
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

A Framework for Implementing Bioinformatics Knowledge-A Framework for Implementing Bioinformatics Knowledge-

Exploration Systems Exploration Systems

John A. Hayes
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Bioinformatics Commons

Recommended Citation Recommended Citation
Hayes, John A., "A Framework for Implementing Bioinformatics Knowledge-Exploration Systems" (2004).
Dissertations, Theses, and Masters Projects. Paper 1539626830.
https://dx.doi.org/doi:10.21220/s2-m9rs-dv47

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.wm.edu%2Fetd%2F1539626830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-m9rs-dv47
mailto:scholarworks@wm.edu

A FRAMEWORK FOR IMPLEMENTING BIOINFORMATICS
KNOWLEDGE-EXPLORATION SYSTEMS

A Thesis

Presented to

The Faculty of the Department of Applied Sciences

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master o f Science

by

John A. Hayes

2004

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master jof Science

John Ashley Hayes

Approved by the Committee, April 2004

Gregory Smith, Chair

" X L -
Dennis Manos

Michael Trosset

Krista Miller
INCOGEN* Inc.

Maciek Sasino\tfski
INCOGEN, Inc.

TABLE OF CONTENTS

Acknowledgements

Page

viii

List of Tables X

List of Figures xi

Abstract xiii

Introduction 2

1.1. Background 2

1.2. Objectives 4

1.2.1. Web-accessible Pipeline Access and Framework Implementation 5

1.2.2. Knowledge-Exploration 6

1.3. Organization of Thesis 6

Chapter 1: Review of Literature 9

1.1. Bioinformatics Knowledge-Exploration Systems 9

1.1.1. Related Approaches 13

1.1.2. Knowledge-Based Systems 15

Case-Based Reasoning 15

1.2. Case-Related Literature 16

Chapter 2: Framework Structure 17

2.1. Development of Infrastructure 17

2.1.1. User-Interface Elements (UI) 18

Pipeline Visualization 20

Schematic View (SVG) 20

2.1.2. Jakarta Struts and VIBE Web-Access 20

DisplayCaseAction.java 21

iii

ExecutionCaseAction.java 22

ResultsAction.java 22

RecipeSummaryAction.java 22

WikiAction.java 23

GenericCaseForm.java 23

2.1.3. PipelineExecutionHandler.java 24

2.1.4. PipelineService.java 24

2.1.5. PipelineWebViewHandler.j ava 24

Case-Specific Output 25

Schematic View 25

VPML (VIBE Pipeline Markup Language) 25

Archive 25

2.1.6. Module Services 26

2.1.7. Recipes 26

DefaultRecipelmpl 27

Deploying a Recipe 29

2.1.8. Recipe Support 29

RecipeUtils 29

ModuleFactory 29

ModulePlacers 30

2.1.9. System Configuration 30

Determining the current state of the server 30

Specifying the location for Modules to be Remotely Executed 31

Modifying the layout of the case hierarchy 31

Editing the genericCaseFormToPipeline.jelly file 33

iv

Editing how reports are generated by default 36

Additional System Configuration 37

Automatic Recipe Generation from Exported VIBE Pipeline 37

Chapter 3: Case Implementations 38

3.1. Case Requirements; Case Implementations 38

3.2. Structural Information 39

3.2.1. Nucleotide Information 39

What general information is known from a Nucleotide sequence? 39

Transcription Factors: Find possible Transcription Factor binding sites within the
Nucleotide sequence. 40

Genes: Can genes within this sequence be found in silico? 40

Genes: Does my sequence contain a known curated gene? 40

Hidden Markov Models (HMM): Perform an HMM search using nucleotide data to
construct our HMM 40

MSA: Generate a Multiple Sequence Alignment from a series of input sequences 41

MSA: Generate a Multiple Sequence Alignment from a series of traces 41

Sequence Manipulation: Convert a nucleotide sequence into another frame 41

Sequence Manipulation: Generate a consensus sequence from a set of nucleotide
sequences 41

Sequence Manipulation: Translate a nucleotide sequence into an amino acid sequence 41

Sequence Tagged Sites: Test sequence for presence of STSs. 41

Sequence Tagged Sites: Search the STS database for a nucleotide sequence 42

Trace: Determine the nucleotide sequence from trace information. 42

Trace: Assemble shotgun sequencing data. 42

3.2.2. Amino Acid Information 42

3.2.3. Mass Spectrometry 42

v

Raw Signal Spectrum: Smoothing: Apply Gaussian smoothing to Spectra 43

Raw Signal Spectrum: Smoothing: Apply Moving Average smoothing to Spectra 43

Variable: Selection/Dimension Reduction: Determine Principal Components 43

Variable: Selection/Dimension Reduction: Calculate Discriminant Coordinates 43

Classification & Cross-validation: Determine Leave-1-Out Cross-validation Error 43

Classification & Cross-validation: Determine Random Permutation Cross-validation
Error 44

Classification & Cross-validation: Measurement-Out Cross-validation Errors 44

3.2.4. Organism Information 44

Homology: What organisms have a sequence with a strong likelihood of homology? 44

3.2.5. Statistical 44

Matrix: Generate a biplot from an input data matrix 45

Matrix: Generate a screeplot from an input data matrix 45

Dissimilarity: Determine a 2D representation for an input dissimilarity matrix 45

Clustering: Perform agglomerative clustering on an input dissimilarity matrix 45

Correlation: Display correlation matrix in one dimension 45

Correlation: Display correlation matrix in one dimension and separated by groups 46

Chapter 4: A Tour of the System 47

4.1. End-User Tutorial Introduction 47

4.1.1. Example 1: Translate a nucleotide sequence into an amino acid sequence. 48

4.1.2. Example 2: What organisms have a sequence with strong likelihood of homology? 53

4.1.3. Example 3: Executing Several Cases Concurrently 58

4.2. Developer Tutorial Introduction 59

4.2.1. Part 1: Implementing a simple case 59

Statically-defined Analysis Pipelines 60

vi

Dynamically-defined Analysis Pipelines 63

4.2.2. Part 2: Allowing users to modify parameters from the minimal input view 65

4.2.3. Part 3: More Advanced Case Implementations 68

Preparing the Input Form 69

Dynamically generate the Analysis Pipeline 69

Modify the Input View 71

4.2.4. Part 4: Post-Processing of Analysis Pipelines 72

Changing the Output View 73

Using the Element Construction Set (ECS) 74

4.2.5. Part 5: Implementing a Cookbook 76

Chapter 5: Conclusions 81

5.1. Framework Conclusions 81

5.2. Case Conclusions 83

5.3. Future Work 83

5.3.1. Framework Improvements 83

5.3.2. Improvements involving the VIBE Client 85

5.3.3. Case Improvements 86

Appendix A. Case Hierarchy 88

Appendix B. Example Input.jsp 90

Appendix C. Selected Javadocs 94

Bibliography 113

Vita 117

vii

ACKNOWLEDGEMENTS

Many thanks to Dr. Gregory Smith, Dr. Maciek Sasinowski, and Krista Miller for
all their useful comments on the project and this paper.

I appreciate the feedback received from Kristina Gleason regarding the TESS
module as well as general comments on the system.

I'd like to acknowledge Dr. Susan Martino-Catt of Virginia Tech for her helpful
suggestions on how researchers may like to interact with the interface.

Thanks to Dr. Joan Burnside at the University of Delaware for her feedback on the
best way to implement several of the selected cases.

Thanks to Marco Huertas for demonstrating to me how to use xmgrace (Grace).

Thanks to Dr. Michael Trosset for providing instructions on how to write several
o f the R scripts utilized in the Statistical cases.

Many of the Matlab scripts were developed in large part by Dr. Dasha
Malyarenko, and I appreciate her letting me add cases that incorporate them as part of this
research.

Thanks to Tom Crockett at the College of William and Mary for discussions
related to the integration of the system onto their Sciclone server.

I greatly appreciate the suggestions that Clay Campbell provided for me regarding
the paper.

I'd like to also thank Jason Miller for providing several of the icons used in this
project as well as helping me solve some network issues.

I'd also like to thank Mark Levitt at INCOGEN who provided advice on how to
solve several obscure problems I was experiencing.

David Lee Fuquay helped with integrating some of the Matlab-related modules
into the VIBE client and deserves many thanks.

Douglas Hawkins also gave me advice on how to implement some Javascript as
well as hints on how to prevent browser caching.

Thanks to everyone else at INCOGEN, Inc. for their support in the completion of
this project, and I'd like to thank the VIBE team in particular.

viii

This project was funded under the NIST ATP/CTRF grant, and I'd like to thank
them for their support.

Finally, I'd like to thank the respective Apache projects for their support libraries.
Without these available resources, the project could have never been completed in the
time allotted. The Apache projects used by VIBE WA include the following: Jakarta
Struts, Jakarta Jelly, Jakarta Commons, Batik, Cocoon, Forrest, Jakarta ECS, Jakarta
Tomcat, Xerces, andXalan.

LIST OF TABLES

Table Page

1. Document conventions. 7

2. List of abbreviations used in this document. 8

3. List of technologies in software infrastructure. 18

x

LIST OF FIGURES

Figure Page

1. Example Analysis Pipeline from VIBE. 4

2. Schematic structure of the project. 5

3. The overall layout of the application infrastructure. 17

4. Action-to-Recipe Function Call-Structure. 27

5. Problem Selection. 49

6. Minimal Input for Case. 50

7. Output Type Selection. 51

8. Case-Specific Output View. 52

9. Location of the Homology Case. 53

10. Alternative Links to the Homology Case. 54

11. Representative View of Pipeline for the Homology Case. 55

12. Representative Module Documentation. 55

13. Minimal Input View. 56

14. Advanced Parameter Modification and Actual Flow of Pipeline. 57

15. Construct a pipeline template in the VIBE client. 60

16. Create a New Case form. 61

17. Case Hierarchy with new Case category. 62

18. Minimal Input form. 62

19. Case Implementation Summary. 63

20. Editing the Case Implementation file. 65

xi

21. Updated Case-Specific Results. 73

22. Create a New Cookbook. 76

23. System Configuration Summary. 77

24. Case Hierarchy Descriptor file. 78

25. Appendix B's Input.jsp as it appears through a web browser. 93

xii

ABSTRACT

This project aims to facilitate the discovery of new biological knowledge through
the development of a web-accessible interface for answering specific problems by taking
advantage of distributed tools. The target audience includes both biology end-users and
software developers. End-users are exposed to problems that the system supports and can
view dynamically generated reports specific to answering that problem. The system also
allows easy addition and modification of problems and their implementations. The
implementation o f each problem is meant to reduce many o f the difficulties o f working
with disparate data and analysis resources. The framework was applied to several
specific biologically-related problems thereby showing the effectiveness of the system
and ease with which new problems could be added. The system may also be used as a
learning tool to demonstrate how problems are solved using available resources.

A FRAMEWORK FOR IMPLEMENTING BIOINFORMATICS
KNOWLEDGE-EXPLORATION SYSTEMS

INTRODUCTION

For the last several years the emerging field of bioinformatics has improved the

scientific community's access to biological information and the ability to transform this

information into usable knowledge about biological organisms. Unfortunately, much of

the information that is of interest to biological researchers is not easily accessible. The

National Institute of Standards and Technology Advanced Technology Program (NIST

ATP) [1] project at INCOGEN [2] is aimed at solving this problem by allowing the

simple integration of distributed analysis tools. The goal of this research project is to

extend the NIST ATP development and implement a web-accessible interface for

researchers to quickly answer particular biological questions.

1.1. Background

A data analysis pipeline consists of a series of steps where each step represents a

particular data analysis operation. Researchers frequently encounter what is termed an

“analysis pipeline” when they find themselves following a similar order of operations

when handed a set of data. Defining the steps they follow in a given situation and the

criteria used to determine the flow of the pipeline can be a difficult problem. However, if

these steps can be clearly identified and well-defined then the data analysis pipeline has

the potential for automation.

The Visual Integrated Bioinformatics Environment (VIBE) [3] developed at

2

3

INCOGEN allows users to graphically create data analysis pipelines and execute them.

These pipelines are constructed from various modules, each of which performs a specific

operation on the data. Currently, VIBE's primary focus is biological sequence analysis.

For example, in the data analysis pipeline shown in Figure 1, a blastn module runs a

Basic Local Alignment Search Tool (BLAST) [4] similarity search using nucleotide

sequences against various nucleotide target databases. The high-scoring pairs produced

by BLAST are passed on to a Multiple Sequence Alignment (MSA) algorithm such as

ClustalW [5]. The aligned sequences that are produced by ClustalW are then used to

construct a Hidden Markov Model (HMM) using the Hmmer package [6]. The HMM

may then be used as an input into another program of the Hmmer package called

'hmmsearch'. This program will use the HMM to perform a more sensitive search

through a sequence database. The user's motivation for constructing this data analysis

pipeline may be to determine a biologically relevant similarity that could indicate

sequence homology or common ancestry. Without the HMMSearch results, a significant

match may have gone undetected with the less sensitive blastn search.

VIBE allows users to graphically construct pipelines that may be repeatedly

executed; without such a tool the user would have to write Perl [7] scripts or cut and

paste among many web pages. The architecture of VIBE is arranged so that the CPU

intensive tasks such as database searches can be off-loaded to a VIBE Server on a

physically separate computer. The VIBE client can coordinate with a separate server for

each module that is executed.

4

BLASTNNT Seq CJusUiW

V
IMBuikt

5 4

Figure 1. Example Analysis Pipeline from VIBE.

1.2. Objectives

The goal of this project was to facilitate the discovery of new biological

knowledge by providing decision-support. This was accomplished through the

development of a web-accessible interface that allows researchers to take advantage of

distributed tools without requiring that they be familiar with the tools before using them

— a key goal of the NIST ATP project. The code developed under this project both

cooperates with the VIBE server and also includes a data-mining portion that provides

researchers with an easy mechanism for examining large amounts of information. As part

o f this project, I consulted with researchers to determine the data analysis pipeline and

data mining routines most relevant to their given interests. A schematic depicting the

general structure of the project's implementation may be viewed in Figure 2.

5

W eb-Brow ser
Pre-

Pipeline Input Execution
(e.g., Sequence,
Sequence Name)

I Pipeline Subm itted for
^ Execution

-WASTn’g $S«t*W

V IB E-Server
Pipeline is Processed

Results are
sent back to
brow ser

Pipeline View

D ata-M ining /
Post-Processing

Figure 2. Schematic structure of the project.

Post-Execution
 ̂Access to
Individual
Pipeline Results

D ata-M ining
Results

The explicit objectives of this project are described in the following sections.

1.2.1. W eb-accessible Pipeline Access and Fram ew ork Im plem entation

This objective included the development of a mechanism for executing goal-

oriented bioinformatics pipelines from a web-browser. This mechanism makes it easier

for researchers to execute instances of a pipeline remotely using pipeline templates.

These pipeline templates reside in a repository on the VIBE Server back-end (server-

side). It is possible to export a pipeline template from the VIBE client and easily develop

new case implementations that answer specific biological questions using that template.

In addition to using pipeline templates, the system allows the dynamic generation of

pipelines to accommodate multiple input types and their particular analyses. This

functionality uses the server-side and effectively eliminates the need for the VIBE client

application to execute pipelines. Additionally, this makes the pipelines more portable by

making them accessible through any web-browser that can contact the server. This web-

6

accessible framework will be referred to as VIBE Web Access (VIBE WA).

1.2.2. Knowledge-Exploration

This objective was to develop one or more data-mining methods and

implementations that retrieve data from each one of the pipeline modules and correlate

information of biological interest. The data-mining module may be thought of as a meta

module that resides outside the pipeline and intelligently filters and orders the results.

This was implemented in the framework in the form of case recipes (see Chapter 2).

Some specific cases that this project addresses are discussed in Chapter 4 and listed in

Appendix A.

1.3. Organization of Thesis

The following chapter describes the literature and resources related to this project

and how this project fits into the broader context of bioinformatics knowledge-

exploration systems. Chapter 2 elaborates on the development and structure of the web-

accessible framework. Chapter 3 discusses the cases that were implemented as part of

this project. Chapter 4 gives a brief tour of the system exhibiting many of its capabilities.

The final chapter summarizes the conclusions of the project and suggests directions for

continued research and development. The document conventions and abbreviations used

throughout this paper are indicated in Tables 1 and 2.

7

Convention Description Example

Class names Source code class names are bold and italics. Recipelmpl

File names Files are indicated with the same convention as class
names except they will always contain a file extension.

RecipeJmpl.py

Method names Function/method names will be indicated by italics. generateView

Qualified method
names

Function/method names that specify the class they belong
to follow the C++ convention.

Recipelmpl::generate View

Package names Class-package names are indicated by a . delimited series
of packages and are set in the class name style. This
follows the Java convention.

com.incogen.vibe.server.webaccess
.recipes. Recipe

Titles Case titles and headings are indicated in bold. Translate a nucleotide sequence
into an amino acid sequence.

3r<,_Party Tools S^-party tools are indicated in bold. GeneCards

Table 1. Document conventions.

A bbreviation Description

AA Amino acids

API Application Programming Interface

CBR Case-based Reasoning

CTRF Commonwealth Technology Research Fund

HMM Hidden Markov Model

JAR Java Archive File

JSP Java Server Pages

NCBI | National Center for Biotechnology Information

NIST ATP ! National Institute o f Standards and Technology Advanced Technology Program

NT Nucleotide

PCR Polymerase Chain Reaction

SDK Software Development Kit

SEALS j System for Easy Analysis of Lots of Sequences

SNP j Single nucleotide polymorphism

SOAP Simple Object Access Protocol

STS Sequence Tagged Sites

SVG Scalable Vector Graphics

TSS Transcription Start Site

VIBE Visual Integrated Bioinformatics Environment

VIBE WA VIBE Web Access

VPML VIBE Pipeline Markup Language

W3C World Wide Web Consortium

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

Table 2. List o f abbreviations used in this document.

CHAPTER 1
REVIEW OF LITERATURE

1.1. Bioinformatics Knowledge-Exploration Systems

It is becoming increasingly difficult to synthesize useful biological information

from large and rapidly growing data repositories [8]. Extraction and integration of useful

information is challenging because of the shear quantity o f data, the heterogeneity of data

types, and the distribution of resources on various platforms. This chapter will review

several different knowledge management and exploration systems and briefly compare

them to the VIBE WA project.

GeneCards [9], developed at the Weizmann Institute of Science by Dr. Doron

Lancet et al., is an attempt "to develop computational tools that may help to establish an

electronic encyclopedia of biological and medical information based on intelligent

knowledge navigation technology and a user-friendly presentation of information." The

intention of Lancet's group is to give a comprehensive view of biologically relevant

information. This approach is different from VIBE WA in that they draw their data from

a number of different databases and reconstitute the data into separate "gene cards" that

summarize information on a specific gene in their database. A problem with GeneCards

is the overwhelming amount of information that is presented to the user. This makes it

difficult to tell what is directly relevant to an individual's research. VIBE WA addresses

9

10

this problem by attempting to return and display only the most relevant information to the

given case and pipeline that the user selected.

In many ways, the Genome Analysis Pipeline (GAP) [10], designed by Manesh

Shah and Edward Uberbacher, is similar to the portion of the VIBE WA project that

allows users to create and execute pipelines through the web. The GAP is a web-based

tool developed by the Computational Biology group at Oak Ridge National Laboratory

that allows users to specify various elements to include in an analysis pipeline. These

elements include GrailEXP [11], NCBI BLAST [4], Genscan [12], e-PCR [13], and

several other sequence analysis methods intended to give the user a comprehensive view

of the results from these methods. However, GAP does not allow much flexibility in

adding new analysis types and does not answer particular biological questions. The

pipelines used in VIBE WA allow much more flexibility and are expressed as particular

problems. In fact, the framework that is developed here could be used to create an

interface such as the one provided by GAP in a relatively straight-forward manner. Both

the GAP and VIBE WA are trying to address similar problems by allowing flexibility in

the ways the data are analyzed and viewed.

GAP does some other interesting things that VIBE WA handles in a similar

manner. If the user provides a nucleotide sequence, it will search for possible genes and

take those results and pipe them into blastp and HMMPfam algorithms which operate on

protein data. This is very similar to several of the case implementations for this project.

The ability to execute a series of common algorithm-arrangements seems to be a desirable

trait for an exploratory system.

11

An alternative exploratory approach is that used by GeneLynx [14], which

attempts to be a "portal to a collection of hyperlinks for each human gene." It was

originally sponsored by the Pharmacia Corporation who was later acquired by Pfizer, and

it was principally authored by Wyeth W. Wasserman and Boris Lenhard. It pulls the

information on each gene from a variety of resources and is structured as a front-end for a

relational database. Recently, the developers of GeneLynx have also added separate

links for searching genes within rat and mice genomes. This approach is very different

from this project because it attempts to extract and pre-process a considerable amount of

data from existing remote/distributed sources and store it in one location. The approach

in VIBE WA is more flexible because new data can be added to remote resources without

requiring a local update. However, it also is potentially less stable since 3rd-party

resources may change day-to-day and are not managed locally.

OmniGene [15] is an Open Source platform originally sponsored by the

Whitehead Institute at MIT and lead by Brian Gilman. More recently, it is sponsored by

Panther Informatics Inc. OmniGene is comprised of several different software

frameworks that are functionally similar to the VIBE server in that they allow developers

to wrap a command-line program on a potentially remote computer with an interface that

allows them to easily access the resource. Currently, the frameworks use a SOAP

interface for communicating with the analysis engine (the analog of the VIBE server).

The individual services are implemented as Enterprise Java Beans (EJBs) [16] and

require an application-server such as JBoss [17]. Gilman and others are essentially

implementing their own infrastructure similar to the VIBE server architecture. In a sense,

this is a lower-level approach than what has been accomplished during this project, and

12

they could probably implement similar case-logic on top of the lower-level infrastructure

that they are building.

Likewise, Biopipe [18] is an Open Source framework for building workflows

developed by Shawn Hoon and others. These workflows could be used to design and

build analysis pipelines similar to VIBE. Biopipe appears to rely on a Perl back-end that

is not very mature. The most recent release of their software is from May 2003.

Additionally, it requires a PostGreSQL database to manage jobs. This seems to be a

work-in-progress that will ultimately be a lighter-weight OmniGene.

The W3H task framework [19] is designed to seamlessly provide additional

functionality over W2H. W2H is a free web interface to a large set of sequence analysis

tools that is currently maintained by DKFZ [20] and EMBL-EBI [21]. The W3H task

framework allows users to combine these tools together. It is similar to the VIBE project

in that it provides access to independent tools that can be combined in novel ways. Both

utilize the concept of meta-data (data about data) to describe how the systems should

interact with the tools. Currently in the W3H framework, the meta-data must be written

in a Perl-like language. This is similar to building an analysis pipeline within the VIBE

client or programmatically from the browser (see Chapter 2) with the VIBE system. Like

VIBE WA, users typically interact with W3H through a web interface. The system also

seems to strictly rely on interaction through a web-browser or the command-line. This

distinguishes it from the VIBE system which can have a rich client interface.

The approach taken while developing VIBE WA is distinct in that it represents a

top-down approach. It is problem-centric rather than tool-centric. It is reminiscent of the

13

approach taken by the Gene Ontology group's flagship project, AmiGO [22], in that it

presents the user with a hierarchical tree to navigate the resources. In the case of

AmiGO, the targets of the navigation are gene ontologies, while in this project they are

specific cases that a life science researcher may encounter. Since there are a vast number

of potential problems that could be treated, it was critical to emphasize the flexibility and

extensibility of the framework.

This project also does not attempt to store all o f the data in a data warehouse like

GeneLynx and GeneCards. Rather, it has the potential to adapt to additional tools and

resources being added to the system easily and remotely like OmniGene and Biopipe.

This is primarily accomplished by leveraging the VIBE architecture.

1.1.1. Related Approaches

The knowledge discovery object model API for Java (KDOM API) [23] is a

software framework for relating biological data developed by Scott Zuyderduyn and

Steven Jones at Canada's Michael Smith Genome Sciences Centre. The KDOM API

allows developers to easily express relationships between different sets of data to build

ontologies. The developers of KDOM are also building a repository of KDOM data

definitions that will “provide structure for common biological concepts.” This API may

be used by additional projects to store these relations.

Newer technologies are being developed that, like VIBE, will facilitate the

combination of disparate resources. These include technologies such as m>Grid [24] and

BioMOBY [25]. BioMOBY is an open source project to develop “an architecture for the

discovery and distribution of biological data through web services.” This is similar to the

14

NIST ATP project's goals. The myGrid project objectives are very similar to BioMOBY's

but are stated in a slightly different manner. The developers of myGrid, lead by Dr.

Carole Goble, are attempting to build open-source middle-ware that collaborates over a

grid. myGrid is comprised of many separate projects including Taverna [26], a tool to

build workflows analogous to what the VIBE client does for VIBE services, and

FreeFluo [27], which executes a subset of WSFL [28] and the workflows created using

Taverna. The latter functionality is similar to the PipelineExecutionServicds function

in VIBE WA (see Chapter 2). Interactive viewers and modules like the VIBE client

provides are not immediately available through BioMOBY or myGrid. Instead, the focus

appears to be on the discovery o f new web services.

Another tool that integrates webservices is ToolBus from the Virginia

Bioinformatics Institute. It provides the ability to add modules that manipulate remote

data services, and includes visualization modules. This functionality is very similar to

VIBE. However, it differs from the VIBE WA project in that the system requires a

separate installation of the ToolBus client. It is also tool-centric rather than case-centric.

This concludes our survey of various approaches to manipulating the lower level

tools and data that frequently occur in the bioinformatics field. This area of research

appears to be moving toward the development of newer techniques that integrate these

tools in a cohesive manner to draw knowledge. The next section discusses some higher-

level approaches that can potentially incorporate the power of these lower-level

components.

15

1.1.2. Knowledge-Based Systems

The broad term knowledge-based systems refers to an area of software-

engineering that encapsulates data-mining and artificial-intelligence. It can apply to

decision-flow-visualization (see Pipeline Visualization) and the use of statistics in the

context of answering particular questions.

Other knowledge based systems, such as expert systems, are designed to provide

decision-support to users by the construction of a knowledge base made up of rules [29].

These rules are applied to a given problem, such as medical diagnosis, and used to infer

solutions [30]. The construction of such a knowledge base can be a tedious undertaking

and requires a considerable amount of time.

Case-Based Reasoning

A more recent area of active artificial intelligence (AI) research is called case-

based reasoning (CBR) [31][32]. These are systems that contain a repository o f cases and

their solutions that form the knowledge base. A user provides the system with the

problem and a software-based reasoner determines if there are cases which represent a

similar circumstance. The user's criteria may potentially revise the case and provide a

solution to the problem based on past solutions. This differs from the traditional expert

system in that the knowledge base is made up of example cases that the researchers

provide instead of declarative knowledge. Many applications of CBR are being

investigated for medical research such as diagnosis and prognosis applications [33].

However, to date there are few applications of CBR within the bioinformatics field.

The VIBE WA system relies on the user to find similar cases to their problem, and

therefore the user is the “reasoner” mentioned in the previous paragraph. However, it

16

makes the addition and modification of cases easy so that a large repository of biological

cases may be developed. Therefore, the VIBE WA system forms a solid foundation on

which further automated reasoning capabilities can be added, and it also has the added

benefit that it is immediately useful to a researcher.

1.2. Case-Related Literature

Each of the cases that were implemented has its own set o f related literature. The

appropriate citations and rationale for implementing each case are included in their

description below. See the appropriate section for each case under Chapter 4 for more

details.

CHAPTER 2
FRAMEWORK STRUCTURE

2.1. Development of Infrastructure

The first stage of this project involved developing the system for executing VIBE

pipelines from a web-browser. This provides the ability to use the VIBE system without

a VIBE client. After that, it was necessary to develop the framework for easing the

integration of novel case-specific implementations. This required the development of

support libraries to make the job easier for developers of new cases (see Section 2.1.8).

feb Access Server t

End-Users Developers

VIBE Server

Module Servir.es

Module Services

Pipel ineExecu tion Servic e

Remote Server u

Recipes

User Interface (HTML, JSP. SVG)

Apache Jakarta Struts

Web Access Actions

Pipel ineExecutionHandler

Figure 3. The overall layout o f the application infrastructure.

17

18

A software-based agent that works on behalf of the user in the form of Recipe

implementations was created (see Section 2.1.7). This agent will accept input parameters

and generate an appropriate VIBE pipeline for the given parameters. This agent also has

the ability of generating custom reports that only display the results pertinent to the case.

Technology Location in the system

Adobe SVG Plug- Renders SVG documents in web browser
in

Batik SVG rendering library for SVG Viewer in VIBE client

Cocoon Used by Forrest

ECS Used to generated well-formed HTML in output reports

Forrest j Used to build basic web interface and some documentation

Java Most prevalent programming language in system. General-purpose programming.

Javascript Expands /collapses case hierarchy in browser. Checks for SVG plug-in.

Jelly Used to map basic input parameters to pipeline

Jetspeed Provides portal API for cookbook reports

JSP Used to generate HTML pages

Jython Used for case implementations

Python Used for splitting index.html into header & footer during project build

j Struts Framework for developing web applications

| SVG Preview pipelines, advanced views, and graphical output

| Tomcat Servlet container for VIBE server and VIBE WA server

| XML Used throughout VIBE for data & meta-data transmission and storage

| XSLT Preview pipeline generation, algorithms
Table 3. List o f technologies in software infrastructure.

This chapter discusses the development of the software infrastructure of VIBE

WA. The general structure of the software is indicated in Figure 3 and will be described

in more detail below. Table 3 lists the assortment of technologies that are part o f the

infrastructure and where they were used.

2.1.1. User-Interface Elements (UI)

The target audience of the system are end-users and developers who interact

19

through the web browser with the user-interface (UI). Currently, this is made up of

HTML, SVG, and JSP.

The basic interface of the website was generated using Forrest [34]. Forrest is an

XML-backed documentation framework based on the Apache Cocoon [35] project. It

was primarily used to statically generate the tutorial pages and index page. It was also

used to generate static header and footer HTML pages that are added to the beginning and

end of each JSP page. This creates the consistent look and feel over most of the web

pages.

Java Server Pages (JSP) [36] is a technology that allows developers to generate

web pages dynamically by creating JSP files. JSP files are formed from a markup

language similar to XML. It also allows developers to build their own tags that generate

HTML based on values of Java objects. For example, this is what the Struts Tag libraries

provide.

Several project-specific JSP tags were developed to aid the developers of cases.

O f primary interest are the following:

• <incogen:recipeTitle/> - Places the contents of the case's description file where this

element is located in the JSP file.

• <incogen:caseLinkBar/> - Adds links to the example input (f e) , preview pipeline

(^) , help (^), and case implementation summary page (^) for the associated

case.

• <incogen:wikiLink/> - Adds a link to a Wiki-style edit page for this file.

20

Pipeline Visualization

Pipeline visualization is comprised of two key components. These are the

schematic representation of the pipeline and the ability to modify specific parameters for

each module within the pipeline. The schematic view offers the user a quick view of how

the pipeline is structured and is also intended to give the user an idea o f how to create a

similar pipeline within the VIBE client. The parameter modification allows an advanced

user to change parameters not available from the minimal case input view. In this case

the pipeline is not guaranteed to do what the original case implementor intended the

pipeline to do.

Schematic View (SVG)

The schematic views of the pipeline were completed using several different

technologies including Scalable Vector Graphics (SVG) [37] and XSLT [38]. SVG is a

recent technology recommended by the World Wide Web Consortium (W3C) [39] and

developed by many technology-industry leaders. The SVG directed graphs in the

preview, advanced case page, and graphical output views are generated using the program

graphviz [40]. An XSL [41], calledpipelineToDotxsl, is used to transform the pipeline's

VPML file using an XSLT [38] processor into the syntax for graphviz. A system call is

then made that generates the SVG. The SVG plots require that a free browser plug-in

from Adobe be installed to handle the rendering of the SVG documents [42].

2.1.2. Jakarta Struts and VIBE Web-Access

The Struts [43] project is an open source framework for developing web

applications from Java using the Model-View-Controller (MVC) Model 2 approach. It

takes care of some of the more mundane responsibilities of receiving HTTP [44] requests,

21

setting request variables, and dispatching requests to application-specific classes. It also

mediates the response back to the client. This is done by using the Struts-provided

ActionServlet that runs within a servlet container as the Controller portion of an MVC

application. This is what distinguishes Struts as a Model 2 implementation.

The user interface (UI) allows the user to make requests to the server which is

facilitated by the Apache Jakarta Struts library. Struts will dispatch the requests to

application-specific classes called Actions based on the configuration in thcstruts-

config.xml file. This is discussed extensively in the Struts documentation at the project's

website [43]. Developers interacting with the Web Access framework should not need to

alter this configuration file, but the documentation discussing the Struts JSP tag library is

a useful additional reference. The JSP tag libraries makes it easier for developers to

interact with Struts from their JSP pages.

The following are the primary Web-Access Actions (these classes all belong to the

com.incogen.vibe.server.webaccess.struts package):

DispIayCaseAction.java

This handles the initial interaction of the server with a given case. It has several

functions that provide basic functionality common to all cases. These functions are the

following:

• Example - Loads the basic input view for the case with any example input data. This

is accomplished by calling Recipe:.getExamplelnputView on the respective recipe.

• Help - Retrieves the case-specific documentation. This is accomplished by calling

Recipe:.getDocumentationForward on the respective recipe. This will typically take

the user to the Help.jsp file associated with this case.

22

• Preview - Returns an SVG schematic demonstrating the typical flow of the analysis

pipeline associated with this case. This will not necessarily be the actual flow

(because of changes due to parameter selection). The pipeline that is depicted comes

from Recipe:.generatePreviewPipeline.

• Display - Returns the basic input view for this case. This is generated by calling

Recipe::getInputView. The basic input view is usually the Input.jsp file in the case's

directory.

ExecutionCaseAction.j ava

This primarily handles the execution request of a case. It does this by dispatching

the browser requests to one of the following functions:

• Submit - Submits the case's analysis pipeline to be executed to the locally running

VIBE server. This pipeline comes from Recipe:.genemtePipeline.

• Advanced - Generates the advanced page for a case. This page is automatically

generated by the framework and will list all the modules and their respective

parameters. It will also show the actual pipeline that is about to be executed. This

pipeline comes from Recipe::generatePipeline.

Results Action.j ava

This will take a request including the job ID for a case instance and an output

type. The value of the output type indicates which corresponding view will be presented.

The output types are currently handled by the Pipeline Web ViewHandler (discussed

below).

RecipeSummaryAction.java

The RecipeSummaryAction handles operations that are available through the case

23

implementation summary page. This includes uploading files to a case implementation's

directory, cloning of the case, exporting the case, and removing files from the directory.

WikiAction.j ava

The WikiAction is responsible for allowing developers to edit server-side files. In

general, it is primarily used to edit case implementation files. It will load the selected file

and initialize it into an editable text area. The developer may make modifications to the

contents of the file and submit any changes. Overwritten files are archived into a .zip file

with an associated timestamp and may be reloaded if there were problems with the newly

submitted file. The file can also be previewed before changes are submitted. This is

particularly useful for JSP files. For Jython files, the WikiAction will validate the syntax

of the script and report an error message if it detects problems with the submitted file.

For example, this will alert the developer of problems with indentation or quotation

marks.

GenericCaseF orm.j ava

The GenericCaseForm extends the Struts library's ActionForm and is used by

default for all the cases through VIBE Web Access. ActionForms are used by Struts to

retrieve and set values that are used in the presentation layer of a web application. For

this system, a new instance of GenericCaseForm is associated with each case's Input.jsp

file. This class is used as a mechanism for generically setting and getting variables from

the HTML forms. All values stored in forms should fall into two categories: input values

and parameter values. These are maintained in ajava.utilM ap so they can be accessed

from JSP files like i n p u tV a lu e (v a lu e _ k e y) and p a r a m e te r V a lu e

(v a lu e k e y) . Appendix B demonstrates this functionality in more detail.

24

2.1.3. PipelineExecutionHandler.j ava

The PipelineExecutionHandler is responsible for taking the input from the

browser and merging it with the selected recipe's pipeline. It will also call the

generatePipeline method from the selected recipe (see Appendix C) to retrieve the

particular pipeline for the case. As the name implies, it handles the execution of the

pipeline by sending a PipelineService (see below) job to the local VIBE Server. After the

completion of the pipeline, it will store the analysis pipeline and its results, along with the

associated recipe that was used on the server for later retrieval.

2.1.4. PipelineService.java

This is a VIBE Service implemented using the VIBE SDK's API. It was

developed for this project to allow server-side execution o f pipelines. It is responsible for

taking the pipeline XML file and relaying the particular module jobs to their respective

machines. The PipelineService executes all modules within the pipeline until they cannot

continue. For example, if an upstream module is killed or cannot be executed, its

downstream modules cannot be executed and the service returns.

The service takes as input a VPML file containing the pipeline to execute. This,

in turn, will contain the series of modules and their respective parameters and data

locations. The output of this service is a similar VPML file with any new data locations

(e.g., the output of the modules).

2.1.5. PipelineWebViewHandler.java

The PipelineWebViewHandler is responsible for returning the appropriate output

that the user selects. The researcher currently has the option of selecting four output

25

types.

Case-Specific Output

With this output type, the final output is handed over to the selected recipe to

generate a tailored output for the case. The PipelineWebViewHandler will call the

Recipe: .generateView (see Appendix C).

Schematic View

This is an output type common to all cases. It will generate an SVG output view

that allows the user to examine the raw results (e.g., XML data) from each module within

the pipeline. It will also graphically depict to what extent the pipeline was completed.

For example, a green bounded box indicates that the module completed successfully and

that results are waiting. A red box indicates that there was a failure in the execution of

that particular module. A blue box is an unknown state.

VPML (VIBE Pipeline Markup Language)

This output type will return the raw XML file that contains the structural and

parameter information on the case-specific pipeline file that was executed but no output

or input data associated with the modules. This may be saved and opened from the VIBE

client to make modifications and use visualization modules not available through the web

interface.

Archive

This output type returns a .zva file (zipped VIBE archive) that contains a VPML

file as well as all the data for the completed modules in the pipeline. This can safely be

transferred to a machine that is not accessible to the network that executed the pipeline.

Like the VPML output type, this file may be saved and loaded from the VIBE client for

26

pipeline modification and visualization.

2.1.6. Module Services

The module services shown in Figure 3 are standard VIBE services implemented

using the VIBE SDK [45].

2.1.7. Recipes

A recipe is a class that extends

com.incogen.vibe.server.webaccess.recipes.Recipe. The primary function of a recipe is

to implement a particular case. It can be thought of as an agent that works on behalf of

the user to manipulate pipelines. This is similar to the role the user would normally fill in

using the VIBE client. There is a one-to-one correspondence between a recipe and case.

Recipes allow a programmer to implement specific cases by using the VIBE Server

back-end. This allows them to dynamically construct pipelines that may be executed on

several distinct machines and format the results to cater to their interests. Recipes are

typically written in the Jython [46] programming language. Jython is a Java-based

implementation of the Python [47] programming language. The syntax is much simpler

than Java and allows greater flexibility. Since it is an interpreted language all changes to

the code are immediately available for execution. The greatest benefit in using Jython

scripts is that it allows a programmer to update the control-code of a case without having

to recompile, redeploy, and restart the server every time there is an update to the code.

Finally, all standard Java libraries and custom Java code may be used within a

recipe. Java Native Interface (JNI) code may also be used, so this allows binding other

outside languages such as C code through linked libraries.

27

DefaultRecipelmpl

Any cases that are created through the system's Create a New Case interface

extend com. incogen. vibe.server, webaccess. recipes. DefaultRecipelmpl and will be called

Recipelmpl.py. This filename indicates that the code represents a class that implements a

complete set o f Recipe functions. Developers should typically extend this class when

implementing their own cases.

Figure 4 demonstrates the function call structure relating the most relevant Web-

Access Actions to the functions within Recipe, AbstractRecipe, and DefaultRecipelmpl.

The arrows indicate that the function at the tail calls the function at the head. Numbers in

the vicinity of an arrow indicate that there was more than one function called from the

parent function and the number indicates the order in which these children functions are

called. All functions within the Recipe/AbstractRecipe and DefaultRecipelmpl boxes

may be overridden from a. Recipelmpl.py file.

D efa u ltR e c ip e l mpl

^ i rm 1.111 ztT orm

g eneral? P ipe lin e

v a lid a te liip n il orm Executes
genericCaseFormToPipeline .j el ly

itprocess

Executes
Pipe li neT oHTMLFormatter. py

?niteV ieu

Figure 4. Action-to-Recipe Function Call-Structure.

In particular, developers may want to override the following functions of

28

DefaultRecipelmpl:

• initialize Form - Override this function to initialize the minimal input form for

this case with some parameters. It may be desirable to call

D e f a u l t R e c i p e l m p l : : genera t e P i p e l i n e M o d e l and set it to the

'pipeline' class field to determine which parameters are available with a module at

runtime.

• generatePipelineModel - This is a good place to programmatically define a

pipeline if its generation does not depend on any input parameters provided by the

user. Also, whatever pipeline is implemented for this function will be provided as

a preview schematic of the execution.

• loadPipelineModel - This is a good place to programmatically define a pipeline if

its generation does depend on any input parameters provided by the user. The

developer may also want to call

D e f a u l t R e c i p e l m p l . l o a d P i p e l i n e M o d e l (s e l f ,

p i p e l i n e M o d e l , gener i cCaseForm) at the end of the code for this

function to take advantage of any parameter mappings in the Jelly script.

• generateView - Override this function to change the report view of the case.

• postprocess - This method gives the Recipe developer the opportunity to process

the pipeline after its execution has been completed. Typically, this may be when

there is a time-consuming step that is required for the generation of a report, and

we'd like to do it after our pipeline has completed execution. This will be called

exactly once after the analysis pipeline has completed.

29

Deploying a Recipe

An XML element containing the path to the recipe must be included in the

VIBEJSERVER/scripts/recipes.xml file (see Modifying the layout of the case

hierarchy below). The path to the recipe file must be indicated in a similar manner to a

Java fully-qualifiedclassname, e.g., recipes.default.location.ExampleCase.RecipeImpL

The class residing within the indicated file will be instantiated with the name given by the

file. Additionally, all Jython files must end with the .py file extension and they must be

placed below the VIBEJSERVER/scripts directory.

2.1.8. Recipe Support

To support the easy implementation of a variety of cases a series of recipe support

libraries were developed. The classes that make up these libraries are implemented in

either Java or Jython.

RecipeUtils

The class com.incogen. vibe, webaccess.server, recipes.RecipeUtils is a set of

utility functions to be used by recipe developers. Among these functions are convenience

functions for setting and getting parameters from modules. The function lists are

displayed in Appendix C.

ModuleFactory

Additional support is provided by com.incogen.vibe.util.ModuleFactory. This

class easily generates a module to be included in a pipeline from its appropriate module-

descriptor and can be used to dynamically build the pipeline in a Recipelmpl.py file. This

may be useful if the input for the case can take multiple types of input (i.e., nucleotide or

30

amino acid) and uses different flags and algorithms in the pipeline (e.g., blastn as

opposed to blastp). This also provides a mechanism for generating pipelines from the

Recipes without requiring the VIBE client. Module descriptors can be created according

to the VIBE SDK documentation.

ModulePlacers

A class that implements the com.incogen.vibe.util.ModulePlacer interface can

layout a pipeline in two dimensions. Since most of the pipelines generated through Web

Access do not have x-y coordinates when they are created, they all fall on top of each

other in the top-left comer (x=0, y=0) when they are imported into the VIBE client.

Therefore, before the pipeline is executed within Web Access a

ModulePlacer: .placeModules function is called. Currently, the default module placer is a

FanModulePlacer that lays the modules out from the top left corner of the workspace to

the bottom right in a fan pattern. Alternative placers are available, such as the

CircularModulePlacer. The placer that is used for the system may be configured from

the server's configuration file with the “_modulePlacer” parameter.

2.1.9. System Configuration

Determining the current state of the server

The state of the server may be observed at any time using the Server

Configuration page. This is located in the top menu bar of the Web Access page.

Administration permissions are required to view the page.

This page indicates the version of the server, the number of jobs queued, the

number of jobs running, the amount of memory used and free, and the uptime of the

server. Additionally, the page indicates the particular jobs that are running and gives the

31

administrator the ability to stop jobs. The configuration parameters for the server and

their associated values are listed along with module-specific macros. Links to the most

recent updates to the log file for the server and another one to a Wiki page for editing the

server configuration file are available. Finally, the page also indicates all the modules

available to the system and their associated server mapping.

Specifying the location for Modules to be Remotely Executed

The keyword-servers.properties file is available to easily modify the module-to-

server mappings. This will determine on which physical machine the module is executed

on. The file simply relates a given module's keyword on the left side of the equals sign

with a server on the right-hand side. After this file has been updated you will see the

changes in the Server Configuration page immediately. For example, to specify that the

blastp module should use the VIBE server located at

http://vibewa.incogen.com/webaccess-server, the following line in the keyword-

servers.properties file is inserted:

blastp=h t t p :// vib ewa .i n c oge n.com/webaccess-server

Modifying the layout of the case hierarchy

The recipes.xml file can be edited to easily modify how the case hierarchy is

presented to users. It is a simple XML file that has the top-level element, recipes-

descriptor. Within that element there can be any one of three types of elements:

• category - This defines a recipe's grouping as it is presented in the case hierarchy.

Categories may also contain other categories. For example, one of the categories

in Figure 5 that the Structural category contains is Nucleotide. The following

attribute must be defined within this element:

http://vibewa.incogen.com/webaccess-server
http://vibewa.incogen.com/webaccess-server

32

• name - (required) - The name that will be used for the category in the case-

hierarchy.

• recipe - This defines a particular location for a case implementation within the

case-hierarchy. The same element may appear in different categories to cross-list

the case within the hierarchy. The Translate a new nucleotide sequence into an

amino acid sequence case in Figure 5 is how a recipe is depicted in the case

hierarchy. The following attributes may be defined within this element:

• recipeClassname - (required) - The definition of the class that implements

the Recipe interface.

• excludeFromParent - (not required) - This value may be set to true or

false. By default, it is set to false. True indicates that this recipe should

not be included in the parent cookbook list of recipes (if there is one).

This would typically be desirable if the input module o f the analysis

pipeline for this recipe does not match that of the cookbook's input.

• status - (required) - This can be one of three valid values indicating the

implementation status of the case: complete, incomplete, or partial. A

developer can use this to convey to end users whether the case is ready to

use.

• cookbook - This element associates child case implementations so they can be

executed concurrently. This element should encapsulate all child recipes and

categories that are included in the cookbook. The What general information is

known from a Nucleotide sequence case in Figure 5 is how a cookbook is

33

presented in the case hierarchy. The following attributes must be defined within

this element:

• recipeClassname - (required) - The definition of the class that

implements the Cookbook interface

• status - (required) - This can be one of the three valid values indicating the

implementation status of the case: complete, incomplete, or partial.

Editing the genericCaseFormToPipeline.jelly file

Jakarta Jelly [48] is an open-source library for turning XML into executable code.

The genericCaseFormToPipeline.jelly is available to easily modify how the input and

parameter values from Input.jsp files are set in the Pipeline before it is executed. This

only affects recipe implementations that extend DefaultRecipelmpl and do not override

the loadPipelineModel function. Each module within the Pipeline is matched within the

XML file and executes certain actions depending on the elements defined within the

XML file. The top-level element of the XML file is jelly. Within the je lly element there

can be zero or more module elements with the following attributes:

• keyword - (required) - The keyword that uniquely distinguishes this module from

other modules.

• exactMatch - (not required) - This may be set to true or false but defaults to false.

If true, the keyword will be matched explicitly with any module keywords defined

in the pipeline that is being searched. If false, it will consider a match to be any

occurrence of the keyword string in the keyword to the search pipeline.

Within the module element there can be one of three types of elements. Each of these

34

elements can appear zero or more times within the module element:

• addlnputToIYIodiileOutput Descriptor - This places the data specified by the

form ValueName into a file and sets its location in the output descriptor of the

parent module. The following attributes may be defined within this element:

• form ValueName - (required)- Specifies the name of the input value that

comes from the Input.jsp file.

• class Name - (not required) - If this is provided, it should define a class

that may be used to call a static method before the data is saved to file.

• method - (not required) - The static method that is part of the class

defined in the class Name attribute. This method will be called with the

value that corresponds to the form ValueName name before it is copied to a

file.

• fileExtension - (not required) - The file extension of the file that the input

data is copied to. If this is not provided, the default is .xml.

• addlnputToModulelnputDescriptor - This places the data specified by the

form ValueName into a file and sets its location in the input descriptor of the

parent module. The following attributes may be defined within this element:

• form ValueName - (required) - Specifies the name of the input value that

comes from the Input.jsp file.

• className - (not required) - If this is provided, it should define a class

that may be used to call a static method before the data is saved to file.

• method - (not required) - The static method that is part of the class

35

defined in the className attribute. This method will be called with the

value that corresponds to the form ValueName name before it is copied to a

file.

• fileExtension - (not required) - The file extension of the file that the input

data is copied to. If this is not provided, the default is .xml.

• setModuleParameter Value - This sets a module parameter within the pipeline

file that is used to execute the analysis pipeline with a parameter from the input

form. The following attributes may be defined within this element:

• name - (required) - The name of the parameter as it is defined within the

module-descriptor of the respective module.

• form ValueName - (required) - Specifies the name o f the input value that

comes from the Input.jsp file.

• list - (not required) - If the value is one of many possible values, the name

of the entire list of possible values should be defined here.

As part of the DefaultRecipelmpls implementation of loadPipelineModel, the

genericCaseFormToPipeline.jelly file is first read in. The function then iterates through

each of the modules within the recipe's pipeline. For each module, it checks to see if it is

defined within the XML file. If it is, it will follow the directives defined by the elements

contained within the module element. For example, given the following block of Jelly

script:

cmodule keyword="Sequence">
<addInputToModuleOutputDescriptor name="inputTArea"

className="com.incogen.vibe.server.webaccess.util.PipelineModelLoaderUtils"
method="convertFastaToXML"/>

<addInputToModuleOutputDescriptor name="inputFile"
className="com.incogen.vibe.server.webaccess.util.PipelineModelLoaderUtils"

method="convertFastaFileToXML"/>

36

</module>
<module keyword="blast">

<setModuleParameterValue name="EXPECTATION" formValueName="expectationValue"/>
<setModuleParameterValue name="WORD SIZE" formValueName="wordSize"

list="wordSizeList"/>
<setModuleParameterValue name="TARGET SET" forraValueName="dbList"/>

</module>

a pipeline that goes from Sequence_nt -> blastn would be matched for both modules.

The data from the Input.jsp file would be sent to a file and the location set to the output

descriptor of the Sequence_nt module after being converted to XML using the static

method call. Notice, that there are two addlnputToModuleOutputDescriptor elements to

compensate for the two mechanisms of providing input: the text area (inputTArea), and

the file upload (inputFile). For the blastn module, if there was an expectation Value input

element in the Input.jsp file it would be set to the value of the EXPECTATION

parameter. For the WORD SIZE parameter, we can select one value o f a list o f values

contained in wordSizeList. This will also be set to the parameter value so that we still

have those selections editable on the Advanced case submission page. Appendix B

demonstrates the associated Inputjsp file for this snip-it of Jelly code.

The com.incogen.vibe.server.webaccess.util. PipelineModelLoaderUtils used in

the above example is a class that provides some simple utility functions for parsing input

and placing that data into a file. Right now, the only supported types are raw binary data

(PipelineModelLoaderUtils::convertBinaryFormFileToStream) and Fasta input

(PipelineModelLoaderUtils::convertFastaToXML). Additional functions could be easily

added or additional classes may be used for these purposes.

Editing how reports are generated by default

The PipelineToHTMLFormatter.py is a Jython script that is used as the default

37

implementation for all recipes that extend DefaultRecipelmpl if the generateView

function is not implemented. This is the code that generates reports for cases that have

been newly created through the Create a New Case form.

Additional System Configuration

From the Edit System Configuration page the administrator may access Web

Access configuration files like recipes.xml, genericCaseFormToPipeline.jelly,

PipelineToHTMLFormatter.py, JythonWebViewHandler.py, and keyword-

servers.properties. Resources such as Java Archive files (JARs), module-descriptors, and

module documentation may be added and removed from the server from this page. The

definition of these module-descriptors is described in the VIBE SDK documentation.

Automatic Recipe Generation from Exported VIBE Pipeline

VPML files that have been exported from the VIBE client may be used as a base

for building a specific case. This is accomplished by using the Create a New Case form.

This is discussed in Chapter 2 in the Developer Tutorial.

CHAPTER 3
CASE IMPLEMENTATIONS

3.1. Case Requirements; Case Implementations

The second stage of the project involved determining several cases in which

biological researchers are interested that can be addressed by providing a data analysis

pipeline/data-mining solution. The final cases that were compiled may be found in

Appendix A in the hierarchical structure. This structure is intended to show how the user

o f the system encounters them. Once the cases were determined, the approaches for

answering the cases were examined for similarities to determine which portions might be

generalized. Where possible, the system was arranged in such a way that the user can

configure the search interactively. In places where this was not possible, emphasis was

placed on the flexibility and extensibility of the code for future developers.

Initially, the cases to be implemented were drawn directly from current

capabilities of the VIBE system. The majority of the modules are designed for sequence

analysis. This includes cases for generating nucleotide sequences from sequencer trace

files, generating consensus sequences, and various similarity search algorithms. Other

cases were drawn from talks with researchers, such as Kristina Gleason, Dr. Dasha

Malyarenko, and Dr. Joan Burnside.

Since developing a host of new modules was beyond the scope of this project,

38

39

careful selection of the few modules to be added was required. High-value module

targets were the first to be implemented. The two principal modules that fall into this

category were a Matlab [49] module and an R [50] module. These were considered high

value because they add a great deal of functionality that may be utilized by case

developers. There are large amounts of specialized scripts available through resources

such as the Matlab Central File Exchange [51] and the Comprehensive R Archive

Network (CRAN) [52] that may be incorporated into VIBE now. Many other researchers

have custom scripts that can be added to the system with only slight modifications.

Additionally, modules that were immediately useful to researchers were a high

priority. Kristina Gleason required a TESS [53] module for a research paper. This

module submits requests containing nucleotide sequences to the TESS server at the

University of Pennsylvania where it searches the TRANSFAC [54] database. This finds

possible transcription factor binding sites along the query sequence. This was partly

motivated by an interest in using the FastaViewer (part of the VIBE client) to visualize

these potential binding sites.

The following sections contain information on how each of the selected cases was

implemented using the framework.

3.2. Structural Information

3.2.1. Nucleotide Information

What general information is known from a Nucleotide sequence?

This case allows the user to select any of several specific nucleotide analyses to be

executed. Therefore, it is an unusual case because the output from each specific case is

combined into a portal view summarizing all the results. The specific analyses for

40

nucleotide information follow.

Transcription Factors: Find possible Transcription Factor binding sites within the
Nucleotide sequence.

This case submits the input sequence to a transcription factor binding site

prediction algorithm and generates a report summarizing all the results. Right now, it uses

the TESS [53] algorithm. This relies on the TRANSFAC [54] database. The generated

report simply returns a link to the TESS results at the University of Pennsylvania website.

The TESS results are located on a remote server and not associated with this project.

Genes: Can genes within this sequence be found in silico?

This case submits the input sequence to the gene prediction tools Genscan[12]

and GrailEXP [11]. The user has the ability to choose one of the tools or both

concurrently. The generated report then returns the predicted sequences from Genscan. It

also returns the GrailEXP report that is obtained directly from GrailEXP.

Genes: Does my sequence contain a known curated gene?

This takes one or more nucleotide sequences as input and searches using blastn

against nt (non-redundant nucleotide databases) and retrieves the RefSeq [55] records.

Hidden Markov Models (HMM): Perform an HMM search using nucleotide data to
construct our HMM

This case implements the example given in the Introduction of this paper. That is,

it will accept nucleotide data as input and blastx a database. It will then pass the hits and

query sequence to a clustalw module which is used to construct an HMM in the

hmmjbuild module. Finally, it will search an amino acid database with the constructed

HMM using the hmm_search tool. This will potentially detect similar sequences that are

not detected with the less-sensitive blastn search.

41

MSA: Generate a Multiple Sequence Alignment from a series of input sequences

This case accepts nucleotide or amino acid input sequencs and passes the input

into the multiple sequence alignment program, clustalw [5]. The results are then reported

along with a corresponding dendrogram demonstrating how closely the sequences appear

to be phylogenetically.

MSA: Generate a Multiple Sequence Alignment from a series of traces

This case accepts a zip file containing trace files from an ABIDNA sequencer

[56]. It then passes these files through phred [57][58] which converts the sequences into

nucleotide sequences. Then it functions like the previous MSA case.

Sequence Manipulation: Convert a nucleotide sequence into another frame

An input nucleotide sequence is accepted and passed through the SEALS

FaFrame [59] algorithm. This converts the sequence into the frame that the user selects

on the basic input form.

Sequence Manipulation: Generate a consensus sequence from a set of nucleotide
sequences

This case takes a set of input sequences and passes it through the Seals Agree [59]

algorithm which creates a consensus sequence from those sequences.

Sequence Manipulation: Translate a nucleotide sequence into an amino acid
sequence

This case takes an input sequence and translates it into the corresponding amino

acid sequence using the SEALS Wimklein [59] program. The user may select the genetic

code of an organism to use for the translation.

Sequence Tagged Sites: Test sequence for presence of STSs.

This case attempts to discover STSs using NCBI's e-PCR [13] tool. The

42

electronic PCR (e-PCR) tool is specially designed to find regions within a nucleotide

sequence that matches with PCR primers. The tool came with several flat files that

contain STS data that are used in aligning the sequences and function as databases. The

raw results of the analysis are presented in the report for this case.

Sequence Tagged Sites: Search the STS database for a nucleotide sequence

This case accepts one or more nucleotide sequences as input and searches using

blastn against the STS database. This will therefore return a list o f known STSs that may

have regions similar to the input sequence.

Trace: Determine the nucleotide sequence from trace information.

This case uses phred [58][57] to retrieve quality and sequence information from

sequencing trace files.

Trace: Assemble shotgun sequencing data.

This case uses phrap [60] to assemble contigs. The input can be one of a couple

forms. The first is as a series of nucleotide sequences. It then assembles the sequences

into a contig (or contiguous consensus sequence) using phrap. The case also accepts a zip

file containing the ABI trace files. It then pipes the input through phred to retrieve the

nucleotide sequences and then uses phrap as with the other type of input. The contig is

returned in the report along with the nucleotides used in phrap.

3.2.2. Amino Acid Information

3.2.3. Mass Spectrometry

Most of these cases rely on Matlab [49] scripts. These scripts were developed in

large part by Dasha Malyarenko. The tool, Grace [61], was used to generate the SVG

plots for the cases that required two dimensional graphs.

43

Raw Signal Spectrum: Smoothing: Apply Gaussian smoothing to Spectra

An input spectrum of values from a mass spectrometer is passed to a Matlab [49]

script called gapodize.m. The user has the opportunity to select whether they would like

to plot the original signal and the smoothed signal. The report returns a link to the new

values along with the input values in matrix format. This allows users to import the data

into their favorite spreadsheet or statistical tool for further analysis.

Raw Signal Spectrum: Smoothing: Apply Moving Average smoothing to Spectra

This case is similar to the previous case except the Matlab script that is used is

called mavFilter.m. It uses a moving average function to smooth the spectra. The

generated report is essentially the same as in the previous case.

Variable: Selection/Dimension Reduction: Determine Principal Components

This case calculates the principal components of an input data matrix using the

script mypccum. The data matrix must be in a form where columns are patients and rows

are variables. It then plots the first two principal components.

Variable: Selection/Dimension Reduction: Calculate Discriminant Coordinates

This case calculates the discriminant coordinates of an input data matrix using the

script dc3classall.m. The data matrix must be in a form where columns are patients and

rows are variables. The plot that is generated currently expects there to be three groups

and labels them Normal, ATL, and HAM.

Classification & Cross-validation: Determine Leave-1-Out Cross-validation Error

This case calculates the principal components of an input data matrix using the

script classrl3.m. The generated report simply returns the error associated with the

calculation.

44

Classification & Cross-validation: Determine Random Permutation Cross-validation
Error

This case calculates the principal components of an input data matrix using the

script cc3classrp.m. The generated report simply returns the error associated with the

calculation.

Classification & Cross-validation: Measurement-Out Cross-validation Errors

This case calculates the principal components of an input data matrix using the

script measldarl3cv.m. The generated report plots the cross-validation error on the

ordinate and the variable that was taken out on the abscissa.

3.2.4. Organism Information

Homology: What organisms have a sequence with a strong likelihood of homology?

This accepts either an NT or AA sequence and will blastx or blastp it as

appropriate against a set of amino acid databases defined by the user. Then it filters out

the lowest expectation values based on a threshold provided by the user. After that, it

passes all the hits that passed the filter to clustalw. It also has the option of passing the

query sequence's description line to an Entrez search and can pass these hits on to

clustalw as well. The user is presented a report containing a dendrogram from clustalw

and links out to the specific Genbank records for each hit. This is also cross-listed under

both Nucleotide Information and Amino Acid Information.

3.2.5. Statistical

Many of the statistical cases rely on scripts written within the R [50] environment.

The output data from these modules will typically be inStatDataML [62][63].

45

Matrix: Generate a biplot from an input data matrix

This case calculates the principal components of the input data matrix and then

generates a biplot. This biplot plots the data as well as the variables on the same plot,

with the variables are plotted as arrows and the objects as numbers.

Matrix: Generate a screeplot from an input data matrix

This case calculates the principal components of the input data matrix and then

generates a screeplot. The screeplot is a bar graph that plots the variances of each

principal component.

Dissimilarity: Determine a 2D representation for an input dissimilarity matrix

This case adds the transpose of the input matrix to the input matrix and use that as

an input matrix to an R script. The user may select one or two multiple dimension

scaling techniques to generate the 2D representation. The first is classical MDS. The

second is sstress.r [64]. The report shows the graphical representation of the data in two

dimensions and also the calculated values in StatDataML format.

Clustering: Perform agglomerative clustering on an input dissimilarity matrix

This case uses the agnes function as part of R's clustering package to calculate an

agglomerative cluster for the input. The user may select one of three types of methods for

constructing the clusters: single-linkage, complete-linkage, and average-linkage. The

output consists of a dendrogram depicting the relationship between each of the input

rows.

Correlation: Display correlation matrix in one dimension

This case accepts a correlation matrix and generates a polar plot displaying how

closely correlated each value is to its related value on a polar plot. The closer the values

46

appear, the higher their correlation. The original S-Plus [65] script utilized by this case

was developed by Dr. Trosset [66].

Correlation: Display correlation matrix in one dimension and separated by groups

This case accepts a correlation matrix and generates a polar plot displaying how

closely correlated each value is to its related value on a polar plot. The closer the values

appear, the higher their correlation. The values are also plotted on different shells about

the origin to indicate different grouping. This R implementation was developed for a

class project from Dr. Trosset's graduate course [66] and relied on an S-Plus script that he

developed.

CHAPTER 4
A TOUR OF THE SYSTEM

In order to demonstrate the usefulness of VIBE WA it is instructive to present the

system in a tutorial format. This will both demonstrate in a hands-on manner how the

system would be encountered by users and also shows how the various technologies work

together in a cohesive manner.

The system is intended to be used by two primary audiences: the end-users, which

for this project are typically biologists, and developers, who may frequently be

bioinformaticists. The reader is encouraged to experience the system from

http://vibewa.incogen.com/webaccess-server/index.html through a web browser. These

descriptions will provide an overview of the system's features and show how they are

beneficial.

4.1. End-User Tutorial
Introduction

The first examples demonstrate much of the core functionality of VIBE Web

Access and are intended to give new end-users a quick introduction to the system. To

properly view the graphs and plots requires the installation of an SVG browser plug-in

provided free-of-charge by Adobe [42]. The system will prompt you when it is needed if

47

http://vibewa.incogen.com/webaccess-server/index.html

48

it is not installed.

This section will first demonstrate how two cases may be executed through VIBE

WA. The first is a straightforward case that is intended to show how cases may be

executed through the system. The second case demonstrates the transparent access to

some o f the more advanced features. Finally, a third example shows how multiple cases

may be concurrently executed through the system.

4.1.1. Example 1: Translate a nucleotide sequence into an amino acid
sequence.

This example demonstrates a very simple situation that biologists may frequently

encounter and how to solve it by using VIBE Web Access. That is, converting a

nucleotide sequence into an amino acid sequence using a particular genetic code.

1. Click in the left panel on the Case Hierarchy link.

2. A tree representing various categories of biological problems is presented in a

hierarchical fashion.

3. Click on Structural, then Nucleotide, and then Sequence Manipulation (see Figure

5).

49

Submit a Question

^S tru c tu ra l
□ Nucleotide

f t ->What general information Is known from a Nucleotide sequence?
? hi

□ Functional Domains/Motifs
□ Genes
□ Homology
□ MSA
□ RNA Sequences
□ Sequence Manipulation

• Convert a nucleotide sequence to another frame,
<!> ? ££

• Generate a consensus sequence from a set of nucleotide sequences.

• Translate a nucleotide sequence into an amino acid sequence.
<3> f M

□ Sequence Tagged Sites
□ Single Nucleotide Polymorphisms (SNPsl
□ Trace

□ Amino Acid
□ Medical
□ Organism
□ G ene Expression
□ Statistical

Figure 5. Problem Selection.

4. Each problem description represents a different case that is available to examine.

Notice that there are three icons immediately below each case.

• Preview - ^ - Clicking this icon presents a preview of the analyses that

will be executed.

• Help - a - Clicking this icon retrieves documentation for what the

analysis does.

• Configuration - ■&£ - Clicking this icon brings up a webpage that allows

developers to edit the implementation of the case if they have the proper

permissions.

5. Click the Translate a nucleotide sequence into an amino acid sequence link.

6. You are then presented a minimal input view for the case (see Figure 6). This

allows users to provide the analyses with multiple forms of input and a subset of

50

parameters. These parameters will typically be the most interesting ones to

modify when investigating this case.

Translate a nucleotide sequ en ce into an amino acid sequence.

Pipeline Input

FASTA
Text:

Or
input

the
FASTA

file:

Browse... |

Pipeline Parameters
Code 11 Standard

Submit | Advanced | Reset |

fc<3> t]£
Figure 6. Minimal Input for Case.

7. The same 3 icons from the previous page are located to the right of an icon of a

vertical green arrow, Clicking the vertical green arrow icon loads example

input for this case into the appropriate fields.

8. Change the value in the drop-down box to the right of Code to Bacterial.

9. Then click Submit to begin executing this case.

10.After that, you will see a page similar to Figure 7 (with a different Job ID). This

allows users to modify how the output of the analysis will be presented.

• Case-Specific View - This view is dynamically generated based on the

output of the analyses, and it is intended to be formatted in the most

intuitive way to answer the question.

51

• Printer-Friendly Report - This option returns the same report as Case-

Specific View without the header and footer of the website, so that the

page is easier to print-out.

• Graphic - This generates an SVG document schematically representing the

flow of the analysis. Green bordered modules will indicate completed

modules, red borders indicate failed modules, and blue indicates modules

that were not executed.

• VPML - This is a VIBE template file (*.vpml). The template file may be

saved and opened from the VIBE client so the pipeline may be further

examined. No data is preserved in this file, just the structure of the

pipeline.

• Archive - This retrieves a VIBE archive file (*.zva). This file may be

saved and loaded from the VIBE client like the VPML output. The data is

also packaged into the archive file so that it may be viewed and explored

through the VIBE client.

For now, leave "Case-Specific View" selected and press Submit.

Form at R esu lts
Submit | R eset [

Job ID: ||Case_946496

Prin ter-F riend ly Report I
Display Type: Graphic ”3

VPM L
A rch ive 0

Previously Executed Cases
Case Description Date Started Job ID Preview Edit

Translate a nucleotide seauence into an Fri Feb 13 20:31:26
EST 2004 1£amino acid seauence.

Submit | R eset |

Figure 7. Output Type Selection.

52

1 l.Once the execution has completed, a page generated with the output of the

analysis will be presented (see Figure 8).

Translate a nucleotide sequence into an amino acid sequence.
M odules:

• S e a u e n c e n t - 1
• SealsW im klein - 2

S e q u e n c e _ n t -1
Full O u tp u t

Sequence(s)

>albino hippo aphrodite
c c gc tgtgat t gc tggtc g tggc a tgagc ggc ggc gc c gc c c c ggg t c ggtttc gagaagatc ggtgaggg tac c ta tgc ac c c gc atatggg t gc ggc age tc c to tc tc aaac aggc c gc ge
>finland HIV gag
tgggaggac c tagccataaagc aagggttttggc tgaggcaatgagc c aagcac aac atacaaatataatgatgcagc gaggc aattttaagggc cagaaaagaattaagtgc ttc aactgtgc
>mus muscuius
CAGCAGAACTCCTCAAAGTTTCTAGCCAGCCAAAGGCCAAAGAAGAATCTCCTTCTAAAGCTGGAATGAACAAGCGGAGGAAACTAAAGAACAAAAGACGGCGCTCATTACGTAAGTGCTCAC'J
>transgenic mouse kidney
AGAAGATTGGACCTGAAGTTCGCCGACACCACCTCCAAATITGGCCATGGTCGCTrCCAGACCATGGAGGGAGAAGAAAGCATTTATOGGACCACTCAAGAAAGATCGCATTGCCAAGGAGGA;
>Human cDNA encoding variable region of heavy chain of anti-pulmonary carcinoma monoclonal antibody
gaggtgc age t g ttggag tc tqggggaggc ttgg t ac age c tgggggg tc c c tgagac t c tc c tgtgc age c tc tggattc ac c tttagc age t a tgc c a tgagc t ggg tc cgccaggctccac
>Ae. squarrosa chloroplast hot spot region for mutations
ac aaatc gagattcgtc tattc tatatatc tagaatatatatattaaggtataatac aataaagaaatac aaataaaataataaaataataaaatatagtattatc aattgtatgc gc ttc tac

S ealsW im klein - 2
Full Input
Full O u tp u t

Sequence(s)

>aUt>ino hippo aphrodite [translation frame +1]
PL+LLWA*AAAPPRVGFEKIGEGTYAPAYGCGSSSLKQAARLKEVGQLSADPPSVFSRPFFSERSANKLCCGLCGSAPGSSAPALKRQT*IGGL*L+AVDHSARASMKSAASCVN*CELQNT
>finland HIV gag [translation frame +1]
WEDLAIKQ GFVLRQ * AKHNIQI ♦ * C SEAILRARKEL SASTVXXKDT*PE IAGPLEKRWGNVGRKDI
>mus musculus [translation frame +1]
QQNSSKFLASQRPKKNLLLKLE ♦TSGGN*KnCDGAHYVSAHLEKSLWEKNE'ILVRNVCRC*KRIKCMWF *NIKCLYLEN* I SRW*LV*FVIH*KH*KHGYI CFYKHTRKF+ACQR*K*NKLHTL
>transgenic mouse kidney [translation frame +1)
RRLDLKF ADTTSKF GHGRF QTME GEE SIYGTTQERSHC Q 0 GRSL IP GPLL CR
>Human cDNA encoding variable region of heavy chain of anti-pulmonary carcinoma monoclonal antibody [translation frame +1)
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDKFQEHAVSANEQPESRGHGRILLCERS*FYYYDSSGYMGPGNPGHRLLX

| >Ae. squarrosa chloroplast hot spot region for mutations [translation frame +1]
TNRDSSILYI*NIYIKV*YNKEIQIK++NNKI*YYQLYALLEKYVCRK*ILTAFF*IQFQIRLER*KG

Figure 8. Case-Specific Output View.

By default, the case-specific view for this particular case returns the input

sequence(s), under the Sequence_nt heading. Below that, under the

SealsWimklein heading there will be the translated nucleotide sequences

represented as amino acid sequences. By clicking on the ^ (printer-friendly

view) icon shown in the top-left of Figure 8, you will be taken to a view of the

same page with the header and footer of the website removed to make it easier to

print out the report. The Full Input and Full Output links shown in Figure 8

allow you to view the raw data for that particular module in its respective XML or

53

text format.

4.1.2. Exam ple 2: W hat organism s have a sequence with strong likelihood of
homology?

In this example, we will examine some of the more advanced features of the

execution process in VIBE Web Access.

1. Click in the left panel on the Case Hierarchy link.

2. Click Organism, then Homology, and then What organisms have a sequence

with strong likelihood of homology? (see Figure 9).

S ub m it a Q u estion

□ Structural
□ Medical
□O rganism

□ Gene Knockouts
^ Homology

• W hat organism s have a seq u en ce with strong likelihood of hom ology?
<3> ? M

□ G en e Expression
□ Statistical
Figure 9. Location o f the Homology Case.

This case may also be reached from two alternative locations (see Figure 10). For

many cases it may be useful to the user to have cases cross-listed in different

locations, since the same case may be used for various purposes. This one is

cross-listed since it may take either nucleotide or amino acid sequences as input.

54

Subm it a Q u estion

taStructural
t i i Nucleotide

S i e What general information is known from a Nucleotide seq u en ce?
f id

CD Functional Domains/Motifs
□ Genes
t a Homoloqy

• W hat organisms have a sequence with strong likelihood of homology?

CD MSA
CJRNA Sequences
CD Sequence Manipulation
CDSequence Tagged Sites
CD Single Nucleotide Polymorphisms fSNPs)
CD Trace

C iAmino Acid
8 w » W hat general information is known from an Amino Acid seq u en ce?

? M
Ci Functional Domains/Motifs
CS Homo]ogy

• W hat organisms have a sequence with strong likelihood of homology?
<®> f

O Macromolecular Structures
CDMass Spectrometry
f C Metabolic Pathways
CD MSA
CD Receptors
Q Sequence Manipulation

CDMedical
CDOrqanism
□ Gene Expression
CDStatistical

Figure 10. Alternative Links to the Homology Case.

3. Clicking the Preview icon (^) displays the directed graph (Figure 11) depicting a

representative flow for the implementation of this case. In this case, the input

sequence is piped into an Entrez search and blastx. These results will then be

joined into one file and piped into a multiple-sequence alignment program

(ClustalW).

4. Clicking on an oval will display the documentation for the module represented by

the oval. If you click on the blastx oval you will be taken to the blastx

documentation (see Figure 12).

55

What o rg a n ism s have a se q u e n c e with stron g likelihood o f h om ology?

Sequence_nt

entrezSearch blastx

Joiner

xslTransformer

clustalw

Figure 11. Representative View o f Pipeline for the Homology Case.

Blastx U se th e BLAST algorithm to com pare th e six-fram e conceptual transla tion p roducts of a nucleotide query seq
(B asic L ocal A lignm ent S earch Tool) program s have been designed for speed to find high scoring local alignm ents. B L A S '
and is therefore able to d e te c t relationships among sequences w hich share only iso la ted regions of similarity (A ltschul &t a
sensitiv ity to d istan t sequence relationships.

[TARGET SET] T he ta rg e t d a ta b ase (s) to search. Double-click th e module or th e value in th e param eter tab le to a c c e ss a

[EX PECTATION] T he statistically significant expectation value. If the s ta tis tic a l significance ascribed to a m atch is grea
stringent, leading to a few er chance m atches being reported.

[EX TEN D PENALTY] The extend penalty for each character skipped in a gap including th e first. Input 0 ind icates default

[G A PPED ALIGNM ENT] Specification on w hether gapped alignment is to b e perform ed or not.

• T if gapped alignm ent is to b e performed
• F if gapped alignment is no t to be performed.

[O PEN PENALTY] T he open penalty for gap insertion. DeCypher u ses th is number as negative regard less of th e sign spec

[M ATRIX] T he scoring m atrix file to U 6 e . T h ese m atrices are ASCII files and can have CRLF or LF line b re ak s . U se th e r
amino acid m atrices have a M A A extension. T he full path m ust be specified.

[M AX A LIGNM ENTS] The maximum number of alignments to output. F ew er alignments m ay b e show n due to u s e of the
than scores. This number is th e maximum for each query s ince each query h as a sep ara te l ist of alignments.

[N UM HITS] The maximum num ber of b e s t h its from a region to keep.

[EX TEN SIO N DROPOFF] Dropoff (X) for b las t extensions in b its.

(TARGET GIS] If given, the sea rch of th e database will be re s tr ic ted to th e l is t of G Is.

[REGION] Location of a query sequence.

[Q U ERY FILTER] T he specification on w hether th e query filter is to b e used . T he BLAST p ro c ess filters your query seq u e
elim inate potentially confounding m atches from the BLAST reports. OPTIONS:

• T if th e query filter is to be used
• F if th e query filter is not to b e used

[PROCESSORS] T he num ber of p rocesso rs to use.

Figure 12. Representative Module Documentation.

5. Now click back twice on your browser and you will be taken back to the input

form (Figure 13).

6. Click the vertical green arrow icon to load example input data.

56

What organism s have a sequence with strong likelihood of homology?

Pipeline Input

(Note: Either Nucleotide or Amino Acid data are valid input)

FASTA
Text:

Or
Input

the
FASTA

file:

Browse... |

Pipeline Parameters
Search Entrez with Input sequence(s) J7

Expectation Value |0T"
Word Size PT3 _..._ _....... !

Target Databases

Submit | Advanced [Reset |

♦<i> f M

Figure 13. Minimal Input View.

7. This input form allows the user to specify that the sequence should be used to

Search Entrez when the checkbox is checked. Also, multiple databases to BLAST

against may be selected by holding down on the Ctrl-key on your keyboard and

clicking on the respective database names next to the Target Databases label. For

this example, both D_Melanogaster and E_coli_refseq are assumed to be used.

This will instruct the blastx to compare against these two specific organisms for

homology.

8. Now click on the Advanced button. This displays the directed graph showing the

actual pipeline of modules to be executed (Figure 14) as well as the full set of

input options which can be modified for each of the operations. Clicking the

modules in the graph will quickly take you to the parameters for that module.

57

Clicking the name of the module will take you to the documentation for that

module similar to what was shown in Figure 12.

What organ ism s have a se q u e n c e with strong likelihood o f hom ology?
Submit [Reset |

S e g u e n ee nt M odule (11:
QUERY TYPE "[NT

e n tre z S e a rc h M odule (21:
RunTime | Standard _̂ J

clustalw M odule (31:
|ALGORITHM CW
DIAGONALS [5~ ~

EXTEND PENALTY [0.05

GAP DISTANCE 18 1
[NO HYDRO GAPS | FALSE

|n o RESIDUE GAPS | FALSE

HYDRO RESIDUES |GPSNDQEKR

KTUPLE w ~
|MATRIX | Default H

OPEN PENALTY [1 0

[o u t p u t o r d e r j ALIGNED 3]

PAIR GAP
|SEQUENCE_NUMBERS I OFF z\
TOP DIAGONALS

TRANSITION WEIGHT ![0.5
| RunTime j Standard H

Sequence_nt

entrezSearch blastx blastx

Joiner

xslTransformer

clustalw

Jo in e r Module (41:
RunTime | Standard H

blastx M odule (5):
[ALGORITHM [blastx

Figure 14. Advanced Parameter Modification and Actual Flow o f Pipeline.

Since we kept the Search Entrez checkbox selected, we have an entrezSearch

module in our pipeline. We also have two blastx modules, one for each of the

selected target databases. If we had unselected the Search Entrez box we would

have only the selected blastx modules. If we did not have a target database

selected, we would have our input sequences piped directly into ClustalW.

9. After exploring the Advanced Parameter View, you can submit the job with the

refined parameters using the Submit button and explore the data as you did in

Example 1.

58

4.1.3. Exam ple 3: Executing Several Cases Concurrently

Some of the cases in the case hierarchy have a Sfc (cookbook) icon next to them.

This indicates that the case is a special collection of cases that all operate on the same

type of input. This allows users to execute any combination of the cases below it in the

hierarchy concurrently.

1. Select the What general information is known from a Nucleotide sequence?

case.

2. Add nucleotide data to the input text area. A ^ (load example data) icon is

located immediately below the Input Text Area to load example sequences.

3. You may select any combination of the cases by selecting the checkbox to the left

o f each case you would like to execute. For this demonstration, select the Can

genes within this sequence be found in silico? and Convert a nucleotide

sequence to another frame, cases.

4. Now press the Submit button to execute the cases. When executing the collection

of cases you will not be prompted to select an output style; the system will

automatically use the case-specific view. The execution may take a moment, and

the results will be presented in a portal view that summarizes the results using the

specific view for each case.

This section demonstrated how a typical biological researcher may interact with

the VIBE Web Access system. In Example 1, we saw the use of the case hierarchy,

59

minimal input form, how data is loaded, the submission of a case for execution, and how

the output from a case execution may be viewed. Example 2 showed the analysis

preview, advanced input view, and module details. Example 3 then showed how multiple

cases could be concurrently executed on the same input data.

4.2. Developer Tutorial Introduction

These examples demonstrate how to integrate new cases and their respective

implementations into VIBE Web Access. These examples will also typically require

special permissions to use many of their features. The local VIBE system administrator

can provide the appropriate usernames and passwords. For the demo system associated

with this project the username is “vibe” and the password is “vibe”.

4.2.1. Part 1: Im plem enting a simple case

This example demonstrates a very simple situation that biologists may frequently

encounter and how to solve it by creating an executable case using VIBE Web Access:

converting a nucleotide sequence into an amino acid sequence for a particular genetic

code. An implementation of this resides under the description Translate a nucleotide

sequence into an amino acid sequence and may be used as a reference.

There are two general ways that analysis pipelines may be used through VIBE

Web Access to define cases. The first method is statically, where the description of the

analysis pipeline is stored in a template file. This may typically be created through the

VIBE client. The second method uses a dynamic approach where the analysis pipeline is

60

defined programmatically. The following two sections demonstrate each method to

implement the same case.

Statically-defined Analysis Pipelines

1. For users with a VIBE client installed, start the application. Following the VIBE

client documentation for how to construct a pipeline, construct a pipeline in the

form indicated in Figure 15. Any of the parameters on the modules may be

modified from their defaults as well.

File Edit View Configuration Help

1 D & Ik! X * % m > u O f t ^ S M <1$ S-
Input } Search NT) Accelerated Search NT Search AA Accelerated Search AA ! Seals Ut

NT Seq

wfmluetn

Workspace!

NT Seq is a m o d u l e t h a t a l l o w s t h e u s e r
t o s e l e c t o n e o r m o r e n u cl e ic ac id s e q u e n c e s

in F A S T A f o r m a t a s i n p u t t o a p ip e l in e .

HOW T O u s e t h e s e l e c t o r :

D o u b l e - l e f t - c l i c k on t h e NT S e q m o d u l e t o
o p e n t h e NT S e q u e n c e S e l e c t o r t o in p u t
n u c l e o t i d e s e q u e n c e d a t a in to t h e p ip e l in e .
Typical ly , t h i s m o d u l e o r a n o t h e r i n p u t (or
qu ery) m o d u l e s t a r t s a s e q u e n c e a n a ly s i s
p ip e l in e . T h e s e q u e n c e m o d u l e d o e s no t
a c c e p t i n p u t f r o m a n o t h e r m o d u l e .

T h e r e a r e t h r e e s e p a r a t e a r e a s in t h i s d i s p la y
w i n d o w . T h e t o p t a b l e d i s p la y s o nl y t h e
n a m e (s) o f t h e s e q u e n c e (s) l o a d e d in to t h e NT
S e q u e n c e S e l e c to r , t h e i r l e n g t h s , a n d a
d e s c r i p t i o n . T h e l o w e r t e x t a r e a — t h e
s e q u e n c e p r e v i e w — d i s p l a y s t h e r e s i d u e s of

1 Details j Parameters j Notes]
Focus: 1 Memory free: 4112kB total: 17196kB
Figure 15. Construct a pipeline template in the VIBE client.

2. Click File|Save as and save the pipeline template to your hard-drive under any

filename you like (the default is probably Workspacel.vpml). You can now exit

the VIBE client.

61

3. Within your web-browser, click in the left panel on the C reate a New Case link.

A form that looks like Figure 16 will be presented to you. Fill in the form as

indicated in the figure. If you saved a template file to your hard-drive as

suggested in Step 2 then browse to the file using the Browse button. If not, you

can leave this field empty. Leave the Create as a Cookbook checkbox un-selected

(see Part 5 for the significance of this option.) Then click C reate to create the

case.

Create a New Case
Case Keyword

(required): [t ranslateNT Sequence

Path to Case
Implementation

(required):
|default/location

Case
Description
(optional):

[Translate a nucleotide sequence Into an amino add sequence

Pipeline file
(optional): Browse... |

C reate | Reset [

Edit P age

Figure 16. Create a New Case form.

4. You will be sent to the case hierarchy webpage. Notice that a new category at the

bottom has been created with a name generated based on the time the case was

created. If you expand the new category you will see that a new case has been

added with the description defined in our Create a New Case form (see Figure

17).

62

Submit a Question

□ Structural
□ Medical
□ Organism
□ Gene Expression
□ Statistical
□New Case (Wed Dec 10 19:50:44 EST 20031

• Translate a nucleotide sequence into an amino acid sequence

Figure 1 7. Case Hierarchy with new Case category.

5. If you defined the pipeline template file properly when creating this case then it

will execute now. Select the description of the case from the case hierarchy and

you will be presented with Figure 18. Additionally, the preview of the case will

work by default and a case help page is provided. The text of the help file may be

modified by selecting the Edit Page link at the bottom of the help page. Finally,

example nucleotide (NT) sequence data is provided by the system since it knows

that the source of the pipeline is a Sequence_nt module.

T ranslate a nucleotide se q u e n c e into an am ino acid se q u en ce

Pipeline Input

Inpu
Text

0
inpu

file
Browse..

Pipeline P aram eters1

Submit i Advanced j Reset

f
E d it P a g e

Figure 18. Minimal Input form.

63

Dynamically-defined Analysis Pipelines

If you did not construct a pipeline template file you can still create a case

implementation, but the analysis pipeline must be defined programmatically. The last

few steps of this part of the tutorial describe how this is accomplished. The following

steps also require that you created the case without defining the pipeline file. If you did

define it, create a new case that does not define th e Pipeline file in the form.

6. Select the ^ (edit implementation) icon next to our new case. A page similar to

Figure 19 will be presented that lists the minimal necessary files for implementing

a case. For a new case, these files contain default implementations. This allows

you to modify case-related support files. If you skipped defining the template

pipeline in Steps 1-2, then template.vpml will not appear in this list of files.

Case Implementation Summary
Translate a nucleotide sequence into an amino acid sequence

Location: /scripts/recipes/default/locationfl'ranslateNTSequence
File Description | Required |Sae (bytes) | Edit j Remove

| H e lp jsp D ocum enta tion file | y e s 550 [Edit | R em ove
| In p u tjsp B asic input view of th e c a se | y es 1682 | E d it] R em ove
|R ed p e lm p l.p y C a se -sp e d fic im plem entation file | y e s 965 [Edit | R em ove

I _ init_ .py | Python p ac k ag e file no 0 | Edit | R em ove
| description.txt Description of this c a se 1 y e s 59 [E d it] R em ove
| tem plate.vpm l D efault pipeline th a t is loaded by this r e a p e no 2721] Edit] R em ove I

U pload | Brow se... | R e se t |

■§<!> ? M

Figure 19. Case Implementation Summary.

Select the Edit link next to the Recipelmpl.py file and you will be presented with

a Wiki-style [67] interface shown in Figure 20. This constitutes the

implementation of this case written in the Python programming language. You

may notice that this class extends DefaultRecipelmpl and therefore implements

64

the Recipe interface. All case implementations must implement Recipe, and it is

usually best to extend the DefaultRecipelmpl class.

7. Immediately below the lines,

def generatePipelineModel(self):
pipeline = P i p e l i n e ()
p i p e l i n e .s e t N a m e ('Template Pip eli ne')

enter the following code:
sequenceModule = ModuleFactory.newModule('S equ enc e_n t')
p i p e l i n e .a d d (sequenceModule)

sealsModule = M odu leFactory.n e w M o d u l e ('Sea lsW imk lei n')
p i p e l i n e .a d d (sealsModule)
p i p e l i n e .a d d C o n nec tio n(sequenceModule, sealsModule)

This accomplishes the same thing we did from the VIBE client but

programmatically. See the VIBE Web Access Javadocs accessible through the left

panel for API details.

Programmer's Note: Python code is sensitive to white-space and indentation, so it

is important to have the above code lined up vertically with the previous lines of

code.

65

/scripts/recipes/default/locationfTranslateNTSequence/Recipelmpl.py

U p d a t e [R e s e t

Update to Previous File
[N o b a c k u p s for this"file w e re found . R e lo a d |

File Text:
_logger = LogFactory. getLog('TemplateRecipe. Recipeliapl')

class Recipelmpl(DefaultRecipelmpl):
pipelineModel = None

def in i t (self) :
_logger. debug("Instantiating TemplateRecipe")

def initializeForm (self, session, caseform):
_logger.debug("Initializing Form")
pass

def generatePipelineModel(self) :
pipeline = Pipeline ()
pipeline. setName ('Template P ipeline ')

Remove the comment symbols in the following block and the import statements
a t the top of th is f i le to determine what VPML is being generated
for the pipeline
#output = BufferedW riter(FileW riter('testingPipeline.xml'))
#output. wri te (XMLUtiIs. ElementToString (p ip e line . toXML ()))
#output. f lush()
#output. close ()

return pipeline

U p d a t e | R e s e t j

Instructions for Updating Scripts
V a l id J S P m a y b e u s e d to r e n d e r th e in p u t fo r m s , w h ile v a lid J y th o n m a y b e u s e d to t w e a k th e R e c ip e s .

E d it P a g e

Figure 20. Editing the Case Implementation file.

After finishing editing the file, select the Update button to commit your changes.

You will then be taken back to the case implementation summary page.

8. Assuming your Recipelmpl is correct, you will be able to execute the case,

retrieve a preview, etc., just as Step 5 described.

4.2.2. Part 2: A llow ing users to modify param eters from the m inim al input

Now that we have made it possible to execute our analysis pipeline, we may be

view

66

interested in highlighting a few key parameters that the user may wish to change. This

will emphasize the parameters that the developer deems to be the most relevant to this

particular case. However, any available parameters for modules that make up the analysis

pipeline may be modified from the Advanced page with no need for developer

intervention.

1. Navigate to the Case Im plementation Summary for the case in Part 1 of the

developer's tutorial. This will correspond to Figure 19 above.

2. Select Edit beside the Recipelm pl.py file. Then copy over the

def initializeForm(self, session, genericCaseForm):
_logger.debug("Initializing Form")
pass

lines with the following (make sure that the lines are properly indented):

def initializeForm(self, session, genericCaseForm):
_logger.debug("Initializing Form")
pipeline = self.generatePipelineModel()
modules = pipeline.getModules()
codeList = self.getCodeList(modules)
genericCaseForm.setParameterValue("codeList", codeList)

def getCodeList(self, modules):
arrayList = ArrayList()
for module in modules:

if module.getKeyword().find('Wimklein1) >= 0:
codes = RecipeUtils.getParameterValueAsList(module, 'CODE')
for code in codes:

arrayList.add(LabelValueBean(code, code))
return arrayList

This code extracts the list of genetic codes from the SealsWimklein module and

passes it to the genericCaseForm object (an instance of GenericCaseForm}. The

genericCaseForm maintains the values of form fields in the HTML page. Note the

following significant features of this block of code:

• The RecipeUtils class is a utility class with convenience methods provided

by the Web Access API that allows users to easily set and get parameters

67

from Modules. It is part of the com. incogen.vibe.server.webaccess. recipes

package. This should be loaded by default for any cases created using the

Create a New Case form.

• ArrayList is a standard Java Collections class that is part of the java.util

package.

• LabelValueBean is a class provided by the Jakarta Struts [43] package that

VIBE WA uses.

3. Click Update to commit your changes.

4. Now navigate back to the Case Implementation Summary for the case.

5. Between the <!-- START PARAMETERS ~> and <!-- END PARAMETERS ~>

tags in the corresponding Input.jsp file place the following block of code (see

Part 5 for the significance of these tags):

<table border="l" width="75%" cellpadding="2" cellspacing="2"
style="text-align: left; margin-left: Opx; margin-right: auto;">
<tbody>

<tr>
<td style="text-align: right;">Code</td>
<td>

<html:select property="parameterValue(code)" size="l">
<html:optionsCollection property="parameterValu(codeList)"/>
</html:select>

</td>
</tr>

</tbody>
</table>

This alters the minimal input view that is provided to users. In this case, we

simply want to allow the users to change the genetic code that will be used for the

translation operation. TheparameterValue(codeList) property loads the list of

genetic codes with the name codeList that we set to genericCaseForm in our

initializeForm method. (For more information, see the Jakarta Struts

68

documentation describing access to mapped properties. Also, see the Struts-Html

tag library documentation.)

Likewise, the parameter Value (code) property indicates that we are keying

into the parameterValues Map of our GenericCaseForm using code as the key.

When the form is submitted, the selected genetic code will be placed in an

instance of GenericCaseForm and sent to the

DefaultRecipelmpl: . loadPipelineModel method. One o f the responsibilities of the

developers is to make sure that the parameters and input from the Input.jsp make

it into the pipeline to be executed. This is made considerably easier by the

genericCaseFormToPipeline.jelly script. If you are using Modules that have

already been deployed to this web application you should not typically need to

alter this Jelly script.

6. Click Update to commit your changes. Now your basic input view should look

and function the same as Translate a nucleotide sequence into an amino acid

sequence.

4.2.3. Part 3: More Advanced Case Implementations

We may frequently be interested in providing cases that can dynamically build

analysis pipelines based on user-defined parameters. This requires more coding, but

gives the user much more flexibility than a static analysis pipeline as described in Section

4.2.1. We will implement a case that allows the user to specify one or two gene-finding

algorithms on a given input data set.

69

1. Using the Create a New Case form, create a case with the keyword, GeneSearch

and the following description:

Can genes within this sequence be found <i>in silico</i>?

2. Then, go to the implementation summary for the new case and edit the

Recipelm pl.py file.

Preparing the Input Form

3. This will generally follow the structure of Part 2 of this tutorial. Overwrite the

method:

def initializeForm(self, session, genericCaseForm):
_logger.debug("Initializing Form")
pass

with the following code:

def initializeForm(self, session, genericCaseForm):
_logger.debug("Initializing Form")
genericCaseForm.setParameterValue('useGenscan', Boolean(1))
genericCaseForm.setParameterValue('useGrailEXP1, Boolean (1))

This will initialize the checkboxes to be selected on the form. (The checkboxes

are added in the Modify the Input View section below.) By default, these

checkboxes would be un-selected. Alternatively, we could explicitly set them to

be un-selected similar to the above except we would use a Boolean(O) value.

Dynamically generate the Analysis Pipeline

4. Now we want to configure the way the pipeline will be generated before it is

executed. Overwrite the following:

def generatePipelineModel(self):
pipeline = Pipeline()
pipeline.setName('Template Pipeline')

70

Remove the comment symbols in the following block
and the import statements at the top of this file to
determine what VPML is being generated for the pipeline
#output = BufferedWriter(FileWriter('testingPipeline.xml'))
#output.write(XMLUtils.ElementToString(pipeline.toXML()))
#output.flush()
#output.close()

return pipeline

with:
def loadPipelineModel(self, pipeline, genericCaseForm):

This is to verify that we don't get multiple pipelines being
built
pipeline . removeAHElements ()
sequenceModule = ModuleFactory.newModule('Sequence_nt')
pipeline.add(sequenceModule)
Finish constructing the rest of the pipeline
useGenscan = genericCaseForm.getBooleanParameterValue('useGenscan')
_logger.debug("useGenscan: " + str(useGenscan))
if useGenscan == 1:

genscanModule = ModuleFactory.newModule('genscan1)
pipeline.add(genscanModule)
pipeline.addConnection(sequenceModule, genscanModule)

useGrailEXP = genericCaseForm.getBooleanParameterValue(1useGrailEXP1)
_logger.debug("useGrailEXP: " + str (useGrailEXP))
if useGrailEXP == 1:

grailEXPModule = ModuleFactory.newModule('grailEXP')
pipeline.add(grailEXPModule)

pipeline.addConnection(sequenceModule, grailEXPModule)
This uses the genericCaseFormToPipeline.jelly script to map input
parameters to pipeline parameters.
DefaultRecipeImpl.loadPipelineModel(self, pipeline,genericCaseForm)

Generates a representative pipeline that shows what this case can
do.
def generatePreviewPipeline(self, request):

pipeline = Pipeline()
pipeline.setName('Gene-Finding Pipeline')
sequenceModule = ModuleFactory.newModule('Sequence_nt')
_logger.debug("sequenceModule: " + str(sequenceModule))

pipeline.add(sequenceModule)
genscanModule = ModuleFactory.newModule(1genscan1)
pipeline.add(genscanModule)
pipeline.addConnection(sequenceModule, genscanModule)
grailEXPModule = ModuleFactory.newModule('grailEXP1)
pipeline.add(grailEXPModule)
pipeline.addConnection(sequenceModule, grailEXPModule)

return pipeline
We're going to actually build the pipeline in the loadPipelineModel
method after we've received input from the user indicating which
modules to include in the pipeline,
def generatePipelineModel(self):

pipeline = Pipeline()

71

pipeline.setName('Gene-Finding Pipeline')

This is so the system can figure out what our pipeline's input will
be and will load the correct example data.
sequenceModule = ModuleFactory.newModule('Sequence_nt1)
pipeline.add(sequenceModule)
return pipeline

Here we've implemented three functions, two of which are new to this series of

tutorials, (see the DefaultRecipelmpl Javadocs in Appendix C for documentation

on each function.)

Modify the Input View

5. Now, go to the implementation summary for the new case and Edit the Input.jsp

file.

6. Between the <!-- START PARAMETERS ~> and <!-- END PARAMETERS -->

tags in the corresponding Input.jsp file place the following block of code (see

Part 5 for the significance of these tags):

<table border="l" width="75%" cellpadding="2" cellspacing="2"
style="text-align: left; margin-left: Opx; margin-right:auto;">
<tbody>

<tr>
<td style="text-align: right;">Use Genscan</td>
c t d x h t m l : checkbox property="parameterValue (useGenscan) "/>
</td>

</tr>
<tr>

<td style="text-align: right;">Use GrailEXP</td>
< t d x h t m l : checkbox property="parameterValue (useGrailEXP) "/>
</td>

</tr>
</tbody>

</table>

7. Finally, after making all the above changes, go to the case hierarchy, select the

new case, and load the example data. This will load aFasta nucleotide sequence

since we provided a Sequence_nt module to the pipeline in the

generatePipelineModel function. Both checkboxes will be selected. You can

72

check that the pipeline is being generated correctly by selecting the Advanced

button. You will get a pipeline graph that looks like the one in the preview page.

Now click the case's description at the top of the Advanced page. Then, select

load example data again. This time de-select one of the checkboxes and click the

Advanced button. You will now see the Sequence_nt module connected only to

the selected module.

8. The case will now execute correctly, and except for the additional basic

parameters will function just like the implementation of Can genes within this

sequence be found in silicol that the system provides.

4.2.4. Part 4: Post-Processing of Analysis Pipelines

Post-processing a pipeline after it has completed is where the developer has the

opportunity to substantially alter the presentation results for a case. By default, after the

pipeline has completed, the pipeline is traversed and each module is called with a

particular conversion utility that generates HTML from the XML data. This is defined in

the file, PipelineToHTMLFormatter and is accessible from the System Configuration

Summary page (see Section 2.1.9). You can modify this file and it will apply to all

implementations that extend DefaultRecipelmpl but do not implement the generateView

method themselves.

Alternatively, you are free to override the DefaultRecipelmpl::generateView

(pipeline, writer) method in your Recipelmpl and implement a different case-specific

view. This may be as simple as printing a simple statement yes or no if you are searching

73

for a particular value or threshold in a data file. Or it can be as complicated as you like.

Potentially, this could be a complex data-mining step that integrates data from several

modules in the pipeline.

Two examples of how to change the output reports include writing the HTML

programmatically or using the Element Construction Set (ECS) library.

Changing the Output View

1. Select the case implementation that you created in Part 3 and edit the

Recipelmpl.py file. At the bottom of your file, lined up with the previous

function, place the following code:

def generateView(self, pipeline, writer):
writer.write("this is where the results should be")

2. Then select the Update button.

3. Execute the case, and select the Case-specific output view. You will see

something like Figure 21. The printer-friendly link will work as well.

this is w here the results should be
Figure 21. Updated Case-Specific Results.

When testing your output views you may not want to execute the pipelines every

time you view them. It would be better to execute the case once, copy the job id,

and just use the Retrieve Results form for subsequent views. Changes to the

viewing implementation will be reflected in each Retrieve Results submission.

Other previously executed cases are also listed in this page and those results may

be accessed as well.

74

Using the Element Construction Set (ECS)

The Element Construction Set (ECS) is a Jakarta library that aids in generating

various markup. It has objects for most HTML elements and simplifies the

construction of HTML and XML documents.

4. The following code fragment works very similarly to the

PipelineToHTMLFormatter except it only prints data for the modules that are in

the case created in Part 3. It uses the ECS to construct the HTML document that

will ultimately be sent to the browser.

def generateView(self, pipeline, writer):
_logger.debug("Generating View : "+str(pipeline.getName()))
Create the ECS document that is used to generate the report
document = org.apache.ecs.Document()
This puts the link to our case at the top of the report
recipeClassname = str(self.getRecipeClassname())
recipeDescriptionLink = WebAccessLinkUtils.getRecipeDescriptionLink

(recipeClassname)
recipeLinkHeader = org.apache.ecs.html.H 2 (recipeDescriptionLink)
document = document.appendBody(recipeLinkHeader)

Retrieve the modules from the analysis pipeline that was executed
modules = pipeline.getModules()

document = document.appendBody(org.apache.ecs.html.H 2 ("Modules:"))
ulElement = org.apache.ecs.xhtml.ul()
_logger.debug('modules size: 1 + str(modules.size()))
Iterate over the list of modules so we can generate the list of
modules that are included in the report
for module in modules:

ilElement = org.apache.ecs.xhtml.li()
name = module.getKeyword() + " - " + module.getName()
moduleLink = org.apache.ecs.xhtml.a ()
moduleLink.setHref(1#' + name)
moduleLink.addElement(name)
ilElement.addElement(moduleLink)
ulElement.addElement(ilElement)

document.appendBody(ulElement)
Iterate over the list of modules and generate a report snip-it for
each module
for module in modules:

name = module.getKeyword() + " - " + module.getName()
moduleAnchor = org.apache.ecs.xhtml.a ()
moduleAnchor.setName(name)

75

moduleAnchor.addElement(name)
moduleAnchorHeader = org.apache.ecs.html.H3(moduleAnchor)
document = document.appendBody(moduleAnchorHeader)
Iterate through all input locations
inputLocations = RecipeUtils.getInputLocationsForModule(module)
if inputLocations.size() > 0:

for inputLocation in inputLocations:
a = org.apache.ecs.xhtml.a (inputLocation, "Full Input")
document = document.appendBody(a)
document = document.appendBody(org.apache.ecs.xhtml.b r ())

Iterate through all output locations
outputLocations = RecipeUtils.getOutputLocationsForModule(module)
if outputLocations.size() > 0:

for outputLocation in outputLocations:
a = org.apache.ecs.xhtml.a(outputLocation, "Full Output")
document = document.appendBody(a)

if _logger.isDebugEnabled():
_logger.debug("outputLocation: " + str(outputLocation))

Generate specific output chunk for each module
if module.getKeyword().find(1genscan') >= 0:

document.appendBody(org.apache.ecs.html.H 4 ('Genscan Results'))
document = self.generateHtmlSequences(document,outputLocation)

elif module.getKeyword().find('grail') >= 0:
grailResultsHeader = org.apache.ecs.html.H 4 ('Grail Results')
document.appendBody(grailResultsHeader)
document = self.getPreformattedText(document,outputLocation)

elif module.getKeyword().find('Sequence') >= 0:
document = self.generateHtmlSequences(document,outputLocation)

elif module.getKeyword().find('Wimklein') >= 0:
document = self.generateHtmlSequences(document,outputLocation)

Writer out the document
writer.write(document.toString())

def getPreformattedText(self, document, outputLocation):
_logger.debug('document: ' + str(document))
document.appendBody('<pre>')
_logger.debug('outputLocation: ' + str(outputLocation))
document.appendBody(IOUtils.read(URL(outputLocation)))
document.appendBody('</pre>')
return document

def generateHtmlSequences(self, document, outputLocation):
document = document.appendBody(org.apache.ecs.html.H 4 ('Sequence(s)'))
document = document.appendBody(org.apache.ecs.xhtml.h r ())
sequenceData = SequenceModuleData()
sequenceData.load(URL(outputLocation))
formattedData = sequenceData.getFormattedData()
document.appendBody("<pre>")
document.appendBody(formattedData)
document.appendBody("</pre>")
return document

You will also need to import a few additional classes. Add the following code at

the top of your Recipelmpl.py file among the other import statements.

from com.incogen.vibe.model import SequenceModuleData

76

from com.incogen.commons.io import IOUtils
from java.net import URL
import org.apache.ecs

5. After updating the Recipelmpl.py file, try to view the results of your case. If you

implemented the above functions as part o f the case created in Part 3 they will

look the same as the default view. Feel free to modify the above code to

customize the view in whatever manner you like. Modifications will only affect

this case.

4.2.5. Part 5: Im plem enting a C ookbook

Cases may be grouped together to allow users to execute them together. To be

consistent with the Recipe metaphor these groupings are called Cookbooks. After the

implementations have been constructed using the previous sections of the developer

tutorial, you can create a case that allows the user to execute them in parallel.

1. Create a Cookbook from the Create a New Case page. This can be accomplished

by filling in the fields with variables similar to those provided in Figure 22. Make

sure to select the Create as a Cookbook checkbox. Then click the Create button.

Create a New Case
C a s e K e yw ord

(re qu ired): |F ind G enes

P a th to C a s e
Im p le m e n ta tio n

(re qu ired):
[default/location

C a s e
D escription

(op tio na l):
[Find ne w or k n o w n ge nes from c u ra ted d a ta b a s e or < i> in silico</i>

P ipeline file
(op tional): B row se ... |

C re a te as a
C o ok boo k [7

C re a te | R e s e t |

Figure 22. Create a New Cookbook.

77

2. Like the normal case implementations this will place a new category in the case

hierarchy. Now we want to define the recipes that make up the cookbook. To do

this, click the Edit System Configuration link. You will be presented with a

view like Figure 23.

Web Access System Configuration Summary

File Description Required Size (bytes) Edit

genericCaseFormT oPipeline.jelly None Available no 2212 Edit

recipesxml Case hierarchy descriptor yes 9353 Edit

web.xml Web app configuration yes 24641 Edit

PipelineT oHTMLFormatter.py None Available no 6226 Edit

Figure 23. System Configuration Summary.

3. We want to edit the descriptor that defines how the case hierarchy is presented and

internally structured. This is manipulated by editing the recipes.xml file (see

Section 2.1.9 for more details). So, click the Edit link next to this file. You will

go to a Wiki-style interface like Figure 24.

78

/WEB-INF/recipes.xml

Update | Reset |

Update to Previous File
I T u e D e c 16 1 6 :5 2 :4 8 E S T 2 0 0 3 ▼] Reload |

: ile Text:

Update | Reset |

Figure 24. Case Hierarchy Descriptor file.

4. Find the category element whose name attribute contains the value "Genes". You

should find two child elements with the following syntax.

<recipe status="complete"
recipeClassname="recipes.structural_information.nucleotide_informatio

n .genes.GeneSearchlnSilico.RecipeImpl"/>
<recipe status="complete"

recipeClassname="recipes.structural_information.nucleotide_informatio
n .genes.SequenceContainKnownCuratedGene.Recipelmpl"/>

Copy this code, and scroll down to the bottom of the file. You will find the new

category with the time-stamp as its name and a child element that looks like the

following:

<cookbook
recipeClassname="recipes.default.location.FindGenes.Cookbooklmpl"
status="partial"/>

<?xml version*"! 0" ?>
<recipe3-de3criptor>

<category name*"Structural">
<category name="Nucleotide">

<cookbook sta tu s= “p a r tia l"
recipeClassname*"recipes. structural_inform ation. nucleotide_information. general_infor nation. Cookbook!

<category name=”Functional Domains/Motifs”>
<category name="Motifs”>

<recipe status="incomplete"
recipeClassnam e="recipes.structural_inform ation. nucleotide_information. functional_domains_motifs.mot

</category>
<category name=“Transcription S ta r t S ites (TSS)“>

<recipe 3tatus="incomplete"
recipeClassname*"recipes. structural_inform ation. nucleotide_information. functional_domains_motifs.trai

</category>
<category name="Transcription Factors")

<recipe status="incomplete"
recipeClassnam e="recipes.3truetural_inform ation.nucleotide_inform ation. functional_domains_motifs.traj

</category)
</category)
<category name="Genes“>

<recipe status*"complete"
recipeClassnam e*"recipes.structural_inform ation.nucleotide_inform ation. genes. GeneSearchlnSilico. Reci]

<recipe status*"complete"
recipeClassname*11 recipes, s tru c tu ra l inform ation.nucleotide information, genes. SequenceContainKnownCur
HI I l l i. 10

79

Add a closing cookbook tag and replace the trailing /> with just >. Then paste the

two recipe elements between the opening and closing cookbook tags. This

includes these two recipes in the cookbook, and will allow you to execute the two

cases that correspond to the recipes with the same input and in parallel. You can

also change the status of this case's implementation by changing the value of the

status attribute in the cookbook element from "partial" to "complete". The block

should then look like the following (indentation is not important here):

<cookbook status="complete"
recipeClassname="recipes.default.location.FindGenes.CookbookImpl">
<recipe status="complete"

recipeClassname="recipes.structural_information.nucleotide_informat
ion.genes.GeneSearchlnSilico.RecipeImpl"/>

<recipe status="complete"
recipeClassname="recipes.structural_information.nucleotide_informat

ion.genes.SequenceContainKnownCuratedGene.RecipeImpl"/>
</cookbook>

Then click the Update button.

5. You will see that the two gene cases have now been included immediately below

our new case in the case hierarchy. Additionally, if you click on the cookbook's

description you will get an area for providing input data and the respective case

parameters available from each of the gene cases. Finally, there is a checkbox

next to each case that allows you to select which cases to execute when this form

is submitted. By default, the parameters for each of the child recipes are drawn

from between the <!— START PARAMETERS --> and <!-- END

PARAMETERS —> tags in the corresponding Input.jsp files.

6. Provide some input data, press the Select All link, and click the Submit button to

execute the cases. After a few moments, you will be returned to a portal view of

the outputs from each case.

80

This section demonstrated how a developer may interact with VIBE Web Access

to create new cases. Part 1 showed how to implement a case using either statically or

dynamically-defined analysis pipelines. The second part showed how the minimal input

view for a case may be changed to cater to the requirements for a given case. Part 3

showed how a case with more complex logic can be defined within the system. Part 4

displayed how the case-specific view may be changed to depict only the results most

pertinent to the case. The final part showed how cases can be grouped to construct

“cookbooks” o f cases that accept the same input.

CHAPTER 5
CONCLUSIONS

The principal framework and case implementation goals of this project were

completed. The framework of the project required the development of an extensible

infrastructure for creating and modifying cases that rely on analysis pipelines. The case

implementation-side required the enumeration of cases relevant to researchers and their

inclusion into the system. The following sections discuss the outcome of this project in

more detail.

5.1. Framework Conclusions

Initially, a mechanism for executing VIBE pipelines on a remote server without

the need of a VIBE client was completed. This allows users to interact with their

pipelines and cases from any location that has access to the server simply by using a web

browser. Emphasis was place on the ability for users to transparently observe and modify

pipelines and case implementations without relying on knowledge of the details of the

pipelines to execute them.

Recipe implementations (RecipelmpLpy files) were developed to act as an agent

for the users. They provide a central location for manipulating how a case is interacted

with. The Recipes also mediate the interaction with the VIBE Server by generating VIBE

pipelines. It may accept input parameters and generate an appropriate VIBE pipeline for

81

82

the given parameters. This agent also has the ability of generating custom reports that

only display the results pertinent to the case. This also allows the cases to easily be

shared between groups at different physical locations that may be attempting to solve

similar problems. This provides the ability of building a repository of problem solutions

(or decision-support) that is tailored to a research group's goals.

A set of library functions was developed to ease the generation of reports, these

include the RecipeUtils class of functions for easily pulling the raw data out of a given

module, and the PipelineToHTMLFormatter.py provides default views for most cases.

Many of the sequence analysis modules have formatters that will generate reports for the

specific data type in the form o fModuleData classes. Additionally, views may be

customized using the Apache ECS library that is provided within the system or by

generating HTML programmatically.

A class that allows the easy generation of modules from within a recipe is

provided in the form of a ModuleFactory. This will load the module and contact the

server to get any updated information. For example, the module will retrieve a current

list of databases for database searching tools. Thq ModuleFactory also resolves the

location of the remote service by accessing the keyword-servers.properties file. The

Pipeline class makes it easy to dynamically create analysis pipelines from the modules

created using the ModuleFactory.

All these pieces combine to form the framework that allows the easy integration of

new and novel cases. This enables researchers and developers to more easily manipulate

their data.

83

5.2. Case Conclusions

The cases that were implemented as part of this project will help researchers by

providing decision-support in the form of generated reports. This allows researchers to

leverage previously determined techniques for solving problems without having to

replicate the generation of these techniques repeatedly. The cases are intended to

emphasize the power and flexibility of the system.

The sequence analysis cases demonstrate many cases that are frequently created

from within the VIBE client. Several of the statistical cases are meant to demonstrate the

interoperability with the R [50] program. Additional cases that also demonstrate the

interoperability with Matlab [49] are available with an emphasis on cases relevant to

mass-spectrometry researchers.

The ability to edit the scripts and resources associated with VIBE WA added

considerable flexibility and extensibility to this system since it prevents the need for long

code recompilations and redeployment when building case implementations. This level

of flexibility was also made available within the rest o f the VIBE framework. This

allows developers to implement VIBE services and modules within Jython and could

augment the published VIBE SDK.

5.3. Future Work

5.3.1. Fram ew ork Im provem ents

Several immediate improvements to the framework were discovered in the

development of this project. The interface could be improved by including support for

84

more recent web technologies such as Java Server Faces (JSF) [68] and Velocity

templates [69]. These are alternatives or enhancements over the more traditional Java

Server Pages that were utilized for the majority of this project. In particular, this could

potentially simplify the development of minimal case input forms. The inclusion of these

technologies may also attract developers that are not already familiar with JSP.

Another enhancement that was investigated as part o f this project was the

integration of Struts with Cocoon. This is well beyond the scope of this project, but it

could improve the way that the UI is generated so that header and footer files do not need

to explicitly be appended to each JSP file as they currently are. This would simplify the

Input.jsp files.

A significant functional enhancement would be the ability to make Remote

Procedure Calls (RPC) to invoke VIBE services. This would enable the VIBE WA code

that executes the graphviz [40] program to take advantage of the VIBE server's advanced

command-line generation functionality. It would also make it simple to include a

graphviz VIBE module for generating directed or undirected graphs from within

pipelines.

A significant performance enhancement would be to reduce the overhead

associated with creating a VIBE module. Since VIBE modules have been used in the past

for only client-side work there is a certain amount of overhead in creating them that is

unnecessary in a strictly server-side architecture.

When creating cases from pipeline templates built from the VIBE client, it would

be desirable to initialize the help documentation with the contents o f the notes associated

with the pipelines.

85

When the VIBE server supports the ability to manage users it will be feasible to

associate the VIBE WA users with their data. A feature that would naturally extend from

this is to present the user's analysis results and custom-cases on separate webpages to

prevent others from accessing them. These may be presented as “My Results” and “My

Cases” webpages.

Finally, the ability to import case implementations from other Web Access servers

could be useful. This would complement the export case implementation functionality

that is already present and allow easier collaboration among researchers at other sites, so

that they may modify and extend the cases of their colleagues.

5.3.2. Improvements involving the VIBE Client

There are several improvements to the VIBE client that naturally extend from the

research performed for this project. The first improvement would be in improving the

interoperability between the VIBE client and VIBE Web Access. A simple dialog box

that allows the user to specify the VIBE Web-Access server to deploy the pipeline to and

where the pipeline (and case) will be located in the case hierarchy could be added. This

would prevent developers from needing to save the pipeline template locally and

explicitly uploading it to the Web Access server.

Another potentially useful feature would be to allow the VIBE client to point to a

Web Access server's data repository. This might allow the user to select any previously

executed pipelines to further explore within the VIBE client without having to save the

pipeline locally and then importing the file. This would allow users to take advantage of

the more interactive data viewers available through the VIBE client.

Since the PipelineExecutionService was developed as part of this project, an

86

entire pipeline may potentially be represented by a single module within the VIBE client.

This may be useful if it was desirable to treat a complicated pipeline as a black-box. The

ability to start a pipeline executing and then close the client down could also be easily

added.

5.3.3. Case Improvements

As discussed in Chapter 1, one area of further improvement would be the creation

of a software-based reasoner on top of the current framework. The general requirements

of a system such as this would be an input form that takes information describing a given

problem. Then, a mechanism for evaluating similar cases within the case repository

would have to be created. This would be very challenging. The reasoner may consider

the input data types and the documentation files (Help.jsp) to find similar cases. Then, it

may suggest a subset of the case repository to be used for further analysis.

A limitless number of cases could be added to the system assuming that there are

appropriate VIBE SDK Module implementations. Some particularly interesting ones may

be the following:

- Xppaut module - An xppaut module would allow users to solve systems of

ordinary differential equations (ODEs) as well as take advantage of xppaut's

other features.

- Octave module - The Octave program [70] is a free software clone of Matlab

that could potentially be easily integrated to offer cases that are analogous to

the Matlab cases. This may be useful if a site that requires the Matlab cases

does not have a Matlab license. Additionally, it appears that Octave supports

MPI [71] for parallel computation across Unix clusters. This may be useful for

87

very time-consuming computations since to do this within Matlab requires a

separate software license for each node of the cluster.

- Additional bioinformatic tools that could be added to the system include:

Glimmer [72][73], MEME/MAST [74], RepeatMasker [75], several KEGG

searches [76], and a multitude of others.

Finally, additional support libraries could be constructed to aid in the generation

o f reports for common data types. A series of XSL stylesheets that convert StatDataML

to HTML reports for different data types would be useful for depicting various views of

statistical results from both the Matlab and R modules.

APPENDIX A

Case Hierarchy

The following hierarchical structure depict cases that are available for exploratory

analysis. In general, the cases listed have been implemented as part of this project.

However, a few headings (e.g., Cluster Analysis) are included as a place-holder for cases

that could be implemented in future work.

Structural Information
Nucleotide Information

What general information is known from a Nucleotide sequence?
Functional Domains/Motifs

Transcription Factors
Find possible Transcription Factor binding sites within the Nucleotide sequence.

Genes
Can genes within this sequence be found in silico?
Does my sequence contain a known curated gene?

Homology
What organisms have a sequence with a strong likelihood o f homology?

Hidden Markov Models (HMM)
Perform an HMM search using nucleotide data to construct our HMM

MSA
Generate a Multiple Sequence Alignment from a series o f input sequences
Generate a Multiple Sequence Alignment from a series o f traces

Sequence Manipulation
Convert a nucleotide sequence into another frame
Generate a consensus sequence from a set o f nucleotides
Translate a nucleotide sequence into an amino acid sequence

Sequence Tagged Sites
Test sequence for presence of STSs.
Search the STS database for a nucleotide sequence

Trace
Assemble shotgun sequencing data.
Determine the nucleotide sequence from trace information.
Generate a Multiple Sequence Alignment from a series o f traces

Amino Acid Information
Homology

What organisms have a sequence with a strong likelihood o f homology?
Mass Spectrometry

Raw Signal Spectrum
Filtering
Smoothing

Apply Gaussian smoothing to spectra
Apply Moving Average smoothing to spectra

Database Searching

89

Find Amino Acid sequences from mass spectrometry data.
Peak Detection

Data Matrix
Variable Selection/Dimension Reduction

Determine Principal Components
Calculate Discriminant Coordinates
Classification & Cross-validation

Determine Leave-1-Out Cross-validation Error
Determine Random Permutation Cross-validation Error
Measure-Out Cross-validation Errors

MSA
Generate a Multiple Sequence Alignment from a series o f input sequences

Sequence Manipulation
Generate a consensus sequence from a set o f nucleotides

Organism Information
Homology

What organisms have a sequence with a strong likelihood o f homology?
Gene Expression Information

EST Analysis
Microarray Analysis

Cluster Analysis
Classification

Statistical
Matrix

Calculate the covariance matrix and respective eigenvalues o f an input matrix
Generate a biplot from an input data matrix
Generate a screeplot from an input data matrix
Dissimilarity

Determine a 2D representation o f an input dissimilarity matrix
Clustering

Perform agglomerative clustering on an input dissimilarity matrix
Correlation

Display correlation matrix in 1 dimension
Display correlation matrix in 1 dimension and separated by groups

Variable Selection/Dimension Reduction
Determine Principal Components
Calculate Discriminant Coordinates
Classification & Cross-validation

Determine Leave-1-Out Cross-validation Error
Determine Random Permutation Cross-validation Error
Measure-Out Cross-validation Errors

90

APPENDIX B

Example Input.jsp

The following code demonstrates an example Input.jsp file and the way it appears

through a web browser (see Figure 25). This also shows how the GenericCaseForm is

used to set values where we can access them from a Recipelmpl.

<%@ p a g e l a n g u a g e = " j a v a " %>
< % 0 t a g l i b u r i = " / W E B - I N F / s t r u t s - b e a n . t l d " p r e f i x = " b e a n " %>
<%@ t a g l i b u r i = " / W E B - I N F / s t r u t s - l o g i c . t l d " p r e f i x = " l o g i c " %>
<%@ t a g l i b u r i = " / W E B - I N F / s t r u t s - h t m l . t l d " p r e f i x = " h t m l " %>
<%@ t a g l i b u r i = " / W E B - I N F / i n c o g e n . t l d " p r e f i x = " i n c o g e n " %>

< % @ i n c l u d e f i l e = " / h e a d e r . h t m l " %>

< h t m l : e r r o r s / >

< h 2 x i n c o g e n : r e c i p e T i t l e / x / h 2 >
< h t m l : f o r m a c t i o n = " / e x e c u t e C a s e " e n c t y p e = " m u l t i p a r t / f o r m - d a t a " >

< h 3 x b e a n : m e s s a g e k e y = " c a s e . i n p u t . h e a d i n g " / x / h 3 >
< h 4 > (N o t e : E i t h e r N u c l e o t i d e o r A m i n o A c i d d a t a a r e v a l i d i n p u t) < / h 4 >
< t a b l e b o r d e r = " l " w i d t h = " 1 0 0 % " c e l l p a d d i n g = " 2 " c e l l s p a c i n g = " 2 "

s t y l e = " t e x t - a l i g n : l e f t ; m a r g i n - l e f t : O p x ; m a r g i n - r i g h t : a u t o ; " >
< t b o d y >

< t r >
< t d s t y l e = " t e x t - a l i g n : r i g h t ; " > F A S T A T e x t : < / t d >
< t d x h t m l : t e x t a r e a c o l s = " 8 0 " r o w s = " 1 0 " n a m e = " c a s e . i n p u t "

p r o p e r t y = " i n p u t V a l u e (i n p u t T A r e a) " / >
< / t d >

< / t r >
< t r >

< t d s t y l e = " t e x t - a l i g n : r i g h t ; " > O r i n p u t t h e F A S T A f i l e : < / t d >
< t d x h t m l : f i l e s i z e = " 8 0 " n a m e = " c a s e . i n p u t "

p r o p e r t y = " i n p u t V a l u e (i n p u t F i l e) " / >
< / t d >

< / t r >
< / t b o d y >

< / t a b l e >
< h 3 x b e a n : m e s s a g e k e y = " c a s e . p a r a m e t e r s . h e a d i n g " / > < / h 3 >

< ! — S T A R T P A R A M E T E R S — >
< t a b l e b o r d e r = " l " w i d t h = " l 0 0 % " c e l l p a d d i n g = " 2 " c e l l s p a c i n g = " 2 "

s t y l e = " t e x t - a l i g n : l e f t ; m a r g i n - l e f t : O p x ; m a r g i n - r i g h t : a u t o ; " >
< t b o d y >

< t r >
< t d s t y l e = " t e x t - a l i g n : r i g h t ; " > S e a r c h E n t r e z w i t h i n p u t s e q u e n c e
< / t d >
< t d >

< h t m l : c h e c k b o x p r o p e r t y = " p a r a m e t e r V a l u e (s e a r c h E n t r e z) " / >
< / t d >

91

< / t r >
< t r >

< t d s t y l e = " t e x t - a l i g n : r i g h t ; " > E x p e c t a t i o n V a l u e < / t d >
< t d >

< h t m l : t e x t p r o p e r t y = " p a r a m e t e r V a l u e (e x p e c t a t i o n V a l u e) "
s i z e = " 3 " / >

< / t d >
< / t r >
< t r >

< t d s t y l e = " t e x t - a l i g n : r i g h t ; " > W o r d S i z e < / t d >
< t d >

< h t m l : s e l e c t p r o p e r t y = " p a r a m e t e r V a l u e (w o r d S i z e) " s i z e = " l " >
< h t m l : o p t i o n s C o l l e c t i o n

p r o p e r t y = " p a r a m e t e r V a l u e (w o r d S i z e L i s t) " / >
< / h t m l : s e l e c t >

< / t d >
< / t r >

< t r >
< t d s t y l e = " t e x t - a l i g n : r i g h t ; " > T a r g e t D a t a b a s e s < / t d >
< t d >

< h t m l : s e l e c t p r o p e r t y = " p a r a m e t e r V a l u e (s e l e c t e d D b L i s t) "
m u l t i p l e = " t r u e " s i z e = " 5 " >

< h t m l : o p t i o n s C o l l e c t i o n p r o p e r t y = " p a r a m e t e r V a l u e (d b L i s t) " / >

< / h t m l : s e l e c t >
< / t d >

< / t r >
< / t b o d y >

< / t a b l e >
< ! — E N D P A R A M E T E R S — >

< b r >
< h t m l : s u b m i t p r o p e r t y = " m e t h o d " v a l u e = " S u b m i t " / >
< h t m l : s u b m i t p r o p e r t y = " m e t h o d " v a l u e = " A d v a n c e d " / >
< h t m l : r e s e t / >

< / h t m l : f o r m >
< i n c o g e n : c a s e L i n k B a r / >
< % 0 i n c l u d e f i l e = " / f o o t e r . h t m l " %>

The first line indicates that the file should be interpreted as a Java Server Page.

The lines containing “taglib” indicate the location of tag library descriptors. This defines

the tags that we can use within this file that will be recognized by the JSP processor.

After that is a line that defines the header.html file. This includes the content from the

file at the beginning of the processed file. There is a similarfooter.html file defined at

the tail of this file. The html .-errors line that follows is a Struts tag that will inline

any errors detected when this form is submitted. After that is an HTML element (h2)

that surrounds an incogen : recipeTitle. This places the case's description in a

92

header block and was implemented for this project.

The html : f orm element contains all the variables that will be submitted to the

server for this case execution. The values of interest in this example are inputValue

(inputTArea), inputValue(inputFile), parameterValue

(searchEntrez), parameterValue(expectationValue),

parameterValue (wordsizeList), and parameterValue (dbList). These

values were initiliazed in the DefaultRecipelmpl::initializeForm function (not shown).

When the web form is submitted, Struts will assign the values inputValue

(inputTArea), inputValue(inputFile), parameterValue

(searchEntrez),parameterValue(expectationValue),

parameterValue (wordSize) , and parameterValue (selectedDbList) to

the GenericCaseForm with the values from the web form. These values can then be used

in the DefaultRecipelmpl: :loadPipelineModel method to alter the pipeline that will

actually be executed for this case. The < ! - - START PARAMETERS — > and < ! - -

END PARAMETERS - - > are comments that are used by the default cookbook Input.jsp

to pull out the important parameters from child cases.

93

What organisms have a sequence with strong likelihood of homoloqy7

Pipeline Input

(Note: Either Nucleotide or Amino Acid data are valid input)

FASTA Text:;

Or Input the FASTA file: Browse... |

Pipeline Parameters
Search Entrez with Input sequence j F

Expectation Value; P -
Word Size |T3 |

Target Databases
D _m elan o g aste r
E _co li_ rerseq |

Submit | Advanced | Reset |

Figure 25. Appendix B's Input jsp as it appears through a web browser.

94

APPENDIX C

Selected Javadocs

The following documentation was generated using the Javadoc [77] tool on the

respective classes. All the classes that are part of the Web Access framework have

documentation and this is accessible from the Web Access Javadocs link.

com.incogen.vibe.server.webaccess.recipes
Interface Recipe
All Known Subinterfaces:

C ook b ook

All Known Implementing Classes:
A bstract R ecip e . D efau ltC ook b ook im p l

public interface Recipe

This is the basic interface for all case implementations in the VIBE Web Access framework. Developers should
typically extend the DefaultRecipelmpl when implementing their own cases.

Author:
J. A. Hayes

Field Summary

static java.lang.String DESCRIPTION FILE
The name of the recipe's description file, usually tiescription.txt'.

static java.lang.String HELP JSP FILE
The name of the recipe's help file, usually Help.jsp'.

static java.lang.String INIT PY FILE
The name of the Jython package file, usually '__init__.py'.

static java.lang.String INPUT JSP FILE
The name of the recipe's basic input file, usually Input.jsp’.

static java.lang.String POST PROCESSED ATTR

static java.lang.String RECIPE FILE
The name of the recipe's Jython implementation file, usually

'Recipelmpl.py'.

95

static java.lang.String RECIPE FILENAME
T he nam e o f the recipe's Jython im p lem entation file w /o the file

ex ten sio n , u su a lly R ecip elm p l'.

static java.lang.String TEMPLATE VPML FILE
T h e nam e o f the recipe's tem plate p ip elin e f ile (i f there is on e),

u su a lly 'tem plate.vpm l'.

Method Summary

com.inco
gen.vibe.
pipeline.
Pipeline

aeneratePipeline (i avax. servlet. http. HttpServletRequest request)

Generates a new pipeline from scratch.

com.inco
gen.vibe.
pipeline.
Pipeline

aeneratePreviewPipeline (iavax.servlet.http.HttpServletRequest reques
t)

Should return a new instance of a pipeline capturing the most general structure of the case's
pipeline.

void aenerateView(com.incoaen.vibe.pipeline.Pipeline pipeline,
java.io.Writer writer)

By default, should generate a generic report based on Module->Report in a portal view.

java.Ian
g .String

cretAttribute (i ava . lana. Strina name)
Retrieves an arbitrary value that has been previously associated with this execution of the case.

java.uti
1 .Map

aetAttributeMap()
Retrieves the map of attribute names and values associated with this case.

ActionFo
rward

cretDocumentationForward ()
Make a default implementation search for the help in the same directory as the recipe.

ActionFo
rward

cretExamplelnputView (Act ionMappina mappina.
javax.servlet.http.HttpServletRequest request,
j avax.servlet.http.HttpServletResponse response)

Returns the Input form with example input initialized to it.

ActionFo
rward

aetlnputView(ActionMappina mappina,
j avax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

By default, should return the input jsp in the same directory as the recipe.

com.inco
gen.vibe.
pipeline.
Pipeline

aetPipeline(iavax.servlet.http.HttpServletRequest request)
Returns a previously set pipeline (that may have had default parameter changes).

java.Ian
g .String

aetRecipeClassname()
Gets the classname of the Jython recipe.

java.Ian
g .String

aetRecipeDescription ()

This retrieves the text that will appear in the Web Access Case list.

java.Ian
g.String

aetRecipeFilepath()
Returns the path to the Recipe's Jython file relative to the webapp's context.

java.Ian
g .String

aetRecipeKevword()
Retrieves the unique keyword associated with this recipe.

boolean hasPostProcessed()
Returns true if postprocess has been called on this run of the case.

http://http.HttpServletRequest
http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpServletRequest

96

void postprocess (com.incoaen.vibe.pipeline.Pipeline pipeline)
This method gives the Recipe developer the opportunity to process the pipeline after its

execution has been completed.

java.Ian
g .String

removeAttribute(i ava.lana.Strina name)
Removes a previously set attribute that was associated with this execution run.

void setAttribute(i ava.lana.Strina name, i ava.lana.Strina value)
Associates an arbitrary attribute name with it's value.

void setAttributeMap(iava.util.Map attributeMap)
Sets the map of attribute names and values associated with this case.

void setPostProcessed(boolean tf)
Sets whether or not postprocess has been called on this run of the case.

void setRecipeClassname(iava.lana.Strina classname)
Sets the classname of the Jython recipe.

void setRecipeDescription(iava.lana.Strina description)
This sets the text that will appear in the Web Access Case hierarchy.

void setRecipeFilepath(iava.lana.Strina filepath)
Sets the path to the Recipe's Jython file relative to the webapp's context.

void setRecipeKevword(iava.lana.Strina recipeKeyword)
Sets the unique keyword associated with this recipe.

void ValidatelnputForm
(com.incogen.vibe.server.webaccess.struts.GenericCaseForm genericCas
eForm, ActionErrors errors)

This method gives the user the opportunity to determine if the input values and parameter
values are valid for this case.

Field Detail

DESCRIPTION_FILE

public static final java.lang.String DESCRIPTION_FILE

The name of the recipe's description file, usually 'description.txt'.

See Also:
Constant Field Values

HELP_JSP_FILE

public static final java.lang.String HELP_JSP_FILE

The name of the recipe's help file, usually 'Help.jsp'.

See Also:
C onstant F ield V a lu es

INIT_PY_FILE

public static final java.lang.String INIT_PY_FILE

The name of the Jython package file, usually ' init .py'.

See Also:
C onstant F ield V alu es

INPUT_J SP_FILE

public static final java.lang.String INPUT_JSP_FILE

The name of the recipe's basic input file, usually 'Input.jsp'.

See Also:
C onstant F ield V alu es

POST_PROCESSED_ATTR

public static final java.lang.String POST_PROCESSED_ATTR

See Also:
C onstant F ield V alu es

RECIPE_FILE

public static final java.lang,String RECIPE_FILE

The name of the recipe's Jython implementation file, usually 'Recipelmpl.py'.

See Also:
C onstant F ield V alu es

RECIPE_FILENAME

public static final java.lang.String RECIPE_FILENAME

The name of the recipe's Jython implementation file w/o the file extension, usually 'Recipelmpl'.

See Also:
C onstant F ield V alu es

98

TEMPLATE_VPML_FILE

public static final java.lang.String TEMPLATE_VPML_FILE

The name of the recipe's template pipeline file (if there is one), usually 'template.vpml'.

See Also:
C onstant F ield V alues

Method Detail

generatePipeline

public com.incogen.vibe.pipeline.Pipeline generatePipeline
(javax.servlet.http.HttpServletRequest request)

Generates a new pipeline from scratch. By default, this should parse the pipeline from the filesystem in some
specified location and return that.

generatePreviewPipeline

public com.incogen.vibe.pipeline.Pipeline generatePreviewPipeline
(j avax.servlet.http.HttpServletRequest request)

Should return a new instance of a pipeline capturing the most general structure of the case's pipeline. By
default, this returns the same Pipeline from Recipe::generatePipeline.

generateView

public void generateView(com.incogen.vibe.pipeline.Pipeline pipeline,
java.io.Writer writer)

By default, should generate a generic report based on Module->Report in a portal view. Note, this will be
called each time the Format Results page is used to generate a Case-Specific report. So, it may be desirable for
time-consuming portions of this code to be moved into the implementation of the postprocess method.

Parameters:
pipeline - Pipeline - The executed pipeline for this case.
writer - Writer - The writer that writes to this case's specific output report. Send either HTML or raw
text to this.

getAttribute

public java.lang.String getAttribute(java.lang.String name)

Retrieves an arbitrary value that has been previously associated with this execution of the case. For example, it
might be useful to set an attribute in DefaultRecipelmpl::loadPipelineModel that affects the view generated in
DefaultRecipeImpl::generateView.

http://http.HttpServletRequest
http://http.HttpServletRequest

99

getAttributeMap

public java.util.Map getAttributeMap()

Retrieves the map o f attribute names and values associated with this case.

getDocumentationForward

public ActionForward getDocumentationForward()

Make a default implementation search for the help in the same directory as the recipe.

getExamplelnputView

public ActionForward getExamplelnputView(ActionMapping mapping,
j avax.servlet.http.HttpServletRequest request,
j avax.servlet.http.HttpServletResponse response)

Returns the Input form with example input initialized to it.

getlnputView

public ActionForward getlnputView(ActionMapping mapping,
j avax.servlet.http.HttpServletRequest request,
j avax.servlet.http.HttpServletResponse response)

By default, should return the input jsp in the same directory as the recipe.

getPipeline

public com.incogen.vibe.pipeline.Pipeline getPipeline
(javax.servlet.http.HttpServletRequest request)

Returns a previously set pipeline (that may have had default parameter changes). If there is none, it should
create a new instance using generatePipeline and set it to the pipeline attribute for the recipe. By default,
returns the same Pipeline as Recipe::generatePipeline.

getRecipeClassname

public java.lang.String getRecipeClassname()

Gets the classname of the Jython recipe. For example, "recipes.template_recipe.TemplateRecipe.RecipeImpl".
Therefore, this should be a standard java fully-qualified classname. Initially, this is set by the Web-Access
framework.

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpServletRequest

100

getRecipeDescription

public java.lang.String getRecipeDescription()

This retrieves the text that will appear in the Web Access Case list.

getRecipeFilepath

public java.lang.String getRecipeFilepath()

Returns the path to the Recipe's Jython file relative to the webapp's context. For example, for
recipes.template_recipe.TemplateRecipe.RecipeImpl you'll get returned: /
scripts/recipes/template_recipe/TemplateRecipe This is where the framework expects to find the input jsps,
help jsps, recipe script file, and any template.vpml files.

getRecipeKeyword

public java.lang.String getRecipeKeyword()

Retrieves the unique keyword associated with this recipe.

hasPostProcessed

public boolean hasPostProcessed()

Returns true if postprocess has been called on this run of the case.

postprocess

public void postprocess(com.incogen.vibe.pipeline.Pipeline pipeline)

This method gives the Recipe developer the opportunity to process the pipeline after its execution has been
completed. Typically, this may be when there is a time-consuming step that is required for the generation of a
report, and we'd like to go ahead and do it after our pipeline has completed execution. This will be called once
after the analysis pipeline has completed.

removeAttribute

public java.lang.String removeAttribute(java.lang.String name)

Removes a previously set attribute that was associated with this execution run.

101

setAttribute

public void setAttribute(java.lang.String name,
java.lang.String value)

Associates an arbitrary attribute name with it's value. For example, it might be useful to set an attribute in
DefaultRecipeImpl::loadPipelineModel that affects the view generated in DefaultRecipeImpl::generateView.

setAttributeMap

public void setAttributeMap(java.util.Map attributeMap)

Sets the map of attribute names and values associated with this case.

setPostProcessed

public void setPostProcessed(boolean tf)

Sets whether or not postprocess has been called on this run of the case.

setRecipeClassname

public void setRecipeClassname(java.lang.String classname)

Sets the classname of the Jython recipe. For example, "recipes.template_recipe.TemplateRecipe.RecipeImpl".
Therefore, this should be a standard java fully-qualified classname. Initially, this is set by the Web-Access
framework.

setRecipeDescription

public void setRecipeDescription(java.lang.String description)

This sets the text that will appear in the Web Access Case hierarchy.

setRecipeFilepath

public void setRecipeFilepath(java.lang.String filepath)

Sets the path to the Recipe's Jython file relative to the webapp's context. For example, for
recipes.template_recipe.TemplateRecipe.RecipeImpl you should define: /
scripts/recipes/template_recipe/TemplateRecipe This is where the framework expects to find the input jsps,
help jsps, recipe script file, and any template.vpml files.

102

setRecipeKeyword

public void setRecipeKeyword(java.lang.String recipeKeyword)

Sets the unique keyword associated with this recipe.

validatelnputForm

public void validatelnputForm
(com.incogen.vibe.server.webaccess.struts.GenericCaseForm genericCaseForm,
ActionErrors errors)

This method gives the user the opportunity to determine if the input values and parameter values are valid for
this case. If they're not, an appropriate error should be added to the ActionErrors argument.

com.incogen.vibe.server.webaccess.recipes
Class RecipeUtils
j ava.lang.Obj ect
I
+— com.incogen.vibe.server.webaccess.recipes.RecipeUtils

public class RecipeUtils
extends java.lang.Object

A set o f utility functions to be used by Recipe developers.

Author:
J. A. Hayes

Method Summary

static java
.lang.Strin

g
aetAbsoluteRecioeFileoath(iava.lana.Strina recioeClassname)

Returns the fu ll path to the R ecip e's Jython file .

static java
.util.List

aetlnoutLocationsForModule(com.incoaen.vibe.openapi.Module module)
Returns all the input loca tion s for the g iven m od ule.

static java
.util.List

aetOutputLocationsForModule(com.incoaen.vibe.ooenaoi.Module module
)

Returns all the output loca tion s for the g iven m od ule.

static java
.util.List

aetParameterNames(com.incoaen.vibe.openapi.Module module)
C o n v en ien ce m eth od for gettin g all the param eter nam es o f a VIBE M od u le .

static java
.lang.Strin

g

aetParameterValue(com.incoaen.vibe.openapi.Module module.
java.lang.String name)

C o n v en ien ce m eth od for gettin g a param eter va lu e from a VIBE M od u le .

103

static java
.util.List

aetParameterValueAsList(com.incoaen.vibe.openapi.Module module.
java.lang.String name)

Convenience method for getting a parameter value from a VIBE Module.
static com.
incogen.vib
e .gui.Param
eterSelecti

onList

aetParameterValueAsSelectionLis1(com.incoaen.vibe.openapi.Module m
odule, java.lang.String name)

Convenience method for getting a parameter value from a VIBE Module.

static java
.lang.Strin

g

aetRecipeDescription(iava.lana.Strina filepath)
Retrieves any text from the description file (Recipe.DESCRIPTION_FILE) in the directory

specified as argument.
static java
.lang.Strin

g
aetRecipeDescriptionBvClassname(iava.lana.Strina recioeClassname)

Retrieves the recipe description associated with the argument.
static java
.lang.Strin

g
aetRecipeFilepath(iava.lana.Strina recioeClassname)

Returns the path to the Recipe's Jython file relative to the webapp's context.
static java
.lang.Strin

g
aetRecipeKevword(iava.lana.Strina recipeClassname)

Retrieves the keyword (the directory name) of the recipe defined by the argument.
static bool

ean
havelnputData(iava.util.Map inputMap)

Checks the input Map for any data in a very primitive way.
static void setlnputLocationsForModule(com.incoaen.vibe.openapi.Module module,

java.util.List inputLocations)
Sets all the input locations for the given module using the types of the previous input

descriptors.
static void setOutputLocationsForModule(com.incoaen.vibe.openapi.Module module

, java.util.List outputLocations)
Sets all the output locations for the given module using the types of the previous input

descriptors.
static void setParameterValue(com.incoaen.vibe.openapi.Module module,

java.lang.String name, java.util.ArrayList value)
Convenience method for setting a parameter value on a VIBE Module.

static void setParameterValue(com.incoaen.vibe.openapi.Module module,
java.lang.String name, LabelValueBean value,
java.util.List list)

Convenience method for setting a parameter value on a VIBE Module.
static void setParameterValue(com.incoaen.vibe.openaoi.Module module,

java.lang.String name, java.lang.String value)
Convenience method for setting a parameter value on a VIBE Module.

static void setParameterValueAsSelectionList(com.incoaen.vibe.openapi.Module m
odule, java.lang.String name, java.util.ArrayList value)

Convenience method for setting a parameter value on a VIBE Module.
static void setParameterValueAsSelectionList(com.incoaen.vibe.openapi.Module m

odule, java.lang.String name, java.lang.String value)
Convenience method for setting a parameter value on a VIBE Module.

Methods inherited from class java.lang.Object

104

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Method Detail

getAbsoluteRecipeFilepath

public static final java.lang.String getAbsoluteRecipeFilepath(java.lang.String
recipeClassname)

Returns the full path to the Recipe's Jython file. For example, for
recipes.template_recipe.TemplateRecipe.RecipeImpl you'll get returned: /usr/local/vibe/jakarta-tomcat-
4.1.27/webapps/webaccess-server/scripts/recipes/template_recipe/TemplateRecipe This is where the framework
expects to find the input jsps, help jsps, recipe script file, and any template.vpml files.

getlnputLocationsForModule

public static final java.util.List getlnputLocationsForModule
(com.incogen.vibe.openapi.Module module)

Returns all the input locations for the given module.

Returns:
List - A list of String objects representing input locations

getOutputLocationsForModule

public static final java.util.List getOutputLocationsForModule
(com.incogen.vibe.openapi.Module module)

Returns all the output locations for the given module.

Returns:
List - A list of String objects representing output locations

getParameterNames

public static final java.util.List getParameterNames
(com.incogen.vibe.openapi.Module module)

Convenience method for getting all the parameter names of a VIBE Module. These can be used to retrieve the
parameter values from any of the getParameterValue methods.

getParameterV alue

public static final java.lang.String getParameterValue

105

(com.incogen.vibe.openapi.Module module, java.lang.String name)
Convenience method for getting a parameter value from a VIBE Module.

getParameterV alue AsList

public static final java.util.List getParameterValueAsList
(com.incogen.vibe.openapi.Module module, java.lang.String name)

Convenience method for getting a parameter value from a VIBE Module.

getParameterValueAsSelectionList

public static final com.incogen.vibe.gui.ParameterSelectionList
getParameterValueAsSelectionList(com.incogen.vibe.openapi.Module module,
java.lang.Stringname)

Convenience method for getting a parameter value from a VIBE Module.

getRecipeDescription

public static java.lang.String getRecipeDescription(java.lang.String filepath)

Retrieves any text from the description file (Recipe.DESCRIPTION_FILE) in the directory specified as
argument. Typically, it is easier to use the function
RecipeUtils::getRecipeDescriptionByClassname().

getRecipeDescriptionByClassname

public static java.lang.String getRecipeDescriptionByClassname(java.lang.String
recipeClassname)

Retrieves the recipe description associated with the argument.

Parameters:
recipeClassname - String - The recipeClassname in the form
recipes.some.location.Recipelmpl

getRecipeFilepath

public static final java.lang.String getRecipeFilepath(java.lang.String
recipeClassname)

Returns the path to the Recipe's Jython file relative to the webapp's context. For example, for
recipes.template_recipe.TemplateRecipe.Recipelmpl you'll get returned: /
scripts/recipes/template_recipe/TemplateRecipe This is where the framework expects to find the input jsps,
help jsps, recipe script file, and any template.vpml files.

106

getRecipeKeyword

public static final java.lang.String getRecipeKeyword(java.lang.String
recipeClassname)

Retrieves the keyword (the directory name) of the recipe defined by the argument.

havelnputData

public static final boolean havelnputData(java.util.Map inputMap)

Checks the input Map for any data in a very primitive way. If there is a FormFile as a value, it will check that
the file size is > 0. If there is a String it will verily that the string has length > 0. It doesn't know how to handle
other data types.

setlnputLocationsForModule

public static final void setlnputLocationsForModule
(com.incogen.vibe.openapi.Module module, java.util.List inputLocations)

Sets all the input locations for the given module using the types of the previous input descriptors.

setOutputLocationsForModule

public static final void setOutputLocationsForModule
(com.incogen.vibe.openapi.Module module, java.util.List outputLocations)

Sets all the output locations for the given module using the types of the previous input descriptors.

setParameterValue

public static final void setParameterValue(com.incogen.vibe.openapi.Module
module, java.lang.String name, java.util.ArrayListvalue)

Convenience method for setting a parameter value on a VIBE Module.

setParameterValue

public static final void setParameterValue(com.incogen.vibe.openapi.Module
module, java.lang.String name, LabelValueBean value, java.util.List list)

Convenience method for setting a parameter value on a VIBE Module.

setParameterValue

public static final void setParameterValue(com.incogen.vibe.openapi.Module
module, java.lang.String name, java.lang.Stringvalue)

107

Convenience method for setting a parameter value on a VIBE Module.

setParameterValueAsSelectionList

public static final void setParameterValueAsSelectionList
(com.incogen.vibe.openapi.Module module, java.lang.String name,
java.util.ArrayList value)

Convenience method for setting a parameter value on a VIBE Module.

setParameterValueAsSelectionList

public static final void setParameterValueAsSelectionList
(com.incogen.vibe.openapi.Module module, java.lang.String name,
java.lang.String value)

Convenience method for setting a parameter value on a VIBE Module.

com .incogen.vibe.server.webaccess.recipes
Class D efaultR ecipelm pl
j ava.lang.Obj ect
I
h— com.incoaen.vibe.server.webaccess.recipes.AbstractRecipe

I
+— com.incogen.vibe.server.webaccess.recipes.DefaultRecipelmpl

All Implemented Interfaces:
Recipe

Direct Known Subclasses:
DefaultCookbooklmpl

public class DefaultRecipelmpl
extends AbstractRecipe

Implements a complete set of Recipe functions. Developers should typically extend this class when implementing their
own cases. In particular, developers may want to override the following functions for the listed reasons:

• initializeForm - Override this function if you would like to initialize your basic input form for this case with
some parameters. It may be desirable to call DefaultRecipelmpl: : generatePipelineModel and
set it to the 'pipeline' class field so that you can determine what parameters are available with a module at
runtime.

• generatePipelineModel - This is a good place to programmatically define a pipeline if its generation DOES
NOT depend on any input parameters provided by the user. Also, whatever pipeline is implemented for this
function will be provided as a preview schematic of the execution.

• loadPipelineModel - This is a good place to programmatically define a pipeline if its generation DOES
depend on any input parameters provided by the user. You'll probably also want to call
DefaultRecipelmpl.loadPipelineModel(self, pipelineModel, genericCaseForm)
at the end of your code for this function to take advantage of any parameter mappings in the Jelly script.

• generateView - Override this function if you would like to change the report view of your case. This will be
called everytime we print out a case-specific report.

• postprocess - This method gives the Recipe developer the opportunity to process the pipeline after its

108

execution has been completed. Typically, this may be when there is a time-consuming step that is required for
the generation of a report, and we'd like to go ahead and do it after our pipeline has completed execution.
This will be called once after the analysis pipeline has completed.

Author:
J. A. Hayes

Field Summary

Fields inherited from class com.incogen.vibe.server.webaccess.recipesAbstractRecipe
attributes. pipeline. recipeClassname. recipeDescription. recipeFileoath.
recipeKevword

Fields inherited from interface com.incogen.vibe.server.webaccess.recipesRecipe
DESCRIPTION_FILE. HELP_JSP_FILE. INIT_PY_FILE. INPUT_JSP_FILE.
POST_PROCESSED_ATTR. RECIPE_FILE. RECIPE_FILENAME. TEMPLATE_VPML_FILE

Constructor Summary

DefaultRecipelmpl()
Creates a new instance of DefaultRecipelmpl

Method Summary
com.in
cogen.

vibe.pi
peline.
Pipelin

e

aeneratePipeline(i avax.servlet.http.HttpServletRequest request)
Generates a new pipeline from scratch.

com.in
cogen.

vibe.pi
peline.
Pipelin

e

aeneratePipelineModel()
Generates a new pipeline from scratch.

void aenerateView(com.incoaen.vibe.pipeline.Pipeline pipeline,
java.io.Writer writer)

By default, generates a generic report based on Module->Report in a portal view.

Action
Forward

aetDocumentationForward()
The default implementation of this searches for the Recipe.HELP_JSP_FILE in the same

directory as the recipe.

Action
Forward

aetExamDlelmDutView(ActionMappina maooina.
j avax.servlet.http.HttpServletRequest request,
j avax.servlet.http.HttpServletResponse response)

Returns the Input form with example input initialized to it.

http://http.HttpServletRequest
http://http.HttpServletRequest
http://http.HttpServletResponse

109

protect
ed

java.1
ang.

String

aetExampleText(iava.lang.String keyword)
Returns the text of a file from the recipe's directory with the pattern {source_keyword}.txt.

Action
Forward

aetlnputView(ActionMappino mapping.
j avax.servlet.http.HttpServletRequest request,
j avax.servlet.http.HttpServletResponse response)

By default, returns the Recipe.INPUT_JSP_FILE in the same directory as the recipe after calling
DefaultRecipeImpl::initializeForm.

void initializeExampleForm(iavax.servlet.htto.HttpServletReauest reauest.
com.incogen.vibe.server.webaccess.struts.GenericCaseForm form)

Attempts to find the source module for the pipeline and load the example text from a file using
the getExampleText method.

void initializeForm(iavax.servlet.http.HttpSession session,
com.incogen.vibe.server.webaccess.struts.GenericCaseForm form)

Allows a developer to initialize the basic input form for the recipe with any value.

void loadPipelineModel(com.incogen.vibe.pipeline.Pipeline pipelineModel,
com.incogen.vibe.server.webaccess.struts.GenericCaseForm genericCaseF
orm)

This function loads the pipelineModel with values from the GenericCaseForm (that came from
the form submission).

Methods inherited from class com.incogen.vihe.server.wehaccess.recipesAbstractRecipe

generatePreviewPipeline. getAttribute. getAttributeMap. getPipeline.
getRecipeClassname. getRecipeDescription. getRecipeFilepath. getRecipeKeyword.
hasPostProcessed. postprocess. removeAttribute. setAttribute. setAttributeMap.
setPostProcessed. setRecipeClassname. setRecipeDescription. setRecipeFilepath.
setRecipeKeyword. validatelnputForm

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

DefaultRecipelmpl

public DefaultRecipelmpl()

Creates a new instance of DefaultRecipelmpl

Method Detail

generatePipeline

public com.incogen.vibe.pipeline.Pipeline generatePipeline
(j avax.servlet.http.HttpServletRequest request)

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession
http://http.HttpServletRequest

110

Generates a new pipeline from scratch. By default, calls
DefaultRecipelmpl: : generatePipelineModel if the recipe's pipeline field is null. Then calls
DefaultRecipelmpl: : loadPipelineModel with the pipeline field.

Specified by:
generatePipeline in interface Recipe

Specified by:
generatePipeline in class AbstractRecipe

generatePipelineModel

public com.incogen.vibe.pipeline.Pipeline generatePipelineModel()

Generates a new pipeline from scratch. By default, this parses the pipeline from the filesystem in the recipe's
directory with the name whose value matches Recipe.TEMPLATE_VPML_FILE (probably 'template.vmpl')
specified location and returns that.

DEVELOPER'S NOTE: This is a good place to programmatically define a pipeline if its generation DOES
NOT depend on any input parameters provided by the user. Also, whatever pipeline is implemented for this
function will be provided as a preview schematic of the execution if generatePreviewPipeline isn't overridden
as well.

generateView

public void generateView(com.incogen.vibe.pipeline.Pipeline pipeline,
java.io.Writer writer)

By default, generates a generic report based on Module->Report in a portal view. Uses the script in
Recipe.DEFAULT_PIPELINE_TO_HTML_FORMATTER to generate the view.

DEVELOPER'S NOTE: Override this function if you would like to change the report view of your case.

Specified by:
generateView in interface Recipe

Specified by:
generateView in class AbstractRecipe

Parameters:
pipeline - Pipeline - The executed pipeline for this case.
writer - Writer - The writer that writes to this case's specific output report. Send either HTML or raw
text to this.

getDocumentationForward

public ActionForward getDocumentationForward()

The default implementation of this searches for the Recipe. HELP_JSP_FILE in the same directory as the
recipe.

Specified by:

I l l

getDocumentationForward in interface Recipe
Specified by:

getDocumentationForward in class AbstractRecipe

getExamplelnputView

public ActionForward getExamplelnputView(ActionMappingmapping,
j avax.servlet.http.HttpServletRequest

request,
javax.servlet.http.HttpServletResponse

response)

Returns the Input form with example input initialized to it. This is accomplished by first calling
DefaultRecipelmplrinitializeForm and then calling DefaultRecipelmplcinitializeExampleForm.

Specified by:
getExamplelnputView in interface Recipe

Specified by:
getExamplelnputView in class AbstractRecipe

getExampleText

protected java.lang.String getExampleText(java.lang.String keyword)

Returns the text of a file from the recipe's directory with the pattern {source_keyword}.txt. If the file cannot be
found there, it attempts to return the text from a file with the same pattern in AppConfiguration.getInstance().
getBasePath() + File.separator + WebAccessFileUtils.RECIPE_INPUT_EXAMPLES_DIR.

getlnputView

public ActionForward getlnputView(ActionMappingmapping,
j avax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse

response)

By default, returns the Recipe.INPUT_JSP_FILE in the same directory as the recipe after calling
DefaultRecipelmpl:: initial izeForm.

Specified by:
getlnputView in interface Recipe

Specified by:
getlnputView in class AbstractRecipe

initializeExampleForm

public void initializeExampleForm(javax.servlet.http.HttpServletRequest request,
com.incogen.vibe.server.webaccess.struts.Gene

ricCaseForm form)

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpServletRequest

112

Attempts to find the source module for the pipeline and load the example text from a file using the
getExampleText method. If a source module cannot be found, the method currently uses Sequence_nt by
default. See Def aultRecipelmpl: : getExampleText for a description of how the example text is
retrieved by default.

initializeForm

public void initializeForm(javax.servlet.http.HttpSession session,
com.incogen.vibe.server.webaccess.struts.GenericCase

Form form)

Allows a developer to initialize the basic input form for the recipe with any value.

DEVELOPER'S NOTE: Override this function if you would like to initialize your basic input form for this case
with some parameters. It may be desirable to call Def aultRecipelmpl: : generatePipelineModel
and set it to the 'pipeline' class field so that you can determine what parameters are available with a module at
runtime.

loadPipelineModel

public void loadPipelineModel(com.incogen.vibe.pipeline.Pipeline pipelineModel,
com.incogen.vibe.server.webaccess.struts.GenericC

aseForm genericCaseForm)

This function loads the pipelineModel with values from the GenericCaseForm (that came from the form
submission). By default, this executes the Jelly script at 'WebAccessFileUtils.FULL_CONFIGURATION_DIR
+ File.separator + PIPELINEMODEL_MAP_XML'.

DEVELOPER'S NOTE: This is a good place to programmatically define a pipeline if its generation DOES
depend on any input parameters provided by the user. You'll probably also want to call
DefaultRecipelmpl.loadPipelineModel(self, pipelineModel, genericCaseForm) at
the end o f your code for this function to take advantage of any parameter mappings in the Jelly script.

http://http.HttpSession

Bibliography

1: National Institute o f Standards and Technology Advanced Technology Program -
http://www.atp.nist.gov

2: INCOGEN - http://www.incogen.com

3: VIBE - Visual Integrated Bioinformatics Environment -
http://www.incogen.com/index.php?type=Product¶m=VIBE

4: Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local
alignment search tool. J. Mol. Biol. 215:403-10. http://www.ncbi.nih.gov/BLAST/

5: Thompson JD, Higgins DG, Gibson TJ. (1994) CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-80.
http://www.ebi.ac.uk/clustalw/

6: Eddy SR. (2001) HMMER: Profile hidden Markov models for biological sequence
analysis, http://hmmer.wustl.edu/

7: Perl - http://www.perl.com/

8: Stein, LD. (2003) Integrating Biological Databases. Nature Reviews Genetics 4:337-
345.

9: GeneCards: encyclopedia for genes, proteins and diseases. Weizmann Institute of
Science, Bioinformatics Unit and Genome Center (Rehovot, Israel), 1997.
http://bioinformatics.weizmann.ac.il/cards

10: Genome Analysis Pipeline - http://compbio.oml.gov/tools/pipeline/

11: GrailEXP - http://compbio.oml.gov/grailexp/

12: Genscan - http://genes.mit.edu/GENSCAN.html

13: Schuler GD. (1997) Sequence mapping by electronic PCR. Genome Res. 7(5):541-
50. http://www.ncbi.nlm.nih.gov/STS/PMID: 9149949

14: GeneLynx - http://www.genelynx.org

15: OmniGene - http://omnigene.sourceforge.net/

16: EJB - Enterprise Java Beans - http://java.sun.com/products/ejb/

113

http://www.atp.nist.gov
http://www.incogen.com
http://www.incogen.com/index.php?type=Product¶m=VIBE
http://www.ncbi.nih.gov/BLAST/
http://www.ebi.ac.uk/clustalw/
http://hmmer.wustl.edu/
http://www.perl.com/
http://bioinformatics.weizmann.ac.il/cards
http://compbio.oml.gov/tools/pipeline/
http://compbio.oml.gov/grailexp/
http://genes.mit.edu/GENSCAN.html
http://www.ncbi.nlm.nih.gov/STS/PMID
http://www.genelynx.org
http://omnigene.sourceforge.net/
http://java.sun.com/products/ejb/

114

17: JBoss - http://www.jboss.org/

18: Hoon S, Ratnapu KK, Chia J, Kumarasamy B, Juguang X, Clamp M, Stabenau A,
Potter S, Clarke L, Stupka E. (2003) Biopipe: A Flexible Framework for Protocol-Based
Bioinformatics Analysis. Genome Res. 13(8): 1904-15. http://www.biopipe.org PMID:
12869579

19: Ernst P, Glatting KH, Suhai S. (2003) A task framework for the web interface W2H.
Bioinformatics 19(2):278-82. http://www.w2h.dkfz-heidelberg.de/

20: Deutsches Krebsforschungszentrum, Heidelberg, Germany - http://genome.dkfz-
heidelberg.de/

21: European Bioinformatics Institute, Hinxton, UK - http://www.ebi.ac.uk/

22: AmiGO - http://www.godatabase.org/cgi-bin/go.cgi

23: Zuyderduyn SD, Jones SJM. (2003) A knowledge discovery object model API for
Java. BMC Bioinformatics 4(51): 1-13. http://www.biomedcentral.eom/1471-2105/4/51

24: Stevens RD, Robinson AJ, Goble CA. (2003) myGrid: personalised bioinformatics
on the information grid. Bioinformatics 19(l):i302-4. http://www.mygrid.org.uk/

25: Wilkinson MD, Links M. (2002) BioMOBY: An open source biological web
services proposal. Briefings in Bioinformatics 3(4):331-41. http://www.biomoby.org

26: The Tavema Project - http://tavema.sourceforge.net/

27: Freefluo - http://freefluo.sourceforge.net/

28: Web Services Flow Language (WSFL) Version 1.0 - http://www-
3. ibm .com/software/solutions/webservices/pdf/W S FL .pdf

29: Liao, S. (2003) Knowledge management technologies and applications - literature
review from 1995 to 2002. Expert Systems with Applications 25(2): 155-64.

30: Yan H, Jiang Y, Zheng J, Fu B, Shouzhong X, Peng C. (2004) The internet-based
knowledge acquisition and management method to construct large-scale distributed
medical expert systems. Computer Methods and Programs in Biomedicine 74:1-10.

31: Leake DB. Case-Based Reasoning: Experiences, Lessons, and Future Directions.
AAAI Press; 1996. http://www.cs.indiana.edu/~leake/papers/a-96-book.html

32: Watson I. Applying Case-Based Reasoning : Techniques for Enterprise Systems.
Morgan Kaufmann; 1997.

33: Schmidt R, Montani S, Bellazzi R, Portinale L, Gierl L. (2001) Case-Based
Reasoning for medical knowledge-based systems. International Journal o f Medical
Informatics 64:355-67.

34: Apache Jakarta Stmts - http://jakarta.apache.org/stmts/

35: Apache Forrest - http://xml.apache.org/forrest/

http://www.jboss.org/
http://www.biopipe.org
http://www.w2h.dkfz-heidelberg.de/
http://genome.dkfz-
http://www.ebi.ac.uk/
http://www.godatabase.org/cgi-bin/go.cgi
http://www.biomedcentral.eom/1471-2105/4/51
http://www.mygrid.org.uk/
http://www.biomoby.org
http://tavema.sourceforge.net/
http://freefluo.sourceforge.net/
http://www-
http://www.cs.indiana.edu/~leake/papers/a-96-book.html
http://jakarta.apache.org/stmts/
http://xml.apache.org/forrest/

115

36: Apache Cocoon - http://cocoon.apache.org/

37: Java Server Pages (JSP) - http://java.sun.com/products/jsp/

38: World Wide Web Consortium SVG Resources -
http: / /www. w3. org / Graphics/S V G/Overview. htm8

39: XSLT - XSL Transformations - http://www.w3.org/TR/xslt

40: World Wide Web Consortium (W3C) - http://www.w3.org

41: Graphviz - open source graph drawing software -
http://www.research.att.com/sw/tools/graphviz/

42: Extensible Stylesheet Language Family (XSL) - http://www.w3.org/Style/XSL/

43: Adobe SVG Viewer - http://www.adobe.com/svg/

44: Hypertext Transfer Protocol - http://www.w3.org/Protocols/

45: VIBE Software Development Kit -
http: / / www. incogen. com/public_documents/vibe/sdk- dev/doc s/index, html

46: Jython - http://www.jython.org

47: Python - http://www.python.org/

48: Jelly - Executable XML - http://jakarta.apache.org/commons/jelly/

49: Matlab - http://www.mathworks.com/

50: R - http://www.r-project.org/

51: Matlab Central File Exchange -
http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do

52: CRAN - Comprehensive R Archive Network - http://cran.r-project.org/

53: TESS - Transcription Element search - http://www.cbil.upenn.edu/tess/

54: Matys V, Fricke E, Geffers R, GoBling E, Haubrock M, Hehl R, Homischer K,
Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael
H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E. (2003)
TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31
(l):374-8. http://transfac.gbf.de/TRANSFAC/PMID: 12520026

55: Pruitt KD, Tatusova T, Maglott DR. (2003) NCBI Reference Sequence Project:
update and current status. Nucleic Acids Res. 31(l):34-7.
http://www.ncbi.nih.gov/RefSeq/ PMID: 12519942

56: ABI DNA Sequencers - http://www.appliedbiosystems.com/

57: Ewing B, Green P. (1998) Base-calling of automated sequencer traces using phred.
II. Error probabilities. Genome Research 8(3): 186-94.
http://www.phrap.com/phred/index.htm

http://cocoon.apache.org/
http://java.sun.com/products/jsp/
http://www.w3.org/TR/xslt
http://www.w3.org
http://www.research.att.com/sw/tools/graphviz/
http://www.w3.org/Style/XSL/
http://www.adobe.com/svg/
http://www.w3.org/Protocols/
http://www.jython.org
http://www.python.org/
http://jakarta.apache.org/commons/jelly/
http://www.mathworks.com/
http://www.r-project.org/
http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do
http://cran.r-project.org/
http://www.cbil.upenn.edu/tess/
http://transfac.gbf.de/TRANSFAC/PMID
http://www.ncbi.nih.gov/RefSeq/
http://www.appliedbiosystems.com/
http://www.phrap.com/phred/index.htm

116

58: Ewing B, Hillier L, Wendl MC, Green P. (1998) Base-calling of automated
sequencer traces using phred. I. Accuracy assessment. Genome Research 8(3): 175-85.
http: // www.phrap. com/phred/index. htm

59: Walker DR, Koonin EV. (1997) SEALS: A System for Easy Analysis of Lots of
Sequences. Intelligent Systems for Molecular Biology 5:333-9.
http://www.ncbi.nlm.nih.gov/CBBresearchAValker/SEALS/index.html

60: phrap - http://www.phrap.org

61: Grace - http://plasma-gate.weizmann.ac.il/Grace/

62: Meyer D, Leisch F, Hothom T, Homik K. (2002) StatDataML: An XML format for
statistical data. Compstat 2002 - Proceedings in Computational Statistics. 545-50.
Physika Verlag, Heidelberg, Germany, 2002. ISBN 3-7908-1517-9.

63: Meyer D, Leisch F, Hothom T, Homik K. (2003) StatDataML: An XML format for
statistical data. Computational Statistics. Forthcoming:,
http: // www. omegahat. org/S tatDataML/

64: Trosset MW. Formulations of Multidimensional Scaling for Cluster Analysis and
Classification. URL: http://math.wm.edu/~trosset/Research/MDS/adc.ps.gz.

65: S-Plus - http://www.insightful.com/products/splus/default.asp

66: Trosset MW. (2002) Visualizing Correlation. URL:
http://math.wm.edu/~trosset/Research/MDS/vc.pdf.

67: Wiki - http://wiki.org/wiki.cgi7WhatIsWiki

68: Java Server Faces - http://java.sun.com/j2ee/javaserverfaces/index.jsp

69: Velocity - http://jakarta.apache.org/velocity/

70: Octave - http://www.octave.org/

71: MPI - Message Passing Interface - http://www-unix.mcs.anl.gov/mpi/

72: Salzberg S, Delcher A, Kasif S, White O. (1998) Microbial gene identification using
interpolated Markov models. Nucleic Acids Research 26(2):544-8.

73: Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. (1999) Improved microbial
gene identification with GLIMMER. Nucleic Acids Research 27(23):4636-41.

74: MEME - Motif database search - http://meme.sdsc.edu/meme/website/intro.html

75: RepeatMasker - http://repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker

76: Kanehisa M, Goto S, Kawashima S, Nakaya A. (2002) The KEGG databases at
GenomeNet. Nucleic Acids Research 30(l):42-46. http://www.genome.ad.jp/kegg/
PMID: 11752249

77: Javadoc - http://java.sun.com/j2se/javadoc/

http://www.phrap
http://www.ncbi.nlm.nih.gov/CBBresearchAValker/SEALS/index.html
http://www.phrap.org
http://plasma-gate.weizmann.ac.il/Grace/
http://math.wm.edu/~trosset/Research/MDS/adc.ps.gz
http://www.insightful.com/products/splus/default.asp
http://math.wm.edu/~trosset/Research/MDS/vc.pdf
http://wiki.org/wiki.cgi7WhatIsWiki
http://java.sun.com/j2ee/javaserverfaces/index.jsp
http://jakarta.apache.org/velocity/
http://www.octave.org/
http://www-unix.mcs.anl.gov/mpi/
http://meme.sdsc.edu/meme/website/intro.html
http://repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker
http://www.genome.ad.jp/kegg/
http://java.sun.com/j2se/javadoc/

117

VITA

John Ashley Hayes

The author was bom in Lexington, Kentucky on April 25, 1979. He worked at

INCOGEN, Inc. as a software engineer beginning in May 1999 while attending college.

He then received a Bachelor of Science in Biosystems Engineering with an emphasis in

Biotechnology from Clemson University in May, 2001. After completing his degree, he

continued to work full-time at INCOGEN, Inc. He moved with the company to Virginia

in Fall 2001. In the Fall of 2002, he entered The College of William & Mary's Applied

Science graduate program.

	A Framework for Implementing Bioinformatics Knowledge-Exploration Systems
	Recommended Citation

	tmp.1539892610.pdf._dFau

