tools to
land managers and biologists, they all have assumptions, which in turn are based on
expert opinion or studies conducted outside of the inference space of a human footprint
model (Theobald 2010). The first objective of our study is to compare different human
footprint models' abilities to predict effects of human stressors on ecological processes.
Specifically, we will compare human footprint model intensity to avian guild presence
using point counts, the Breeding Bird Survey (BBS), anuran survey data, and occurrence
of an invasive species. This method of validating footprint intensity based on different
anthropogenic components to actual ecological processes has not been done across

multiple taxa before.



Anthropogenic activity varies across ecosystem types and the response of the
species within that ecosystem varies based in part on their tolerance toward humans
(Vitousek 2006). By looking at the functional response of species to human-dominated
land-cover types, we can create a model of the biological response of each species to
anthropogenic features. If we can potentially make parallels between certain types of
species concerning what predicts their occurrence, we can parameterize human footprint
models based on empirical data.

As the human population continues to increase, species that avoid human
dominated land-cover will likely experience a reduction in populations (Wilcove et al.
1997). Zuidema et al. (1996) found that proximity to urban centers affects many aspects
of the ecosystem including water supply, wildlife, habitat availability, and overall habitat
quality. However, human impact on natural land-cover types can be minimized if the
species requirements are known (Matlack 1993). It is therefore important to know
minimum land -cover requirements and determents for sensitive species and whether
there are any parallels in those requirements among species that are sensitive to
anthropogenic land-cover. The second objective of this study was to evaluate if there are
underlying minimum requirements that predict the occurrence of sensitive species.

We created models based on land-cover classification for seven species that avoid
anthropogenic land-cover and one species that predominately exists in anthropogenic
land-cover. The species we analyzed include the bushtit (Psaltriparus minimus), marsh
wren (Cistothorus palustris), Swainson’s thrush (Catharus ustulatus), hermit thrush

(Catharus guttatus), northern parula (Parula americana), ovenbird (Seiurus



aurocapillus), and grasshopper sparrow (Admmodramus savannarum). We compared these
species to the European starling (Sturnus vulgaris), which is common throughout land-
cover heavily dominated by anthropogenic features.

Modeling European starling occurrence served to compare how land-cover
preferences and avoidances between the different species compare in model weight. From
this comparison, we can determine if anthropogenic land-cover types are ranked highly
and negatively in species that are sensitive to human dominated land-cover types and
positively for species that thrive in anthropogenic land cover.

In addition, by finding parallels between sensitive species and land-cover types, a
more species specific and biologically accurate human footprint model can be created.
Land managers and city planners can also potentially incorporate more natural and
biologically diverse habitats into urban and suburban designs. Even small changes in the
spatial patterning of resources can produce dramatic ecological responses, like an
increase in biodiversity (Turner and Gardner 1991).

Proper planning by land managers and regional planners can also reduce the
inclusion and subsequent spread of invasive species into urban and suburban areas
(Kowarik 2008). Previous research has suggested that the inclusion of diverse plant
communities in anthropogenic land-cover increased wildlife species diversity (Vale and
Vale 1976). With the information obtained from this study, the amount, type, and quality
of land-cover required for sensitive species occurrence can be determined and evaluated

for future regional planning.



In addition, by looking into how effective human footprint models are at
predicting ecological processes and whether there are particular land-cover elements that
influence the occurrence of species that are sensitive to humans, land managers can
improve habitats for species that are declining as a result of anthropogenic activities. As
the human population continues to increase and more land cover becomes influenced by
land use, it will be ever more important to protect land-cover important for species that

avoid human dominated land-cover types (Robinson et al. 2005).



Chapter 2: Can Human Footprint Models Accurately Predict Human Impact on

Ecological Processes?

Introduction

The three most well documented global changes from humans are: alterations of
biogeochemistry of the global Nitrogen cycle, increasing Carbon concentrations in the
atmosphere, and the process of land-cover and land use change (Vitousek 1994). Humans
have altered the Nitrogen cycle through fertilizer production and agriculture practices and
increased Carbon concentrations primarily through combustion of fossil fuel. Humans
have converted “natural” land-cover (i.e. intact landscapes where floral and faunal
dispersal is not impeded) to croplands, pastures, plantations, and urban areas,
accompanied by an increase in demands for energy, water, and fertilizer (Foley et al.
2005). Global increase in land-cover change and increased consumption of limited
resources result in biodiversity loss and reduction in ecosystem health (Vitousek 1994;
Wilcove et al. 1998).

Effects of humans on ecological processes are delineated in human footprint
models (Sanderson et al. 2002). Spatially explicit models that delineate and predict land-
cover change were first created by theoretical ecologists to document species presence
and movement (Kareiva and Wennergren 1995). Recent advances in satellite imagery
classification and availability of spatial data sets delineating land use and anthropogenic
features, such as roads and power lines, resulted in an explosion of human footprint

models. Human footprint models have been created, for example, at a global extent for



terrestrial (Sanderson et al. 2002) and marine environments (Halpern et al. 2008), at
national extents, such as for the conterminous United States (Theobald 2010; Theobald et
al. 2012), at the sub-national extent (Leu et al. 2008; Nufiez et al 2012), and at the
ecosystem level (Davis and Hansen 2011; Wade et al. 2011; Portman et al. 2012; Walston
et al. 2012). Human footprint models have also been developed to predict the impacts of
specific human land use practices, including, construction activities in wetlands (Fuertes
2013) and the impact of industrial processes on the local environment (Li and Hui 2001).
In conjunction with increasing availability of human footprint models, land managers and
environmental planners are using them increasingly to predict species presence, habitat
availability, and the cost of humans to the functioning of environmental services
(Bicknell et al. 1998; Moran et al. 2008).

While human footprint models have the potential to be important planning tools to
land managers and biologists, they are based on expert opinion or on studies conducted
outside of the inference space of a human footprint model (Theobald 2010). If these
models do not accurately predict human impacts on ecological processes, their use could
result in ineffective land use planning or management of species of concern (van Kooten
and Bulte 2000; Fiala 2008). It is therefore important to test whether these models
accurately predict effects of human land use on ecological processes.

In this paper, we evaluate the predictive abilities of three human footprint models,
by Sanderson et al. (2002), Leu et al. (2008), and Theobald et al. (2012). These models
have been used by land managers and environmental planners to develop remediation

plans, define suitable habitat for endangered species, predict the spread of invasive



species, and create corridors for species movement. Published studies based on
Sanderson et al.’s (2002) model include modeling the potential spread of invasive species
(Bean et al. 2012), mapping of the human influence on mountain ecosystems (Rodriguez-
Rodriguez et al. 2012), and linking fragmented landscapes (Alagador 2012). Leu et al.’s
(2008) model has been specifically used to model persistence of greater sage-grouse leks
(Centrocercus urophasianus) (Knick et al. 2013) and factors influencing the distribution
of chytrid fungus (Batrachochytrium dendrobatidis) presence, associated with declines in
Pacific-Northwest frog populations (Adams et al. 2011). Theobald et al.’s (2012) paper
was a recent publication and has not yet directly been used by other authors, but methods
similar to Theobald et al. (2012) have been used to estimate land-cover permeability
(Nufiez et al 2012; Galic et al 2013).

The objectives of this study were to compare predicted human footprint intensity
of three models (Sanderson et al. 2002; Leu et al 2008; Theobald et al. 2012) to four
avian guild incident rates, two anuran guild incident rates, and the occurrence of an
invasive plant, cheatgrass (Bromus tectorum). We evaluated these models at the extent of
the conterminous United States, and two of the three models (Sanderson et al. 2002,
Theobald et al. 2012) were also tested at the regional extent, in the state of Virginia, and
the eastern United States.

We compared human footprint intensity predicted by the three models to species
guild responses. For birds, we assigned species to four different guilds, depending on
how species utilize human land use (Johnston et al. 2001). For anurans we assigned

species to conservation status based on classifications by Nature Serve (2013) and



International Union of Conservation (IUCN 2013), and for the invasive cheatgrass we
used occurrence data used from satellite imagery for the western United States (GAP
Analysis Program, 2004).

We used Johnston et al.’s (2001) avian synanthrope classification to classify bird
species into four guilds: “full synanthrope”, species that depend on anthropogenic
features throughout their entire annual cycle; “casual synanthrope™ species that exploit
anthropogenic features; “tangential synanthrope”, species that occasionally exploit
anthropogenic features; and “non-synanthrope” (anthrophobic), species that avoid
anthropogenic features. As human footprint intensity increases, we predict an increase in
incident rate for synanthropic species and a decrease for anthrophobic species. For full
synanthropes, we predict that incident rate relates positively and linearly to human
footprint intensity. For casual synanthropes we predict a logarithmic function between
incident rate and human footprint intensity. As human footprint intensity increases, there
will be an initial increase in incident rate but the incident rate will remain constant at
higher human footprint intensity. For tangential synanthropic species we predict a
quadratic function between incident rate and human footprint intensity because these
species do not use areas where human footprint intensity is low or high. For anthrophobic
species we predict that as the human footprint value increases, there will be a decrease in
incident rate.

We classified anuran species into two guilds, common and sensitive (includes
locally declining, threatened, near threatened, and imperiled species). Several studies

have found that the presence of suitable land cover plays the most important role in
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anuran species presence (Cushman 2006; Birx-Raybuck et al. 2009; Adams 2011; Mushet
et al. 2012). We predicted that as the human footprint intensity increases, richness of
species that are sensitive to land use or are habitat specialists will decrease. We predicted
for anuran species that are more common and are habitat generalists, including some
anthropogenic land-cover types, such as storm water retention ponds, should increase as
human footprint intensity increases.

Cheatgrass was identified as present or absent at each survey location (GAP
Analysis Program 2004). The presence of cheatgrass has been called one of the most
dramatic land-cover changes observed in western landscapes (Billings 1994; Alldredge et
al. 2007; Hanser et al. 2011). Nielsen-Pincus et al. (2010) found that this change in land-
cover to cheatgrass dominance has been primarily caused by land-cover disturbance and

degradation through intensive livestock grazing and heavy oft-road vehicle use.

Methods
Human footprint models

We analyzed how three different human footprint models from Sanderson et al.
(2002), Leu et al. (2008), and Theobald et al. (2012) performed when evaluated against
synanthropic avian guilds, amphibian conservation guilds, and occurrence of cheatgrass.
Each model was built using different methods, land-cover classification, resolution,
anthropogenic features, and human impact calculations (Table 1).

Sanderson et al. (2002) created a human impact model built on human land-cover

modification. The authors summed anthropogenic features based on four types of human
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influence on the environment: population density, land transformation, accessibility, and
electrical power infrastructure. The scores for each variable were summed across the
model, resulting in a model that ranged from 1 to 1000 in human impact.

Leu et al. (2008) created seven models, based on anthropogenic features,
anthropogenic predators, and habitat. The seven models included three top-down predator
models (domestic dogs, domestic cats, and corvids) and four bottom-up models (exotic
plant invasion, human-caused fires, wildland fragmentation, and energy extraction). The
authors then standardized all models and binned them into 10 classes, creating a model
that ranged from 1 to 10 in human impact.

Theobald et al. (2012) created a human impact model that included anthropogenic
teatures that affect wildlife movement, creating a landscape connectivity map. The
authors modeled least-cost calculations based on the ability of an animal to move through
different land-cover types. The final model ranged in values from 1 to 1000.

Datasets Used in Model Validation

We validated human footprint models using point counts, North American
Breeding Bird Survey (BBS) data, North American Amphibian Monitoring Program
(NAAMP) data, and invasive cheatgrass occurrence (GAP Analysis Program 2004). For
the avian validation, we derived guild incident rates from BBS data and guild abundance
using point count surveys. Guilds were assigned from Johnston et al.’s (2001) avian guild
classification (Appendix 1). Anuran validation was based on calling indexes for each
guild (Nelson and Graves 2004, NAAMP). Guilds were assigned from the Nature Serve

(2013) and International Union of Conservation (IUCN 2013) (Appendix 2). Cheatgrass
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validation was classified as presence/absence based on vegetation surveys used to
classify satellite imagery (GAP Analysis Program 2004).

Point count data were collected over a 3 year period, 2 years of point counts
(2012-2013) were collected from the Virginia Peninsula and 2 years (2011 and 2012)
from the Shenandoah Valley (Figure 1). Locations of point counts were stratified
randomly across deciduous, coniferous and riparian forest land cover. Each point was
visited once (between the end of May to June) in the Shenandoah Valley and four times
during the season (between the end of May to July) in the Virginia Peninsula. Point
counts were conducted over 8 min, during which all birds seen or heard were recorded
(Ralph et al. 1995). Observers estimated the distance to each object using a laser range
finder (800 LH, Opti-Logic). All point counts were conducted during the morning hours
of peak bird activity (15 min after sunrise to 10:00 A.M.) (Robbins 1981).

Breeding bird survey routes were obtained from the USGS
(ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/DataFiles/). The model developed by Leu et
al. (2008) covers the entire western United States, for this reason, the routes used in this
analysis are located in the western United States (Figure 2). BBS routes were visited once
a year, either by the same or a different observer each year. Each survey route was 39.4-
km long with stops at 800 m intervals. At each stop, a 3 min point count was conducted
where all birds seen and heard within a 400 m buffer were recorded (BBS 2013).

We validated models using anuran survey datasets that were provided by
NAAMP. Survey routes used in this analysis were located within the eastern United

States (Figure 3). Each route consists of 10 stops and is surveyed based on land-cover
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present. In wetland land cover, surveys stops are spaced at least 0.80-km apart. Survey
routes not located in wetland land cover are stratified by bodies of water including,
ponds, vernal pools, road side ditches, etc. (NAAMP).

Invasive plant species comparison datasets were obtained from vegetation surveys
that were used to inform satellite land-cover classification (GAP Analysis Program
2004). Survey points were located throughout the western United States (Figure 4). On
each survey point, percent cheatgrass cover was estimated. Samples were then verified
independently using satellite imagery.

Response Metrics

To compare the human impact intensity to the avian point count datasets, we first
eliminated the possibility of spatial auto-correlation at the resolution of Sanderson et al.’s
(2002) model. We placed a 1-km grid on the point count locations within Sanderson et
al.’s (2002) map and randomly selected one point count from those included within each
1-km? area. The total number of point count locations used in the analysis were 87 for the
Virginia Peninsula and 466 for the Shenandoah Valley.

For the point count avian analysis, we used program Distance (2009) to calculate
the effective detection radius, or the distance in which an object is as likely to be missed
as it is detected beyond the distance, for each species (Appendix 3). All observations that
were outside a species’ effective detection radius were not included in analyses. We then
calculated the total abundance of individuals for each guild at each point count location to

estimate the representation of each guild type at each point count location. Full

14



synanthrope species were not observed enough times across all years to be included as a
response metric, as result, we omitted the full synanthrope guild from our analysis.

For the BBS avian analysis, all three human footprint models were validated
using BBS data from 2009 to 2012. The most recent model, Theobald et al.’s (2012)
oldest dataset is from 2006. To incorporate lag effects (Perkins 2012; Manning et al.
2013), we added an additional 3 years and included the most recent BBS data available.
A total of 949 BBS routes were used for analysis. We included the area of each buffer as
a covariate, as the different shapes of the routes could affect the size of the bufter.

We included only BBS routes that were surveyed more than 70% of the total
survey years. We found that the numbers of route visits closer to cities were not more
likely visited than routes located in rural areas. We used an Incident Rate (IR) to
eliminate the possibility of observer bias in sampling, where the IR for each guild is the
proportion of times the guild was observed along the route compared to all other guilds
observed at that route. For example, if the anthrophobic guild was observed 2 times and
the casual synanthrope was observed 1 time over all survey years, the IR of the
anthrophobic guild would be 0.5 and the casual synanthrope would be 0.25.

We reduced the original amphibian broad-resolution datasets to eliminate the
potential for spatial auto-correlation in GIS (Esri 2013) by removing any routes that had
overlapping buffers. This resulted in a total of 888 survey routes for the analysis. In the
anuran analysis we again included the area of each buffer. We used the calling index to
estimate the abundance of each guild at each survey route. The calling index ranked the

calling intensity of each frog species on a scale of 1-3. A score of “1” indicated that
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individuals can be counted and there was space between calls, “2” calls of individuals can
be distinguished but there was some overlapping of calls, and “3” represented a full
chorus, calls were constant, continuous and overlapping (NAAMP,
http://www.pwrc.usgs.gov/naamp). IR was estimated by summing the calling index
scores for each guild at each route and then dividing by the total calling index for both
guilds on each route. For example, if the sensitive species guild had 3 instances of a level
2 calling index that would total to 6. If the common species guild had 4 instances of level
3 calling index, that would total to 12. The incident rate of the sensitive species guild at
that particular route would be 6 divided by the total of 18, or 0.33.

Cheatgrass survey points were reduced from the original 79483 points surveyed to
1985 survey points to eliminate the potential for spatial auto-correlation. We selected
survey points to maintain the same proportion of points as the original sampling extent.
Cheatgrass data collection was calculated in percent cover. We changed all percent cover
classifications to cheatgrass occurrence at each location. If cheatgrass was observed at a
survey point, it was counted as an occurrence
Statistical Analysis

We buffered survey routes and points by 200 m, 1 km, 2 km, and 3 km, but
limited the bufter to 200 m for the point-count analysis in ArcGIS 10.1 (ESRI, 2013). We
chose buffers sizes to incorporate the variation in dispersal distances (Katherina and Peter
2001; Berven and Grudzien 1990; Funk et al. 2005), territory, and home range sizes for
avian species (Anich et al. 2009), and dispersion distances for cheatgrass (Feis 2013). All

species, even those with limited mobility that function at relatively small spatial extents
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will have life histories that require examination across multiple scales (Funk et al. 2002).
Human footprint intensity was averaged for each buffer using zonal statistics in ArcGIS
10.1 (ESRI 2013) and Geospatial Modelling Environment (Beyer 2012).

All statistical analyses and modeling were conducted using the R statistical
language v. 2.13.2 (R Development Core Team 2011). We examined the variation in
guild IR and abundance indices for avian point counts, BBS routes, and anuran survey
routes in relation to human footprint intensity values using a general linear model. We
used logistic regression to analyze the presence/absence of the cheatgrass within each
survey point. Tests for normality indicated that datasets were not normally distributed.
We transformed the data using log-transformation or square-root transformation to meet
assumptions of normality. We compared model fit using Akaike’s Information Criterion
(AIC; Akaike 1974, Lebreton et al. 1992; Burnham and Anderson 2002). We chose the
model with the lowest AIC value as the most parsimonious model with the best fit to the

data.

Results
Avian Validation Results

For the point count analysis, Theobald et al.’s (2012) model outperformed
Sanderson et al.’s (2002) and the null model for all guilds (AAIC>54 for casual
synanthropes; AAIC>9 for tangential synanthropes; AAIC>77 for anthrophobic)
(Appendix 2). Sanderson et al.’s (2002) model performed worse than the null model for

the causal and anthrophobic guild (Appendix 2). Model performance did not differ
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between our predicted linear relationships, a logarithmic shape for casual synanthropes,
and a quadratic shape for tangential synanthropes (Table 2; Appendix 2).

For the BBS analyses, Leu et al.’s (2008) model outperformed Sanderson et al.’s
(2002), Theobald’s et al.’s (2012) and the null model for every guild except the
anthrophobic guild (AAIC>37 for full synanthropes; AAIC>29 for casual synanthropes;
AAIC>25 for tangential synanthropes; Table 3 and Appendix 3), in which Theobald et
al.’s (2012) model was the best predictor (AAIC>13). Results differed slightly across
resolutions for all guilds (Appendix 3). For the full synanthrope guild, Leu et al.’s model
performed best at the 1-km neighborhood, outperforming other models on every
neighborhood when corrected for area of BBS route. Sanderson et al.’s (2002) model also
greatly outperformed the null model at all resolutions for full synanthropes (AAIC>50),
while Theobald et al.’s (2012) model did not outperform the null model at any
neighborhood size (null AAIC>996). For the casual synanthropes, Leu et al.’s (2008)
model performed best at the 200-m neighborhood with our predicted threshold
relationship between human footprint intensity and species observations. Leu et al.’s
(2008) model outperformed other models at all neighborhood with the exception of the 3-
km neighborhood, where Sanderson et al.’s (2002) model outperformed the other models.
All models outperformed the null model at every neighborhood (AAIC>7). Leu et al.’s
(2008) model also performed best at the 200-m neighborhood for the tangential
synanthropes, again matching our prediction of a quadratic relationship between human
footprint intensity and species present. Leu et al.’s (2008) outperformed all models for all

neighborhood sizes, with the exception of the 3-km neighborhood, where Theobald et
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al.’s (2012) model performed the best. All models outperformed the null model except
for Sanderson et al.’s (2002) model when the area variable was included for both the
linear and quadratic predicted relationships. Theobald et al.’s (2012) model outperformed
every model at every neighborhood size for the anthrophobic guild (AAIC>13), whereas
Leu et al.’s (2008) and Sanderson et al.’s (2002) model performed worse than the null
model at any neighborhood size (Appendix 3).
Anuran validation results

Neither Theobald et al.”s (2012) model nor Sanderson et al.’s (2002) model
performed better than the null model for either guild at any neighborhood (AAIC<2;
Table 4).
Invasive species validation results

Theobald et al.’s (2012) model outperformed all models at every neighborhood
for predicting the occurrence of cheatgrass (AAIC>13). Neither Leu et al.’s (2008) model
nor Sanderson et al.’s (2002) model outperformed the null model at any neighborhood

(AAIC<2; Table 5).

Discussion

Our validation and comparison of different human impact models to ecological
processes is the first such systematic comparison in the literature. Although Leu et al.
(2008) tested model predictions for different inputs (i.e., synanthropic predator model and
exotic invasion model), and human footprint model, evaluation of predictions were

limited to birds and exotic plants.
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We evaluated human footprint intensity predictions across three taxa. In our
analysis, we found that human footprint models can be used to predict certain ecological
processes. Leu et al.’s (2008) model was a superior predictor for all avian species that use
anthropogenic land-cover types whereas Theobald et al.’s (2012) model was best at
predicting anthrophobic species, fine-resolution point count avian guilds, and invasive
species occurrence. However, none of the models functioned as a completely predictive
model.

In the point count analyses, Theobald et al.’s (2012) model outperformed
Sanderson et al.’s (2002) model and the null model for all guilds. This could be due to
differences in model resolution, Theobald et al. (2012) model input data were at a
resolution of 30 m and 120 m, while Sanderson et al. (2002) model input data was at a 1-
km resolution. The maximum distance for a species’ effective area surveyed was 159.33
m for the American crow (Corvus brachyrhynchos). This is much smaller than the
resolution of Sanderson et al.’s (2002) model. The difference in resolution and species
detection could have resulted in the incorrect predictions from their model. Cooper and
Belmaker (2010) argued that differences in forest habitat use could not be detected unless
habitat types are more finely classified. The Sanderson et al. (2002) model was created at
not only a larger resolution, but he also had a narrower classification of land-cover types.
Land cover was classified into 5 types, “built-up”, “agriculture”, “mixed-use”, and a few
natural types. The “built-up” areas, which represented the largest cities as polygons in the
National Imagery and Mapping Agency (NIMA) database, were assigned a score of 10.

Scores 6-8 were assigned to different types of agricultural land, depending on level of
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input. Lower scores of 4 were assigned to mixed-use cover, and a value of 0 was given to
other land-cover types, such as forests, grasslands, and Mediterranean ecosystems.
Sanderson et al. (2002) also stated that given their method of land-cover classification,
the land-cover types with a value of 0 were also subjected to various kinds of land uses.
Given that some land-cover types classified as natural likely had some degree of
anthropogenic disturbance, these classifications may have been too narrow to accurately
predict where certain guilds would occur. Theobald et al.’s (2012) finer-scale resolution
and more detailed land-cover classification likely made it a superior model at predicting
avian species guilds at a fine-scale resolution.

In the BBS analyses, Leu et al.’s (2008) model outperformed Sanderson et al.’s
(2002), Theobald’s et al.’s (2012) and the null model for every guild except the
anthrophobic guild, in which Theobald et al.’s (2012) model was the best predictor. The
better fit for the other guilds could be due to the submodels incorporated into Leu et al.’s
(2008) analysis. In their analysis, Leu et al. (2008) focused on the presence of
synanthropic species, as well as land-cover change from humans including presence of
invasive plant species and habitat fragmentation. Both of these habitats are likely to hold
edge and generalist species (Klaus et al. 2004; Lampila et al 2005) which fall into the
synanthropic, casual, and tangential synanthrope guilds. However, Leu et al.’s (2008)
model was not the best predictor for casual synanthropes or tangential synanthropes at the
3-km neighborhood. Sanderson et al.’s (2002) model performed the best at the 3-km
resolution and predicted a positive linear relationship for casual synanthropes. This model

was based on comparatively larger resolution and more generalized land-cover types,
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which may increase predicative capabilities of this model for casual synanthropes. In
addition, Theobald et al.’s (2012) model outperformed all other models at the 3-km
neighborhood for the tangential synanthropes, predicting a negative linear relationship.
Averaging the human footprint intensity to the larger neighborhoods may have resulted in
Theobald et al.’s (2012) model predicting that tangential synanthrope species would have
a similar relationship to human footprint intensity as anthrophobic species.

Leu et al.’s (2008) model emphasized land-cover types that were dominated by
anthropogenic features and risks from anthropogenic predators, fires, and invasive
species. The authors did not incorporate models that emphasized habitat suitable for
anthrophobic species. Theobald et al.”s (2012) model, in contrast, incorporated land-
cover features that were not dominated by anthropogenic land-cover features, including
canopy cover, which has been suggested to serve as an accurate predictors for bird
biodiversity (Radford et al 2005; Philpott and Bichler 2012). Sanderson et al.’s (2002)
model may not predict well due to generalized land cover classifications. Although
Sanderson et al.’s (2002) model performed better than the null model at predicting
synanthrope and casual synanthrope species, the generalized land-cover classifications
likely made their model a poor predictor in comparison to Leu et al.’s (2008) and
Theobald et al.’s (2012) models.

In the anuran validation, neither Theobald et al.”s (2012) model nor Sanderson et
al.’s (2002) model performed better than the null model for either guild at any resolution.
This could be a result of models not including variables important to capture variation in

amphibian movement across the landscape (Eigenbrod 2008). Neither model included
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agricultural ditches as potential habitat; ditches often serves as amphibian habitat for
multiple species (Bonin et al. 1997; Ouellet et al. 1997). In addition, the time frame in
which the data were collected (2000-2010) included three droughts in 2001, 2007, and
2008 (Cook et al. 2009). This may have affected amphibian distributions, which could
have contributed to population decreases of the species in the survey areas at different
times (Adams et al. 2011).

Theobald et al.’s (2012) model was the only model that validated well with the
presence of invasive cheatgrass, despite Leu et al.’s (2008) model incorporating exotic
plant invasion in a submodel. The differences in model prediction could be that the
survey sites for cheatgrass were located in low human impact areas of Theobald et al.’s
(2012) model. Rivera et al. (2011) found that the main predictors of cheatgrass spread
and invasion did not include just land use, but also temperature, humidity, precipitation,
and elevation. The combination of including topography, multiple agriculture land-cover
types, sparse grassland, disturbed lands, and roads Theobald et al.’s (2012) model may
have improved validation.

Overall, the models performed better than the null model in most validations.
Sanderson et al.’s (2002) model had a better fit than the null model for the full and casual
avian synanthropes, but did not validate with other taxa. This is particularly worrisome
given that this model was cited the most for use in studies involving conservation of
sensitive species (Alagador 2012; Bean et al. 2012; Rodriguez-Rodriguez et al. 2012) Leu
et al.’s (2008) model performed the best for synanthrope, casual, and tangential

synanthrope avian species, but was not accurate in predicting anthrophobic species or
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cheatgrass presence. Theobald et al.’s (2012) model proved to be the best model in the
point count analysis at predicting all avian guilds (full synanthropes were not included),
anthrophobic avian species in the BBS analysis, and presence of cheatgrass. The
differences in model fit could be due to the input variables or the scales at which they
were evaluated (Table 1). There was disagreement in spatial datasets included in three
models, and we did not break down each model to compare input variables. Further
analysis on what factors are more likely to contribute to species distribution is
recommended. Although we did not compare individual model inputs, variables that
likely increased the model accuracy included finer resolution; Leu et al. (2008) and
Theobald et al. (2012) both used finer resolution (180m and 30m/120 resolution,
respectively) than Sanderson et al.’s (2002) 1-km resolution. Detailed land-cover
classification, including variation in types of agriculture also appeared to be important
variables in a model’s predictive capabilities. This level of detail used by Leu et al.
(2008) was important for predicting all avian guilds that used anthropogenic habitat.
Each model incorporates critical information of the human footprint on the
landscape and has the potential to cast preliminary forecasts of the effects of land use
change on the environment (Theobald 2010). As the human population continues to
increase and land-cover change expands, it is becoming even more important to set aside
important landscapes and refuges for species that are sensitive to human sprawl
(Robinson et al. 2005). Human footprint models provide a spatial representation of land
uses, allowing land managers and environmental planners to develop priorities at the

local and potentially regional scales (Leu et al. 2008). These models have proven to be an
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important tool in predicting where certain species are likely to occur. However, with the
degree of variability in landscapes and climate, the use of these models as predictors must
be applied cautiously (Kareiva and Wennergen 1995) as we found that not all models are
created equal; model inputs and seasonal variability greatly affect how well each model
performs. Species’ occurrence can be affected by more than just proximity to urban areas.
Distances to road, suburban land-cover, elevation, intensity of agricultural, amongst other
variables all have profound effects on ecological processes (Citation). The resolution of
each study area is also an important factor to include in any use of these models for
management purposes.

As humans continue to overuse finite resources, the importance of understanding
how specific species respond to human dominated landscapes will become essential in
maintaining ecosystem health (Foley 2005). Human footprint models have the potential
to be used to link fragmented landscapes (Alagador 2012), create species suitability
models (Nuiiez et al 2012; Galic et al 2013; Knick et al. 2013), observe the spread of
disease in anuran populations (Adams et al. 2011), and predict the spread of
contamination (Li and Hui 2001; Fuertes 2013), among many other uses. With the right
input variables, these models have the potential for habitat design and great predictive

capabilities, provided that land-cover detail and species specific responses are included.
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Figure 1. Location of avian point count survey data. Blue dots represent surveys
conducted in the Shenandoah Valley (n=466), red dots represent surveys conducted in the
Virginia Peninsula (n=67).
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Figure 2. Breeding bird survey (BBS) route locations. Each line denotes a single BBS
route (n=949).
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Figure 3. Location of NAAMP survey routes. Each line denotes a single route (n=888).

28



w o*

Pacific Ocean p

IKilometers®
1 1.200

Figure 4. Location ofthe cheatgrass survey points. Each point denotes a single survey
location (n=1984).
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Table 5. Comparison of human footprint model performance based on occurrence of
cheatgrass (Bromus tectorum) against human footprint intensity derived from Gap
Analysis data. Shown are all models. For each models log likelihood (LL), slope (Beta),
standard error for slope, AIC, and AIC weight (W;) are shown.

Standard delta
Model Scale LL Beta Error AlIC AIC W;
Theobald 2km  724.783 0.200 0.07739 1453.6 0 0.434163
Theobald lkm 724.852 0.196 0.07581 1453.7 0.1 0.412989
Theobald 3km 725903 0.165 0.07655 14558 2.2 0.14452

Leu lkm 730427 0.118 0.06697 1464.9 11.3 0.001527
Leu 3km  730.629 0.103  0.06698 14653 11.7 0.00125
Leu 2km  730.130 0.122  0.06621 14643 10.7 0.002061
Null - - - - 1465.6 12 0.001076

Sanderson 3km  731.221 0.068  0.07371 1466.4 12.8 0.000721

Sanderson 2km  731.346 0.057 0.07294 1466.7 13.1 0.000621
Sanderson lkm 731.484 0.043 0.07185 1467.0 13.4 0.000534
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Appendix 1. Johnston et al. (2001) Classification for species observed on BBS routes.

Common Name

Scientific Name

Classification

Montezuma Quail
Northern Bobwhite
California Quail
Gambel's Quail

Scaled Quail

Mountain Quail
Chukar

Gray Partridge
Ring-necked Pheasant
Spruce Grouse
White-tailed Ptarmigan
Ruffed Grouse
Sharp-tailed Grouse
Lesser Prairie-Chicken
Greater Prairie-Chicken
Gunnison Sage-Grouse
Greater Sage-Grouse
Wild Turkey

Mourning Dove
White-winged Dove
Eurasian Collared-Dove
Spotted Dove

Inca Dove

Ruddy Ground-Dove
Common Ground-Dove
Rock Pigeon
Band-tailed Pigeon
Yellow-billed Cuckoo
Black-billed Cuckoo
Greater Roadrunner
Common Poorwill
Mexican Whip-poor-will
Common Nighthawk
Lesser Nighthawk
Vaux's Swift

Chimney Swift

Black Swift
White-throated Swift

Cyrtonyx montezimae
Colinus virginians
Callipepla californica
Callipepla gumbelii
Callipepla squamata
Oreortyx pictus
Alectoris chukar
Perdix perdix
Phasianus colchicus
Falcipennis canadensis
Lagopus leucura
Bonasa umbellus
Tympanuchus phasianellus

Tympanichus pallidicinetus

Tympanuchus cupido
Centrocercus minimus
Centrocercus urophasianiiy
Sphyrapicus thvroideus
Zenaida macroura
Meleagris gallopavo
Streptopelia decaocto
Spilopelia chinensiy
Scardafella inca
Columhbina talpacoti
Columbina passerina
Columba livia
Patagioenas fasciata
Cocevzus americanits
Coccvzus erythropthalmus
Geococeyx californianus
Phaluenoptilus nurtallii
Caprimulgus arizonae
Chordeiles minor
Chordeiles acutipennis
Chaetura vauxi
Chaetura pelagica
Cypseloides niger
Aeronautes saxatalis
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Non-Synanthrope
Casual synanthrope
Casual synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope
Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Tangential synanthrope
Tangential synanthrope
Casual synanthrope

Casual synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

Non-Synanthrope

full synanthrope

Casual synanthrope

Tangential synanthrope
Non-Synanthrope
Non-Synanthrope

Tangential synanthrope
Non-Synanthrope

Tangential synanthrope

Non-Synanthrope

Non-Synanthrope

full synanthrope

Non-Synanthrope

Non-Synanthrope



Violet-crowned Hummingbird
Broad-billed Hummingbird
Blue-throated Hummingbird
Magnificent Hummingbird
Anna's Hummingbird
Costa's Hummingbird
Black-chinned Hummingbird
Calliope Hummingbird
Broad-tailed Hummingbird
Allen's Hummingbird
Rufous Hummingbird
Elegant Trogon

Belted Kingtfisher

Acorn Woodpecker
Red-headed Woodpecker
Lewis's Woodpecker

Gila Woodpecker
Williamson's Sapsucker
Red-breasted Sapsucker
Red-naped Sapsucker
Downy Woodpecker

Hairy Woodpecker
American Three-toed
Woodpecker

Black-backed Woodpecker
Nuttall's Woodpecker
Ladder-backed Woodpecker
Arizona Woodpecker
White-headed Woodpecker
Gilded Flicker

(Red-shafted Flicker) Northern
Flicker

Pileated Woodpecker
Northern Beardless-Tyrannulet
Greater Pewee

Olive-sided Flycatcher
Western Wood-Pewee

Eastern Wood-Pewee
Pacific-slope Flycatcher
Cordilleran Flycatcher

Willow Flycatcher

Amazilia violiceps
Cynanthus latirostris
Lampornis clemenciae
Fugenes fulgens

Culvpte anna

Culvpie costae
Archilochus alexandri
Stellula calliope
Selasphorus platveercus
Selasphorus sasin
Selasphorus rufus
Trogon clegans
Megaceryle alcyon
Melunerpes formicivorus

Melanerpes ervthrocephalus

Melanerpes lewis
Melanerpes uropvgialis
Sphvrapicus thyroideus
Sphyrapicus ruber
Sphyrapicus nuchalis
Picoides pubescens
Picoides villosus

Picoides dorsalis

Picoides arcticus
Picoides nuttallii
Picoides scalaris
Picoides arizonae
Picoides albolarvatuy
Coluptes chrysoides

Coluptes cauratus

Dryocopus pileatus
Camptostoma imberbe
Contopus pertinax
Contopus cooperi
Contopus sordidulus
Contopus virens
Empidonax difficilis
Empidonax occidentalis
Empidonax traillii
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Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope

Non-Synanthrope

Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope

Tangential synanthrope

Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope



Alder Flycatcher

Least Flycatcher
Hammond's Flycatcher
Dusky Flycatcher

Gray Flycatcher
Buftf-breasted Flycatcher
Black Phoebe

Eastern Phoebe

Say's Phoebe

Vermilion Flycatcher
Dusky-capped Flycatcher
Ash-throated Flycatcher
Brown-crested Flycatcher
Thick-billed Kingbird
Eastern Kingbird
Tropical Kingbird
Cassin's Kingbird
Western Kingbird
Scissor-tailed Flycatcher
Sulphur-bellied Flycatcher
Loggerhead Shrike
Gray Vireo

Red-eyed Vireo
Warbling Vireo

Bell's Vireo

Hutton's Vireo
Plumbeous Vireo
Cassin's Vireo
Blue-headed Vireo
Steller's Jay

Blue Jay

Western Scrub-Jay
Mexican Jay

Gray Jay

Pinyon Jay

Clark's Nutcracker
Black-billed Magpie
Yellow-billed Magpie
Common Raven
Chihuahuan Raven
American Crow

Ewmpidonax alnorum
Empidonax minimus
Empidonax hammondii
Empidonax oberholseri
Empidonax wrightii
Empidonax fulvifrons
Sayornis nigricans
Savornis phoebe
Savornis sayu
Pyrocephalus rubinus
Myiarchus tuberculifer
Myiarchus cinerascens
Myiarchus tyrannulus
Tyrannus crassirostris
Tyrannus tvrannus
Tyrannus melancholicus
Tyrannus vociferans
Tvrannus verticalis
Tvrannus forficatus
Myiodvnastes hiteiventris
Lanius ludovicianus
Vireo vicinior

Vireo olivaceus

Vireo gilvus

Vireo bellii

Vireo huttoni

Vireo plumbeus

Vireo cassinii

Vireo solitarius
Cyanocitta stelleri
Cyunocitia cristata
Aphelocoma calitornica
Aphelocoma wolbweberi
Perisoreus canadensis

Gyvmnorhinus cvanocephalus

Nucifraga columbiana
Pica hudsonia

Pica nuttalli

Corvuy corax

Corvus cryptoleucus
Corvus brachvrhynchos
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Non-Synanthrope

Tangential synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope

Non-Synanthrope

Tangential synanthrope
Tangential synanthrope
Tangential synanthrope

Non-Synanthrope
Non-Synanthrope

Tangential synanthrope

Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope

Tangential synanthrope

Non-Synanthrope

Tangential synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope

Non-Synanthrope
Non-Synanthrope
Non-Synanthrope

Tangential synanthrope
Tangential synanthrope
Tangential synanthrope

Non-Synanthrope

Tangential synanthrope

Non-Synanthrope

Tangential synanthrope
Tangential synanthrope

Non-Synanthrope

Tangential synanthrope

Non-Synanthrope

Tangential synanthrope



Northwestern Crow
Horned Lark

Purple Martin

Northern Rough-winged
Swallow

Bank Swallow
Violet-green Swallow
Tree Swallow

Cliff Swallow

Cave Swallow

Barn Swallow

Bridled Titmouse

Oak Titmouse

Juniper Titmouse
Black-capped Chickadee
Mountain Chickadee
Boreal Chickadee
Mexican Chickadee
Chestnut-backed Chickadee
Verdin

Bushtit

Red-breasted Nuthatch
White-breasted Nuthatch
Pygmy Nuthatch

Brown Creeper
Bewick's Wren

House Wren

Sedge Wren

Marsh Wren

Cactus Wren

Rock Wren

Canyon Wren

American Dipper
Wrentit
Golden-crowned Kinglet
Ruby-crowned Kinglet
California Gnatcatcher
Black-tailed Gnatcatcher
Blue-gray Gnatcatcher
Townsend's Solitaire

Corvus caurinis
Eremophila alpestris
Progne subis

Stelgidopteryx serripennis

Ripariu riparia
Tachycineta thalassina
Tachycineta bicolor
Petrochelidon pyrrhonoty
Petrochelidon fulva
Hirundo rustica
Baeolophus wollweberi
Baeolophus inornatus
Baeolophus ridewayi
Poecile atricapillus
Poecile gumbeli
Poccile hudsonicus
Poecile sclateri
Poecile rufescens
Auriparus flaviceps
Psaltriparus minimus
Sitta canadensis

Sitta carolinensis
Sitta pygmaea
Certhia americana
Thryomanes bewickii
Troglodvies aedon
Cistothorus platensis
Cistothorus palusiris
Campylorinnchus
hrunneicapillus
Sualpinctes obsoletus
Catherpes mexicanis
Cinclus mexicanus
Chamacea fasciatu
Regulus satrapa
Regulus calendula
Polioptila californica
Polioptila melamura
Polioptila caerulea
Myadestes townsendi
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Non-Synanthrope
Casual synanthrope
tull synanthrope

Tangential synanthrope

Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope

Non-Synanthrope

Non-Synanthrope
Non-Synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Tangential synanthrope
Non-Synanthrope
Non-Synanthrope
Non-Synanthrope
Tangential synanthrope



Mountain Bluebird
Western Bluebird
Eastern Bluebird
Varied Thrush
American Robin
Veery

Swainson's Thrush

Sialia currucoides
Sialia mexicana
Sialia sialis

Ixoreus naevius
Turdus migratorius
Catharus fuscescens
Catharus ustulatus
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Tangential synanthrope
Tangential synanthrope
Non-Synanthrope
Tangential synanthrope
Casual synanthrope
Non-Synanthrope
Non-Synanthrope



Appendix 2. Nature Serve (2014) and I[UCN (2014) Classification for species observed

40

on NAAMP routes.

Common Name Scientific Name Classification
American Bullfrog Lithobates catesbeianus common
American toad Anaxyrus americanus common
Barking tree frog Hyla gratiosa Sensitive
Barking Treefrog Hyla gratiosa Sensitive
Boreal Chorus Frog Pseudacris maculata Sensitive
Brimley's Chorus Frog Pseudacris brimleyi common
Cajun Chorus Frog Pseudacris fougquettei common
Canadian toad Anaxyrus hemiophrys Sensitive
Carolina Gopher Frog Lithobates capito Sensitive
Carpenter Frog Lithobates virgatipes Sensitive
Cliff Chirping Frog Eleutherodactylus marnockii common
Coastal Plain Toad Incilius nebulifer common
Cope's gray tree frog Hyla chrysoscelis common
Couch's Spadefoot Scaphiopus couchii common
Crawfish Frog Lithobates areolatus Sensitive
Cuban Treefrog Osteopilus septentrionalis common
Eastern Narrow-mouthed Toad Gastrophryne carolinensis common
Eastern Spadefoot Scaphiopus holbrookii common
Florida Bog Frog Lithobates okaloosae Sensitive
Fowler's toad Anaxyrus fowleri Sensitive
Giant Toad Rhinella marina common
Gray Treefrog Hyla versicolor common
Great Plains Narrow-mouthed

Toad Gastrophryne olivacea common
Great Plains toad Anaxyrus cognatus common
Green Frog Lithobates clamitans Sensitive
Green Treefrog Hyla cinerea common
Greenhouse Frog Eleutherodactylus planirostris common
Hurter's Spadefoot Scaphiopus hurterii common
Hyla avivoca Hyla avivoca common
Illinois Chorus Frog Pseudacris illinoensis Sensitive
Little Grass Frog Pseudacris ocularis common
Mink Frog Lithobates septentrionalis common
Mountain Chorus Frog Pseudacris brachyphona common
New Jersey chrous frog Pseudacris kalmi Sensitive
Northern cricket frog Acris crepitans common
Northern Leopard Frog Lithobates pipiens common



Oak toad

Ornate Chorus Frog
Pickerel Frog

Pig Frog

Pine Barrens Treefrog
Pine Woods Treefrog
Plains Leopard Frog
Plains Spadefoot

Rio Grande Chirping Frog
Rio Grande Leopard Frog
River Frog

Southern Chorus Frog
Southern cricket frog
Southern Leopard Frog
southern toad

Spotted Chorus Frog
spring peeper

Squirrel Treefrog
Strecker's Chorus Frog
Upland Chorus Frog
Western Chorus Frog
Wood frog

Anaxyrus quercicus
Pseudacris ornata
Lithobates palustris
Lithobates grylio
Hyla andersonii

Hyla femoralis
Lithobates blairi
Spea bombifrons
Eleutherodactylus
cystignathoides
Lithobates berlandieri
Lithobates heckscheri
Pseudacris nigrita
Acris gryllus
Lithobates sphenocephalus
Anaxyrus terrestris
Pseudacris clarkii
Pseudacris crucifer
Hyla squirella
Pseudacris streckeri
Pseudacris feriarum
Pseudacris triseriata
Lithobates sylvaticus
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common
common
common
common
Sensitive
common
Sensitive
common

common
common
common
common
common
common
common
Sensitive
common
common
common
common
Sensitive
Sensitive



Appendix 3. Comparison of human footprint model performance based on regressing
incident rate of four synanthropic avian guilds against human footprint intensity derived
Theobald et al. (2012) model. Shown are all models. For each models log likelihood
(LL), AIC, and AIC weight (W;) are shown.

Guild Model LL Scale AIC  deltaAIC Wi

Full Leu 277790  Area+lkm -5577.2 0.0 5.3E-01
Full Leu 2790.66 lkm -5575.3 1.9 2.0E-01
Full Leu 2790.46 200m -5574.9 2.3 1.7E-01
Full Leu 277790 Area+t200m -5573.9 3.3 1.0E-01
Full Leu 277790  Areat2km  -5562.8 14.4 3.9E-04
Full Leu 2781.46 2km -5556.9 20.3 2.1E-05
Full Leu 277790  Areat3km -5547.8 29.4 2.2E-07
Full Leu 2772.86 3km -5539.7 37.5 3.8E-09
Full Sanderson 2535.80  Areat+3km  -5063.6 513.6 1.6E-112
Full Sanderson 2534.83  Areat2km  -5061.7 515.5 6.1E-113
Full Sanderson 2532.71 200m -5059.4 517.8 1.9E-113
Full Sanderson 2533.71  Areatlkm  -5059.4 517.8 1.9E-113
Full Sanderson 2532.23 3km -5058.5 518.7 1.2E-113
Full Sanderson 2532.18 1km -5058.4 518.8 1.2E-113
Full Sanderson 2531.97 2km -5057.9 519.3 9.1E-114
Full Sanderson 2532.75 Area+200m  -5057.5 519.7 7.4E-114
Full Null - -4980.5 596.7 1.4E-130
Full Theobald 2009.85  Area+2km  -4014.2 1563.0 0.0
Full Theobald 2008.05  Area+3km -4010.6 1566.6 0.0
Full Theobald 2005.69  Areatlkm -4006.1 1571.1 0.0
Full Theobald 2004.03 2km -4005.5 1571.7 0.0
Full Theobald 2002.16 lTkm -4001.6 1575.6 0.0
Full Theobald 2000.83 3km -3999.2 1578.0 0.0
Full Theobald 1989.64 200m -3976.3 1600.9 0.0
Full Theobald 1990.08 Area+200m -3975.0 1602.2 0.0
Casual-Threshold Leu -547.95 200m 1101.9 0.0 7.1E-01
Casual-Threshold Leu -547.94  Area+t200m  1103.9 2.0 2.6E-01
Casual-linear Leu -553.02 200m 1112.0 10.1 4.6E-03
Casual-linear Leu -553.02  Area+200m  1114.0 12.1 1.7E-03
Casual-Threshold Leu -558.00 lkm 1122.0 20.1 3.1E-05
Casual-Threshold Leu -557.87  Areatlkm 1123.7 21.8 1.3E-05
Casual-linear Leu -560.90 1km 1127.8 25.9 1.7E-06
Casual-linear Leu -569.53  Area+lkm 1129.4 27.5 7.6E-07
Casual-linear Sanderson -663.46 3km 1131.8 29.9 2.3E-07
Casual-linear Sanderson -665.26  Areat+lkm 1138.5 36.6 8.1E-09
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Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-linear
Casual-linear
Casual-linear
Casual-Threshold
Casual-linear
Casual-Threshold
Casual-linear
Casual-linear
Casual-linear
Casual-linear
Casual-linear
Casual-linear
Casual-linear
Casual-linear
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-linear
Casual-linear
Casual-Threshold
Casual-Threshold
Casual-linear
Casual-linear
Casual-Threshold
Casual-linear
Casual-Threshold
Casual-Threshold
Casual-Threshold
Casual-linear
Casual-Threshold
Casual-linear
Casual-Threshold
Tangential-X

Sanderson
Leu

Leu

Leu

Leu

Leu

Leu

Leu

Leu
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Theobald
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Sanderson
Null

Null

Leu

-664.06
-566.85
-568.02
-560.71
-568.48
-569.53
-570.24
-571.82
-571.82
-652.70
-648.70
-648.33
-648.58
-648.93
-646.99
-652.85
-646.42
-653.71
-655.36
-654.31
-655.49
-655.90
-655.76
-659.50
-659.24
-663.90
-663.22
-665.38
-664.64
-664.24
-664.15
-665.08
-664.22
-661.88
-665.33
-665.38
-665.06
-663.96

1110.37

Area+1lkm
Area+2km
2km
Area+2km
2km
Area+3km
Area+3km
3km
3km
Area+3km
Area+2km
2km
3km
Tkm
Area+1km
200m
Area+200m
Area+3km
2km
Area+2km
3km
1km
Area+1lkm
200m
Area+200m
2km
Area+3km
Area+3km
3km
200m
lkm
2km
Area+2km
Area+2km
1km
200m
Area+200m
Area+200m

200m
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1138.5
1141.7
1142.0
1142.2
1143.0
1147.1
1148.5
1149.6
1150.5
1301.7
1302.8
1303.3
1303.8
1304.5
1306.1
1312.3
1314.0
1316.2
1317.3
1317.4
1317.6
1318.4
1320.2
1325.6
1327.1
1333.9
1334.4
1334.4
13353
1335.9
1336.1
1336.1
1336.5
1336.5
1336.7
1336.8
1338.1
1338.1
1346.2
1346.2
-2212.7

36.6
39.8
40.1
40.3
41.1
45.2
46.6
47.7
48.6
199.8
200.9
201.4
201.9
202.6
204.2
210.4
212.1
2143
215.4
2155
215.7
216.5
2183
223.7
2252
232.0
2325
2325
233.4
234.0
2342
2342
234.6
234.6
234.8
2349
236.2
236.2
2443
2443
0.0

8.1E-09
1.6E-09
1.4E-09
1.3E-09
8.5E-10
1.1E-10
5A4E-11
3.1E-11
2.0E-11
2.9E-44
1.7E-44
1.3E-44
1.0E-44
7.2E-45
3.3E-45
1.5E-46
6.3E-47
2.1E-47
1.2E-47
1.1E-47
1.0E-47
6.9E-48
2.8E-48
1.9E-49
9.0E-50
3.0E-51
2.3E-51
2.3E-51
1.5E-51
1.1E-51
1.0E-51
1.0E-51
8.1E-52
8.1E-52
7.4E-52
7.0E-52
3.7E-52
3.7E-52
6.4E-54
6.4E-54
3.8E-01



Tangential-X*
Tangential-X+X?
Tangential-
Linear
Tangential-
Linear
Tangential-X
Tangential-X*
Tangential-
Linear
Tangential-X+X’
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear

Tangential-X+X’
Tangential-X
Tangential-X’
Tangential-
Linear

Tangential-X
Tangential-X?
Tangential-
Linear

Tangential-X+X?
Tangential-X+X2
Tangential-X
Tangential-X’
Tangential-X+X’
Tangential-
Linear
Tangential-
Linear

Tangential-X

Leu
Leu

Leu

Leu
Leu
Leu

Leu
Leu

Leu
Leu
Leu
Theobald
Theobald
Theobald
Theobald

Theobald
Leu

Theobald
Theobald

Theobald
Theobald
Theobald

Leu

Theobald
Theobald
Theobald
Theobald
Theobald

Theobald

Leu
Leu

1110.37
1110.51

1107.01

1107.09
1102.68
1102.68

1101.03
1102.68

1101.04

1097.37

1096.02

1096.62

1096.46

1094.75

1096.83

1093.73
1096.14
1097.04
1097.04

1097.29
1096.72
1096.72

1095.61
1075.78
1075.80
1096.49
1096.49
1075.67

1093.69

1096.02
1097.81

200m
Area+200m

200m

Area+200m
lkm
lkm

lkm
Area+lkm

Area+1km

2km

Area+2km

Tkm

2km

3km

Area+2km

Area+3km
Area+2km
Tkm
1km

Area+lkm
2km
2km

3km
Area+2km
Area+3km

3km

3km
Area+lkm

200m

Area+3km
2km
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-2211.0
-2208.0

2206.2
2197.4

-2196.1
-2195.4
-2194.1

-2188.7

2187.4

-2187.2

-2186.9

-2186.6

-2186.6

-2186.6

-2186.2
-2186.1

-2185.7

-2185.4
-2185.4

-2185.2

-2185.2
-2185.1
-2185.0

-2184.5
-2184.4

-2184.0
-2183.5

4.7

6.5
15.3

16.6
17.3

18.6

24.0

253

25.5

25.8

28.7
29.2

1.6E-01

3.7E-02

1.5E-02
1.8E-04

9.6E-05
6.7E-05

3.5E-05

2.4E-06

1.2E-06

1.1E-06

9.6E-07

8.3E-07

8.3E-07

8.3E-07
6.8E-07
6.4E-07

5.3E-07
4.5E-07
4.5E-07

4.1E-07
4.1E-07
3.9E-07
3.7E-07

2.9E-07

2.8E-07

2.3E-07
1.8E-07



Tangential-X
Tangential-X
Tangential-X?
Tangential-X+X*
Tangential-X
Tangential-X?
Tangential-X+X?
Tangential-
Linear
Tangential-X
Tangential-X
Tangential-X
Tangential-X?
Tangential-
Linear
Tangential-X
Tangential-X?
Tangential-X
Tangential-X?
Tangential-
Linear
Tangential-X+X’
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Linear
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Linear
Tangential-
Linear
Tangential-X
Tangential-X?
Tangential-X+X’
Tangential-X+X?
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Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Tangential-
Linear
Anthrophobic
Anthrophobic
Anthrophobic

Leu
Leu
Leu
Leu
Theobald
Theobald
Theobald

Theobald

Sanderson
Sanderson
Sanderson
Sanderson

Sanderson
Sanderson
Sanderson
Sanderson
Sanderson

Sanderson
Sanderson

Sanderson

Sanderson

Null
Null
Null
Sanderson
Sanderson
Sanderson

Sanderson

Sanderson

Sanderson

Sanderson
Theobald
Theobald
Theobald

1097.81
1095.76
1095.76
1096.14
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1075.94

1097.32
1075.67
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1075.61
1075.61

1074.57
1075.50
1075.50
1075.43
1075.43

1074.11
1075.80

1073.88

1074.88

1075.78
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1075.67

1073.56

1074.33

1073.94
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-563.38
-564.53
-564.20

2km
3km
3km
Area+3km
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200m
Area+200m
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1km
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200m
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2km
2km
3km
3km
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Area+200m

1km
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Area+2km
Area+3km
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Area+200m

Area+lkm
Area+3km
3km
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-2183.5

-2182.3
-2181.5
-2181.5
-2179.6

-2179.5
-2143.3

-2143.2

-2143.1
-2143.0

-2142.9

-2142.2
-2141.9
-2141.8

-2141.8

-2141.7
-2141.7

-2141.6
-2141.6
-2141.3

-2141.1
-2140.7
-21399

-2139.8

1135.5
1136.0
1136.0

29.2
29.2

31.2
31.2
33.1

332
69.4

69.5

69.6
69.7

69.8

70.5
70.8

70.9

70.9

71.0
71.0

71.1
71.1
71.4

71.6

72.0

72.8

72.9
-0.5
0.0
0.0

1.8E-07
1.8E-07

6.5E-08
6.5E-08
2.5E-08
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Chapter 3: Linking Sensitive Species Occurrence to Land Cover Types

Introduction

Nearly half of the world's population lives in urban areas (Watson 1993). The
proportion of the population living in cities has grown from 29% in 1950 to 50% in 2010
(UN 2011). By 2050, 69% or 6.3 billion people are projected to be living in urban areas
and nearly as many humans will occupy cities as inhabit the earth today (Brown et al.
1995; UN 2011). Near the end of the last century, human settlements covered 1-6% of the
earth’s surface; agriculture covered another 12% (Meyer and Turner 1992). This
conversion of land cover from natural to urban has been documented to produce some of
the greatest local extinctions of native species (Marzluff 2001; McKinney 2002). The
conversion of land cover to urbanization is often more lasting than other types of habitat
loss (McKinney 2002). The infrastructure involved in creating skyscrapers, houses,
power lines, and roads have permanent and lasting effects on ecosystem functioning
(Hooke and Martin-Duque 2012).

~As human populations continue to increase, there will be subsequent increases in
urban areas, suburban areas, roads, and agriculture. Global croplands, pastures,
plantations, and urban areas have expanded in recent decades, accompanied by large
increases in energy, water, and fertilizer consumption compounded with considerable
losses of biodiversity (Foley et al. 2005). The need to provide food, fiber, water, and
shelter to the increasing human population drives the conversion of “natural™ landscapes
(i.e. intact landscapes where dispersal is not impeded) to anthropogenic landscapes

(Foley et al. 2005).



The loss of habitat to urbanization has pronounced effects on native fauna. Large
areas of land cover are first converted, creating degraded fragments and land cover
dominated by exotic invasive plants. Over time, fragments continue to decrease in size
and the spread of invasive species further degrades the landscape (Marzluff 2001).

It is the responses of individual organisms to a change in land cover that can
disrupt ecosystem function, which can further compound the effects of the initial land
cover change (Hansen et al. 2001). Species abundance and distribution are influenced by
land use and land-cover quality (Pulliam 1988). Land-cover change also fragments
habitats, which further increases the distances among habitat patches, and limits the
ability of species to move across the landscape (Primack and Miao 1992; Andrén 1992;
Hansen et al. 2001). Anthropogenic changes in land cover have direct effects on the
species living within that area. Therefore, it is important for land managers to be able to
predict which species will likely occur in a landscape (Lichstein 2002). While there are
several studies that have addressed the need for understanding species response to land
cover availability, additional studies are needed to further evaluate habitat use regarding
amount and size of preferred land cover (Hansen and Urban 1992; Andrén 1992).

Habitat use depends on the area and type of land cover (Forman et al. 1976; Galli
et al. 1976). Forman et al. (1976) found that the number of forest songbirds increased
with increasing forest patch size and Mazerolle and Villard (1999) found that landscape
characteristics were significant predictors of species presence. Identifying minimum land
cover composition and configuration requirements for species that respond similarly to
anthropogenic land cover can provide important information on species’ population

viability. Wood et al. (in press) found that there was an increase in synanthropic species



associated with suburban developments but an overall decrease in species richness, even
when those suburban developments were within protected reserves. Miller et al. (2003)
found that bird species diversity decreased from rural to urban riparian areas. [dentifying
common habitat requirements among species improves management for species of
concern, species richness, and diversity.

It is well established that some species are more sensitive to human-dominated
landscapes than others. Johnston et al. (2001) classified avian species depending on their
use of human-dominated land cover: “full synanthrope”, species that depend on
anthropogenic features throughout entire annual cycle; “casual synanthrope™ species that
exploit anthropogenic features; “tangential synanthrope™, species that occasionally
exploit anthropogenic features; and “non-synanthrope” (anthrophobic), species that avoid
anthropogenic features.

As the human population continues to increase, species that avoid human-
dominated land cover, anthrophobic species, may decline. It is therefore important to
know minimum land cover requirements for sensitive species and whether there are
parallels in land cover requirements among sensitive species. The objectives of this study
were to evaluate 1) if there are underlying minimum land cover requirements for
sensitive species and 2) the degree to which anthropogenic features and human land use
influence the distribution of these species.

We created models based on land cover classification for seven anthrophobic
species and one synanthropic species, for comparison. The anthrophobic species we
selected included the bushtit (Psaltriparus minimus), marsh wren (Cistothorus palustris),

Swainson’s thrush (Catharus ustulatus), hermit thrush (Catharus guttatus), northern



parula (Parula americana), ovenbird (Seiurus aurocapillus), grasshopper sparrow
(Ammodramus savannarum). We compared these species to a full synanthropic species,
one that is commonly found in areas dominated by anthropogenic land features, the
European starling (Sturnus vulgaris). This species served as a control to evaluate signal
strength of habitat-species interactions based on coarse-scale bird survey data and
satellite imagery derived land-cover classifications. Moreover, we included the European
starling to evaluate whether human land-cover types have similar weight in species
occurrence models. From this comparison, we can determine if anthropogenic land-cover
types are ranked highly for both anthrophobic species avoidance and on full synanthrope
occurrence.

The results of this study will provide land managers and regional planners
information on how natural and biologically diverse land cover can be integrated into
urban and suburban designs. Even small changes in the spatial patterning of land cover
can produce dramatic ecological responses (Turner and Gardner 1991). The information
obtained from this study on the amount, and type of land cover required by sensitive

species can be implemented for regional planning.

Methods
Study Area

Our study area included the conterminous United States (Figure 5). The
cumulative species ranges included in our analysis spanned the conterminous United

States and all major land cover types.



Avian Data

We used Breeding Bird Survey (BBS) data from 2005-2012 to estimate species
occurrence. We used eight years of BBS data to derive robust species occurrence
estimates. BBS routes were obtained from the USGS
(ftp://ftpext.usgs.gov/pub/er/md/laurel/BBS/DataFiles/) for the conterminous United
States (Figure 5). BBS routes were visited once a year, either by the same or a different
observer. Each survey route was 39.4 kilometers long with stops at 800-m intervals. At
each stop, a 3 min point count was conducted in June where all birds seen and heard
within a 400 m buffer were recorded (BBS, 2013).

The American bushtit is a year-round resident in the western United States
ranging from coastal Washington to Utah, to western Texas (Figure 6). It breeds in
deciduous woodland, coniferous forests, oak woodland, chaparral, scrub, and residential
neighborhoods, often near streams (Alderfer 2006; Audubon 2014). The marsh wren is a
resident along the coasts of the United States and breeds throughout the northern part of
the conterminous United States (Figure 7). It prefers emergent vegetation for nesting
habitat and inhabits freshwater and saltwater marshes, roadside ditches, and small
agricultural runoft sites (Audubon 2014). The Swainson’s thrush breeds throughout the
Pacific Northwest and the Atlantic Northeast (Figure 8). Its breeding habitat includes
coniferous woodlands with dense undergrowth and deciduous wooded areas in the Pacific
Northwest and mixed forests in the Atlantic Northeast (Clements 2001; Audubon 2014).
The hermit thrush breeds throughout the northern conterminous United States, along the
West Coast and mountain regions in the Northwest (Figure 9). The hermit thrush breeds

typically in conifer-dominated forests and deciduous forests, usually in areas with little
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undergrowth (Alderfer 2006). The northern parula breeds throughout the eastern United
States from Maine to eastern Texas (Figure 10). This species is primarily a forest-
dwelling species that breeds in habitat consisting of high tree diversity, variable canopy
height, coniferous forests, and swamps (Ehrlich et al. 1988). The ovenbird breeds
throughout the Northeast and northern plains, from Maine to Arkansas, to Montana
(Figure 11). It breeds in mature deciduous and mixed forests, especially in areas with
little undergrowth (Sibley 2000). The grasshopper sparrow breeds throughout most the
conterminous United States, excluding the Southwest and parts of the Northwest (Figure
12). Preferred habitats include upland meadows, pastures, hayfields, and croplands
(Arbib 1988; Vickery 1996; Smith 2008). The European starling breeds in human
dominated habitats throughout the conterminous United States (Figure 13). This species
is common in agriculture, suburban, and urban areas (Sibley 2000).
Land cover dataset

We obtained 706 land-cover types from the Landfire (USGS 2013) data set and
reclassified some land-cover types in GIS (ESRI 2013) into natural and anthropogenic
land cover that may be used by species included in the analysis. In this study,
anthropogenic land cover is defined as any land cover that was classified as “developed”,
while natural land cover included all other types. We reclassified the land cover types
into forest, grassland, shrubland, riparian, wetland, high development, medium
development, low development, open development, developed grassland, developed
forest, and agriculture. We also included extent of highways and secondary roads
throughout each species’ breeding range (TIGER 2000).

Statistical Analysis



We reduced the analyses extent to states where the species is known to breed
(Sibley 2013; Figures 5-13). We also included the latitude demarking the center of each
BBS route habitat use could change along latitudinal gradients.

We included only the BBS routes that were surveyed more than 70% of the total
survey years from 2005-2012. We chose an 8-year interval to remove the possibility of
observer bias in occurrence estimates. If a species was observed at least 70% of the time,
that route was given a “1”and a “0” if a specie was observed less that 70% of the time.
For example, if a bushtit was observed on a particular route 6 out of 8 years, a 75%
occurrence, we code that route as “1”. We chose the threshold of 70% because it
eliminates observer bias and is most indicative that a species is present in this location.

We buffered BBS routes by 200 m, 1 km, 2 km, and 3 km to analyze proportion
of land cover types. Buffers reflect within season movement for studied species. Wiens
and Rotenberry (1987), Wittenberger (1991), and Pearson (1993) found that birds
respond to their environment at multiple spatial scales, ranging from local scales to
regional scales. Donovan et al. (1997) also found that it is important to look at multiple
scales because the relative importance of different scales varies depending on land cover
suitability. To calculate the proportion of land cover within each scales we used focal
statistics in ArcGIS (ESRI 2013). We addressed the possibility of spatial autocorrelation
by removing any route where 3-km buffers overlapped.

For each species we first ran a Spearman Rank correlation to check for
multicolinearity among land cover types or buffers. We scaled all variables to allow
comparison of parameter estimates. We then ran univariate general linear models to

identify best scale for each land cover type and human disturbance. We included all



variables that had a lower AIC value than the null model and did not correlate in the final
models. If variables correlated, we chose the variable with the lowest AIC value for the
analysis. All statistical analyses and modeling were conducted using the R statistical
language v. 2.13.2 (R Development Core Team 2011).

We used the dredge function (MuMni package) to obtain the weight for each
variable. To derive the final model for each species, we model averaged parameter
estimates across all models whose combined AIC weights totaled 0.95(Burnham and
Anderson 2004). To evaluate final model predictive capability, we calculated the area
under the curve (AUC; pROC package). Calculating the AUC is a way to test the
accuracy of the model; the scale of the AUC ranges from 0 to 1, where a value of 1
signifies a perfect model (Darlington 1990). For models with an AUC greater than 0.7
(Darlington 1990), we compared directionality and magnitude of parameter estimates to

determine if there were any parallels in land cover type and scale.

Results

Developed Medium land cover was highly correlated to Developed High among
all models. Developed Open land cover was highly correlated to Developed Low for all
species but not the European starling. In addition, we removed Developed Open land
cover from all models as it overlapped with less than 10% of BBS routes.
Bushtit

Correlations existed between Shrubland,y,, and Shrublandsy,,, with Grasslandim
and Grasslandsy,. The 95% candidate variable set included Agriculturesgon,.

Agriculture |, Development Medium iy, Forestokm, Secondary Roads,gom, Grasslandsym,



Ripariansyy,, Latitude, and Shrubland;gom, and Shrublandsky,. Variables with the highest
AIC weights included Agriculturey,, Development Mediumiy,, and Shrubland,oom
(Figure 14). A total of 4 models were used for the final model (Appendix 3):

Bushtit occurrence (SE) =-4.93 (0.21) -1.69 (0.05) Agriculture iy, -0.63 (0.03)
Developed Mediumyy, -1.05 (0.03) Forestyym + 0.17 (0.10) Secondary Roads;gom + 0.72
(0.03) Shrubland;ggn,

The Bushtit model predicted well with an AUC value of 0.84. This model
accurately predicts the species’ occurrence.

Marsh wren

The 95% candidate variable set included Shrublandsy,, Wetlandsoom, Highwaysim,
Development Highsym, Riparianygom, Ripariansyy,, Secondary Roads)im, Agriculturesoom,
Agriculture,, Grasslandsyn,, and latitude. Variables with the highest AIC weights
included Shrublandsyy, and Latitude (Figure 15). A total of 12 models were used for the
final model (Appendix 4):

Marsh wren occurrence (SE) =-6.98 (0.11) -1.67 (0.03) Shrublandsiy, -1.67 (0.03)
Latitude + 0.33 (0.01) Wetland,gom -0.90 (0.02) Development Highsim, - 0.56 (0.02)
Riparianygom -1.11 (0.03) Secondary Roads;xm

The marsh wren model predicted well with an AUC value of 0.87. This model
accurately predicts the species’ occurrence.

Swainson’s thrush

Variables included in the 95% candidate variable set were Ruparianaoon,

Riparianyym, Ripariansgy,, Forestsym, Shrubland;oom, Wetlandagom, Developed Grassland;in,

Agriculturesym, Secondary Roads,oom, Highways m, Developed Forestyyy,, Grasslandsgom,



Grassland;in,, and Development High, . Variables with the highest weights included
Shrubland;gom, Riparianagom, and Latitude (Figure 16). A total of 12 models were used for
the tfinal model (Appendix 5).

Swainson’s thrush occurrence (SE) =-4.32 (0.07) - 0.63 (0.05) Shrublandzoom +
0.98 (0.07) Riparianygon, -1.43 (0.10) Latitude -1.44 (0.10) Wetland,oom + 0.09 (0.01)
Forestyym -0.11 (0.01) Developed Grasslandsy,, -0.11 (0.01) Highway i

The Swainson’s thrush model had an AUC value of 0.39. This model does not
accurately predict the species’ occurrence.
Hermit thrush

Variables included in the 95% candidate model were Latitude, Agriculture;oom,
Developed Mediumsyy,, Wetlandxy, Grasslandagom, Secondary Roadsskm, Shrubland;ggm,
Highwaysim, Riparian,ym, Developed Grassland,oom, Developed Forestyoom, and
Forestygom. Variables with the highest weight included; Riparian;im, Agriculturesoom,
Wetlandm (Figure 17). A total of 8 models were used for the final model (Appendix 6):

Hermit thrush occurrence (SE) =-3.91 (0.40) + 1.17 (0.11) Riparian;y, -1.82
(0.08) Agriculturesgom -2.66 (0.12) Wetland,y, + 0.32 (0.02) Shrubland;gom -1.07 (0.06)
Development Highsym -0.32 (0.02) Secondary roadsim -0.21 (0.01) Highwayssin

The hermit thrush model had an AUC value of 0.29. This model does not
accurately predict the species’ occurrence.
Northern Parula

Correlations existed between all buffers for Agriculture and Riparian, with the
exception of the 200 m buffer. Variables included in the 95% candidate variable set were

Forestygom, Agriculturesoom, Development Highsim, Riparianaggm, Highwaysim,



Wetlandoom, Developed Forestygo, Ripariansiy,, Secondary Roadssyy,, Shrubland,yy, and
Developed Grasslandaym. Variables in the final averaged model had equal weights, with
the exception of Wetland,y,, and Highwayssim (Figure 18). A total of 3 models were used
for the final model (Appendix 7):

Northern parula occurrence (SE) = -4.52 (0.63) + 0.75 (0.09) Development
Highsy, + 0.75 (0.09) Developed Forestokm - 0.89 (0.12)Shrubland,ggm + 0.85 (0.12)
Ripariansgom + 0.78 (0.11) Latitude - 0.50 (0.09) Wetland xy, - 0.30 (0.09) Highwayssin

The northern parula model predicted well with an AUC value of 0.91. This model

accurately predicts the species’ occurrence.

Ovenbird

Correlations existed between Agriculture .y, Agriculturesyy,, and Agriculturesgy,
with Riparianyyn,, and Ripariansiy,. Variables included in the model analysis were
Grasslandgom, Forestyg, Forest xm, Forestoxm, Forestsgm, Agriculture;oom, Developed
Highikm, Secondary Roads;yn,, Developed Grasslandxn, Riparian;gom, Riparianskm,
Highways3km, Developed Forestlkm, Shrublandsy,, and Wetlandsy,. Variables had
equal weight in the model, with the exception of Agriculture;oom, which had a slightly
less weight (Figure 19). A total of 2 models were used for the final averaged model
(Appendix 8):

Ovenbird occurrence (SE) =-3.78 (0.23) - 1.67 (0.27) Grassland,gom + 0.28 (0.09)
Forestyoom - 1.43 (0.10) Latitude - 1.44 (0.10) Wetland,gom + 0.09 (0.01) Forestyim, -0.11

(0.01) Developed Grasslandskm - 0.11 (0.01) Highways



The ovenbird model predicted well with an AUC value of 0.85. This model
accurately predicts the species’ occurrence.
Grasshopper Sparrow

Correlations existed between Agriculturesi, and Ripariansy,. The candidate
variable set included Developed Medium;yy,, Riparianygom, Developed Forest g,
Secondary Roads;im, Highwayssim, Shrublandsyy,, Agriculture;iy, and Developed
Grasslandyoom. Variables with the highest AIC weights were Agriculturesiy,, Wetlandsim,
Riparianygom, and Latitude (Figure 20). A total of 4 models were used for the final model
(Appendix 9).

Grasshopper sparrow occurrence (SE) =-3.91 (0.40) + 1.17 (0.17) Agriculturesxm
- 1.71 (0.17) + Developed Mediumykm 0.43 (0.05) Wetlandsky, - 0.96 (0.10) Riparianagom -
0.37 (0.04) Latitude - 0.26 (0.04) Highwayssim + 0.01 (0.003) Developed Grassland,gom

The grasshopper sparrow model predicted well with an AUC value of 0.87. This
model accurately predicts the species’ occurrence.
European Starling

The candidate variable set included in the model average were Forestagom,
Agriculturesgom, development Highsn, Grassland,oom, Riparianyggm, Highwaysim,
Wetland,gom, Developed Forestyoom, Shrubland,km, and Development Low . All
variables had equal AIC weights, with the exception of Development Lowym, which had
a slightly smaller weight (Figure 21). A total of 2 models were used for the final model
(Appendix 10).

European Starling occurrence (SE) = 0.14 (0.05) + 0.48 (0.07) Agricultureygg

-0.36 (0.08) Developed Forestagom + 0.54 (0.07) Developed Highsi, + 0.24 (0.08)



Developed Lowym - 0.66 (0.09) Riparianygom + 0.37 (0.06) Shrublandsim, - 0.51 (0.07)
Wetland,oom
The European starling model predicted well with an AUC value of 0.81. This

model accurately predicts the species’ occurrence.

Discussion

There were a few patterns and parallels between the species we modeled. Natural
land cover types that each species was known to breed in generally had high AIC
weights. Anthropogenic covariates commonly included in models were either
Development High or Development Medium. Our analyses are consistent with previous
research that suggests anthrophobic birds avoid highly developed areas (Galli et al. 1976;
Beck and George 2000; Proppe et al. 2013). Highways and secondary roads were
included in the models for grasshopper sparrow, marsh wren, and northern parula. These
results are similar to previous research that suggests most species do not occur along
roads and highways (Baumgartner 1934; Kuitunen 1998).

Natural land cover covariates with high weights occurred at the smaller buffer
sizes of 200 m and 1km. In contrast, Development High and Medium covariates occurred
at large buffer size classes of 1 km and 3 km. Road covariates also occurred at larger
scales, ranging from 1 km to 3 km. These results suggest that breeding habitat use for
species analyzed in this study occurs at smaller scales but that these species respond to
development and roads at larger scales.

Human development covariates also had high model weight with the European

starling; this suggests that human development is one of the biggest drivers for species’



occurrence in all of the species we modeled. In addition, every type of natural land cover
in the European starling model related negatively to occurrence.

Our models performed very well (AUC >0.8), with the exception of the hermit
thrush (AUC = 0.29) and the Swainson’s thrush (AUC = 0.39). Previous research has
shown that habitat suitability models often do not perform well when tested on thrushes.
Rittenhouse et al. (2010) found that habitat suitability indexes based on land cover
requirements were inaccurate at predicting where wood thrush (Hylocichla mustelina)
would occur. Thrushes could be keying in on more fine-scaled habitat features such as
leaf litter (Laughlin et al. 2013), stem density (Chisholm and Leonarda 2008), or
microhabitat foliage (Beck and George 2000).

The grasshopper sparrow occurrence model was also an outlier (Figure 20).
Presence of agriculture and wetlands had the highest model weight. Developed
grasslands, to a lesser extent, were also an indicator of species occurrence. Johnston et al.
(2001) may have incorrectly identified the grasshopper sparrow as an anthrophobic
species; several studies show that this species can successfully breed in pasture and hay
field land cover (Wiens 1973; Benoit et al. 2008; Benoit et al. 2010; Irvin 2013). A
further breakdown of the agriculture land cover types might add more insight into which
types of agriculture this species uses during the breeding season.

Our results suggest that anthrophobic species avoid areas of high human
development. These results are consistent with previous literature on rare and sensitive
species occurrence (With and Crist 1995; McKinney 2000; Marzluff et al. 2001). This is
problematic because urban areas are increasing in size. Since the 1950s, humans have

been increasingly moving back to urban areas (UN 2011). This trend of more populated



urban areas is occurring all over the world. Africa, for example, has the fastest rate of
urbanization in the world (UN 2011). As cities continue to grow at a rapid rate, and
merging together, it is becoming very important for regional planners to include habitat
for local native species (Marzluff et al. 2001).

Several studies evaluated how to best manage urban land cover to promote native
species. Beck and George (2000) found that the varied thrush (Ixoreus naevius) was more
likely to occur near human settlements if the forest did not have an abrupt edge. Also,
Zurita and Bellocq (2012) found that including variable tree height and tree densities in
parks increases bird diversity. Smooth transitions from natural land cover to human
settlement as well as diversity in land cover may have the potential to increase native
species and biodiversity in land cover with anthropogenic influence. If regional planners
and land managers make an effort to manage green spaces and rural lots for native
species, there is potential for greater native bird diversity in anthropogenic land cover.
Miller et al. (2003) studied riparian woodlands that were located within and outside
human settlements. They found that as development increased, riparian woodlands had
less native trees and shrubs, less ground cover and shrub cover, and lower bird species
richness. This indicates a potential for better management of green spaces in areas of
human development. Improved management practices can increase biodiversity, reduce
the spread of invasive species, and increase the overall health of that ecosystem as well as
surrounding ecosystems (McKinney 2002).

The results of this study can also be used to parameterize human footprint models
that incorporate the biological response of species to anthropogenic land cover and land

managers can incorporate these requirements into landscape management. Creating



human footprint models that are based on biological response will be an important
planning tool to gauge the effects of anthropogenic land cover types on anthrophobic

species and ecological processes.
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Figure 5. Breeding bird survey (BBBS) route locations. Each line denotes a single BBS
route (n=3229).
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Figure 6. Breeding bird survey routes included in within the home range ofthe bushtit
(Psaltriparus minimus) (n=1046).
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Figure 7. Breeding bird survey routes included in within the home range ofthe marsh
wren (Cistothorus palustris) (n=2398).
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Figure 8. Breeding bird survey routes included in within the home range ofthe
Swainson’s thrush (Catharus ustulatus) (n=1209).
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Figure 9. Breeding bird survey routes included in within the home range ofthe hermit
thrush (Catharus guttatus) (n=1813).
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Figure 10. Breeding bird survey routes included in within the home range of the northern
parula (Parula americana) (n=1913).
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Figure 11. Breeding bird survey routes included in within the home range ofthe ovenbird
(Seiurus aurocapillus) (n=1778).
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Figure 12. Breeding bird survey routes included in within the home range ofthe
grasshopper sparrow {Ammodramus savannarum) (n=2988).
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Figure 13. Breeding bird survey routes included in within the home range ofthe
European starling (Sturnus vulgaris) (n=3229).
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Agriculture 1km 0=-1.77 (0.41)
Shrubland 200m 0=0.71 (0.25)
Forest 1km 0=-1.19 (0.36)

Development

Medinm 2km 0=-0.74 (0.36)
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Figure 14. The relative effects of covariate on occupancy at the breeding life-history scale
for the bushtit (Psaltriparus minimus); displayed as the cumulative AIC weights ofthe
covariates falling within the confidence set, 95% ofthe highest Akaike weight, with the
corresponding model averaged coefficients and standard errors (AICc 150.97; AUC =
0.85).
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Shrubland 3km P=-1.67(0.03)

Latitude P=-1.67 (0.03)
Wetland 200m P=0.33 (0.01)
Development High 3km P=-0.90 (0.02)
Riparian 200m p=-0.59 (0.02)
Secondary Roads 1km p=-1.11 (0.03)
0.2 0.4 0.6 0.8

Figure 15. The relative effects of covariate on occupancy at the breeding life-history scale
for the marsh wren (Cistothorus palustris); displayed as the cumulative AIC weights of
the covariates falling within the confidence set, 95% ofthe highest Akaike weight, with
the corresponding model averaged coefficients and standard errors (AICc = 138.80; AUC

= 0.90).
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Shrubland 200m 0=-0.63(0.05)

Ripariran 200m 0=10.98 (0.07)
Latitiude 0=-1.43 (0.10)
Wetland 200m 0=-1.44 (0.11)
Forest 2km 0=10.09 (0.01)
Developed Grassland 3km 0=-0.11 (0.01)

Highways 1km 0=-0.11 (0.01)

02 0.4 0.6 0.8 12

Figure 16. The relative effects of covariate on occupancy at the breeding life-history scale
for the Swainson’s thrush (Catharus ustulatus); displayed as the cumulative AIC weights
of'the covariates falling within the confidence set, 95% ofthe highest Akaike weight,
with the corresponding model averaged coefficients and standard errors ( AICc = 277.82;
AUC = 0.39).
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Riparian 1km 3=1.04 (0.05)

Agriculture 200m 3=-1.82 (0.079)
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Highways 3km 3=-0.21 (0.01)
0 0.2 0.4 0.6 0.8 1

Figure 17. The relative effects of covariate on occupancy at the breeding life-history scale
for the hermit thrush (Catharus guttatus); displayed as the cumulative AIC weights ofthe
covariates falling within the confidence set, 95% ofthe highest Akaike weight, with the
corresponding model averaged coefficients and standard errors (AICc = 437.31, AUC =
0.29).
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Development High 3km

Developed Forest 2km

Shrubland 200m

Riparian 200m
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3=-0.30 (0.08)

1 |
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Figure 18. The relative effects of covariate on occupancy at the breeding life-history scale
for the northern parula {Parula americana); displayed as the cumulative AIC weights of
the covariates falling within the confidence set, 95% ofthe highest Akaike weight, with
the corresponding model averaged coefficients and standard errors (AICc = 405.10; AUC

=0.91).
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Grassland 200m 0=-1.67 (0.27)

Forest 200m 0=0.28 (0.09)

Forest 1km 0=0.80 (0.22)

Development High 1km

Agriculture 200m
0.2 0.4 0.6 0.8 12

Figure 19. The relative effects of covariate on occupancy at the breeding life-history scale
for the ovenbird (Seiurus aurocapillus); displayed as the cumulative AIC weights ofthe
covariates falling within the confidence set, 95% ofthe highest Akaike weight, with the
corresponding model averaged coefficients and standard errors (AICc = 604.48; AUC =
0.85).
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Development Medium 2km 3=-1.71 (0.17)

Agriculture 3km 3=1.17 (0.12)
Wetland 3km 3=0.43 (0.05)
Riparian 200m 3=-0.96 (0.10)
Latitude 3=-0.39 (0.04)
Highways 3km 3=-0.26 (0.04)
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0.2 0.4 0.6 0.8 1.2

Figure 20. The relative effects of covariate on occupancy at the breeding life-history scale
for grasshopper sparrow (Ammodramus savannarum), displayed as the cumulative AIC
weights ofthe covariates falling within the confidence set, 95% ofthe highest Akaike
weight, with the corresponding model averaged coefficients and standard errors (AICc =
405.10; AUC = 0.91).
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Figure 21. The relative effects of covariate on occupancy at the breeding life-history scale
for European starling (Sturnus vulgaris); displayed as the cumulative AIC weights ofthe
covariates falling within the confidence set, 95% ofthe highest Akaike weight, with the
corresponding model averaged coefficients and standard errors (AICc = 2535.86, AUC =

0.81).
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