
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2007

Forward Secure Fuzzy Extractors Forward Secure Fuzzy Extractors

David Goldenberg
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Goldenberg, David, "Forward Secure Fuzzy Extractors" (2007). Dissertations, Theses, and Masters
Projects. Paper 1539626862.
https://dx.doi.org/doi:10.21220/s2-5j1e-w237

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235410905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-5j1e-w237
mailto:scholarworks@wm.edu

FORWARD SECURE FUZZY EXTRACTORS

A Thesis

Presented to

The Faculty of the Departm ent of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

M aster of Sciences

by

David Goldenberg

2007

APPROVAL SHEET

This thesis is subm itted in partial fulfillment of
the requirements for the degree of

M aster of Science

David GoldgfiSerg^

Approved by the Committee, May 2007

Committee Chair
Assistant Professor Moses Liskov, Computer Science

The College of William & Mary

Assistant Professor Qun Li, Computer Science

The College of William & Mary

— ...
Assistant Professor Haining Wang, Computer Science

The College of William & Mary

To everyone who helped me out.

Table of Contents

A cknow ledgm ents vi

A bstract vii

1 In troduction 2

1.1 Our R e s u l ts ... 5

1.2 R o a d m a p .. 6

1.3 Past W o rk .. 6

1.4 Notation and B ack g ro u n d .. 7

2 P ast P rotoco ls and P revious W ork 10

2.0.1 Previous Work On Fuzzy E x tra c to rs 13

3 Forward Secure Fuzzy E xtractors 18

3.1 Forward Secure Fuzzy E x tra c to rs ... 18

3.2 Enhanced Forward Secure Fuzzy E x tra c to rs 21

3.3 R o b u s tn e s s ... 25

4 C onstruction o f an E nhanced Forward Secure Fuzzy E xtractor 26

4.1 Enhanced E x tra c to rs .. 27

4.2 Forward Secure E x trac to rs .. 32

4.3 Enhanced Forward Secure Fuzzy Extractor C o nstruc tion 43

4.4 Robustness in an Enhanced Forward Secure Fuzzy Extractor . . 50

5 U ses o f Forward Secure Fuzzy E xtractors 53

5.1 The Use of Fuzzy-Extractors in Authentication S ch em es............ 53

5.2 The Enhanced U pdate P ro ce d u re .. 60

5.2.1 Amortize the C o s t .. 61

5.2.2 Bounded Storage M o d e l .. 61

6 C onclusion 63

B ibliography 65

V ita 67

v

ACKNOWLEDGMENTS

I acknowledge all the people who helped me complete my thesis. My advisor,
my parents, my friends, everyone. Moreover, I acknowledge th a t if you are
reading this, then my thesis is in fact done. I think that is definitely worth an
acknowledgement or two.

ABSTRACT

Many cryptographic tools rely on the existence of a secret key. A fuzzy
extractor is a cryptographic tool which allows for cryptographically secure keys
to be extracted from biometric data. This is useful, as there is a link between
biometric data and the user. Also, biometric data is easily stored as it is part
of the user. The keys generated from biometric data are uniformly random
and can be used in cryptographic tools such as encryption functions, signature
schemes, or authentication protocols. However, biometric information can be
easily recorded/retrieved by a malicious adversary which means th a t the result
ing extracted keys can be stolen. This is different from other key generation
methods, where the key is merely remembered, or stored in some encrypted
state. To solve this problem, this thesis applies the idea of forward security to
a fuzzy extractor, creating a forward secure fuzzy extractor, an extractor th a t
retains some security even when the adversary gains knowledge about the bio
metric data of the user. Such a forward secure fuzzy extractor depends on a
second factor, and if one factor is corrupted many extracted keys still remain
computationally indistinguishable from random.

To create a forward secure fuzzy extractor we define a new primitive,
an enhanced extractor. An enhanced extractor functions as an extractor in
th a t for an unknown input of high enough entropy and known random seed the
extractor outputs a string which is close to random. However, should the high
entropy input become known and the seed remain secret the enhanced extractor
functions as a pseudorandom generator. Such a tool may have its own uses
independent of a fuzzy extractor.

After constructing an enhanced extractor we show how a forward secure
fuzzy extractor can be created out of any enhanced extractor. We also develop
an enhanced update function which allows for greater security even when both
factors are compromised, and show how we can add robustness to a forward
secure fuzzy extractor, even when one factor of our system is revealed.

FORWARD SECURE FUZZY EXTRACTORS

Chapter 1

Introduction

Many cryptographic applications require the use of a secret key for security.

This key needs several properties to make it effective.

1. The length of the key needs to be large and the key needs to be randomly

generated in order to make a brute force attack infeasible.

2. As keys are often used to distinguish between different users a key needs

to have a link to its user.

3. The key should be hard to discover through directed effort (such as theft

or other methods).

4. If at all possible, the key should be easy to change. This mitigates the

damage an adversary can do by stealing a key.

5. Finally, it should be easy to store and retrieve the key.

The concept of biometric security is based off of the idea that instead of

using data an individual remembers, we utilize data th a t is unique to the user.

Such data includes items like a user’s fingerprint, iris patterns, or even the user’s

typing pattern. Any data unique to the user can be used. Because biometric

2

data is thought to be unique to the user, use of biometrics allows for a binding

to take place between a user and his key. In addition, the use of biometric data

allows for the keys to be stored and to remain hidden easily. Unlike a password,

one never forgets their eye or their finger. However, the use of biometrics is not

without its issues. The first issue is that biometric data is non-uniformly dis

tributed. Another issue is th a t biometrics does not immediately allow for strong

cryptographic keys. Initially biometrics have been used to provide security by

storing a tem plate of a user’s biometric, and this tem plate being matched to

a later input pattern. [9] However, a template by itself is not a uniform cryp

tographic key. Moreover, it has been shown th a t templates and the template

matching software may reveal enough information for the biometric data to be

approximated from the template. [1] Biometric data is also fuzzy, in th a t two

readings of the same biometric source are usually not identical. This presents a

serious problem for cryptologic protocols in th a t they require the cryptographic

key to be exactly entered in order to correctly function.

A fuzzy extractor allows for many of these issues to be resolved. A fuzzy

extractor has two parts. The first part takes a biometric reading and produces a

public string which can allow for the biometric reading to be recovered. Such a

public string is secure in th a t it reveals ’very little’ about the particular biometric

reading th a t it stores. The second part takes a new biometric reading and the

public string and outputs a key, where this key is statistically close to random

even given knowledge of the public string. Moreover, this second function has

an error tolerance. If two readings are close enough to the stored reading in the

public string, the fuzzy extractor will output the same key on each reading. [14]

Further developments of fuzzy extractors allowed the extractor to be utilized

multiple times in the face of a very adaptive adversary while still retaining

3

security and also allowed for public strings to be robust in the face of modification

by an adversary. [13, 4]

An problem in using biometric data still unresolved by a fuzzy extractor is

th a t biometric data can be maliciously retrieved by an adversary without regards

to the cryptographic system the biometric data is used in. Fingerprints are left

on surfaces th a t we touch, voices and faces can be recorded and analyzed. Should

biometric data be stolen, this is a serious theft. Unlike a simple cryptographic

key, biometric data cannot be easily replaced. While in other systems the key

is only stored inside a person’s head or encrypted on disk biometric information

is left somewhat ’out in the open’.

Forward security addresses the idea of mitigating the damage any adversary

can do by discovering a key. In a forward secure system, the key is changed

frequently, with the property th a t should an adversary steal a key all keys de

veloped before the stolen key still remain secure. This mitigates the damage any

adversary can do, as now he cannot decrypt old messages, or try to sign messages

using previous keys, or in general perform any operation where a previous secret

key is needed. Forward secure symmetric and asymmetric encryption schemes

have been created [11, 10] as well as forward secure signature schemes. Forward

security is usually accomplished in an asymmetric scheme, where the public key

remains fixed, and the secret key iterates from state to state. This iteration of

the secret key can even be done if the secret key remains ’encrypted’ [5] as is in

the case of software like PGP, where a user’s secret key is kept encrypted on the

computer and unlocked with a password.

To address the problem of an adversary maliciously retrieving biometric data,

we apply the idea of forward security to biometrics creating a forward secure

fuzzy extractor. A forward secure fuzzy extractor allows for two factors to

4

determine a key, a user’s biometric data and a second secret key which stores

information about the current state. A forward secure fuzzy extractor allows

for the biometric data to be stolen without the resulting exposure of keys. Both

biometric data and state information must be retrieved before the correct key

can be generated. Moreover, even if both pieces of information are retrieved,

keys generated before the corruption of a user’s state information still remain

secure.

1.1 Our R esu lts

We define and construct a forward secure fuzzy extractor. To construct our fuzzy

extractor we define and construct a new tool, an enhanced extractor. Such an

extractor functions as an extractor when the biometric reading is unknown and

the state is known, but also functions as a pseudorandom generator when the

state is unknown and the biometric reading is known. We also show th a t this is

the optimal type of security we can gain as long as we desire the output of the

extractor to be longer than the state information. An enhanced extractor cannot

offer statistical indistinguishability of its outputs when the biometric reading is

known. From an enhanced extractor we create a forward secure extractor, a tool

which functions as an extractor and also offers computational indistinguishabil

ity of its previous outputs when the biometric reading is known, even when a

later random seed is revealed. From a forward secure extractor and a fuzzy

sketch we construct a forward secure fuzzy extractor, and give an enhanced

update function which allows such an extractor to gain security properties not

found in other forward secure primitives. Finally, we list several authentication

protocols th a t utilize fuzzy extractors and examine how a forward secure fuzzy

extractor can be incorporated into these protocols.

5

1.2 R oadm ap

In the Chapter 1 we introduce some general concepts th a t will be utilized

throughout the rest of the paper. In Chapter 2 we introduce past work on

fuzzy extractors. In Chapter 3 we formally define the concept of a forward

secure fuzzy extractor, and in C hapter 4 we give a construction and show how

this construction can gain an enhanced security property. In Chapter 5 I give

constructions of several authentication schemes that utilize fuzzy extractors.

Finally we conclude in Chapter 6.

1.3 P ast W ork

Fuzzy Extractors were first developed by Dodis, Reyzin, and Smith [14]. There

the tool was formally defined and they also gave a proof for how a fuzzy extractor

could be formed through the combination of two other tools, a ’fuzzy sketch’ and

an extractor. An extractor is a function which takes two inputs: a long string

sampled from a non-uniform distribution, and a much shorter string randomly

generated. Such an extractor outputs a string longer than the short seed which

is close to uniformly random. A fuzzy sketch is a function which takes a string,

and outputs a public string which does not reveal much about the input string.

Later, the input string can be recoved from the public string and any string

which is close enough to the input string. Boyen in [4], demonstrated th a t a

fuzzy extractor formed in such a way may not be able to be securely utlilised

many times, as the public strings and selected keys may reveal information about

keys not known by an adversary. A new security definition, that of a reusable

fuzzy extractor was introduced. Later, [13, 7] this method was shown to allow

for a dangerous man in the middle attack, where an adversary could modify the

6

public string in such a way to be able to know the key that was computed by

the user from this modified string. To deal with this, Dodis et al. proposed a

robust fuzzy extractor, which has the property th a t the public string is resistant

to modification by any user who does not know the biometric string used to

create the public string.

1.4 N o ta tio n and B ackground

In this section we introduce notations and background information th a t will be

used through the rest of the paper.

N otation:

• w represents a string, usually an instance of biometric or ’fuzzy’ data.

• W is the distribution from which w is drawn.

• Ui is the uniform distribution on I bit sized strings.

• d(w ,w !) is a distance function on two strings w and w' in regards to a

specific metric.

• F (x ; X i) is a randomized function F with input x and utilizing randomness

X i.

• We define the min-entropy of a random variable A as

Hoo(A) = —log(maxaPr(A = a)).

• We define the statistical difference between two distributions as

SD(A,B) = IPr(A = v) - Pr(B = i,)|.

• For two random variables Wi, W2 , on a metric space A4, we will say the

variables are t-close, if Vrui E W \, W2 E W2 , d(w i,W 2) < t.

7

(Note: This means th a t each random variable individually is contained in

a ball of size t).

Likewise, two random variables W \ and W 2 defined on a metric space M,

are t far apart if Vic* E W i, \/wj E W2 , we have th a t d(w i,w j) > t.

For two distributions X and Y, we say th a t they are e close if:

S D (X ,Y) < e.

We define a function a to be negligible if

Vc 3n : ViV > n a (N) <

A function e is non-negligible if:

3c 3n : \/N > n e(N) >

Often when we speak of negligible or non-negligible functions we will sim

ply denote them as a , or e.

We define the idea of computationally indistinguishable in the following

way:

Two distributions, A and B are computationally indistinguishable if V

Turing Machines T where the running time of T is poly(k), 3k:

P r[T(A) = 1] — P r[T (B) = 1] < e(k), for some negligible e. Such a

param eter k is known as the security parameter.

The random oracle is a public oracle where given a specific value in its

domain, randomly selects a value in its range as its output and associates

that output with the specific input for all future queries. Such an oracles

is available to any adversary as well as a user. [3]

M etric Spaces

A metric space is a set A i along with a function d, which has the following

properties.

V x,x ' G A i, d {x ,x ') > 0.

Vx, x' G A i d (x , x ') = 0 if and only if x = x ' .

Vx, x' G A i d{x, x') = d{x', x).

Vx, y ,z £ A i d(x, z) < d(x, y) + d(y, 2)

Error C orrecting C odes

For a given metric space A4, we can define an error correcting code on A i.

An error correcting code is composed of a set Code C Ad, and two functions,

C, and D. C, the encoding function takes elements from some domain K and

maps them to elements in Code. The decoding function D takes any element

m G A \, and maps m to Code\t, where Codek is an element in Code such that

d(m ,Codek) is minimized. The error correcting distance of an error correcting

code is the largest radius t such th a t for every element m G A i there is at most

one code word in the ball of radius t centered on m. We denote a specific error

correcting code by as an {Ai, K ,t) code. We also define a linear code as a code

where the set Code is a vector space.

9

Chapter 2

Past Protocols and Previous

Work

The first protocol we define is a fuzzy sketch. Informally a fuzzy sketch allows

for a piece of data to be stored securely in a publicly viewable ’sketch’, (a public

string which does not reveal ’much’ about the stored data), and this data can

be recovered as long as data sufficiently ’close’ to the original stored data is

produced. Formally, a fuzzy sketch is the following [14]:

D e fin itio n 2.1 A n ,t) fuzzy sketch is a randomized function Fsk :

A4 —> {0,1}*, that has the following properties:

• There exists a recovery function Rec such that Rec(w/, Fsk(rc)) — w as long

as d(w , w') < t.

• For all random variables W over M. where HooiW) = m , the average min-

entropy o fW , given F sh (W) is at least m !. Namely, H 00(W \F sk (W)) >

m !.

Below is an example of a fuzzy sketch construction.

10

D efin ition 2.2 (Fuzzy Sketch for th e H am m ing M etric) The following is

a fuzzy sketch for the Hamming Metric. Let C be the encoding function of an

error correcting code, and let D be the decoding function.

• Fsk(w; X i) = w © C (X i) - P.

• Rec (w ',P) = P ® C (D (w '® P)) .

For a fuzzy sketch, we would like the sketch to be such that m — m ' is

negligible[8]. It is impossible for a sketch to bound a loss of Shannon Entropy.

For instance, the above fuzzy sketch loses n — k bits of Shannon entropy, where

k is the dimension of the error correcting code C. However, it is possible to

create an entropically secure sketch. Such a sketch may reveal a non-negligible

amount of Shannon Information, however the ability for any user to compute a

function of the random variable W given the sketch is only negligibly different

than a user’s ability to compute a function of W without. Formally:

D efin ition 2.3 (E ntropically Secure Sketches) We say that a probabilistic

map S() hides all functions o fW with leakage e ifMA 3A ' : V /{0 ,1}* —> {0,1}*:

|P r[A (S (W)) = F (W)} - P r[A '0 = F(W)}\ < e.

S is called m, e entropically secure if S hides all functions of W , MW :

H qqOV) — m with leakage e.

An im portant thing about entropically secure sketches is th a t an entropically

secure sketch bounds the loss of min-entropy to be quite small. This follows from

the fact th a t the probability of computing the identity function on W , F(w) — w

given a sketch is at most e different from computing the identity function given

the sketch.

The second protocol we define is an extractor. Informally, an extractor is

a function th a t takes a string generated from a distribution th a t is ’not-quite’

11

random, and from th a t generates an output whose distribution is statistically

indistinguishable from random. To accomplish this the extractor takes a second

input, a small random string X . In a sense an extractor takes a large string that

is ’somewhat’ random, and extracts the ranomness from it, yielding a smaller

string th a t is completely random. More formally, an extractor is defined as

follows [7]:

D efin ition 2.4 A n (n ,m ,/ ,e) extractor is a randomized function Ext, Ext :

{0, l} n x {0 ,1}S —»• {0,1}^ with the following property:

For all distributions W where H ^ fW) — m we have that:

S D ((E x t(V F ;X) ,X) ,(^ X))< e .

Finally, we describe a fuzzy extractor. The fuzzy extractor will combine ele

ments of both a fuzzy sketch, and a strong extractor. Namely, a fuzzy extractor

will be able to take a string from a distribution with high entropy, as well as

a small completely random string, and output a close to random string, which

remains statistically close to random even given knowledge of the public string.

Formally [14]:

D efin ition 2.5 A (m, Z, t , e) fuzzy extractor is a pair of algorithms Gen and Rep

which posess the following properties:

• Gen, a randomized algorithm on input w G W outputs a random string

R G {0,1}^ as well as a public string P G {0,1}*.

• Rep, on input w' and P ' outputs R.

• These functions have the following properties:

— Correctness: Vw,w ' : d (w ,w f) < t, i f (R ,P) *— Gen(ie)

then Rep(w/,P) — R.

12

— Security: I f H o0 (W) > m and (R ,P) <— Gen(W), then we have that

S D ((R ,P) ,(U l ,P)) < e .

N otes: It is im portant to note th a t a fuzzy extractor construction is depen

dent on the metric th a t is to be used. If strings are compared under different

metrics, this will result in a different fuzzy extractor construction. Also, the

uniformity of the extracted keys holds up linearly under composition. Namely,

given public strings Pi, i — 1,2, 3, ...k and keys R4 , i = 1,2,3, ...k, an adversary’s

ability to distinguish the vector of keys R4 from random strings R ' is at most

ke. We will prove this formally later on.

2 .0 .1 P r e v io u s W ork O n F u zzy E x tr a c to r s

In this section we go over the previous papers on fuzzy extractors. In 2004 Dodis,

Reyzin and Smith [14], formally developed the idea of the fuzzy extractor as a

method for turning biometric information into cryptographic keys. The main

theorem of the paper proved th a t given a strong extractor and a fuzzy sketch,that

these could be combined to form a fuzzy extractor.

T heorem 2.6 (B uild ing Fuzzy E xtractors) Given a fuzzy-sketch and an ex

tractor, the following is a fuzzy extractor construction:

• Gen(w; X \ , X 2): Set P — (Fsk(u;; X \) , X 2), and set R — Ext(w; X 2)■

• Rep(u/, (V, X 2)): Recover w = R ec(u /,y) and output R = Ext(w ;X 2).

Proof: Full proof found in [14]. Informally, we can say that due to the properties

of the extractor, the statistical difference between R and Ui should be < e thus

obtaining the security property. The fact th a t Fsk(tc) does not reveal ’much’

about the public string allows this property to hold even given the public sketch

13

Fsk(u;). Moreover, the fuzzy sketch allows for the same R to be generated for

values close to w obtaining the correctness property. ■

Later, Boyen in [4] would show th a t while Lemma 2.6 holds for a fuzzy

extractor th a t is used once, it may not hold for a fuzzy extractor utilized multiple

times. He develops two new definitions of security, Insider Perturbation Security

and Outsider Perturbation Security. Informally, Outsider Perturbation Security

reflects the idea th a t an adversary should not be able to find the biometric

string w, even given multiple different public strings P formed by P = Fsk(w).

Insider Perturbation Security is a stronger definition and allows the adversary to

not only see multiple different public strings Pi, but also can view the result of

extracting the random string Ri from a public string of the adversary’s choosing

and a biometric reading. The adversary succeeds if given a challenge value, he

can decide whether or not the value is a key th a t would be extracted from a

string Pi where Pi was returned from an outsider query, or a randomly selected

value. It is im portant to note th a t Boyen developed constructions for a reusable

fuzzy extractor th a t used a ’reusable sketch’. Boyen created constructions that

could allow for any extractor as the reusability property was gained through

the fuzzy sketch tool, and then utilized Theorem 2.6. Before we give the formal

definition of a reusable sketch we need to explain the idea of an admissible family

of perturbations. A perturbation family on a metric space A4 , D is admissible

if VA G Dd,\/w G M., d(w, 5{w)) < d. We also define the oracle Oreuse. Such an

oracle acts in the following way.

P re-P rocessing

The adversary sends the oracle a distribution W .

The oracle Oreuse samples w G W .

• CVeuse(l) Si).

14

1. O creates Pi — Fsk(^(w)).

2. O returns Pi to A.

Oreuse(2 ,5 i,P ').

1. O computes Rep(<^(u;), P ') = R.

2. O returns R to the adversary.

@reuse(^i Pi)-

1. If Pi is not a string th a t was returned as part of a query Oreuse(1, Si),

O returns _L.

2. If A has ever made a query (2, S', Pi) where S' does not have minimum

displacement greater than t, A returns _L.

3. Otherwise Oreuse randomly selects a bit b. If b — 1 then the oracle

returns a random string. If b = 0 then the oracle returns Rep(w,Pi)

and returns it A.

C^reuse(4, Si).

1. If Oreuse has received no queries of the type (3, Pi) O returns _L.

2. Otherwise Oreuse returns Oreuse(l,S i).

@reuse(jS, Si, P).

1. If A has not made query (3, Pi), Oreuse returns _L.

2. If A has made a query (3, P ') and Si has minimum displacement less

than t, Oreuse returns _L.

3. If the above two conditions do not hold:

@reuse returns (Dreuse(2, Si, P).

Now we define a reusable sketch as follows.

D efin ition 2.7 (R eusab le Sketch) \fAmathcal° , p r [A°reuse —> b! : b = b'] <

a (k)

We can also define a weaker sketch, a sketch reusable vs. outsider queries.

The oracle acts in a similar way, except it does not accept queries of the type

(5, Si, P ') or (2, Si, P '). The adversary in the new definition only has to guess at

the biometric which is used in one query, and not decide between random keys.

This definition of reusability has its own problem, as w ritten in [13]. There

it was shown that since under the definition of Insider Perturbation Security,

the adversary knows the value of an extracted string R t for some public string

Pi and biometric w, this allows a man-in-the-middle attack where an adversary

replaces a string P[w ith Pi, and now knows the supposedly secret string Ri.

Boyen et al. propose a new definition, that of a robust fuzzy extractor. The

robust fuzzy extractor is defined as follows:

D efin ition 2.8 A robust fuzzy extractor has all the properties of a normal fuzzy

extractor, with two additional properties:

• The function Rep is allowed to return the value _L.

• Consider the adversary who gains the two strings Ri and Pi,

where (R i,P i) Gen(w;) and then outputs P ' ^ P.

We say that a fuzzy extractor is robust if:

\/w' where d(w ,w ') < t Pr[Rep(w', P ') ^_L] < a, for a negligible a.

In addition to a robust fuzzy extractor, the paper [7] allows for a keyed robust

fuzzy extractor, which is just like a normal robust fuzzy extractor except that it

16

requires a seperate secret key S K . This secret key is used to allow the extraction

of a cryptographic key from the same biometric source. A keyed robust fuzzy

extractor hides the value of the secret key to an unbounded prover, even given

the value of the public string P.

17

Chapter 3

Forward Secure Fuzzy

Extractors

3.1 Forward Secure F uzzy E xtractors

In this section, I define the concept of a forward secure fuzzy extractor. Infor

mally, I would like a forward secure fuzzy extractor to simply add on the forward

security property to a fuzzy extractor. This means th a t corruption of a user’s

biometric data does not result in a to tal loss of security. I use the same idea

as other forward secure tools, th a t of updating some secret information from

from state to state. This update will be deterministically done from the public

string, a biometric input, and the previous state. This second factor is neces

sary because with the correctness property of a fuzzy extractor the retrieval of

biometric d ata allows any individual to extract to any key as long as they have

the corresponding public string.

W ith this second factor we would like to have the forward security property

hold until after both factors have been retrieved. However, consider the situation

in which state information is stolen first and later biometric information is stolen.

18

As long as all public strings are sketched from biometric data th a t is ’close

enough’ to the stolen biometric, the adversary can use the past state and the

biometric reading to compute the biometric reading th a t was used in the past and

thus is also capable of performing of update from th a t state on. This situation is

similar to the possibility of an adversary stealing the encrypted private key and

later the decryption key in Boyen’s construction th a t allows for forward security

with an untrusted update [5]. Since the decryption key never changes, it can be

used in the past to decrypt the previous keys. So, at best the security we can

achieve is two-fold.

• Any adversary must receive both the secret key for a specific state, and a

’good’ biometric in order to retrieve any key.

• For any adversary which retrieves both the secret state information, and a

biometric reading, all keys extracted from before the adversary had stolen

the state information remain unknown to the adversary.

The formal definition of forward security will allow the adversary to have

access to an oracle Of e • This oracle needs to have state and the oracle will

selec the first state randomly from all possible states before the first query by

any adversary. The oracle will remember these past states, and can output

the past state information on request. Moreover, this oracle has access to a

distribution W , where W has min-entropy at least m. During each state the

oracle samples w £ W and will first output a public string P% formed from w,

and then wait for a query. After each query, the oracle will use the biometric

w, the public string Pi and the current state to update to the next state. The

oracle functions in the following way.

19

• O fe { 1) = Wi, where Wi is the biometric for query i. Informally we call

this a B iom etric C orruption Query.

• O fe { 2) = Sti where Sti is the state information for query i. Informally

we call this a S ta te C orruption Query.

• O fe { 3) = R e p ^ , Sti, Pi) We call this an Insider Q uery

• O fe { 4) The oracle selects b' <— {0,1}. If b' = 0, the oracle returns R Ui.

If b' = 1, the oracle returns R = Rep(tc^, Sti, Pi). We call this the D ecide

Q uery

• O f e { 5) The adversary sends a bit b <— {0,1}. We call this the G uess

Q uery

Any adversary is allowed to make only one decide query and only one guess

query. Next, I define the following notation. Let bi be the number of the i'th

biometric corruption query, and let Si be the number of the i 'th state corruption

query. Also, let g be the number of the adversary’s guess query.

D efin ition 3.1 (Forward Secure Fuzzy E xtractors) A forward secure fuzzy

extractor, (F S F E), is a family of the following functions.

• Sto — FirstKey(lfc); a randomized function which generates the initial state.

• R = Rep(w;', St, P), a function which takes a biometric data string w' G

{0, l } n(k\ the public sketch P G {0,1}*, some state information S t G

{0 ,1 }Ŝ) and outputs the key R G {0, l} ^ fĉ .

• S ti+ 1 = Update(w/, Sti, P), a function which takes a biometric string w ',

a public sketch P, state information S ti, and outputs the next state.

20

• P = Gen(w ',S ti) , a randomized function which takes a biometric string as

input and outputs a public string.

Correctness

VSti, where S ti comes from a sequence of Sto, S t i , S t 2 , S ts , ..., S t i - i , Sti

where Sto comes from FirstKey(lfc), and forV j < i, S tj comes from Update(w', S t

I f P = Gen(w/, S ti) , R = Rep(u/, S ti , P) and d(w , w') < t, then

Rep(w, S t i ,P) —»■ R ' = R.

E xtraction

\/W : HooiW) > m, Vw £ W if P — Gen(w ,S t) and R = Rep(w ,S t,P) we

have that:

SD((Ui, P), (R ,P)) < c(k), where e is negligible.

Forward Security

Here we have two cases:

Case 1:

Here A makes both a biometric corruption and state corruption query.

P r[A °FE —> b : b — b'and g < si] < a (k) fo r negligible a.

Case 2:

Here A makes only one type of corruption query, either a biometric corrup

tion or state corruption query.

P r[A °FE —> b : b — b1] < a(k) for negligible a.

3.2 E nhan ced Forward Secure F uzzy E xtractors

Forward secure fuzzy extractors as defined above, have a forward security prop

erty where keys before the first state corruption query remain secure. In this

section we define a new function, an enhanced update procedure. EUpdate is an

21

update procedure th a t is not done deterministically from the past state informa

tion and public string in th a t it will take a new sample of biometric information

and use th a t information to update to the next state. For an adversary who

has some state information, and yet who does not have the specific string used

in a running of the EUpdate function the next state will be unknown to the

adversary. This allows a stronger forward security property to be gained. Aside

from that, an enhanced forward secure fuzzy extractor has identical properties

to a normal fuzzy extractor.

Before we state the formal definition we go over the oracle O e f e ■ This

oracle is very similar to O f e as it has access to a distribution W and is a

stateful oracle. The oracle responds as follows: (Note: the corrupt enhanced

update and the enhanced update query can be made in conjunction with any

other query).

• B io m e tr ic C o r ru p t io n Q u e ry O e f e (1) = where Wi is the biometric

used in state i.

• S ta te C o r ru p tio n Q u e ry O e f e (2) = Sti. The oracle returns its current

state.

• In s id e r Q u e ry O e f e (3) = Rep (wi, Sti, Pi).

• E n h a n c e d U p d a te O e f e { 4), instead of updating using Update, com

putes Sti- | - i = EUpdate(u;*, Sti), where w* ^ Wi

• C o r ru p t E n h a n c e d U p d a te Q u e ry O e f e { 5) performs an enhanced

update query 5 ^ + 1 = EUpdate(w*, Sti) where w* ^ Wi, and returns w*.

• D ecide O e f e { 6)- The oracle selects b' <— {0,1}. If b' = 0, the oracle

returns R <— Ui. If b' = 1 , the oracle returns Ri = Rep(w;i, Sti, Pi).

22

• G uess The adversary sends a bit b.

We also need to go through the states where an adversary is not expected

to know the extracted key when an adversary makes both a biometric and state

corruption query. If an adversary A knows the state information and biometric

information for a given query, we do not expect the keys to be secure. W ith

a piece of biometric information and the fact that A receives Pi Mi, we assume

th a t A can compute Wi Vi. This assumption may not always hold true if there

is a sketch Pi = F sk(w) where d(w ,W i) > t and the adversary knows Wi. For

such a public string we should not gain w from the function Rec. For all queries

before the adversary makes his first state corruption query, the keys in those

queries should still be secure in th a t we would like previous states to be non-

computable given a later state. Also, the enhanced update query should, in a

way, function as a ’reset’ in th a t if an adversary for all previous queries could

distinguish between randomly selected strings and properly generated keys, after

an enhanced update the adversary should no longer have this advantage, so for

all queries after e\ the first enhanced update query after the first state corruption

query, the keys should be indistinguishable from random keys, at least until the

next state corruption query is made. W ith this information, I define the ’Good

Set’ G S of queries, as G S — a : a < si or e* < a < Sk where Va; < k, sx < e*.

D efin ition 3.2 (E nhanced Forward Secure Fuzzy E xtractors) A n enhanced

forward secure fuzzy extractor is composed of the following functions:

• Sto = FirstKey(lfc), a randomized function which generates the initial state.

• R — Rep(w/, St, P), a function which takes a biometric data string w' G

{0, the public sketch P G {0,1}*, some state information S t G

{0, l } ^) , and outputs a key R G {0 ,1 }^).

23

• Sti+i = Update^', S ^ , P), a function which takes a biometric string w ',

a public sketch P , state information S t i , and outputs the next state.

• P — Gen (w ',S ti), a randomized function which takes a biometric string as

input and outputs a public string.

• SU+1 = EUpdate(«;*, Sti), a function which takes a previous state, a bio

metric string, and outputs the next state.

Correctness

VSti, where S ti comes from a sequence of Sto, S ti , S t 2 , S t^ , ..., S t i - i , S ti

where Sto comes from FirstKey(lfe), and:

\/j < i, S tj = EUpdate(w/, S t j - i) or S tj = Update(^_i, S t j - i , P j- i) .

I f P = Gen(wi, S ti) and R = Rep(w i,S ti ,P) and d(w i,w ') < t, R = R ' —

R e p (w S t i , P)-

E xtraction

y W : HoofW) > m, where P — Gen(^, S t), R = Rep(w, S t, P) we have that:

SD ((U l,P) ,(R ,P)) < e .

Enhanced Forward Security

Again we have two cases:

Case 1:

Here A makes both a biometric and state corruption query.

Pr[g G G S, and A ° EFE —> b : b = b'] < a(k) for negligible a.

Case 2:

Here A makes only one type of corruption query.

P r [A°EEE -> b : b = b'] < a(k) for negligible a.

24

3.3 R ob u stn ess

Here we state the definition of robustness as it applies to forward security. The

definition is basically the same as in a non-forward secure construction. Namely,

the adversary after receiving public strings P? = Gen(toz, S tj) and keys R j —

Rep (wi, S tj , P?), should not be able to output a string P) 3 ^ P? where the

function Rep does not return _L.

Note, we define wj as the z’th biometric sample under state j . We define R 3

and P i similarly with regards to keys and public strings.

D efin ition 3.3 (A R obust Forward Secure Fuzzy E xtractor) A R F S F E

is a forward secure fuzzy extractor, with the following additional properties:

First we allow the function Rep to return the value _L.

We consider the oracle Orob. Orob is a stateful oracle, and also has possses-

sion of a random variable W with high entropy. Before any queries, Orob selects

a random starting state using FirstKey(lfc).

Any adversary A can make the following queries to Orot,.

• Orob(l) samples w3 £ W , and outputs P i = Gen(w ?,Stj), and R? =

Rep(w?, P i, S tj) . (Informally we call this an information query).

• Orob(2) stores S tj+ 1 = Update(w{, P?, S tj) .

A forward secure extractor is robust if:

\/A, P r[A °vob —> P ' : 3 i , j : VW where d (w ',w Ji) < t, Rep(w ',P ',S tj) ^_L

and P ' 7 ̂Pi] < a(k).

25

Chapter 4

Construction of an Enhanced

Forward Secure Fuzzy

Extractor

In this chapter we construct an enhanced forward secure fuzzy extractor. We

create a new tool, a forward secure extractor and combine it with a fuzzy sketch

to create a forward secure fuzzy extractor. By creating a forward secure fuzzy

extractor in this way we can get robustness and reusability ’for cheap’, in that

we can utilize the results of [4] and [7], which obtain robustness by modifying

the fuzzy sketch protocol. This modification can be done by adding an authen

tication function to Gen, which outputs an authenticated public string. Neither

method alters the extractor, so by taking those constructions and modifying

the extractor we can add forward security with minimal changes. To create a

forward secure extractor we construct an enhanced extractor. Such an enhanced

extractor is an extractor for fuzzy data th a t remains unknown and sampled from

a distribution with high enough entropy. When a specific piece of fuzzy data is

26

known however, an enhanced extractor functions as a pseudorandom generator

with the seed as input.

To begin, we define a new primitive, an enhanced extractor.

4.1 E n hanced E xtractors

Informally, we desire an enhanced extractor to have two properties. It needs

to function as an extractor for known state information and an unknown bio

metric string sampled from a distribution with high enough entropy. When the

biometric string is known however, we need the output to be computationally

indistinguishable from random. (This will require a relationship between the

inputs/ou tput sizes and the security parameter). We would like it if the output

could be statistically indistinguishable from random, however as we now show

that is impossible.

T h e o re m 4.1 Enhanced extractors cannot offer statistical indistinguishability

of their outputs when the biometric string is known and when the size of the

output of the extractor is larger than the size of the seed.

P ro o f: The following exponential adversary can always distinguish the outputs

of an enhanced extractor from random. Let EExt be an enhanced extractor

taking {0 , x {0 , 1 }Ŝ —► {0 , l } l(k\

A, (which knows the biometric string w), queries its oracle which either

produces EExt(io; S ti) , or a random string R e U^ky A then proceeds to

run iterate through different seed values Sti obtaining keys R4 . If for any

EExt(w; S t i) — R A outputs pseudorandom, otherwise A outputs random.

Since the seed is smaller than the output of the extractor, seeds taken from

{0 , i}s(fc) can or)jy map £ 0 a£ mos£ 2 s(fc) different outputs. However, there are

27

2 possible outputs. So, there are 2 — 2s^ strings R € {0 ,1 } ^) which

cannot be the output of EExt(w ,S ti), for any given w. So the probability of

the random oracle selecting a string R such th a t there is no state S t where

R = EExt(rc, S t) is equal to = 1— fr = 1— 2*(fc)~s(fc) *s negligibly close

to one given the security param ter k. So, with all but overwhelming probability,

the random oracle Or will select one of these invalid strings. If this occurs, then

the exponential adversary who brute force searches through all seeds, will find

th a t no seed S ' exists such th a t EExt(rc, S') = Ri and output random. On the

other hand, if R i was the output of EExt then there exists at least one seed S"

such th a t EExt(u>, S") = Ri and the adversary will output pseudorandom. ■

Since we cannot have an extractor that offers statistical indistinguishability

when the biometric string used is known to the adversary, we formally define a

enhanced extractor as follows:

D efin ition 4.2 (E nhanced E xtractor) A Enhanced Extractor EExt, is a fam

ily of functions:

EExtfc which takes (0, x {0, > (0, l } ^) and which has the fol

lowing two properties:

• For a distribution W where the min-entropy of W is m (k), EExtk(w ,S t)

is an (n (k),m (k) ,l(k) ,e) extractor.

• For a known biometric string w sampled from a distribution W where

HooiW) > m (k), and unknown state S t, EExt(w ,S t) is a pseudorandom

generator with S t as the input.

The first property of an enhanced forward secure extractor is satisfied by

any given extractor, as such an extractor must still offer its extraction property

when the seed is known and extractors are capable of scaling to larger and larger

28

outputs (though the random seed, entropy needed, and output size will change

according to the parameters of the enhanced extractor). However, with most

extractors the size of the needed biometric input is exponential in the size of the

needed seed which is inefficient. There is a solution in the random oracle model.

T heorem 4.3 (E nhanced E xtractors U tiliz in g R andom O racles) Let O

be a random oracle which takes strings of size n + s to strings of size I. The

following is an enhanced extractor.

EExt(rc, S t i) = 0{w \\S ti).

Proof: The proof here is fairly trivial. As the outputs of O have min entropy

I no m atter what the entropy of the input, we gain extraction easily. Moreover,

we can have I > H ^ W) and still ’ex tract’ randomness from the distribution W .

The pseudorandomness of this construction comes from the fact th a t the state

S t is unknown. Also, here we can allow the sizes of the inputs/outputs /, s, n to

be set arbitrarily. ■

In addition to a construction in the random oracle model we can create a

construction in the standard model as follows:

T heorem 4.4 (A n enhanced extractor construction in th e standard m odel)

Let Ext*, be a family of extractors which takes {0, l} n(fc) x {0, l} s"(fc) —> {0 , l } l(k\

Let Pk be a pseudorandom permutation family with key k and let |fc| = s'(k).

Also have I(k) > s '(k) + sf/(k). We create an enhanced extractor as follows:

EExtfc(u;, fc||5tj) = Ext(Pk(w), S ti) where |/c| = s'(k) and |5 tj| = s''(k).

Proof: The first thing we note about our construction is th a t a permutation

family does not decrease the min-entropy of any distribution it acts on.

We show this as follows: Let W be a distribution where H ^ fW) — m. Let Pk

be a permutation family which has \K\ possible permutations. We now calculate

29

the probability th a t after randomly selecting a permutation P 'k and sampling w

from W , the output is w'.

P r(P k (W) = w') = Evfcex - K) * Pr(™ e W : PfcH = u/).

For each k <— K the probability th a t w <— W : Pk(w) = w' is < 2~m by the

definition of min-entropy. As we pick the key k at random, each term inside the

sum is p^y2 -m . There are \K\ different keys k which means that there are |K\

different term s < ^ * 2 _m. Thus Vw', P r(P (w) — w') < 2 ~~m which means th a t

the over all min-entropy of the distribution gained from randomly selecting a key

k and running Pk{w) for sampled w £ W is no less than the min-entropy of W .

Thus for randomly selected S ti and for all distributions W where H 0 0 (W) = m,

(where m is the needed min-entropy of the extractor E x tk), this construction

functions as an extractor.

We now sample w G W and show th a t for w fixed and known to an adversary

A this functions as a pseudorandom generator on k\\Sti. Assume th a t there is

some adversary A who can distinguish between randomly selected Ri values,

and outputs of Ext(Pki(w),S ti) for randomly selected ki\\Sti. We construct A'

to distinguish between the outputs of the PR P Pk for randomly selected k and

random outputs.

To do this, we construct a chain of hybrid experiments iP . Hybrid iP is a

sequence of R j values, where the R j values are computed as follows.

1. For all R j values j < i, the R j values are randomly selected..

2 . For all R j values j > i the R j values are formed by R j = EExt(u>, k j\\S tk)

for randomly selected kj\\S tj.

We note th a t H 1 is identical to when the experiment where A is querying the

function EExt and if A makes q queries the hybrid H q + 1 is identical to the situa

30

tion where A is querying the random oracle. Since A can distinguish between H 1

and H q+1, by the hybrid lemma there is some i where A can distinguish between

the hybrids H % and H z+1. W ith this in mind we construct A '° as follows:

A10

1 . A '° randomly selects a state S ti and queries his oracle on 0 (w) = w '.

2 . A '° computes R' — E xt{w ' , Sti).

3. A '° gives w to A.

4. For all queries before i A '° answers A ’s queries by returning randomly

selected values R j.

5. For query % A '° returns R ' to A.

6 . For all queries after i, A '° randomly selects k j\\S tj and returns to A,

EExt(w, kj \\Stj).

If O is the random oracle then A '° has just created the hybrid H l + 1 as

the random oracle on w samples from the uniform distribution on {0 ,

Because the uniform distribution on {0, l} n(fc) has the maximum possible min-

entropy, E x t{w ', Sti) functions as an extractor, which means that R' is e close

to a randomly selected string so if O is the random oracle A '° gives a transcript

which is statistically close to the hybrid H t + 1 . If on the other hand the oracle is

the pseudorandom permutation Pk for randomly selected k then A '° has created

the hybrid H %. Thus, due to the fact th a t A can distinguish between H % and

H l+1 A '° can distinguish between the pseudorandom permutation family P and

the random oracle. ■

N o te : For our construction, we require Extfc to be a family of extractors

where the inputs/ou tputs depend on k. Extractor constructions admit inputs

31

of increasing lengths so the polynomials n(k), l(k), s(k), m{k) are explicitly

constructable. Namely from the size of the output we need, (l(k)), and the

size of the key to the pseudorandom permutation family desired, (sf(k)), we can

construct the other parameters based on the particular extractor construction

utilized.

4.2 Forward Secure E xtractors

Given an enhanced extractor we can define a second tool, a forward secure

extractor. This extractor is defined as follows:

A forward secure extractor FExt is a function which on input (W i,S ti) pro

duces a random string Ri and a new state S ti+1 .

D efin ition 4.5 (Forward Secure E xtractors) A polynomial-time computable

function family FExtfc : (0 , l} n(fc) x (0 , > {0 , 1 } ^) x {0 , is an

(n(k), s (k) ,m (k) ,l(k) ,e) forward-secure extractor if:

1. Extraction:

VW : HoofW) > m{k) FExt^l^ is an (n (k),s (k) ,m (k) ,l(k) ,e) extractor.

2. Forward Security

VA,VtF : H ^ W) > m (k)

\P r[A °fr (w <— W) —» 1] — Pr[A°fp(w <— W) —» 1]j < a (k) where the two

oracles are defined below.

®fp

• Before any query O fp samples S t\ randomly from (0,

• On its i ’th query, i f its input is 1 O fp computes

(R i,S ti+1) FExt/j:(w ,S ti) and returns Ri, and stores Sti+i.

32

• I f the input is 0, O fp outputs S ti and will not respond to any further

queries.

Ofr

• Before any query O fr samples S ti randomly from {0,

• On its i ’th query, i f its input is 1 O fr computes

(Ri, Sti+i) <— FExtk(w ,S ti) and returns R * randomly sampled from

{0 , 1 } ^) , and stores S ti+

• I f the input is 0, O fr returns S ti and will not respond to any further

queries.

We show th a t we can construct a forward secure extractor from any enhanced

extractor. To do this, we need to utilize a tool of Bellare and Yee [10]. There they

create a new tool, a forward secure pseudorandom generator. Such a generator

takes a seed and outputs a random string as well as the next seed to be used.

Such a generator has the property th a t if a seed is revealed, all strings generated

from previous seeds still remain pseudorandom to the adversary. Formally:

D efin ition 4.6 A F S P R G is composed of two functions, GenFirst and GenNext:

• GenFirst(lfe) -> X i G {0,1}Ŝ

• GenNext(Xj) : X i € {0,1}Ŝ -» R G {0,1}1W x X i+i € {0, l}5̂

Forward Security

Consider the adversary A who has access to an oracle O. O is either a

pseudorandom oracle Ogp, or a random oracle Ogr. A can make two types of

queries, a ’normal’ query, or a state query. Only one state query can be made,

and the adversary can make no more queries afterwards.

Ogp

33

• Before any queries Ogp computes S ti <— GenFirst(lfc).

• I f A queries Ogp with 1 , then Ogp returns S ti.

• I f A queries Ogp with 0, then Ogp runs GenNext(Sti) —>■ (R i,S ti+1). Ogp

returns Ri and retains S ti+i for use in the next query.

Ogr

• Before any queries Ogr computes S ti <— GenFirst(lfc).

• I f A queries Ogr with 1, then Ogr returns Sti.

• I f A queries Ogr with 0, then Ogr runs GenNext(5ti) —► (Ri, S ti+i). Ogr

returns R(selected uniformly from {0, l } l(k\ and retains S ti+i for use in

the next query.

We define the forward security property as follows:

\/A ° \P r[A °9P —» 1] — P r[A °9T —> 1] | < a for negligible a.

In [10], Bellare and Yee show th a t such an F S P R G can be built out of a

normal pseudorandom generator as follows:

T h e o re m 4.7 (A F S P R G C o n s tru c tio n) Let G be a pseudorandom gener

ator which takes s (k) bits to l(k) + s(k) bits. We can construct a forward secure

pseudorandom generator, (GenFirst and GenNext,), as follows:

• GenFirst(lfc) : Randomly sample X <— {0,1} s(fc). Return X .

• GenNext(Yj) : Run G (X i) —» r||Y }+i, where |r| = l(k), and |Y}+i| = s(k).

X i+1 is the new seed and r is the pseudorandom string.

P ro o f: Full proof found in [10]. As a summary, the proof is a hybrid arguement

where it is shown th a t if any adversary can violate the forward security of an

34

F S P R G , it can distinguish between the random oracle, and the oracle which

runs the pseudorandom generator G. ■

Thanks to the above theorem, we know that forward secure pseudorandom

generators exist and th a t they can be constructed from normal pseudorandom

generators. However, a FSPRG by itself is not enough for a forward secure

extractor for two reasons: it takes only one input, the random seed, while an

extractor requires two; and a FSPRG can only offer computational indistin-

guishability of its outputs, while a forward secure extractor requires statistical

indistinguishability of its outputs even given the state values. However if we use

an enhanced extractor, we can gain a forward secure extractor using a similar

construction as Theorem 4.7.

T heorem 4.8 (Forward Secure E xtractors from E nhanced E xtractors)

Let EExt be an enhanced extractor which takes (0, l}n(fc) x{0, —> {0,1 y(k)+s(k)

. The following construction i f a forward secure extractor.

EExt(u>, Sti) —> where Ri is the first l(k) bits of the output of EExt,

and S ti+ 1 is the last s(k) bits.

Proof: The extraction property follows directly from the definition of an en

hanced extractor.

Now, the way th a t we construct an F S E from an enhanced extractor is

identical to the way Bellare and Yee construct a F S P R G from a pseudorandom

generator. Namely, we reserve the last bits of the output as the next input to

be used (thinking of our F S E as a pseudorandom generator for known w which

runs on input Sti). Thus by Theorem 4.7 and the definition of an enhanced

extractor for known w and randomly selected initial state Sto, our construction

is a forward secure pseudorandom generator.

35

Second, we look at the oracles O fp and Ogp and we see th a t how they answer

their queries and update their states is the same, with the exception th a t O fp

queries an F S E to generate an output and a next state, while Ogp queries a

F S P R G . However as we have already stated, our F S E construction FExt is a

F S P R G for known w. Thus, O fp = Ogp. Similarly Ogr = O fr.

Since the two oracles are the same for our construction, for any adversary

A who can distinguish between O fp and O fr , we can construct an A' which

can distinguish between Ogr and Ogp by simply echoing the queries A wishes

to its own oracle, and finally echoing the answer A gives. If A ' can break the

F S P R G based off our enhanced extractor construction for sampled but known

w, then for th a t w our enhanced extractor is not a pseudorandom generator for

th a t w value. So, if A can distinguish between O fr and O fp with non-negligible

probability e, A' can distinguish between Ogr and Ogp with probabiltiy e — v

for negligible v which means th a t A can break the pseudorandomness of our en

hanced extractor for sampled and known w with non-negligible probability. (We

subtract a negligible amount from A ’s advantage, as we do allow a negligible

probability for EExt(it>, St) to not be a pseudorandom generator for sampled w).

■
If we are to use the enhanced extractor construction of Theorem 4.4 we will

need the extractor to take a seed of size s'(k) + s"(k) and output a random

string of size d(k) = l(k) + s (k) + s'(k). For increasing k this means th a t we

must find biometric information th a t gets ’b e tte r’, th a t is it is longer and has

more entropy in order for us to gain the key size th a t we need. However, we

note th a t with the enhanced extractor construction we defined earlier we can

have th a t s"(k) is logarithmic compared to l(k) and th a t we can set s '(k) to be

small (but inversely polynomial) compared to l(k). Now, it has been shown th a t

36

there are extractors which can extractor a constant fraction of the min-entropy

of their input [12]. W ith those we can say th a t the min-entropy needed for a

given security parameter k is still polynomial in k as we need the min-entropy to

be at least x(l(k) + s(k) + s!(k)) for 3a: > 1 . As the min entropy of a distribution

puts a lower bound on the size of the distribution we can also say th a t the

needed size of our biometric is polynomial in k. We can also use less efficient

extractors, as long as the extractor can extract more than a logarithmic amount

of min-entropy. Moreover, some extractors may be able to provide better results

if the random seed they use is larger than what is strictly necessary. Most work

on extractors focuses on having very small random seeds which extract a large

amount of output. Here though, we can have larger random seeds.

Next we prove a significant theorem about the states generated by the

F S P R G construction of Theorem 4.7. Since our construction of an F S E is

a forward secure pseudorandom generator for known w, the results in this the

orem apply to our F S E construction as well.

T heorem 4.9 (T he sta tes o f an F S P R G) Let GenFirst and GenNext be based

off of the construction of Theorem f.7 . We have an adversary A who has access

to the oracle O which is one of the following two oracles:

Osr

• Osr begins by sampling Sto randomly from (0 , 1 }S.

• When Osr is queried, it returns GenNext(S^) = Ri and randomly selects

a next state S ti+ 1 from (0 , 1 }S.

• When A makes a state query, Osr returns a randomly selected state S tiast £

{0,1 y .

o sv

37

• Osp begins by running GenFirst(lfc) = Sto.

• When Osp is queried, Osp returns Ri — GenNext(5£j), and stores the next

state S ti+ i.

• When A makes his state query, Osp returns S t

We prove that:

VA, |P r[A °sr —» 1] — P r \A ° sp —»• 1]| < a, fo r negligible a.

Proof: We show th a t if there is an adversary A whom can distinguish between

the two oracles we can construct A' which can either distinguish between the

oracles Ogp and Ogr, or which can break the security of the pseudorandom

generator G which the F S P R G is based on. A ' has access to the oracle O which

is either Ogp or Ogr. A ' will run A, and act as its oracle.

Such an adversary A' proceeds as follows:

• For every query made by A, A ' queries O and receives output R4 and

returns it to A

• W hen A makes a state query, A' makes a his state query, obtaining S t and

returns it to A.

• A ' echoes the answer given by A. If A says it has the random oracle, A'

says it has Ogr. Otherwise A ' says it has Ogp.

First we note th a t under this reduction in terms of the view of A, A /0pp = Osp

as Osp functions exactly as a F S P R G , the same as Ogp and A' does not modify

the queries he receives in any way.

We next need to show that A '° 9r should be indistinguishable from Osr to

A. We show th a t if this is not the case, A is in fact capable of breaking the

38

pseudorandom generator G. As a reminder the outputs of Osr are G run on

random state values, and a random ending state. On the other hand the outputs

of A '° 9r are randomly selected values and a final seed th a t has been updated

from an initial randomly selected seed.

First, we construct a chain of hybrids E %. Experiment E % works as follows.

• For queries j < i, R j is randomly selected.

• For queries k > i a random state is selected and R'k — G (St) is returned.

(Here, R'k is the first I bits of Rf~ = G (St).)

• For the final query, (the state query), a random state S t is selected and

returned.

For an adversary A who makes m queries, a transcript from the experiment

E m is indistinguishable from a transcript from A '° 9r. In both cases, the Ri

values are randomly selected I bit strings. As for the states, the state returned

by E m is randomly selected, and the state returned by A !°9r is the output of a

pseudorandom generator on a random input, so the states are indistinguishable

as long as GQ, the function which the forward secure pseudorandom generator

is built on is a pseudorandom generator. Also we have th a t E 1 is identical to

Osr as each R4 value is pseudorandomly derived from a randomly selected initial

state and a random final state is returned.

By the hybrid lemma and our assumption th a t A can distinguish between

Osr and A '° 9T we know th a t there is some i where A can distinguish between E 1

and E l+1. Using this, we can construct A" to distinguish between the random

oracle, and GQ.

A" constructs i — 1 random values R4 where \Ri\ = I and for Ri A" queries its

oracle receiving R[which it truncates to the first I bits. For all other values, A"

39

queries GQ on a random state and truncates the outputs to the first I bits. A"

returns these queries to A. If A" is querying the random oracle then the value

.R' is random and thus the transcript created by A" is identical to E l+1 and if A"

queried the pseudorandom oracle, then the transcript is identical to E l . Thus,

if A can distinguish between the two states with non-negligible probability e,

A" can distinguish between the pseudorandom oracle G and the random oracle

with probability e.

So, we can assume th a t to A A l°^r is indistinguishable from Osr. We have

already stated th a t A'9P = Osp. Thus, if A can distinguish between Osr and

Osp with non-negligible probability e, A ' should be able to distinguish between

Ogr and OgP with probability e — v for negligible v. (We subtract a negligible

advantage as there is a negligible probability th a t A '0f>r is not indistinguishable

from Osr). ■

Having proven that the states are pseudorandom, we now prove th a t in the

case where the biometric readings are not known, but the states are known, the

extracted keys are statistically close to random. To prove that, we prove the

following theorem as well.

T h e o re m 4.10 (T h e o u tp u t o f fu n c tio n s g iven close to ra n d o m in p u ts)

Let YQ be a function which takes I bits to n bits such that Y (X) , where X is the

uniform distribution on {0,1}*, outputs x £ {0, l} n such that S D (Y (X), Un) — e.

Let X ' be a distribution e' close to random. Then the statistical difference be

tween Y (X ') and Un < e' + e.

T h e o re m 4.11 (K eys a re s ta t is tic a l ly close to ra n d o m) Let FExt be a for

ward secure fuzzy extractor which produces output which is e close to random

where e is negligible. Run FExt, n times, each time for a new sampled value

and updated state. Then the extracted keys Ri are at worst ne close to random.

40

P ro o f: First we prove Theorem 4.10.

By the definition of statistical difference:

S D (Y (X), Un) = \ YjVx \P r (Y (x) = x) - P r(x <— Un)\ = e. Moreover we

have that:

SD(A", X) = e ’ = i E v , 1 ^ (1 X ') - P r(x <- X)|.

Now we calculate S P ^ l^ X ') , C/n).

= l ' £ \ P r(Y (-x '') ^ ^ ~ Pr(-X ^
Vx

= i \P r (Y (X>) - > x) ~ P r (Y (X) ^ x) + P r (Y (X) -> x) - P r(x <- Pn)|
Vx

< i J ! lP r (y (X ') -*• x) - p r (Y (X) •-> x)| + |P r(K (X) -4 1) - P r(x <- Pn)|
Vx

Vx

= i ^ | P r (a <“ X ') P r (Y (a) -» x) - P r (a <- X)P r (Y (a) -> x)| + e
Vx Va

= \ E I E (Pr(o - X') - P r(a <- X))P r(Y (a) ^ x) \ + e
Vx Va

Now, we note two things. First, for each a and x, P r(Y (a) —> x) is either 1

or 0. Moreover, if P r(Y {a) —> x) is 1 for some a it is 1 for one and only one x.

P r(Y (a) —> x') = 0 if P r(Y (a) —» x) = 1 for some x ^ x '. Thus for each a, the

term P r (a <— X ') — P r (a <— X) will appear once and once only over all the x

values in the outer sum. Thus we can drop the outer sum over all x and deal

only with the sum over all a.

41

= \\ E Pr<a x) - Pr<-a *- x ')i+ e
Va

< i ^ |Pr(a <- X) - Pr(a <- X')| + e
Va

=€ “I- 6

Thus we have th a t S D (Y (X ') , Un) < e + e'.

Going on, to apply Theorem 4.10 to Theorem 4.11 we simply need to note

th a t for a w sampled from W the function FExt(ra, Sti) is a function th a t outputs

a string th a t is e close to random. Also, the first time we utilize the forward

secure extractor the key Sto is random. Thus Ro, the full output of the extractor

after the first time it is run is e close to random which means th a t S t i , the last

s(k) bits is e close to random. Going on we can use Theorem 4.10 to say that

for the next use of the extractor the key is 2e close to random, for the third use

it is 3e close to random and so on. Thus for n uses, the extracted keys are ne

close to random. For polynomial n and negligible e this means th a t all keys are

negligibly close to random. This holds even if the states are known, due to the

definition of an extractor. ■

Having now described and constructed a forward secure extractor, we show

how an enhanced forward secure fuzzy extractor, (E F S F E), can be constructed.

42

4 .3 E nhanced Forward Secure F uzzy E xtractor C on

stru ction

W ith possession of one construction for a forward secure extractor we construct

a forward secure fuzzy extractor. We show th a t given our previous forward

secure extractor construction and a fuzzy sketch construction, we can construct

a forward secure fuzzy extractor construction. As our previous forward secure

extractor construction only required the existence of an enhanced extractor, this

means th a t an enhanced forward secure fuzzy extractor can be built out of an

enhanced extractor, a fuzzy sketch, and a pseudorandom function F.

T heorem 4.12 (A n E nhanced Forward Secure Fuzzy E xtractor) Given

the forward secure extractor F Ext (it/, Stf) constructed earlier, a fuzzy sketch

(Fsk, Rec) and a pseudorandom function F the following is an enhanced forward

secure fuzzy extractor.

• FirstKey(l/c): Randomly sample Sto {0, l } ^) .

• Rep(w ',S ti,P i): Run Rec(«/, Pf) gaining Wi. Run (Ri, S ti+i) = FExt(u^, S't*)

and output R4 .

• Update(u/, Sti, Pi): Run Rec(w ',P i) gaining W{. Run FExt(w i,S ti) =

(R i,S ti-1-1) and output Sti+ 1 .

• EUpdate(w;*, Sti): S'tj+i = F(w'* ® S ti), where w'* is w* truncated so that

|u/*| = |5 tj|. Return Sti.1-1 •

• Gen(w ',S ti): Run Fsk(w1) forming a public sketch Pi.

P ro o f: The correctness of the fuzzy extractor is the simplest part of this proof.

Let Sti be any state information. We have d(w, w') < t, where t is the error toler

43

ance of Rec. This means th a t if P ' = Gen(u/, S ti) = Fsk(u/), then Rec{w ' , P') =

Rec(w, P ') = w', and for identical seeds Sti and S t', FExt(u;i, S ti) = FExt(u^, S t')

Putting these two equalities together for the function Rep, we get that:

Rep(w;, S t i , P r) = FExt(JRec(u;, P ') , Sti) = R = P ' = FExt(Pec(u/, P ') , St*) =

Rep(u/, St*, P ') .

The extraction property is similar. For any state St, FExt is an extractor

by definition and Gen is a public sketch. We do not publish the state S t in

the public sketch, however if we did our construction of Gen and Rep would

be identical to the construction in Theorem 2.6. Moreover, the only purpose

in publishing the state in the public sketch is so th a t it can be retrieved and

used again. We simply do privately what could be doine publicy and still have

the extraction property. Thus, from Theorem 2.6 we can gain the extraction

property th a t S D ((R ,P) ,(U i,P)) < e).

Now we go and prove the forward security property of this construction.

Forward Security

We divide the proof up into the two cases. First, we assume that the adver

sary A makes both a biometric corruption and state corruption query. Moreover,

we assume th a t this biometric corruption query allows him to know all biometric

readings Wi. Later, we assume he makes only one type of corruption query.

We assume th a t there is an adversary A whom can violate the forward secu

rity of our F S F E after he makes both types of corruption queries. We construct

A! which can break the forward security of the underlying F S E , FExt. A' works

as follows:

1 . A! will first receive w and then will make one normal query receiving R

and one state query receiving St'.

2 . A' will pick an initial state, Sto — FirstKey(l/c).

44

3. A ' will guess a query d £ GS, the decide query made by the adversary. If

the adversary does not make the decide query at d , A' will randomly flip

a coin.

4. A' selects a distribution set W where w £ W and the min-entropy of W

is high enough.

5. For all queries i < d made by A, A ' will answer in the following way:

• For each query A ' will sample Wi € IF, and publish Pi — Gen(wj, Sti)

• After each query A' will either update using Update or EUpdate at

the behest of A, selecting new w* as appropriate.

• For an insider query A ' returns Rep(u)i, S t i , Pi) = R4 .

6 . For query d A ' will set Pi = Gen(w;, S tr) and Rd = R.

7. For query d p i A ' will set Sta+i = St'.

8 . A' will continue to answer queries as long as A desires them.

9. When A responds with his guess query, A ' will echo A ’s guess, i.e. A ' will

say pseudorandom if A says pseudorandom and vice versa.

We assume for the moment th a t A ' selected the correct query. At the end,

we can simply divide the advantage of A' in this case by total where total is

the number of queries. Where total is polynomial in \St\, then the resulting

advantage is still polynomial. We prove th a t this reduction is successful by

showing th a t the action of A ' 0 is indistinguishable from the action of O e fe

to A if the oracle queried by A' is O fr we have th a t Oe f e ■> (to A), returns a

random value for A ’s decide query and if the oracle queried by A' is O fp then

to A, Oe f e returns a valid extraction.

45

We note th a t A '° functions exactly like an enhanced forward secure fuzzy

extractor for all queries before query d . It samples from a distribution set

with high enough entropy, selects a valid initial state and runs functions as

appropriate. As A ' acts like a E F S F E for all queries before query d , A’s view

on those queries is indistinguishable from O e f e ■ We can say the same thing

for all queries q > d + 1. We now focus on query d + 1 and query d , the decide

query, and we show th a t in these two cases as long as d G G S , (which we hold

as true by our assumption), for these two queries the action of A '° is actually

indistinguishable from the action of O e f e -

We look at each element of the queries in turn. First, we can say that in

both queries the public sketch A gives is a valid public sketch of the biometric

as A' has knowledge of the biometric to be used in each tu rn and creates valid

sketches. Also, the sketch function Gen does not utilize the state so the state S tr

is not used in the sketch and thus remains invisible. Also, the biometric string

used for query d + 1 is validly sampled, and the distribution W contains w so the

biometric strings come from a distribution with high enough entropy. (A ' cannot

tell the difference between sampling a biometric for query d and returning w as

A ' has no idea of the distribution it is dealing with, or the distribution A '’s oracle

is sampling from). For query d , either the string R is a random string unrelated

to the biometric sketch and state ,(if A '’s oracle is O fr), or the string R is the

extraction of the biometric w using state St". Also, the string Rd+i is a valid

extraction of Wd+i using state S t'. So the string R = Rd is exactly one of the

possible strings O e f e could create, as it is either a random state independent

from all other information, or a valid extraction on the biometric w for some

state. The difference between A '° , and O e f e are the states used for query d ,

and for query d + 1. The state Std is not updated from the state Std - 1 as it

46

should be. Next, we show th a t if d G G S these states are still indistinguishable

from the ’tru e’ states.

C ase 1:

In this case, d < s\. Here, we can use Theorem 4.9. The theorem states

th a t for a F S E , the updated states are computationally indistinguishable from

randomly selected states for all states before the adversary makes a state query

(which is identical to a state corruption query). Thus the state Std, a randomly

selected state, (as it is the first state the oracle O generates), is indistinguishable

from the state Stdtrue, the state th a t comes from Update(wd-i, S td - i, Pd-i)-

Also we see th a t the state S t' is validly updated from Std, no m atter whether

or not A' has access to the oracle O fr or O fp. Thus in this case the states are

computationally indistinguishable from the ’tru e’ states A would expect from

O e f e -

C ase 2:

In this case d > e* and there is no state corruption query Sj where d > 8j > a .

Here we show th a t A ’s knowledge of the queries e* < q < S j , (where S j is the

next state corruption query after e*), is the same as A ’s knowledge of the

queries in Case 1. To do this, we show that the state S tei+1 is computationally

indistinguishable from random even given all previous information. We show

th a t if this is not the case then we can break the pseudorandom function F.

The reduction is rather simple. We denote A as the adversary capable of

distinguishing between a random state S tei+1 and S tei+1 = EUpdate(«;*, S tei) =

F (w ** © Sti), (where w** is w* truncated so th a t \w**\ = |S'ti|), given previous

information, and we construct A ' which will break the pseudorandom function

F. The reduction is similar to the larger reduction th a t we are in presently.

Namely:

47

• A '° guesses when A will make the query e*. (Again we assume for the sake

of the proof th a t A' guesses right, knowing th a t we divide A '’s advantage

by total).

• For all queries before e*, A ' simulates a forward secure fuzzy extractor.

• For the enhanced update query e*, A ' updates using S t e i + 1 = 0(w** ©

S t ei)•

• For all later queries A' simulates a F S F E .

It is plain th a t if A' guesses correctly and O is the random oracle, then the

state S t e i + 1 is random, otherwise the oracle S t e i + 1 is a pseudorandom function of

w** © S tei. Thus, if A can distinguish between a randomly selected state S t e i + 1

and a pseudorandomly selected state with probability > e for e non-negligible, A'

can break the pseudorandom function F with probability As long as total

is polynomial in the security param eter A hs advantage is still non-negligible.

Because the state S t e i + 1 is indistinguishable from a random state, even to

an adversary who knows every piece of information in all previous queries, we

can say th a t A’s view on queries e* + 1 th ru Sj is indistinguishable from A ’s view

on queries 1 thru si. The first query in both cases is with a sampled biometric

and random unknown state St. Each subsquent query is a query with sketch,

sampled biometric, and updated state. The final query in both queries is a state

query. For all queries after the enhanced update, A has the capability to learn

the same things th a t he could learn at the first query. Namely, he can learn

the biometric string in every round, he can make as many insider queries as

he pleases, and he views all public strings in each case automatically. As the

only thing th a t remains secret is the states, and those are indistinguishable from

random states selected independently of all previous states, all previous queries

48

do not allow the adversary to learn anything about the states after query e?; and

so we can say th a t the knowledge A has about the queries between e* and Sj is

the same as the knowledge A has about the queries 1 th ru S j .

Since the queries between e* and Sj are indistinguishable to the queries 1

th ru si in terms of an adversaries knowledge of the states, public strings, keys

and biometric information, we can say th a t if e* < d < S j , then the analy

sis we developed in Case 1 still applies, and thus the queries d and d -f- 1 are

indistinguishable from O e f e to A .

Having shown th a t the action of A '° is indistinguishable from the action of

Oe f e , A ' gains part of A’s advantage. Thus, if A’s guess query is correct with

probability e, then A! will distinguish between O fr and O fp with probability

and if total is polynomial in the security parameter, the probability is

non-negligible.

Now we assume that the adversary A makes only one type of corruption

query, either a biometric corruption query or a state corruption query.

First, we deal with the case where an adversary does not ever make a state

corruption query. Here we say th a t the set G S encompasses all the queries

made by the adversary, and thus all keys in th a t set should remain secure. If

the adversary makes m queries, then the first state corruption query he could

ever make would be a query m + 1 , which would mean th a t all m queries are in

GS. Thus, by the analysis in the previous case, we can say th a t all keys remain

indistinguishable from random.

Next, we assume that the adversary makes some state corruption queries, but

no biometric corruption queries. We also assume th a t the adversary learns all

possible states Sti. However, since the adversary makes no biometic corruption

queries, we can use Theorem 4.11 and say th a t all the keys Ri are negligibly

49

close to random which means th a t all adversaries have at best a negligible chance

of success in distinguishing a random key from the true extracted key.

■

4 .4 R o b u stn ess in an E nhanced Forward Secure Fuzzy

E xtractor

Here we show how to add the robustness property to our enhanced forward secure

fuzzy extractor construction. To do this we will utilize the method Dodis et al.

used in [7]. There they developed a sketch protocol th a t contained authentication

information, such th a t any adversary who does not know the key cannot forge

this information. We use the same idea here. First, we introduce the following

tool.

D efin ition 4.13 (M A C) A M AC is any function, M A C st{0, l } n —> (0 ,1}V,

which has the following two properties.

• For all x and 5, P rst[M A C st(x) = 5] = 2~v .

• For all x ^ x ' and for any 5,6', P rst[M A C st(x ') = 6 '\M A C st(x) = £] =

a(^), for negligible a.

An extractor MAC is a MAC th a t is also an extractor, where S t is the

seed to the extractor. While a regular MAC hides the key computationally

given the message and MAC, an extractor MAC hides the key statistically as

long as the message has high enough entropy to the adversary. Moreover, for a

MAC it should be difficult for any adversary, given multiple different messages

and tags under a key to output a new message and a valid tag. [2] In [7], explicit

50

constructions of an extractor-MAC are given utilizing pairwise independent hash

functions.

Using an extractor-MAC function M A C , we alter the function Gen of our

enhanced forward secure fuzzy extractor as follows.

Gen'{wi, S ti) = (P{ = Fsk(^),7r = M A C Sti (wi © S t* ,P ')) . (Here St* is S t

concatenated to itself enough times such that = |S't*|.)

W ith this function in place of the old function Gen we construct a robust

enhanced forward secure fuzzy extractor as follows:

T heorem 4.14 (A R ob u st E nhanced Forward Secure Fuzzy E xtractor)

The following is an R E F S F E .

• FirstKey(lfc): Randomly sample Sto <— {0, .

• Rep(w', S ti, Pi = (P ', 7r)): Run Rec(w/,P ') gaining W{. Check to see if

7 r = M A C sti(w i © S t* ,P f). I f not, output _ L ; otherwise run R i ,S t i+1 =

FExt(rCi, Sti) and output Ri.

• Update(w ', S ti, Pi): R un R ec(w ',P l) gaining W{. Run FExt(w i,S ti) =

R i,S t i+ 1 and output S ti+i.

• EUpdate(w;*, S ti): S ti+1 = F(w'* ® S ti), where w'* is w* truncated so that

\w'*\ — Return S ti+i.

• Gen (wi,Sti) = Gen '(wi,Sti).

To prove this construction is robust, we prove the following theorem. We

show th a t for any adversary who does not know the state Sti , the probability

of outputting a public string P ' ^ Pi that breaks robustness is negligible.

51

T heorem 4.15 (U n forgeab ility) V adversaries A , where 3i such that A does

not know S ti, Pr[A {Tr) —► P* : P* ^ Pi and Rep(wi, S ti, P*) t -̂L] < ot, for

negligible a, where T r is a transcript of A ’s interaction with the oracle Oroi,.

Proof: There are two cases. The first case is when A outputs P* = (P '* ,n*)

where P/* = P'. In this case 7r* must be M AC sti{w i © S t* ,P ! = P/*) for A to

succeed as Rec(u^,P/*) = Wi. However, that means th a t 7r* = 7r which means

th a t P f — Pi and A has not violated robustness.

In the second case, 7r* = 7r. Here, P/* ^ P / and A should not be able

to create a tag 7r* such th a t 7r* = M^4C5^(Rec(u;/, P/*) © P t^ P /*) = 7r =

M A C sti(Rec(w ',P ') ® S t* ,P ') as (Rec(w!, i f) 0 St*, P'*) ^ {Rec(w', P[) @

St*)due to the second property of a MAC.

So, with all but negligible probability A cannot create a valid tag for the

MAC without knowing the state. ■

W ith the above theorem proven robustness follows simply as the M A C hides

the key, (at least computationally), and the random values R should not reveal

anything about the states S ti as the strings should be random even given the Sti

information. Moreover, we gain robustness even when the adversary is allowed

to know the biometric inforation Wi for a query.

52

Chapter 5

U ses of Forward Secure Fuzzy

Extractors

In the previous chapter we introduced a construction for an enhanced forward

secure fuzzy extractor. This extractor retains the security of its keys even in

regards to the theft of biometric information. In this chapter we examine several

different authentication schemes th a t utilize fuzzy extractors and examine how

they can be changed to allow for the use of a forward secure fuzzy extractor.

We also construct protocols th a t allow two individuals to utilize an enhanced

forward secure fuzzy extractor and use the enhanced update function, even when

one individual does not have access to the biometric data source of the other.

5.1 T h e U se o f F uzzy-E xtractors in A u th en tica tio n

Schem es

By themselves, fuzzy extractors allow for a strong cryptographic key to be uti

lized easily and without the key being electronically stored. It is not immediately

clear how this key may be used in different protocols. This section explores the

53

different ways in which a fuzzy extractor can be utilized in an authentication

protocol. These protocols mainly differ in what information the server is allowed

to possess. In all these protocols, it is assumed th a t the user stores no infor

mation except for the second factor, the state information. The first two come

from [4] and [13] while the last is, as far as we know, original to this paper.

T heorem 5.1 (A n A sym m etric A u th en tica tion P rotocol) The following

protocol is an unidirectional authentication scheme.

• User computes (R ,P) = Gen(w), and computes P K r , the verification key

of a signature scheme where R is the signing key. I f R is not a valid

signature key, one is deterministically developed from R . These keys are

certified by a trusted certification authority. The user passes P K r , P to

the server.

• For authentication the user inputs a new instance of the biometric data

w '.

• The server sends P and a random nonce n to the user.

• Using P , the user computes R = R ep{w ',P), and signs a message m\\n

using R.

• The server verifies the signature using the verification key P K r .

Proof: Full proof is found in [4]. Informally, w ithout access to the signing key

R, no adversary should be able to sign m ||n , and R is e close to random even

given P due to the fuzzy extractor. ■

This construction has the advantage that the only information that is stored

in the server is information th a t can be made public, so the security of the

54

server’s data is not an issue. Also, there is an implicit idea of robustness here.

Namely, after signing the message m\\n, the user can verify that the signature

is correct by using the verification key, which is public. However, this is a one

way authentication protocol in th a t the server cannot authenticate himself to

the verifier under this scheme. Moreover, for forward secure fuzzy extractors

this protocol is only good for one authentication, in that the updating of the

state S t, will result in a new secret key R, and will require the user to send to

the server a new public key, P K R i + 1 which would require this key to be certified

as well. This is necessary as the server cannot update the state itself. Next we

present one th a t acheives m utual authentication.

T h e o re m 5.2 (A M u tu a l A u th e n tic a tio n P ro to c o l) The following proto

col is a mutual authentication scheme.

• Let 7r be a Password Authenticated Key exchange protocol.

• User computes (R ,P) = Gen(w), and sends R and P to the server.

• For authentication, the user receives P from the server, and computes R.

• The server and the user both run 7r for authentication, using the key R.

P ro o f: Full proof is found in [13]. Informally the fuzzy extractor allows both

the server and the user to arrive at the same key R. The security of the protocol

depends on the security of the PAK protocol 7r and the security of the fuzzy

extractor. ■

Here, we do have m utual authentication at the cost of having the server

store sensitive information. Again, to update to the next state in this protocol,

after the user and the server are m utually authenticated and they have a session

key developed by the key exchange protocol, the user computes the new state,

55

extracts using the same public string and the new state and sends the key over

to the server. Unfortunately, given the lack of w, and state information S ti , the

server cannot update from state to state itself, either deterministically or through

an enhanced update. This means that while the alteration to this protocol is

simple, it does create large overhead as each authentication must end in sending

the state for the next authentication.

Another possible mutual authentication scheme would be if instead of the

server storing R, the server stores an instance of the biometric data w '. Now

authentication takes place when the user runs Gen(w;), creating R ,P and sends

P to the server. If d(w, w') < t then both the user and the server will arrive at

the same key, R , which can be used in a PAK protocol. Moreover even if we do

not use a forward secure fuzzy extractor for this protocol, we have the property

th a t different keys can be developed for each authentication as different public

strings P will have the user and server agree on different biometrics which will

(may) extract to different values. Also, if the server stores the state information

as well, this allows the server and the user to update independently, something

the previous two protocols have lacked. However, it has an unfortunate draw

back in th a t the server is now storing the user’s biometric data which can lead

to a far more damaging breach in security if the server’s data is compromised

or if the server maliciously uses the data, than if the server simply stored infor

mation specific to the authentication protocol. Knowledge of a user’s biometric

information can allow a malicious server or adversary to corrupt other protocols

where the user used the same biometric source of information. However, if we

allow the user and server to share a pseudorandom function, we can eliminate

this drawback with the following protocol.

56

N o te : For this protocol, it is necessary th a t the ’fuzzy’ data comes from

a metric space A i, which has the property th a t there is a family of isometries

I(w , s) that Vs, s' has the property th a t I(w , s) — s + s' = I(w , s'). The space of

bit strings of fixed length, under the Hamming Metric is one such space, where

I(w , s) = w © s, and the operation — s + s' = ©s © s'.

T h e o re m 5.3 (A M u tu a l A u th e n tic a tio n S chem e) Let it be a PAK proto

col. Let F be a pseudorandom function. Let Gen and Rep be our forward secure

fuzzy extractor, where Rep has error tolerance t. The following is a mutual

authentication protocol.

• The user computes his beginning state, F ir s tK e y (lk) = SLq. He also

computes the jo in t first state F ir s tK e y (lk) = Sto independently.

• The user computes w* = I(w ,F (S to)) , and sends Sto, w* to the server.

He stores S Iq.

• To authenticate, the user computes P ' = Gen(w'* = I(w ' , F(St%)), S ti)

and computes Ru — Rep(w '*, Sti, P ') and sends P ' to the server.

• The server computes R s = Rep(w*, Sti, P ').

• The user and server authenticate themselves by running the PA K protocol

7r with keys RsjRy,.

• I f authentication is successful, the user computes S tf+ 1 = F (S tf) , and

sends X = —F (S tf) + F (St^+1) to the server. The server takes w* and

stores w *+ 1 = w* + X .

• Both the user and the server update using P ', S ti and Rec(w '*,P ') and

Rec(w *,P ') respectively.

57

Proof: If after both the sever and user have extracted keys based off the in

formation they have, and these keys are equal then they should mutually and

securely authenticate themselves based off of the PAK protocol. If d(w , w') < t

where t is the error tolerance of the fuzzy extractor, then:

d(I(w' ,F(Sq)) , I (w,F(St“))) < t

by the property of the isometry I. So, as long as d(w ',w) < t , both the

server and user should agree on I(w ', F (S to)) as the d ata the the fuzzy sketch is

storing. Due to the deterministic updates of the state S ti and for each update

both the user and server should agree on the biometric input to use to update,

then both the server and user should agree on the same state Sti+i, which means

th a t they should both be able to extract the same key for all states, which will

enable the PAK protocol to function after all updates.

For an adversary trying to authenticate himself in this protocol, the first

thing we note is th a t the probability th a t he picks the right state is negligible, as

the states are pseudorandom, even given the public sketches Pj. If an adversary,

given the public strings Pi and even given some keys R4 should be able to select

a state, then he can break the forward secure fuzzy extractor. Moreover, even if

the adversary were to guess the right state Sti, he still must create sketch that

is ’close’ enough either to the original biometric reading w* and also know the

state S t f or publish a sketch th a t is close enough to a randomly shifted element

w* G M.. The chances of him performing either attack is negligible, even given

the error correcting abilities of the fuzzy sketch.

Also, this protocol hides a user’s biometric information in the sight of the

server, in th a t the information the server sees is not the true biometric string w

rather a shifted string, Yi = I(w , F (S ty)), for pseudorandom Sti. If the server

A can distinguish Yi from a sequence of random bits, we can construct A' to

58

break the pseudorandom function F () as follows.

• A! selects a random beginning string Sto and samples w <— W .

• For f = l,2 , ...n.

• A ' queries his oracle O (Si), and gains output Si+\. He creates the string

w * = I(w , Si), which he sends to A.

If the oracle for A' is a pseudorandom function, then the distribution on

strings w* match exactly what A would receive if A received information from

the user, namely biometric strings I (w , F (S t for updated states S t f . Thus,

when O is the pseudorandom function we gain the advantage th a t the adversary

A possess. If that advantage is non-negligible, then the advantage given to A'

is non-negligible. However, note th a t if an adversary eavesdrops on the strings

X i — —F (S f) + F(S^+1), from i — 1 , 2 , . .. ,j , and then receives w *+ 1 he can

invert w * + 1 back to W q , as the server’s biometric update operation w *+ 1 —

wl + X is easily invertible. Do we still have th a t the strings I(w , S f) are in fact

pseudorandom even given the strings X{1 The reduction to prove this is similar.

Now, an adversary A' not only creates strings W*, but using the Si values he

receives from his oracle he creates — Si + Si+ 1 and sends those to A if A desires

to see a specific X i string. ■

In this last authentication protcol an interesting thing th a t we did was reverse

how the protocol was done, in th a t in previous protocols we had the server store

the fuzzy sketch, and the user request it while in the last authentication protocol

we had the user created a new fuzzy sketch each time. Here, we do not gain

authentication in th a t the ’correct’ key is created, as we create a different key

each time. We gain authentication because we have th a t the server and the

user will always agree on the same key, while for anyone who does not know the

59

biometric, unless he is lucky enough and picks one close enough to the shifted

biometric reading stored by the server and selects the correct second factor, he

can not gain access. This is rather different than other authentication models

where the key remains fixed. Moreover, for an adversary who does not learn

any of the server’s or user’s private information, if he was capable of finding the

key R used in one execution of the PAK protocol, that would not help him find

other keys as the next key utilized would be independently selected due to the

fact th a t the keys are based off the biometrics selected for each round.

5.2 T h e E nhanced U p d a te P roced u re

In the previous authentication protocols, the enchanced update protocol cannot

be performed by the server independently of the user. If there was any way for

the server to perform the enhanced update EUpdate(w/, Sti), w ithout knowledge

of w', or with only approximate knowledge of w', then any adversary should

be able to perform the enhanced update himself. Here we show two possible

m ethods which minimize the cost of the fact th a t the server cannot perform the

enhanced update himlself.

1. We can ’amortize’ the cost of a fuzzy update.

2 . The bounded storage model. In this model, the fuzzy update is not per

formed utilizing the user’s biometic source W , but rather it utilizes an

extremely large random string L R th a t the user and server have access to.

The security of the update relies on the fact that the adversary is limited

in storage.

60

5 .2 .1 A m o r tiz e th e C o st

This idea is relatively simple. We simply accept the idea th a t the enhanced

update can only be performed occaisonally. An example in terms of authenti

cation protocols is th a t after the user and the server have authenticated to each

other, and have agreed on a session key, the user performs an enhanced update,

encrypts the new state under the session key, and sends it to the server. This

allows the enhanced update to be performed after every authentication step with

minimal overhead, however should a forward secure fuzzy extractor be used as

part of another protocol this is not assured.

5 .2 .2 B o u n d e d S to ra g e M o d e l

The bounded storage model was first introduced by Maurer. The only con

straints placed on the adversary in this model is th a t the adversary cannot store

more than m bits of information for some variable m. The user and the server

has access to a string th a t is of size \K\ > m bits. This model can be thought of

as the case where the user and the server have access to a streaming source of

randomness with high channel capacity. This means that only a small amount

of the string can be stored by any adversary A. Cachin and Maurer in [6], de

velop a key generation scheme, (which we call B S K G), where given access to

the source of randomness R S two people can agree on a key in such a way that

any adversary with bounded storage will only have a negligible knowledge of

the key. Moreover, this is a keyless approach, in th a t the user and the server

need not share a key to create a new key. W ith this in hand, performing a fuzzy

update in the bounded storage model is relatively simple. Through B S K G

in [6] have the server and user create a key u>k where |w^\ — You then

have Sti+i — F (S ti © w^), for pseudorandom F, and the analysis done on the

61

enhanced update procedure still holds.

Given the parameters of the bounded storage model, it is infeasible for it to

be performed quite frequently as to perform the enhanced update in this model

both the user and the server must sample from a very large string, (terabytes

or larger). However, if we perform the enhanced update in a protocol such as

the one described in Theorem 5.3 then between updates we can still arrive at

different keys used for the PAK protocol which is nice as if the adversary gains

one such key for a previous execution of the PAK protocol the others remain

secure.

62

Chapter 6

Conclusion

In this thesis we have examined the use of biometric information in creating

cryptographicaliy strong keys in a method th a t still offers security even when

the biometric information is maliciously recovered at some point. To do this, we

have defined the following primitives.

1. An enhanced extractor, an extractor th a t becomes a pseudorandom gen

erator when the low entropy string is revealed but the state remains un

known.

2 . A forward secure extractor, an extractor which updates its second factor

in such a way th a t if this factor if both factors are known at a specific

state, all keys generated before the adversary learned the second factor

remain secure.

3. A forward secure fuzzy extractor, a stateful fuzzy extractor where all keys

before an adversary retrieves some state information remain secure, even if

the biometric information is revealed at some point, and where some keys

still remain secure even if both factors are maliciously recovered.

63

We have shown th a t given an enhanced extractor, we can construct a forward

secure fuzzy extractor. In addition we have thoroughly explored the possible

security properties of such a fuzzy extractor. We developed an enhanced update

function which allows for keys developed after the enhanced update function to

be secure. We also defined the idea of ’strong’ forward security, where if the

adversary only retrieves one of the two factors, all extracted keys remain secure,

and we have shown how this can be acccomplished using previously constructed

tools. We have also defined the idea of how we can obtain robustness in a

forward secure fuzzy extractor, even when an adversary can steal the biometric

information involved which is a stronger property than previous constructions.

Our construction, being a two factor construction offers greater security prop

erties than previous biometric only constructions, at the cost of storing the sec

ond factor. It is also im portant to note th a t our enhanced security properties are

always in terms of the size of the second factor of our construction. This means

th a t for increasing levels of security we will need to utilize increasingly ’good’

biometric information, th a t is, information th a t has more and more entropy and

gets larger and larger in size. The precise parameters which describe the needed

increase in entropy will depend on the enhanced extractor construction utilized.

64

Bibliography

[1] A . A d l e r . Im ages can be regenerated from quantized m atch score data.
In Canadian Conference on Electrical and Computer Engineering, Vol 1.,
pages 469-472, 2004.

[2] K i l l i a n B e l l a r e a n d P h i l l ip R o g a w a y . The security of the cipher
block chaining message authentication code. In Journal of Computer and
System Sciences 61, pages 362-399, 2000.

[3] M ih ir B e l l a r e a n d P h i l l ip R o g a w a y . Random oracles are practical: A
paradigm for designing efficient protocols. In AC M Conference on Computer
and Communications Security, pages 62-73, 1993.

[4] X a v ie r B o y e n . Reusable cryptographic fuzzy extractors. In CCS ’04:
Proceedings of the 11th A C M conference on Computer and communications
security, pages 82-91, New York, NY, USA, 2004. ACM Press.

[5] X a v ie r B o y e n , H o v a v S h a c h a m , E m ily S h e n , a n d B r e n t W a t e r s .
Forward-secure signatures with untrusted update. In CCS ’06: Proceedings
of the 13th AC M conference on Computer and communications security,
pages 191-200, New York, NY, USA, 2006. ACM Press.

[6] C h r is t ia n C a c h in a n d U e l i M a u r e r . Unconditional security against
memory-bounded adversaries. In Advances in Cryptology — CRYPTO ’97,
Burton S. Kaliski Jr., editor, volume 1294 of Lecture Notes in Computer
Science, pages 292-306. Springer-Verlag, August 1997.

[7] Y e v g e n iy D o d is , J o n a t h a n K a t z , L e o n id R e y z in , a n d A dam S m ith .
Robust fuzzy extractors and authenticated key agreement from close secrets.
In CRYPTO , pages 232-250, 2006.

[8] Y e v g e n iy D o d is a n d A dam S m ith . Correcting errors w ithout leaking
partial information. In STO C ’05: Proceedings of the thirty-seventh annual
AC M symposium on Theory of computing, pages 654-663, New York, NY,
USA, 2005. ACM Press.

65

[9] MARCOS F a u n d e z -Z a n u y . On the vulnerability of biom etric security sys
tem s. In Aerospace and Electronic Systems Magazine, 'IEEE, pages 3 - 8 ,
2004.

[10] B e n n e t Y e e M ih ir B e l l a r e . Forward security in private-key cryptogra
phy. In Topics in Cryptology CT-RSA-2003, pages 1 - 18. Springer Berlin/
Heidelberg, 2003.

[11] J o n a t h a n K a t z R a n C a n e t t i , S h a i H a le v i . A forward secure public
key encryption scheme. In Advances in Cryptology - E U RO C RYPT ’03,
pages 255 - 271. Springer Berlin, 2003.

[12] R a n R a z , O m er R e in g o ld , a n d S a l i l V a d h a n . Extracting all the
randomness and reducing the error in trevisan’s extractors. In STO C ’99:
Proceedings of the thirty first-annual AC M symposium on Theory of com
puting, New York, NY, USA, 1999. ACM Press.

[13] J o n a t h a n K a t z R a f a i l O s t r o v s k y X a v ie r B o y e n , Y e v g e n iy D o d is
a n d A dam S m ith . Secure remote authentication using biometric data. In
Advances in Cryptology, Eurocrypt 2005, pages 147-163. Springer Berlin /
Heidelberg, 2005.

[14] A d am S m ith Y e v g e n iy D o d is , L e o n id R e y z in . Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Advances
in Cryptology, Eurocrypt 2004, pages 523-540. Springer Berlin / Heidelberg,
2004.

66

VITA

David Goldenberg

David Goldenberg was born August 25, 1983. He went to high school at W.T.

Woodson in Fairfax VA. Graduating high school he attended The College of

William and Mary for his undergraduate degree, obtaining a B.A. in theatre with

a minor in mathematics. After graduation he went straight into the graduate

computer science program at William and Mary. David is interested in many

things in computer science including, but not limited to: AI, Statistical learning,

Video Games, Cryptography, Information Theory, and Simulations.

67

	Forward Secure Fuzzy Extractors
	Recommended Citation

	tmp.1539892610.pdf.citNa

