
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2005

An Investigation of Programmer-Identified Concerns An Investigation of Programmer-Identified Concerns

Meghan Kathleen Revelle
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Revelle, Meghan Kathleen, "An Investigation of Programmer-Identified Concerns" (2005). Dissertations,
Theses, and Masters Projects. Paper 1539626844.
https://dx.doi.org/doi:10.21220/s2-sg2p-8g53

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235410883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-sg2p-8g53
mailto:scholarworks@wm.edu

AN INVESTIGATION OF PROGRAMMER-IDENTIFIED CONCERNS

A Thesis

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by

Meghan Revelle

2005

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Meghan Revelle

Approved by the Committee, April 2005

David Coppi
Thesis Advisor

Weizhen Mao

Robert Noonan

To my friends for all their support.

Table of Contents

Acknowledgments vii

List of Tables viii

List of Figures x

Abstract xi

1 Introduction 2

2 Case Study Methodology 6

2.1 G o a l s ... 6

2.2 A p p ro a c h .. 7

2.3 Analyses... 9

2.3.1 Concern O v e rla p .. 10

2.3.2 Concern A bstrac tion .. 11

2.3.3 Scatter and S p re a d ... 12

3 Case Study #1: GNU s o r t 14

iv

3.1 Concerns Identified .. 15

3.2 Concern O v e r la p 17

3.3 Concern Abstraction ... 19

3.4 S p read .. 23

4 Case Study #2: Minesweeper 26

4.1 Concerns Identified .. 27

4.2 Identification P ro cess ... 29

4.3 Concern O v e r la p ... 30

4.4 Concern A b s trac tio n ... 32

4.5 Abstraction Level and Concern O v e r la p ... 35

4.6 Spread and Scatter .. 36

5 Generalizing the Case Studies 39

5.1 Factors in Agreement Among Program m ers... 39

5.2 Types of Concerns .. 42

5.3 Guidelines.. 43

6 Related Work 49

6.1 Identifying C o n c e rn s ... 50

6.2 Finding Concern C o d e ... 51

7 Evaluation and Conclusion 54

A Illustrations of Guideline Usage 57

A.l Guideline 1 0 ... 57

v

A.2.... Guideline 1 1 .. 58

A.3 Guideline 1 2 .. 58

A.4 Guideline 1 3 ... 59

A.5 Guideline 1 4 ... 59

A.6 Guideline 1 5 .. 60

A.7 Guideline 1 6 .. 60

Bibliography 61

Vita 63

vi

ACKNOWLEDGMENTS

I cannot claim sole responsibility for this thesis. Yes, I wrote all the words, but I never could
have written them without the help of a few key people. I wish to express my appreciation and
gratitude to my advisor, David Coppit, for guiding me along the way and making the path smooth,
for the most part. I am indebted to Tiffany Broadbent for being my co-investigator, Justin Manweiler
for implementing needed features in Spotlight in such a speedy manner, and Robert Painter for being
my sounding board. I also need to thank Lee Carver and Bill Griswold for making their concern
information available and Elisa Baniassad for taking the time to give me feedback on an earlier
version of this work. Also thanks to Andriy Fedorov for volunteering (unprompted) to read this
thesis and give me comments.

List of Tables

3.1 Concerns identified by us and Carver and Griswold in GNU s o r t 16

3.2 Concern overlap for characters and lines for concerns identified by us and Carver

and Griswold in the s o r t case study... 18

3.3 Character concern overlap for groups of concerns in the s o r t case study.................. 21

3.4 Character concern overlap for groups of concerns in the s o r t case study. 22

3.5 Spread of commonly identified concerns in s o r t ... 24

4.1 Concerns identified by Investigators M and T in the Minesweeper program............. 28

4.2 Concern overlap for characters and lines for concerns identified by both investiga

tors in the Minesweeper case study... 31

4.3 Character concern overlap for groups of concerns in the Minesweeper case study. . 33

4.4 Scatter of concerns among the methods of the Minesweeper classes......................... 38

viii

List of Figures

2.1 In the Spotlight editor, the programmer is using the context menu to annotate part

of the code with a concern.. 8

3.1 Two different taggings of an instance of the Unique concern................................ 19

3.2 Concern overlap vs. average spread for commonly identified concerns in so rt . . . 25

4.1 A screen shot of the Minesweeper game.. 27

4.2 Hierarchy of concerns in the Minesweeper program.. 34

4.3 Concern overlap vs. abstraction level for concerns identified by both investigators

in the Minesweeper study.. 35

4.4 Concern overlap vs. number of classes for concerns found by both investigators in

the Minesweeper study.. 37

5.1 Concern Identification Guidelines .. 47

5.2 Concern Tagging G u idelines... 48

A.l Illustration of the use of Guideline 10... 57

A.2 Illustration of the use of Guideline 11... 58

A.3 Illustration of the use of Guideline 12... 58

ix

A.4 Illustration of the use of Guideline 13.. 59

A.5 Illustration of the use of Guideline 14.. 59

A.6 Illustration of use of Guideline 15... 60

A.7 Illustration of the use of Guideline 16.. 60

x

ABSTRACT

Much of the complexity of software arises from interactions between disparate concerns. Even
in well-designed software, some concerns cannot always be encapsulated in a module. Research
on separation of concerns seeks to address this problem, but we lack a fundamental understanding
of how programmers conceptualize the notion of a concern and then identify how such concerns
are represented in source code. In this work, we have conducted two exploratory case studies to
better understand these issues. The case studies involved programmers identifying concerns and
their associated code in existing, unfamiliar software: GNU’s s o r t and a Java implementation of
the game Minesweeper. Based on our experiences with these two case studies, we have developed
a taxonomy of concern types and have identified a number of factors that impact programmer iden
tification of concerns. Based on these insights, we have created two sets of guidelines: one to help
programmers identify relevant concerns, and another to help programmers identify code relating to
concerns.

XI

AN INVESTIGATION OF PROGRAMMER-IDENTIFIED CONCERNS

Chapter 1

Introduction

A key problem that software engineers face in trying to develop, maintain, or even just understand

a piece of software is that software can be very complex. The complexity that software developers

and maintainers are confronted with can be derived in large part from the interaction of concerns

in source code. Techniques for separation of concerns [3, 14] seek to cleanly separate concerns in

source code in order to reduce complexity and increase comprehensibility [9, 13]. As Murphy and

Lai note, many of the existing approaches for separation of concerns are still maturing, so there is

no widely-accepted definition of what constitutes a concern [11].

Software engineering research currently lacks a fundamental understanding of the nature of

concerns and therefore does not have a universally accepted definition for them. There is an intuitive

understanding of concerns, but a concrete definition is lacking [21]. Of the definitions provided by

researchers, most are either very broad and general or very narrow and specific. The closest to a

standard definition comes from the IEEE [8], where “concerns are those interests which pertain to

the system’s development, its operation or any other aspects that are critical or otherwise important

to one or more stakeholders,” but this description is still very indefinite because it leaves many things

2

3

open for interpretation. Many others have offered their definitions of “concern.” Robillard describes

a concern as “any consideration ... about the implementation of a program” [16]. Similarly, Ossher

and Tarr define a concern to be a part of a software system that is relevant to a specific concept or

purpose. They also note that there can be many different kinds of concerns at the different stages of

the software life cycle [13]- For example, views can be used in the requirements phase to address

only the criterion (concern) of interest [12]. Sutton [21] adds his own general characterization of a

concern as “any matter of interest in a software system.” While there is nothing inherently wrong

with these definitions because they are so flexible, their generality leaves the meaning of “concern”

unclear.

Other definitions of “concern” are more specific and narrow. Lai and Murphy [10] as well as

Turner et al. [23] consider concerns to be features. A feature is a functional property of a sys

tem that would be known to the user. This definition is too exclusive as it ignores many possible

non-functional concerns such as performance optimizations, error handling, and debugging code.

Aspect-oriented programming (AOP) [9] proposes a definition of aspects. Aspects are a new pro

gramming language abstraction that seek to cleanly encapsulate program properties that cannot

be modularized by procedural and object-oriented languages. These program properties are often

called cross-cutting concerns. However, AOP’s aspect definition is too restrictive to be a definition

for all concerns because it excludes anything that can be encapsulated by other existing techniques.

Clearly, there is no consensus on the meaning of “concern” since researchers’ definitions range

from the vague “any consideration” to functional properties such as features to AOP’s new encap

sulation units known as aspects. We believe that this lack of consensus is due at least in part to

the lack of understanding of how programmers think about concerns and identify them in source

code. While we acknowledge that the flexibility in the notion of what a concern is useful, a clearer

4

understanding of possible types of concerns would be a valuable guide for programmers and would

help elucidate the terminology of researchers. From a practitioner’s standpoint, a programmer faced

with the task of identifying concerns in source code has only intuition and experience to guide him

or her. Just as there is no definition of a concern, there is no agreement on how to decide what

concept within an implementation is significant enough to be a concern. How does a programmer

determine the presence of a concern in software? Once a programmer does decide on the existence

of a concern, how does he or she identify the manifestation of that concern in the source code? How

does a programmer find the fragments of code that implement that concern? The purpose of this

work is to help answer these questions.

We completed an exploratory study to discover how programmers think about concerns, how

they identify them, and how they link concerns to specific fragments of source code. Our investiga

tion involved two case studies in which two different pairs of programmers identified concerns and

the code associated with them. In both case studies, we compared the set of concerns the investi

gators found in order to better understand how the investigators identified concerns in the system.

We also compared the similarity of the code each investigator associated with those concerns, rela

tionships between concerns, and how dispersed the manifestation of a concern was in the code. We

did this in order to better understand the causes of similarity (or lack thereof) in how programmers

understand and approach concerns.

There are several contributions of this work. The first contribution is the presentation of data on

the presence and relationships among concerns in real code. A second contribution is a classification

of different types of concerns that we observed. The third contribution is insights gained regarding

factors that contribute to consistent concern identification. The final contribution is a set of guide

lines that can help programmers to more consistently identify concerns and their manifestation in

5

source code.

The rest of this thesis is structured as follows. In Chapter 2, we present the methodology for

our case studies. Chapters 3 and 4 describe the two case studies we completed, and Chapter 5

generalizes those case studies. Chapter 6 provides a summary of related work. Finally, Chapter 7

offers a discussion of possible future directions and concludes.

Chapter 2

Case Study Methodology

In this chapter, we explain the methodology behind our two case studies. We focus on the goals

these studies were intended to achieve, the approach used in them, and the metrics we used to

analyze the concerns and related code.

2.1 Goals

There were several over-arching goals of our two case studies. The first was to gain insight into

the ways programmers think about concerns in order to develop a better definition of “concern”

that is precise but not too general or too specific. We chose to consider concerns in implementation

by having programmers identify concerns in existing code. Another way to investigate concerns

would be to study requirements documents. Our second goal was to develop a set of guidelines

based on our new-found understanding of concerns. The purpose of these guidelines is to provide

programmers with a suitable framework for thinking about concerns by telling them where and how

to look for concerns in source code. In order to achieve these goals, there were several questions

we had to take into consideration. What process do programmers use to find concerns in code?

6

7

Once a programmer identifies a concern, how do they decide what code is associated with it? Or

is it the other way around and a programmer considers some code that causes them to identify a

concern? What sort of factors cause different programmers to identify similar or dissimilar concerns

and code associated with those concerns? Are there different types of concerns that programmers

identify? The answers to these questions helped us in developing our definition of “concern” and

our guidelines for concern identification in source code.

2.2 Approach

Our two case studies were GNU’s s o r t .c and a Java version of the Minesweeper game. These

systems were selected for several reasons. First, we needed relatively small code bases (so rt is

approximately 2100 lines and Minesweeper is roughly 2800) because of the time-intensive, manual

nature of the work involved in identifying concerns. It would not be infeasible, but it would be

unreasonable, to have a single programmer be as rigorous in his or her concern identification in a

larger system because of the amount of time it would take, especially if the programmer was not

familiar with the source code.

One reason for choosing s o r t was that we had access to existing, independent concern data

by Carver and Griswold [1]. This pre-existing data both eliminated the need for us to have another

programmer identify concerns and their related code, and it provided us more independently derived

data, s o r t is a very functional, batch, and feature-oriented program written in C. For our other case

study, we wanted a different type of system implemented in a different language so that we could

observe trends that cut across dissimilar software. Minesweeper, unlike so rt, is an interactive,

graphical, and object-oriented system written in Java. We did not have existing concern information,

File Edit N avigate Search Project Run Spotlight Window Help

” Java - sort.ce - Eclipse Platf<

LT rtf <3? - -,£ i f n^•Java

-Ini xi

R esource

• *

static void
xfclose (FILE *fp)
{

if (fp == stdin)
{

/■* Allow readii
* tty more ths

if (feof (fp))
clearerr (f p'

else if (fp == stdc

if (fflush (fp)
{

<1

error (0, eri
_ (" f l u s n i n c

cleanup ();

Undo Ctrl+Z

R evert File

Copy Plain Text

Ctrl+X

Ctrl+C

P aste Ctrl+V

Shift Right

Shift Left

5 a v e

Tag S elected Lines

Un-tag S elected Code

Un-tag S elected Lines

Source Tools

A Error Handling

A File

: ■ STDIN
A 5TD0UT

Writable ~ — in s e r t---------

S ■■

M

j J
a

"J67‘:

Figure 2.1: In the Spotlight editor, the programmer is using the context menu to annotate part of the code
with a concern.

so two investigators had to identify concerns in this case study.

Both case studies that we completed involved two programmers independently investigating

code they did not write. There was no communication between the investigators as they reviewed

the code to find concerns. In the s o r t case study, since concern information was already available,

the investigator did not review it until after she had completed her task. The investigators’ task was

to simply identify concerns and the code they believe is related to each concern. The programmers

annotated the code with concern names using Spotlight, an Eclipse [4] plug-in that we developed.

They were given no initial guidance on how to identify concerns or their related code.

9

Figure 2.1 shows a screen shot of Spotlight. Spotlight allows the programmer to associate

fragments of source code with one or more concerns, where a fragment is any arbitrary continuous

sequence of characters. We refer to this process of associating fragments of code with a concern as

tagging or annotating the code with a concern. To display the taggings or annotations, Spotlight has

a vertical ruler on the left-hand side of the editor screen. As shown in the figure, each concern that

the programmer creates has its own column and color in the “concern ruler.” When a segment of

code is annotated as belonging to a particular concern, a vertical bar appears in the corresponding

column for the concern. The user can also manage the ruler annotations by rearranging the order

of the concerns, or by associating multiple related concerns with a single color. As another way

to view annotations, the user can also tell the tool to underline the particular characters in the code

that are associated with a concern. Figure 2.1 also shows the context menu that is displayed when

the user selects a segment of code and right-clicks on it. This menu allows the user to easily edit

the annotations for a fragment of code. For the case studies, the investigators became familiar

with how to use Spotlight before beginning, but they were given no formal training. The existing

concern information for the s o r t case study was not done in Spotlight, so we faithfully annotated

the program in Spotlight to make comparisons easier.

2.3 Analyses

After the investigators finished reviewing the code and finding concerns, we performed several

analyses to gain insights into how the investigators thought about concerns. With these analyses,

we seek to discover trends in the way people consider concerns in source code. We used what we

learned from those common trends to drive the development of our concern definition and guidelines

10

presented in Chapter 5.

2.3.1 Concern Overlap

Since we were interested in how programmers associate a concern with specific fragments of code,

one metric we created was concern overlap. Concern overlap measures how similar the code one

programmer associated with a concern is to the code associated with the same or a similar concern

found by another programmer. One of our colleagues implemented new features in the Spotlight tool

for us to use in our analysis of concern overlap. These new features compute concern intersection

and subtraction to aid us in comparing code tagged as part of one concern to code tagged with

another concern.

We also investigated concern overlap for groups of concerns. A concern group is a selection of

concerns that are related. For example, in a program with a graphical user interface, one program

mer may identify an Event Listeners concern while another programmer has two concerns, one for

Keyboard Listener and another for Mouse Listener. The concern intersection or subtraction features

allow us to group the Keyboard Events and Mouse Listener concerns into a single concern group

and compare the combined taggings of both concerns to the annotated code of the Event Listeners

concern.

These new Spotlight features perform a character-by-character comparison of the code tagged

with a concern or concern group to determine either the concern intersection (the number of char

acters tagged with a concern from each group) or the concern subtraction (the number of characters

that one concern group contains that the other does not). These features enabled us to calculate the

percent overlap of concern code tagged by the investigators for two concerns or concern groups.

To quantify this, first let us define two variables. Let ci be the set of characters tagged with the

11

first concern group, and let C2 be the set of characters tagged with the second concern group. We

calculate the percent of concern overlap metric as follows:

concernjoverlap(c\,C2) = I— -[* 100
\c\ Uc2|

Realizing that the concern overlap metric could be skewed by minor differences such as one

investigator tagging newlines and other white space while the other did not, we also considered line

overlap. We consider a concern to be present in a line if any portion of that line is tagged with that

concern.

2.3.2 Concern Abstraction

Programmers think about concerns in different ways. Two programmers may think about a concern

at different levels of detail or generality. One programmer may prefer to consider several related

yet independent aspects of a system separately as different concerns while another may only wish

to think about a single, simplified representation of all those aspects together as one concern.

To represent this fact, we developed the idea of concern abstraction. Concern abstraction is the

mapping of a related group of concerns to a single concern. For example, in a simple graphical

paint program, one programmer may identify a single concern for drawing shapes while another

programmer may identify several concerns for drawing different shapes such as circles, squares,

and triangles. We say that the drawing shapes concern of the first programmer subsumes the draw

ing circles, squares, and triangles concerns of the second programmer because the drawing shapes

concern conceptually includes drawing specific types of shapes. When initially comparing the set

of concerns that these two programmers found, it would appear that they had none in common.

However, using concern abstraction, we notice that the one concern of the first programmer covers

12

all three concerns of the second programmer, so the set of concerns found by these programmers is

not as dissimilar as it originally seemed. Concern abstraction helps to bridge the gap between the

differences in the way individual programmers think about concerns.

2.3.3 Scatter and Spread

Scattering of concerns is one cause of complexity in software [9]. Scattering occurs when a con

cern is not well-encapsulated, so it is dispersed throughout the modules of a system. Scatter is an

important idea in the area of separation of concerns, so we consider it in our analysis of concerns in

general. We use the terms scatter and spread interchangeably.

As a way of measuring the scatter of a concern, we borrow Lai and Murphy’s spread metric [10],

replacing “feature f” in their definition with “concern c:”

of classes containing concern c
Spread{c) = ------------ total# of files------------

This metric measures the number of files in which a concern appears. This spread or scatter metric

is useful because it helps us to determine whether programmer identification of concern code is

more likely to agree when the concern code is localized to a small number of files. However, this

spread metric is too insensitive to file size and does not take into account the modules of a system.

Therefore, we also consider spread in other ways.

To account for varying file sizes, we look at the number of lines separating an instance of a

concern within a file. This metric tells us if intra-file locality is a factor in concern identification.

The problem with this metric is that scatter is defined in terms of program modules, not lines of

code, so we have an additional metric to measure spread within a single file or class. This metric

looks at the number of functions (or methods in object-oriented code) in which a concern is present

13

in a file or class compared to the total number of functions or methods in that file/class. We call this

metric function scatter or method scatter, and it gives us a finer grain idea of concern scatter than

the file or line spread metrics.

Chapter 3

Case Study #1: GNU s o r t

The GNU textutils-1.22 implementation of sort was the subject of our first case study to

investigate how programmers think about concerns in code. We wanted to know the types of things

programmers consider to be concerns and where those concerns are manifested in code, sort is

an approximately 2100-line C program that sorts lines of input either from files or standard input.

The resulting lines are written to standard output by default or to a file if specified. Among other

features, sort will automatically use a temporary file if the output file is also the input file. There

are 18 command line flags the user can specify when executing the program. The -c and -m flags

change sort’s mode of operation to check if the given files are already sorted or to merge the given

files, respectively. The user can specify one or more key fields to control how input is sorted. The

user can also provide a number of global sort options, such as sort in reverse order or ignore non

printing characters. For this case study, we compare concerns we identified in sort to concerns

found by Carver and Griswold [1] in previous work.

14

15

3.1 Concerns Identified

We identified 50 concerns in so rt . We had used C previously but not extensively and did not

have much knowledge of the standard libraries used. Many of our concerns were related to spe

cific user-level features such as specifying the output file, reversing the sort order, and displaying

help information. Other concerns were related to internal aspects of the program a user would not

be aware of, such as the use of assertions, buffers, temporary files, POSIX compliance, or signal

handling.

To better understand the subjective nature of programmer identification of concern code, we

compared our concerns to those of Carver and Griswold, who used the same implementation of

s o r t in their work. One difference between the two sets of concerns was in the number of concerns

found—they had 83 concerns compared to our 50. Table 3.1 shows all the concerns identified in the

s o r t case study categorized by those concerns found by both us and Carver and Griswold, those

found only by us, and those only found by Carver and Griswold.

There were 23 commonly identified concerns between the two parties—mostly user-level fea

tures. The majority of the additional concerns Carver and Griswold identified relate to more fine

grained details of concerns we had or to system-specific issues that we did not address, such as

access to the system environment space and releasing the thread of execution to the operating sys

tem. We do not know how well Carver and Griswold knew the implementation language, but we

assume they were more familiar with it than we were based on the presence of these more specific

concerns.

16

Both Us Carver & Griswold
Alternate EOL Buffers IstKeyOptz RecOrder
Assertions Close File Application RevGlobal
Character Set Command line BadField RevKey
Check Error Handling Blanks SimpleCompare
Dictionary Order Exit Status BufStream SingleSortOptz
General Numeric File Input ByteOrder SortFiles
Large Files File Output CmndLine SortLines
Locale Files to Sort ErrorExit SortMode
LocalOptz Free Memory ErrorSrvc SrcSpec
Month Order Help FieldCompare StdError
Numeric Order Ignore Leading Blanks FieldMgmt SysCfg
Output File Ignore Non-printing FieldOpts SysCtrl
POSIX Key Fields SysEnv
Program Name Key Field FieldSeq SysIO
Race Condition Lines GlobalKey SysMem
Signals Memory Allocation GlobalOpts SysSrvc
Solaris Merge GnuOpts Temp Cleanup
Stable Open File IgnoreCompare TempMngr
Tab Separator Reverse IgnoreText TempSpace
Temp Directory ISAJNTERRUPT Input TextOrder
Unique SAJNTERRUPT LocaleSrvc TransText
Usage Message Sort MergeFiles TrimFields
Version STDIN MergeMode TrimKey

STDOUT Modes UpperCase
Temp Files MultiOrder UpperMon
To Uppercase OldFields UpperText
Trailing Blanks OutputBytes

OutputResult
PrintOnly
ProgID

WhiteSep
WorkArea
WrapIO
WrapMem

Table 3.1: Concerns identified by us and Carver and Griswold in GNU sort.

17

3.2 Concern Overlap

Concern overlap is a measure of how similar the code that two programmers believe is associated

with a concern. In the s o r t case study, there were 18 concerns with 80% character overlap in what

we and Carver and Griswold tagged and 7 concerns with 100% overlap, as can been seen in the

character overlap column of Table 3.2. Twelve of these concerns with better than 80% character

overlap are user-level features. The average concern overlap for characters was 82.52%. Interest

ingly, when we looked at line overlap, the number of concerns with 100% increased to 9, but the

average line overlap dropped to 79.57%. Table 3.2 also shows the total number of characters and

lines tagged with each of the concerns. The total number includes any character or line annotated

with a particular concern by either programmer. Nine of the 18 concerns with better than 80% con

cern overlap have over 1000 total characters tagged, so half of the concerns with high overlap had a

significant number of characters annotated.

Concern overlap is obviously effected by cases where one programmer annotated a fragment

of code while the other did not. However, sometimes programmers do associate code in the same

general area of the source code, but that associated code is not exactly the same. We observed

cases where the two programmers had identified the same concern in the same location in the code,

but had different interpretations on how to actually tag the manifestation of the concern. For an

illustrative example of this situation, consider the Unique concern which removes duplicates from

the input to be sorted so that each item is unique. The code in Figures 3.1(a) and 3.1(b) comes

from s o r t and shows two different taggings of the same fragment. Underlining means that the code

was associated with the Unique concern by that particular programmer. Part of the if statement’s

condition tests to see if unique, a global flag, is true. Because of this, we included the whole of the

18

Concern
Character

Overlap
Chars.

Tagged
Line

Overlap
Lines
Tagged

Alternate EOL 93.19% 470 100.00% 14
Assertions 42.26% 168 66.67% 6
Character Set 40.71% 737 48.94% 47
Check 90.08% 3985 93.60% 125
Dictionary Order 100.00% 378 100.00% 8
General Numeric 99.24% 1177 100.00% 45
Large Files 0.00% 801 0.00% 27
Locale 100.00% 109 100.00% 4
LocalOptz 100.00% 646 100.00% 22
Month Order 100.00% 1378 100.00% 66
Numeric Order 99.02% 4175 98.59% 213
Output File 90.64% 2222 83.33% 90
POSIX 63.12% 5719 67.46% 169
Program Name 40.00% 310 66.67% 9
Race Condition 96.61% 1592 98.25% 57
Signals 100.00% 1400 100.00% 49
Solaris 100.00% 123 100.00% 4
Stable 100.00% 364 100.00% 10
Tab Separator 98.29% 819 94.29% 35
Temp Directory 87.65% 834 88.46% 26
Unique 86.22% 2504 79.07% 86
Usage Message 84.39% 2569 78.18% 55
Version 86.67% 150 66.67% 3
Average 82.52% 1418.70 79.57% 50.87

Table 3.2: Concern overlap for characters and lines for concerns identified by us and Carver and Griswold in
the sort case study.

19

i f ({ u n i q u e && c ra p > = 0 } 3 ? (c u p > 0 } } i f ((u n i q u e && c r a p > = 0) j J (c r a p > 0 } }

f C
s o r t e d ■=■ 0 ; s o r t e d = 3 ;

b r e a k ; b r e a k ;

i ' >

(a) Our tagging. (b) Carver and Griswold’s tagging.

Figure 3.1: Two different taggings of an instance of the Unique concern.

i f block in her Unique concern because it can will be executed if the unique flag is true. However,

Carver and Griswold excluded the body of the i f statement from their Unique concern presumably

because the unique flag does not have to be true for the body of the i f statement to be executed.

Differences in interpretations of what code should be associated with a concern based on the context

of that code in the program is a factor that reduced concern overlap.

3.3 Concern Abstraction

There was a significant difference in the number of concerns that we and Carver and Griswold

identified in so rt . This difference can be explained by the fact that the two parties tended to think

about concerns at different levels of detail and abstraction. Not all of the concerns that only one

programmer or the other found were unrelated. For example, Carver and Griswold created meta-

concerns to group related concerns, and these meta-concems had no associated code. For instance,

Carver and Griswold had a Modes meta-concern to encompass s o r t ’s three modes of operation:

sorting files, merging files, and checking if files are already sorted. We had individual Sort, Merge,

and Check concerns, but did not see the need to create a higher level concern such as Modes because

there would not have been associated code with it.

In contrast, it was more often the case that Carver and Griswold used multiple concerns where

20

we used a single concern. They identified a Month Order concern that deals with sorting dates by

month and an UpperMon concern that consists of a single line of code that translates month names

to upper case. We had only a Month Order concern which included the code for converting month

names to upper case, but we did not think such a small feature warranted a concern because its total

associated code was only one line.

Tables 3.3 and 3.4 display the concern abstractions that we have discerned based on the sets of

concerns found by us and Carver and Griswold in s o r t and the code associated with those concerns.

There are 20 concern groups that relate one or more of our concerns to one or more of Carver and

Griswold’s concerns. Of the 27 concerns that we had and Carver and Griswold did not, we were able

to map all of them using concern abstraction. This means that in some way, Carver and Griswold

incorporated all of our concerns in their concerns. On the other hand, of the 60 concerns that only

Carver and Griswold had, 53 map to one or more of our concerns using concern abstraction.

It is possible for a concern to be a part of more than one concern group. For instance, Carver

and Griswold’s UpperMon concern was subsumed by both of our Month Order and To Uppercase

concerns. UpperMon translates the names of months to uppercase, s o r t does this translation to

improve month name recognition when putting dates in order (which is the purpose of the Month

Order concern). Our To Uppercase concern handles all cases of translating characters to upper case,

of which converting month names is one example in the program. It is significant that UpperMon

is subsumed by two different concerns because it reveals the relationship between the Month Order

and To Uppercase concerns.

Seven of Carver and Griswold’s concerns did not relate to any of our concerns. These concerns

are all at a level of abstraction above or outside specific functionalities within the program. Appli

cation is a meta-concern for the main program. Modes is another meta-concem that is described

21

O ur Concerns
Carver & Griswold
Concerns

Character
Overlap

Characters
Tagged

Buffers
File Input
Lines

BufStream
Input
SortLines
SrcSpec 69.74% 10559

Close File
Open File

WrapIO
44.82% 1756

Command Line CmndLine
GnuOpts
GlobalOpts 99.37% 7454

Ignore Leading Blanks
Trailing Blanks

Blanks
TrimFields
TrimKey 64.34% 2947

Ignore Non-printing IgnoreCompare
IgnoreText
PrintOnly
TextOrder 82.12% 2729

Error Handling BadField
Error Exit
ErrorSrvc
StdError 85.42% 7477

File Output OutputBytes
OutputRslt 85.15% 1475

Files to Sort
Sort

ByteOrder
RecOrder
SortFiles
SortLines
Sort Mode
WorkArea 67.42% 5157

Files to Sort
STDIN

SrcSpec
30.03% 1572

Merge MergeFiles
MergeMode 97.87% 6335

Month Order Month Order
UpperMon 100.00% 1378

Table 3.3: Character concern overlap for groups of concerns in the sort case study.

22

O ur Concerns
Carver & Griswold
Concerns

Character
Overlap

Characters
Tagged

Key IstKeyOptz
FieldCompare
FieldMgmt
FieldOpts
Fields
FieldSeq
GlobalKey
MultiOrder
RecOrder
TextOrder 63.45% 15400

Key Field Fields
OldFields
WhiteSep 54.82% 11952

Memory Allocation SysMem
WrapMem 41.58% 1847

Output File
STDOUT

Output File
SysIO 85.02% 2444

Reverse RevGlobal
RevKey 97.48% 555

Signals
SAJNTERRUPT
ISAJNTERRUPT

SigHand

100.00% 1400
Temp Files TempCleanup

TempMngr
TempSpace 61.00% 3049

To Uppercase IgnoreCompare
TransText
UpperCase
UpperMon
UpperText 97.06% 2719

Usage Message
Help

Usage Message
83.74% 2589

Table 3.4: Character concern overlap for groups of concerns in the sort case study.

23

above. ProgID consists of the comments at the top of the file with the author and copyright informa

tion. We did not have these three concerns because we did not consider possible concerns at higher

levels than individual pieces of the program and its functionality. The four final concerns that did

not map to any of our concerns deal with low-level system issues: SysCfg handles system config

uration settings, SysCtrl manages receiving and releasing the thread of execution to the operating

system, SysEnv provides access to the system environment space, and SysSn’c is a meta-concern for

general purpose virtual machine services. We did not have these four concerns because of our lack

of familiarity with C and its standard libraries.

3.4 Spread

Since s o r t is implemented in a single file, we could not measure the spread of concerns across

multiple files. However, we were able to measure spread in terms of the number of lines separating

instances of a concern. Table 3.5 gives the raw data for the spread metric plus the number of

instances of each concern. The data confirms that programmers are able to find the same concerns

at the same locations in code since for the most part, the concerns with high overlap have low

average spread. Figure 3.2 shows the percent character overlap for commonly identified concerns

versus the average spread between instances of a concern for each programmer. Fifteen of the 23

commonly identified concerns had both a concern overlap greater than 80% and an average spread

less than 600 lines. We make a distinction at 600 lines because a program of 600 lines should

be reasonably simple to understand. Programmers seem to be able to more easily find the code

associated with concerns that are less spread out in a program.

24

Us Carver & Griswold
Concern Avg. Spread Instances Avg. Spread Instances
Alternate EOL 193.1 11 214.56 10
Assertions 614 3 N/A 1
Character Set 34.76 30 81.93 15
Check 297.5 7 297 7
Dictionary Order 513.67 4 514 4
General Numeric 233 9 219.67 10
Large Files N/A 1 5.57 5
Locale 1607 2 1697 2
LocalOptz 1270 2 1270 2
Month Order 187.5 11 187.5 11
Numeric Order 216.5 9 216.63 9
Output File 459.25 5 204.78 10
POSIX 306.5 7 809.5 3
Program Name 400 5 399.25 5
Race Condition N/A 1 342 2
Signals 565.67 4 565.67 4
Solaris N/A 1 N/A 1
Stable 595 4 595 4
Tab Separator 442.5 5 442 5
Temp Directory 275 8 301 7
Unique 148.55 10 207 9
Usage Message 586.33 4 N/A 1
Version 856.5 3 1495 2

Table 3.5: Spread of commonly identified concerns in sort.

Sp
re

ad
25

1800

1600
1400

1200

1000

800

600

Carver and Griswold

200

0

0. 0 0 D/-/o 20 DOOi 40.00% 60.00%

Pervert Overlap
80 .00% 100.00%

Figure 3.2: Concern overlap vs. average spread for commonly identified concerns in sort.

Chapter 4

Case Study #2: Minesweeper

For our second case study, we considered a Java implementation of the game Minesweeper that is

2776 lines contained in six classes. One class controls the logic of the game, and the remaining five

classes deal with components of the graphical user interface such as the frame the game is played

in, a pop-up dialog window, and a specialized panel that displays the time since the game started. In

this game, the user is presented with a grid of cells, any one of which may contain a “mine.” When

the user selects a cell, either no mine is present, a mine is present, or there is a digit indicating the

number of adjacent cells that contain mines. The user can also “flag” cells which he or she believes

contain a mine. The game ends when the user correctly identifies all of the cells not containing mines

or clicks on a cell containing a mine. Figure 4.1 shows a screen shot of the game. For this case study,

two of investigators (Investigators M and T) independently identified concerns in the Minesweeper

source code. Investigator M had over three years of experience using the implementation language

and had previously written graphical user interfaces in Java. Investigator T had over two years of

experience with the implementation language but had never programmed graphical user interfaces

in Java.

26

27

Game

Figure 4.1: A screen shot of the Minesweeper game.

4.1 Concerns Identified

For the Minesweeper case study, we were able do more analysis of the concerns identified than in

the s o r t case study because we had access to both investigators instead of only one investigator

and concern information as in the previous study. After locating concerns in code, the Minesweeper

investigators were able to discuss their reasons for identifying certain concerns and for tagging

fragments of code in certain ways. However, they did not communicate about the concerns they

were finding while in the process of identification.

Investigator M found 30 concerns, and Investigator T found 26 concerns. We compared both sets

28

Concerns identified
by both investigators

Concerns identified
only Investigator M

Concerns identified
only Investigator T

Cell State Accessors Cell
Debug Cell is mine Color
Error Handling Connected Mines Constants
Flag Cell Custom dialog Import
Game Difficulty Custom dialog visible Keyboard
Game State Custom game Mines
Graphics Custom input Smiley
GUI Easy game Mouse
Images Event Listener Stdout
LED Expert game Thread
Menu Exploded User Input
Minefield Game Window Window
Timer Intermediate game

Mark Cell
Mines cleared
Neighbor Mines
Window size

XY Location

Table 4.1: Concerns identified by Investigators M and T in the Minesweeper program.

of concerns and found 13 out of the total 43 concerns were identified by both investigators. Table 4.1

summarizes the concerns found in this case study classifying them as identified by both investigators

and those concerns only found by a single investigator. The concerns can be categorized into several

different types. Fifteen of the concerns deal with the graphical user interface, 6 more focus on

events and event listeners, 5 pertain to the level of difficulty of the game, 11 relate to cells, mines,

or the grid of cells and mines, and 2 concerns are about debugging. The remaining 4 concerns are

all relatively independent of the other concerns: accessor methods, error handling, constants, and

import statements.

29

4.2 Identification Process

Each investigator’s task was to identify concerns and their associated code in the six Minesweeper

files: Game.java, MineSweeperWindow. java (MSW), LED.java, CustomFieldDialog. java

(CFD), LEDPanel. java, and Cell. java. Investigator M approached her task by beginning in

Game. java since this file deals with the logic of the Minesweeper game. Investigator M’s strategy

was to identify a single concern in Game. java and then look for that concern in the other five files.

Investigator T began tagging in Game. java as well, primarily because this is the longest file in the

Minesweeper suite, and thus she expected it to yield the most concerns. Investigator T identified

concerns in Game. java and then proceeded to look for those concerns as well as new ones in each

of the other files in succession, tagging an entire file before moving on to the next. From these two

experiences, there appears to be a common starting point among programmers for concern identi

fication but different methods for examining the code. We cannot yet say whether concentrating

on tagging all the concerns in individual files or tagging all instances of a single concern across

every file is a more efficient approach for finding concerns. It may just be a matter of programmer

preference.

Once an initial tagging of the code was completed, both investigators felt the need to go back

through the code to ensure they had found all the fragments of code that they thought belonged to

a particular concern. To ensure the completeness of her annotations, Investigator T searched for

keywords to find code related to a concern that she had missed during the first pass of taggings.

In her initial review of the code, she had learned what variables, constants, and methods were

associated with a particular concern. In her second review of the code, she simply searched for those

keywords to see if she had overlooked associating instances of a concern where these keywords

30

were used. Investigator M also reviewed her taggings to see if she had missed any concern code

but did not use the search functionality. Instead, she simply scrolled through the code. Scrolling

may take more time and be less efficient because there is the possibility of overlooking important

code. Regardless of the method used, this final step in the process of locating concerns in code

is important because the identification of a concern may be easier in a later portion of the code

but the programmer may not have recognized fragments that pertain to the newly found concern in

previously reviewed code.

4.3 Concern Overlap

The common concerns found by each investigator tell us what concepts within a software system

they find important. However, having identified a similar concern does not mean the investigators

associated exactly similar fragments of code with those concerns. We now examine concern overlap

in the Minesweeper case study to analyze to what extent the code programmers link with a concern

is alike.

The average concern overlap between concerns identified by the two investigators in the

Minesweeper case study was 52.97%, which is lower than the average in the so rt case study.

Table 4.2 presents the character and line overlap for the thirteen commonly identified concerns. The

Minesweeper case study did not yield any cases of 100% concern overlap, as the s o r t study did.

Also, the average number of characters associated with each concern was higher in the Minesweeper

case study. Unlike in the s o r t study where a high number of tagged characters did not necessarily

mean a low concern overlap, the opposite seems to be true in general for the case of Minesweeper.

We believe there was more overlap in the s o r t case study because s o r t is a more feature-oriented

31

Concern
Character

Overlap
Characters

Tagged
Line

Overlap
Lines
Tagged

C ell State 79.87% 4769 85.92% 206
D ebug 40.12% 2074 61.76% 68
E rror H andling 81.25% 1307 70.91% 55
Flag Cell 57.38% 1016 87.50% 64
Gam e Difficulty 30.00% 10934 25.64% 472
Gam e State 34.86% 1486 60.00% 65
G raphics 35.98% 12657 26.29% 464
GU I 15.00% 23678 13.58% 1016
Im ages 52.96% 9659 51.64% 275
LED 45.80% 11542 51.64% 548
Menu 88.87% 2687 92.05% 88
M inefield 47.65% 11023 45.70% 442
Timer 78.87% 970 83.78% 37
Average 52.97% 7215.54 58.19% 292.31

Table 4.2: Concern overlap for characters and lines for concerns identified by both investigators in the
Minesweeper case study.

program. Because it has so many command line options, it is easier to identify code fragments that

implement each individual feature.

Since the concern overlap metric can be skewed by minor differences in whitespace, we also

looked at line overlap. Recall that we consider a concern to be present in a line if any portion of that

line is tagged with that concern. The percent overlap between lines was generally an improvement

over the percent overlap between characters in the Minesweeper case study, as shown in the right

most two columns of Table 4.2. The average overlap for lines was 58.19%. We attribute the cases

where the line overlap for a concern was lower than the character overlap to one investigator tagging

blank lines or lines of comments that the other did not. For the rest of this work, we mainly consider

character overlap.

32

4.4 Concern Abstraction

While the two investigators only had 13 out of 43 total concerns in common, concern abstraction

improves this ratio by combining related concerns. Table 4.3 shows the Minesweeper concern

groups along with their concern overlap. Only one group had a concern overlap better than 80%,

giving us further evidence that it is easier to identify concern code in feature-rich programs like

sort. The groups were created based on concern abstraction, which is discussed in the next section.

In one example, Investigator T had a Mines concern, while Investigator M had five concerns relating

to mines: Neighbor Mines, Connected mines, Cell is mine, Exploded, and Mines cleared. We

observed that when combined, these five concerns of Investigator M were equivalent to Investigator

T’s Mines concern and could conceptually be abstracted into a single concern. We followed a

similar procedure for all of the concerns and created the concern groups and a concern abstraction

hierarchy, shown in Figure 4.2.

Each object in Figure 4.2 represents a concern. The shape of the object indicates whether Inves

tigator M, Investigator T, or both investigators identified the concern. A rectangle means Investigator

M identified the concern, an ellipse means Investigator T found the concern, and a diamond means

both investigators identified the concern. The number scale at the left of figure is the abstraction

level of the concern. We identified nine different levels of abstraction, ranging from 1 to 9. Level 1

concerns are the lowest level of abstraction. These concerns are very specific and easy to identify

in the source code. For example, all print statements are tagged with the Stdout concern. At the

opposite end of the hierarchy, the GUI concern is placed at the highest level of abstraction with a

ranking of 9. A higher ranking means that the concern is broader and more vague. These rankings

were assigned subjectively.

33

Concern Group
Investigator M
Concerns

Investigator T
Concerns

Character
Overlap

Characters
Tagged

Cell
Cell State
Flag Cell
Mark Cell

Cell
Cell State
Flag Cell 28.35% 2102

Debug Debug Debug
Stdout 61.61% 1761

Event Listener

Event Listener Keyboard
Mouse
User Input
Window
XY Location 72.27% 9775

Game Difficulty

Game Difficulty
Custom game
Easy game
Intermediate game
Expert game

Game Difficulty

96.54% 3321
Game State Game State Game State

Thread 37.95% 1486

Graphics
Graphics
Images

Color
Graphics
Images
Smiley 42.58% 10797

GUI

Custom dialog
Custom dialog visible
Custom input
Game State
Game Window
Graphics
GUI
Images
LED
Menu
Timer
Window size

Color
Game State
Graphics
GUI
Images
LED
Menu
Smiley
Thread
Timer

83.37% 38498

Mines

Cell is mine
Connected mines
Exploded
Mines cleared
Neighbor mines

Mines

48.24% 3806

Minefield

Cell is mine
Cell State
Connected mines
Flag Cell
Exploded
Mark Cell
Mines cleared
Minefield
Neighbor mines

Cell
Cell State
Flag Cell
Minefield
Mines

62.15% 21549

Table 4.3: Character concern overlap for groups of concerns in the Minesweeper case study.

34

Legend

Figure 4.2: Hierarchy of concerns in the Minesweeper program.

If a concern has a line connecting it to concerns at a lower level of abstraction, we say that the

concern subsumes those lower level concerns. This means that conceptually combining the lower

level concerns should result in a concern equivalent to the higher level one. For example, the Game

Difficulty concern found by both investigators subsumes the Custom game, Easy game, Intermediate

game, and Expert game concerns, found by Investigator M. These concerns are the various levels of

game difficulty, so their union should be equivalent to the Game Difficulty concern.

As can be seen from the hierarchy, programmers think about concerns on different levels. In

vestigator M tended to be more detailed in her concern identification and think at lower levels of

abstraction than Investigator T. Interestingly, there were some cases when an investigator would

35

Sre;w
tfi

. 0 C
<
° 4
"S

GUI
15 00%

^Graphics
* 35 58%

Gam*- S tats . . LED
▼ ▼ /.= Spot.

M sn u
**- 8s% ▼ ” 45.SG'

Gam e Difficulty^ M inelstd^ ^ Images
88.87%

30 00% 47.65% 52.93%
T im e r

Cell S t a t
78 87%

Debug ^ Flag C e ll.
▼ c,7 opo/„ ▼S. 12% 57 28%

Error Handling,
81.25%

u 00' ^ 00% <"0 00% 80 00% 100 GL%
Percent Overlap

Figure 4.3: Concern overlap vs. abstraction level for concerns identified by both investigators in the
Minesweeper study.

think on more than one level about related concerns. Again, take for example the Game Difficulty

concern. Investigator M identified it as well as the four lower level concerns for the individual levels

of play in the game. The four levels of game difficulty are all significant on their own, but Investiga

tor M also recognized that they are relevant to the Game Difficulty concern and annotated instances

of them as such. By also tagging the fragments of code related to the individual difficulties with the

Game Difficulty concern serves as a form of documentation of the relationship between those two

concerns.

4.5 Abstraction Level and Concern Overlap

There appears to be a correlation between the level of abstraction of a concern in the hierarchy and

the percent overlap between two programmers’ taggings of that concern, as shown in Figure 4.3. In

36

general, the concerns with a higher ranking have lower percent concern overlap, and concerns with

a low abstraction level have a high concern overlap. The best example is the GUI concern, which is

at the highest level of abstraction (9) and has the lowest percent overlap of any concern (15.00%).

We hypothesize it is more difficult to determine the code associated with these broad, high level

concerns. Similarly, the concerns at lower levels of abstraction tend to have higher percent overlap

because the lower level concerns represent simpler, less abstract concepts. As examples of lower

level concerns with high overlap, Error Handling is at level 1 and has 81.25% overlap, and Cell

State is at level 3 and has 79.32% overlap.

4.6 Spread and Scatter

Since the Minesweeper case study consists of multiple files, each containing a single class, we were

able to measure the spread of concerns among files as well as their scatter throughout the methods

of a class. Figure 4.4 summarizes the correlation between the number of files in which a concern is

present and percent overlap for the concerns found by both investigators. In general, there appears

to be a downward trend so that the greater the spread of a concern, the smaller the percent overlap.

For example, both Investigators M and T had a Menu concern, and both tagged code for it in only

one file, giving spread(Menu) = The Menu concern has an 88.87% overlap in associated code.

In contrast, the Graphics concern had a spread of | and has only a 35.98% overlap.

Counting the number of files with instances of a concern does not accurately reflect scatter

throughout the modules of a system. Therefore we also looked at the number of methods in which

the commonly identified concerns appeared. Table 4.4 shows the difference between the number of

methods the commonly identified concerns appeared in the two investigator’s taggings along with

37

m Graphics: Irmsgss

0

My
© 3

h
3

15.08% 35.98%
▲ ▲

52.93%

▼ ▼

Debug a

E rrcrHandling
81 25%

* LED *
40 12%™ ^ 45.80% ^

G am e Difficulty^ Flag Cell
20 00% * * 57 28%

G am e State ^ ^ Minefield ^ C e l l S ta ts
24.86% ™ ™ 47 o5% ™ 79 32%

i i m er ^ ^ itiiBra r
78.,37% W W 88.S7%

0
0 0 0 % 20 0 0 % 40 0 0 % ^0 00% 50 0 0 ° 100 0 0 %.

Percent Overlap

Figure 4.4: Concern overlap vs. number of classes for concerns found by both investigators in the
Minesweeper study.

the overlap for the concerns. In general, those concerns that had a relatively low difference in spread

had a higher concern overlap. The Cell State, Error Handling, and Timer concerns were identified

in the same number of methods by both investigators and had around 80% overlap. At the opposite

end of the spectrum, concerns like Debug, Graphics, and GUI had a large difference in the number

of methods the investigators found them in and low concern overlap.

38

Character
Invest. M

Scatter
Invest. T

Scatter
Concern
Overlap

Cell State 15 15 79.87%
Debug 20 4 40.12%
Error Handling 6 6 81.25%
Flag Cell 9 8 57.38%
Game Difficulty 6 15 30.00%
Game State 10 9 34.86%
Graphics 19 10 35.98%
GUI 17 34 15.00%
Images 12 12 52.96%
LED 8 22 45.80%
Menu 5 4 88.87%
Minefield 14 21 47.65%
Timer 5 5 78.87%

Table 4.4: Scatter of concerns among the methods of the Minesweeper classes.

Chapter 5

Generalizing the Case Studies

In this chapter, we discuss the insights gained from the two case studies described above. We delib

erate on factors we believe lead to agreement, or even disagreement, between programmers when

identifying concerns and their associated source code. We then present a categorization of types of

concerns and the guidelines we developed to aid programmers in the identification of concerns in

code.

5.1 Factors in Agreement Among Programmers

From our two case studies, we observed there are several factors that possibly contribute to agree

ment or disagreement among programmers as to what constitutes a concern and where one is located

in source code. We list those factors here in order of significance.

Understanding of the program. We believe the extent to which a programmer understands

what that program is doing and how a program does it is the most important factor that influences

concern identification. In the s o r t case study for instance, we lacked many of Carver and Gris

wold’s concerns primarily because we had a hard time comprehending how s o r t works in detail.

39

40

As a result, we did not include some of the more fine-grained concerns of Carver and Griswold such

as IstKeyOptz, which precomputes the character position of the first key since it is used in every

comparison. In the Minesweeper case study, Investigator T did not have a full understanding of the

meaning of one of the constants. Recall that to look for code associated with a particular concern,

Investigator T used Eclipse’s search functionality. She searched based on a full or partial constant

or variable name. To look for code related to the Minefield concern, she searched for “field.” The

Game class has two constants called PIXELS_INNER_FIELD_SLOPE and PIXELS_FIELD_LEFTMOST

which she came across as results of her search. Investigator T tagged the declaration and uses of

these constants without examining their purpose to determine if they actually were related to the

Minefield concern or just happened to use the word “field.”

Knowledge of the programming language. Related to understanding the program, another

factor in agreement is knowledge of the language in which the program is written. We have already

mentioned how in the s o r t case study, we were unfamiliar with the implementation language and

standard libraries. In the Minesweeper case study, Investigator M had previous experience with

graphical user interfaces in Java, but Investigator T did not. As a result, Investigator T did not know

that classes such as Frame and Canvas are GUI components and did not tag their uses as such.

Concern abstraction. The fact that programmers think about concerns at different levels of

abstraction means it might not be initially evident that a number of concerns identified by two pro

grammers are in fact related. By using concern abstraction, we can discover the cases where we

can map several concerns from either programmer to one or more concern of the other programmer.

We have seen how even when the set of concerns that one programmer identified may seem very

different from the set of concerns of another programmer, there is in fact a great deal of common

ality. There were a total of 87 individual concerns identified by only one programmer in the s o r t

41

case study and 30 in the Minesweeper case study. After mapping those concerns using concern

abstraction, those numbers drop to 7 and 3 concerns respectively that do not map to a concern of

the other programmer.

Same concern, different ideas. A factor that contributes to disagreement between programmers

is when two programmers identify the same concern but have a different idea of the meaning of

that concern. For example, Carver and Griswold and us both had concerns dealing with parsing

command line arguments. However, command line parsing is not one of the 23 commonly identified

concerns. Carver and Griswold’s CmndLine concern is a meta-concern for the logical but unrealized

concern that has no associated code. We did think there was code within sort to associate with the

Command line concern.

As another example, both Investigator M and Investigator T had a Minefield concern in the

Minesweeper study. However, there was a low percent overlap (47.65%) between their two taggings.

Through discussion, we discovered that Investigator M considered the Minefield concern to only

deal with data structures that represent the minefield in the program. Investigator T’s Minefield

concern was more inclusive because it included data structures and elements of the graphical user

interface that pertained to the minefield in her Minefield concern.

Program context. Another factor that we found to contribute to disagreement among program

mers was the context of a fragment of code in the source. We can best illustrate this point by exam

ple. We have already given an example from the sort case study where we tagged the body of an if

block with the Unique concern but Carver and Griswold did not. In the Minesweeper study, there is a

similar example. Both investigators had a Flag Cell concern, but they had conflicting views on how

to tag the following code fragment: if (currentCell .getState () != Cell.STATE-FLAGGED).

Investigator T tagged the condition with the Flag Cell concern. However, Investigator M did not tag

42

the condition with the Flag Cell concern because she thought since the condition was checking that

the cell was not flagged, this code fragment should not be associated with a concern that deals with

flagging cells.

Whitespace and comments. Minor differences such as tagging or not tagging whitespace or

comments can lead to more or less concern overlap. There were instances in both case studies

where one programmer would include a blank line in the code associated with a concern and the

other would not, resulting in reduced concern overlap without causing any real change to the actual

code that may or may not be associated with that concern.

5.2 Types of Concerns

Using what we learned from the two case studies, we developed a taxonomy of concern types in

order to help programmers more consistently identify concerns in software. We interpret a concern

as belonging to one or more of the following categories. With a better idea of the types of concerns

that exist in source code, programmers should be able to more easily identify them.

Feature — Functionality a user of the program would be aware of. Examples include all the

possible command line flags of s o r t and the different levels of game difficulty in Minesweeper.

Domain Independent Unit of Functionality — An aspect of the code that could appear in any

type of program, such as assertions, debugging, and error handling. Both case studies had Error

Handling concerns. These types of concerns are independent of the purpose of the program.

Input/Output — Anything dealing with input to or output from a program such as stdin, stdout,

reading from or writing to a file or stream, and input received from a graphical user interface, so rt

had numerous input/output concerns: Files to Sort, Close File, Output File, Open File, STDIN, and

43

STDOUT to name a few. Some example concerns from the Minesweeper case study are Keyboard,

Mouse, and User input.

Internal Program Characteristic — Something a user of a program would not necessarily

be aware of, such as the use of buffers or temporaries, the steps taken to parse command line

parameters, or optimizations implemented for better performance. The s o r t case study has Buffers,

Memory Allocation, and IstKeyOptz. In the Minesweeper case study, examples would be Thread

and XY Location.

Language Characteristic — Elements of a programming language such as constants, acces

sors, imported/included classes or interfaces, and comments, s o r t has ProglD. Example concerns

from the Minesweeper case study are Accessors, Constants, and Import.

5.3 Guidelines

Based on the insights we just presented, we developed a set of guidelines that expound upon how to

identify concerns and their associated code. Here we explain how the individual guidelines, which

are presented in Figures 5.1 and 5.2, were developed. The first six guidelines address identifying

concerns in a program. Guideline 1 says, “Before you begin tagging, review the file and look up any

unfamiliar constructs of the language.” We hypothesize that many of the differences in the concerns

identified by the two parties in each case study was due to a lack of knowledge on one programmer’s

part. Carver and Griswold appear to have understood s o r t in much more detail than us. Many of

the discrepancies between Investigators M and T were due to the fact that Investigator T had less

experience with graphical user interfaces and thus was not able to understand the program as well

as Investigator M. This guideline should help future programmers avoid the pitfalls of not being

44

familiar with such things as standard libraries or the classes used in a graphical user interface.

Guideline 2 states “Identify the main pieces of the program (features); they are concerns.” It

was developed based on the fact that in both case studies, a majority of the commonly identified

concerns were features. Since features are aspects of a program that would be easily recognizable

to a user, they should be as easy to recognize by a programmer. We observed in both studies that

these feature concerns, as well as other types of concerns, had user-defined types, global variables,

or class attributes associated with them. Hence, the development of Guideline 3: “Constants, user-

defined types, class attributes and imported classes are indicators of concerns.” Similarly, we noticed

that it was often the case that an entire function or method was tagged with a concern, so we created

our fourth guideline: “Entire functions usually relate to a concern or support a concern (except for

main).” Functions and methods represent one concept or functionality within a program and are

good indicators of possible concerns.

In discussing their sets of identified concerns, Investigators M and T discovered there were

times when each was unsure what exactly a concern they had found should encompass. For ex

ample, Investigator T decided that the Game Difficulty concern should include the code specific to

any one level of play, while Investigator M decided to create separate concerns for the different

levels. Each investigator was consistent once she made her decision, otherwise it would have been

very hard to understand the purpose of each concern. We developed Guideline 5 as a way to help

programmers strive for consistency. As another example of the usefulness of consistency, consider

Investigator M’s Connected Mines and Neighbor Mines concerns. After discussing her concerns

with Investigator T, she realized that these two concerns are just two different names for the same

thing. If Investigator M had a more well-defined idea of the meaning of each concern, she could

have avoided the duplication.

45

Finally, Guideline 6 says “Look for domain independent concerns such as debugging and error

handling.” We added it to the concern identification guidelines as a reminder to look for concerns

that are not specifically tied to the functionality of the program. While many of the concerns in

both case studies were features, each programmer did find a few concerns that were not. Exam

ples include POSIX and Temp Files in the s o r t case study and Constants and Debug in the the

Minesweeper study.

While the first six guidelines are meant to help programmers identify concerns, the final 11

guidelines can be used to help programmers locate concern code. Guidelines 7-17 were developed

based on observations of trends and patterns seen in many cases of a fragment of code tagged in an

identical or near-identical manner with a commonly identified or similar concern by both parties.

Sometimes, the way in which the characters of the associated code were tagged differed slightly, so

we created the concern identification guidelines to promote consistency.

Guideline 7, “Different levels of concerns can be tagged in the same code fragment,” was created

with the concern hierarchy in mind. If a programmer recognizes that a fragment of code belongs

to two different levels of concerns, Game Difficulty and Easy game for example, that fragment

should be tagged with both concerns. By associating the code fragment with both concerns, the

programmer is essentially documenting that there is a connection between the two concerns.

Guideline 8 is about tangled concerns and says, “Even though a code fragment is tagged with

one concern, it can be tagged with another concern.” Tangling of concerns occurs when two or more

concerns are implemented in the same component, thus they are tightly coupled. We developed this

guideline based on the fact that both Investigator M and T noticed that while looking for associated

concern code, they had a tendency to not consider code that had already been tagged with a different

concern. Programmers should not fall into this habit of ignoring the possibility of tangling because

46

they might miss code that is important to a concern simply because it is already associated with

another concern.

Guideline 9 states, “Use the search feature to find code that is possibly related to the current

concern of interest, but take the time to figure out the context of the code before tagging it.” The

guideline was spurred by the fact that when Investigator T used the search tool to identify concerns,

the context of the instance was rarely examined, leading to many taggings of simply an instance of a

variable that had little affect on the code or function in which it was contained. Recall the example

from Section 5.1 where Investigator T searched for “field.”

Guidelines 10-16 promote consistency in tagging of code with concerns in hopes of increasing

the concern overlap between two programmers. The guidelines specify how a programmer should

tag conditional and iterative statements, declarations and uses of variables, parameters and argu

ments, and comments. Like the other guidelines, these seven guidelines are based on common

conventions exhibited by the programmers in both studies. For example, we noticed the program

mers almost always associated comments with the concern of the code directly succeeding them.

Appendix A provides examples to illustrate the meaning and use of these guidelines.

Our final guideline suggests that “Most to all of the code in a file should be tagged.” Carver

and Griswold associated every one of s o r t ’s 2145 lines with at least one concern, while we left 120

lines untagged. Of these, 83 were blanks lines, 22 were comments, and only 15 contained code. The

untagged code included a few #include and #def ine statements as well as the declaration of main

and a few of its variables. In the Minesweeper case study, Investigator M had 243 untagged lines

of code, and Investigator T had 304 in a program of 2776 lines. Again as in the case with s o rt,

the majority of the untagged lines were blank and the others were comments or class or method

headers with very little actual code left not associated with a concern. It makes sense that almost all

47

of the code in each program was related with at least one concern. Presumably, every line of code

is meaningful and useful, otherwise it would not be present in the program.

Concern Identification Guidelines

1. Before you begin tagging, review the file, and look up any unfamiliar constmcts of the lan
guage.

2. Identify the main pieces of the program (features); they are concerns.

3. Constants, user-defined types, class attributes and imported classes are good indicators of
concerns.

4. Entire functions usually relate to a concern or support a concern (except for main).

5. When you create a concern, decide what it encompasses. For example, if a program is created
to check if the current date corresponds to a birthday of someone stored in a database, should
a birthday concern encompass the Boolean value of whether the current date is someone’s
birthday, or should it relate to the String value representing the date of the person’s birthday.

6. Look for domain independent concerns such as debugging and error handling.

Figure 5.1: Concern Identification Guidelines

48

Concern Tagging Guidelines

7. Different levels of concerns can be tagged in the same code fragment.

8. Even though a code fragment is tagged with one concern, it can be tagged with another
concern.

9. Use the search feature to find code that is possibly related to the current concern of interest,
but take the time to figure out the context of the code before tagging it.

10. If a function is tagged with a concern, the calls to it should also be tagged.

11. If the whole body of an i f or sw itch statement is tagged, tag the i f or sw itch as well as the
beginning and ending braces.

12. If the whole body of a loop is tagged, tag the loop conditionals as well as the beginning and
ending braces.

13. Make sure to tag both the declaration and use of variables associated with a concern.

14. When a variable is an argument or parameter to a function, tag only the argument or parameter
and associated type.

15. Tag the whole expression when it affects a concern variable. When a concern variable is used
on the right side of an assignment statement, tag only the use of that variable.

16. Whitespace, new lines and comments should be included when tagging concerns.

17. Most to all of the code in a file should be tagged.

Figure 5.2: Concern Tagging Guidelines

Chapter 6

Related Work

This chapter explores work that is related to the research presented in this thesis. We discuss areas

in which our work could be put to beneficial use. We also examine work in that has been done in

the areas of identifying concerns and finding concern code.

The work most closely related to ours if an exploratory study by Lai and Murphy to investigate

how different concerns interact [10]. They used a tool similar to Spotlight called Feature Selector

to mark and analyze concerns in Java source code. In their work, they state some criteria for how

they decided something was a feature (their word for a concern). Their criteria included standards

conformation for the FTP and regular expression programs they examined, input/output, and parts

of the code a programmer might want to change or remove. Our work has gone further in this

direction to explore other types of concerns. They also remark that it was difficult to determine

what code to relate to a concern and how to be consistent. Our work in developing guidelines can

help provide that needed consistency.

One area where our work could have a significant impact is aspect-oriented programming. AOP

facilitates the modularization of concerns that techniques such as object-oriented programming can

49

50

not. These concerns that AOP deals with are cross-cutting; they tangled and scattered across the

modules of a system. These cross-cutting concerns are encapsulated in an aspect that is integrated

with the rest of the system with the help of a specialized compiler called a weaver. AOP does not

specify how to determine what within a program should be made an aspect. Our work may aid

programmers using AOP in identifying candidates for aspects.

Software plans [2] is a tool-based approach for separation of concerns. Using a plug-in to

the Eclipse integrated development environment, programmers can create concerns and associate

fragments of source code with those concerns, much like we did in our case studies. Programmers

can then elect to abstract away concerns by making them hidden or irrelevant, essentially removing

their associated code from view. Our work on identifying concerns and related code fits nicely with

the software plans approach. Programmers could use the insights and guidelines of our work to

create useful and effective software plans.

6.1 Identifying Concerns

We have only considered the identification of concerns in existing systems. However, the identi

fication of concerns in is not limited to the implementation or maintenance phases of the software

life cycle. Rashid et al. [15] propose a model for aspect-oriented requirements engineering. Their

approach uses viewpoints [5] and focuses on cross-cutting concerns that increase the complexity of

code and the difficulty of understanding and maintaining it. They argue that considering aspects at

the requirements engineering level can provide better support for separation of concerns and lead

to software that is more adaptable. The model calls for the identification of concerns from the re

quirements and then their specifications. Next, the concerns are related to the requirements, and

51

then the candidate aspects are identified. Candidate aspects are those concerns that crosscut several

requirements. The candidate aspects are then specified to make them more concrete and to reveal

interactions between them. Finally, candidate aspects’ influences on the later stages of development

is specified.

6.2 Finding Concern Code

In our work, we make a distinction between a concern as a concept and the code that implements

that concern. In this section, we discuss some existing techniques for finding concern code that do

not address how to identify the related concern.

Robillard and Murphy [19] extended the Eclipse platform to include an algorithm to automat

ically infer concern code from transcripts of the source code a programmer viewed while inves

tigating a concern. This technique is intended to reduce the amount of time and effort needed to

complete a program evolution task. While a programmer investigates existing source code in order

to implement a change, a transcript records all the code that is visible to the programmer. Once the

change is completed, the programmer can view a list of descriptions of the concern that the infer

ence algorithm believes are relevant based on what the code the programmer looked at. A concern

description consists of the methods that were visible during the investigation. The programmer can

then select the most appropriate description, give it a name, and save it in a concern database. When

a new programmer needs to make a change to the same concern in the source code, he or she can

consult the concern database to get the saved concern description, saving the effort of investigating

the code on their own.

Robillard and Murphy’s tool for locating concerns differs from ours in several ways. First,

52

the unit of granularity in their approach is a method declaration, while with Spotlight, we allow

individual characters to be associated with a concern, so our approach is much more fine-grained.

In our work, we observed that fragments of code within functions or methods were associated with

concerns. Second, their algorithm can only infer concern code from an investigation transcript,

which can lead to false positives if a programmer examines code unrelated to the concern. Our

manual approach to tagging concern code gives the programmer complete control over the code

they wish to associate with a concern.

Robillard and Murphy [20] also developed a plug-in for the Eclipse platform called Feature

Analysis and Exploration Tool (FEAT). A concern in FEAT is any fragment of a program consisting

of classes, methods, or fields of interest to the programmer. FEAT allows the user to interactively

build concern graphs [18] by exploring program structure and program element relationships and

iteratively expanding the body of code associated with a concern. Their work is similar to ours

in that they have tool support to locate concern code, but their approach is automated. However,

it again lacks the granularity of our manual approach to finding concern code because FEAT only

allows the inclusion of classes, methods, and fields.

Robillard et al. [17] did a study to examine the connections between program investigation be

havior and success at a software modification task. Program investigation behavior is the way in

which a programmer navigated through source code in pursuit of some goal, in this case implement

ing a change. The success of the programmer at completing the modification task was measured

against the number of sub-tasks the programmer implemented that met the requirements and did not

contain faults. They presented five programmers with the same change task-modifying the auto

save feature of jEdit, a text editor written in Java. Their results indicate that a more methodical

investigation of source code is more effective than a systematic line-by-line investigation and that

53

programmers should have a plan when performing an investigation. This work focuses on investi

gating source code for program maintenance and not concern identification. However, the change

task and sub-tasks could be considered possible concerns. Their observations on effective program

investigation behaviors for change tasks easily could be applied to the task of locating code associ

ated with a concern.

Information transparency [6] identifies scattered but related sections of code using inference and

search mechanisms. If a programmer needs to make a change to the source code regarding a specific

concern, he or she can use information transparency to lexically (based on naming conventions) and

syntactically (based on characteristics such as loop structure) find the code pertaining to the change

to be made. The fact that Investigator T searched for concern code using names of variables supports

the information transparency approach. Aspect mining [22] is a method of advanced separation

of concerns that automatically identifies cross-cutting concerns in software systems. Approaches

for finding code related to a concern can be text-based (i.e. pattern matching) or type-based [7].

Information transparency or aspect mining could have potentially reduced the amount of time it took

the investigators to locate and annotate concern code in our case studies by reducing the amount of

code they had to consider.

Program slicing [24] attempts to reduce the complexity of code by selecting only those lines

of code that have an effect on a particular variable. This approach could be used to locate code

associated with a concern, but the results would most likely be undesirable. Program slices can be

very large and include almost the entire program, while most code associated with a single concern

may be a relatively small fragment of the source code. Also, it is not always the case that a program

variable correlates to a single concern; a variable may relate to multiple concerns in a program.

Chapter 7

Evaluation and Conclusion

In this thesis, we have presented the results of two case studies that provide some insight into

how programmers think about concerns and the factors that contribute to consistent identification

of concerns among programmers. While there is no “right” or “wrong” way to identify concerns

and their associated code, we believe that the guidelines we have developed based on observed

similarities and trends can ease the difficulty of identifying concerns and improve the consistency

of the concerns and code found by individual programmers. Clearly, experimental validation of

these guidelines is an important area of future work.

Our results indicate that programmers think at different levels of abstraction for different con

cerns. We hope that our guidelines can help create some consistency in this regard. With more

agreement on what constitutes a concern, programmers can potentially communicate more effec

tively because they will be thinking at the same or closer levels of abstraction. However, it is clear

that this is an interesting issue that deserves further study.

The two case studies we have performed involve existing code that was unfamiliar to the pro

grammers. Similar studies involving code developed by the programmers identifying the concerns

54

55

would complement the research we have presented here. Clearly, the impact of code unfamiliarity

would be greatly reduced, and other unknown factors may also arise.

There are several threats to the validity of our work. First, our two case studies were relatively

small in terms of the the number of participants and the small size of the code base. The small scale

is intentional for several reasons. First, the case studies are preliminary work necessary for future,

more in-depth studies involving more participants to see if the generalizations and guidelines we

developed are valid. Second, the investigators in our case studies exhaustively identified concerns

and associated code in the sample programs which is a very time-consuming task. We needed 10

hours to understand, identify, and tag concerns in so rt . We do not know how much time Carver and

Griswold needed. For the Minesweeper case study, Investigator M took 6.5 hours, and Investigator

T took 8 hours. If the systems used in the case studies had been much larger and complex, it

would have taken the programmers significantly more time to completely and thoroughly identify

all concerns and their associated code. In practice, programmers would not be as meticulous as the

investigators were in trying to identify all instances of all concerns.

Another possible threat to our case studies was communication or collusion between the in

vestigators to identify the same concerns. In the s o r t case study, we were not given Carver and

Griswold’s concern information until after we had finished identifying concerns on our own. In

the Minesweeper case study, we eliminated this danger by strictly disallowing any discussion be

tween the two investigators on the topic of the case study until after they had both completed their

identifications.

A final threat to our work is the use of bad metrics. Our concern overlap metrics may be sensitive

to the inclusion of whitespace in the manifestation of a concern. Blank lines and other whitespace

do not change the meaning of a program, but they can skew our metrics if one programmer prefers

56

tagging whitespace and another does not. We would need to do more analysis to determine the

impact of whitespace on concern overlap.

This work has several contributions to the field of software engineering. As far as we know,

our case studies are the first work to compare concerns and concern code identified by different

programmers. The data from these case studies on the presence and relationships among concerns

in code is our first contribution. Our second contribution is a categorization of the different types

of concerns that the investigators found in real systems. Another contribution is exploration of the

factors that are responsible for consistent concern identification among programmers. Finally, our

last contribution is the set of guidelines on how to identify and locate concerns in source code.

Appendix A

Illustrations of Guideline Usage

In this appendix, we give some illustrative examples of the use of our taggings guidelines to make

their meanings more clear. We do not present examples for all of the concern identification guide

lines because they are tips on how to identify the presence of a concern. We also exclude examples

for a number of the concern tagging guidelines because we feel they are self-explanatory.

A .l Guideline 10

I
 private static void bDayKsg(Student s) {

System. out. printIn (■

System, out. print In ("It1 s " + s.firstHame + " ” + s . lastEJame () + "'5 birthday! ! ! ") ;
System.out.printIn I"********************** ******************");

private s t a t i c v o i d token!ze(String line){

Student s *= new Student flastName, firstMame,username,dob) ;

if fisBDay (s)) {
S bDayMsg{s};

birthday = true;
}

Figure A.l: Illustration of the use of Guideline 10.57

58

Figure A.l shows the proper use of Guideline 10, “If a function is tagged with a concern, the

calls to it should also be tagged.” Since the programmer tagged the definition of the bdayMsg ()

method, the call to it in tokenize () is also tagged with the same concern.

A.2 Guideline 11

if (!birthday){
System.out.print I n ("No b i rthdays t o day.")

>

(a) Improper usage.

if (!birthday){
System.out.printIn("No birthdays today.")

(b) Proper usage.

Figure A.2: Illustration of the use of Guideline 11.

Guideline 11, which states, “If the whole body of an if or switch statement is tagged, tag

the if or switch as well as the beginning and ending braces.” Figure A.2 improper and proper

application of this guideline.

A.3 Guideline 12

while (b.ready()){
student Info = b .readLine();
if (!student Info.equals(""))
tokenize(studentlnfo);

while (b.ready()){
studentlnfo = b .readLine();
if (!studentlnfo.equals()
tokenize(studentlnfo);

(a) Improper usage. (b) Proper usage.

Figure A.3: Illustration of the use of Guideline 12.

Guideline 12 is very similar to Guideline 11, except it deals with iterative statements. Figure A.3

shows the incorrect and correct way to tag a loop according to the guidelines.

59

A.4 Guideline 13

?; String studentlnfo;
birthday = false;
b .readLine() ;
b .readLine() ;
while (b.ready()) {

| studentlnfo = b .readLine();

Figure A.4: Illustration of the use of Guideline 13.

Figure A.4 demonstrates Guideline 13, “Make sure to tag both the declaration and use of vari

ables associated with a concern.” Since the declaration of the variable s tu d e n tln fo has been

tagged with the concern, its use in the while loop should also be tagged.

A.5 Guideline 14

| private static void read(BufferedReader b) throws IOException{
String studentlnfo;
birthday = false;

0 b .readLine();
1 b .readLine();

Figure A.5: Illustration of the use of Guideline 14.

Guideline 14 states, “When a variable is an argument or parameter to a function, tag only the

argument or parameter and associated type.” Figure A.5 shows an example of the meaning of this

guideline. The parameter b to the read () method and its uses within the method are all tagged with

the concern for consistency.

60

A.6 Guideline 15

studentlnfo = b . readLine Q ; p studentlnfo = b . readLine () ;

(a) Improper usage. (b) Proper usage.

Figure A.6: Illustration of use of Guideline 15.

Figure A.6 depicts Guideline 15, which says “Tag the whole expression when it affects a concern

variable. When a concern variable is used on the right side of an assignment statement, tag only the

use of that variable.” In this case, b is the concern variable. Since it is being used on the right side

of the expression, it only its use and not the full line should be tagged with the concern.

A.7 Guideline 16

/ / A class holding a student's first and last, namer
// user name and date of birth
private static class Student!
private String lastName;
private String firstName;
private String userName;
private String dob;

Figure A.7: Illustration of the use of Guideline 16.

Guideline 16 specifies that “Whitespace, new lines and comments should be included when

tagging concerns.” Figure A.7 illustrates the inclusion of comments with the code tagged with a

concern.

Bibliography

[1] L e e C a r v e r a n d W i l l i a m G . G r i s w o l d . Sorting out concerns. In OOPSLA ’99 Work
shop on Multi-Dimensional Separation o f Concerns, November 1999.

[2] D a v i d C o p p i t a n d B e n j a m i n C o x . Software plans for separation of concerns. In Proceed
ings o f the Third AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software, Lancaster, UK, 22 March 2004.

[3] E D S G E R W . D l J K S T R A . A Discipline o f Programming. Prentice Hall, 1976.

[4] ECLIPSE.ORG. The Eclipse homepage. URL: h t t p : / / w w w .e c l ip s e .o r g / .

[5] B A S H A R N u s e i b e h A n t h o n y F i n k e l s t e i n . Viewpoints: A vehicle for method and tool
integration. In Proceedings o f the Fifth International Workshop on Computer-Aided Software
Engineering, Montreal, Canada, 1992.

[6] W i l l i a m G . G r i s w o l d . Coping with software change using information transparency. In
Proceedings o f the 21st International Conference on Software Engineering, May 1999.

[7] J a n H a n n e m a n n a n d G r e g o r K i c z a l e s . Overcoming the prevalent decomposition in
legacy code. In ICSE 2001 Workshop on Advanced Separation o f Concerns in Software Engi
neering, 15 May 2001.

[8] IEEE. Ieee recommended practice for architectural description of software-intensive systems.
IEEE Std. 1471-2000, September 2000.

[9] G r e g o r K i c z a l e s , J o h n L a m p i n g , A n u r a g M e n d h e k a r , C h r i s M a e d a ,

C r i s t i n a V i d e i r a L o p e s , J e a n - M a r c L o i n g t i e r , a n d J o h n I r w i n . Aspect-oriented
programming. In Proceedings o f the European Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.

[10] A l b e r t L a i a n d G a i l C . M u r p h y . The structure of features in java code: An exploratory
investigation. In OOPSLA ’99 Workshop on Multi-Dimensional Separation o f Concerns,
November 1999.

[11] G a i l C. M u r p h y , A l b e r t L a i , R o b e r t J. W a l k e r , a n d M a r t i n P. R o b i l l a r d .

Separating features in source code: An exploratory study. In Proceedings o f the 23rd Inter
national Conference on Software Engineering, pages 275-85, Toronto, Canada, 12-19 May
2001. IEEE.

61

http://www.eclipse.org/

62

[12] B a s h a r N u s e i b e h , J e f f K r a m e r , a n d A n t h o n y F i n k e l s t e i n . A framework for ex
pressing the relationships between multiple views in requirements specification. Software
Engineering, 20(10):760-773, 1994.

[13] H. O s s h e r A N D P. T a r r . Multi-dimensional separation of concerns and the hyperspace
approach. In Proceedings o f the Symposium on Software Architectures and Component Tech
nology: The State o f the Art in Software Development. Kluwer, 2000.

[14] D. L. P A R N A S . On the criteria to be used in decomposing systems into modules. Communi
cations o f the ACM, 15(12):1053-8, December 1972.

[15] A w a i s R a s h i d , P e t e r S a w y e r , A n a M o r e i r a , a n d J o o A r a j o . Early aspects: a model
for aspect-oriented requirements engineering. In IEEE Joint Conference on Requirements
Engineering, Essen, Germany, September 2002.

[16] M a r t i n P. R o b i l l a r d . Representing Concerns in Source Code. PhD thesis, University of
British Columbia, November 2003.

[17] M a r t i n P. R o b i l l a r d , W e s l e y C o e l h o , a n d G a i l C . M u r p h y . H o w effective devel
opers investigate source code: An exploratory study. IEEE Transactions on Software Engi
neering, 30(12):889-903, December 2004.

[18] M a r t i n P. R o b i l l a r d a n d G a i l C. M u r p h y . Concern graphs: Finding and describing
concerns using structural program dependencies. In Proceedings o f the 24th International
Conference on Software Engineering, pages 406^417, 19-25 May 2002.

[19] M a r t i n P. R o b i l l a r d a n d G a i l C . M u r p h y . Automatically inferring concern code
from program investigation activities. In Proceedings o f 18th International Conference on
Automated Software Engineering, pages 225-234, 06-10 October 2003.

[20] M a r t i n P. R o b i l l a r d a n d G a i l C . M u r p h y . Feat a tool for locating, describing, and
analyzing concerns in source code. In Proceedings o f the 25th International Conference on
Software Engineering, Portland, Oregon, 3-10 May 2003. IEEE.

[21] S t a n l e y M. S u t t o n , J r . a n d I s a b e l l e R o u v e l l o u . Modeling of software concerns
in cosmos. In AOSD ’02: Proceedings o f the 1st international conference on Aspect-oriented
software development, pages 127-133. ACM Press, 2002.

[22] T o m T o u r w e a n d K i m M e n s . Mining aspectual views using formal concept analysis. In
Proceedings. Source Code Analysis and Manipulation Workshop, September 2004.

[23] C . R e i d T u r n e r , A l f o n s o F u g g e t t a , L u i g i L a v a z z a , a n d A l e x a n d e r L. W o l f .

Feature engineering. In Proceedings o f the 9th international workshop on software specifica
tion and design, pages 162-164, 1998.

[24] M a r k W e i s e r . Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-7, 1984.

63

VITA

Meghan Revelle

Meghan Kathleen Revelle was bom in Columbia, Maryland on January 21,1981. She graduated

from Atholton High School in 1999 and then went to Mary Washington College (MWC) where she

studied computer science. During the summer of 2002, Meghan was a Research Experiences for

Undergraduates Fellow at Duke University. In 2003, she earned her B.S. in Computer Science from

MWC. She entered the department of computer science at the College of William and Mary in 2003

and is continuing to pursue her Ph.D.

	An Investigation of Programmer-Identified Concerns
	Recommended Citation

	tmp.1539892610.pdf.0PO4_

