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ABSTRACT PAGE

N,N'-Disubstituted piperazine compounds were prepared and used as ligands for copper(l) 
iodide with the intent to produce luminescent three coordinate metal complexes. Such 
complexes are of interest because they have an available fourth coordination site that can 
allow for reaction with gaseous amines or sulfides producing an alteration in luminescence, 
thus making them ideal candidates for small molecule detectors. 1-Benzyl-4-ethylpiperazine 
(1) 1,4-dibenzylpiperazine (2), 1,4-bis(pyridin-2-ylmethyl)piperazine (3),
1.4-diphenethylpiperazine (4), 1-benzhydryl-4-benzylpiperazine (5), 
1-benzhydryl-4-(pyridin-2-ylmethyl)-piperazine (6), 1,4-dimethylpiperazine (7),
1.4-diethylpiperazine (8), 1,4-diphenylpiperazine (9), and 1-benzhydrylpiperazine (10) were 
purchased (7-10) or synthesized (1-6) through reductive amination and characterized via 
X-ray crystallography and proton and carbon NMR. These piperazines were then reacted with 
Cul, bonding through the N and N' positions, to generate Cu(l) complexes (Cul)2(2), (Cul)2(3), 
(Cul)2(4), (Cul)2(6)2, (Cul)4(7)2, (Cul)2(8), and (Cul)4(10)4. The products were characterized 
by TGA, X-ray powder diffraction, and their luminescent properties were analyzed via an 
in-house-fabricated LED fiber optic fluorimeter. The products were all luminescent, and 
included both p2-iodide rhomboid dimer and p3-iodide cubane tetramer motifs. In many cases 
these oligomers were bridged to form polymeric networks. It was determined that increased 
size of the piperazine substituents favored the p2-l rhomboid species. The photophysical 
behavior of the complexes was attributed to halide to ligand charge transfer (XLCT), cluster 
center (CC) transition, metal centered (MC), and metal to ligand charge transfer (MLCT). (Cul) 
2(2) was found to form a 3-coordinate p2-l polymeric system that was consistently reactive 
with the widest variety of gaseous amines and sulfides. This complex was also determined to 
be non-emissive in its unreacted form, and irreversibly generated a luminescent cubane 
species with replacement of the piperazine.
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INTRODUCTION

Volatile Organic Compounds.

Volatile organic compounds (VOCs) are defined as organic chemicals tha t have a high 

vapor pressure at standard tem perature and pressure (STP) as a result o f the ir low boiling 

points. VOCs are also em itted from  a variety o f compounds including solids and liquids. The 

EPA defines a VOC by what is not, stating tha t a VOC is 'any compound o f carbon, excluding 

carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and 

ammonium carbonate, which participates in atmospheric photochemical reactions.'1 They go on 

to  fu rthe r list a series of volatile compounds that have been determ ined to  have negligible 

photochemical reactivity and are relatively safe.1 VOCs are usually liquids or gases and are 

generated from  a prolific number of sources ranging from  everyday household products to  mass 

manufacturing processes. Some examples include paints and lacquers, cleaning supplies, 

pesticides, glues and adhesives, office equipment such as copiers and printers, even correction 

fluids and permanent markers.

Due in large part to  the ir high volatility, VOCs can represent a serious health risk to 

humans. Their toxicity ranges from  species tha t are mere irritants to  the eyes, nose, and throat 

causing nausea and headaches, to  those that are known cancer agents, and can cause damage 

to  the liver, kidneys, and central nervous system. Furthermore, the extent o f the health effects 

caused by VOCs can be linked to  the degree of exposure. Although some VOCs are toxic 

irrespective of exposure concentration, others are only toxic above a certain threshold, whether 

exposure happens all at once or over a long period of time. Extended exposure can cause 

normally benign VOCs to  become exponentially more dangerous when they are produced in a 

confined space, thereby greatly increasing the delivered dose. Furthermore, VOC-related
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illnesses can often go unnoticed or misdiagnosed, because VOC exposure may be occurring at 

relatively low concentrations. Therefore, given the prevalence o f these potentia lly toxic 

compounds in such close proxim ity to  humans, there is a significant need fo r practical VOC 

detectors tha t can be applied in both open and closed environments.

A variety o f general detection methods already exist fo r VOCs, each w ith the ir own 

advantages and disadvantages. One o f the techniques in common use is gas 

chromatography/mass spectrometry (GC/MS), however, this technique is technologically 

complex, requiring the use of high vacuum. Therefore, GC/MS is currently d ifficu lt to  take into 

the field and requires trained personnel to  operate. Another more promising type of volatile 

gas sensor incorporates a networked chemical substrate layer designed to  interact w ith the 

gaseous compounds, resulting in an analytical response, be it electronic or visual. This effect is 

normally achieved through any of four principal chemical mechanisms: absorption, 

physisorption, chemisorption, or coordination chemistry.2 Depending on the mechanism 

chosen, the selectivity and reversibility o f the chemical interaction between the analyte and the 

substrate layer is strongly influenced. The phenomenon of absorption does not involve a true 

chemical reaction, but instead involves the inclusion o f the analyte into the porous network o f 

the substrate, allowing fo r a highly reversible, but not particularly selective, process. 

Physisorption is also a physical process, in which van der Waals interactions induce analyte 

binding to  the substrate surface, giving a highly reversible and extremely nonselective 

interaction. Chemisorption is a related surface chemical process in which the chemisorbate 

reacts w ith  the detector substrate, usually through sharing o f an electron lone pair. This process 

is normally very selective and is potentia lly reversible, depending on the binding strength of 

both the substrate and the chemisorbate. Finally, coordination chemistry makes full use of 

metal-ligand bonding, although steric and electronic factors can influence binding strength and
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reversibility. The ideal gas sensor would make use of one or more o f these substrate-analyte 

interaction mechanisms, while also involving minimal expense, and offering rapid, reversible, 

and analytically accurate analysis results.

Copper Chemistry.

Recent work has shown tha t copper chemistry may open up new avenues in which new 

detector substrates could be generated.3 Copper exists in three common oxidations states: 

Cu(0) [Ar]3d104 s \ Cu(l) [A r]3d10, and Cu(ll) [Ar]3d9 (see Table 1). As is the case w ith most 

metals, copper(O) chemistry is generally lim ited to  redox activity, because of the relatively 

higher stability o f the Cu(l) and Cu(ll) ions. Furthermore, copper(O) would be o f lim ited u tility  as 

a detector because its properties are greatly lim ited to  sorptive and physisorptive interactions 

w ith  incoming analytes.

Table 1. Properties of Copper(l) and Copper(ll)

Properties Copper(l) Copper(ll)

Electron
Configuration

[Ar]3d10 [Ar]3d9

Possible
Geometries

•  4-Coordinate Tetrahedral
•  3-Coordinate Trigonal Planar
•  2-Coordinate Linear

•  6-Coordinate Distorted Octahedral
• 5-Coordinate Pyramidal
•  4-Coordinate Square Planar

Photophysical
Behavior

Metal-centered or metal to  ligand 
charge transfer

Intra-d-subshell transitions most 
important

Compound
Colors

W hite /  Colorless Green /  Blue Salts

Magnetic
Properties

Diamagnetic Paramagnetic

Lewis Acid Type Soft Intermediate
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Copper(ll) is found in simple ionic salts, such as copper(ll) sulfate and copper(ll) chloride, 

or in coordination complexes. The coordination environments most often associated w ith 

copper(ll) are e ither 6-coordinate distorted octahedral, 5-coordinate pyramidal, or 4-coordinate 

square planar metal complex geometries, Table 1. These geometries result from  the incomplete 

d-subshell causing significant crystal field stabilization to  occur. According to  crystal field 

theory, all o f the d-orbitals will be destabilized by the incoming ligands through electrostatic 

effects. However, some orbitals are more destabilized than others causing preferential 

population of the d-orbitals so as to minimize destabilization. Furthermore, notable distortion 

of the coordination spheres having degenerate ground states (especially the octahedral field) is 

observed due to  the Jahn Teller effect. According to  the Jahn Teller principle, the normal 

octahedral configuration is rearranged so as to  remove ground state degeneracy, Figure 1.

Cu(ll)

! i     f -i
.2 y2_w2 ,  X2-y 27T  X -  Y \

h v (v is ib le )

I l f    ......-4 ±  I
x z  xy  y z

x y
x z  y z

Figure 1. Copper(ll) d-shell octahedral electron configuration, demonstrates Jahn Teller 
d istortion in order to  alleviate ground state degeneracy, and fu rther offers paramagnetism and 
intra-d-subshell visible light absorption in the red/orange region.

Copper(ll) complexes have interesting magnetic, absorptive, and electrochemical 

properties.4,5 To achieve the 2+ oxidation state, the remaining electron in the 4s subshell must
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be lost, along w ith  a single electron from  the 3d. This vacancy in the 3d-shell enables absorption 

o f photons w ith  frequencies in the visible region o f the electromagnetic spectrum, specifically 

the red/orange, im parting to  Cu(ll) complexes the ir blue or green color. Similarly, the single 

unpaired electron gives Cu(ll) its characteristic paramagnetic properties, wherein the unpaired 

electrons w ill align w ith an applied magnetic field. The higher oxidation state fu rther contracts 

the Cu2+ ionic radius, making Cu(ll) a harder Lewis acid than Cu(l) and therefore less likely to  

interact w ith  soft Lewis bases that typically contain unsaturated N, S, and P donor sites, and 

more likely to  coordinate w ith hard bases tha t feature saturated N or 0  donors.

Copper(l) brings a variety o f interesting properties to  the table. It is well documented to  

be a low-coordinate metal complex former, have significant photoluminesent properties under 

long wavelength UV irradiation, and to  produce labile d10 complexes.3 Cu(l) offers a flexible 

coordination sphere creating three different low-coordinate geometries: 4-coordinate 

tetrahedral, 3-coordinate trigonal planar, or 2-coordinate linear systems, Table 1. The flexible 

low-coordinate geometries of Cu(l) are influenced by its outer valence electron configuration, 

wherein the single electron is lost from  the 4s shell, yielding a full 3d subshell, Figure 2. Due to 

its lack o f crystal field stabilization, Cu(l) is not particularly obedient to  the 18 electron rule, 

beyond allowing a maximum of only four ligands to  coordinate. This is because when the 3d 

subshell is completely filled, the electrostatic destabilization caused by the incoming ligands is 

rendered moot. Moreover, w ith a full 3d subshell, the average energy of each subshell is 

maintained under all coordination geometries; therefore preferential population o f the orbitals 

through crystal field stabilization cannot occur.
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Cu(I)

i) i
xy xz yz

II t  e

T,2

Figure 2. Electron configuration of copper(l) [Ar]3d10. The filled d-subshell electron 
configuration [Ar]3d10 fo r copper(l) prevents crystal field preferences and intra-d-subshell 
transitions. Tetrahedral geometry is shown.

Furthermore, w ith the filled 3d subshell, there are no d to  d transitions, as seen w ith  Cu(ll). 

Therefore, the observed transitions occur mainly in the UV region, unless the tt or n *  orbitals o f 

the ligand lie sufficiently low that a lower energy visible transitions can take place. These are 

associated w ith e ither metal-centered 3d to  4s/4p transitions (MC) or metal to  ligand charge 

transfer (MLCT). Finally, this d10 configuration also offers the ability fo r Cu(l) to  demonstrate 

very labile interactions toward coordinated ligands. Tetrahedral Cu(l) has low energy e orbitals 

and higher energy t2 orbitals, all o f which are filled, Figure 2, providing an even distribution o f 

electron density throughout the d-orbitals, obviating any crystal field effects. In lieu o f crystal 

field effects, the coordination environment of Cu(l) is determ ined solely by its relative 

electrophilicity (which is fa irly low given its univalent charge and large ionic radius), and steric 

demand of the ligands. This results in relatively labile ligands in Cu(l) complexes.

The relatively large ionic radius of Cu(l) causes it to  act as a soft acid w ith a relatively 

polarizable electron cloud favored by soft Lewis bases. Such soft Lewis bases act as n- 

backbonders, both donating electron density to  the metal center through a-donation and also 

receiving electron density back from  the metal into vacant n*-orb ita ls, Figure 3. This enhances
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the a ffin ity o f Cu(l) fo r the soft P-, S-, and unsaturated N-containing ligands (VOCs), but not hard 

saturated nitrogen- or oxygen-based ligands.

a-donor

o  Md ) O c ̂ ° °
a

Figure 3. t i back-bonding. Electron density from  the ligand HOMO is donated to  the metal 
center through a-donation interactions, and electron density from  the metal is n back-donated 
to  the ligand LUMO, as illustrated fo r a metal carbonyl interaction.

Copper Iodide.

Copper(l) iodide (Cul) is the most stable Cu(l) halide salt because iodide is the softest, 

most oxidizable, and least reducible halide, and therefore stabilizes the readily oxidizable Cu(l) 

cation. Cul exists in three major crystalline phases: zinc blend face centered cubic (y-Cul) below 

369°C, wurtz ite  hexagonal close packing (P-Cul) between 369-407°C, and simple cubic (a-Cul) 

above 407°C, Figure 4.

n -acceptor

a-Cul

Figure 4. Copper iodide crystal phases. (y-Cul) low tem perature face centered cubic or zinc 
blend structure, (P-Cul) mid tem perature wurtzite, and (a-Cul) high tem perature rock salt 
orientation.
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In the a  phase, copper ions occupy all o f the octahedral holes in a cubic closest packed 

arrangement o f iodide ions. In the 3 and y phases, however, Cu+ sits in half o f the tetrahedral 

interstices o f closest packed iodide lattices. In the former, iodides are hexagonally closest 

packed, while in the la tter they are cubic closest packed. In either case a relatively simple lattice 

network results, w ith 4-coordinate copper and iodide atoms bonded 2.338 A apart.

Network Formation.

Copper(l) is a robust network former, preferring low 2-, 3-, or 4-coordinate 

environments. The coordinative flexib ility  o f Cu(l) and the variable bridging modes of halide (X = 

C f, Br~, or f )  are illustrated in the diversity o f CuX structural types found w ith simple 

monodentate ligands (L) shown on the left-hand side of Scheme 1. This diversity is fu rthe r 

expanded through the use of bidentate ligands (LL), see Scheme 1, right hand-side. When 

monodentate or capping ligands are introduced to  CuX, p2- or p3-halide bridging of Cu(l) centers 

may be found. The p.2-mode is seen in B and C, Scheme 1, wherein Cu(l) centers are bonded to  

tw o bridging halides. In contrast, the p3-bridging mode is observed in systems A and D wherein 

three Cu(l) centers are linked by triply-bridging halide ligands. Furthermore, both p2-X and p3-X 

allow fo r the generation of small dimers or tetram ers and polymeric systems.



Scheme 1

A u
cubane

tetram er

X — Cuv A  —  OU  K.Y+i1 “L-UcuJ-x ”
X — Cu

V

B
L Xsquare x * s *

dimer ><̂ V>
c

zigzag L L 
polymer

• • x ^ V x ^
D

stairstep L 
polymer

■ • x "  \ ' X '  \ 'X -
^ x )  ^ x „ \

Cu Cu Ci
I I I
L L L

.Cu.

l l >

Let us consider iodide as our halide. Although p2-l and p3-l bridging are most common, 

iodide is capable o f form ing 1-, 2-, 3-, or 4-coordinate metal bonding modes, perm itting the 

generation o f various networks. As a result, a great many simple monodentate N-, S-, and P- 

donor complexes o f Cul are known.4 These structures are typically based on any o f four motifs
i

(see Scheme 1): the rhomboid Cu2l2 dimer, the cubane Cu4l4 te tram er (or occasionally higher 

order clusters, such as Cu6l6), or the infin ite CuJ<*, zigzag or stair step polymers, see Figure 5 (A-

D).
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A B

Figure 5. Cul Complexes and Networks w ith  Monodentate Ligands: A) Cul pyridine cubane,63 B) 
Cul pyridine square dimer,6b C) Cul pyridine and Cul 2-methylpyridine ladders,60' 6d and D) Cul 
2,4,6-trimethylpyrid ine zig-zag.6e

When bidentate ligands (LL) tha t cannot chelate due to  ring consternates, such as 

piperazine (H2Pip) and l,4-diazabicyclo[2.2.2]octane (DABCO), are utilized, a bridging effect is 

observed. Cross-linking o f Cu„l„ knots or chains opens up a wide variety o f network structures, 

see Scheme 1 (E — H). Examples o f each type o f network are known: (Cul)4(LL)2 type E,7'8 

(Cul)2(LL)2 type F,8j'8k’8n'9 Cul(LL) type G,9a'9b'10 and (Cul)2(LL) type h .93'915'103'10*5'11, Figure 6.
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G

Figure 6. Bidentate Ligand Bridged Networks: A) Cul DABCO cubane network, B) Cul 2- 
methylpiperazine square dimer network, C) Cul 2-iodopiperazine zig-zag network, D) Cul 
quinoxaline ladder network.

Consequently, network form ation in copper iodide is very susceptible to steric influence 

via the coordinating ligands. This, more than anything else, can be manipulated to  force the 

metal center to  adopt d ifferent coordinative geometries. For example, one might be able to 

create a potentia l nucleophile detector by forcing the copper center into a system wherein a 

coordinative vacancy is found. This vacancy could act to  spontaneously pick up a nucleophile 

from  the environment. Unfortunately, the previous described structures (A-H) are all 4- 

coordinate, and therefore have no coordinative vacancies fo r the uptake o f nucleophiles or 

VOCs. However, if these same structures (A-H) could be forced into form ing 3-coordinate Cu(l)

11



centers by manipulating the nature o f the ligand, the open coordinative vacancy could allow for

facile reaction w ith an incoming nucleophile. However, even if such a reaction were to  occur, it 

would need to  be detectable in some way.

Photophysics of Cul.

In its pure form , copper(l) iodide shows luminescence centered near the UV/Vis border, 

appearing as a blue or purple emission, Figure 7.

1.4 -

Cul1.3

1.0

0.9 ^
Ec 0.8 -

E0
1
z l

0.7 ^

o.6

0 .5 -i

0.4

0.3 ^

0.2

0.0
400 600 800500 700

W avelength (nm)

Figure 7. Copper(l) iodide luminescence image under 365 nm irradiation.

However, this emission changes greatly when Cul is reacted w ith ligands such as piperazine or 

pyridine which force Cul into Cu4l4L4 clusters. The luminescence emission tha t results typically 

exhibits a low energy (LE) band, resulting from  cluster centered transitions. These transitions 

emanate from  a combination o f tw o  electronic processes: halide to  metal charge transfer 

(XMCT) and metal centered charge transfer (MCCT).12 The XMCT emission is a result o f
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electrons relaxing after excitation from  a largely halide-based highest occupied molecular orbital 

(HOMO) to  a largely metal-based lowest unoccupied molecular orbital (LUMO). In particular, 

the HOMO is a hybrid o f >80% iodide 5p and <20% copper 3d orbitals. The LUMO is significantly 

simpler insofar as it is almost purely comprised of copper 4s orbital, resulting in the observed 

XMCT being largely iodide (I) 5p to  copper (Cu) 4s. The other component o f the LE emission is 

generated due to  MCCT wherein electrons transition between a Cu 3d-orbital-based HOMO, and 

4s-orbital-based LUMO. Furthermore, it is believed that these transitions occur simultaneously 

and non-preferentially throughout the Cul cluster. This is due to  electron reorganization effects 

creating a hybrid configuration of both emission types delocalized throughout the Cu4l4 cluster 

center.

D ifferent ligands not only change the Cul network type, but more significantly modify 

the photophysical properties of the overall complex. This adaptation to  the photoactivity o f the 

complex is a ttributed to  the generation of a HE emission band caused by halide to  ligand charge 

transfer (XLCT). In this case, the HE band is formed by electrons relaxing from  the above­

described hybrid 5p/3d HOMO of the Cul cluster to n*  orbitals o f the ligand.12 Furthermore, this 

HE emission band is very dependent on the nature o f the ligands, because each ligand brings 

w ith  it d ifferent electronic properties tha t influence the environment in which the XLCT occurs. 

For example, XLCT is more energetically favorable fo r ligands having n systems, such as 

aromatics. These environmental changes then manifest themselves as different emission 

wavelengths.

Interestingly, the HE and LE emission bands are seen to  be independent o f one another. 

For instance, considering (Cul)4Py4 as an example o f an XLCT complex, (Figure 5), a large Stokes 

shift is observed fo r the LE band and a small one is identified fo r the HE band. For our purposes,
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the Stokes shift is merely the difference between the emission and excitation maxima o f the 

(Cul)4Py4 complex. This larger Stokes shift fo r the LE emission can be explained based upon a 

sizeable amount o f photophysical energy being required fo r MCCT distortion of the Cul cluster 

through contraction of the Cu4core and expansion o f the l4 core necessitated by greater Cu-Cu 

bonding in the excited state. Conversely, the smaller Stokes shift o f the HE band results from  

the lack o f significant distortion of the Cul cluster. Thus, the LE band is not significantly affected 

by the electrical environment o f the ligand whereas the HE band in found to  be somewhat red 

shifted in the case of dimers. Furthermore, the HE band is highly affected and results in a 

variety o f d ifferent emission colors dependent on the coordinated ligand, adding more credence 

to  the independent nature o f these tw o emission bands.

Keeping these principles in mind, if one could form  the earlier discussed 3-coordinate 

planar Cul system through the use o f bridging ligands (LL) sim ilar to  those in Figure 8, the LE 

XMCT and CCCT could be elim inated by cutting the Cul cubane in half.

Figure 8. Proposed 3-coordinate (Cul)2(LL) polymer to  be used in sensor applications.

This in turn offers a system tha t conceivably has a HE emission band that would remain constant 

depending on the nature of the LL ligand, and then become red shifted by an incoming 

nucleophile. Moreover, the coordinating VOC would then create an emission w ith a specific 

fingerprin t unique to  tha t VOC. Therefore, we set out to  use steric control to  force copper 

iodide into form ing linear 3-coordinate chains that would be receptive to  incoming nucleophiles
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and change the luminescence o f the complex accordingly. Such a strategy seemed to  offer 

potential fo r a luminescence-based detection system for nucleophilic substrates.

15



EXPERIMENTAL

Synthesized Commercial

Figure 9. Synthesized (1-6) and purchased (7-10) disubstituted piperazine ligands.
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Materials and Methods.

All reagents were purchased from  Aldrich or Acros and used w ithout purification, except 

fo r ligands 1, 2, 3, 4, 5, and 6 which were prepared using modified literature methods.11

Fiber Optic LED Luminescence Spectrophotometer Construction.

The 1000 pm optical grade fiber-optic cables were cut into seven equal lengths. The 

detector fiber was then split o ff and sheathed completely in aluminum, to  minimize leakage of 

light into the fiber. The detector fiber was then bundled w ith  the other six fibers in a hexagonal 

close packing form ation w ith the detector fiber as the central fiber, Figure 10. The seven fiber 

bundle was then sheathed in a fluorinated ethylene propylene (FEP) tubing, fo r about the first 

six inches to  a foo t (Schematic 1, II). Next, the detector fiber was separated from  the bundle, 

sheathed sim ilarly in FEP (Schematic 1, III) and later connected to  the detector. The resulting six 

fibers were also sheathed in FEP (Schematic 1, IV), and later run to  the excitation source. 

Finally, the whole system was clad in heat shrink tubing in order to  minimize light leakage into, 

and out o f the fiber-optic system, being careful not to  overheat the fiber-optics, so as to  avoid 

heat degradation. Once insulate, all three ends of the fiber-optics were polished to  optical 

grade smoothness using optical sand paper of grits 0.5 pm, and 1pm working one's way up in 

grit.

The six polished excitation fibers were then connected to  the 365 nm LED source 

enclosure (Schematic 1, VI), expansion o f enclosure shown in (Schematic 2). Power was then 

run from  the laptop to  the source enclosure by repurposing a USB cable and creating a buffer 

circuit shown in schematic 3, and enclosing the circuit in an aluminum circuit box (Schematic 1, 

VII). Conversely, the polished detector fiber was run to the Ocean Optics USB 2000+ detector
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(Schematic 1, V). The raw luminescence data was then interpreted by Ocean Optics Spectra 

Suite in absolute irradiance mode allowing fo r both the intensity and wavelength of the 

luminescence peak to  be measured.

Schematics of Instrumentation.

VIII

IV
vn

Schematic 1: (I) sample holder, (II) six around one fiber-optics, (lll)central detector fiber 
separated from  six excitation fibers, (IV) six excitation fibers, (V) USB 2000+ Ocean Optics 
detector, (VI) excitation source enclosure, (VII) on /o ff and excitation source attenuator, (VIII) 
laptop data analysis, and (IX) sample stand and instrument support.

Light
Pipe

Light
Pipe

Light
Pipe

Detector
Pipe

Light
Pipe

Light
Pipe

Light
Pipe

Figure 10: Cross-section o f six around one fiber-optics.
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Schematic 2: (1) LED power source, (2) swagelok fittings making up the enclosure, (3) Nichia 365 
nm pot LED, (4) supports and centering washers fo r LED, (5) shemrock 365 nm line filte r, (6) 
support and centering washers fo r fiber-optics, (7) six bundled excitation fibers.

75 Q 500 Q
USB
+5V

Ground

Schematic 3: Circuit Diagram of VII in schematic 1 

General Analysis.

Analyses for C, H, and N were carried out by Atlantic Microlabs, Norcross, GA or using a 

Thermo Scientific Flash 2000 Organic Elemental Analyzer w ith a M ettle r Toledo XP6 

Microbalance. Thermogravimetric analyses (TGA) were conducted using a TA Instruments Q500 

in the dynamic (variable temp.) mode w ith a maximum heating rate of 50 5C/min. to  300 9C 

under 60 mL/min. N2 flow . NMR data were recorded on a Varian Mercury 400 instrument (s = 

singlet, d = doublet, t = trip le t, br = broad, Ph = phenyl, Py = pyridyl).

Spectroscopic Analysis.

Spectroscopic measurements on Cul-piperazine complexes were made at the University 

o f Maine using the fo llow ing equipment: Steady-state photoluminescence spectra of the 

complexes were recorded w ith  a Model QuantaMaster-1046 photoluminescence 

spectrophotom eter from  Photon Technology International. The instrum ent is equipped w ith two
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excitation monochromators and a single emission monochromator w ith a 75W xenon lamp. Low 

temperature steady-state photoluminescence measurements were achieved by using a Janis St- 

100 optical cryostat equipped w ith a Honeywell temperature controller. Liquid nitrogen was 

used as coolant. Lifetime measurements were conducted using an Opolette™ (HE) 355 II UV 

tunable laser w ith a range o f 210-355 nm. The laser has a Nd:YAG flashlamp pumped w ith a 

pulse repetition rate o f 20 Hz and an average output power 0.3 mW. The detection system is 

composed o f a m onochromator and photom ultip lier from  a Jobin Yvon Ramanor 2000M Raman 

spectrometer. Data were collected by a Le Croy 9310C dual 400 MHz oscilloscope. The decays 

were averaged over 1000 sweeps and fitted  using a curve fitting  method in Igor Pro 6.0. 

Spectroscopic measurements on Cul-piperazine-nucleophile adducts were carried out using the 

fiber optic LED spectrophotom eter system described above.

X-ray Crystallography.

Crystals were mounted on glass fibers. All measurements were made using graphite- 

monochromated Cu Ka radiation on a Bruker-AXS three-circle diffractom eter, equipped w ith  a 

SMART Apex II CCD detector. Initial space group determ ination was based on a matrix consisting 

o f 120 frames. The data were reduced using SAINT+,13 and empirical absorption correction 

applied using SADABS.14

Structures were solved using direct methods. Least-squares refinement fo r all structures 

was carried out on F2. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were located in the Fourier difference map and then allowed to  refine isotropically. Structure 

solution, refinement and the calculation o f derived results were performed using the SHELXTL
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package of computer programs.15 Details o f the X-ray experiments and crystal data are 

summarized in Table 1. Selected bond lengths and bond angles are given in Table 2.

Powder X-ray Analysis.

Powder diffraction analysis was carried out on a Bruker SMART Apex II d iffractom eter 

using graphite-monochromated Cu Ka radiation. Well-ground powder samples were mulled w ith 

Paratone N oil. Four frames were collected, covering a 2q range of 5-100°. The data were 

processed using DIFFRAC-Plus and EVA software.

Vapor Exposure.

Vapor exposures were preformed in a lidded 9.5x5.0x5.5 cm amber jar. The 

atmosphere w ith in the ja r was then saturated w ith one of nineteen VOC's by adding enough 

VOC to the ja r tha t there was liquid collecting in the bottom . A one dram vial w ith about 0.12 g 

of (Cul)2(N,N'-Diethylpiperazine), (Cul)2(N,N'-Dibenzylpiperazine), or (Cul)2(N/N,-bis- 

Phenethylpiperazine) was then placed w ith in the ja r and exposed fo r 10 min. A fter exposure 

the one dram vial was removed w ith large forceps and any excess VOC was removed from  the 

vial by degassing w ith Ar/N.

Synthesis and Crystallization.

1,4-Diphenylpiperazine (9):

Commercial 9 (0.477 g, 2.00 mmol) was heated w ith Cul (0.190 g, 1 mmol) in 30 mL MeCN 

solution to  100 °C fo r 3 d in a sealed tube. No reaction took place, but 9 recrystallized, form ing 

X-ray quality crystals.

1 -benzy-4-ethylpiperazine (1):
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1-ethylpiperazine (1.140g, 9.985 mmol) and phenylacetaldehyde (1.063 g, 8.848 mmol) were 

dissolved in 40 ml. o f CH2CI2 and stirred under Ar at room temp. To this solution a few drops of 

trifluoroacetic acid (0.2 mL) were added, and the m ixture was allowed to  stir fo r 30 min, 

producing a clear yellow solution. Next, NaBH(OAc)3 (2.116 g, 9.984 mmol) dissolved in 15 mL 

CH2CI2 was added, and the solution allowed to  stir overnight under Ar. The resulting solution 

was washed w ith 1 M NaOH (aq), then saturated NaHC03 (aq), and finally deionized water. The 

organic layer was then evaporated in vacuo, producing a yellow oil. 1H NMR (400 MHz, CDCI3) 6 

1.07 (t, J=7.2 Hz, 2H, CH2B), 2.41 (q, J=7.2 Hz, 3H, CH3A), 2.45 (s, 8H, CH2c), 2.48 (s, 2H, CH2d), 7.30 

(m, 5H, CHPh). “ C^HJ NMR (100 MHz, CDCI3): 6 12.24, 52.54, 53.06, 53.32, 63.324, 127.20, 

128.40, 129.44, 138.40.

1.4-Dibenzylpiperazine (2):

Piperazine (0.813 g, 10.00 mmol) and benzaldehyde (2.121 g, 20.00 mmol) were dissolved in 30 

mL o f CH2CI2 and stirred under Ar at room temperature. To this solution a few  drops o f 

trifluoroacetic acid (0.2 mL) were added, and the mixture was allowed to  stir fo r 30 min, 

producing a clear yellow solution. Next, NaBH(OAc)3 (3.180 g, 15.00 mmol) was dissolved in 25 

mL CH2CI2 was added, and the solution allowed to  stir overnight under argon. The resulting 

solution was washed w ith 1 M NaOH (aq), then saturated NaHC03 (aq), and finally deionized 

water. The organic layer was passed through a plug of activated Al20 3 and evaporated in vacuo, 

resulting in a brown powder (1.336 g, 53.65%). XH NMR (400 MHz, CDCI3) 6 2.487 (br s, 8H, 

CH2a), 3.519 (s, 4H, CH2b), 7.313 (m, 10H CHPh). 13C{1H} NMR (100 MHz, CDCI3): 6 53.288, 

63.266, 127.266, 128.398, 129.453.

1.4-bis(pyridin-2-ylmethyl)piperazine (3):
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Piperazine (0.811 g, 10.00 mmol) and 2-pyridinecarboxaldehyde (2.144 g, 20.00 mmol) were 

dissolved in 30 mL o f CH2CI2 and stirred under Ar at room temp. To this solution a few drops of 

trifluoroacetic acid (0.2 mL) were added, and the mixture was allowed to  stir fo r 30 min, 

producing a clear yellow solution. Next, NaBH(OAc)3 (3.171 g, 15.00 mmol) dissolved in 25 mL 

CH2CI2 was added, and the solution allowed to  stir overnight under Ar. The resulting solution 

was washed w ith 1 M NaOH (aq), then saturated NaHC03 (aq), and finally deionized water. The 

organic layer was placed in the freezer and allowed to  crystallize. The crystalline precipitate was 

collected via filtra tion  (1.174 g, 79.2%). X-ray quality crystals were grown by cooling a 0.15 M 

solution in CH2CI2 to  -5  °C. *H NMR (400 MHz, CDCI3) 6 2.5 (s, 8H, CH2A), 3.6 (s, 4H, CH2B), 7.08 (t, 

1H, J=6.64 Hz, PyD), 7.33 (d, J=7.8 Hz, 1H, Pyc), 7.56 (t, 1H, J=7.82 Hz, PyE), 8.47 (s, 1H, PyF). 

13C{1H} NMR (100 MHz, CDCI3) 6 53.43, 64.79, 122.15, 123.41, 136.48, 149.42, 158.81. Anal. 

Calcd. fo r C16H20N4: C, 71.61; 16.20 4H, 7.51; N, 20.88.17 Found: C, 71.46; H, 7.67; N, 21.24.17

1,4-Diphenethylpiperazine (4):

Piperazine (0.431 g, 5.00 mmol) and phenylacetaldehyde (1.204 g, 10.00 mmol) were dissolved

in 30 mL o f CH2CI2 and stirred under Ar at room temp. To this solution a few drops of

trifluoroacetic acid (0.2 mL) were added, and the m ixture was allowed to  stir fo r 30 min,

producing a clear yellow solution. Next, NaBH(OAc)3 (2.109 g, 10.00 mmol) dissolved in 25 mL

CH2CI2 was added, and the solution allowed to  stir overnight under Ar. The resulting solution

was washed w ith 1 M NaOH (aq), then saturated NaHC03 (aq), and finally deionized water. The

organic layer was placed in the freezer and allowed to  crystallize. The crystalline precipitate was

collected via filtra tion  (1.174 g, 79.2%). X-ray quality crystals were grown by cooling a 0.15 M

solution in CH2CI2 to  -5  °C. XH NMR (400 MHz, CDCI3) 6 2.62 (m, 12H, CH2A, CH2B), 2.81 (dd,

J=11.7, 7.7 Hz, 4H, CH2c), 7.20 (m, 6H, Ph°'p), 7.27 (t, J=7.4 Hz, 4H, Phm). 13C fH } NMR (100 MHz,
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CDCI3) 6 33.82, 53.38, 60.73, 126.28, 128.62, 128.92, and 140.53. Anal. Calcd. fo r C20H26N2: C, 

81.59; H, 8.89; N,9.52. Found: C, 81.12; H, 8.73; N, 8.74.

l-Benzhydryl-4-benzylpiperazine (5):

Diphenylmethylpiperazine (3.061 g, 12.00 mmol) and benzaldehyde (1.281 g, 12.00 mmol) were 

dissolved in 30 mL CH2CI2 and stirred under Ar at room temp. To this solution a few drops o f 

trifluoroacetic acid (0.2 mL) were added, and the mixture was allowed to  stir fo r 30 min, 

producing a clear solution. Next, NaBH(OAc)3 (2.539 g, 12.00 mmol) dissolved in 25 mL CH2CI2 

was added, and the m ixture was allowed to  stir overnight under Ar. The resulting solution was 

washed w ith 1 M NaOH (aq), then saturated NaHC03 (aq), and finally deionized water. The 

organic layer was passed through a plug o f activated Al20 3 and evaporated in vacuo, resulting in 

a white powder tha t was dried overnight under vacuum (1.340 g, 59.29%). X-ray quality crystals 

were obtained through slow evaporation of a pentane solution. XH NMR (400 MHz, CDCI3) 6 2.46 

(m, 8H, CH2a, CH2b), 3.51 (s, 2H, CH2c), 4.22 (s, 1H, CH), 7.15 (t, J= 7.0 Hz, 2H, CHPh/), 7.25 (m, 

9H, Ph), 7.39 (d, J= 7.0 Hz, 4H, CHPh/). ^ C /H } NMR (100 MHz, CDCI3) 6 52.14, 53.59, 65.30, 

76.44, 127.06, 127.18, 128.21, 128.36, 128.62, 129.45, 138.37, 143.04. Anal. Calcd. fo r C24H26N2: 

C, 84.17; H,7.65; N,8.18. Found: C, 83.89; H, 7.53; N, 7.96.

l-Benzhydryl-4-(pyridin-2-ylmethyl)piperazine (6):

Diphenylmethylpiperazine (2.526 g, 10.00 mmol) and 2-pyridinecarboxaldehyde (1.070 g, 10.00 

mmol) were dissolved in 30 mL CH2CI2 and stirred under Ar at room temp. To this solution a few 

drops o f trifluoroacetic acid (0.2 mL) were added and the mixture was allowed to  stir fo r 30 min, 

producing a clear yellow solution. Next, NaBH(OAc)3 (2.158 g, 10.00 mmol) dissolved in 25 mL 

CH2CI2 was added, and the m ixture was allowed to stir overnight under Ar. The resulting solution
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was washed w ith 1 M NaOH (aq), then saturated NaHC03 (aq), and finally deionized water. The 

organic layer was passed through a plug o f activated Al20 3 and evaporated in vacuo. The 

resulting thick yellow oil solidified into a beige powder under vacuum (1.34 g, 59.3%). X-ray 

quality crystals were obtained by layering a 20 mM solution in CH3CN w ith ether in a 5 mm 

diameter tube. NMR (400 MHz, CDCI3) 6 2.44 (br s, 4H, CH2A), 2.54 (br s, 4H, CH2B), 3.66 (s, 

2H, CH2c), 4.23 (s, 1H, CH), 7.15 (m, 3H, Php, PyE), 7.25 (t, J=7.8 Hz, 4H, Phm), 7.37 (d, J= 7.8, 1H, 

PyD), 7.40 (d, J=6.3 Hz, 4H, Ph°), 7.61 (td, J=7.8, 1.6 Hz, 1H, PyF), 8.54 (d, J = 5.1 Hz, 1H, PyG). 

^ C fH } NMR (100 MHz, CDCI3) 6 51.81, 53.57, 64.57, 76.17, 121.88, 123.13, 126.82, 127.94, 

128.38, 136.21, 142.75, 149.21, 158.64. Anal. Calcd. fo r C23H25N3: C, 80.43; H,7.33; N,12.24. 

Found: C, 79.81; H, 7.30; N, 11.90.

(Cul)2(N, N'-Dibenzylpiperazine), (Cul)2(2):

The compound was prepared in analogous fashion to  (Cul)2(8), using 5.00 mmol 2 and 10.0 

mmol Cul, yielding 2.326 g product (3.593 mmol, 71.9%). Anal. Calcd fo r Ci8H22N2Cu2I2: C, 33.40; 

H, 3.43; N, 4.33. Found: C, 33.33; H, 3.39; N, 4.40. TGA Calcd fo r Cul: 58.8. Found: 59.6 (150-190 

°C).

(Cul)2(N,N'-(bis-2-Pyridylmethyl)piperazine), (Cul)2(3):

The compound was prepared in analogous fashion to  (Cul)2(8), using 2.09 mmol 3 and 4.00 

mmol Cul, yielding 0.640 g product (0.986 mmol, 49.3%). Anal. Calcd fo r Ci6H20N4Cu2I2: C, 29.60; 

H, 3.10; N, 8.63. Found: C, 30.24; H, 3.17; N, 8.65. TGA Calcd fo r Cul: 58.7. Found: 56.8 (160-210 

°C).

(Cul)2(N,N'-bis-Phenethylpiperazine), (Cul)2(4):
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The compound was prepared in analogous fashion to  (Cul)2(8), using 3.81 mmol 4 and 7.57 

mmol Cul, yielding 1.295 g product (1.918 mmol, 50.3%). Anal. Calcd fo r C20H26N2CU2I2: C, 35.57; 

H, 3.88; N, 4.15. Found: C, 35.61; H, 3.88; N, 4.14. TGA Calcd fo r Cul: 56.4. Found: 57.1 (160-210 

°C).

(Cul)2(l-benzhydryll-4-(pyridin-2-ylm ethyl)piperazine)2/ (Cul)2(6)2:

The compound was prepared in analogous fashion to  (Cul)2(8), using 3.43 mmol 6 and 10.0 

mmol Cul, yielding 0.998 g product (0.935 mmol, 54.5%). Anal. Calcd fo r C23H25N3CU2I2: C, 51.74; 

H, 4.72; N, 7.87. Found: C, 51.79; H, 4.68; N, 7.86. TGA Calcd fo r Cul: 52.6. Found: 55.8 (260-290 

°C).

(Cul)2(N,N'-Diethylpiperazine), (Cul)2(8)\

N,N'-Diethylpiperazine (8 , 5.00 mmol) was dissolved in 25 mL o f MeCN. Cul (10.0 mmol) was 

dissolved in a separate 50 mL portion of MeCN under Ar. The solution o f 8 was added to  the Cul 

solution via syringe. A white precipitate formed w ith in seconds of addition. The suspension was 

refluxed fo r 3 h to  ensure complete reaction. The white precipitate was collected via filtra tion , 

washed w ith MeCN and ethyl ether, and dried under vacuum (1.619 g, 3.095 mmol, 61.9%). 

Anal. Calcd fo r C8H18N2Cu2l2: C, 18.37; H, 3.47; N, 5.35. Found: C, 18.34; H, 3.37; N, 5.32. TGA 

Calcd fo r Cul: 72.8. Found: 73.4 (115-135 °C).

(Cul)4(N-Diphenylmethylpiperazine)4/ (Cul)4(10)4:

The compound was prepared in analogous fashion to  (Cul)2(8), using 5.00 mmol 10 and 5.00 

mmol Cul, yielding 0.984 g product (0.556 mmol, 44.5%). Anal. Calcd fo r C68H8oN8Cu4l4: C, 46.11;
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H, 4.55; N, 6.33. Found: C, 46.71; H, 4.54; N, 6.44. TGA Calcd fo r (Cul)5(10)4: 88.6. Found 88.6 

(185-205 °C). Calcd fo r Cul: 43.0. Found: 43.5 (205-245 °C).

27



RESULTS AND DISCUSSION

Copper(l) materials have been of significant interest to  the Pike research group fo r the ir 

ability to  interact w ith VOCs in a labile manner, producing luminescent adducts. In this work we 

strove to  develop a viable luminescent detector fo r various volatile amines and sulfides using 

Cul. This was pursued through the generation o f unsaturated 3-coordinate Cu(l) centers 

constrained by steric interactions o f the coordinated ligands. A series of chemical synthesis and 

fabrication methods were used to  make these detector materials: reductive amination to  form  

the ligands, simple self-assembly under reflux to  produce copper(l) iodide complexes w ith  the 

ligands, and vapor exposure and spectroscopy to  test the luminescent response of the various 

complexes.

Ligand Generation.

Previous work in our lab has shown that varying ligand size, shape, and binding 

characteristics can have a significant impact on the type of network Cul w ill form  and its 

chemical properties. Piperazine was chosen fo r the ease w ith which one can manipulate the 

substituents at the N and N' positions (Scheme 2) while also retaining access to  the nitrogen 

lone pair fo r metal complexation.
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Scheme 2

/  \
R N N R'v_y

1: R = CH2Ch3) R' = CHPh 
2 : R,R' = CH2Ph 
3: R,R' = CH2-2-pyridyl 
4 : R,R' = CH2CH2Ph 
5: R = CH2Ph, R ' = CHPh2

6: R = CH2-2-pyridyl, R' = CHPh2 
7: R, R’ = Ch3 
8: R, R' = CH2Ch3 
9: R, R’ = Ph 
10: R = H, R' = CHPh2

Compounds 1-6 were prepared through reductive amination by stirring piperazine and 

aldehyde overnight in the presence o f reducing agent, as indicated in Schemes 3 and 4, whereas 

compounds 7-10 were purchased. As suggested by Scheme 4, the aldehyde is firs t protonated 

in order to  generate an electron deficient carbonyl carbon. This process was aided by the 

addition o f TFA to  promote protonation. Next, piperazine acts as a nucleophile and attacks the 

carbonyl carbon, generating the intermediate shown. The observed OH groups are also 

protonated and dehydration is observed. This highly electrophilic carbon then pulls electron 

density from  the adjacent N and forms the incipient im inium ion intermediate. Finally, 

triacetoxyborohydride anion reduces the im inium ion to  the desired 1,4-dibenzylpiperazine. 

Similarly, all the ligands synthesized herein were prepared roughly fo llow ing this mechanism 

w ith  m inor alterations. For example, species 1 was generated by reacting 1-ethylpiperazine w ith 

one equivalent o f benzaldehyde. For the homo-disubstituted 4, piperazine was reacted w ith 

tw o  equivalents o f phenylacetaldehyde; similar methods were used in the form ation of 

compounds 2 and 3. The hetero-disubstituted 5 and 6 were prepared by reacting N- 

diphenylmethylpiperazine w ith  benzaldehyde and 2-pyridinecarboxaldehyde, respectively. The 

reactions produced beige to  brown solids tha t precipitated upon cooling or evaporation. The
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analytically pure compounds were then crystallized fo r X-ray diffraction. Since its structure was 

as yet unreported, commercial 1,4-diphenylpiperazine (8) was also crystallized fo r X-ray 

diffraction.

Scheme 4 HO H

Jk
+
O' \.y~ph

N NH 
\  /

H

HoO

.Ph "Y"
N.

NaBH(OAc)3 

(+ H')

Crystallographic data were acquired fo r compounds 2-6 and 9; however, the structures 

o f only ligands 4, 5, 6, and 9 were found to  be novel, Figure 11. Species 1 and 7 were not 

studied crystallographically because they are oils under ambient conditions. Crystallographic 

determ ination inform ation is given in Table 2 and selected bond lengths and angles in Table 3. 

Compound 4 crystallized in the monoclinic space group C2/c, being half independent due to  the 

presence o f an inversion center at the center o f the piperazine ring. Compound 9 crystallized in 

the orthorhom bic space group Pbca. As was the case w ith  4, an inversion center at the ring 

centroid o f 9 resulted in a half independent molecule. Compound 6 was found to  crystallize in 

the monoclinic space group P2/c w ith  a fu lly independent molecular unit. Compound 5
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Compound 4 crystallized in the monoclinic space group C2/c, being half independent due to  the 

presence o f an inversion center at the center o f the piperazine ring. Compound 9 crystallized in 

the orthorhom bic space group Pbca. As was the case w ith 4, an inversion center at the ring 

centroid o f 9 resulted in a half independent molecule. Compound 6 was found to  crystallize in 

the monoclinic space group P2/c w ith a fu lly independent molecular unit. Compound 5 

crystallized in the non centrosymmetric monoclinic space group Pn, and was found to  be fully 

independent.

Table 2. Disubstituted piperazine crystal and structure refinement data.

1,4- l,4-bis(pyridin-2- 1,4-Diphenethyl-
dibenzylpiperazineb ylmethyl)piperazinec piperazine

(2) (3) (4)
CCDC deposit no. 746715b 104615 863658
color and habit Colorless block Colorless prism Colorless prism

size, mm 0.25 x 0.13 x 0.11 1.2 x 0.9 x 0.2 0 .0 7 x 0 .1 2 x 0 .3 2
formula Cl8 H22 N2 C16H20N4 C20H26N2

form ula weight 266.38 268.34 296.46
space group Pbca P21/c C2/c

a, A 7.42450(10) 5.736(2) 17.9064(13)
b, A 18.8323(2) 7.369(2) 6.2517(5)
c, A 21.1707(3) 17.274(5) 14.9869(11)

a, deg 90 90 90

(3, deg 90 99.06(2) 90.613(4)

y, deg 90 90 90

volume, A3 2960.10(7) 721.0(4) 1677.6(2)

Z 8 2 4

Pcalc, g Cm“3 1.195 1.236 1.174

Fooo 1152 288 648

p(Cu Ka), mm -1 0.535 0.6 0.516

radiation
CuKa (A= 1.54178 A) CuKa

CuKa (X= 1.54178 
A)

tem perature, K 100 100 100
residuals:3 R; Rw 0.0350, 0.0967 0.059, 0.060 0.0374, 0.0943

goodness o f f it 1.007 1.075

a)R = Ri = I |  \F0\ -  \FC\ | / Z |F 0| fo r observed data o n ly .b) CCDC 746715.16 c) CCDC 104615.17 
Rw = wR2 = {L[w{F02 -  Fc2)2] /S [w (F 02)2] } 172 fo r all data.
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Table 2.
(continued)

l-Benzhydryl-4-
benzylpiperazine

(5)

l-Benzhydryl-4-
(pyridin-2-ylmethyl)-

piperazine
(6)

1,4-
Diphenylpiperazine

(9)

CCDC deposit no. 863660 863661 863662
color and habit Colorless plate Colorless plate Colorless plate

size, mm 0 .4 4 x 0 .1 6 x 0 .0 6 0.44 x 0.19 x 0.07 0 .2 8 x0 .2 7 x0 .1 4

formula C24H26N2 c23h 25n 3 Ci6H2Nig

formula weight 342.48 343.47 238.67

space group Pn P2/c Pbca
a, A 5.9450(2) 13.5637(2) 8.6980(7)

b, A 19.0722(4) 5.82170(10) 8.4287(7)

c, A 8.6084(2) 24.0645(4) 17.6359(15)
a , deg 90 90 90

P, deg 98.1790(10) 96.4600(10) 90
y, d eg 90 90 90

volume, A3 966.13(4) 1888.16(5) 1292.94(19)
Z 2 4 4

Pcalc, g Cm"3 1.177 1.208 1.224

Fooo 368 736 512
p(Cu Ka), mm-1 0.522 0.551 0.556

CuKa (A= 1.54178 CuKa {X= 1.54178
radiation A) CuKa (A= 1.54178 A) A)

tem perature, K 100 100 100
residuals:3 R; Rw 0.0279, 0.0684 0.0312, 0.0801 0.0353, 0.0906

goodness of f it 1.055 1.044 1.071

a) R = /?j = £  11 f 01 -  | Fc \ | /  £ | F01 fo r observed data on ly .bl CCDC 746715.16 c| CCDC
104615.17 Rw = w R2 - { L l M F o 2 ~ Fc2)2] / n w ( F 02)2]}1/2 fo r all data.

Table 3. Disubstituted piperazines selected bond lengths and angles.

1,4-dibenzylpiperazine (2)

N(l)-C(5) 1.4562(13) C(5)-N(l)-C(l) 112.18(8)
N (l)-C (l) 1.4628(14) C(5)-N(l)-C(4) 112.50(8)
N(l)-C(4) 1.4622(13) C(l)-N(l)-C(4) 109.20(8)
N(2)-C(12) 1.4582(14) C(12)-N(2)-C(3) 111.81(8)
N(2)-C(3) 1.4645(14) C(12)-N(2)-C(2) 110.68(8)

N(2)-C(2) 1.4643(13) C(3)-N(2)-C(2) 109.04(8)

C(l)-C(2) 1.5144(15) N(l)-C(l)-C(2) 109.66(8)

C(3)-C(4) 1.5201(15) N(2)-C(2)-C(l) 110.07(8)
N(l)-C(4)-C(3) 109.64(8)
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N(2)-C(3)-C(4) 110.38(8)

l,4-b is(pyrid i n-2-ylmethyl)piperazine (3)17

N(2)-C(7) 1.459(2) C(7)-N(8)-C(9) 111.99(14)

N(2)-C(8) 1.460(2) C(7)-N(8)-C(10) 111.94(14)

N(2)-C(6) 1.456(2) q9)-N(8K(10) 109.16(14)

1,4-Diphenethylpiperazine (4)

N-C(l) 1.4589(17) qi)-N-q2) 108.67(10)

N-C(2) 1.4617(16) C(l)-N-C(3) 110.58(10)

N-C(3) 1.4611(16) C(2)-N-C(3) 112.14(10)

l-Benzhydryl-4-benzylpiperazine (5)

N(l)-C(8) 1.459(2) q8)-N(i)-qio) 108.61(11)

N(l)-C(10) 1.4600(18) qs)-N(iK(7) 111.86(12)
N(l)-C(7) 1.463(2) C(10)-N(l)-C(7) 110.26(12)

N (2 )-C (ll) 1.4686(18) qil)-N(2K(9) 107.92(11)

N(2)-C(9) 1.4690(19) qii)-N(2)-qi2) 110.04(12)

N(2)-C(12) 1.477(2) C(9)-N(2)-C(12) 110.60(11)

C(10)-C (ll) 1.514(2) N(l)-C(8)-C(9) 110.67(12)

C(8)-C(9) 1.518(2) N(2)-C(9)-C(8) 111.23(12)

N(i)-qio)-qii) 110.27(12)

N(2)-qii)-qio) 110.73(13)

l-Benzhydryl-4-(pyridin-2-ylmethyl)piperazine (6)

N(l)-C(4) 1.4583(14) q4)-N(i)-qi) 108.69(8)

N (l)-C (l) 1.4585(13) q4)-N(i)-qi8) 111.64(8)

N(l)-C(18) 1.4600(13) qi)-N(i)-qi8) 111.32(8)

N(2)-C(3) 1.4678(13) C(3)-N(2)-C(2) 108.83(8)

N(2)-C(2) 1.4699(13) q3)-N(2)-q5) 108.81(8)

N(2)-C(5) 1.4807(13) C(2)-N(2)-C(5) 110.93(8)

C(3)-C(4) 1.5161(15) N(i)-qi)-q2) 110.20(9)

C(l)-C(2) 1.5153(15) N (2 K (2 K (1 ) 110.47(9)

N(2)-C(3)-C(4) 111.99(9)

N(l)-C(4)-C(3) 109.82(9)

1,4-diphenylpiperazine (9)

N (l)-C (l) 1.4589(15) q3)-N(i)-qi) 116.84(9)
N (1 K (2 ) 1.4695(15) q3)-N(i)-q2) 115.48(9)

N(l)-C(3) 1.4157(15) qi)-N(i)-q2) 110.18(9)
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Figure 11. Thermal ellipsoid drawings o f 5 (A), 6 (B), 2 (C), 3 (D),17 4 (E), and 9 (F).

Numerous related N,N’-disubstituted piperazines have previously been reported, 

including ring-substituted N,N’-diphenylpiperazines (10),18 piperazines w ith  the N-CHPh2 

substituent,19 the simple N,N’-dibenzylpiperazine (2),20 and l,4-bis(pyridin-2-ylmethyl)piperazine 

(3).17,21 Compounds 2-6 and 9 are overlaid fo r structural comparison in Figure 12. All piperazine 

carbon-nitrogen and carbon-carbon bond lengths were found to  be w ith in  the expected range.
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Bond angles around the piperazine nitrogen ranged between 107.9-112.5° depending upon the 

substituents attached to  the piperazine ring, as shown in Figure 12 and Table 2. The phenyl 

groups in compound 9 appear to  force more planar orientations and fla tte r bond angles about 

the nitrogen atoms, approaching the 120° value associated w ith sp2 hybridized nitrogen. This 

effect may be attributed to  the delocalization o f the nitrogen lone pair caused by the electron- 

w ithdraw ing aromatic system directly bonded to  the nitrogen, as shown in Scheme 5. By way of 

contrast, in structures 2-6 the aromatic substituents are all at least one carbon removed from 

the piperazine ring, allowing fo r a more tetrahedral conformation and angles much closer to  the 

canonical sp3 hybridized value o f 109.5°.

Figure 12. Disubstituted piperazine overlay o f substituent orientation. A: Compounds 2 -6  and 9 
overlaid using the piperazine rings. B: N/N ' groups, ring nitrogen atoms are shown as spheres.
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Scheme 5

M ultip le short, non-bonded intermolecular interactions were observed in all four structures. 

Compound 9 showed close intermolecular interactions between H1B and C7 (2.880(14) A), H2B 

and C5 (2.826(14) A), H4 and C6 (2.862(14) A) and H6 and C4 (2.768(16) A). Compound 4 

demonstrated intermolecular interactions between H6 and a phenyl ring centroid C5-C10 

(2.70(3) A) and between H3A and C7 (2.887(14) A). Compound 5 revealed a variety o f 

intermolecular interactions: between H9B and C4 (2.687(18) A), ring centroid C13-C18 and H4 

(2.82(3) A), and bond centroid C4/C5 and H7B (2.74(3) A). Finally, some of the closest 

interm olecular interactions were seen in compound 6 between the pyridyl nitrogen N3 and 

phenyl H9 and H21 w ith distances o f (2.557(14) A) and (2.734(14) A). Further intermolecular 

interactions were seen between H1A and C8, (2.883(13) A), and finally between H22 and phenyl 

centroid C6-C11, (2.61(2) A). In all compounds, these non-bonded interactions weakly knit the

structures into three dimensional networks, Figure 13.
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Figure 13. Short contact interaction fo r ligand species 2 (A) and 4 (B) shown as dotted lines 
between molecules.

Cul Complex Synthesis.

The N,N'-disubstituted piperazines 1-10 were each individually dissolved in acetonitrile 

and then combined in stoichiometric amounts o f Cul, which was also dissolved in acetonitrile. 

Addition o f ligands 2, 3, 4, 6, 8, and 10 immediately produced solid products, while addition of 

ligands 1, 5, and 9 yielded no reaction and returned starting material. The suspensions were
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refluxed fo r a minimum o f three hours to  ensure complete reaction and a uniform  product. The 

isolatable products were then removed from  the m other liquor and found to  be very stable in 

air, w ith no evident decomposition even after several months o f storage. Furthermore, the 

products were white (2, 4, 8, and 10) or yellow (3 and 6) microcrystalline powders, the yellow 

color being associated w ith  the ligands bearing a 2-methylpyridine group. Once the various 

complexes were generated, TGA, combustion elemental analysis, and X-ray crystallography were 

used to  confirm the metal to  ligand ratio and chemical structure in all cases. The TGA analyses 

resulted in smooth ligand loss yielding Cul in virtually all cases (see Thermogravimetric Analysis 

Section below). Single crystals fo r all compounds were form ed from  unstirred solventothermal 

reaction mixtures in acetonitrile at 100 °C or layered Cul and ligand solutions in narrow tubes at 

25 °C. In all cases, the results o f all three analysis procedures revealed identical metal to  ligand 

ratios.

X-ray Crystallography and Cul Complex Trends.

The intent behind manipulating the substituents o f the N,N'-piperazine ligands was to 

force the form ation of 3-coordinate copper(l) centers by means of steric control in order to 

avoid the commonly encountered 4-coordinate structures, such as cubanes (Cul)4L4 or square 

dimers, (Cul)2L4 (see Scheme 1). Instead, the aim here was to  produce 3-coordinate polymeric 

chains similar to  network displayed in Figure 8. Although this arrangement is not often 

observed, it has been reported in the Cul complex of phenazine, Figure 14.22
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Figure 14. A) 3-coordinate (Cul)2(Phenazine) complex. B) 3-coordinate fram ework to be 
emulated by our substituted piperazines.

X-ray crystal structures were solved fo r Cul species o f ligands 2, 3, 4, 6, 8, and 10 and the 

structural solution data is shown below in Table 4 and select bond angles are displayed Table 5.

Table 4. Cul piperazine complex crystal structure refinement data.

(Cul)2(2) (CuI)2(3) (Cu I)2(4)

CCDC dep. no. 877786 877788 877791
color and habit colorless prism yellow needle colorless blade

size, mm 0 .4 2 x 0 .1 4 x 0 .1 0 0 .23x0 .05  x 0.04 0 .3 4 x 0 .1 8 x 0 .0 2

formula C9Hn CulN Ci6H20Cu2I2N4 C2oH26Cu2I2N2

formula weight 323.63 649.24 675.31

space group P 2 jn  (#14) P - l (#2) P l j c  (#14)

o, A 7.7387(3) 8.6487(2) 8.4848(3)
b, A 16.7925(5) 9.9098(2) 20.3374(7)
c, A 8.2424(3) 12.4157(3) 13.1364(4)

a, deg 90 112.8310(10) 90

3, deg 110.6170(10) 91.449(2) 92.548(2)

Y/ deg 90 95.4470(10) 90

volume, A3 1002.52(6) 974.07(4) 2264.56(13)

Z 4 2 4

Pcalc, g cm-3 2.144 2.214 1.981

Fooo 616 616 1296

pCu Ka), mm-1 26.796 27.613 23.758
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radiation 
tem perature, K 

residuals:3 R; Rw 

goodness of f it

CuKa (X= 1.54178 A) 

100
0.0257; 0.0646 

1.12

CuKa (A= 1.54178 A) 

100

0.0306; 0.0762 

1.066

CuKa (X= 1.54178 A) 

100
0.0419; 0.1221 

1.022

aR = R2 = I \  \F0\ \FC\ \ / I \F 0\ fo r observed data only. Rw = wR2 = {I[w [F 02 -  
Fc2)2]/ l[w {F 02)2]}1/2 fo r all data.

Table 4.
(continued)

(Cul)2(6)2 (Cul)2(8) (Cul)4(10)4

CCDC dep. no. 877789 877783 877790

color and habit yellow prism colorless plate colorless plate
size, mm 0 .2 4 x 0 .1 2 x 0 .1 1 0 .2 7 x 0 .1 5 x 0 .0 6 0 .1 5 x0 .1 2 x0 .0 5
formula C46H5oCU2l2Ng C4H9Cu IN Q8H8oCu4I4N8

formula weight 1067.8 261.56 1771.16
space group P21/n  (#14) P21/c  (#14) P- 1 (#2)

a, A 9.6835(3) 7.1527(2) 8.90150(10)

b, A 22.3183(6) 12.5997(4) 19.1000(3)

c, A 10.0190(3) 7.8483(3) 21.8081(3)

ot, deg 90 90 114.2040(10)

P, deg 93.8350(10) 90.712(2) 92.7600(10)

V/ deg 90 90 90.6140(10)

volume, A3 2160.45(11) 707.25(4) 3376.02(8)
Z 2 4 2

Pcalc/ 8 cm 1.641 2.456 1.742

Fooo 1064 488 1744
pCu Ka), m m '1 12.733 37.728 16.127

radiation CuKa (X= 1.54178 A) CuKa (A= 1.54178 A) CuKa (\=  1.54178 A)
tem perature, K 100 100 100
residuals:3 R; Rw 0.0210; 0.0497 0.0287; 0.0732 0.0380; 0.0963

goodness o f f it 1.097 1.177 1.011

aR = R± = 11 \Fa\ | Fc1 1 /I|F01 fo r observed data only. Rw = wR2 = { l [ w { F 2-  
F 2)2]/I[w (F 02)2}}1/2 fo r all data.
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Table 5. Cul piperazine complex selected bond lengths and angles for all complexes.

(Cul)2(2)
Cu-I 2.5507(6), 2.5945(6) Cu-I-Cua 57.41(2)

Cu-N 2.045(3) l-Cu-l 122.59(2)

Cu'Cu 2.4716(11) l-Cu-N 112.50(9), 124.85(9)

(Cul)2(3)

Cu-I 2.5593(6), 2.5729(6), 

2.6094(5), 2.6614(6)

Cu-I-Cua 58.873(16), 59.386(17)

Cu-N 2.061(3), 2.073(3), 

2.214(3), 2.237(3)

l-Cu-l 122.59(2)

Cu Cu 2.5673(7) l-Cu-N

N-Cu-N

104.46(8)-120.79(8) 

80.25(12), 82.22(12)

(Cul)2(4)

Cu-I 2.5245(10), 2.5363(10), 

2.5853(10), 2.5711(10)

Cu-I-Cua 58.12(3), 58.16(3)

Cu-N 2.044(5), 2.048(6) l-Cu-l 121.33(4), 122.38(4)

Cu'Cu 2.4826(14) l-Cu-N 111.22(15), 111.74(16), 

125.26(16), 127.20(15)

(Cul)2(6)2

Cu-I 2.5428(3), 2.6627(4) Cu-I-Cua 61.102(13)

Cu-N 2.065(2), 2.2302(18) l-Cu-l 118.898(13)

Cu Cu 2.6479(7) l-Cu-N

N-Cu-N

100.07(5), 104.50(5), 
121.94(5), 123.67(5) 

79.93(7)

(Cul)4(7)2

Cu-I 2.6732(9)-2.7195(9) Cu-I-Cua 58.93(3)-67.31(3)

Cu-N 2.141(5)-2.148(5) l-Cu-l 100.48(3)-119.92(3)

Cu Cu 2.6686(12)-
2.9377(13)

l-Cu-N 99.47(13)-124.41(15)

(Cul)2(8)

Cu-I 2.5431(7), 2.5859(8) Cu-I-Cua 57.92(3)

Cu-N 2.042(4) l-Cu-l 122.08(3)

Cu'Cu 2.4837(14) l-Cu-N 111.59(11), 126.33(11)

(Cul)4(10)4

Cu-I 2.6090(7)-2.7832(8) Cu-I-Cua 56.23(2)-60.99(2)

Cu-N 2.052(4)-2.078(4) l-Cu-l 109.64(2)-117.02(3)
Cu Cu 2.6145(10)-2.7045(9) l-Cu-N 92.40(12)-113.68(11)

"W ithin cluster. bNot w ith in  cluster.
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The desired polymeric structure (Figure 14) was only identified fo r Cul complexes w ith  ligands 2, 

4, and 8 present. Interestingly, all three o f these ligands were symmetric about the piperazine 

framework, having ethyl, benzyl, or phenethyl substituents in the N and N' positions. The solved 

structures of (Cul)2(2), (Cul)2(4), and (Cul)2(8) revealed a series of Cu2l2 rhomboids (rhombs) 

linked to  the piperazine chair form ation at the N and N' positions, form ing the observed zigzag 

and square wave chains in Figure 15. Furthermore, the acute angles around the iodide atoms 

produced sub van der Waals Cu Cu interactions o f 2.4716(11), 2.4826(14) A, and 2.4837(14) fo r 

(Cul)2(2), (CuI)2(4), and (Cul)2(8), respectively (Table 4). The copper centers coordinate axially 

w ith  the piperazine ligands in all cases.

The crystal structures of (Cul)2(2) and (Cul)2(8) showed the independent unit cells to 

consist o f Cul and half o f the ligand divided along a m irror plane across the center o f the 

piperazine ring. This creates the zigzag polymer chains shown in Figure 15. Conversely, the 

(Cul)2(4) complex possesses a unit cell in which there are tw o independent Cul units and tw o 

half independent ligands, form ing a square wave pattern containing tw o Cu2l2 rhomb 

orientations and tw o ligand orientations, Figure 15. Additionally, a second C-centered 

monoclinic polymorph o f (Cul)2(4) was observed. The polymorph was crystallized by 

refrigerating the purified product fo r several days in dichloromethane, where upon thin plate 

crystals had formed at the bottom  of the solution. This polymorph exhibited the zigzag pattern 

seen fo r (Cul)2(2), (Cul)2(7), and the same unit cell pattern of a single Cul unit bound to  a half 

independent ligand molecule divided along the piperazine m irror plane. Unfortunately, a high 

quality solution fo r this polymorph proved to  be too illusive. In all three structures and the poor 

quality solution fo r (Cul)2(4), the ligand substituents on adjacent polymer chains f it  together 

zipper-style, forcing the Cu2l2 units on neighboring chains far apart and preventing fu rther
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copper iodide bond form ation. The closest observed inter-chain Cu I and Cu' Cu approach 

distances were about 8.1 and 8.7 A, 5.9 and 7.5 A, and 6.0 and 6.5 A for (Cul)2(2), (Cul)2(4), and 

(Cul)2(8), respectively. Finally, the (Cul)2(2) complex also had an interesting structural 

characteristic not seen in the o ther tw o species, insofar as it showed a remarkably close in tra­

chain interaction between an orf/70-phenyl carbon and copper: C6 C u l = 3.016 A.

Figure. 15. X-ray structures: A, (Cul)2(3), B, (Cul)2(4), C, (Cul)2(5). X-ray drawing key: H atoms 
om itted fo r clarity, ligands shown as w ireframe, Cu orange, I violet, N blue, C grey.

The smaller but sim ilarly constructed dimethylpiperazine ligand (7) allowed fo r the 

form ation o f a Cul cubane 3-dimensional network typified by triply-bridging p3-l linker. The high
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symmetry o f 7 and its relatively small methyl substituents allowed the Cul clusters sufficiently 

close approach to  allow form ation o f Cu4l4 cubane units, giving rise to  the observed (Cul)4(7)2/ a 

type E network, see Scheme 1 and Figure 16. In this compound, all the bond lengths and angles 

were similar to the known values from  previously reported cubane complexes and networks, 

while also exhibiting the expected short Cu Cu interactions (2.6234(5)—2.9919(12) A).6'7 The 

N,N'-dimethylpiperazine (7) ligands were all bonded to  the copper atoms in the axial position, as 

was seen in complexes (Cul)2(2), (Cul)2(4), and (Cul)2(8). By linking together cubane clusters, 

(Cul)4(7)2 produces a macrocyclic system identified by a (Cu4l4)6(7)6 ring which forms a 

honeycomb network visible along the b-axis, c-axis, and diagonally between the a/b -axes, Figure 

16.23 Related three dimensional networks have also been reported fo r both Cul DABCO and Cul 

piperazine systems.7,8,9

Figure 16. X-ray structure o f (Cul)4(7)2. One layer o f 3-D honeycomb network shown.
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Finally, all o f the above compounds, (Cul)2(2), (Cul)2(4), (Cul)2(7), and (Cul)2(8), were 

analyzed via therm ogravim etric analysis (TGA) to  confirm  the Cul-ligand molar ratio in the bulk 

products (Figure 17).

(A) (Cul)2<7)

1 0 0 -

S 0 -

8 0 -

7 0 -

6 0 -

300100 150

Temperature (°C)

250200

Figure 17. TGA trace fo r A: (Cul)2(7), B: (Cul)2(8), C: (Cul)2(2), and D: (Cul)2(4).

Table 6. TGA copper(l) iodide complexes.

Copper(l)
Iodide

Complexes

Theoretical Mass 
Loss(%)

Actual Mass 
Loss [%)

(Cul)2(2) 58.8 59.6
(CuI)2(3) 58.7 56.8
(CuI)2(4) 56.4 57.1
(CuI)2(6)2 52.6 55.8
(Cu I)2(7) 76.9 77.1
(Cu I)2(8) 72.8 73.4

(Cul)5(10)4 48.5 49.0
(Cul)4(10)4 88.6/43.0 88.6/43.5
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All four complexes demonstrate a single, low-temperature decomposition step between 115 

and 160°C. Additionally, all o f the mass losses fo r (Cul)2(7), (Cul)2(8), (Cul)2(2), and (Cul)2(4) were 

well behaved giving actual decomposition to  77.1%, 73.4%, 59.6%, and 57.1% residual mass, 

which compare favorably to  the calculated values o f 76.9%, 72.8%, 58.8%, and 56.4%, 

respectively (Table 6). A trend was noted in regard to  the size o f the ligand and the 

tem perature at which the complex decomposed. The larger the ligand, the higher the 

temperature at which the complex decomposed, w ith the exception o f (Cul)2(7) fo r which the 

decomposition tem perature was slightly higher, presumably because ligand (7) forms a three 

dimensional 4-coordinate copper network, which further stabilizes the overall structure.

The form ation o f a 3-coordinate polymer network w ith N,N'-dibenzylpiperazine ligand 

(2) le ft open the possibility tha t the diphenylmethyl substituent might also be used to  fu rther 

sterically restrict the space around Cu(l) centers. However, when reacted at room tem perature 

a white crystalline powder was produced which, upon X-ray structural analysis was shown to 

consist o f the type A (Scheme 1) 1:1 cubane structure, (Cul)4(10)4, as shown in Figure 18. 

Furthermore, the N-diphenylmethyl substituent appears to  be so large that it prevents 

coordination altogether due to  the extremely sterically hindered N position and completely 

sterically free N' position, allowing ligand 10 to  interact equatorially w ith Cul only through the 

N'-H group.
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Figure 18. X-Ray Structure o f (Cul)4(10)4. Cubane tetram er.

When Cul and ligand 10 were reacted under slightly d ifferent stoichiometric conditions 

(2:1) a completely new structure was observed. In this complex the Cul to  ligand ratio is 5:4, i.e 

(Cul)5(10)4 (Figure 19). This product is a yellow crystalline powder, instead o f white. However, 

the 5:4 Cul to  (10) ratio was not determ ined easily as one might gather from  Figure 19, in which 

the Cul to  (10) ratio appears to  be 8:4 or 2:1.

B

Figure 19: (Cul)s(10)4 single crystal X-ray d iffraction structures. (A) View down the c-axis, which 
is the 4-fold rotation axis, (B) crystallographic repeat unit, (C) view down the b-axis showing 
networking behavior.
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In reality this molecule demonstrates an inherent lim itation o f single crystal X-ray diffraction. In 

this case there is significant disorder among the copper centers in the central metal halide cage, 

creating a false structural representation o f (Cul)5(10)4 wherein extra copper atoms are 

generated erroneously due to  positional disorder about equivalent symmetry elements. Upon 

careful examination of the crystallographic data it was determined that significant alterations of 

the occupancy factors fo r the copper and iodine atoms would be required. The main difficu lty 

results from  the molecule lying along a 4-fold axis running down the center o f the polymer 

chain, Figure 19 (A). This creates complicated occupancy factors fo r the iodine atoms and 

disorder among the copper atoms. Since the central iodine atom (12) lay directly on the fou r­

fold special position, an occupancy factor o f 0.25 was applied, whereas an occupancy factor o f 

1.00 was applied to  the peripheral iodine (II)  which lies on a general position. When the 4-fold 

rotation is applied, the five observed iodide atoms are generated. But fo r the copper atoms, a 

large amount o f disorder is present. The repeat unit contains tw o copper atom positions. 

However, only five o f the eight possible copper positions generated through four-fold rotation 

o f the repeat unit can be occupied in order to  maintain the 1:1 Cu:l ratio. The particular five 

positions tha t are occupied are randomized. The illustration in Figure 19 gives the impression 

tha t all eight copper positions are populated simultaneously, whereas in any given repeat unit 

only five o f them are populated. To model this disorder, a to ta l occupancy factor o f 1.25 is used 

amongst both copper centers, yielding the needed five full copper atoms fo r (Cul)5(10)4. The 

actual occupancies found upon refinem ent appear to  be 0.867 fo r C u l and 0.383 fo r Cu2. 

Nevertheless, based upon the disorder and poor thermal parameters, it is also entirely possible 

tha t the copper atoms could have a tota l occupancy factor closer to  1.00, which would generate 

only four copper atoms in the repeat unit and thus a chemical formula of (Cu4l5)(10)4. This is,

however, believed to  be unlikely because it would create an anion, and the crystal structure
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does not indicate the presence o f a counter ion. It is possible, o f course, tha t one o f four ligands 

is protonated in random fashion. This disordered proton residing on the substituted nitrogen 

atom would be hard to  detect by X-ray. However, TGA results show a single early mass loss o f 

51% beginning around 202.3°C which is very similar to  the calculated mass loss associated w ith 

(Cul)5(10)4 (Figure 20 and Table 6).

110
(A) (Cul)5(10)4
(B) (C u l)4 ( 10)4

1 0 0 -
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Figure 20. TGA trace of(A) (Cul)5(10)4 and (B) (Cul)4(10)4.

Additional examination o f the TGA o f the previously-discussed (Cul)4(10)4 complex further

supported these findings by revealing tw o significant mass plateaus at 88.6% and 44.6%. This

firs t mass loss represents a smooth transition from  the initial (Cul)4(10)4 complex to  the

(Cul)5(10)4 complex (Figure 20 (B)). The firs t thermal decomposition indicates the departure of 

four ligands (10) fo r every five (Cul)4(10)4 complexes indicating conversion to  (Cul)5(10)4, 

corresponding to  a calculated residual mass o f 88.6%.

5 (Cul)4(10)4 ^  4 (Cul)5(10)4 + 4 (10) (1)
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The tota l mass loss fo r the (Cul)4(10)4 in reaction (1) was calculated to  be 57.0%, while the actual 

mass change was found to  be 56.7%, consistent w ith the 1:1 Cul to  (10) ratio indicated by the X- 

ray structure.

Further exploration o f the effects the diphenylmethyl substituent on Cul coordination 

involved the addition of a benzyl group on the opposing piperazine nitrogen, creating ligand 5. 

Upon reaction w ith  Cul, however, no appreciable coordination took place. One can deduce that 

even though we do observe coordination in the case of ligand 2, the presence o f the significantly 

larger diphenylmethyl group in addition to  the benzyl group produces too much steric 

interference fo r a single Cu-N bond to  form .

When the N-2-pyridylmethylpiperazines 3 and 6 were reacted w ith Cul, the result was 

the chelation products observed in Figure 21. Chelation results in tw o product forms: a polymer 

chain in (Cul)2(3) and a dimer fo r (Cul)2(6). The (Cul)2(3) complex is structurally similar to  the 

previously-discussed (Cul)2(2) insofar as it is a polymer o f linked Cu2l2 rhombs. However, when 

pyridyl-bearing ligands are present, 4-coordinate copper centers are produced due to  the 

chelation. As a result, the polymer chains are relatively compact, w ith  the pyridyl and 

piperazine groups wrapped around the copper center, preventing the form ation o f pendent and 

interdigitated R-groups such as those observed in complexes (Cul)2(3), (Cul)2(4), and (Cul)2(5). 

Furthermore, in an attem pt to  force some form  of polymerization w ith a diphenylmethyl 

substituent, ligand 6 was generated. However, the polymerization seen fo r (Cul)2(3) is lacking 

when ligand 6 is used due to  the bulky diphenylmethyl group sterically preventing interaction 

between the piperazine N and Cu. This results in the form ation of the simple type B rhomboid 

dimer (Cul)2(6)2, Figure 21. Crystallographically, (Cul)2(6)2 is a half independent dimer, and for
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both (Cul)2(3) and (Cul)2(6)2, Cu Cu interactions are present (2.5673(7) and 2.6479(7) A 

respectively).

B

Figure 21. X-ray structures o f (A) (Cul)2(3) polymer chain and (B) (Cul)2(6) dimer.

D ifferent therm al stabilities were observed between these tw o complexes, as 

determ ined by TGA. The (Cul)2(3) polymer chain showed a significantly lower decomposition 

tem perature o f 148°C, compared to  (Cul)2(6), which begins decomposition at 226°C, Figure 22. 

The calculated mass losses fo r (Cul)2(3) and (Cul)2(6), were determ ined to  be 58.7% and 52.6% 

while the actual losses were 56.8% and 55.8% respectively, Figure 22 and Table 6.
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Figure 22. TGA trace o f complexes (A) (Cul)2(3) and (B) (Cul)2(6).

Luminescence and Spectroscopy of Cul Complexes.

All the Cul complexes reported above were spectroscopically examined at ambient 

(296K) and liquid nitrogen (77K) temperatures by Prof. Howard Patterson's group at the 

University o f Maine and were discovered to  have significant luminescent properties, Table 7.23 

Interestingly, the most dramatic differences in the results are found between the cubane and 

rhomboid dimer copper(l) species. The cubanes demonstrate a low energy (LE) emission band 

above 500 nm, while the dimers show high energy (HE) emission features under 500 nm. 

Moreover, the 3-coordinate networks (Figure 14) demonstrated a significant ability to  take up 

nucleophiles while also producing a new LE emission band, as is discussed below.
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Table 7. Cul complex luminescence results.23

Temp.,
K

Excitation Emission 
Amax, nm Amax, nm (colour)

Stores Shift, 
cm a

Lifetime, ps

(Cul)2(2) 298 tnon emissive] -

77 301 448 10900

(Cul); (B) 298 358 496 (yellow-green) 7770 7.0, 0.7

(Cul)2(4) 298 319 449 (blue) 9080 -

77 306 447 10300

(CuI)2(6)2 298 358 466 (blue) 6470 -

(CuI)4(7)2 298 321 525 (yellow) 12100 7.4

77 309 558 14400

(Cu I)2(8) 298 330 444 (blue) 7780 6.0

77 307 438 9740

(Cul)4(10)4 298 327 573 (orange) 13100 20, 2.6

77 325 605 14300

'’Calculated between longest excitation Amax and shortest emission Amax.

The Cul 4-coordinate cubane complexes exhibited excitation bands centered between 

320-350 nm and very broad emission bands centered in the 560-600 nm region. Furthermore, 

this behavior was seen for both the simple cubane (Cul)4(10)4 and the networked cubane 

(Cul)4(7)2 signifying tha t the cluster was the likely chromophore, Figure 23.

A.
RT

/.em=525 nm  

=321 nm

3
03

77 K

^ m -5 5 8  nm 
/. =309 nm

700300 400 500 600

B

R T
q
c6
&
fg
cO

i — nm 
f  • • •  X. = 325  nm ,

C

77K

30 0  40 0  500 600  700

W avelength (nm ) W avelength (nm)

Figure 23. Luminescence excitation and emission spectra o f (A) (Cul)4(7)2 and (B) (Cul)4(10)4.
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Emission lifetim e measurements were recorded for both species and found to  be similar, w ith 

relatively long lifetimes of 7.4 and 2.6 ps respectively, indicating the phosphorescent nature of 

the transitions.23 This photophysical behavior has been well documented fo r (CuX)4L4 

compounds (X = I, Br, Cl) and is associated w ith cluster centered (3CC) transitions which are 

made up o f tw o primary effects metal centered transitions (3MC) and halide to  metal charge 

transfer (XMCT).11 Both transitions are associated w ith the Cu 4s orbital, which is the major 

contributor to  the LUMO. However, XMCT relaxes from  the halide-based HOMO, consisting of 

mainly iodide 5p orbitals in our case, to  the metal-based LUMO. In contrast, the 3MC involves 

transition from  the largely Cu-based 3d HOMO to  the LUMO. These tw o transitions occur 

simultaneously in the Cu4l4 clusters, and contribute significantly to  the observed Stokes shifts fo r 

our tw o species: (Cul)4(7)2 = 12100 cm-1 and (Cul)4(10)4 = 13100 cm-1. This large shift is due to 

the relatively large reorganization required by the 3MC, wherein contraction of the Cu4core and 

expansion o f the l4 core are necessitated by greater Cu-Cu bonding in the excited state. 

However, the aforementioned HE band was not observed fo r these tw o species, because the 

piperazine ligands are aliphatic in nature and lack the needed n /n *  system fo r 3XLCT to  take 

place.

The more sterically demanding piperazine ligands resulted in the form ation of 3- 

coordinate complexes (Cul)2(2), (Cul)2(4), and (Cul)2(8). These compounds were of particular 

interest to  us because o f the ir potential ability to react w ith nucleophiles in the environment 

w ith  a corresponding change in emission behavior (as w ill be discussed below). The 3- 

coordinate polymer networks show strikingly different emission behavior from  that o f the other 

species in the present study. (Cul)2(4) and (Cul)2(8) showed peak excitation around 319 nm and 

sharp emission bands at 449 nm and 438 nm, respectively (Figure 24).
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Figure 24. Luminescence excitation and emission spectra o f (A) (Cul)2(4) and (B) (Cui)2(8).

In contrast, complex 2 only showed a luminescent response at low temperature (Figure 25). 

This is fa irly noteworthy given the structural similarities o f (Cul)2(2) to  the other 3-coordinate 

polymer complexes (Cul)2(4) and (Cul)2(8). It is believed tha t this phenomenon m ight be caused 

by quenching due to  the above-mentioned close inter-chain phenyl-copper interactions, C6-Cul 

= 3.016 A, resulting in a non-radiative relaxation at ambient temperature.

Figure 25. Luminescence excitation and emission spectra o f (Cul)2(2) which only has emission at 
low temperature.

Additionally, the observed Stokes shifts fo r all o f the compounds were significantly smaller than 

those observed fo r the cubanes, being in the range between 8500-11,000 cm"1. This, in turn,
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indicates tha t excited state reorganization is still occurring, but to  a lesser degree due to  the 

simpler rhomboid dimer structure. This is still a result o f the aforementioned 3CC transitions 

which represent a combination of 3MC and XMCT, but given the smaller cluster centers, there 

are fewer donor orbitals so the transitions are dominated by 3MC transitions: 3d10 -> 4s13d9.

The polymeric complex (Cul)2(3) and the dimeric complex (Cul)2(6)2 both contain 4- 

coordinate rhomboid clusters (Type B, Scheme 1) resulting from  chelation by 2-pyridylmethyl 

piperazine group(s). Of the complexes studied, (Cul)2(3) and (Cul)2(6)2 showed the lowest 

excitation energy corresponding to  wavelengths of 358 nm fo r both. The emission bands were 

found to  be of moderate breadth and located at 496 nm and 466 nm (Figure 26), while also 

producing the smallest observed Stokes shifts o f 7770 cm-1 and 6470 cm-1, respectively (Table

7). It is im portant to  note tha t these complexes are the only ones studied herein tha t contain 

aromatic ligands bound directly to  the metal center. Experimental and computational studies of 

(CuX)2L4 have revealed a variety o f emission wavelengths fo r these luminophores. These 

emissions are generally associated w ith 3CC transitions in the absence of pyridyl Ti*-derived 

orbitals, and largely metal to  ligand charge transfer (3MLCT) when pyridyl ligands are 

present.12,13,14,15 However the "3MLCT" transitions, in addition to  having significant Cu character, 

the HOMO also has a lesser, but still noteworthy, iodide contribution. The relatively small 

Stokes shifts observed fo r (Cul)2(3) and (Cul)2(6)2 are in agreement w ith those previously 

assigned to  3MLCT transitions, occurring between largely Cu 3d/l 5p-orbital HOMO and pyridyl 

n*-derived LUMO.
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Figure 26. Luminescence excitation and emission spectra o f (A) (Cul)2(3) and (B) (Cul)2(6).

Computational Results.

In order to  fu rthe r understand the photoluminescence results, computations were 

carried out in the lab o f Prof. Craig A. Bayse at Old Dominion University, who performed 

Gaussian computations on the three model Cul rhomboid dimer complexes illustrated in Figure 

27.23 Time-dependent density functional theory (TD-DFT) was used to  model both the 3- 

coordinate polymeric copper(l) iodide species ((Cul)2(2), (Cul)2(4), and (Cul)2(8)) and the 4- 

coordinate chelated complexes ((Cul)2(3) and (Cul)2(6)). For the sake o f manageable 

com putation (Cul)2(NMe3)2 (Y) was used to  represent the 3-coordinate copper iodide structures 

and (Cul)2(N,N '-dimethyl-2-pyridinam ine) ((Cul)2(DMP)2, Z) took the place o f the 4-coordinate 

chelate species (Cul)2(3) and (Cul)2(6). Furthermore, to  compensate fo r the structural 

differences between (Cul)2(3) and (Cul)2(6) tw o different confirmations o f Z, possessing C2 and C, 

symmetry, respectively, were modeled. The crystallographic data used fo r these models (Za and 

Z2) and Y are displayed in Table 8.
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Figure 27. Computational models fo r the 3-coordinate Cul systems (Y: (Cul)2(NMe3)2) and the 4- 
coordinate dimer species (Za and Z2: (Cul)2(DMP)2).23

Table 8. DFT bond distances and angles fo r the (Cul)2(NMe3)2 (Y) and (Cul)2(DMP)2 (Zx and Z2) 
model clusters.

Y Zx z2
d(Cu-Cu), A 2.487 2.538 2.538

d(X-X), A 4.607 4.653 4.659
d(Cu-X), A 2.598, 2.637 2.666, 2.672 2.263, 2.283

d(Cu-N), A 2.062 2.0823, 2.080a,

2.263b 2.261b

Z(Cu-X-Cu), ° 56.7 61.5 60.2

Z(Cu-X-Cu), ° 123.3 122.7 122.8

qcu 0.54 0.566 0.566

qx -0.606 -0.619 -0.633

WBIcu-cu 0.089 0.078

HOMO-LUMO 329 (0.023)

HOMO-LUMO-1 272 (0.116)

HOMO-LUMO-2 389 (0.080) 390 (0.083)

aPyridine N. bAmine N.

The calculated excitation and emission properties of the 3-coordinate Cul (Y) species

were found to  be in good agreement w ith experimental spectroscopy o f Cul materials. The



calculations indicated tha t tw o significant UV/Vis transitions were present and attributed to 

HOMO -> LUMO excitation at 328.6 nm and HOMO-1 -> LUMO at 271.9 nm.23 However, the 

relative oscillator strengths were significantly different. It is likely tha t the longer wavelength 

XMCT HOMO LUMO excitation is hidden under the more intense CC HOMO-1 -> LUMO 

transition.

Figure 28. DFT orbitals involved in the excitation spectrum o f (Cul)2(NMe3)2, Y.23

Furthermore the HOMO was calculated to  consist o f predominately iodide p orbita l character. 

The HOMO-1 was more unusual, consisting o f fragments from  the iodide p orbitals and the 

outer lobes o f the Cu d atomic orbitals, whereas the LUMO is made up o f o bonding between 

the hybrid sp atomic orbitals on the Cu centers (Figure 28).

In the case o f the 4-coordinate models Zx and Z2, the significant excitations were 

calculated as originating from  the HOMO-2 orbital, which is comparable in nature to  the HOMO­

HOMO-1

LUMO
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1 in Figure 28 fo r the Y type species, and the LUMO, which is a rc* molecular orbita l o f the 

pyridine ring, Figure 29. Furthermore, this transition is a ttributed to a SMLCT transition.

LUMO

HOMO

HOMO-2

Figure 29. DFT orbitals involved in the excitation spectrum o f the isomers o f (Cul)2(DMP)2, Zx 

and Z2.23

Vapor Exposure Studies Using (Cul)2(2), (Cul)2(4), and (Cul)2(8).

The 3-coordinate networks (Cul)2(3), (Cul)2(4), and (Cul)2(8) were found to  be reactive

toward incoming nucleophiles, including gas phase amines and sulfides. In each case, an

irreversible change was observed in the luminescence emission o f the copper(l) network,

suggesting an interaction similar to those previously described for low-coordinate Cu(l) in CuCN

and CuSCN polymers.3 In the present work, direct bonding was found between the incoming

nucleophile and the copper center.3d,3e'20 However, in the case of the CuCN and CuSCN

polymers, the Cu-Nu bonding was shown to  have a reversible nature, but in the case o f (Cul)2(3),
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(Cul)2(4)/ and (Cul)2(8) the irreversible nature of the emission change suggested a more 

significant chemical change, such as the possible replacement o f ligands.

Generation of the vapor-exposed complexes was accomplished relatively simply by 

exposing powder samples o f (Cul)2(2), (Cul)2(4), and (Cul)2(8) to a saturated atmosphere o f the 

various nucleophiles fo r ten minutes in a sealed vessel. The resulting powders were then 

observed under 365 nm black light to  determ ine the extent o f luminescence emission change 

and also to  determ ine which Cu(l) substrate was the most responsive to  the largest number of 

incoming nucleophiles (see Table 9). Of the three tested substrates, (Cul)2(2) and (Cul)2(8) 

responded to  the largest number o f amines and sulfides, while (Cul)2(4) only responded to  12 of 

the 19 nucleophiles.

Table 9. Visual luminescent color data fo r (Cul)2(2), (Cul)2(4), and (Cul)2(8).

Class of 
Nucleophile

Nucleophile
(Cul)2(2)
(Dark)3

(Cul)2(4)
(Blue)3

(Cul)2(8)
(Blue)3

Pvridine Yellow/Greenb Yellow/ Orangeb Yellow
</)
u 2-Methvlovridine Pale Blue Yellow/Blueb Blue Purple
+-»
03
Eo

3-Methvlovridine
Orange/

yellow /greenb
Orange/Blueb Orange

< 2-Chloroovridine NRC Darkd Yellow-Orange

3-Chloroovridine Yellow Yellow Yellow-Green
Piperidine Orange Orange Yellow-Orange

N-Methvloioeridine yellow Pink Blue/Orangeb
u
"■P Momholine Orange Pink Red-Orange
re-cQ. N-Methvlmoroholine Darkd Darkd Darkd

< Pvrrolidine Orange Orange Orange
N-Methvlnvrrolidine Yellow-Orange Orange Orange

Diethvlamine Yellow-Orange Orange Orange
If)
CU Tetrahvdrothioohene Orange/Darkb Orange Blue/Orangeb
£
3
to Diethvl Sulfide Dark/Yellowb Dark/Yellowb Dark/Yellowb

aBase luminescence of pure complex. bM ottled response, cNo Reaction, dA reaction took 
place but formed a non luminescent product.
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In response to  the findings shown in Table 7, only substrates (Cul)2(2) and (Cul)2(8) were 

taken to  the next phase of analysis wherein each exposed sample was spectroscopically 

analyzed fo r luminescence emission using the previously-described fiber optic spectrometer 

utilizing LED excitation at 365 nm. The resulting data are shown in Table 10 and Figure 30.

Table 10. Luminescent emission data fo r nucleophile adducts o f (Cul)2(2) and (Cul)2(8).

(Cul)2(2) Emission3 (Cul)2(8) Emission3 Literature13

Nucleophile, Nu

Residual
(Cul)2(2)
Intensity
(444nm)d

(Cul)4Nu4
\  e''•max

(Cul)4Nu4
Intensity0'

(Cul)4Nu4 
\ e''•max

(Cul)4Nu4
Intensity^

(Cul)4Nu4
\  e ''■max

Pyridine 1.00 580 7.54 581 4.80 580°
2-M ethylpyridine - 482 2.83 470 9.77 -
3-M ethylpyridine 0.92 590 5.88 600 0.99 588
2-Chloropyridine <0.2 - <0.2 - <0.2 -
3-Chloropyridine <0.2 554 4.24 553 2.84 537c
Piperidine 1.57 600 1.88 580 3.40 590°
N-Methylpiperidine 2.10 568 0.32 565 0.46 -
Morpholine 1.25 655 1.15 654 2.07 625°
N-Methylm orpholine 1.92 - <0.2 - <0.2 -
Pyrrolidine 0.51 640 0.93 642 1.10 -

N-M ethylpyrrolidine <0.2 610 5.20 608 1.20 -
Diethylamine <0.2 619 6.12 609 0.76 -

Diethyl sulphide 1.60 559 0.47 552 0.94 -
Tetrahydrothiophene 2.00 - <0.2 666 0.38 -
aSolid state, 298 K. 6Ref. 12a. cln toluene, 298 K. ^x lO '3 p W /c m 2/n m . enm
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Figure 30. Emission spectra o f (Cul)2(8) (A) and (Cul)2(2) (B) after exposure to  various Nu's (365 
nm excitation).

In reviewing these data, a few im portant anomalies were noted, beginning w ith (Cul)2(8), which 

showed both a consistent high energy (HE) response at 444 nm and a variable low energy (LE) 

emission. The HE emission was attributed to  the presence o f unreacted (Cul)2(8) substrate 

which features an emission at around 444 nm in its unexposed form  (Table 7). In contrast, the 

LE emission was ascribed to  reaction o f the nucleophile w ith  the substrate, generating a 

characteristic emission unique to  that nucleophile. An interesting consequence o f the 

simultaneous HE and LE emission can be observed in Figure 31 wherein a m ottled color is 

observable as a result o f the dual emissions. Furthermore, the HE band associated w ith  (Cul)2(8) 

also serves as a marker fo r unreacted substrate during vapor exposure, see Table 10. In all 

cases, the HE emission was at least diminished and sometimes extinguished completely, such as 

in the cases o f Nu = pyridine, 2-chloropyridine, and 3-chloropyridine. Interestingly, in the case 

o f Nu = 2-chloropyridine, emission associated w ith (Cul)2(8) was completely extinguished, 

whereas no LE emission band associated w ith  2-chloropyridine was observed. The apparent lack
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of emission in the vapor-exposed product was therefore considered to be the form ation of 

products tha t were non-emissive at room temperature.

Figure 31. Luminescence response o f Nu-exposed (Cul)2(8) under 365 nm excitation.

In contrast, the nucleophile exposure adducts o f (Cul)2(2) showed only a single LE 

emission. This emission must be attributed to  the nucleophile adducts, because pure (Cul)2(2) 

substrate lacks a luminescent response, avoiding the dual emission and m ottled luminescence 

observed fo r (Cul)2(8), see Figure 32.
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Figure 32. Luminescence response o f Nu-exposed (Cul)2(2) under 365 nm excitation.

Interestingly, upon close inspection, the LE emissions fo r each particular nucleophile were found 

to  be essentially identical fo r both Cu(l) substrates (see Table 10). This observation suggests 

tha t a common Cu(l) complex was being generated fo r both (Cul)2(2) and (Cul)2(8). It was 

fu rthe r noted tha t the emission wavelengths o f the adduct species were in good agreement 

w ith  the emissions o f (Cul)4Nu4 cubane species that had been previously reported.12 Consistent 

w ith  these findings, it is proposed tha t the Cul-piperazine chains were not being decorated w ith 

the nucleophiles as in itia lly thought, but rather the nucleophiles were disrupting sections o f the 

(Cul)2(2/8) polymer chains and generating new (Cul)4Nu4 cubanes w ith  release o f piperazine 

ligand, as described in reaction (2) (Pip = 2 or 8).

2 (Cul)2(Pip) (s) + 4 Nu (g) -> (Cul)4Nu4 (s ) + 2 Pip (s) (2)
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X-ray Powder Diffraction.

Powder X-ray d iffraction (PXRD) was performed on all the bulk reaction products o f Cul 

and substituted piperazines. The resulting data were compared to  the calculated powder 

patterns generated from single crystal X-ray results. Mismatches were observed fo r (Cul)2(3) 

and (Cul)2(4) despite the fact tha t the stoichiometries o f the bulk and crystal products were 

identical, implying polymorphism (Figure 33). However, this is not surprising given the fact that 

six polymorphs are known fo r (Cul)4(DABCO)2.7'8
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Figure 33. Experimental and calculated X-ray powder diffractograms o f (A) (Cul)2(3) and (B) 
(Cul)2(4).

Nevertheless, in the case o f complexes (Cul)2(2), (Cul)2(6), (Cul)2(8), and (Cul)2(10), good PXRD 

matches to  the calculated powder patterns were found (Figure 34).
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Figure 34. Experimental and calculated X-ray powder patterns fo r (A) (Cul)2(2), (B) (Cul)2(6), and 

(C)( Cul)2(8).

Finally, PXRD was also used to  confirm  the nucleophile-induced conversion o f the Cul- 

piperazine polymer to  the Cul-Nu tetramers. This was done by suspending a sample o f solid 

(Cul)2(8) in a 5% pyrid ine/toluene solution and then stirring the m ixture fo r tw o hours at room 

tem perature. The resulting powder was then filtered. PXRD o f this powder revealed the 

complete conversion o f the (Cul)2(8) to  (Cul)4Py4, as confirmed by comparison to  PXRD pattern 

o f an authentic sample o f the (Cul)4Py4 (Figure 35).
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Figure 35. X-ray powder d iffraction comparison o f unreacted (Cul)2(8) (black trace), (Cul)2(8) 

stirred in 5% pyridine/toluene fo r tw o  hours (red trace), and (Cul)4Py4 (blue trace), showing the 

conversion o f (Cul)2(8) to  (Cul)4Py4 on exposure to  Py.
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CONCLUSION

We have herein evaluated the effects o f various disubsituted piperazine ligands upon 

the complexation and luminescent properties of Cul, in the hopes of designing a luminescent 

substrate tha t could be used to  detect the presence of d ifferent gaseous amines and sulfides. 

Various piperazine-based ligands were purchased (7-10) or generated through simple reductive 

amination chemistry (1-6). In turn each ligand was tested to  see whether and how it would 

react w ith Cul. A Cul complex was generated fo r ligands 2, 3, 4, 6, 7, 8, and 10, all o f which had 

significant luminescent properties, form ing either 3-coordinate polymeric complexes ((Cul)2(2), 

(Cul)2(4), (CuI)2(8)), 4-coordinate dimers or rhomboid polymers ((Cul)2(3), (Cul)2(6)), or 4- 

coordinate cubane tetram eric/polym eric complexes ((Cul)2(7),(Cul)2(10)). Of those seven, only 

(Cul)2(2), (Cu I)2(4), and (Cul)2(8) produced a viable 3-coordinate complex that was readily 

reactive to  incoming gaseous amines and sulfides. Whereas the other four complexes 

generated 4-coordinate species tha t lacked an open coordination site fo r nucleophilic attack.

However, all seven complex species produced some form  of luminescent response that 

was attributed to  3CC transitions, 3MC transitions, 3XLCT, and 3MLCT, depending on the 

structural make up o f the complex. For the 3-coordinate polymer species, mainly 3MC 

transitions and 3XLCT were exhibited. However, when the 4-coordinate rhomboid dimer or 

polymer complexes were investigated the photophysical activity was attributed to  3CC and 

3MLCT. Finally, the cubane based structures possessed luminescent activity as a result o f 3CC, 

3MC, and 3XLCT.

The three 3-coordinate complexes that were found to  be receptive to  gaseous 

nucleophiles were then fu rthe r tested against a gamut o f amines and sulfides to determ ine the
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range of accessible reactivity. (Cul)2(2), (Cul)2(4), and (Cul)2(8) showed good sensitivity to  the 

tested amines and sulfides, resulting in product powders that luminesced at specific 

wavelengths characteristic o f the particular amine or sulfide used. However, due to  overlapping 

luminescent peaks resulting from  residual substrate, complexes (Cul)2(4), and (Cul)2(8) were 

elim inated as viable detector substrates because each possessed its own luminescent 

characteristics at room tem perature. However, (Cul)2(2) was found to  be non-luminescent at 

room temperature, and when exposed to  the gaseous nucleophiles a single luminescent 

response was seen which was attributed only to  the portion tha t reacted w ith the nucleophile.

Upon careful investigation, it was found that the luminescence resulting from  exposure 

o f (Cul)2(2), (CuI)2(4), and (Cul)2(8) was directly attributable to  form ation of cubane product 

(Cul)4Nu4, w ith  concomitant loss o f piperazine ligand. It was determined that (Cul)2(2) would 

provide the best substrate fo r small molecule detection, because of its reaction w ith  the widest 

variety o f amines and sulfides, along w ith its lack of luminescence emission at room 

temperature, providing a relatively simple, if irreversible, emission response.
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