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ABSTRACT PAGE

Poly(vinyl chloride) (PVC) is the second most commonly used thermoplastic 
produced by the chemical industry. Unfortunately, PVC can undergo thermal degradation 
relatively easily, a process which generates volatile organic compounds that are smoke 
producers in fires. This thesis attempts to understand the smoke suppression and fire 
retardance of poly(vinyl chloride) containing various metal-exchanged montmorillonite and 
zeolite additives. The additives were blended with PVC and molded into plaques 
incorporating the resulting formulations. These plaques were burned in a cone calorimeter 
together with control PVC plaques that contained no metal compounds. By using a 
computer program, variables such as the time to ignition, specific extinction area, total heat 
released, total smoke released, etc., were measured and assessed in order to determine 
the effectiveness of the metal additives in smoke suppression and fire retardance.
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Introduction

Poly(vinyl chloride) (PVC) is a very commonly used plastic that is an extremely 

valuable product of the chemical industry. As compared to many other chemical 

materials, PVC is relatively inexpensive, safe to work with, and easy to manipulate. 

Some of the many uses for rigid PVC are as replacements for building materials (such as 

wood and clay), water and sewer piping, siding, magnetic strip cards, window profiles, 

and various toys. 1 In its softer (plasticized) form, PVC is used to create upholstery, 

resilient flooring, roofing membranes, electrical cables, and lightweight hobby artillery. 1

Chemically speaking, poly(vinyl chloride) is produced by the free-radical 

polymerization of the monomer, vinyl chloride (see Figure 1). The polymer is a hard 

plastic that is made softer and more flexible by the addition of plasticizers, the most 

widely used of these being phthalates. In the laboratory, we primarily deal with PVC in a 

white powdery form to which a liquid plasticizer may be added. The polymer was 

actually discovered accidentally, first in 1835 by Regnault, and then in 1872 by 

Baumann.1 It appeared as a white solid inside flasks of vinyl chloride that were exposed 

to the sun. Many early scientists attempted to use PVC in commercial products, but 

problems in fabricating the rigid and brittle polymer made such usage quite difficult. 

Figure 1: Polymerization of vinyl chloride
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Since this study deals with the fire retardance and smoke suppression of PVC, the 

thermal degradation of PVC at elevated temperatures must be critically examined.

Poly(vinyl chloride) is a relatively unstable polymer that undergoes dehydrochlorination 

upon heating to form conjugated polyene sequences. 1 Many researchers have spent 

countless hours examining when and from where in the polymer chains the HC1 loss 

begins and what is the associated step-by-step mechanism of this process.

Since HC1 is a strong acid, its release into the environment after heating and 

thermal degradation is of very serious concern because of its many deleterious effects. 

Therefore, many studies deal with the prevention - or at least the delay - of thermal 

degradation. This objective is accomplished by adding various stabilizing additives 

(frequently, new substances synthesized in the laboratory), which may also help to 

promote the fire retardance and smoke suppression of PVC.

As already noted, the dehydrochlorination of PVC forms hydrogen chloride (HCl) 

and a polyene. After the fact, the HCl causes more dehydrochlorination to occur.2 A gross 

simplification of the overall process can be seen in Figure 2.

Figure 2: Release of HCl

a. Release of HCl and formation of a conjugated polyene

A
-(CH2CHClXr ------------ ► -{CH CH V + nHCi



b. Catalysis of dehydrochlorination by HCl
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Figure 3 displays the various degradation pathways of PVC in fire situations. 

Most importantly, the two major byproducts of burning PVC, smoke and char, are shown. 

In one pathway, when PVC is heated and then burned, it is thermally degraded to form a 

cis,trans polyene, which then will generate benzene, whose combustion creates smoke. 

On the other hand, both cis,trans and all-trans polyenes form a cross-linked polymer, 

which will then form char. From previous studies, it has been determined that plasticized 

PVC produces much more smoke than char.3 It has been generally seen that adding 

copper-based additives to plasticized PVC significantly reduces smoke emission and 

increases the char yield, which is given by (I0 0 )(mass after bum)/(mass before bum).J

3



Figure 3: Degradation of PVC in fires

Benzene ------- ► Smoke

Cis,frans polyene

PVC Cross-linked polymer

All-trans polyene

Char

A major purpose of this thesis is to examine, by means of cone calorimetry, the 

smoke suppression and fire retardance of PVC that are promoted by some new copper 

additives. When PVC undergoes combustion, its thermolysis can generate many volatile 

aromatics in addition to benzene that are smoke producers. 3 Also, when it is burned, the 

cross-linked char that it forms produces aliphatic hydrocarbons in large fires.3 These 

substances bum without creating much smoke, but unfortunately, they are excellent 

fuels.4 The copper additives being studied by the Starnes group promote the formation of 

a char which is stable at very high temperatures and is produced without the concurrent 

formation of volatile aromatic compounds. The cross-linking (charring) mechanism is 

promoted by zerovalent copper formed in situ and is shown in Figure 4, where RCl 

represents a segment of PVC.3 These reactions show the changes in the oxidation state of 

copper as the PVC is degraded.
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Figure 4: Copper oxidation states during PVC combustion
Cu(II) + Degraded PVC -> Cu(I) 

Cu(I) + Degraded PVC -> Cu(0) 

2Cu(I) -» Cu(II) + Cu(0)

2RC1 + Cu(0) -> R-R + CuCi2

Orski commented on the structural defects in PVC that cause the thermal instability 

which leads to dehydrochlorination.6 These structural defects arise from multiple “errors” 

of polymerization during the formation of the polymer.2 Though many errors occur, only 

two will be considered here. The defects that they produce are an internal ally! chloride 

structure and tertiary chloride groups that result from branching. These two structural 

defects incorporate a labile chlorine that can be easily removed from the PVC chain. 

Figure 5 depicts both of these structural anomalies.

Figure 5: Thermally unstable structural defects in PVC

During burning and thermal degradation, a Friedel-Crafts alkylation occurs that 

promotes cross-linking, especially when a Lewis acid additive is present. By definition, a 

Lewis acid is any molecule that can accept a pair of electrons and thereby form a
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coordinate covalent bond. Lewis acids are electrophiles and are most likely to react in the 

LUMO (Lowest Unoccupied Molecular Orbital). The reactivity of Lewis acids is 

primarily assessed in terms of the Hard-Soft-Acid-Base (HSAB ) theory. This theory 

states that “hard” refers to certain species which are relatively miniscule in size, have 

highly charged states in nature (for acids), and are weakly polarizable. On the other hand, 

“soft” describes species that are large, have low charge states, and are strongly 

polarizable. As studied in elementaiy polymer chemistiy, cross-linking (along with 

entanglement) makes the polymer more rigid and thermally stable and causes it to have a 

higher melting point, as well.

The specific acid-catalyzed cross-linking mechanism (see Figure 6 ) occurs when 

a chloride anion is removed from PVC in order to form a carbocation intermediate. This 

intermediate then attacks an alkene double bond to produce the aforementioned cross

link. When this process occurs repeatedly and subsequent extensive dehydrogenation 

occurs, char is formed. Therefore, after a bum, the higher the char yield from PVC, the 

better the additive has worked in fire retardance. This mechanism of degradation also 

tends to prevent the formation of the aromatic smoke producers such as benzene, which is 

an essential step toward our eventual goal of the smoke suppression of poly(vinyl 

chloride).
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Figure 6: Cross-linking by Friedel-Crafts alkyiation
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As we have seen, the thermal degradation of PVC involves dehydrochlorination, 

which removes a hydrogen cation and a chloride anion to form hydrogen chloride (HCl) 

and a conjugated polyene. However, one must consider that in the presence of a strong 

Lewis acid at very high temperatures (well above 300°C), cross-linking will not be a 

significant factor. The char will be broken down through a process of “cationic cracking”, 

in which the previously beneficial Lewis acid promotes the formation of aliphatics that 

further exacerbate the situation by burning very readily, though without the production of
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much smoke. This enhanced combustion can be a major problem in large fires.7 It has 

forced the examination of other additives for PVC that are not Lewis acids.

Pike et al. found that high-surfaee-area oxide-free copper and other 

zerovalent metals promoted the reductive cross-linking of allylic chloride moieties in 

PVC.7 They found that zerovalent metals that were simply mixed with the polymer as 

such served as ineffective smoke suppressants, since the metal powders were subject to 

rapid surface air oxidation. The authors actively researched potential smoke suppressants 

that were compounds which could decompose thermally to liberate a free metal. Several 

copper(I ) compounds were prepared to be used as effective fire retardants and smoke 

suppressants. Such compounds are desirable to the chemical industry because they lack 

color, and the thermal stability of the coppeifi) center can be altered with the usage of 

specific ligands. Simple Cu(I) halides such as CuCl, CuBr, and Cul gave significantly 

lower mass loss rates in comparison to those obtained with other additives. The 

importance of this study was underscored by the observation that the cross-linking caused 

by low-valent metal compounds generally occurred very rapidly with minimal mass 

losses and little evidence of C C formation, as opposed to the results obtained with 

Lewis acidic metal chloride additives. Therefore, these findings corroborated the idea of a 

mechanism for PVC cross-linking with reductive coupling (mostly at allylic sites) rather 

than acid catalysis.

The Starnes research group has used many copper-based additives as smoke 

suppressants and fire retardants for PVC. As implied by Figure 4, a single zerovalent 

copper atom can prevent the further dehydrochlorination of two long polymer chains.7 At 

extremely high temperatures in degrading PVC, Cu(I) is reduced to Cu(0), which can

8



abstract two allylic chlorines from two PVC chains and thereby form a carbon-carbon 

bond (a cross-link) in the reductive coupling process that has already been illustrated (see 

Figures 4 and 7).7 Moreover, both Cu(II) and Cu(I) can accept ligands that modify their 

reactivity.

Figure 7: Reductive coupling mechanism for cross-linking
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Another important consideration is the thermal stability of PVC. Many 

experimental results have shown that the thermal stability of pure PVC is much lower 

than it should be had thermal dehydrochlorination commenced only from head-to-tail 

monomer unit s.28 10 Therefore, anomalous structures (structural defects) that have lower 

stabilities were proposed to be present in PVC, a situation which means that these defects
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act as starting points for the sequential losses of HCl that generate polyene sequences. 

The virgin PVC polymer contains only four specific types of defects that contribute to its 

thermal instability. These are the internal allylic, 2,4-dichloro-«-butyl branch, long 

branch, and 1,3-di(2-chloroethyl) branch structures.2 The Starnes laboratory previously 

determined their concentrations by using NMR methods. It was found that the 

concentrations of the di(2-chloroethyl ) defect were so low that its contribution to the loss 

of thermal stability was negligible.2

The autocatalysis of PVC dehydrochlorination implies that the HCl produced 

during the process accelerates the rate of thermal degradation. Early on, the degradation 

is accompanied by an increase in the number of polyene sequences, a situation which 

involves the initiation of polyene growth from monomer units that were previously 

stable. This initiation is now known to result from the formation of cation radical 

intermediates. 11 The HCl could also catalyze the growth of existing polyenes or reactions 

that inhibit cyclizations which shorten polyene lengths.8

Additives for PVC that promote stabilization often replace the labile chlorine in 

an unstable structural defect (including the chloroallylic end of a growing polyene) by 

groups that are less easily removed by heat.8 Many effective thermal stabilizers of PVC 

are the salts of various metals. They are sufficiently basic to neutralize HCl, which also is 

a very important function of these additives.8 The stabilizers that replace labile halogens 

frequently are salts represented by the formula MY2, where M is a metallic cation, and Y 

is an organic anion such as thiolate or earboxylate.

In certain cases where strong Lewis acids, such as zinc chloride, are formed in 

situ, these species may catalyze dehydrochlorination during heating. This problem can be

10



alleviated by using certain mixtures of metal salts whose communal action as stabilizers 

can be synergistic.8

There are specific mechanisms of initiation by internal allylic and tertiary chloride 

structures in PVC that make them important as labile structures. Evidence has shown that 

they dehydrochlorinate thermally in the condensed phase by mechanisms involving ion 

pairs or polar concerted transition states.2

Free-radical mechanisms for the growth of conjugated polyene sequences during 

the anaerobic thermal degradation of PVC have been studied extensively. However, such 

a mechanism is now known to be responsible only for the formation of new polyene 

sequences, rather than for the growth of polyenes per se. 11

Furthering our discussion of copper, we must distinguish between its two most 

common valence states, copperd) and copper(II). Copperd) is a relatively polarizable 

species whose stability increases greatly when it is joined with polarizable ligands. On 

the other hand, copper(II) is more stable than copper(I). However, a problem arises when 

dealing with copper(II). Copper(H) generally has a strong blue (sometimes blue-green) 

color, which is not very useful to the polymer industry. For practical reasons, the polymer 

industry desires colorless additives that are more appealing to the market as a whole. 

Therefore, the generally colorless coppeif l) may be preferred over copper(II) in certain 

instances, even though it is less thermally stable. The incorporation of various ligands 

into copper(II) complexes is also utilized to reduce the blue color. In the Starnes 

laboratory, copper sulfate pentahydrate (CuSO j-StTO) has been the primary source of 

copper(II). On the other hand, copperd) can be obtained from a variety of sources such as

11



cuprous iodide or cuprous chloride, and also through the reduction of copper(II) by the 

use of hydroxylamine, as seen below.

NH2OH(aq)
CuS(V5H20  ------------► Colorless Solution of Copper(I)

Though we did not see a completely colorless copper(I) solution, the color 

changed from dark blue to a very light blue, a result which allowed us to surmise that 

NH2OH serv ed as a satisfactory reducing agent and reduced most of the copper(II) to 

copper{l). Many other copper additives were utilized, such as CuCl2, Cul, Cu(I) thiourea 

(Htu), Cu(I) ethylenethiourea (Etu), and Cu(I) N, N  ’-dimethylthiourea (Dmtu) (see Figure 

8). The data obtained from burning PVC plaques containing these additives were 

compared to the results obtained from control PVC plaques containing no additives at all.

Figure 8: Structures of ligands for copper(l)
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Experimental

Before we repeated the synthesis of the copper compounds in order to obtain 

enough of them for experimentation, we first produced small amounts to see if we were 

obtaining acceptable percentage yields.

Additive Synthesis

Dr s. Starnes and Pike, Yuichi Matsuyama, and Sara Orski provided instructions 
regarding the following preparations.

Synthesis of copperd) ethylenethiourea sulfate [CuzfEtu^JSCL

A mixture of 4.0 g (16 mmol) of CUSO4-5H2O, 8.178 g (80.05 mmol) of 

ethylenethiourea (Etu), and 200 mL of UltraFiltered Deionized (UFDI) water was heated 

and stirred on a hot plate until the blue color of the copper(II) had completely 

disappeared. The solution was then boiled for approximately 0.5 h, and a yellow 

precipitate of sulfur formed Afterwards, the hot mixture was filtered quickly with 

suction, and the filtrate was cooled in an ice bath and then refrigerated overnight. The 

resultant white precipitate was recovered by suction filtration, washed well on the filter 

with ether, methanol, and ethanol in succession, and then dried in an oven at 50°C 

overnight. The final weight of the complex was 2.30 g (33.5% yield).

Synthesis of copperd) thiourea sulfate [Cu2(Htu)5S0 4 ]-2H20

A mixture of 200 mL of UFDI water, 12.00 g (157.6 mmol) of thiourea (Htu), and 

7.87 g (12.0 mmol) of CuS04*5H20  was heated and stirred on a hot plate to produce a 

white suspension, which eventually yielded a yellow solution containing a yellow 

precipitate. This mixture was heated under reflux overnight and then filtered while hot 

through Celite. Afterwards, the filtrate was cooled in an ice bath and stored in a 

refrigerator overnight. The beige precipitate was collected via suction filtration and

13



reciystailized from 200 mL of boiling water. The recovered crystals were then dried in 

the oven overnight at 50°C .They weighed 6.52 g and thus represented a yield of 67%. 

Synthesis of rCiu(Dmtu)i iKSCL)?

A mixture of 100 mL of acetonitrile, 4.10  g (39.4 mmol) o f N ,N’~ 

dimethylthiourea (Dmtu), and 1.97 g (7.8 mmol) of CuS04*5H20  was stirred and heated 

under reflux overnight. The resultant precipitate, an off-white powder, was isolated by 

suction filtration and washed in succession on the filter with acetonitrile and ether. This 

product was dried in the oven at 50°C overnight to a weight of 2.18 g, which 

corresponded to a 35% yield.

Synthesis of copperd) molvbdate

There are two different ways to synthesize copper(T) molybdate (Q 12M0O4). Both 

methods were attempted in order to identify the best approach. The reactions involved 

can be seen in Figure 9.

Figure 9: Proposed syntheses of copper(I) molybdate

80°C„ H20

1. C U 2 O + M 0 O 3  ---------------------- ► CU2M 0O4

2. CuCl + HCl(conc)---------------- ► H+ CuCh (yellow solution)

V2 N a 2M o 04*2H 20  ( a q )

▼

C u 2M o 04 +  N a C l +  H C l
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All of our copper(I) molybdate products were obtained from the second synthesis, 

since, in order to succeed, the first synthesis would actually require a high-temperature 

furnace. However, there was a problem in using them as smoke suppressants and fire 

retardants of PVC, in that they were dark brick-red in color. When blended with PVC, 

they produced very highly colored plaques. Upon knowing this result, the plastics 

industry would deem C112M0O4 to be unacceptable as a smoke suppressant or fire 

retardant for PVC. Therefore, extensive cone calorimeter bums were not conducted with 

the plaques containing this additive.

Atomic Absorption Spectroscopy (AAS)

Atomic absorption spectroscopy (AAS) was utilized as a technique for 

determining copper content.12 By using this method, the concentrations of some 62 

different metals can be determined in solution. The technique makes use of a flame to 

atomize the sample. However, other atomizers, such as a graphite furnace, are also used.

There are three definite steps involved in turning a liquid sample into an atomic gas. 

The first step is desolvation, where the liquid solvent is evaporated, and thus the dry 

sample remains. The next step is vaporization, in which the solid sample vaporizes into a 

gas. Lastly, there is atomization, wherein the compounds making up the sample are 

broken into free atoms. Light focused into the flame is produced by a hollow cathode 

lamp. Within each lamp, there is a cylindrical metal cathode containing the metal for 

excitation and an anode. When a high voltage is applied across the anode and cathode, 

the metal atoms in the cathode are excited into the production of light with a certain 

emission spectrum. The electrons of the atoms in the flame can be promoted to higher

15



orbitals by absorbing a set quantity of energy. This amount of energy is specific to a 

particular electronic transition in a particular element. As the quantity of energy put into 

the flame is known, and the amount remaining can be measured by the detector, it is 

possible to calculate how many of these transitions took place and thus to get a signal that 

is proportional to the concentration of the element being measured. An AAS instrument 

is shown in Figure 10, and the procedure employed for Cu analysis is described in the 

next section.

Figure 10: Atomic absorption spectrometer

16



AAS Procedure and Results13

Weigh out 11-13 mg (exact to 0.1 mg) of sample in a 2-dram vial Add about 25 

drops of concentrated nitric acid Warm the mixture on a hot (not boiling) water bath for 

about 5 min. Rinse a 100-mL volumetric flask twice with ultrafiltered deionized (UFDI) 

water. Add about 2 mL of UFDI water to the vial. Quantitatively transfer the 

copper/water/nitric acid mixture to the volumetric flask with a Pasteur pipet. Rinse the 

vial with UFDI water by using the same pipet three times; be sure to transfer the liquid 

quantitatively. Fill the volumetric flask exactly to the mark with UFDI water. Invert the 

volumetric flask thrice to mix. If solids are present, sonicate the volumetric flask mixture 

for 10 min.

Rinse a 25-mL volumetric flask twice with UFDI water. (If suspended solids are 

present in the 100-mL volumetric flask, filter about 15 mL of the mixture through a pipet 

filter containing Celite into a vessel which has been pre-rinsed with the solution.) Rinse a 

1-, 2-, 3-, or 5-mL (see below) volumetric pipet with the solution (filtered if necessary ) 

from the 100-mL volumetric flask. Volumetrically pipet 1.0,2.0,3.0, or 5.0 mL from the 

100-mL flask into the 25-mL flask. The volumetric pipet is calibrated to deliver (not to 

contain), so do not blow out the remaining drop in the tip. Fill the 25-mL volumetric flask 

exactly to the mark with UFDI water. Invert the volumetric flask thrice to mix.

Note on the choice of 1,2, 3, or 5 mL to pipet into the 25-mL volumetric 

flask: The choice depends on the theoretical copper content of the sample. The table 

below should be used to guide in the choice.

17



Theoretical copper content (%) Pipet volume of choice (mL)

20-50

10-20 2

6-10

2-6 5

Preparation of Standards:

Rinse six 100-mL volumetric flasks thrice each with UFDI water. Rinse a 1.0-mL 

volumetric pipet with the commercial 1000-ppm copper standard solution.

Volumetrically pipet 1.0 mL of the 1000-ppm copper standard into a rinsed 100-mL 

volumetric flask. (Note the proper use of the volumetric pipet as described above. ) Add 

two drops of concentrated nitric acid. Fill the volumetric flask exactly to the mark with 

UFDI water. Invert the volumetric flask thrice to mix. This is now a 10 -ppm( 10,000-ppb) 

standard stock solution.

Rinse 5.0-, 10.0-, 15.0-, 20.0-, and 25.0-mL volumetric pipets with the 10-ppm 

standard. Pipet these amounts of the 10-ppm standard into the five remaining volumetric 

flasks. Add two drops of concentrated nitric acid to each. Dilute each flask to the mark by 

using UFDI water. These are now 500-, i 000-, 1500-, 2000-, and 2500-ppb standards, 

respectively.

The standards were used in order to form a calibration curve that allowed us to 

calculate the concentration of each metal solution. Once each concentration was 

determined, that allowed us to calculate the experimental percentage of copper in the
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starting sample. This percentage was then compared to the theoretical percentage of 

copper in a compound. Table 1 show's that the agreement was satisfactory in every case. 

Table 1: Copper analysis using A AS

Compound Experimental % Cu Theoretical % Cu % Difference (Error)

[Cu2(Htu)5]S04*2H20  19.10 20.44 5.29

[Cu2(Etu)6]S0 4  14.87 14.99 0.81

Cu2Mo04 45.00 44.25 1.67

Palatinol 79P

Palatinol 79P is an excellent commercial plasticizer for PVC, It was obtained 

from BASF as a colorless viscous liquid. Figure 11 shows that it is a mixture of esters 

derived from trimellitic acid and a mixture of alkanols containing 7 or 9 carbon atoms. 

Figure 11: Structure of Palatinol 79P

O

o
Where n, m = 7 or 9 

Preparation of PVC Plaques

The standard procedure involved blending 40 g of pure PVC (containing no 

additives and from a commercial source) with 30 phr (parts by weight per hundred parts
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of PVC), or 12 g, of Palatinol 79 P. The mixture was thoroughly homogenized by using a 

mortar and pestle. Such mixtures were made into plaques, as described below, and used 

as control samples for comparison with our other plaques that contained the copper-based 

additives. For those plaques, 4 g (10 phr) of each additive was added to the PVC- 

plasticizer mixture. Heating and shearing (which will be discussed later), using a 

Biomixer®, was conducted with mixtures of plasticizer and copper-exchanged clay 

before combining these materials with the polymer.

The mixture containing the PVC, the additive, and the plasticizer was evenly 

distributed across the bottom plate of a stainless steel mold whose dimensions were 100 

mm x 100 mm x 3 mm (thickness). A corresponding stainless steel top plate was 

attached, and the mold was then placed on a Model C Carver press (see Figure 12). The 

press heated the mold at approximately 300°F and compressed it at 20,000 pounds per 

square inch (psi). Pressure and heat were applied for approximately 9 minutes, and the 

mold was then removed and allowed to cool. Frequently, the two parts of the mold were 

very difficult to separate from one another. A metal spatula was utilized to facilitate their 

separation. The cooled PVC plaque was trimmed around its edges with scissors in order 

to remove any excess material and to maintain a symmetrical shape.

After being heated and pressed for 9 minutes, the plasticized PVC plaque is 

brownish/beige in color and relatively transparent. Before cooling to room temperature, 

the plaque is very flexible, but once it cools, it becomes veiy rigid and brittle.
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Figure 12: Carver press

Copper-Exchanged Clay

For purposes of practicality, copper(II) additives usually are not added as such to 

PVC, owing to their bluish colors, which are undesirable for commercial products. 

Instead, the Cu(II) can be exchanged into natural clays. The particular clay that we used 

is sodium montmorillonite (Na-MMT). The basic procedure for forming the copper- 

exchanged clays involves heating and stirring a mixture of Na-MMT (50 g) with a 

solution of a copper compound (4-5 g) in 200 mL of UFDI water. The mixture is stirred 

and heated at 90-95°C overnight by using a magnetic stirrer and a hotplate. Many 

methods exist for isolating the exchanged clay. Most commonly, it is collected by suction 

filtration, washed repeatedly on the filter with water, and dried in an oven overnight at
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40-50°C. Figure 13 shows pictures of the powdery Na-MMT and the hard and brittle Cu- 

exchanged MMT.

Figure 13: MMT

a. Na-MMT

b. Cu-Exchanged MMT

As a result of this process, a copper-sodium cation exchange takes place in the 

gallery space that separates the aluminosilicate layers of the clay. This chemical reaction
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leads to noticeable changes in physical properties. First, the color of the copper- 

exchanged clay frequently is a dark brown, as opposed to a very light yellowish-brown 

for the unexchanged clay. Also, the unexchanged clay is a very finely divided powder, 

while the exchanged clay is very hard and brittle. Figure 14 shows visual representations 

of how plaques appear upon being removed from the press. The Starnes research group 

observed that Cu-MMT-containing PVC plaques that had been made without heating and 

shearing were very heterogeneous, with pieces of clay dispersed throughout the plaques 

randomly. In contrast, similar plaques that had been prepared with heating and shearing 

appeared very homogeneous, with the additive dispersed uniformly in the plasticized 

polymer. Intercalation of plasticizer into the gallery space of the clay also is believed to 

take place primarily during heating and shearing.

Figure 14 also contains a picture of the remains of a PVC plaque with a Cu-MMT 

additive after burning. The char after burning has a distinct red color that is believed to 

signify the reduction of Cu(II) to Cu(I) during burning to form reddish cuprous oxide. 

Figure 14: PVC plaques 

a. Control PVC plaque
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b. PVC plaque with Cu-MMT (no heating and shearing)
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d. Char remains of Cu-MMT PVC plaque after burn

The Na-MMT clay can be copper-exchanged with many copper additives. For our 

experimentation, we exchanged the Na-MMT clay with Cu(II) from CuSCVStfeO and 

with Cu(I) from Cu(I)Htu and Cu(I)Etu. Copper analysis by atomic absorption 

spectroscopy was used in order to determine if the desired exchange was complete. 

Scheme 1 shows a calculation from the Starnes laboratory that allows us to determine the 

theoretical percentage of Cu(II) in a completely exchanged MMT clay.
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Scheme 1: Calculation of theoretical copper content

The manufacturer tells us that the Na-MMT clay has a cation exchange capacity (cec) of 
92.6 meq/100 g = 0.0926 equiv/100 g.

0.0926/[(2X100)] = 0.000463 equiv/g (for C u2+), where the C42” in the denominator 
denotes a + 2  charge for copper.

Multiply by the atomic mass of copper: (0.000463X63.55) = 0.0294 g of C u2+.

Now take the cation exchange capacity and multiply it by the atomic mass of sodium: 
(0.0926/100) -  0.000926(22.99) = 0.0213 g of NaT

Subtract the mass of Na+ from 1 to get the mass of the aJuminosilicate:
1 - 0.0213 g = 0.9787 g of aluminosilicate.

0.9787 g aluminosilicate + 0.0294 g Cu = 1.0081 g total mass.

Now find the percentage of copper by dividing the mass of the copper by the total mass:
% Cu 2+ = (100) (0.0294)/( 1.0081) = 2.92% (after complete exchange)._______________

In order to verify complete exchange, the AAS instrument was once again 

utilized. In this particular example, 4 replicate C u2+ (C11SO4*5H2 0 )-exchanged clay 

samples were created for this purpose. The AAS procedure was the same as that 

described above, with the exception that 10 more drops of nitric acid was used in order to 

break down the copper-exchanged clays, which are very hard. Also, it was necessary to 

sonicate for a longer time in order to ensure the absence of suspended solid particles from 

the solution.

As shown by Table 2, the percentage errors were relatively small but large enough 

to be noticeable in some cases. This result can probably be accounted for by the presence 

of small amounts of solid particles containing undissolved copper.
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Table 2: Percentage of copper in Cu(II)-exehanged clays

Trial Experimental % Cu Theoretical % Cu % Difference

1 2.875 2.92 1.5

2 2.753 2.92 5.6

2.721 2.92 6.6

4 2.856 2.92 2.1

Usage of Other Metals

In addition to utilizing copper(II) sulfate for cation exchange in a 

montmorilIonite, we experimented with two other metals, zinc and aluminum. We 

accomplished their exchange by using zinc sulfate and aluminum sulfate, respectively. 

The usage of other metals allowed us to see if copper were unique in its ability to be used 

in clay as a fire retardant and smoke suppressant, or if other metals could be employed 

with similar results.

The zinc and aluminum cations are strong Lewis acids. This property may cause 

the zinc and aluminum additives to “tear up the polymer” by promoting premature 

degradation (dehydrochlorination) during heating with the Carver press. Therefore, 

deleterious effects could result that were counter to our original goals. However, our 

research also used mixtures containing two different metals. In such cases, we tested for 

synergism to see if the actual results were more beneficial than just the sum of the parts. 

In other words, we explored whether mixtures of metal additives were more 

advantageous as smoke suppressants and fire retardants than single additives containing 

just one metal.
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Zeolites

One problem with using copper-exchanged montmori I ionite clay was that the 

starting clay had a relatively low cation exchange capacity. Therefore, we attempted to 

find other media that could be substituted for sodium montmorillonite, and had 

considerably higher cation exchange capacities. Zeolites occur naturally throughout the 

world and can be synthesized in the laboratory as well.14 The framework of zeolites is 

made up of aluminosilicates. Usually, a silicon atom is in the middle, and oxygen atoms 

are at the comers. These tetrahedra can link together by their comers (see Figure 15) to 

form a rich variety of structures. The framework structure may contain linked cages, 

cavities, or channels which are of the right size to allow small molecules to enter; i.e., the 

limiting pore sizes are roughly between 3 and 10 A in diameter. With respect to our 

research, many synthetic zeolites are ideal for ion exchange. The loosely bound nature of 

their extra-framework metal ions (such as in zeolite NaA) means that these ions are often 

readily exchanged with other metal cations when in aqueous media. This property allows 

us to exchange easily and efficiently by using copper sulfate pentahydrate (as well as 

compounds of other metals) and heating and stirring overnight.

Our research led us to utilize synthetic zeolites, which are advertised to have 

higher cation exchange capacities. These zeolites are microporous crystalline solids with 

well-defined structures. They contain silicon, aluminum, and oxygen in their framework 

and cations, water, and/or other molecules within their pores. 14 However, in this 

particular case, because of the presence of various cations, sodium-copper cation 

exchange was not necessarily taking place. Therefore, our structural understanding of 

copper-exchanged zeolites is incomplete.
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Figure 15: Zeolite structure14

The Starnes group used three specific zeolites, BRZ zeolite, Z-Ultra zeolite, and 

St. Cloud zeolite. Each zeolite was heated and stirred overnight in order to accomplish 

exchange with copper(II) in an aqueous solution of copper sulfate. Atomic absorption 

spectroscopy (AAS) was performed on the samples to determine the percentage of copper 

in each zeolite after exchange. The percentages are recorded below.

Zeolite % Copper
St. Cloud 3.11
Z-Ultra 3.23
BRZ 3.77

Since the BRZ zeolite had the highest percentage of copper, we used it first and 

most frequently in our experimentation. However, we also tested the other exchanged 

zeolites as smoke suppressants and fire retardants for PVC.
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It is important to note that the copper-exchanged zeolites produce less color in 

PVC than copper montmorillonite additives. This is a significant result, because the 

chemical industry desires colorless additives for commercial viability.

Heating and Shearing

One of the most important aspects of this research has been the heating and 

shearing of mixtures of clay (or zeolite) and plasticizer before these two constituents are 

blended with PVC. In this case, all of the clay samples used were copper-exchanged 

sodium montmorillonite. Heating and shearing are believed to be important because they 

accelerate the incorporation of plasticizer into the gallery space of the clay. The 

plasticizer greatly increases the organophilicity of this space and thus should facilitate the 

subsequent intercalation of PVC between the alumi nosilicate sheets. Combustion of the 

nanocomposite thus formed should produce less heat and smoke than the combustion of 

plasticized PVC that has not been nanocomposited.15

Preliminary heating and shearing also increase the homogeneity of the PVC 

formulation. This result has been observed just by looking at the PVC/plasticizer/additive 

mixtures with the naked eye. Mixtures that were prepared with a mortar and pestle 

contained a plethora of small dark brown specks of the clay. On the other hand, when the 

Cu(II)-MMT clay had first been heated and sheared with the plasticizer for 5-10 minutes 

at 10,000 rpm by using the BioSpec BioMixer® shown in Figure 16, the final 

formulation appeared to be very homogeneous.
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Figure 16: Biomixer® with blade

lift.

Both heating and shearing are important for increasing homogeneity. When the 

clay and the plasticizer are heated and sheared simultaneously, even more homogeneity is 

observed than when heating is omitted. Simultaneous heating and shearing also are 

expected to maximize the incorporation of the plasticizer into the gallery space of the 

MMT.
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Cone Calorimetery

All of the plaques were burned by using a Fire Testing Technology cone

calorimeter. A cone calorimeter is an instrument that bums relatively small samples of

various materials and collects data on smoke emitted, heat release rate, and other

parameters related to combustion. The net heat of combustion of any organic material

corresponds to the amount of oxygen required. Approximately 13.1 megajoules of heat is

released per kilogram of oxygen consumed.16 A radiant electrical heater in the shape of a

cone irradiates the sample and thus causes it to bum. Smoke measurements are made in

the exhaust duct by a neon laser, using main beam and reference detectors. All of the data

are transferred to a compatible computer program that records and organizes the

information for each bum. The most important variables measured are total smoke

released (TSR), heat release rate (HRR), total heat released (THR), and mass loss rate

(MLR). A variable that is calculated manually (with information from the cone

calorimeter, of course) is the char yield (CY). The char yield tells us how much char is

left after the bum with respect to the mass of the unburned sample. The char yield is

obtained from the following equation:

Char Yield (CY) = (final mass) * 100%
(initial mass)

For our purposes, a higher char yield means a better fire retardant.

Table 3 provides a summary of the variables that the cone calorimeter 

measures,17 while Tables 4-6 and Figure 17 present some representative results of our 

cone calorimeter experiments. The results from many other bums supported the 

conclusions that could be reached from the data presented here.
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Table 3: Cone calorimeter variables

Parameter Abbreviation JUnit Description

Time to ignition TTI
!S

Time of sustained (>10 s) 
flaming

Specific extinction 
area (avg. and peak) SEAav, SEAok M2kg'1

Smoke produced per unit mass 
being volatilized

Total smoke released TSR j(unitless) Cumulative smoke produced
Heat release rate 
(avg. and peak) HRRav, HRRDk |kW m 2

Rate of heat release per unit 
sample area

Total heat released THR MJ m 2
Cumulative heat energy released 
per unit sample area

Mass loss rate 
(avg. and peak) MLRav, MLRDk a s ’

Mass of sample being volatilized 
per unit time

Effective heat of 
combustion (avg.) EHCav MJ kg'1

Heat released per unit mass 
volatilized

Char yield CY |%
Percentage of sample mass 
remaining after burning
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Figure 17: Graphs of data from Table 4
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c.

Peak Heat Release Rate (kW/m2)
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* All additives were heated and sheared for 10 minutes at 80-85°C unless otherwise noted. 
A Additive was heated and sheared for 5 minutes.
B These additives were mixed without heating and shearing.
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Cone Calorimetry Results and Data Analysis

According to the data in Tables 4 and 5 and Figure 17, the copper additives were 

indeed very effective for both the smoke suppression and the fire retardanee of PVC. The 

PVC plaques that contained the best copper-clay additives exhibited a total smoke release 

reduction of about 20% with respect to the control (additive-free) PVC. Average heat 

release rates were usually reduced by 60-70% for plaques that contained the copper clays, 

and their peak heat release rates also were greatly lowered in most cases. Total char 

yields increased by factors of ca. 1.5 to 6; the effective heat of combustion usually 

decreased by about a factor of 2; and the average mass loss rate decreased by some 10- 

30% as well. Overall, the data were very impressive in showing that the copper-clay 

additives promoted smoke suppression and fire retardanee with respect to most of the 

important variables that the cone calorimeter measured.

In addition to burning control plaques with no metal-containing additive, we 

burned plaques that contained 10 phr of unexchanged sodium montmorillonite clay. The 

latter plaques fared just as poorly as the additive-free PVC controls and had even higher 

heat release rates.

On the basis of our data, specific additives were noteworthy for their excellent 

performance in smoke suppression and fire retardanee. The Cu(I)-Htu-clay plaques with 

10 minutes of heating and shearing provided the lowest total smoke released values, with 

an average at around 3700 in comparison to the controls, which averaged out at about 

4500. These plaques were outstanding in several other respects as well. The Cu(II)-clay 

plaques also gave very good results, overall, particularly after heating and shearing. For
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several additives, heating and shearing had especially beneficial effects on the total 

amount of smoke produced.

Table 5 contains data tor some additional copper-clay additives that were 

prepared by exchanging Cu(I) or Cu(II) into Na-MMT. The data are encouraging, but 

unfortunately, these clays gave highly colored plaques and thus cannot be incorporated 

into commercial PVC products.

The data in Table 6 are for samples prepared by Sherwin-Williams from Cu(Il)- 

exchanged clay and sodium montmorillonite. All of these samples contained a lead 

stabilizer, antimony trioxide, alumina trihydrate, and a phosphate ester plasticizer. The 

only differences among the samples were that 82Na+ contained 6 phr of sodium 

montmorillonite that had not been heated and sheared with the plasticizer, while 82b,-c, 

and -d contained 4,6, and 8 phr, respectively, of Cu(II) clay that had been sheared (but 

not heated) with the plasticizer for 15 min at 3000 rpm. The tabulated results show no 

consistent effects that can be related to the type or amount of clay. The reasons for this 

observation are unclear but may be connected with the lack of heating and the use of a 

shearing method that was less effective than ours.

Tables 7-12 and Figures 18 and 19 provide the results of repeated trials for 

previous bums and expand on many new variables that are involved in the smoke 

suppression and fire retardanee of PVC. Zeolites and other metals (AT and Zn) were used 

in addition to the Cu-MMT additives. These tables further corroborate the hypothesis 

that, at least in some cases, heating and shearing both contribute to the formation of a 

homogeneous plaque where both intercalation and exfoliation may occur.
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Table 7 and Figure 18 present data for plasticized PVC plaques containing MMT 

additives that had been exchanged with Cu and Zn. Some plaques containing MMT 

additives that were heated and sheared showed a marked decrease in heat release and/or 

total smoke emitted with respect to control PVC plaques that contained no MMT 

additive. The plaques that contained the Zn-Cu mixture fared the best, with an average 

smoke release value of ca. 3100. We had hypothesized that synergism of a mixture of 

MMT additives containing the two metals might lead to a superior additive for smoke 

suppression.
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Figure 18: Graphs of data from Table 7
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c.
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Figure 19: Graphs of data from Table 11
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Table 8 shows effects of additive mixtures that can be compared with the 

results in Table 7. In this case, the amount of additive in some plaques was increased 

significantly. Instead of the standard amount of 10 phr (or approximately 4 g of 

additive), 15 phr and 20 phr of the additives were used (6 g and 8 g of additive, 

respectively). It was found that increases in the amount of additive were accompanied 

by reductions in both smoke released and heat release. For example, plaques that 

contained 20 phr of the Zn-Cu MMT had an average smoke value o f2400, which was 

markedly less than the average smoke value of 3400 for plaques with 15 phr of this 

additive. On the other hand, the suppression effects tended to level off at the highest 

additive levels used.

Tables 9-12 and Figure 19 vary from the preceding tables in that they contain 

data for plaques having zeolite additives instead of MMT additives. Unlike MMT, 

zeolites do not contain aluminosilicate layerings. Instead, the microstructure of 

zeolites is made up of linked cages or cavities. Therefore, the effects of heating and 

shearing that presumably help to disrupt the layering of the MMT and promote a 

blocking mechanismof smoke and heat release are not expected with zeolite 

additives. On the other hand, BRZ zeolite has a cation-Cu(II) exchange capacity of at 

least 3.77% in comparison to the 2.92% of MMT. Therefore, the presence of more Cu 

in the additive should further promote the reductive coupling mechanism, which leads 

to the crosslinking of P VC, and to the formation of more char and less smoke.

Table 9 provides a general overview of the use of all three zeolites, BRZ, Z- 

Ultra, and St. Cloud. As expected after heating and shearing, the average smoke 

values of PVC plaques that contained the Cu-exchanged zeolites correlated directly to

52



cation-exchange capacities with values of 3760,3820, and 4880 for BRZ, Z-Ultra, 

and St. Cloud, respectively. Reductions in the heat release of PVC plaques with Cu- 

exchanged zeolite additives also were observed, though they were not as dramatic as 

those produced by the metal-exchanged MMT additives.

Unexpectedly, Table 10 shows that increasing the amount of BRZ zeolite 

additive above 10 phr did not necessarily have beneficial effects in reducing both heat 

release and smoke. However, in both respects, there is good evidence for synergism 

in Table 10 for the Zn-Cu mixed additive, which gave TSR values close to 3000.

Tables 11 and 12 contain additional data for mixtures of metal-exchanged 

zeolite additives. Figure 19 shows that the reproducibility of the smoke and heat 

release values was ordinarily within an acceptable range (+/- 10%).

The aforementioned experiments may create some confusion because of the 

multitude of variables involved. The variables include the type of medium used for 

metal exchange (MMT or zeolite), the amount of additive used (10-20 phr), the use or 

avoidance of heating and shearing, and the metals and metal combinations, if any, 

exchanged into the media. The investigation of these variables led to hundreds of 

experiments involving the formation and burning of plaques.

Despite the multitude of variables, several conclusions can be reached from 

the analysis of the bum data. First and foremost, the use of metal-exchanged clay or 

zeolites significantly reduces the smoke emitted and heat released from PVC plaques. 

The use of unexchanged MMT or zeolites as additives for PVC generally produces 

effects that are less beneficial. Heating and shearing of mixtures of plasticizer and 

metal-exchanged MMT increases homogeneity and may facilitate intercalation and
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exfoliation that result from the entry of PVC into the gallery space of the clay. The 

use of zeolites is important owing to their higher cation-exchange capacities with 

respect to MMT, which bring more metal into the system. As expected, as the amount 

of metal-exchanged MMT additive is increased, the heat release and smoke release 

values tend to drop concurrently. Synergism for heat and smoke reduction was 

observed with a mixture of Zn- and Cu-exchanged zeolites.

54



Future Studies

Currently, the Starnes group is looking for more efficient materials to replace 

Na-MMT. More specifically, we are attempting to identify other zeolites with 

considerably higher cation-exchange capacities, which can incorporate more copper 

introduced by exchange.1819 Because of their higher copper contents, such zeolites 

could be much more effective than our copper clays as smoke suppressants and fire 

retardants.

Conclusion

The objectives of this research are to make PVC much more flame-resistant 

and a source of much less smoke when burning. The smoke produced by fires 

actually causes more fatalities than the fires themselves. Since PVC is used in so 

many commercial products, its fire retardance and smoke suppression can save many 

lives. Through the guidance of Dr. Starnes, 1 would like to think that 1 am making a 

difference with my research.

55



References

3. “Polyvinyl chloride”. Encyclopedia Wikipedia. 
http://eB.wikipedi3.org/wiid/Poivvi11vi chloride

2. W. H. Starnes, Jr., “Structural and Mechanistic Aspects of the Thermal 
Degradation of Poly(vinyl chloride)”. Progress in Polymer Science 2002, 27, 2134- 
2170.

3. W H. Starnes, Jr., R. D. Pike, J. R. Cole, A. S. Doyai, E J Kimlin, J. T. Lee, P. J. 
Murray, R A. Quinlan, and J. Zhang, “Cone Calorimetric Study of Copper-Promoted 
Smoke Suppression and Fire Retardance of PoIy(vinyl chloride)”. Polymer 
Degradation and Stability 2003, 82, 15-24.

4. W. H. Starnes, Jr., R. D. Pike, A. H. Brown, J. T. Lee, T. B. Showalter, K. M. 
Taylor, and J. Zhang, “New Metal-Based Smoke Suppressants for Poly(vinyl 
chloride): Recent Progress”, Proceedings, Additives 2004 Conference, Chapter 1.

5. W. H. Starnes, Jr., Chemistry 320 Presentation, College of William and Marv, 
February 2005.

6. S. V. Orski, “A Study of the Synergistic Effects of Additives and Nanocomposites 
on the Fire Retardance and Smoke Suppression of Poly(vinyl chloride)”. Department 
of Chemistry Honors Thesis, College of William and Mary (2006).

7. R. D. Pike, W. H. Starnes, Jr., J. P. Jeng, W. S. Bryant, P. Kourtesis, C. W. Adams, 
S. D. Bunge, Y. M. Kang, A. S. Kim, J. H. Kim, J. A. Macko, and C. P. O'Brien, 
“Low-Valent Metals as Reductive Cross-Linking Agents: A New Strategy for Smoke 
Suppression of Poly(vinyl chloride)”. Macromolecules 1997, 30, 6957-6965.

8. W. H. Starnes, Jr., and S. Girois. “Degradation and Stabilization of Poly(vinyl 
chloride): The Current Status”, Polymer Yearbook 1995,12,105-131.

9. T. C. Jennings and W.FL Starnes. “PVC Stabilizers and Lubricants”, in PVC 
Handbook: C.E. Wilkes, J. W. Summers, and C.A. Daniels, Eds; Hanser; New York, 
2005; Chapter 4. Hanser Publishers. 2005.

10. W.H. Starnes, Jr. “Structural Defects in Poly( vinyl chloride)”, Journal o f Polymer 
Science, Part A: Polymer Chemistry. 2005, 43, 2451-2467.

11. W.H. Starnes, Jr., and X. Ge, “Mechanism of Autocatalysis in the Thermal 
Dehydrochlorination of Poly(vinyl chloride)”. Macromolecules 2004,37, 352-359.

12. “Atomic Absorption Spectroscopy”, Encyclopedia Wikipedia. 
http://en.wikipedia.org/wiki/Atomic absorption spectroscopy

56

http://eB.wikipedi3.org/wiid/Poivvi11vi
http://en.wikipedia.org/wiki/Atomic


13 R D Pike and G.W. Rice, "A AS Procedure”, private communication, 2005-2006.

14. Natural Zeolite Products, http://www.zeoinc.com/zeolites.html 2008.

15. J. W. Gilman, “Flammability and Thermal Stability Studies of Polymer Lavered- 
Silicate (Clay) Nanocomposites”, Applied Clay Science 1999,15,31-49.

16. ‘User’s Guide for the Cone Calorimeter”, Fire Testing Technology, November 
1999.

17. W. H. Starnes, Jr., R. D. Pike, A. H. Brown, T, W. Fuller, R. A. Quinlan, T. B. 
Showalter, K. M. Taylor, and J. Zhang, “Copper-Containing Additives for the Fire 
Retardance and Smoke Suppression of Poly(vinyl chloride)”. Polymeric Materials 
Science and Engineering 2004, 91, 215-217.

18. S. R. Ivanova, K. S. Minsker, E. I. Nagumanova, R. K. Nizamov, and
S. A.Kazary’ans, “Stabilising Properties of Synthetic Zeolites in Plasticized PVC 
Composites”, International Polymer Science and Technology 2006, 33(10), 39-43.

19. C. M. Tian, R  Q. Qu, W. R  Wu, H. Z. Guo, and J. Z. Xu. “Metal Chelates as 
Flame-Retardants and Smoke Suppressants for Flexible Poly(vinyl chloride)”. 
Journal o f Fire Sciences 2004, 22,41-51.

57

http://www.zeoinc.com/zeolites.html


Appendix: Daily Calibrations of the Cone Calorimeter

• Leave Machine, Power, Analyzers, and Smoke ON for 24 h before each run.
• Turn on water faucet and check pinwheel.
• Drain coldtrap into beaker and close valve (parallel w/ ground is closed).
• Check Drierite (remove when pink) and Ascarite (remove when white or 

solidified).
• Check soot filters and change when dirty more than halfway through.
• Turn on computer and start program.
• Calibrate gas analyzer

o Zero Oxygen Analyzer
■ Be sure pump is off.
■ Turn on nitrogen tank and adjust the 2 switches.
■ Check flow rate (200 mL/min).
■ Click Calibrate Gas Analyzers on PC.
■ Select “Oxygen” and press “Zero”.
■ Adjust front of machine so it reads " Zero”, 

o Spanning
■ Turn off nitrogen cylinder and turn on pump.
■ Turn switch to “sample gas” and check flow rate (200 

mL/min).
■ Allow time to stabilize (20.5% oxygen on cone calorimeter).
■ Adjust cone manually to agree.
■ Select Oxygen and press “Ambient”.
- Press OK.

• Calibrate Smoke System
o Zeroing

■ Go to calibrate/smoke, then block off the laser (paper block) at 
the compensating diode (near laser).

■ Allow system to stabilize, then press zero.
■ Remove block and close diode door, 

o Balancing
■ With laser unblocked and both diode doors closed, press 

balance.
o Calibrate

■ Press calibrate and select the calibration filter (.304) and place 
it in front of the main diode (away from laser), then press OK.

• Zero DPT and MFM
o Turn off exhaust fans and hood and try to block the smokestack, 
o Ensure that all methane valves and tank are turned off. 
o Select “Zero” on PC and zero methane and DPT.

• Set flow rate for exhaust and Soot Sampler
o Check [Status] on PC.
o Flow rate should be 30.0 g/s cold or approximately (25 L/s). 
o Adjust exhaust control knob after turning on exhaust and hoods.
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• Check height of sample with respect to the cone; there should be 25 mm 
between the two.

• Heat Release (C-factor) Calibrations
o Turn sample pump “ON”, 
o Insert methane burner into holder, 
o Turn methane valve to “OFF”, 
o Check that exhaust is ON. 
o Open door below cone, 
o Put sparker arm above burner, 
o Turn on Ignition.
o Slowly turn on methane first at tank, then “methane on” switch, adjust 

flow to allow approximately 5 kW methane heat output, 
o Turn off Ignition when steady flow is achieved and move sparker arm 

to original position, 
o Be sure flame travels through cone to exhaust, 
o Go to Calibrate/Heat Release, 
o Let stabilize for 60 seconds, 
o Hit OK when C-Factor is stabilized, 
o Turn off methane at tank and allow to bum out.

• Calibrate Heat Flux
o Check the temperature for the desired irradiance (heat flux). Check 

chart for calibration curve, 
o Be sure that water is on and that a ceramic tile is on the Load Cell, 
o Calibrate with heat flux meter

■ Do not touch the black surface under the red cap.
■ Ensure that the distance is 25 mm from the bottom of the cone.
■ Turn up the temperature for the desired heat flux with cone 

doors closed.
■ Open the doors to record adjust the irradiance (i.e., temperature 

or heat flux).
■ Close the doors when finished and remove the sensor. Recap 

when the tip is cool and prepare to run a sample.
• Running a Sample

o Press “Tare” on Cone, 
o Fill in all preliminary data on PC. 
o Load plaque onto holder, 
o Press 1 on Cone Remote Control, 
o Open the cone door, 
o Press 2 when plaque ignites, 
o Press 4 when burning ceases.
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