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ABSTRACT

In the December 9, 2003 issue of the New York Times, NASA administrator Sean 
O’Keefe identified radiation is “Mars mission’s invisible enemy”. Current radiation 
shielding does not provide necessary protection against high-energy cosmic radiation 
during outer space exploration. In this work a series of hydrogen-rich aromatic 
polyimides were designed because hydrogen has been found to be the most efficient atom 
on a weight basis for shielding against heavy ions, and benzene rings in the structure 
serve other ancillary functions.

Two different dianhydrides and three different diamines were used in the 
polymerization. Polyimide films and powders were synthesized and then characterized by 
inherent viscosity, elemental analysis, and thermal decomposition temperature. These 
aromatic polyimides can be replicated in larger quantities to produce suitable materials 
for radiation bombardment testing.
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Chapter 1: 

Introduction

Current shielding cannot provide enough protection against high-energy cosmic

radiation for long-duration human space exploration. The accumulation of exposures to

• 1 2  this radiation can significantly increase the risks of cancer to the astronauts. ’ The

purpose of this research is to synthesize hydrogen-rich aromatic polyimides and to test

their properties for radiation shielding.

The earth’s magnetic field largely shields us from galactic cosmic radiation (GCR), 

but outside the geomagnetosphere, astronauts and equipment are endangered by full 

exposure to the galactic and solar cosmic ray environments. The vehicle, habitat, rover, 

spacesuit, and overhead atmosphere afford them only limited protection during surface 

operations.

In prior space missions, GCR was neglected since the mission times were relatively 

short. The main radiation concern were the very intense Solar Energetic Particles (SEP) 

events which can unexpectedly arise to dangerously high levels capable of delivering a 

lethal dose in a few hours.3 Now, sufficient protection against the early effects of SEP 

events can be provided if the astronaut does not leave his ordinary protective quarters. In 

long-term deep space missions special attention is directed to GCR because the data from 

the Mir space station 4,5 and from space shuttle flights at high orbital inclination 6,7 ,8 show 

that more than 50% of the dose incurred by International Space Station (ISS) crew 

(except during solar particle events) will be from high-energy nuclei (Z>1) in the GCR,



and of that amount a substantial fraction will be from highly charged and energetic heavy 

nuclei (HZE) (charge Z>2).

Serious problems are caused by GCR HZE particles because some of the particles 

(e.g., Fe+26 at 1 GeV/nucleon) 9 have enough energy to penetrate to many locations within 

the vehicle and habitat. The radiation exposure behind exterior walls can exceed the 

exposure in the absence of walls since the hull and interior materials decrease the dose 

per incident particle. But the colliding of HZE particles and target atoms leading to a 

cascade of smaller nuclei and neutrons emitted from the back side of the shield. For 

example, 1.3 cm aluminum shields have been typically used in spacecraft and the dose 

equivalent behind such shields exceeds by 1 0 % the dose equivalent in the absence of the 

shield. 10

In 1997 a NASA study group recommended the favorable shielding characteristics 

which include high electron density per unit mass, maximum nuclear cross section per 

unit mass, and high hydrogen content. They provided two reasons for choosing 

hydrogen-rich polymers. 11 First, for charged particles, excitation and ionization of the 

target nuclei slow down incident particles and stop some of them. Energy loss by 

ionization increases with the charge-to-mass ratio of the target nucleus, Z/A (Z is atomic 

number and A is mass number), for a given areal density and a given incident particle. 

Other variables influence the ionization energy loss, but hydrogen is most effective 

because of its greatest stopping power per unit mass (Z/A = 1 )  compared to other 

elements (Z/A □ 1/2). Second, cross sections of nuclear interactions, whereby the

1/3incident heavy ions break into lighter fragments, are approximately proportional to (At

i /o o 1 1 *
+ Ap ) , where At and Ap are the mass numbers of target and projectile. Hydrogen is
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the lightest element, so hydrogen-rich shielding causes more fragmentation of the 

incident particle per unit mass than other sorts of shielding. Thus, by mass, hydrogen is 

the most efficient element for shielding against HZE particles.

In-flight measurements and accompanying model calculations5,6,8 have shown

12 13polyethylene to be superior to aluminum for decreasing the radiation dose. 5 An 

appropriately larger thickness of the shielding will be better. In John. W. Wilson’s 

research14, larger shield thicknesses of 5 g/cm2 are more effective than 1.51 g/cm2; the 

latter specifications are being used in the current designs for the Mars inflatable 

TransHab. For larger thicknesses more energy of the projectile fragments would be 

absorbed and more fragments slowed down or stopped (most of the target fragments will 

be absorbed in the shielding material).

Radiation shielding materials should not only save weight, but also provide other 

ancillary functions such as structural support, insulation, plumbing, thermal conductors, 

and micrometeorite shields. Hydrogen-rich aromatic polyimides were synthesized in this 

research because polyimides are well known as high-performance polymers, which 

posses excellent thermal stability, inert behavior against organic solvents, and good 

mechanical properties. 1 5 , 16
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CHAPTER 2:

EXPERIMENTAL

2.1. Instruction

In this work, six polyimides were synthesized by reactions of three diamines with 

two dianhydrides. One of the dianhydrides has a rigid structure and another one 

contains flexible ether (—0 —) and isopropylidene (—C(CH3)2 —) groups, which make

• * 1 7  23the polyimides easy to be fabricated by increasing their solubility and moldability. 

Two dianhydrides and one of the diamines are commercially available and the other two 

diamines were prepared.

2.2. Monomer Syntheses

2.2.1. Commercially available monomers

1,2,4,5-Benzenetetracarboxylic dianhydride (PMDA). PMDA was purchased from 

Aldrich and used after two sublimations (m.p. 284-286°C).

4,4 '-(4,4 '-Isopropylidenediphenoxy) bis (phthalic anhydride) (UDA). UDA was 

purchased from Aldrich and recrystallized twice from acetic anhydride to yield light 

brown crystals (m.p. 187-188°C). 24

4,4'-(4,4'-Isopropylidenediphenyl-l,l,-diyldioxy)dianiline (BDA1). BDA1 was 

purchased from Aldrich and recrystallized twice from ethanol to yield light brown 

crystals (m.p. 129-130°C).



2.2.2. Monomers prepared for this study

2,2-Bis[3,5-dimethyl-4-(4-aminophenoxy)phenyl]propane (BDA2) and a,a'-bis-

[3,5-dimethyl-4-(4-aminophenoxy)phenyl]-l ,4-diisopropylbenzene (BDA3) were 

prepared for this research. They are listed in Table 2.1.

Table 2.1. Structure of dianhydrides and diamines

Compound Abbrev

0 0
II II

•W PMDA

II II 0 0
Dianhy

dride

0II 0II<CrXipO" UDA
II
0 c h 3

II
0

Diamine h2n— ( V-0
ch3/_

D— ( \— NH2 BDA1



BDA2■NH

CH3 c h 3
NH BDA3

2.2.2.1. BDA2 Synthesis

2.2.2.1.1. Chemicals

2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane and 4-chloronitrobenzene were 

purchased from TCI.

2.2.2.1.2. Synthesis of BDA2

2.2.2.I.2.I. Description of the synthesis

The synthesis of BDA2 followed D. J. Liaw’s work25, as shown in scheme 2.1. The 

dinitro compound was synthesized in the first step. In order to achieve a high yield, the 

ratio of 4-chloronitrobenzene, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)-propane, and 

anhydrous potassium carbonate was 2.2:1:2.4. The reaction was carried out in a DMF 

solution with the concentration of 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane at 

150-200 g/L. After refluxing in DMF overnight, the solution was cooled and poured into



a 1:1 methanol-water mixture. The crude product which precipitated was then 

recrystallized from glacial acetic acid.

In the second step, a reaction was carried out in an ethanol solution with the 

concentration of dinitro compound at 200 g/L. Hydrazine monohydrate was used as the 

reducing agent. The molar ratio of dinitro compound to hydrazine monohydrate was 

between 1:30 andl:70. The mass of the catalyst (10% Pd-C) was about 0.75%-wt of the 

dinitro compound. The reducing agent was drop-added when the ethanol solution started 

to reflux. The dinitro compound was not soluble in ethanol but the produced diamine was. 

So when the yellow solid (dinitro compound) disappeared in ethanol, the reaction was 

terminated. It took about 22 hours. The solution was then hot filtered to remove the Pd-C 

and was recrystallized in ethanol to yield the yellow needle-like crystal of the diamine.



9

Scheme 2.1: Synthesis of BDA2

HO OHOH + 2CI 1  \ ---- N02

k 2c o 3

DMF
0 2N

h3c

Pd/C

2.2.2.1.2.2. Typical synthesis 

First step:

The dinitro compound was synthesized by the reaction of

2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane (75.075 g, 0.26 mol) and 

4-chloronitrobenzene (87.75 g, 0.56 mol) in the presence of anhydrous potassium 

carbonate (84.825 g, 0.62 mol) and 390 ml of DMF at 160 °C for 21 hours. The solution 

was then cooled down to room temperature and poured into a 1 : 1  methanol-water mixture. 

The crude product was recrystallized from glacial acetic acid to provide yellow crystals 

(m.p. 193-195°C) in 99.5% yield.
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Second step:

138.5 g (0.26 mol) of the dinitro compound, 1.039 g of 10% Pd-C, and 693 ml 

ethanol were introduced into a three-necked flask to which 519 ml of hydrazine 

monohydrate was added dropwise at 85°C.

The reaction was continued at reflux temperature for another 22 hours. The mixture 

was then hot filtered to remove Pd-C. After cooling, the precipitated needle-like crystals 

were isolated by filtration and recrystallized from ethanol in 85.8% yield 

(m.p. 164-166°C).

2.2.2.2. BDA3 Synthesis

2.2.2.2.1. Chemicals

a, a ’ -bis(4-hydroxy-3,5-dimethylphenyl)-1,4-diisopropylbenzene and

4-chloronitrobenzene were purchased from TCI.

2.2.2.2.2. Synthesis of BDA3

2.2.2.2.2.I. Description of the synthesis

A new more effective way was used to synthesize BDA3. See scheme 2.2. The yield 

was about 20% higher than D. J. Liaw’s work26,27,28.

The first synthetic step of BDA3 was similar to that of BDA2. The ratios of 

4-chloronitrobenzene, a, a ’-bis(4-hydroxy-3,5-dimethylphenyl)-1,4-diisopropyl

benzene, and anhydrous potassium carbonate were 2.2:1:2.2. The concentration of 

a, a ’-bis(4-hydroxy-3,5-dimethylphenyl)-l,4-diisopropylbenzene was 220-250 g/L.
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In the second step, hydrogenation apparatus, model 3911 from Parr, was used. 

Hydrogen gas was used as the reducing agent instead of hydrazine monohydrate and 

N,N-dimethylformamide (DMF) was used as the solvent instead of ethanol. The 

concentration of the dinitro compound was ca. 250 g/L of DMF. The molar ratio of 

dinitro compound to the consumed H2 was about 1:6. The amount of the catalyst (10% 

Pd-C) was about 0.6 wt-% of the dinitro compound. The solution was stirred vigorously 

in room temperature. The pressure of the hydrogen gas, generally started from 50 psi, 

was monitored. When there was no further absorption observed, the reaction was 

terminated. The solution was then hot filtered to remove the Pd-C and precipitated in 

deionized water to yield the brown powder (diamine).

Scheme 2.2: Synthesis of BDA3

2 ClHO

D M F

H2
Pd/C, DMF
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2.2 2 .2.2.2. Typical synthesis 

1st step:

In a flask equipped with a stirrer and a reflux condenser, there were placed 500 ml of 

N, N-dimethylformamide (DMF), 120.8 g (0.3 mole) of a, 

a ’-bis(4-hydroxy-3,5-dimethylphenyl)-l,4-diisopropylbenzene, 104.0 g (0.66 mole) of 

4-chloronitrobenzene and 91.2 g (0.66 mole) of potassium carbonate.

The resulting mixture was refluxed with stirring for 18 hours. After hot filtration, the 

filtrate was cooled to precipitate a ,a ,-bis[3,5-dimethyl-4-(4-nitrophenoxy)phenyl]

-1,4-diisopropylbenzene (BDNPD). The mixture on the filtration paper was recrystallized 

form acetic acid with the concentration of 15g/L to precipitate BDNPD.

The precipitated light yellow crystals were collected by filtration, washed with 200 

ml of methanol, and dried. 168.2 g of light yellow powder was obtained. The yield was 

87.0%. Melting point: 228 to 230 °C.

2nd step:

In a 500 ml reaction bottle for hydrogenator there were placed 55.0 g (0.0853 mole) 

of BDNPD obtained from the preceding step, 220 ml of N,N-dimethylformamide (DMF) 

and 0.33 g of a 10% Pd-C catalyst. Hydrogen gas was then introduced, while the solution 

was stirred vigorously. The reaction was continued at room temperature for 72 hours. At 

this point, 0.51 mol hydrogen had been absorbed. Since further absorption was not 

observed, the reaction was terminated.

After completion of the reaction, the mixture was heated to 70°C to dissolve the
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final product. The solid Pd-C catalyst was separated from the solution by hot filtration. 

The filtrate was heated to 80-90°C in an oil bath. While this temperature was maintained, 

135 ml of water was added dropwise over 20 minutes in order to precipitate 

a ,a ,-bis-[3,5-dimethyl-4-(4-aminophenoxy)phenyl]-l,4-diisopropyl-benzene. The

solution was slowly cooled, and the resulting light yellow crystals were collected by 

filtration, washed with 100 ml of methanol, and then dried. 45.9 g of 

a,a'-bis-[3,5-dimethyl-4-(4-aminophenoxy)phenyl]-l,4-diisopropylbenzene was

collected for a yield of 91.9%. The melting point of the crystal was 226-228°C.

2.3. Polymer Syntheses

The conventional two-step polymerization method was used to prepare the 

polyimides, as shown in Scheme 2.3. The first step was a ring-opening polyaddition 

forming poly(amic acid) and the second step was thermal cyclodehydration. See Scheme

2.4 and Table 2.2.

Scheme 2.3: Procedure to make polyimide film and powder

1 st step:

NMP/N?
Dianhydride + Diamine ------------------------ Poly(amic acid)

Overnight 
Room Temp.

2nd step:
Cured in oven

PAAfilm -------------------------------------  ► Polyimide film

Poly (amic acid) — 

(PAA)

on glass

__. _ „ x. Heating in oil bath
PAA solution  ► Polyimide powder

in flask Azeotrope H20
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Scheme 2.4: Syntheses of polyimides

o o

nm p/n2
n o; Ar ;o +  n H2N RJ NH2 --------------------- ►

Room Temp.

O O 

H O  O H

-N-
\ .

Ar

HO-

• N-------R-

-OH

O O

-2nH20

170-190°C

_  n

N R -

Table 2.2: Structural components in the polyimide syntheses shown in Scheme 2.4

Compound Abbreviation

Dianhydride

cores

Ar =

XX PMDA

c h 3

UDA

Diamine

cores

R’ =

-o-o^o^o-O H 3
BDA1
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h 3c  c h 3

/  u n 3 \
h 3c  c h 3

BDA2

h 3c  c h 3 

h 3c  c h 3

BDA3

2.3.1. PMDA series

2.3.1.1. Description of the synthesis

To synthesize high molecular-weight polyimide, the mole ratio of diamine and 

dianhydride should be close to 1:1. The reaction mixtures were prepared with 15 wt-% 

solids in l-methyl-2-pyrrolidinone (NMP).

There were two steps to make the polyimide. The first reaction which yields the 

poly(amic acid) should be run in the absence of air and water. This requires that the flask 

and the stirring blade be dried in the oven before the reaction and reaction carried out 

under a flow of dry nitrogen from beginning to end.

The three diamines used here dissolve in NMP, but PMDA does not. So after the 

diamines have dissolved in 1/3-1/2 of the total NMP needed by the reaction, PMDA was 

added to the solution gradually. The PMDA forms a ball in the stirred solution if it is 

added too fast. The first step reaction was run at room temperature overnight.

The second step is to make a polyimide film and powder. About 5 ml poly(amic acid) 

solution was poured onto a flat piece of clean and dry glass which had been cleaned with



16

ethanol and acetone, and dust was removed from the surface using a razor blade. A 

drawing blade was used to calibrate the solution thickness to 0.432 mm, 0.017 inches. 

The glass plane was kept in a low humidity chamber with dried air flowing at room 

temperature overnight. Then, it was put into an oven and heated to 100°C, held for one 

hour, heated to 200°C, held for an hour, heated to 300°C and held for one hour to make a 

polyimide film. To make polyimide powder, the water byproduct was removed from the 

imidization mixture by forming an azeotrope with toluene, which is 15 vol.% of NMP. 

The solution changed from transparent to opaque because the poly(amic acid) is soluble 

in NMP but the polyimide is not. Refluxing continued for 3-6 hours until no more water 

was produced. The polymer solution was then cooled and slowly poured into a blender 

with deionized water to precipitate the polyimide product. In the last step, hot water, then 

ethanol, was used to wash the polyimide powder.

2.3.1.2. Typical synthesis

27.430 g (0.126 mol) of PMDA was added gradually to a stirred solution of 73.542 g 

(0.126 mol) of BDA3 in 556 ml of NMP. The mixture was stirred at room temperature 

for 20 hours under a flow of dry nitrogen. About 5 ml of poly(amic acid) solution was 

used to make a film, and 84 ml of toluene was added to form an azeotrope. After 

refluxing for 4 hours until no more water was produced, the polyimide film and powder 

were made as described above. (See Scheme 2.3.) The yield was 99.5%. The syntheses of 

PMDABDA1 and PMDABDA2 were similar to that of PMDABD A3.
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2.3.2. UDA series

2.3.2.1. Description of the synthesis

The UDA series of polyimides was synthesized in a manner very similar to that of 

the PMDA series. One of the differences was UDA does dissolve in NMP but PMDA 

does not. So in the first step, UDA and diamine were dissolved in NMP separately and 

the UDA solution added dropwise to diamine solution instead of adding the UDA powder 

to the diamine solution. Another difference was that no polyimide powder precipitated 

during the refluxing in the second step, because polyimides of the UDA series dissolve in 

NMP.

2.3.2.2. Typical synthesis

84.839 g (0.163 mol) of UDA was dissolved in 300 ml NMP and added dropwise in 

a stirred solution of 95.312 g (0.163 mol) of BDA3 in 692 ml of NMP. The mixture was 

stirred at room temperature for 20 hours under a flow of dry nitrogen. About 5 ml 

po!y(amic acid) solution was removed from the reaction flask and used to make a film. 

149 ml toluene was added to the remaining poly(amic acid) to form an azeotrope with the 

NMP. The polyimide film and powder were then made as described above. See Scheme 3. 

The yield was 99.5%. The syntheses of UDABDA1 and UDABDA2 were similar to that 

of UDABDA3.
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2.4. Characterization methods

2.4.1. NMR

Nuclear magnetic resonance (NMR) measurements were made using a Gemini NMR

1 1 T400 instrument. Samples were dissolved in CDCI3 or DMSO. Both H and C resonances 

were studied at room temperature.

2.4.2 FTIR

FTIR measurements were made by a DIGLAB FTS 7000 IR instrument. The 

background of monomers was KBr and the monomers were characterized by using a KBr 

pellet. The polyimide films were characterized by exposure to the IR beam with a 

background of air.

2.4.3. Elemental analysis

The samples were tested by Atlantic Microlab.

2.4.4. Inherent viscosity

A cannon viscometer was used to test the inherent viscosity of the polymers.

The inherent viscosity of a polymer solution is 

hinh=( 1 /c)ln(r|p/rjs)~( 1 /c)ln(tp/ts) 

where c is the concentration of the polymer. 0.25 g polymer was dissolved in 50 ml 

NMP, so here, c is 0.5 g/dL. r|p and rjs are the viscosities of the polymer solution and of 

the solvent. tp and ts, the flow time of the polymer solution and pure solvent between the 

two fiducial lines on the viscometer, are taken to be proportional to their viscosities.
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2.4.5. Differential scanning calorimeter measurements

Differential scanning calorimeter (DSC) measurements determined the glass 

transition temperatures (Tg) of the polyimides with a TA 2920 modulated differential 

scanning calorimeter.

In the first heating, the Tg was difficult to identify, possibly a consequence of 

residual solvent or incomplete imidization. In the second heating the Tg was easy to 

identify. Following is the detail of the procedure.

1. LNCA control: off

2. Equilibrate at 50.00 °C

3. Isothermal for 5.00 min

4. Modulate +/- 1.000 °C every 60 sec

5. Data storage: on

6 . Ramp 20.00 °C/ min to 400.00 °C

7. Isothermal for 2.00 min

8 . Ramp 20.00 °C/ min to 50.00 °C

9. Isothermal for 30.00 min

10. Ramp 5.00 °C/ min to 400.00 °C

11. Data storage: off
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2.4.6. Thermogravimetric analyses

Thermogravimetric analyses (TGA) measurements were made using a TGA-50 

thermogravimetric analyzer. Measurements were made by heating the sample from room 

temperature to 800°C in nitrogen atmosphere. The procedure is shown in Table 2.3.

Table 2.3: Procedure of TGA

Step
Rate of temp, 

increased (°C/min)
Hold temp. (°C) Hold time (min)

1 2 1 1 0 30

2 1 0 600 0

3 2 0 800 0
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Chapter 3. 

Results and Discussion

3.1. Results and Discussion of monomers

3.1.1. Syntheses of monomers

Two diamine monomers BDA2 and BDA3 were synthesized on a large scale. The 

yields of BDA2 and BDA3 are higher than Liaw’s work 25>26’27. See Table 3.1. One of 

these two monomers, BDA3, was synthesized by using a new and more effective way. 

Both of the two monomers were characterized by NMR, elemental analysis, and FT-IR.

Table 3.1: Mass and yields of BDA2 and BDA3

Dinitro Compound Diamine Compound

Mass (g)

Yield (%)

Mass (g)

Yield (%)Single

reaction
Total

Single

reaction
Total

BDA2 in 

Liaw’s work
7.7 I 90 4 / 8 6

BDA2 65-146 509 95-99 46-105 324 75-86

BDA3 in 

Liaw’s work
1 0 / 80 4.5 / 72

BDA3 168-194 951 87-99 38-46 570 88-96



3.1.2. Characterization of monomers

31.2.1. NMR

Chemical shifts of BDA2, BDA3 and the dinitro precursors for BDA2 are similar to 

Liaw’s reports. 2 5 , 26 shifts given above for the dinitro precursor for BDA3 were 

similar except for the proton ortho to the nitrogen substituent. See the NMR data in Table

3.2-3.5 and the atom number in Figure 3.1, 3.2. The spectra are Figure App. 3.7-3.14 in 

appendix.

Table 3.2: ‘H NMR Data of BDA2

Chemical shift (ppm) Number of atoms Shape
Dinitro Diamine Dinitro Diamine Dinitro Diamine

Ha 2.09 2.13 1 2 1 2 s s
H b 1.70 1.70 6 6 s s
H c 7.00 6.97 4 4 s s
Hd 6 . 8 6 6.62 4 4 d s
He 8.19 6.62 4 4 d s
Hf \ 3.42 \ 4 \ s

Table 3 .3 :13C NMR Data of BDA2

Ci c2 c3 c4 c5 c6
Chemical 

shift (ppm)
Dinitro 16.77 31.27 42.44 142.19 126.29 130.18

Diamine 16.97 31.37 42.21 140.21 127.41 130.70
c7 c8 c9 Cio Cn

Chemical 
shift (ppm)

Dinitro 148.21 163.03 114.99 127.80 148.17
Diamine 151.28 149.46 116.59 115.47 147.03
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Figure 3.1: Atom number of BDA2 and the dinitro precursor

N 0 2

h 2n

c h 3

Table 3.4: 'H NMR Data of BDA3

Chemical shift (ppm) Number of atoms Shape
Dinitro Diamine Dinitro Diamine Dinitro Diamine

Ha 2.07 1.98 1 2 1 2 s s
Hb 1.71 1.60 1 2 1 2 s s
Hc 7.00 6.95 4 4 s s
Hd 6 . 8 6 6.46 4 4 d d
H e 8.19 6.42 4 4 d d
Hf 7.19 7.14 4 4 s s
Hr / 4.66 / 4 / s

Table 3.5: I3C NMR Data of BDA3

Ci c2 c3 c4 c5 c6 c7
Chemical shift 

(ppm)
Dinitro 16.7 31.1 42.4 142.1 126.4 130.0 148.4

Diamine 16.4 30.6 41.6 142.9 126.1 127.1 149.2
c8 c9 Cio C n C n Cl3

Chemical shift 
(ppm)

Dinitro 163.1 115.0 127.9 148.1 147.7 126.3
Diamine 148.6 115.1 114.7 147.3 146.2 129.9
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Figure 3.2: Atom number of BDA3 and the dinitro precursor

n o 2o 2n

h2n n h 2

3.I.2.2. FT-IR

The infrared (FTIR) spectra of BDA2, BDA3, and their dinitio precursors are shown 

in Fig. 3.3-3.6 . Special attention is directed to the peaks attributed to the vibrational 

motions of the ether linkage in the four compounds, to the N-H stretching in the two 

diamines, and to the vibrations of the nitro substituent in the two dinitro compounds. See 

Table 3.6.



Table 3.6: Significant peaks in BDA2 and BDA3

C-O-C (cm'1) N-H (cm*1) N 0 2 (cm*1)
BDA2 1st step 

product ( dinitro 
compound)

1244 / 1588,1346

BDA2 2n 0 step 
product ( diamine 

compound )
1225 3407, 3366 /

BDA3 1st step 
product ( dinitro 

compound)
1241 / 1594, 1339

BDA3 2nd step 
product ( diamine 

compound)
1225 3440, 3360 /

Figure 3.3: FT-IR of BDA2 1st step product (dinitro compound)
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Figure 3.4: FT-IR of BDA3 1st step product (dinitro compound)

Figure 3.5: FT-IR of BDA2 2nd step product (diamine compound)



Sf
fon

so
ttH

M

Figure 3.6: FT-IR of BDA3 2nd step product (diamine compound)

3.I.2.3. Elemental analysis

The monomers’ H and N percentages were very close to the theoretical values, 

shown in Table 3.7.
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Table 3.7: Elemental analysis of BDA2 and BDA3

H (%) N (%) C (%)

th e o ry found th e o ry found th e o r y found

BDA2 1st step product 

( dinitro compound )
5 .7 4 5.75 5 .3 2 5.22 70 .71 70.23

BDA2 2nd step product 

( diamine compound)
7 .34 7.30 6.01 6.07 7 9 .7 9 79.38

BDA3 1st step product 

( dinitro compound )
6 .2 5 6.19 4 .3 4 4.36 74 .51 74.38

BDA3 2na step product 

( diamine compound )
7 .58 7.65 4 .7 9 5.02 8 2 .1 5 81.23

3.2. Results and Discussion of polyimides

3.2.3. Syntheses of polyimides

Six different polyimides were prepared on a large scale at a high yield. See Table 3.8. 

Both films and powders were prepared. The films were transparent, tough, and flexible. 

See Figure App. 3.15 in appendix.
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Table 3.8: Mass and Yields of six polyimides

Sample Mass (g) Yield (%)

UDABDA1 363 >95

UDABDA2 350 >95

UDABDA3 368 >95

PMDABDA1 390 92

PMDABDA2 338 >95

PMDABDA3 400 >95

3.2.4. Characterization of Polyimides

3.2.4.I. Solubilities

Several solvents were used to test the solubilities of the polyimides, as shown in 

Table 3.9. If at least 0.06 g of a polymer dissolved in 2 ml of the liquid at room 

temperature, the polyimide was judged to be “soluble”. Some polyimides did not dissolve 

at room temperature but partially dissolved at 70°C; some others were “insoluble”.

All of the polyimides were insoluble in the nonpolar solvent cyclohexane. And the 

UDA series of polyimides had better solubility than PMDA series. The good solubility 

was possibly governed by the flexible isopropylidene and arylene ether groups in the 

UDA unit.
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Table 3.9: Solubility tests of Polyimides*

cyclohexane pyridine DMF DMAc CHC13 NMP DMF

PMDABDA1 - - - - - - -

PMDABDA2 - - - - - + - -

PMDABDA3 - - - - - + - -

UDABDA1 - +  + +  + + + +  + +  + +  +

UDABDA2 - + + +  4- +  + H—h +  + +  +

UDABDA3 

)lubility: +  + , so uble at room t<

+  +  

smperature

+  +

; +  p e

+  +  

irtially so

+  +  

luble on

+  +  

leating

+  +  

it 70°C;

insoluble.

3.2.4.2. Inherent viscosities

The inherent viscosities of the poly(amic acid)s and polyimides are shown in Table

3.10.

Generally, high inherent viscosities correspond to high molecular weights. High 

molecular weight polymers generally have more desirable mechanical properties.
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Table 3.10: Inherent viscosities of the po!y(amic acid)s and polyimides

Sample Viscosity of poly (amic acid) 

(dl/g)

Viscosity of polyimide 

(dl/g)

UDABDA1 0.33-0.43 0.66-0.81

UDABDA2 0.52-0.81 0.77-0.98

UDABDA3 0.23-0.39 0.21-0.54

PMDABDA1 0.53-0.57 *

PMDABDA2 0.30-0.35 *

PMDABDA3 0.36-0.48 *

*Does not dissolve in NMP.

3.2.4.3. Glass transition temperatures

Glass transition temperatures (Tg’s) of polyimides, determined by means of DSC, 

were found to be in the range 205-234 °C for the UDA series and 291-329 °C for the 

PMDA series. The flexible isopropylidene and arylene ether groups in UDA contribute to 

their lower Tgs. See Figure App. 3.16-3.21 in appendix and table 3.11.
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Table 3.11 Thermal properties of polyimides

Name Formula

Moles o f  

Hper 

gram

Glass 

transition 

temperature 

Tg(°C) 

From DSC

Temp. (°C) 

at 5 %  wt. 

loss ^

Temp. (°C) 

at 1 0 % wt. 

lo ssa,b

Residual 

mass at 

800°C (%)a’c

PMDABDA1 C37H24O6N 2 0.041 317 473±3 498±3 49

PMDABDA2 C41H32O6N 2 0.049 299 394±3 410±3 40

PMDABDA3 C5oH4206N 2 0.055 281 4 1 1±7 445±6 55

UDABDA1 C58H42O8N 2 0.047 199 436±5 499±5 55

UDABDA2 C62H50O8N 2 0.053 233 438±5 471±5 48

UDABDA3 C71H60O8N 2 0.056 240 463±5 476±5 48

a Obtained with a Shimadzu TGA-50 in flowing nitrogen (20 cm /min) at a heating rate 

between ambient and 110 °C of 2 °C/min; between 110 °C and 600 °C of 10°C/min; and 

between 600 °C and 800 °C of 20°C/min.

At least two sample tested for each polyimide. 

c Maximum date.
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3.2.4.4. Thermogravimetric analyses

The last three columns of Table 3.11 list the results of thermogravimetric analyses 

(TGA). All the six polyimides showed good thermal stabilities in excess of 380°C. The 

temperatures at 5% mass loss and 10% mass loss are 387-463 °C and 403-499 °C in 

nitrogen atmosphere. The residual masses at 800 °C are 40-55%. See Figure App. 

3.22-3.27 in appendix.

3.2.4.5. Elemental analysis

The polyimides’ H and N percentages were very close to the theoretical values, as 

shown in Table 3.12.

Table 3.12: Elemental analysis* of polyimides

H (%) N (%) C (%)

th e o r y found th e o r y found th e o r y found

PMDABDA1 4 .0 8 3.97 4 .7 3 4.55 7 5 .0 0 74.45

PMDABDA2 4 .9 7 5.03 4 .3 2 4.32 75.91 75.34

PMDABDA3 5 .5 2 5.51 3 .6 5 3.76 78 .31 77.01

UDABDA1 4 .7 3 4.84 3 .1 3 3.08 7 7 .8 4 77.45

UDABDA2 5 .3 0 5.34 2 .9 5 2.97 7 8 .3 0 78.02

UDABDA3 5 .6 6 5.64 2 .6 2 2 . 6 6 7 9 .7 5 79.71

^Tested by Atlantic Microlab.
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3.2.4.6. FT-IR

Bands close to 1777 cm'1, 1712 cm'1, and 1375 cm ' 1 were found in the FT-IR spectra 

of the six polyimides films. These three bands can be attributed to the asymmetric and 

symmetric stretches of the carbonyl group and C-N stretching respectively. See Figure 

App. 3.28-3.33.

3.3. Conclusions

Two diamines and six polyimides were successfully prepared in high purity, high 

yield and large quantity in this study. Three of the polyimides have excellent solubility 

and all the six polyimides showed good thermal stabilities in excess of 380°C. The 

polyimide films are transparent and flexible and may have good tensile properties.
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Chapter 4: 

Summary and Conclusions

In this research (1) a more effective way was used to synthesize diamines on a large 

scale so that the yield and quantity of the monomers are higher than those in Liaw’s work; 

(2) six polyimides were successfully prepared on a large scale (about 338-400 g of the 

polyimide powder for each of the six kinds of polyimides); and (3) several polyimide 

blocks (See Figure App. 4.1 and Table App. 4.1 in appendix) were made to test their 

properties as shields against high-energy cosmic radiation.

The polyimide materials studied in this research are expected to be able to serve 

useful functions in addition to the shielding, which are not served by commercially 

available polyethylene, because the polyimides have aromatic units in the backbone for 

favorable mechanical, thermal and outgassing properties and (2 ) have higher densities of 

hydrogen atoms than highly aromatic, high-performance polymers such as Kapton.

More characterization, including mechanical testing, is planned for these materials. 

The radiation testing of the materials listed in Table 3.11 and Table App. 4.2 (in appendix) 

at the NASA Space Radiation Laboratory (NSRL), as well as the calculations predicting 

the properties of these materials as shielding, is in progress.



36

References

1. National Council on Radiation Protection and Measurements: Guidance on radiations 
received in space activities. (1989), NCRP Rep. No. 98.

2. J. W. Wilson, J. Miller, A. Konradi, F. A. Cucinotta, Eds., Shielding Strategies for  
Human Space Exploration, (1997), NASA C.P. 3360.

3. J. W. Wilson, F. M. Denn. Preliminary analysis of the implications of natural 
radiations on geostationary operations. (1976), NASA TN D-8290.

4. G. D. Badhwar, A. Konradi, W. Atwell, M. J. Golightly, F. A. Cucinotta, J. W. 
Wilson, V. M. Petrov, I. V. Tchemykh, V. A. Shurshakov and A. P. Lobakov. 
Measurements of the linear energy transfer spectra on the Mir orbital station and 
comparison with radiation transport models. Radiat. Meas. (1996), 26, 147-158.

5. F. A. Cucinotta, J. W. Wilson, J. R. Williams and J. F. Dicelllo. Analysis of Mir-18 
results for physical and biological dosimetry: radiation shielding effectiveness in LEO. 
Radiat. Meas. (2000), 32, 181-191.

6 . G. D. Badhwar and F. A. Cucinotta. Depth dependence of absorbed dose, dose 
equivalent and linear energy transfer spectra of galactic and trapped particles in 
polyethylene and comparisons of calculations with models. Radiat. Res. (1998), 149, J  
209-218.

7. T. Sakaguchi, T. Doke, N. Hasebe, T. Hayashi, T. Kashiwagi, J. Kikuchi, S. Kono, S. 
Nagaoka, T. Nakano and S. Takahashi. LET distribution measurement with a new 
real-time radiation monitoring device-III onboard the space Shuttle STS-84. Nucl. 
Instrum. Methods Phys. Res. (1999), A 437, 75-87.

8 . G. D. Badhwar and F. A. Cucianotta. A comparison of depth dependence of dose and 
linear energy transfer spectra in aluminum and polyethylene. Radiat. Res. (2000), 153, 
1 - 8 .

9. J. A. Simpson. Composition and Origin o f Cosmic Rays (M. M. Shapiro, Ed.), (1983), 
p. 1. Reidel, Dordrecht.

10. M. Y. Kim, J. Wilson, S. A. Thibeault, J. E. Nealy, F. F. Badavik, and R. L. Kiefer, 
Performance Study of Galactic Cosmic Ray Shield Materials, (1994),NAS A TP-3473.



37

11. J. Miller, C. Zeitlin, F. A. Cucinotta, L. Heilbronn, D. Stephens and J. W. Wilson.. 
Benchmark Studies of the Effectiveness of Structural and Internal Materials as 
Radiation Shielding for the International Space Station. Radiation Research^2003), 
159,381-390.

12. J. W. Wilson, M. Kim, W. Schimmerling, F. F. Badavi, S. A. Thibeault, F. A. 
Cucinotta, J. L. Shinn and R. Kiefer, Issues in space radiation protection: Galactic 
cosmic rays. Health Phys. (1995), 6 8 , 50-58.

13. J. R. Letaw, R. Silberberg and C. H. Tsao, Radiation hazards on space missions 
outside the magnetosphere. Adv. Space Res. (1989), 9, 285-291.

14. Lisa C. Simonsen, John. W. Wilson, Myung H. Kim, and Francis A. Cucinotta.. 
Radiation exposure for human Mars exploration. Health Physics Society (2000), 79 
(5), 515-525.

15. D. Wilson, H. D. Stenzenberger; P. M. Hergenrother, Eds., Polyimides, Chapman and 
Hall, New York 1990.

16. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, Eds., Polyimides, 
Consultants Bureau, New York 1987.

17. Critchley, J. P.; White, Mary A.. Perfluoroalkylene-linked aromatic polyimides.
II.Further property studies. Journal o f  Polymer Science, Polymer Chemistry Edition 
(1972), 10(6), 1809-25.

18. Arnold, C. A.; Summers, J. D.; McGrath, J. E.. Synthesis and physical behavior of 
siloxane modified polyimides. Polymer Engineering and Science (1989), 29(20), 
1413-18.

19. Tsutsumi, Naoto; Tsuji, Akiyoshi; Horie, Chika; Kiyotsukuri, Tsuyoshi. Preparation 
and properties of silicon-containing polyimides. European Polymer Journal 
(1988), 24(9), 837-41.

20. Beltz, Mark W.; Harris, Frank W.. Synthesis and properties of aromatic polyimides 
containing oxyalkylene linkages. High Performance Polymers (1995), 7(1), 
23-40.

21.Tjugito, Sukanto; Feld, William A.. Polyimides derived from
l,2-bis(4-aminophenoxy)propane. Journal o f  Polymer Science, Part A: 
Polymer Chemistry (1989), 27(3), 963-70.

22. Charbonneau, L. F.. Synthesis and properties of alkylene-linked aromatic polyimides. 
Journal o f  Polymer Science, Polymer Chemistry Edition (1978), 16(1), 197-212.

23. Liaw, Der-Jang; Yang, Wen-Chung Ou; Li, Lain-Jong; Yang, Mei-Hui. Synthesis



38

and properties of novel aromatic polyimides derived from 
bis(p-aminopheoxy)methylphenylsilane. Journal o f  Applied Polymer Science (1997), 
63(3), 369-376.

24. Sachindrapal, P.; Nanjan, M. J.; Shanmuganathan, S. Synthesis of aromatic 
polyimides containing ether linkage. Makromolekulare Chemie, Rapid 
Communications (1980), 1(11), 667-70.

25. Liaw, D.; Liaw, B. Synthesis and characterization of new soluble polyimides derived 
from 2, 2-bis[3,5-dimethyl-4-(4-aminophenoxy)phenyl]propane. Macromol. Chem. 
Phys. (1998), 199, 1473-1478.

26. Liaw, D.; Liaw, B.; Yu. C. Synthesis and characterization of new organosoluble 
polyimides based on flexible diamine. Polymer (2001), 42, 5275-5179.

27. Liaw, D.; Huang, H. P.; Hsu, P. N.; Chen, W. H. Synthesis and Characterization of 
New Highly Soluble Polyamides Derived form a, 
a -Bis[3,5-dimethyl-4-(4-aminophenoxy)phenyl]-l,4-Diisopropylbenzene. Polymer 
Journal (2002), 34(5), 307-312.

28. Hu, Y.; Yang, S.; Park, C. S.; Orwoll, R. A.; Jensen, B. J. (200A).Polymer 
PreprintsA5(2), 613-61 A.



39

Appendices



40

Q .
Q_

r - C D

t?oz* u 

1.60'C

C D
jc d l

CN

frS8 9
9x8 9

Oao

m '8
80Z'8

C N

OIL

-3ss
©a
8
©(J
©
h
8
-a
<s<
Q
PP
01
K

rn
da
©u,
3OX



41

8 9 /9 1,

5 9 1 ' IZ-

Q .
Q_

.C D
CN

6Z Y Z t
.C D

*3-

.C D
CO

1169/ 
0 ZZ' LL  
Z W L L . o

CD

CD
•C D

9 8 6 'm -

Z Z Z 9 U -  
808 /C I, 
C81081

86i/m 
69 i-'81? 1- ■ 
U Z ' Q t l -

o
CN

CD ■ '=t

6 Z V Z 9 1

CD
-C O ;

V

Fi
gu

re
 A

pp
. 

3.
8:

13
C 

NM
R 

of 
BD

A2
 

di
ni

tro
 

co
m

po
un

d



42

10 L I  

S Z I Z

s i r z

9 t-9'9 

ZZ6'9

Q _

Q.

o

oo
t̂s-

QOo CN

- C D

CDO

GO

O

Q
M
<4-1©
P4
S£
w

t-h

ON
CD

d.a
CU2m3W>



43

Z i Z ' l Z -

80 V Z f :

SL6'9Z 
0 Z Z L L -  
frSS 11-

frifr'SH--
fr69‘9U-

8 0 f  L I  t 
869-081

sirom 
bzo m
89fr’6H 
H Z  1 9 1

_ o
CD

■Q.
Q_

. CD CM

.C D

CD
CD

O
-C D

CD
CN

CD• ̂ r

CD 
• CD

Fi
gu

re
 A

pp
. 

3.
10

:1
3C 

NM
R 

of 
BD

A
2



44

90Z I

890‘Z

6Z4B:
£0£'8

0 ZZ l

-C M

CO

T3d9©f t
E
o(j
©u

•  P *d
• pNTJ
<
QCQ«4-lo
P4
£
55
W

d>&
©J*d
OX)

• pN
fa



45

0 IZ'9I

t m e -

m m
.0

. 0<x>

Z 0 6 9 Z
o e r z z
ZfrSZZ

6 Z 6 ' m

Q L Z ' QZ l
z ns z i
Z I B  L Z i  
t66‘6£l

BH'm
ezg ’z n
Z 0 L 8 H
ZW8M

8 S 0 8 9 1

,0co

o  • o

o■CN

__ r

CD:
•■CD

Fi
gu

re
 A

pp
. 

3.
12

:1
3C 

NM
R 

of 
BD

A3
 

di
ni

tro
 

co
m

po
un

d



46

m i  

086' U

6n?e

999 t

9WW
E9fr'9

8*B'9
BEVZ

(JO□

co
CN \ ___„

CN

-CO

-un

co
a  v_  _ CM: 

<=>^30

GOh-CO
CO

co<
«
PQ
0
e*
1 
ffl
co
tH

CO

da,
<u
i-l3
.£fE



4 7

□L
CL

8Et?‘9l- 
009 00 
888 80 
060 60 
£0060 
0 1,5 60 
L i t  60 
9£6'60 
00 10 
009 ^

CN

. a

a
CO

a
CD

m<
Q
PQ
©
OP
s£
u

aa dCL
CL>

9
&J)

gu'Hi  
5 6 0 9 1. I

a
■CN

fr9Q9£L 
Z90‘Z£l 
006‘6£ I 
698 3 H  
9BV9H 
81?0 ZH 
ZQ98M 
991'6t4 a  ■ co



4 8

PMPA8 PA |

P M M 8 B A 2

U P A B P A

UPABPA2

UPABPA3
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Table App. 4.1: Blocks* made for test as shields against high-energy cosmic

radiation

Dimension

(inch)
Mass (g)

Moles of H per 

gram

Area density 

(g/cm2)

Ultem 3x3x1.5790 290.6 0.041 5.005

polysulfone 3x3x1.6405 290.8 0.050 5.008

Noryl731 3x3x1.8071 275.7 0.0666 4.748

PMDABDA1
3x3x2.0938 290.5

0.0405
5.003

3.5x3.5x0.2490° 39.2 0.495

PMDABDA2
Press one, not 

melt
/ 0.0493 /

PMDABDA3 N/A / 0.0548 /

UDABDA1
3x3x1.5905 282.8

0.0469
4.870

3.5x3.5x0.1329 31.0 0.392

UDABDA2 3x3x1.7068 280.3 0.0526 4.827

UDABDA3 N/A / 0.0561 /

All the blocks were made in Langley NASA lab.
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Table App. 4.2: Commercial polymers being considered. Kapton and polyethylene

have been included for reference.

Name Formula Structure

Moles 

of H 

per 

gram

Kapton c 22h 10o 5n 2

0  0  

0  o

0.026

Ultem c 37h 24o 6n 2

0 ^ h 3 o

0.041

Udel c 27h 22o 4s

,----- , 0  .___ . ,___ v CH3 ,------,

0  x 7 CH3 ------

0.050

PPO c 8h 8o

H3CX

h 3ct

0.067

Polyethy 

—lene
c 2h 4

H H

C ° \  
H H

0.143
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