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ABSTRACT

The internal reproductive anatomy of 2 polynoid species, Branchipolynoe 
symmytilida and Levensteiniella kincaidi, from hydrothermal vents on the East Pacific 
Rise are compared with that of polynoids (B. seepensis and Opisthotrochopodus sp.) from 
Mid-Atlantic Ridge vents (Van Dover et al. 1999; Jollivet et al. 2000). In B. symmytilida, 
spermatozoa mature from anterior to posterior and toward the periphery of the body 
cavity. Masses of spermatocytes with filiform heads are located in sperm sacs that lead 
to the nephridial papillae. Oogonia mature in a multi-lobed ovary, where vitellogenesis 
takes place aided by follicle cells and association with blood vessels. Large, 
lecithotrophic oocytes (max. diameter 300 pm) are stored in a large ovisac and ultimately 
a spermatheca where packets of sperm are stored and fertilization presumably takes place 
before release to the outside through the nephridial papillae.

Spermatogenesis is similar in L. kincaidi and B. symmytilida. L. kincaidi also has 
lecithotrophic development (max. oocyte diameter 300 pm) and sperm storage, but well- 
developed ovaries and uterus are absent. Oocytes, surrounded by follicle cells, mature in 
small clusters in close association with blood vessels. All 4 vent polynoid species 
examined to date share the same basic male reproductive attributes. Differences exist in 
the female reproductive anatomy, but all 4 species have sperm storage and lecithotrophic 
development. This contrasts with the reproductive strategies of most shallow-water 
polynoids, which have broadcast spawning and planktotrophic development.
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INTRODUCTION

The ephemeral and unpredictable nature of hydrothermal vents places a premium 

on the ability of a species to reproduce and colonize new sites before going locally 

extinct (Corliss et al. 1979, Laubier & Desbruyeres 1985). Despite the importance of 

reproduction in understanding the maintenance of vent communities, life history studies 

are limited by the logistical difficulties of time-series observations in the deep sea. Fewer 

than 25 of the more than 500 species described from vents have been investigated 

primarily for reproductive biology data (Tyler & Young 1999, Young 2003). Soon after 

the discovery of hydrothermal vents in 1977, vent species were hypothesized to have 

similar reproductive characteristics, mainly those maximizing long-distance dispersal 

capabilities such as small, abundant free-swimming planktotrophic larvae (e.g., 

Desbruyeres & Laubier 1983, Turner et al. 1985). More recently, there is evidence that 

reproductive strategies are often under strong phylogenetic constraints (Eckelbarger & 

Watling 1995, Tyler & Young 1999, Young 2003). Molluscs (Lutz et al. 1984) and 

decapod crustaceans (Van Dover et al. 1985, Van Dover & Williams 1991) were among 

the first taxa specifically shown to employ reproductive strategies dictated by phylogeny 

instead of by environmental influence.

Phylogenetic constraints are a strong predictor of reproductive attributes in many 

non-vent invertebrate species as well. For example, echinothuriid echinoids display the 

same modified gametes and asynchronous gametogenesis in both shallow water and the
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deep sea, despite large differences in nutrient availability and environmental conditions 

(Mori et al. 1980, Eckelbarger et al. 1989). Vent bivalves also show remarkable 

phylogenetic constraint on reproduction and development. Vesicomyid and solemyid 

bivalves from vents studied to date have gonads and lecithotrophic larvae (Endow &

Ohta 1980, Berg 1985, Fiala-Medioni & Le Pennec 1989, Beninger & Le Pennec 1997) 

while mytilid bivalves undergo gametogenesis in the mantle and freely spawn their larvae 

(Berg 1985, Hessler et al. 1988, Le Pennec & Beninger 1997, Comtet & Desbruyeres 

1998, Tyler & Young 1999). Typical reproductive attributes of polychaetes include 

coelomic gamete maturation, broadcast spawning, external fertilization, and 

planktotrophic larvae (e.g., Segrove 1941, Fauchald 1974), but these attributes vary 

widely and are not necessarily the most common characteristics (Wilson 1991, Rouse & 

Fitzhugh 1994, Rouse & Pleijel 2001). Within the polynoid polychaetes (scaleworms), 

all but one shallow-water species examined to date broadcast spawn their eggs, which 

develop into planktotrophic larvae (Giangrande 1997, Llodra 2002). Harmothoe 

imbricata is the only documented species that differs from this pattern, with females 

brooding eggs under the elytra (Gremare & Olive 1978). In contrast to most shallow- 

water species, two vent polynoids, Branchipolynoe seepensis and an undescribed species 

of Opisthotrochopodus from vents on the Mid-Atlantic Ridge, show evidence of internal 

fertilization and lecithotrophic development (Van Dover et al. 1999, Jollivet et al. 2000). 

It is unknown whether other vent polynoids share these reproductive traits or have 

attributes in common with shallow-water species. B. seepensis and Opisthotrochopodus 

n. sp. maintained similar reproductive characteristics despite contrasting habitats: B. 

seepensis is a commensal inside Bathymodiolus sp. mussel mantle cavities, and L. 

kincaidi is free-living among the mussels. The nature of the dependency of B. seepensis
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on the host mussels is under investigation, with preliminary evidence suggesting that the 

worm is a kleptoparasite, stealing food from the digestive tract of the host mussel 

(Britayev et al. 2003).

Reproductive attributes are only known for about 3% of all polychaete species, 

while oogenesis has been described in only 0.3% of polychaete species (Giangrande 

1997). Of the numerous described hydrothermal vent polychaete species (Desbruyeres & 

Segonzac 1997, Young 2003), only 13 species in 4 families have been investigated for 

reproductive life history data, and a variety of strategies are employed. Five of the 

species examined are vestimentiferan tubeworms, one of the most extensively studied and 

unusual taxa at hydrothermal vents. All 5 vestimentiferans investigated have sperm 

storage and internal fertilization (Hilario et al. 2005). Alvinellid polychaetes 

Paralvinella grasslei (Jollivet et al. 1995, Zal et al. 1995), P. pandorae (McHugh 1989, 

McHugh 1995), Alvinellapompejana (Jollivet et al. 1995), and A. caudata (Jollivet et al. 

1995) and P. palmiformis have sperm storage (McHugh 1985, McHugh 1995, Copley et 

al. 2003). The ampharetid polychaetes Amphisamytha galapagensis (McHugh & 

Tunnicliffe 1994) and Amathys lutzi (Blake & Van Dover, in press) have freely-spawned 

lecithotrophic larvae. Polynoid polychaetes are one of the most speciose taxa at 

chemosynthetic environments including hydrothermal vents (Desbruyeres & Segonzac 

1997), cold seeps (Sibuet & Olu 1998), whale falls (Smith et al. 2003). The 2 polynoid 

species investigated make up 15% of the total number of described vent polynoid species, 

making polynoids proportionally one of the least studied vent polychaete taxa. This lack 

of reproductive information hinders our understanding of these animals and their 

ecological niche among cohabitating vent species.
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To expand on the current knowledge of vent polynoid reproduction, we 

investigated the reproductive characteristics of two polynoid polychaete species. The 

first, Branchipolynoe symmytilida Pettibone 1984, is commensal within the mantle cavity 

of the mussel Bathymodiolus thermophilus and endemic to vents and other deep-sea 

reducing environments (Fig. 1 A). One polychaete usually inhabits each mussel mantle 

cavity, but 2 or more have been found in a single host (Pettibone 1984, pers. obs.). The 

known geographic range of B. symmytilida includes vents along the northern and 

southern East Pacific Rise and the Galapagos Rift (Chevaldonne 1998, Hurtado et al. 

2004, pers. obs.). The second species, Levensteiniella kincaidi Pettibone 1985, is free- 

living in vent mussel beds along the East Pacific rise (Fig. IB, Pettibone 1985, Van 

Dover 2003).

Reproductive strategies of Branchipolynoe symmytilida and Levensteiniella 

kincaidi were determined from investigations of histological sections and gross 

dissections. Sperm head shape was noted to infer sperm transfer method: “normal” or 

primitive sperm with a spherical head shape are often associated with free spawning and 

external fertilization (Franzen 1977), while elongate or filiform sperm with limited 

mobility are often indicative of internal fertilization, pseudocopulation in gelatinous egg 

masses, or fertilization in tubes (Franzen 1956, Jamieson & Rouse 1989). Oocyte size 

range and distribution was investigated to characterize the level of gametogenic 

synchronization and type of development (e.g. planktotrophic vs. lecithotrophic, 

reviewed by Ecklebarger 1994). The presence or absence of sperm storage was also 

noted.
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FIGURE 1

DORSAL VIEW OF BRANCHIPOLYNOE SYMMYTILIDA 
AND LEVENSTEINIELLA KINCAIDI

Dorsal surface of (A) Branchipolynoe symmytilida and (B) Levensteiniella kincaidi. Note 
that most scales are lost in processing of L. kincaidi. Scale bars = 400 pm.
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CHAPTER I 

MATERIALS AND METHODS

Specimens of Branchipolynoe symmytilida and Levensteiniella kincaidi were 

collected in December 2001 by DSVAlvin from mussel beds at 9°N on the northern East 

Pacific Rise [Train Station: 9° 49.645’ N, 104° 17.357’ W (2491 m); East Wall:

9° 50.534’ N, 104° 17.520’ W (2499 m); Biovent: 9° 50.992’ N, 104° 17.592’ W (2494 

m)]. Additional specimens of L. kincaidi were obtained from February 1999 collections 

from mussel beds at 17°S on the southern East Pacific Rise [Oasis: 17° 25.394’ S, 113° 

12.323’ W (2582 m); Rehu Marka: 17° 24.940’ S, 113° 12.190’ W (2581 m)]. Animals 

were removed from mussel mantle cavities and mussel washings, preserved in 10% 

buffered seawater formalin, and stored in 70% ethanol.

Thirty intact specimens from each species were dehydrated in an alcohol series 

and embedded in paraffin wax. Each was serially sectioned (5-7 pm sections) using a 

microtome, mounted on slides, and stained with Gill’s hematoxylin and eosin (H&E; 

Stevens 1990) for examination under a Zeiss Axioskop 2 compound microscope. For 

additional study of Branchipolynoe symmytilida internal anatomy, 8 preserved specimens 

from 9°N and 8 fresh specimens from 38°S were dissected and photographed with an 

Olympus DPI 1 digital camera. Branchipolynoe aff. symmytilida were collected in March 

2005 at 38°S on the Pacific-Antarctic Ridge (38°47.466’S; 110°54.867’W, 2230 m) for 

fresh dissection.



CHAPTER II 

RESULTS: Branchipolynoe symmytilida

Sexual Dimorphism 

Three morphotypes of Branchipolynoe symmytilida are readily distinguished 

under a dissecting microscope: individuals with 0, 1 or 2 pairs of ventral nephridial 

papillae. Individuals with 1 pair of papillae (setiger 11) are male (Fig. 2A; n = 10), and 

those with 2 pairs of papillae (setigers 11 and 12) are female (Fig. 2B; n = 17). Male 

worms (length 0 = 1.7 cm V 0.28 s.d.) were significantly smaller than females (length 0 = 

3.0 cm V 0.96 s.d., p = 0.020, Fig. 3). Three small worms with no papillae (length 0 = 

1.49 cm V 0.67 s.d.) contained only early spermatids or early vitellogenic oocytes.

Male Reproductive Anatomy 

The male reproductive system in mature Branchipolynoe symmytilida consists of 

an extensive, unsegmented gonad filling the coelomic cavity of setigers ~2 to 9 and of 

large, lobular, seminal vesicles in setigers 9-11 (Fig. 4A,B). The gut is situated dorsally, 

so that the bulk of the gonad typically lies in the mid-to-ventral portion of the coelom. 

Spermatogonia presumably arise from a germinal epithelium associated with the 

peritoneum, but these immature sperm cells were not visible under light microscopy. 

Clusters of spherical “early spermatids” are associated with the peritoneum along the
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FIGURE 2

BRANCHIPOLYNOE SYMMYTILIDA, SEXUAL DIMORPHISM

Branchipolynoe symmytilida, sexual dimorphism (ventral views). (A) Male, one pair of 
nephridial papillae; scale bar = 400 pm. (B) Female, two pairs of papillae; scale bar = 
400 pm. arrowheads, nephridial papillae; numbers, setigers.
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FIGURE 3

BRANCHIPOLYNOE SYMMYTILIDA,
NUMBER OF PAIRS OF NEPHRIDIAL PAPILLAE VS. WORM LENGTH

5
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2

1

0
10 2

Number of Pairs of Papillae

Branchipolynoe symmytilida, number of pairs of nephridial papillae vs. worm length. For 
0 pairs, n = 3; for 1 pair, n = 8; for 2 pairs, n = 11.
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FIGURE 4

BRANCHIPOLYNOE SYMMYTILIDA, MALE REPRODUCTIVE ANATOMY

Figure 4. Branchipolynoe symmytilida, male reproductive anatomy. (A) Gonad and 
seminal vesicles; frontal section; scale bar = 1 mm. (B) Gonad and seminal vesicles; 
cross-section from region of vertical line in (A); scale bar = 1 mm. (C) Clusters of early 
spermatids associated with the peritoneum, mixed gonadal tissue, and seminal vesicles; 
scale bar = 200 pm. (D) Mixed gonadal tissue; scale bar = 50 pm. b, bundle of late 
spermatids; cs, clusters of early spermatids; e, elytron; g, gut; gd, gut diverticulum; lm, 
longitudinal muscle; m, mixed tissue (early spermatids and bundles of late spermatids); p, 
parapodium; ph, pharynx; s, early spermatids; sv, seminal vesicle filled with mature 
filiform sperm; vnc, ventral nerve cord; numbers, setigers.
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length of the gonad, i.e., lining the body wall and surrounding the gut (Fig. 4A). Bundles 

of tailed, “late spermatids” with darkly staining filiform heads are surrounded by early 

spermatids (Fig. 4C,D), forming a “mixed tissue” (Fig. 4A,B). In some sections, this 

mixed tissue does not appear to be part of the gonad proper; it may instead be developing 

sperm cells that are free (but densely packed) in the coelom. Mature filiform sperm (head 

length approx. 60 pm) are tightly packed within the seminal vesicles (Fig. 4A-C). The 

seminal vesicles are formed from a thin layer (15 pm) of epithelial cells, and connect to 

the exterior via gonoducts through the nephridial papillae of setiger 11 (Fig. 2A). Sperm 

are presumably transferred to the female as a spermatophore. In dissections of fresh and 

preserved material, seminal vesicles are iridescent white.

Juvenile male worms (no nephridial papillae, length <2.0 cm) contain a larger 

proportion of early spermatids to late spermatids than adult males (-80% early 

spermatids in juveniles vs. -30% early spermatids in adults). Small bundles of filiform 

sperm are present among the clumps of spermatogonia in juveniles, but no seminal 

vesicles or mature sperm are present.

Female Reproductive Anatomy 

Oocytes develop anteriorly (setigers -4-10) in multi-lobed ovaries that arise in 

association with the peritoneum surrounding the ventral portion of the gut (Fig. 5A,B, 6). 

The ovaries appear to be segmental and paired, but the number of ovaries, their 

relationship to specific setigers, and their degree of fusion is uncertain.

Each ovarian lobe (up to 6 per female) consists of a convoluted and furled sheet 

of oocytes with a continuum of oocyte sizes and vitellogenic stages, from a central region



FIGURE 5

BRANCHIPOLYNOE SYMMYTILIDA,
FEMALE REPRODUCTIVE ANATOMY; VENTRAL VIEW

Figure 5. Branchipolynoe symmytilida, female reproductive anatomy; ventral view, 
illustrating location of ovaries, ovisac, spermatheca, and nephridial papillae; scale bar 
cm. evo, early vitellogenic oocyte; lvo, late vitellogenic oocyte; mo, mature oocyte; n 
nephridial papillae; o, ovisac; ol, ovary lobe; pr, prostomium; py, pygidium; s, 
spermatheca.
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of small, pre-vitellogenic oocytes (<10 pm diameter, Fig. 6) to a region of early 

vitellogenic oocytes (10-20 pm), to larger, late vitellogenic oocytes (<200 pm diameter) 

at the periphery of the lobe (Fig. 7). The lobes extend into the parapodia in some 

specimens. When removed from fresh specimens, the ovarian lobes unfurl, revealing this 

gradient of oocyte sizes (Fig. 7).

Each adult female Branchipolynoe symmytilida observed contained all stages of 

oocytes (Fig. 5,8A). A single, thin layer of follicle cells surrounds each oocyte (Fig. 8B) 

and the ovaries are associated with blood vessels (Fig. 8A). Oocytes > -200 pm are 

granulated with yolky globules and are free in the coelom (Fig. 5). Mature oocytes (max. 

diameter 300 pm) fill a central, large, thin-walled ovisac located ventral to the gut in 

setigers ~11-14 (Fig. 5); ciliated funnels opening into the ovisac are presumed to exist but 

were not observed.

In preserved dissection, sheets of pre-vitellogenic oocytes are white. Late 

vitellogenic oocytes (<200 pm) are orange with a white coating (follicle cells?), and 

mature oocytes (<300 pm) are deeper orange, lack the white coating, and are granular in 

texture. In fresh dissection, pre-vitellogenic and early vitellogenic oocytes in the central 

region of each ovarian lobe are transparent. Late vitellogenic oocytes are white, and 

mature oocytes are whitish and granular in texture (Fig. 7).

Sperm Storage

Mature female specimens possess a well-developed, ventral spermatheca (setigers 

11, 12) that opens to the exterior through ducts in the 2 pairs of nephridial papillae (Fig. 

5,9). The ovisac and spermatheca are closely associated with one another, presumably
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FIGURE 6

BRANCHIPOLYNOE SYMMYTILIDA,
FEMALE REPRODUCTIVE ANATOMY; CROSS-SECTIONAL VIEWS

Figure 6. Branchipolynoe symmytilida, female reproductive anatomy. (A,B) Cross- 
sectional views illustrating location of ovarian lobes; scale bars = 200 pm. ac, acicula; 
bv, blood vessel; c, coelom; g, gut; gd, gut diverticulum; lm, longitudinal muscle; ol, 
ovary lobe; pvo, pre-vitellogenic oocyte; vbv, ventral blood vessel; vnc, ventral nerve 
cord.
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FIGURE 7

BRANCHIPOLYNOE SYMMYTILIDA, 
UNFURLED OVARIAN LOBE

Figure 7. Branchipolynoe symmytilida, unfurled ovarian lobe revealing clear, pre- 
vitellogenic oocytes, white early vitellogenic oocytes, and late vitellogenic oocytes with 
whitish granular yolky globules; scale bar = 200 pm. evo, early vitellogenic oocyte; lvo, 
late vitellogenic oocyte; pvo, pre-vitellogenic oocyte.
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FIGURE 8

BRANCHIPOLYNOE SYMMYTILIDA, 
DEVELOPING OOCYTES IN OVARIAN LOBES

Figure 8. Branchipolynoe symmytilida, developing oocytes in ovarian lobes. (A) pre-, 
early, and late vitellogenic oocytes in a convoluted ovarian lobe, with associated blood 
vessels; scale bar = 200 pm. (B) Sheet of early vitellogenic oocytes with follicle cells 
surrounding each oocyte; longitudinal section; scale bar = 50 pm. bv, blood vessel; c, 
coelom; evo, early vitellogenic oocyte; lvo, late vitellogenic oocyte; nu, nucleus; pvo, 
pre-vitellogenic oocyte; arrowheads, follicle cells.
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FIGURE 9

BRANCHIPOLYNOE SYMMYTIL1DA, SPERM STORAGE

Figure 9. Branchipolynoe symmytilida, sperm storage. (A) Spermatheca with filiform 
sperm, and nephridial papillae; cross-section; scale bar = 200 pm. (B) Mature oocyte 
surrounded by sperm in spermatheca; cross section; scale bar = 200 pm. (C) Nephridial 
papilla packed with sperm; cross-section; scale bar = 200 pm. c, coelom; e, elytron; ep, 
epithelium; evo, early vitellogenic oocyte; fs, filiform sperm; lvo, late vitellogenic 
oocyte; mo, mature oocyte; n, nephridial papilla; p, parapodium.
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connected by a valve or duct. The spermatheca is filled with masses of filiform sperm; 

heads of many sperm cells are embedded in the thick (100 pm) epithelium of the 

spermatheca (Fig. 9A,B). Up to 10 mature oocytes are in the sac (Fig. 9A,B), and, in one 

female specimen, mature oocytes had been partially extruded through a nephridial 

papilla. This papilla was packed with sperm (Fig. 9C) and several mature oocytes. 

Germinal vesicles are not visible in oocytes within the spermatheca or papillae, 

suggesting that fertilization occurs internally. No evidence of zygote cleavage was 

observed.
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CHAPTER III 

RESULTS: Levensteiniella kincaidi

Sexual Dimorphism 

Levensteiniella kincaidi shows no sexual dimorphism by size (male length 0 = 

0.62 cm V 0.16 s.d., n = 6; female length 0 = 0.83 V 0.40 s.d., n = 5; p = 0.708). Two 

morphotypes are apparent under a dissecting scope: males have 2 pairs of long, thin 

ventral nephridial papillae on setigers 11 and 12 and females have no papillae (Fig. 10).

Male Reproductive Anatomy 

The male reproductive system in mature Levensteiniella kincaidi is limited to the 

coelomic cavity in setigers —8-12 (Fig. 11 A). Spermatogonia presumably arise from a 

germinal epithelium but were not visible under light microscopy. Clusters of spherical, 

early spermatids occupy -20% of the coelomic space in setigers -8-11 (Fig. 11), but are 

not always so closely associated with the peritoneum as they are in Branchipolynoe 

symmytilida. A mixture of early spermatids and tailed, late spermatids partially fills the 

coelomic volume (Fig. 11A-C) and sometimes surrounds clusters of early spermatids 

(Fig. 1 IB). Bundles of late spermatids were not observed. In segments 10-12, relatively 

small, thick-walled (40 pm) seminal vesicles are packed with mature spermatids with 

elongated, filiform heads (-40 pm head length, Fig. 11 A,D). The seminal vesicles
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FIGURE 10

LEVENSTEINIELLA KINCAIDI, SEXUAL DIMORPHISM

Figure 10. Levensteiniella kincaidi, sexual dimorphism (ventral views). (A) Female, 
without nephridial papillae; scale bar = 200 pm. (B) Male, two pairs of nephridial 
papillae; scale bar = 200 pm. arrowheads, nephridial papillae; numbers, setigers.
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FIGURE 11

LEVENSTEINIELLA KINCAIDI, MALE REPRODUCTIVE ANATOMY

Figure 11. Levensteiniella kincaidi, male reproductive anatomy. (A) Gonad and seminal 
vesicles; frontal section; scale bar = 1 mm. (B) Gonad; cross-section from region of 
vertical line in (A); scale bar = 200 pm. (C) Clusters of early spermatids and mixture of 
early spermatids and tailed, late spermatids; longitudinal section; scale bar = 200 pm.
(D) Seminal vesicles filled with mature filiform sperm; frontal section; scale bar = 200 
pm. c, coelom; eh, chaeta; cs, clusters of early spermatids; g, gut; gd, gut diverticulum; 
lm, longitudinal muscle; m, mixed tissue (early spermatids, late spermatids); p, 
parapodium; ph, pharynx; sv, seminal vesicles; vnc, ventral nerve cord; numbers, 
setigers.
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connect to the exterior via gonoducts through 2 pairs of nephridial papillae on setigers 11 

and 12 (Fig. 10B).

Female Reproductive Anatomy 

The coelomic cavity of adult female Levensteiniella kincaidi is segmented 

internally, with most body segments posterior to the pharynx containing ovaries (Fig.

12A). Oogonia were not observed, but we infer that they arise from germinal epithelia 

associated with blood vessels. Immature oocytes are grouped around blood vessels (12B) 

and represent a continuum of vitellogenic states distinguished by size and/or by the 

density and texture of the cellular contents (pre-vitellogenic oocytes: <30 pm diameter, 

with homogeneous ooplasm; early vitellogenic oocytes: -100 pm diameter; late 

vitellogenic oocytes: -300 pm diameter, with granular, yolky appearance). At least some 

part of the envelope of each of these oocytes is in contact with the wall of a blood vessel 

(Fig. 12B). A single, dense layer of follicle cells surrounds each pre-vitellogenic and 

vitellogenic oocyte (Fig. 12B,C). Mature oocytes that have separated from the blood 

vessels are large (max. diameter 300 pm) and lack follicle cells. Some segments contain 

numerous oocytes at all stages of development, while other segments contain only 1 or 

very few mature oocytes (Fig. 12C).

Sperm Storage

Adult female Levensteiniella kincaidi have several (up to 3 pairs) small, 

segmental spermathecae containing filiform sperm (Fig. 13 A). The spermathecae appear 

as invaginations of the ectodermal epithelium and are comprised of a bulbous ampulla, a
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FIGURE 12

LEVENSTEINIELLA KINCAIDI, FEMALE REPRODUCTIVE ANATOMY

Figure 12. Levensteiniella kincaidi, female reproductive anatomy. (A) Ovaries 
associated with blood vessels in body segments posterior to the pharynx; frontal section; 
scale bar = 1 mm. (B) Pre-vitellogenic, early vitellogenic, and late vitellogenic oocytes 
surrounded by follicle cells and associated with blood vessels; cross-section; scale bar = 
200 pm. (C) Developing oocytes of various vitellogenic states (including a mature 
oocyte lacking follicle cells) between complete mesenteries and a spermatheca filled with 
filiform sperm; scale bar = 200 pm. bv, blood vessel; evo, early vitellogenic oocyte; fs, 
filiform sperm; g, gut; gd, gut diverticulum; lvo, late vitellogenic oocyte; mo, mature 
oocyte; ms, mesenteries; p, parapodium; ph, pharynx; pvo, pre-vitellogenic oocyte; 
arrowheads, follicle cells; numbers, setigers.
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FIGURE 13

LEVENSTEINIELLA KINCAIDI, SPERM STORAGE

Figure 13. Levensteiniella kincaidi, sperm storage. (A) Spermatheca containing filiform 
sperm; cross-section; scale bar =100 pm. (B) Spermatheca containing a mature oocyte 
and filiform sperm; cross-section; scale bar = 200 pm. ch, chaetae; ep, epithelium; evo, 
early vitellogenic oocyte; fs, filiform sperm; g, gut; lm, longitudinal muscle; lvo, late 
vitellogenic oocyte; mo, mature oocyte; sa, spermathecal ampulla; sd, spermathecal duct; 
so, spermathecal opening; vnc, ventral nerve cord.



short duct, and an opening to the exterior. Spermathecal ampullae were expanded in 

several specimens (up to -400 pm) to contain large oocytes surrounded by stored sperm 

(Fig. 13B). Germinal vesicles were not observed in oocytes inside the spermathecae, 

suggesting that fertilization occurs in the spermathecae. Cleavage of zygotes in the 

spermathecae was not observed.
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CHAPTER IV 

DISCUSSION

Although both male and female gametes are found in adult Branchipolynoe 

symmytilida and Levensteiniella kincaidi, hermaphroditism was ruled out due to the lack 

of developing sperm stages (e.g. spermatogonia) within females. In B. symmytilida, 

protandric hermaphroditism was suspected due to the observed size dimorphism (females 

are on average 1.3 cm larger than males) but the observation of immature worms with 

developing oocytes suggested that this species has separate sexes. Gonochorism is 

consistent with observations of the only other vent polynoids studied to date, B. seepensis 

and Opisthotrochopodus n. sp. from the Mid-Atlantic Ridge (Van Dover et al. 1999, 

Jollivet et al. 2000).

Observations of oocyte size range indicate that both Branchipolynoe symmytilida 

and Levensteiniella kincaidi undergo asynchronous gametogenesis, both within 

individual worms and among worms in the population. All adults in both species contain 

all stages of oocytes; no worms appeared to be overly ripe with mature gametes, or to be 

“spent” of mature gametes, as would indicate proximity of a spawning event. The 

unusual ovaries in B. symmytilida all had small oocytes in the central region and larger 

vitellogenic oocytes closer to the periphery of each lobe. Similarly, individual body 

segments of L. kincaidi contained varying ranges of oocyte sizes, but each female
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contained the entire range of observed oocyte diameters. Additionally, mature B. 

symmytilida all have complete nephridial papillae, showing no signs of papilla regression 

between spawning events, as observed in the polynoid Harmothoe imbricata (Daly 

1972). This evidence supports continuous (“dribble”) spawning of both species.

The level of internal segmentation of the coelom differs between the 2 species. In 

Branchipolynoe symmytilida, neither males nor females are segmented internally, which 

could aid in the rapid development and transfer of gametes through the body. In contrast, 

female Levensteiniella kincaidi have complete mesenteries dividing the coelomic cavity, 

suggesting slower oocyte development in this species. Male L. kincaidi are completely 

segmented except in the few segments (segments 8-11) that contain gametes. The lack of 

mesenteries in this area of the body presumably aids the collection of sperm to the 

nephridial papillae at the time of gamete release.

The proximity of follicle cells and blood vessel associations in developing 

oocytes of Branchipolynoe symmytilida and Levensteiniella kincaidi is consistent with 

rapid vitellogenesis, as these attributes would make a large amount of yolk precursor 

material available to the growing egg. In L. kincaidi, more follicle cells per developing 

oocyte are observed than in B. symmytilida (Fig. 8B and Fig. 12B). This supports rapid 

vitellogenesis in L. kincaidi, possibly to counteract the presumed retarding of 

vitellogenesis by the complete mesenteries segmenting adult female coelomic cavities.

Elongate filiform sperm heads and the presence of stored sperm in females 

indicate some form of specialized sperm transfer from male to female (Jamieson & Rouse 

1989). Although spermatophores were not observed in this study, they are occasionally 

found in washings from mussel-bed samples that contain abundant Branchipolynoe
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symmytilida, and polynoids with partially extruded spermatophores have been observed 

(Van Dover, pers. comm.). We infer that B. symmytilida and Levensteiniella kincaidi 

have introsperm, although ultrastructural characterization of the sperm remains to be 

undertaken. The obligate passage of mature oocytes through sperm-lined spermathecae of 

adult females indicates that fertilization probably takes place internally. The absence of 

germinal vesicles in oocytes within spermathecae also supports internal fertilization, 

although the exact location of fertilization is unknown. Although both Branchipolynoe 

symmytilida and Levensteiniella kincaidi had spermathecae, morphology of sperm storage 

organs in the 2 species was markedly different. With the loss of internal segmentation in 

B. symmytilida, this species is able to store sperm in a large central cavity that empties 

out of 4 ventral nephridial papillae. In contrast, females of L. kincaidi possess 

comparatively small spermathecae along the ventral surface presumably derived from 

invaginations of the epidermis. The observed number of these spermathecae varied, but 

due to the complete segmentation of the body cavity in females, several small sperm 

storage organs were utilized instead of one larger central one as seen in B. symmytilida.

Members of at least 12 polychaete families have spermathecae (Westheide 1988), 

and sperm storage is a successful strategy for at least 3 clades found at hydrothermal 

vents. Alvinellids (Zal et al. 1994), siboglonid vestimentiferans (Hilario et al. 2005), and 

polynoids (Van Dover et al. 1999, Jollivet et al. 2000, this study) observed to date have 

elongate, modified sperm that is stored in spermathecae in adult females, although the 

details of this process vary among the different groups. The scarcity of strong 

environmental cues for gametogenesis and spawning at hydrothermal vents increases 

selection for sperm storage (Young et al. 1999). This strategy generally ensures higher
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fertilization rates than broadcast spawning and eliminates the need for members of a 

population to be synchronized in reaching reproductive maturity and spawning readiness 

(Young et al. 1999).

The large, yolky oocytes found in Branchipolynoe symmytilida and 

Levensteiniella kincaidi support lecithotrophy as a developmental strategy. Although 

lecithotrophic larvae were initially thought to have more limited dispersal than 

planktotrophic larvae, this paradigm has been challenged by findings of lecithotrophic 

species with very large habitat ranges at hydrothermal vents (Lutz 1984).

Branchipolynoe symmytilida exhibits an enormous range from the northern East Pacific 

Rise to the Galapagos Rift and Southern East Pacific Rise with high rates of gene flow 

(Hurtado et al. 2004). The large range of this species is maintained despite the varying 

distance between suitable vent habitat (up to 1000s of km) and presence of large dispersal 

barriers in the topography of the seafloor (e.g. transform faults, Hess deep, Easter 

microplate region, Hurtado et al. 2004). Sperm storage and lecithotrophic larvae allow 

this species to ensure a high rate of fertilization without sacrificing long-distance 

dispersal potential.

The surprisingly wide range of reproductive strategies of hydrothermal vent 

species, and deep-sea species in general, have been attributed to the large role of 

phylogenetic constraints in determining these characteristics (e.g. Ecklebarger & Watling 

1995). The sperm storage and lecithotrophy reported for Branchipolynoe symmytilida 

and Levensteiniella kincaidi reveal that these characteristics are present in vent polynoids 

from different ocean basins and from different microhabitats (commensal vs. free-living) 

but not in any shallow-water polynoid studied to date.
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