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ABSTRACT PAGE

With the industry rapidly transiting into multicore/manycore era, heterogeneous system s will be 
the m ainstream  in the foreseeable future, and thus requires a  highly versatile compilation 
framework that is able to generate  efficient code for different architectures in the system  from a 
single version of source code. However, the device-specific programming models on these  
devices m ake such translation difficult. A prominent exhibition of the difficulty exists in the 
compilation of fine-grained SPM D-threaded code (e.g., GPU CUDA code) for multicore CPUs.

In this thesis w e propose a  reference level dependence analysis algorithm to reveal the 
relationships betw een the correctness and perform ance of the translated program and the 
dependencies introduced by implicit synchronizations. B ased on the analysis result we present 
several low-overhead extensions to previous GPU-CPU compilation schem es with guaranteed 
correctness and improved performance. To utilize the instance-level dependence information, 
w e propose thread-level dependence graph (TLDG), which leads to a method that enables 
fine-grained treatm ent to both implicit and explicit synchronizations, and reveals redundant 
computation at the instruction-instance level. We then present an  autom atic framework that 
performs such treatm ent on GPU code.

Together, the dependence analysis and code generation schem es form a  complete solution to 
the problem of GPU-to-CPU translation of synchronizations for the first time. The m ethods 
presented in this thesis can act a s  basis for treating other device-specific intrinsics, and is 
critical for the whole-system  synergy in heterogeneous system s.



Table of Contents

D ed ication  iii

A cknow ledgem ents iv

List o f Tables v

List o f F igures vi

1 In troduction  2

2 Prob lem  A nalysis 6

2.1 Background on CUDA and SPMD-Translation .................................................  6

2.2 A Correctness P i t f a l l ..................................................................................................  9

2.3 Error from Insufficient Preservation of GPU Threads’ M a s k .............................  11

2.4 Efficiency I s s u e ............................................................................................................  11

3 D ep en dence A nalysis 15

3.1 Coarse Grained A nalysis ............................................................................................ 15

3.2 Fine Grained A n a ly s is ............................................................................................... 21

3.2.1 Construction of T L D G ..................................................................................  22

4 Solutions 25

4.1 Coarse-Grained S o lu tio n ............................................................................................ 25

4.1.1 Solution 1: A Dependence-Based Splitting-Oriented Approach . . .  25

i



4.1.2 Solution 2: A Merging-Oriented A pproach ................................................  30

4.2 Fine-Grained S o lu tio n ............................................................................  30

4.2.1 Instance-level Redundancy R e m o v a l.................................   33

4.2.2 D iscussion..........................................................................................................  34

5 E valuation  36

5.1 Coarse-Grained S o lu tio n ............................................................................................. 36

5.1.1 M eth o d o lo g y .................................................................................................... 36

5.1.2 Experimental Results ................................................................................... 37

5.2 TLDG-Based S o lu tio n ................................................................................................  40

5.2.1 V ersions.............................................................................................................  41

5.2.2 Experiment Results ......................................................................................  42

6 R elated  W ork and C onclusion 45

6.1 Related W o rk ......................................................................................................   45

6.2 Conclusion .................................................................................................................... 46

B ibliography 48

Vita 51

ii



Dedicated to my parents.



ACKNOWLEDGMENTS

This thesis would not have been possible without the support of many people. I would 
first attribute this thesis to my adviser Dr. Xipeng Shen. I sincerely thank him for the 
invaluable guidance, advises and remarks he has given me during the past 2 years. I have 
always admired his level of concentration and dedication, have been encouraged by his 
passion and inspired by his keen wit.

I also want to mention my colleagues and friends at William and Mary for their support 
for me, both academic and personal, during the course. Eddy Zheng Zhang, Yunlian Jiang 
and Kai Tian have been immensely helpful in my research.

I am grateful to the faculty and staff in the Computer Science department for their 
assistance over the years.

Most importantly, I would like to express my deepest gratitude to my family for their 
support over all these years, which I can never repay in equal. You love is what drives me 
ahead.



List of Tables

5.1 Benchmarks



List of Figures

2.1 Illustration of MCUDA compilation..........................................................................  8

2.2 Parallel reduction with implicit synchronizations used. (Assuming warp

size=32, block size>= 6 4 .) ......................................................................................... 10

2.3 Original GPU thread mask modified during cpu iterations....................................  12

3.1 Examples for the reverse postorder (rpn) of basic blocks and the sequence

numbers (enclosed by “[]”) of instructions.......................................... 16

3.2 Examples for demonstrating the SPMD-Translation Dependence Theorem.

The code segments (a) to (i) are examples of GPU kernel code. The captions 

show the dependence sign vectors of their corresponding CPU codeproduced 

by the basic SPMD-translation, as illustrated by graph (j). Only the de

pendences in graphs (g,h,i) are critical for SPMD-translation. (Loops are 

assumed to have been normalized with indices increasing by 1 per iteration; 

elided code has no effects on dependences.) ........................................................  20

3.3 (a). The original statements in CUDA SDK source code. (b). Statements

broken into references, each forming a DRU. (c). The intra-thread and inter

thread edges of the TLDG constructed from (b)..............................  23

4.1 Algorithm for step 5 in Solution 1......................................................... 27

4.2 An example for Solution 1.......................................................................  28

4.3 Illustration of translating a GPU loop with thread-dependent critical implicit

synchronizations into CPU code............................................................ 29

vi



4.4 Pseudo code for round-based code g e n e ra tio n .....................................................  30

4.5 (a). The original hardcode without redundancy removal, (b). Pruned hard-

code where all useless computations are removed, (c). The bottom-up redun

dancy removal process, start from the compiler identified useful final results, 

(marked b l a c k ) ............................................................................................................  34

4.6 The original TLDG (upper left) broken down into 6 basic patterns, each of 

which retains its shape and orientation in the whole graph, only repeated on

the horizontal direction................................................................................................  35

5.1 Running times on the Intel machine, normalized to the execution times of the 

(erroneous) basic SPMD-translation results. ( “sortNet” is SortingNetworks

in s h o r t ) .........................................................................................................................  39

5.2 Running times on the AMD machine, normalized to the execution times of the 

(erroneous) basic SPMD-translation results. ( “sortNet” is SortingNetworks

in s h o r t ) .......................................................................................................................... 40

5.3 Relative performance compared to (incorrect) baseline version.........................  42

vii



Treatment of Synchronizations in Compiling Fine-Grained 

SPMD-Threaded Programs for CPU



Chapter 1

Introduction

For their advantages on computing power, cost, and energy efficiency, Graphic Processing 

Units (GPU) have become a type of mainstream co-processors in modern computing system- 

s, making heterogeneous systems increasingly popular. W ith the spectrum of applications 

being ported onto accelerators becomes broader, more efforts have also been invested into 

developing specialized code for the explicitly parallel, fine-grained SPMD-threaded execu

tion model on GPU.

However, the rapid adoption of GPU-specific programming models, such as NVIDIA 

CUDA, brings the challenge of programming such systems. Purely relying on these device

specific models would require the development of separate code versions for different devices. 

It not only hurts the programmers productivity, but also creates obstacles for code porta

bility, and adds restrictions for using cross-device task migration or partition to promote 

whole-system synergy. Therefore recent years have seen a number of efforts trying to develop 

a single programming model tha t applies to various devices. These efforts include develop

ment of new programming languages (e.g., Lime [6]), libraries (e.g., OpenCL [4]), and cross

device compilers (e.g., CUDA Fortran compiler [25], O2 G [17],MCUDA [13, 12],Ocelot [11]).

GPU-to-CPU translation aims at compiling code written in these programming models 

to CPU code. First, it extends the range of applicable architecture and hence the impact 

of GPU programming models. An application developed in CUDA, for instance, can be 

automatically converted to a form suitable for multicore CPU. Even though the GPU-to-

2
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CPU translation may not be the ideal route to reaching the goal of “one-code-fits-all” , it 

is im portant, given tha t the number of applications written in GPU-specific programming 

models increases continuously. Second, the translation enables smooth collaboration be

tween CPU and GPU processors. Given the trends towards heterogeneous systems, an 

essential requirement for maximizing computing efficiency is the synergistic cooperation a- 

mong various types of processors. Automatic GPU-to-CPU translation facilitates seamless 

migration of jobs among GPU and CPU, hence helping promote the whole system synergy 

for the execution of a GPU application.

In a fine-grained SPMD-threaded program, a large number of threads execute the same 

kernel function on different data  sets; the task of a thread is in a small granularity, hence 

parallelism among tasks are exposed to an extreme extent. From such a form, it is rela

tively simple to produce code for platforms tha t require larger task granularities by task 

aggregation. A major problem with all previous translations schemes is tha t none of them 

has systematically explored the different implications of device specific intrinsics on GPU. 

These intrinsics often help utilize the unique hardware function units on the accelerator, or 

eases the implementation of various parallel operations, and therefore are used prevalently. 

In CUDA [2], block level synchronization (__synchthreads()) is one of the most widely used 

device intrinsics. Its acts as a block level barrier, stalling each thread in the block until all 

have reached synchronization point. The very low overhead [22] of this intrinsics makes 

it favorable to programmers, and often used as an easy and conservative implementation 

whenever there exists dependences between statements. By doing this the programmer ac

tually enforces unnecessarily strong constraints in the GPU program. It causes almost no 

issue on GPU because of the low overhead and high parallelism of hardware. However, a 

literal translation of such __syncthreads() calls to CPU, as existing GPU-to-CPU translation 

systems all do, often leads to considerable inefficiency.

The problem becomes even more serious when implicit synchronizations are taken into 

consideration. Due to the hardware implementation of GPU, synchronizations are some

times realized in an implicit manner. In CUDA, every thread warp (32 threads) proceeds
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in lockstep. In another word, none of the threads can proceed to the next instruction 

until all threads in the warp have finished the current instruction. This default SIMD 

execution model is equivalent to tha t there is an implicit warp-level barrier after every in

struction. Due to the prevalence of such implicit synchronizations, a literal translation of 

GPU synchronizations to CPU would cause serious efficiency issues. Existing GPU-to-CPU 

translation systems typically ignore such implicit synchronizations during the translation; 

tha t practice causes even more serious issues: The produced CPU code may be semantical

ly erroneous because of the violation of some data  dependences maintained by the implicit 

synchronizations in the original GPU code (an example is shown in Section 2.2).

In this thesis, we conduct a systematic study on the issue, particularly in the contex- 

t  of compiling fine-grained SPMD-threaded programs (called SPMD-translation in short) 

for multicore CPU. We discuss the origin, forms, and performance implications of GPU 

synchronization intrinsics, both the implicit (Section 2.2) and explicit (Section 2.4). We 

point out a correctness pitfall current SPMD-translations are subject to. By analyzing the 

impact of inter-thread data  dependences and intrinsics’ semantics in GPU-CPU translation, 

we present a comprehensive framework to provide correct and efficient translation,

Our study uses CUDA as the fine-grained SPMD-threaded programming model for its 

broad adoption. We show tha t the treatm ents in current SPMD-translation to implicit 

synchronizations are insufficient to guarantee the correctness of the produced programs 

(Section 2.2). Through dependence analysis, we reveal the cause of the compromise to 

correctness and efficiency and the relations with various types of dependences in a program 

(Section 3.1).

Based on the findings, we then develop three solutions (Section 3.1, Section 3.2). The 

first is a splitting-oriented approach, which starts with the (possibly erroneous) compilation 

result of traditional SPMD-translation, and tries to fix the translation errors by detecting 

critical implicit synchronization points, and splitting the code accordingly. The second 

solution is based on simple extensions to prior SPMD-translations. It is merging-oriented. 

It treats implicit synchronizations as explicit ones, uses the prior SPMD-translations to
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produce many loops containing one instruction each, and then relies on standard compilers 

to reduce loop overhead through loop fusion. We add some remedies to make it handle 

thread-dependent synchronizations. The third is based on thread-level dependence graphs 

(TLDG) (Section 3.2) and extracts dynamic fine-grained data and control dependences. 

It relaxes unnecessary synchronization constraints of both kinds, and prunes instruction- 

instance-level redundant computations to improve the efficiency of the generated CPU code. 

This solution is an universal treatm ent for translating synchronizations on GPU.

We evaluate the techniques on a set of programs tha t contain non-trivial implicit or 

explicit synchronizations (Section 5.1). The results show tha t the proposed dependence 

analysis and solutions resolve the correctness issue in existing SPMD-translations effectively, 

with correct and efficient code produced for all tested benchmarks.

Overall, this thesis makes the following main contributions:

• This thesis reveals, for the first time, the impact of implicit and explicit synchroniza

tion on correctness and performance during the compilation of fine-grained SPMD- 

threaded programs onto CPU, and discusses the limitations of previous GPU-CPU 

compilation methods resulting from over-simplified treatm ent of implicit synchroniza

tions and excessively strong constraints on explicit synchronizations.

• Based on this observation, this thesis proposed 2 levels of solutions: a set of coarse 

grained dependence analysis based extensions tha t resolves the correctness issue, and 

a unified TLDG-based fine-grained dependences analysis and translation framework 

tha t both guarantees correctness and brings extra performance gains as well as opti

mization opportunities.



Chapter 2

Problem  Analysis

2.1 Background on CUDA and SPM D-Translation

This section provides some CUDA and SPMD-translation background tha t is closely rel

evant to the correctness and efficiency issue uncovered in the following sections of this 

chapter.

O verv iew  o f C U D A  CUDA is a representative of fine-grained SPMD-threaded program

ming models. It was designed for programming on GPU, a type of massively parallel device 

containing hundreds of cores. CUDA is mainly based on the C /C + +  language, with several 

minor extensions. A CUDA program is composed of two parts: the host code to run on 

CPU, and some kernels to run on GPU. A GPU kernel is a C function. When it is invoked, 

the runtime system creates thousands of GPU threads, with each executing the same kernel 

function. Each thread has a unique ID. The use of thread IDs in the kernel differentiates the 

data  tha t different threads access and the control flow paths tha t they follow. The amount 

of work for one thread is usually small; GPU rely on massive parallelism and zero-overhead 

context switch to achieve its tremendous throughput.

E x p lic it a n d  Im p lic it S y n ch ro n iza tio n s  on  G P U  On GPU, there are mainly two 

types of synchronizations. Explanations of them relate with GPU thread organization.

6
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GPU threads are organized in a hierarchy. A number of threads (32 in NVIDIA GPU) 

with consecutive IDs compose a warp, a number of warps compose a thread block, and all 

thread blocks compose a grid. Execution and synchronization models differ at different 

levels of the hierarchy. Threads in a warp run in the single instruction multiple data 

(SIMD) mode: No threads can proceed to the next instruction before all threads in the warp 

has finished the current instruction. Such a kind of synchronizations are called im p lic it 

sy n ch ro n iza tio n s , as no statements are needed to trigger them; they are enabled by 

hardware automatically. There is another type of synchronization. By default, different 

warps run independently. CUDA provides a function ”__synchthreads()” for cross-warp 

synchronizations. The function works like a barrier, but only at the level of a thread block. 

In another word, no thread in a block can pass the barrier unless all threads in tha t block 

has reached the barrier. Such synchronizations are called ex p lic it sy n ch ro n iza tio n s . In 

CUDA, there is no scheme (except the termination of a kernel) for enabling synchronizations 

across thread blocks.

It is worth noting th a t in CUDA, control flows affecting an explicit synchronization 

point must be thread-independent—tha t is, if the execution of a synchronization point 

is control-dependent on a condition, tha t condition must be thread-invariant. In another 

word, “__synchthreadsQ” cannot appear in a conditional branch if only part of a thread block 

follows tha t branch. This constraint, however, does not apply to implicit synchronizations: 

They exist between every two adjacent instructions; there is no exception. This difference 

causes some complexities for treating implicit synchronizations by simply extending current 

solutions to explicit synchronizations, as we will show in Section 3.1.

S P M D -T ra n s la tio n  The goal of SPMD-translation is to compile fine-grained SPMD- 

threaded programs to code acceptable by other types of devices. MCUDA [13, 12] is a 

recently developed compiler for SPMD-translation. For its representativeness, we will use 

it as the example for our discussion.

MCUDA is a source-to-source compiler, translating CUDA code to C code tha t run



on multicore CPU. Its basic translation scheme is simple. For a given GPU kernel to be 

executed by N b  thread blocks, MCUDA creates N b parallel tasks, with each corresponding 

to the task executed by a thread block in the GPU execution of the program. A generated 

parallel task is defined by a C function (called a CPU task function), derived from the GPU 

kernel function: Each code segment between two adjacent explicit synchronization points 

(including the beginning and ending of a kernel) in the GPU kernel function becomes a 

serial loop in the CPU task function. Each of such loops has B iterations (B is the number 

of threads per GPU thread block), corresponding to the GPU tasks of a thread block. 

Figure 2.1 shows an example (with some simplifications for illustration purpose).

void kernel_f(..., cid){
7 B: thread block size „  d d . the jd o f the c p u  thread

s = cid*B;
— global—  void kernel_f(...){ for (i=s; i<s+B. i++){

//w orkl _  //w ork  I

 synthreads(); j

//w ork2 for (i=s; i<s+B; i++){
//w ork2

} ’ ’ ’

}

(a) GPU kernel (b) G enerated CPU function

Figure 2.1: Illustration of MCUDA compilation.

It is easy to  see tha t the translation keeps the semantics of explicit synchronizations: 

No instruction after a synchronization point (e.g., the second loop in Figure 2.1) can run 

until all instructions before the synchronization point (e.g., the first loop in Figure 2.1) 

have finished. MCUDA gives appropriate treatm ent to local and shared variables, branches 

(e.g., break, continue, etc.), loops, and some other complexities in a kernel. In a parallel 

execution on CPU, the N b  parallel tasks will be assigned to CPU threads appropriately to 

achieve high performance.

From now on, we call the SPMD-translation represented by MCUDA as the basic SPMD- 

translation. As seen, MCUDA ensures correct treatm ent to explicit synchronizations in
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a kernel through loop fission. However, as all existing SPMD-translation tools, MCUDA 

ignores implicit synchronizations in a kernel, which may cause erroneous translation results, 

as discussed next.

2.2 A Correctness Pitfall

We first use a simple, contrived example to explain the correctness issue tha t current SPMD- 

translations are subject to because of implicit synchronizations.

Suppose tha t the ’’work!” in Figure 2.1 contains the following statement

SI: if (tidj warpSize) {A[tid] + =  A[tid+1]; B[tid+1] =  A[tid+1];},

where, tid  is the ID number of the current GPU thread. In the default MCUDA compi

lation, this statem ent will remain unchanged in the generated code (Figure 2.1 (b)) except 

th a t the tid  will be replaced with the thread loop index variable i.

Recall tha t threads in a warp proceed in an SIMD manner. So for statement SI in 

a GPU execution, no instance of ”B[tid] =  A[tid+1]” will be executed until all instances 

of ” A [tid] + — A[tid+1]” finish. The implicit synchronization between the two statements 

hence ensures tha t the updates to the elements in B  (except B[warpSize  +  1]) come from 

the new values of A. However, because MCUDA neglects the implicit synchronization, the 

generated CPU code fails to maintain the semantics: Each iteration of the first loop would 

copy the old value of an element of A  to B.

Such a reliance on implicit synchronizations appears in some commonly used GPU 

applications. An example is the parallel reduction program in the CUDA SDK [3]. It 

computes the sum of an input array. The execution of a thread block computes the sum 

of a chunk in the input array. The algorithm is the classic tree-shaped parallel reduction 

algorithm, as shown in Figure 2.2 (a). Each middle level of the tree corresponds to one step 

in the reduction and computes the partial of the sum.

Figure 2.2 (b) shows a piece of code from the GPU kernel of the reduction program in 

CUDA SDK. Each iteration of the ’’for” loop corresponds to the reduction at one level of
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the tree. Because of the dependences between levels, an explicit synchronization appears 

at the bottom  of the loop body.

/ /  s[]: contains input data  
for (i=blockSize/2; i>32; i » = l ) {  

if (tid < 1) s[tid] += 
s[tid+ l];

 syncthreadsQ;
}
if (tid<32){

s[tid] += s[tid+32]; 
s[tid] += s[tid+16]; 
s[tid] += s[tid+8J; 
s[tid] += s[tid+4]; 
s[tid] += s[tid+2]; 
s[tidj += s[tid+ l];

}
(b) Kernel function

Figure 2.2: Parallel reduction with implicit synchronizations used. (Assuming warp size=32, block 
size>= 64.)

The six lines of code below the ’’for” loop in Figure 2.2 (b) are for the bottom six levels of 

reduction. Even though dependences exist among these levels, there are no synchronization 

function calls among the six lines. This is not an issue because only the execution of the first 

warp m atters to the final result and there are implicit intra-warp synchronizations already.

The motivation for GPU programming to leverage implicit synchronizations is comput

ing efficiency. For instance, the way in which the final six levels of the reduction tree are 

implemented comes from optimizations. In an earlier version of the reduction in CUDA 

SDK, they are actually the final six iterations of the ’’for” loop (whose loop header is in a 

form ’’for (i=blockSize/2; i>0; i> > —1)”). The optimized form saves loop index computa

tion, invocations to the explicit synchronization function, and unnecessary synchronizations 

across warps. These benefits yield 1.8X speedup as reported by NVIDIA [15].

Because of such large performance gains, similar exploitations of implicit synchroniza

tions are common in some im portant, high-performance programs (e.g., sorting, reduction,

(a) Algorithm
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prefix-sum, etc.). Current SPMD-translations lack not only the capability to treat such 

synchronizations systematically, but also the functionality to detect such critical implicit 

synchronizations, hence jeopardizing their soundness and practical applicability.

2.3 Error from Insufficient Preservation of G PU  Threads’ 

Mask

In the scenario where different threads in a warp diverge, GPU threads execution are serial

ized and the sets of threads tha t follow each path have to be enumerated individually. Since 

SIMD model dictates tha t each thread executing exactly the same instructions, the threads 

not designated to enter a certain path will be masked off and therefore will not commit their 

execution result to the shared memory. On GPU, such mask is implemented in hardware 

and managed by CUDA runtime to ensure its correctness through out this process, and 

any instructions executed after the diverge point should not be able to modify the mask. 

However MCUDA incorrectly assumes tha t synchronization points are thread-independent, 

which holds for explicit synchronizations, but not for implicit synchronizations. Figure 2.3 

exemplifies this problem. Consider tha t warp size is 2, and the initial values of A, B , P  are 

A  — {—1,1}, B  — {2,2}, P  = {1,0}. In the original GPU execution, only the second thread 

goes back to L and for only once, the computing results are A  — {1,2} and B  = {1,0}. But 

the execution of the CPU code will go back to L twice and produces results as A = {1,3} 

and B  = {0,0}.

2.4 Efficiency Issue

In MCUDA, the common approach to transforming GPU __syncthreads() into equivalent 

CPU code is to im itate the strict intra-block barrier via loop splitting. This approach relies 

on the 2-level nested loop structure created during the kernel transformation. While the 

outer grid level loop remains unaffected, the inner block level loop should be split exactly 

at the location of the __syncthreads() call. Hence each innermost loop contains only 1
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11W: warp size
LI: for (tid=0; tid<W-1; tid++)

LI: A[p[tid]]++;
B[tid]
if (A[tid]>0 && B[tid]>0)

for (tid=0; tid<W-1; tid++) 
B[tid] —;

A[p[tid]]++;

goto LI; for (tid=0; tid<W-1; tid++) 
if (A[tid]>0 && B[tid]>0)

goto LI;

(a) GPU code (b) Generated (erroneous) CPU code

Figure 2.3: Original GPU thread mask modified during cpu iterations, 

synchronization-free code block tha t iterates through all threads tha t need to execute it.

a coarse granularity, and its very slight code modification makes it both easy to implement

is neither efficient nor guaranteed correct.

Figure 2.1 illustrates the translation scheme implemented in MCUDA. The kernel bod-

ly replacing GPU thread scheduling with CPU loop iterations. Note the substitution of 

__syncthreads() with loop splitting.

The constraints followed by loop splitting approach is unnecessarily strict, and a closer 

investigation shows tha t there are much space for relaxation in the strictly imitated block 

level synchronizations. Some of the issues are:

• In tro d u c t io n  o f a d d itio n a l loop  overhead . The __syncthreads() takes advantage 

of the hardware barrier function units on GPUe. Loop splitting, on the other hand, 

creates a small loop tha t on only contains one synchronization-free code block for every 

block. When the grid size becomes large(and they often do), the linearly increasing 

loop overhead soon becomes significant.

• E xcessive ly  s tro n g  sy n ch ro n iza tio n . The efficient synchronization and uniform 

SIMD execution model makes it attem pting to skip fine-grained data dependence

Intuitively, this solution tries to maintain the execution order in the original GPU code on

and test. However, as discussed below and in following section, this loop splitting approach

ies referred to as workl and work2 in (a) are wrapped into CPU loops in (b), essential-
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analysis during the coding of GPU kernels, and insert __syncthreads() wherever it 

might be needed. This is a valid strategy in GPU programming simply because 

i t ’s light- weight and usually there’s no better ways to enforce sequentiality readily 

available. Under this rationale a large number of _syncthreads() calls are placed where 

there can be more flexible solutions if the same kernel is to be translated onto CPU. 

For example, in one of our benchmarks, CG-CUDA, 23 __syncthreads() invocations 

were used in a kernel with only 170 lines of code. Consider the loop structure that 

surrounds these sychronizations, the number of their dynamic instances at runtime is 

alarming.

• F ix ed  loop  i te ra t io n  o rd e r. While the CUDA runtime and hardware scheduler 

ensures the correctness of __syncthreads() stalled threads, the execution order of those 

threads are not defined, and is solely dependent upon runtime scheduling. Such 

dynamic design provides enough flexibility in the order of job instances execution, 

and is essential to better memory latency hiding and data locality. The loop splitting 

approach, however, dictates a static order job instances, and all spaces for further 

optimizations are lost.

The reason for all three issues result from the inappropriate treatm ent of synchroniza

tions. For implicit synchronizations, the key is to understand the the difference in semantic 

implication against explicit synchronizations. Implicit synchronizations exist everywhere, 

hence the explosion of the number of created loops; implicit synchronizations can be thread- 

dependent, hence the second issue. For explicit synchronizations, the excessively strong con

straints on GPU calls for a flexible and efficient translation tha t preserves only the exact 

necessary synchronization constraints intended by the GPU programmer

To accommodate these issues, it is im portant to have a scheme to identify the actual 

semantics of critical synchronizations and generate code maintaining the exact semantics 

w ithout introducing too much overhead.

A systematic dependence analysis is im portant for meeting both conditions. Traditional
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dependence analysis offers many insights, but are not directly applicable as they consider 

no relations between data dependence across SIMD thread groups and the semantics and 

properties of GPU synchronizations. We next present a systematic analysis of the relations, 

and then describe several derived solutions to both implicit and explicit synchronization 

problem.



Chapter 3

D ependence Analysis

In this chapter we employ reference level and instance-level dependence analysis techniques 

to identify implicit synchronizations tha t might pose a hazard in previous approaches, and 

discuss several solutions to resolve such hazards.

3.1 Coarse Grained Analysis

This section examines the relations between various dependencies and compilation correct

ness related to implicit synchronizations. The reveal of these relations lays the foundation 

for identifying and appropriately treating critical implicit synchronizations.

For simplicity of explanation, our discussion in this part concentrates on a segment 

of kernel code C  th a t contains no explicit synchronizations. Explicit synchronizations are 

already handled by the basic SPMD-translation. Because implicit synchronizations only 

apply to threads within a warp, we will restrict our discussion to the execution of C  by a 

warp.

Our strategy for coarse-grained dependence analysis is to first use the default (prob

lematic) SPMD-translation scheme, as described in Section 2.1, to derive a sequential loop 

L  from C, and then conduct dependence analysis on L. This strategy circumvents the 

complexities in dealing with the multithreading behaviors in the original GPU code C. 

From Section 2.1, we know tha t L  essentially takes C  as its loop body and adds a

15
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surrounding loop for iterating through threads. (This loop is called a thread loop.) W ith only 

one warp considered, the loop index values span from 0 to w arpSize  — 1. All appearances 

of thread id in C  are replaced with the loop index variable.

We say tha t L  is correct if its executions on a CPU always produce the same results as the 

corresponding GPU executions of C  do. Because L neglects all implicit synchronizations 

in C, instructions may be executed in an order different from the GPU execution of (7, 

hence causing errors. Apparently, if there are no data dependences in L, there is no need to 

observe the implicit synchronizations: All execution orders produce the same results. Data 

dependences are the key factor for analysis.

Considering the properties of GPU executions, we introduce the following terms and 

notations (mostly derived from traditional terminology) to be used in our proposed depen

dence analysis.

[0]: a = b+c

rpn(A)=0; rpn(B )=l; rpn(C)=2; rpn(D)=3; rpn(E)=4; rpn(F)=5

Figure 3.1: Examples for the reverse postorder (rpn) of basic blocks and the sequence numbers 
(enclosed by “[]”) of instructions.

Term s and N otation s

• Reverse Postorder of Basic Blocks in L. Following the traditional compiler termi

nology, we use postorder to refer to the order tha t basic blocks are last visited in
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a depth-first search on the control flow graph of L. A reverse postorder is simply 

the reverse of a postorder. For SPMD-translation, however, we add the constraint 

tha t when the possible order of two blocks is not unique (e.g., sibling branches), the 

leftmost block has the precedence. (W ithout loss of generality, it is assumed tha t 

the CUDA compiler ensures tha t code block layout follows such a left-to-right order.) 

This constraint is useful for dependence analysis because the order in which a GPU 

thread warp traverses basic blocks, is consistent with this reverse postorder due to 

their SIMD execution mode. Roughly speaking, reverse postorder is a top-down order 

on a control flow graph but with branches and back-edges appropriately handled. We 

use rpn(B ) to represent the reverse postorder number of a basic block B. Figure 3.1 

shows an example.

• Sequence Number. Each statem ent in L  has a distinctive sequence number. Let S\ 

and S 2 be two instructions in basic blocks B \  and B 2 respectively, and n \ and n 2 be 

the sequence numbers of the two statements. If B \ — B 2 , n \ < n 2 if and only if «Si 

precedes S2 in the block. If B \ ^  B 2 , n \ < n 2 if and only if rpn{B\) < rp n fi^ )-  An 

example is shown in Figure 3.1. We use sn (S )  for the sequence number of a statement 

S. The sequence numbers cover all instructions in L  and gives them a single order that 

is consistent with the execution order of the instructions in GPU when back-edges are 

not considered (loops are treated through dependence vectors). Such an order offers 

conveniences for dependence analysis as shown later in this section.

• Dependence Distance Vector. This term is the same as in the traditional dependence 

theory [5]. Roughly speaking, it is the difference between the iteration vectors of two 

statements when they access the same memory location. Elements in an iteration 

vector (from left to right) corresponds to the loops enclosing the statement (from out

ermost to innermost). The value of an element is the index value of the corresponding 

loop. For example, the dependence distance vector from SI to S2 in the right graph 

of Figure 3.2 (j) is (1, —2,1), where, the three elements correspond to the loops tid,
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i, and j  respectively. (It is im portant to note tha t the elements take the loop order 

rather than the array index order.) Only the loops enclosing both statements are 

considered in their dependence distance vectors.

• Dependence Sign Vector. It is just the results after a sign function is applied to the 

elements in a dependence vector. For instance, the dependence sign vector for the 

right graph of Figure 3.2 (j) is (1, —1,1). If there are multiple dependences between 

two statements and their dependence sign vectors differ, can be used to represent 

the difference. For instance, two vectors (—1,0,1) and (1,0,1) can be represented 

with one (*, 0, l ) .1

• Preserved Dependence. This term is identical to its traditional definition. A depen

dence between S\ and S 2 is preserved after a transformation if the access order to 

common memory locations by the two operations remain the same as in the original 

program.

• Critical Dependence. A dependence is critical if it cannot be preserved after the basic 

SPMD-translation.

• V (i : j ) .  We use V (i : j )  to represent part of a vector (i.e., V { i,i- \-1, • • • ,.?)), and use 

V (i) for V (i : i).

SP M D -T ranslation  D ependence T heorem  W ith the defined terms, we describe the 

following theorem, which offers the foundation for identifying critical dependences and im

plicit synchronization points for SPMD-translation. (Notations L  and C  have been defined 

at the beginning of this section.)

T heorem  3.1 SPMD-Translation Dependence Theorem: Let S i and S 2 be two statements 

in L and sn (S \ ) <  sn (S 2 )- Let d be a data dependence from S \ to S 2 in C. Let v be the sign 

vector of the data dependence in L that corresponds to d. The dependence d is preserved in

*We use dependence sign vectors rather than traditional dependence direction vectors because the former 
is more intuitive and clear than the latter.
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L if  at least one of the following conditions holds:

(1)  „(l) = =  0;

(2) there are no non-zero element in v(2 : |u|) & u(l) < 0;

(3) 'i'(l) equals the first non-zero element in v(2 : |i>|) and that element is not

We now outline the proof of the theorem. We start with the first condition. The 

condition v(l) = =  0 indicates tha t between S\ and S2 , there is no data  dependence carried 

by the thread loop in L, which suggests tha t between S\ and S 2 , there is no data dependence 

among threads in the execution of C. The neglect of the implicit synchronizations between 

the two statements in L  hence affects no inter-thread data dependences. Graphs (c) and 

(d) in Figure 3.2 exemplify tha t the correctness holds regardless the remaining elements of 

v.

For the second condition, because there is no non-zero element in v(2 : |u|), between Si 

and S 2 there must be no data  dependences carried by any loop in C. Because of the SIMD 

execution mode and sn (S i) < sn (S 2 ), in one iteration of the common loops in C enclosing 

both 5 i and S 2 , executions of Si by all threads in a warp must finish before any execution 

of S 2 starts during the execution of C  on GPU. Therefore, if there are data dependences, 

Si must be the source and S 2 must be the sink in the GPU execution of C. The condition 

v ( l)  < 0 ensures th a t the same dependence relation holds in the execution of L on CPU. 

Graphs (a) and (b) in Figure 3.2 illustrate such cases, while graph (g) shows a counter 

example.

To see the correctness of the third condition, we note tha t the appearance of non-zero 

elements in v(2 : |u|) suggests tha t some loop(s) in C carries data  dependences between Si 

and S 2. The direction of the dependence during the execution of C  on GPU is determined 

by the first non-zero element in v(2 : |i>|). While for L, it is the first non-zero element in 

v th a t determines the dependence direction between Si and S 2 in the execution of CPU. 

Therefore, the third condition ensures tha t the dependence direction remains the same 

between L  and C. Graphs (e) and (f) in Figure 3.2 demonstrate tha t the correctness holds 

regardless the exact dependence directions between S i and S 2 , while Figure 3.2 (h) shows



20

a counter example.

SI: A [tid+1 ]= ...;  
S2: ... =  A[tid];

(a) v = (-l)

fo r  (!=...){
S I: A [tid ][ i]= ...;
S2: ... =  A [tid + l][i]; 

}

fo r (i=...){
SI: A [tid+  l][ i]= ...; 
S2: ... =  A [tid][i];

}
(b) v= (-1 ,0)

fo r  (!=...){ 
fo r  (j=...){

S I: A [tid]D ][i+2]= ...;
S2: ... = A [tid + l]D + l][ i] ;

}}

fo r  (i=...){
S I: A [tid ][ i+ 1 ]= ...; 
S2: ... =  A [tid][i];

}
(c) v = (0 ,-l)

fo r  (i=...){
S I: A [tid][i]= ...;
S2: ... =  A [tid][i+1]; 

}
(d) v=(0,1)

fo r  (!=...){
SI: A [tid+ 2][i+ l]=  
S2: ... = A [tid][i];

}
( e ) v = ( - l . - l )

fo r  (i=...){
S I: A [tid ][i]= ...:
S2: ... =  A [tid + 2 ][i+ l]; 

}
( f ) v = ( l , l )

(g )v = (I .O ) (h) v = ( l , - l . l )

fo r ( i= l ; i< A [ t id + l] ; i+ + ){  
S2: A [tid] =  ...;

}}

(i) v=(-l,*)

fo r  (i=...){ 
fo r  0=...){

SI: A [tid][j][i+2] = . . .
S2: ... = A [tid+  l][j+ l][i]

}}

fo r  (tid=...){ 
fo r  (i=...){ 

fo r  Q=...){
S I: A [tid][j][i+2] =  ...
S2: ... =  A [tid+  l][j+  l][i]

»} _______
(j) P rio r (prob lem atic) SPM D -translation  o f  c o d e  (h)

Figure 3.2: Examples for demonstrating the SPMD-Translation Dependence Theorem. The code 
segments (a) to (i) are examples of GPU kernel code. The captions show the dependence sign vectors 
of their corresponding CPU code produced by the basic SPMD-translation, as illustrated by graph 
(j). Only the dependences in graphs (g,h,i) are critical for SPMD-translation. (Loops are assumed 
to have been normalized with indices increasing by 1 per iteration; elided code has no effects on 
dependences.)

Two notes are worth mentioning. First, the theorem and proof do not distinguish lo

cations where the dependence appears. So they hold regardless whether the dependence 

appears in a thread-dependent branch. For example, the statement S2 in Figure 3.2 (i) is in 

a thread-dependent branch—different threads in a warp may run the “for” loop for differ

ent numbers of iterations. The dependence sign vector is (-1, *) from the loop conditional 

statement, “i < A[tid+  1]” , to S2. It meets none of the three conditions in the theorem, in

dicating th a t such a dependence is critical and the basic SPMD-translation cannot preserve 

it.

Second, the SPMD-Translation Dependence Theorem mentions no dependence types. 

It is easy to see tha t the theorem holds no m atter whether the data dependence is a true 

(read after write), anti- (write after read), or output (write after write) dependence.

Im p lic a tio n s  to  S P M D -T ra n s la tio n  The SPMD-Translation Dependence Theorem has 

three implications.

First, it facilitates the detection of SPMD-translation errors. Based on the theorem, a 

compiler will be able to examine a program generated by a basic SPMD-translation and 

tell whether it may contain data  dependence violations.
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Second, it lays the foundation for the detection of critical dependences and im portant 

implicit synchronization points (i.e., those affecting the correctness of the basic SPMD- 

translation), by revealing dependences meeting none of the three conditions. Section 3.1 

will describe how this implication translates into a systematic detection scheme for critical 

implicit synchronizations.

Finally, the theorem provides the theoretical guidance for using loop transformations 

to fix certain errors in the basic SPMD-translations. For instance, as described earlier, 

the default SPM D-translation to the code in Figure 3.2 (g) yields a dependence vector 

v = (1,0), satisfying none of the three conditions, and hence indicating the error of the 

translation. However, it is easy to see tha t a simple reversal of the thread loop index 

in the CPU code turns the dependence vector into v = (—1,0), which meets the second 

condition of the theorem, and the dependence from SI to S2 in the GPU code is preserved. 

Following chapter will show how this implication can be systematically exploited during 

code generation in SPMD-translation.

3.2 Fine Grained Analysis

In this section we propose a systematic dependence analysis approach based on thread-level 

dependence graphs(TLDG). The purpose of TLDG is to capture cross-thread dependences. 

We first introduce TLDG and then describe the use of this graph for code generation.

W ithout loss of generality, we first assume tha t the target code region for our following 

analysis meets the following two conditions: (1) It contains no loops; (2) the execution 

patterns of all blocks on tha t region are identical or the region is executed by only one block. 

These assumptions are for simplicity purpose, i.e. previous frameworks are fully capable 

of dealing with such additional complexities, so the assumption can be easily eliminated 

w ithout major adjustment to our framework.

The TLDG of a code segment may contain a number of separate graphs as some state

ments have no dependences on others. For a loop inside a kernel, the loop is fully unrolled
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when building the TLDG. (As CUDA is a fine-grained SPMD-threaded programming mod

el, most GPU kernels do not have extremely large loops inside.) For loops with unknown 

trip-counts, the approach handles the loop separately in a way similar to the approach 

described in the previous section.

3.2.1 C onstruction o f TLDG

The TLDG is a directed graph constructed based on the data  and control dependences in 

the CUDA code, with awareness of the semantics of the warp/block logical hierarchy and 

synchronizations. TLDG reflects the dynamic dependence pattern during the execution of 

a GPU block.

To generate the node set of TLDG, we focus only on those statements tha t access shared 

data  (e.g. arrays) from different threads in the warp or block. The first step of TLDG 

construction is breaking the statements into load/store references. We then divide the GPU 

code into D ata Reference Units (DRU), each containing exactly 1 reference to shared data. 

Such DRUs will be the basic execution and scheduling unit in further transformations. Each 

DRU maps to a node, and each node is marked by the array reference in its corresponding 

DRU. There is no designation on which DRU all other private computation statements 

should belong to, so they are attached arbitrarily to an adjacent node. Therefore the entire 

code of 1 GPU thread is partitioned into a list of nodes. We then repeat such list by the 

number of threads in the block, so tha t each dynamic instance of each DRU has its own 

node to be mapped on. Therefore the node set of TLDG is always formed by repeating its 

own “base” subset, and each node mapped to its dynamic instance of DRU.

Next task is to connect the nodes via directed edges, where each edge n \ —> n 2 represents 

1 of 2 possibilities:

• There is a control dependence from n \ to 77,2 , when both nodes come from the same 

thread, or

• There is a data  dependence from n \ to 712 coming from either same or different threads,
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where the type of data dependence could be either true, anti or output.

Note tha t nodes constructed from the same DRU are always executed simutaneously on 

GPU; and since there are no loops in the code, dependence edge can not point from a later 

DRU to an earlier DRU. Thus if we layout the nodes into a matrix, with the thread id 

increasing along the horizontal direction and the time stamp of each DRU being executed 

increasing along the vertical direction, then there should never exist edges pointing upwards.

Such static dependence analysis is done for each DRU against all DRUs after it in the 

GPU timeline. Since most array indices fall into the category of compile time known values, 

static analysis is capable of handling the common cases with moderate overhead. Detecting 

dependences resulting from dynamic array indices is also doable by marking all potentially 

overlapping accesses as dependent access. Such extension might introduce unnecessary 

edges into TLDG, but the simplicity of this solution makes it still worthwhile.

(a)
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid]+= sdata[tid + 1];

(b)

/ /n o d e  0 
if (blockSize >= 
//n o d e  1 
if (blockSize >= 
/ /n o d e  2 
if (blockSize >= 
//n o d e  3 
if (blockSize >= 
/ /n o d e  4 
if (blockSize >= 
/ /n o d e  5 
if (blockSize >=

8) (tempBuf[tid] = sdata[tid+4];} 

8) (sdata[tid] =+ tempBuf[tid];} 

4) (tempBuf[tid] = sdata[tid+2];} 

4) (sdataftid] += tempBuf[tid];} 

2) (tempBuf[tid] = sdata[tid+l];} 

1) (sdata[tid] += tempBuf[tid];}
TO T1 T3T2 T 4 T5 T6 T7

(c)

Figure 3.3: (a). The original statements in CUDA SDK source code. (b). Statements broken 
into references, each forming a DRU. (c). The intra-thread and inter-thread edges of the TLDG 
constructed from (b).

Figure 3.3 (c) shows the TLDG constructed from the last 3 unrolled statements CUD- 

A SDK reduction code in figure 3.3 (b), where each DRU consists only 1 array reference
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extracted from the original source code in figure 3.3 a. Nodes from the same thread are 

aligned along the vertical direction. For easier comprehension, the nodes are arrange in the 

aforementioned pattern such tha t along the top-down direction, they reflect the actual time

line of the original GPU execution of each block, and along the left-to-right direction, the 

index of all the homogeneous threads is increasing. An natural result of such arrangement 

is th a t all dependences in the graph are pointing from a higher positioned node to a lower 

one, e.g. there are no cycles in the graph. Therefore the blocks connected by dependence 

edges essentially form a partially ordered set, and the CPU translation of this code region 

is equivalent to the serialization of this set, which can be further reduced to finding one of 

the topologically sorted sequences of nodes tha t yields best CPU performance.



Chapter 4

Solutions

This chapter first presents several low-overhead approach to solve the correctness issue in 

the translation of implicit synchronizations. Then we present a TLDG-based approach that 

is capable of dealing with both implicit and explicit synchronizations, and discuss further 

optimization techniques of this approach, e.g. redundancy removal and code size reduction.

4.1 Coarse-Grained Solution

This section presents two solutions for handling implicit synchronizations. The first is 

based on the statement-level dependence analysis revealed in Section 3.1. The second is 

based on the simple extension described in Section 3.2, with the correctness issue on thread- 

dependent conditional branches addressed. The second solution is developed as the baseline 

for efficiency comparison.

4.1.1 Solution 1: A D ependence-B ased Splitting-O riented Approach

The first solution to implicit synchronizations is based directly on the SPMD-Translation 

Dependence Theorem. It consists of six steps to be conducted by compilers.

• Step 1: Apply the basic SPMD-translation to obtain thread loops for each code seg

ment bounded by explicit synchronizations. Let L S  represent the set of thread loops.

25
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• Step 2: Extract a loop L  from L S , compute the dependence sign vector from every 

statem ent (S ) in L  to all other statements in L  th a t have a sequence number greater 

than th a t of S. Statements tha t access only thread-local data do not need to be 

considered in this step.

• Step 3: Based on the vectors, the dependences are classified into four sets: the intra

thread set I , inter-thread but benign set inter-thread but reversible set R , and 

inter-thread critical set K . Let d represent a data  dependence and v be its dependence 

sign vector. The classification rules are as follows: v E I  if v( l )  —= 0; v E B  if v 

satisfies either condition 2 or 3 in the SPMD-Translation Dependence Theorem; v E R  

if the dependence can turn  into a benign dependence when the index of the thread 

loop gets reversed; K  consists of all other data dependences.

• Step 4: If R  = =  K  = =  0, the compilation is correct; go to Step 6.

• Step 5: Use the algorithm in Figure 4.1 to replace L  with a sequence of loops; each 

loop has (warpS ize  — 1) iterations and executes sequentially.

• Step 6: If L S  ^  <j>, go to Step 2.

The algorithm used in Step 4 is based on two insights. First, as Rule 2 reveals, the loop 

form of a kernel is correct if it has only downward dependences, its loop index spans from 0 

to (w arpSize  — 1), and it runs sequentially. Second, let loop L  be the loop form of a kernel 

and L  contains only upward dependences. Let L  be a reverse form of L—that is, it has the 

same loop body as L does but its loop index takes a reverse order. Then, the sequential 

execution of L  must be correct because reversing loop index turns all upward dependences 

into downward dependences.

W ith the two insights, we explain the algorithm in Figure 4.1 based on an example shown 

in Figure 4.2. For simplicity of explanation, we first assume tha t there are no condition 

branches or loops in the kernel. The algorithm uses two sets, Sd and Su to track statements 

tha t have been visited. At the beginning, the two sets are empty. Given a CFG, the
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// SK: set o f statements involved in critical dependences 
II SB: set o f statements involved in benign dependences 
IISR: set o f statements involved in reversible dependences 
Sa = Sd =  4>;
while (s = nextStatement()){ // in order o f sequential numbers 

if (se SK || (se SB && se SR){
createLoop_asc(Sa);// with ascending loop index 
createLoop_des(Sd); I/with descending loop index 
createLoop_asc(s);
Sa = Sd = <j>;

}
else if (se SR)

Sd.add(s);
else

Sa.add(s);

}
createLoop_asc(Sa); // handle the final remaining statements i f  any 
createLoop_des(Sd); // handle the final remaining statements i f  any

Figure 4.1: Algorithm for step 5 in Solution 1.

algorithm traverses the graph in an order as follows: All back edges are ignore; a node is 

not visited until all its predecessors have been visited.

During the traverse, if a statem ent s involves downward dependence only, it is put into 

Sa ; if involving upward dependence only, it is put into Su. If it involves both types of 

dependence, the algorithm generates a loop for the current Sd (with an increasing loop 

index), a loop for the current Su (with an decreasing loop index), and then a loop for s 

itself (with an increasing loop index; decreasing works too). This code generation ensures 

th a t the dependences of the original kernel can be observed. An example is the statement 

S 5 in Figure 4.2. After the code generation, both Sd and Su are reset to empty.

The fifth step deserves some further explanations. It tries to fix dependence violations 

caused by the basic SPMD-translation. Its basic strategy is to split a problematic loop at 

some critical implicit synchronization points. These points are those statements involved 

in dependences belonging to either K  or both B  and R. In both cases, simple loop reversal 

is insufficient to fix the dependence violations. It uses set S a to record statements that 

involve no inter-thread dependences or only benign dependences, and uses set Sd for those
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involving inter-thread reversible dependences. At a splitting point, it creates a thread loop 

with an ascending index to enclose all statements in 50, and a loop with a descending 

index to enclose all statements in Sd , and then puts the current statement into a single 

loop (which is likely to be unrolled in later optimizations). Both S a and Sd are then set to 

empty. Figure 4.1 illustrates the algorithm.

S7:C[i]

S6: C[i+8]S5:A[i+8]

SI: B[i] = .. 
S2: B[i+16]

A[i]
A [i+16]

> :  control flow  edges 
: reversible dependence 

> :  benign dependence

(a) CFG of original kernel code

51
52
53

S4:

S5:

S6:

S7:

//W : warp size 
for (i=W -1; i>=0; i - ){

B[i] =
B[i+16] = ...
... = A[i]

}
for (i=0; i<W; i++){

... = A [i+16]
}
if (...){

for (i=0; i<W; i++){ 
A[i+8] = ...

}
}
if (...){

for (i=0; i<W; i++){ 
C[i+8] = ...

}
}
for (i=0; i<W; i++){ 

C[i] = .. .
}

(b) Generated code

Figure 4.2: An example for Solution 1.

C o n tro l D ep en d en ce s  Certain constructs (e.g., if-else and loops) cause control depen

dences. We first briefly explain the treatm ent to constructs with conditional branches. If the 

CFG contains branches as exemplified by 55 and 56 in Figure 4.2, statements in a branch 

are treated similarly as the other statements, except tha t each of them are appended with a 

condition check at the front (e.g., 55 becomes “if (...) A[i+8]=...”). The condition to check 

is the boolean value checked in their enclosing “if” condition. Turning the statements into 

predicated statements creates much flexibility for code generation. Some bookkeeping is
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needed if the condition is subject to change in the conditional branch. Condition hoisting is 

then used to refine the generated program (e.g., “for (){ if (b) A[i+8]=...; if (b) A[i]=...;}” 

turns into “if (b) { for (){ A[i+8]=...; A[i]=...;}}”).

For loops, no special treatm ent is necessary if their bounds are thread-independent or the 

loops contain no statem ent tha t involves an inter-thread critical dependence. Otherwise, 

some bookkeeping and code replication are needed as illustrated in Figure 4.3. In the 

example, there is a critical dependence between the first statement and the “if” condition. 

A complexity is tha t in the execution by a GPU warp, due to the SIMD mode, once a thread 

fails the “if” check, it won’t check tha t condition again. The introduction of the assistant 

array, _cnt[], is to maintain such a property.

The code generation involves some necessary variable renaming (e.g., “i” becomes “iAr- 

r[]” in Figure 4.3) similar to the practice of prior SPMD-translations [13, 12].

i=0;
LI: A [tid+1 ]=...; 

i++;
if (i< A [tid ]) g o to  LI

LI: _ a lld o n e  = 1 ;
for (tid = ...){ / /  u pd ate th e  cu rren t statu s  

if (i<A [tid] & _ cn t[tid ])
_ a lld o n e  = 0; 

e ls e
_ cn t[t id ]  =  0;

}

/ /  _ cn t[tid ]: thread  tid sh ould  co n tin u e  o r  n o t  
/ /  _a lld on e: all th read s are d o n e  o r  n o t  

for  (tid= ...) iA rr[tid]=0; 
for  (tid = ...){

A [t id + 1]=...; 
iA rr[tid]++;
_ cn t[t id ]  =  I;

} v /

if (_ a lld o n e = = 0 ) { 
fo r  (tid= ...){

if (_ cn t[tid ]> 0 ){  
A [tid+1 ]=...; 
iA rr[tid ]++;

}
}
g o to  LI

>

Figure 4.3: Illustration of translating a GPU loop with thread-dependent critical implicit synchro
nizations into CPU code.
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4.1.2 Solution 2: A M erging-O riented Approach

The second solution is based on the simple extension described in Section 3.1 with the cor

rectness issue fixed. It treats all implicit synchronizations as explicit ones and uses the basic 

SPMD-translation for code generation. For thread-dependent implicit synchronizations, it 

uses the technique similar to the handling of control dependences in solution 1 (at the end

of Section 4.1.1) to ensure correctness. The only difference is tha t it creates a loop for each

statement. It then relies on the default loop fusion in compilers to reduce loop overhead. 

We develop this solution to serve as the baseline for our comparisons.

4.2 Fine-Grained Solution

In this section, we introduce a TLDG-based code generation scheme tha t are capable of 

dealing with both implicit and explicit synchronizations. Instead of treating a statement as 

a unit for dependence analysis, it distinguishes individual instances of a statement. As a 

fine-grained approach, it analyzes the relations among all instances of the statements, and 

exposes detailed dependence information, hence offering opportunities for exploiting both 

intra-thread parallelism and temporal locality.

w h ile  G n o t  em pty 
f o r  each  node N

i f  N .in D eg  =  0 / / i n c l u d e  nodes  w i t h  no i n c o mi ng  edges  
roundQ ueue . push  (N) 

f o r  each  edge E o u tg o in g  from  N
d e l e t e  E from  G 

d e l e t e  N from  G 
roundQ ueue . s o r t  (N)
o u t p u t C ode . ap p en d  ( roundQ ueue . c o d e G e n e r a t i o n Q )

Figure 4.4: Pseudo code for round-based code generation

Our goal is to break the previous grid-level and block-level nested loop structure, and 

generate equivalent CPU grid level loop body directly from scratch. Specifically, we serialize 

the jobs in the same GPU block by generating sequential code from it, and utilize the task-
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level parallelism among GPU blocks, thus reducing the fine-grained concurrency to fit CPU 

architecture. This means tha t we need to introduce additional ordering between the DRUs 

without changing any source-sink relationships of the original GPU code. As the graph 

is acyclic, a simple breadth first traversal of the graph will yield a correct sequence. The 

rest part of the problem is comparing the quality of all the legal sequences and picking an 

optimal one, thus generating a sequence of all DRUs in the GPU block tha t forms the body 

of grid-level loop in the CPU code. There’s no need for a block-level loop since the sequence 

itself is the completely unrolled and reordered result of the original block-level loop.

An example algorithm framework is given in figure 4.4 tha t presents a round based 

code generation. The key idea is to partition the nodes into different groups and impose 

strict order among groups while maintaining full concurrency within each group. There

fore the DRUs in each group forms a round during 1 grid-level loop iteration. In each 

round, the algorithm pushes the set of all nodes with no incoming edges into the round 

group (roundQueue in figure 4.4), and deletes them along with their outgoing edges before 

proceeding to the next round, until the graph is empty. Eventually the round group will 

become a partition of the TLDG, and simply print out each of its elements in round order 

will produce a correct execution sequence of DRUs. This algorithm designates a round 

number to each DRU; as long as every block is executed after all the blocks with a lower 

round number, the source and sink relationships are preserved and the execution result is 

guaranteed correct. The successful detection and preservation of instance-level dependences 

effectively eliminated the need for a whole block synchronization, which is over conservative 

and strict. Such relaxation introduces an additional degree of freedom in the optimization 

space for GPU-CPU code compilation.

To minimize runtime overhead, the sequence is to be directly inserted into corresponding 

CPU functions. The code generation is a onetime process and the generated code can 

be reused provided tha t the workset to the CPU program will result in the same kernel 

configuration as the workset used to perform dependence analysis and generate this code.

Figure 4.5 (a) shows the content of a generated code.
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This fine-grained code generation scheme has three advantages. First, the way a loop 

body is built is cache-friendly because it follows the dependence edges—data dependency 

means data reuse. Second, the resulting loops are all parallel loops, exposing more paral

lelism for exploitation (if wanted).

Last but not least, it exposes useless computations at the statement-instance-level. Tra

ditional dead code elimination works on the statement level, which is insufficient for GPU 

programs. In GPU programs, sometimes even though all threads execute a statement, only 

some conduct useful work. An example is the final 6 lines of code in Figure 2.2 (b). The 

useless computations affect no GPU efficiency because of the massive parallelism of GPU; 

adding conditional statements to prevent them from happening may actually throttle GPU 

efficiency because extra condition checks are added into the critical path of every thread. 

But for CPU executions, such useless computations may hurt efficiency considerably. This 

instance-level solution can easily expose such useless instances and prevent them from get

ting into the generated CPU code.

A simple optimization technique is to build thread-dependent branching directions anal

ysis into the code generation framework, thus eliminating the actual calculation of the 

branch variables at runtime. This technique also helps to reduce code size, resulting in 

slightly better cache performance.

Another by-product of the above code generation process is the change of memory-access 

pattern  in the original GPU program. Since memory coalescing and layout transformation 

are often explicitly maintained by GPU programmers, we would normally expect the mem

ory referencing code of the GPU program to produce relatively regular memory accesses. 

Therefore the unrolling of the original loop into CPU code might impair the sequentiality 

and locality of memory accesses. To alleviate this problem, we simply add a sorting pro

cess within each round so tha t the average distances between 2 adjacent references in the 

generated CPU code is minimized. Our experiments demonstrates th a t such reordering is 

beneficial to the overall performance on CPU.
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4.2.1 Instance-level Redundancy Rem oval

The SIMD execution hides the overhead of redundant calculations. When encountering a 

divergent conditional branche within a warp, the GPU is forced to serialize the execution 

of the warp, iterating through all branch paths existing in the warp. Such divergences is 

a major source of performance bottlenecks [27], not to mention the condition calculation 

can also introduce extra overhead on the critical path. Therefore often unneeded GPU 

threads execute the same instructions and output result to the global memory just like 

other threads. In above translation, all these unnecessary calculations and/or conditional 

checks are kept in the generated CPU code.

Slightly extending the dependence analysis discussed above, a low cost data flow analysis 

for each individual node in the TLDG can be implemented with little extra overhead. The 

idea is to first identify upward exposed uses of the entries appearing in the code following 

TLDG code (the “valid entries”), then traversing the reversed TLDG only from those blocks 

th a t access the valid entries.

Pruning is particularly im portant to parallel reduction. As a fundamental parallel al

gorithm th a t produces relatively small amount of data from large number of input entries, 

parallel reductions are often implemented under the rationale of reducing the length of the 

critical path as much as possible rather than the utilization of the processor. A typical 

parallel reduction code taken from CUDA SDK shows that, in the iteration process, no 

iterations after the first one actually utilizes more than half of all threads involved, but the 

redundant threads perform calculations just like the small portion of valid threads, creating 

huge waste of processor time tha t can only be hidden on GPU, and therefore considerable 

space for redundancy removal.

As depicted in figure 4.5, redundancy removal starts from a list of “useful” nodes in 

the TLDG and backtracks upwards to the top of the graph, marking all the useful nodes 

in the process. After redundancy removal, the number of lines of code generated for the 

reduction5 kernel with a configuration of block 256 threads is reduced from more than 3000 

to around 500, resulting in a leap in the CPU program performance.
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K
2 T*data,
3 hash<int, T> buf)
4 if(tid[128]<256) buf.insert(<0>, data[128));
5 if(tid[129]<256) buf.insert(<l>, data[129]);
6 if(tid[130]<256) buf.insert(<2>, data[130]);
7 if(tid[131]<256) buf.insert(<3>, data[131]);
8 if(tid[132]<256) buf.insert(<4>, data[132]);

3455 if(tid[34]<32) data[34] += buf.pop(34);
3456 if(tid[103]<32) data[103] += buf.pop(103);
3457 if (tid [224]<32) data[224] += buf.pop(224);
3458 if(tid[239]<32) data[239] += buf.pop(239);
3459 if(tid[255]<32) data[255] += buf.pop(255); 
3460}

(a)

1{
2 T*data,
3 hash<int, T> buf)
4 buf.insert(<0>, data[128]);
5 buf.insert(<l>, data[129]);
6 buf.insert(<2>, data[130]);
7 buf.insert(<3>, data[131]);
8 buf.insert(<4>, data[132]);

509 buf.insert(<l>, data[3]);
510 data[0]+=buf.pop(0);
511 data[l]+=buf.pop(l);
512 buf.insert(<0>, data[l]);
513 data(0]+=buf.pop(0);
51 4 }

(b)

N2 ( >

Figure 4.5: (a). The original hardcode without redundancy removal, (b). Pruned hardcode where 
all useless computations are removed, (c). The bottom-up redundancy removal process, start from 
the compiler identified useful final results, (marked black)

Similar to the optimization in code generation, redundancy removal can also be integrat

ed into the code generation framework. W ith the large proportion of unnecessary memory 

references and conditional checks removed, the pruned code outperforms the original code 

with considerable speedup.

4.2.2 D iscussion

An obvious benefit with such design is tha t there is no fundamental difference between 

the way TLDG treats implicit and explicit synchronization except on the number of G- 

PU threads included into the graph. Therefore TLDG presents an universal solution that 

ensures both performance and flexibility, as well as space for further optimizations in all 

scenarios.

The iterative construction process of TLDG dictates tha t the graph always consists 

of a multitude of repeated basic homomorphous subgraphs, overlapping with each other. 

For example, the TLDG in figure 3.3 (a) can be further reduced into the subgraphs in 

figure 4.6 b, each repeated different in the horizontal direction. Such pattern extraction 

from the graph can lead to further reduction of the size of the CPU code. Instead of fully 

unrolling the block level loop into a linear function body, each of the subgraphs will form a



Figure 4.6: The original TLDG (upper left) broken down into 6 basic patterns, each of which 
retains its shape and orientation in the whole graph, only repeated on the horizontal direction.

loop body within the generated code with different trip counts. This additional dimension 

of flexibility provides the framework with the ability to leverage among multiple factors 

tha t might hurt the overall performance of the CPU program, including but not limited to 

instruction cache miss rate, loop overhead and basic block scope.



Chapter 5

Evaluation

In this chapter, we presents the experiment results of both coarse-grained and fine-grained 

solutions. The coarse-grained solution puts the major emphasis in providing a low-overhead 

GPU-to-CPU translation tha t guarantees correctness, while the fine-grained solution focus

es on utilizing the additional information and optimization space obtained from TLDG 

construction and redundancy removal to boost CPU code performance.

5.1 Coarse-Grained Solution

Our evaluation concentrates on two aspects: whether the proposed dependence-based so

lution can address the correctness issues in the basic SPMD-translation, and how efficient 

the produced code is.

5.1.1 M ethodology

We use five benchmarks, listed in Table 5.1. They are selected because of their inclusion 

of non-trivial synchronizations, both explicit and implicit. Three of them, Reduction, Sort- 

ingNetworks, and TYansposeNew come from the NVIDIA CUDA SDK [3]. CG is a conjugate 

gradient application, originally from NPB [8] and later ported to CUDA as part of the H- 

PCGPU project [1]. SGEM M  is a high performance linear algebra function developed by 

Volkov and Demmel [24].

36
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All of the benchmarks contain a number of explicit synchronizations. The top three 

of them contain critical implicit synchronizations, while the other two do not. Including 

these two programs helps to examine the capability of the solutions in maintaining the 

basic efficiency of the program—that is, whether they degrade the performance of the part 

of code tha t contains no critical implicit synchronizations.

Table 5.1: Benchmarks
Program Source Description
CG [i] conjugate gradi

ent
Reduction [3] parallel reduction
SortingNetworks [3] bitonic sort & 

odd-even merge 
sort

SGEMM [24] combined matrix 
matrix operations

TransposeNew [3] matrix transpose

To test the performance on different platforms, we run our experiments on two types 

of machines and through two compilers. One machine is a quad-core Intel Xeon E5640 

machine. The other is a dual-socket dual-core AMD Opteron 2216 machine in the National 

Center for Supercomputing Applications. We call these machines the Intel and AMD  ma

chines respectively. Both machines run Linux (2.6.33 and 2.6.32). The Intel machine has 

GCC 4.1.2 and the AMD machine has Intel ICC 11.1 installed. All compilations use the 

highest optimization levels supported by the compilers.

5.1.2 Experim ental R esults

For each benchmark, we create three versions:

• Basic Version: This version is the result from the basic SPMD-translation in MCUD- 

A [13]. MCUDA has limitations in handling some language-level features, for which, 

manual modifications are conducted.
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• Merging Version: This version is the result from the merging-oriented solution de

scribed in Section 4.1.2. It is based on a straightforward extension to the basic 

SPMD-translation, but with issues on thread-dependent synchronizations addressed.

• Splitting Version: This version is the result from the dependence-based splitting- 

oriented solution described in Section 4.1.1.

C o rre c tn e ss  The correctness of the three versions are as expected. For the three pro

grams containing critical implicit synchronizations, some testing inputs cause the basic 

version to produce erroneous results. However, all testing results of the merging and split

ting versions are correct. Manual code analysis confirms tha t in both versions, the errors 

on the critical implicit synchronizations in the basic version are fixed. All three versions 

output correct results on TransposeNew and Sgemm  as they contain no critical implicit 

synchronizations.

E fficiency Figure 5.1 compares the performance of the three versions on the Intel machine 

when GCC is the compiler. Figure 5.2 shows the comparison on the AMD machine when 

ICC is used.

For the first three programs, it is im portant to note tha t the performance of the basic 

version is just for reference as they are erroneous. Because they give no treatm ent to implicit 

synchronizations, their code is the simplest and their executions finish the earliest. For these 

three programs, the performance comparison between the merging and splitting versions is 

more meaningful as both produce correct results.

For these three programs, the splitting version runs considerably faster than the merging 

version on the Intel machine especially on reduction and sortNet. The main reason is tha t 

the merging-oriented approach creates many small loops, and the loop overhead causes sig

nificant performance influence. The splitting-oriented approach, on the other hand, creates 

loops only when necessary based on the dependence analysis.
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□ b as ic sp litt ingm e r g in g

z  0 .5

eg reduction sortNet sgemm transpose
Benchmarks

Figure 5.1: Running times on the Intel machine, normalized to the execution times of the (erro
neous) basic SPMD-translation results. (“sortNet” is SortingNetworks in short)

The case of CG is trivially different in tha t the merge based version for this benchmark 

is created using more aggressive strategy, resulting in larger loop bodies and lower loop 

overhead due to implementation limitations. Nevertheless the splitting version is still faster 

than  merging version, hence consistent with previous analysis.

As GCC has limited loop fusion functionality, it cannot remove overhead effectively. 

Because of that, we apply the commercial compiler, ICC, to the programs and run the 

same experiments on the AMD machine. As Figure 5.2 shows, the overhead of the merging 

version becomes smaller than on the Intel machine with GCC used, but is still substantial 

compared with the splitting version.

For the remaining two programs, all three versions are comparable as they are all cor

rect. The splitting version shows similar performance as the basic version, indicating the 

capability of the dependence-based solution for maintaining the basic efficiency of the pro
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□ b as ic sp littingm e r g in g

1
eg reduction sortnet sgemm transpose

Benchmarks

Figure 5.2: Running times on the AMD machine, normalized to the execution times of the (erro
neous) basic SPMD-translation results. (“sortNet” is SortingNetworks in short)

grams. The merging version still causes considerable overhead because of the many, small 

loops created.

Overall, the dependence-based splitting-oriented approach demonstrates the promise to 

serve as an effective solution to the correctness issue of the basic SPMD-translation. It 

is able to correct the compilation error with the basic efficiency of the compilation results 

maintained.

5.2 TLDG -Based Solution

In this section, we present experiment result using the TLDG framework on 3 benchmarks: 

re d u c tio n  and sortingN etw ork  from the CUDA SDK examples, and the CUDA version of 

the NPB CG benchmark, a conjugate gradient application. [1] All three benchmarks demon

strate both explicit and implicit synchronizations. While our TLDG-based translation also
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treats implicit synchronizations during the process, our evaluation mainly focuses on the 

improvement of program performance.

To test the performance of our framework, our experiment was carried out on a quad-core 

Intel Xeon E5460 machine, with Linux(2.6.33) and GCC(4.1.2) installed. The compilations 

always use the highest level of optimization supported.

5.2.1 Versions

For each benchmark, we create 4 versions to compare the effect of our optimizations.

• Baseline: This version is generated by MCUDA, currently the best known source- 

level SPMD-translation tool available to the public. We introduced slight manual 

modifications in the program to make the different versions’ results more comparable. 

Note tha t the translation results from this version might not be correct.

• Merged Version: W ith a simple extension to the MCUDA approach we can address 

the correctness pitfall, at the cost of large amount of small loops and increased lop 

overhead. This version is generated by first identifying all synchronizations of both 

kinds within the program and then treating them in the same way, which means 

tha t the statements between every pair of implicit synchronizations will also become 

a separate loop. We then employ existing compiler loop fusion techniques on the 

generated code to produce more efficient program.

• Split Version: Statement-level dependence analysis can potentially discover critical 

implicit dependences and insert appropriate barriers (i.e., loop fission) just at the crit

ical points. This approach may avoid the drawbacks of the merge version in creating 

too many small loops. In this experiment, we implement this statement-level approach 

through manual code analysis and generation. A comparison with this approach will 

show the benefits of the fine-grained analysis by the TLDG-based method.

• TLDG-basic Version: As discussed in section 3.2, this version is based on instance- 

level dependence analysis within the block using code generation. The generated code
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does not maintain the block-level loop structure like all 3 version above. Instead, 

i t ’s in the form of a completely unrolled large linear function body repeated in the 

warp-level loop. All condition calculations are preserved in this version

• TLDG-opt Version: Based on TLDG-basic version, multiple optimization techniques 

are applied to obtain smaller code size and better memory access pattern, for example 

redundancy removal and reordering. Compile time condition calculations are built into 

code generation.

5.2.2 Experim ent R esults

■  baseline

■  merge  

F3 split

■  TLDG-basic

■  TLDG-opt

reduction sorting CG

Figure 5.3: Relative performance compared to (incorrect) baseline version.

In our experiment, the timing results correspond to the entire-kernel execution for 

re d u c tio n  and sortingN etw orks, while for CG-CUDA, the it corresponds to the time spent 

in the 2 reduction bodies on the common array.
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In figure 5.3, we compare the performance of the 5 versions presented in the previous 

subsection, all normalized against the incorrect baseline version. The first thing to notice 

the merge version lags behind all other versions with considerable slowdown. This is because 

the merge version relies entirely on the automatic compiler loop fusion in GCC to alleviate 

the extra loop overhead brought by over-conservative treatm ent of implicit synchronizations. 

The split version always demonstrates similar(but not better) performance as the baseline, 

proving the effectiveness of statement-level dependence analysis and the moderate overhead 

of the synchronizations inserted based on the analysis.

The TLDG-based version outperforms all other versions significantly in 2 of the 3 bench

marks even without further redundancy removal. One reason for such advantage is the 

compiler being able to optimize the linear code in TLDG version as an extremely large 

basic block. Both the compiler and processor pipeline therefore would have sufficient space 

to re-schedule and fuse the instructions. The reference reordering within each round in the 

CPU code also helped maintaining a necessary degree of memory locality.

The one exception is re d u c tio n , where TLDG-based version showed worst performance 

among all versions. One factor tha t might contribute to this result lies in the implementation 

details. Since the original loop structure is broken and then fused into a bigger function 

body, adjacent DRUs from the same GPU thread might be separated by large number of 

instructions from other threads. To avoid introducing unnecessary variables renaming, we 

instead introduced a temporary buffer in the generated code to store the middle results of 

each DRU, as well as its own thread id to cope with the frequent condition calculations in 

the re d u c tio n 5  kernel. As shown in figure 4.5 a and b, this buffer is implemented as a hash 

table to enable rapid loop-up for the latest stored value of a particular GPU thread. Such 

design however, introduces some additional memory accesses in TLDG-based version when 

compared to all other versions. W ith only 2 explicit synchronizations per kernel invocation 

in the re d u c tio n  benchmark, the time saving from enlarged basic block in the CPU code 

is not sufficient to outweigh this overhead. In CG, the synchronizations are repeated in a 

loop, while in sortingN etw orks, the there are large numbers of memory load and store
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from the swapping process. Both cases provide sufficient optimization space in the CPU 

code for the compiler to take advantage of.

The fifth bar in each group shows the effect of redundancy removal. The speedup can 

be directly attributed to the downsized CPU code with all useless operations and condition 

calculations removed. Again on CG benchmark with larger kernel size and block size(512) 

our framework yielded better performance. R eduction also have dramatical speedup, mak

ing TLDG-based version the most efficient even for this benchmark and clearly indicating 

the superiority of the instance-level dependence analysis approach. The shrink of code size 

from redundancy removal is also significant, namely 6.8x and 8x for re d u c tio n  and CG, 

respectively.
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R elated Work and Conclusion

6.1 Related Work

A number of previous works have aimed at automatic compilation of GPU program onto 

CPU. MCUDA [13, 12] and Ocelot [11]) both use an iterative execution framework based 

on the original GPU code structure to take advantage of its data and logical regularities. 

However, neither addresses the implicit synchronization pitfall. Given the large number of 

programs using this intrinsics, the correctness concern is unavoidable. Furthermore, the 

cost of maintaining much of the original threading structure in CPU is excessively strict 

constraints and waste of CPU time on useless operations.

NVIDIA provided a native emulation tool for running CUDA programs on CPU focuses 

on easing the debugging on GPU rather than improving performance [2]. under emulation 

mode, the programmer needs to manually insert macros to judge the current device at 

runtime, and insert __syncthreads() when it finds itself running on CPU. Although CUDA 

emulator provides the capability to run GPU program on CPU, its pure manual usage 

dictates it unsuitable for general GPU-to-CPU compilation. A similar case lies in OpenCL. 

While it provides implicit synchronizations to the programmer, it does not specify how 

they should be treated differently on different platforms, and the programmer again has to 

manually ensure the correctness of the cross-platform compilation. [4]

There have been many studies trying to ease GPU programming. A common approach

45
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is pragma guided semi-automatic OpenMP to CUDA compilation. [7, 18]. Others have 

proposed extensions to CUDA or OpenCL (e.g. [20]). Dynamically optimization of GPU 

executions through either software (e.g. [16, 10, 26, 9, 21, 27]) or hardware (e.g. [19, 23, 14]) 

techniques is also a well-studied area during recent year. However, to our best knowledge, 

there are no existing studies focusing on the efficient compilation of synchronizations on 

GPU; neither has instance level redundant work elimination on GPU been discussed in any 

previous works.

6.2 Conclusion

GPU-to-CPU translation plays a central role in the design of synergistic heterogeneous sys

tems. Previous translation schemes failed to take into consideration the difference between 

GPU and CPU in programming model, execution model and underlying performance as

sumptions, therefore their translation result are often incorrect or inefficient. The problem 

lies in the understanding of the hierarchical logical structure of GPU program, the semantics 

of GPU specific intrinsics, and the constraints they impose on the translation.

This thesis first presents an SPMD-translation dependence theorem, and then propose 

two novel dependence analysis methods to reveal the impact of data  dependences on the cor

rectness and performance of GPU-to-CPU translation. The coarse-grained reference level 

dependence analysis demonstrates the relations between data dependences and the cor

rectness of SPMD-translation regarding implicit synchronizations, while the TLDG-based 

instance-level dependence analysis captures fine-grained data  and control dependence in 

the program, and uses the information to analyze the performance penalties resulting from 

naive translation of explicit and implicit synchronizations used in previous frameworks.

The second half of this thesis introduces systematic solutions for fixing the correctness 

and performance issues in current SPMD-translations. We propose several extensions to 

the current translation schemes to guarantee the correctness. Then we present a TLDG- 

based framework to use the fine-grained dependence analysis results for code generation and
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useless computation elimination. Experiments show tha t the coarse-grained dependence- 

based extensions solve the problem effectively, with correct and efficient code produced for 

all tested benchmarks, while the TLDG-based fine-grained solution can further improve the 

performance of translated programs significantly.

On the high level, this work, for the first time, systematically examines the complexities 

tha t device-specific synchronizations create for heterogeneous computing. The extraction of 

the dependence information and the resulting extra flexibility may benefit practices beyond 

CUDA-to-CPU compilation.
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