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ABSTRACT

Energy exchanges between the atmosphere and oceans involve several complicated 
processes: shortwave (SW) and longwave (LW) radiative processes, sea surface turbu
lent latent heat and sensible heat transports, and rain induced sensible heat fluxes. This

study investigates these flux components over tropical oceans (30°N to 30°S) using data 
collected from the Tropical Rainfall Measuring Mission (TRMM) which is equipped with 
five sensors: Visible and Infrared Scanner (VIRS), Clouds and Earth’s Radiant Energy 
System (CERES), TRMM Microwave Imager (TMI), Precipitation Radar (PR), and Light
ing Imaging Sensor (LIS). The data from VIRS, CERES, and TMI instruments are used in 
this study. The LW and SW net fluxes are estimated by the CERES project with an accu-

9 9racy of ~2 and ~3W/m at the top of atmosphere and ~8 and ~15W/m at sea surfaces, 
respectively.

The turbulent latent and sensible heat fluxes from oceans to the atmosphere are calcu
lated from TMI retrievals of near sea surface wind speeds, air humidity, and temperature 
formulae derived from Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean- 
Atmosphere Response Experiment (COARE). The latent and sensible heat fluxes have 
been compared to those of the Goddard Satellite-based Surface Turbulent Fluxes version 2 
(GSSTF-2) product derived from Special Sensor Microwave/Image (SSM/I) data col
lected by Defense Meteorological Satellite Program (DMSP) satellites. The results show 
that the monthly averaged differences for the whole tropical oceans range from -7 to 2W/

m2 and -6 to -8W/m2 for latent heat and sensible heat for the first eight months of 1998. 
The sensible heat from TMI are lower than those from GSSTF-2 across all compared lati

tudes which may be due to a positive bias of 7W/m2 in the GSSTF-2. The TRMM satel-
9 9lite derived turbulent fluxes are about 1.9W/m and 1.64W/m lower for latent heat and 

sensible heat fluxes when comparing with in-situ ship measurements. Rain droplets are 
the condensation of vapor into water or ice at the upper troposphere. They are usually 
cooler than sea surface temperature, therefore have cooling effects on the surface. The 
rain induced sensible heat fluxes are estimated from the TMI rainfall Profiling data.

Combining all these fluxes, the zonal averaged Net Surface Fluxes (NSF) from oceans to 

the atmosphere varies from -100 to 100W/m2 over tropical oceans. From the equator 

toward 30° the NSF stays at approximate 100W/m2 in the summer hemisphere and gradu

ally drops from 100 to-100W/m2 in the winter hemisphere. The positive tropical total 
NSF is generally balanced by ocean heat storage in term of mixing layer temperature 
change, the loss of fluxes in higher latitudes, and oceanic vertical heat transports.

x
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INTRODUCTION

The Tropical Rainfall Measuring Mission (TRMM) is the first satellite to carry all 

the instruments needed to estimate the major radiation and turbulent fluxes at sea surface, 

top-of-atmosphere (TOA), and within atmosphere simultaneously. The net surface 

shortwave flux is the heat source for ocean surface, and the rest (net longwave, latent 

heat, and sensible heat fluxes) are generally heat losses from sea surface to the 

atmosphere in the Tropics. These fluxes are critical parameters for coupled ocean- 

atmosphere circulation models. Due to the processing orbit, TRMM provides a unique 

opportunity to examine the diumal variations of radiation budget, latent and sensible heat 

fluxes, and air-sea interactions.

Shortwave (SW) radiation from the Sun is the heat source for the Earth. In 

response, the Earth emits thermal radiation, mostly in the infrared part of the spectrum 

back to space. The balance between incoming and outgoing energy is the Earth’s 

Radiation Budget (ERB). Thick low clouds reflect more SW radiation back to space than 

the dark surface, and emit longwave (LW) radiation like a surface. Thus, they have 

cooling effects on the climate. On the other hand, high thin clouds allow most solar 

radiation to pass through and trap significant amounts of the emitted LW flux, therefore 

they have warming effects on the Earth. Since cloud optical and physical properties, such 

as cloud height, thickness, temperature, fractional coverage, phase, effective particle size, 

and optical depth greatly affect the ERB, to accurately calculate the surface flux requires 

a detailed knowledge of how clouds absorb and reflect incoming SW solar energy, as well 

as how they absorb and reemit outgoing LW energy. In order to obtain radiative fluxes 

under both clear and cloud conditions, the International Satellite Cloud Climatology 

Project (ISCCP) uses a two channel threshold cloud detection technique (Rossow, 1990, 

1995; Zhang, 1995) plus cloud optical depth and particle size to calculate radiative fluxes 

based on data collected from geostationary and polar orbital satellites. The Cloud and 

Earth’s Radiant Energy System (CERES) project uses all five narrowband channels of
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Visible and Infrared Scanner (VIRS) to derive the cloud properties. The details about the 

techniques are described in later sections and in the papers of Minins (1995, 1997, 1998, 

2001, 2002). The three broadband channels of CERES instrument are designed to 

provide the most accurate estimates of solar and thermal infrared radiative fluxes (SW 

and LW) at the surface, TO A, and several levels within the atmosphere (Wielicki, et al., 

1996) by considering cloud and atmosphere effects. Simultaneous measurements of 

cloud properties and broadband radiative fluxes provide the basis for accurate modeling 

of both cloud and radiation processes in climate models.

Besides radiative energy exchanges between the sea and atmosphere interface, there 

are turbulent heat fluxes, and rain-induced sensible heat transports. Because of the 

temperature, humidity, and wind stress difference between the sea skin and the 

atmosphere above the sea surface, turbulent processes are produced within the air-sea 

interface. The turbulence continually mixes warm humid air parcels at the sea skin with 

cool dryer air parcels from the upper atmosphere layers. As a result, both moisture and 

sensible heat fluxes are transported from the sea surface into the atmosphere. This 

dynamics caused by the humidity and temperature difference between the air and sea 

surface is enhanced by near sea surface wind speed and the wind induced sea surface 

roughness. Since the moisture within the humid air parcel is originally evaporated from 

the sea surface water, the moisture (or water vapor) flux is also called latent heat flux, an 

energy measure of the thermodynamic phase change from water to vapor. Direct 

turbulent fluxes can be observed by measuring the time and space series of turbulent 

velocity in vertical direction and the variables of interest. Since it is difficult, expensive, 

and impractical to measure the required variables over large horizontal, vertical, and 

temporal scales, the bulk formulae based on applications of the Monin-Obukhov 

similarity theory (MOST) are the alternate approach. MOST is based on the statistical 

average of small-scale heat transports by turbulence. The bulk algorithm used in this 

study is developed by Fairall et al. (1996) and based on the Tropical Ocean Global 

Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE). In 

the Tropics, the latent heat flux is comparable to net surface SW flux, and the sensible
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heat budget is about one order of magnitude smaller than the latent heat budget.

Three-fourth of the weather-producing atmospheric heating energy comes from the 

release of the latent heat of condensation in the process of precipitation (Kummerow, 

1998). The energy released by precipitation affects the entire global circulation. An 

estimated two-thirds of the global precipitation falls in the Tropics. The variability of 

tropical rainfall affects the lives and economics of more than half of the world’s 

population. The cumulus heating is one of the principal driver of regional and global- 

scale atmospheric circulations. However, the large spatial and temporal variability of 

rainfall systems poses a major challenge to estimate total global rainfall. Previous rainfall 

measurements are incomplete in their global coverage and inadequate to describe the 

large variations that occur in the Tropics. Before TRMM, there was a great degree of 

uncertainty in rainfall estimates. The quantitative estimates of tropical precipitation vary 

by as much as 100% (Kummerow, 1998). These measurements cannot capture the 

significant structural variations that occur in heating and cooling profiles between 

convective and stratiform rainfall regions. The primary goals of TRMM are the intensive 

and global measurements of tropical rainfall rates and the use of an active microwave 

instrument, Precipitation Radar, to calibrate passive instruments in precipitation 

estimations. TRMM, a flying rain gauge, provides calibration or adjustment to the rain 

estimates inferred from other satellite measurements. Since the TRMM launch, the 

relative errors of precipitation rates in gridded monthly means are significantly reduced to 

about 20%. Rain is episodical and violent in the Tropics. The largest hourly rain rate 

observed by the ship R/V Moana Wave during the TOGA COARE intensive observation 

period (IOP) is 1.5 x 10‘2kg /m2s (Gosnell, 1995), which induces a sensible heat of 

~250W/m2, a non-negligible value. But its amount is about two orders smaller than the 

latent heat flux after averaging into monthly and gridded means.

There have been many attempts by scientists to determine the surface flux of 

radiation, moisture, sensible heat, and momentum at the air-sea interface. For example, 

Gautier et al. (1988) attempted to calculate the surface total heat budget over Indian ocean 

during the 1979 monsoon. Liu at el. (1988, 1990) retrieved latent heat fluxes for tropical
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Pacific ocean from 1980 to 1983. Michael and Nunez (1991) estimated monthly mean 

values of radiative and turbulent heat fluxes at the ocean surface near John Brewer Reef, 

Australia from June 1, 1985 to April 11, 1986. Rain induced sensible heat in tropical 

oceans was investigated by Gosnell et al. (1995). Clayson and Curry (1996) determined 

the surface turbulent fluxes and Schule et al. (1997) evaluated daily mean latent heat over 

TOGA COARE region, respectively. Chou et al. (1998) calculated the radiation budget 

over the Pacific warm pool for the TOGA COARE. Curry et al. (1999) determined all the 

flux components for TOGA COARE. Mahrt (2001) calculated area-averaged turbulent 

fluxes using data from Boreal Ecosystem-Atmosphere Study. All the above attempts 

were either limited to small regions or to certain components of the heat fluxes. Many of 

these studies needed to assemble data from different sources, so that the temporal and 

spatial mismatches could impair the accuracy.

Global scale radiation budget has been estimated by ISCCP, Earth Radiation Budget 

Experiment (ERBE), Surface Radiation Budget (SRB) project in association with the 

World Climate Research Programme/Global Energy and Water Cycle Experiment 

(WCRP/GEWEX), and CERES projects. ISCCP has computed the surface radiation 

fluxes every 3 hours in 2.5° by 2.5° grid boxes from 1983 to 2001 (Rossow and Zhang, 

1995) using data collected from geostationary satellites (METEOSAT, GOES, GMS, 

INS AT) and NOAA polar orbiters (NOAA-8 to NOAA-14). ERBE provided global top- 

of-atmosphere (TOA) radiation fluxes and albedos using data from the Earth Radiation 

Budget Satellite (ERBS), NOAA-9, and NOAA-10 from 1984 through 1999. The SRB 

project at NASA Langley produces surface and TOA radiation budget in 1° by 1° grids 

from 1984 through 1993 (Stackhouse et al. 2000) using ISCCP and ERBE data. CERES 

measures the radiation at TOA, and calculates LW and SW heating and cooling rates at 

several levels within the atmosphere and at the Earth’s surface using data from TRMM, 

Terra, and Aqua satellites since 1998.

Currently, there are several global turbulent flux data sets available. Five of them are 

derived from satellite measurements and two of them are from atmospheric model 

reanalyses. The five satellite estimates include the Hamburg Ocean Atmosphere
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Parameters from Satellite (HOAPS), Japanese Ocean Flux data set with Remote sensing 

Observations (J-OFURO), Goddard Satellite-based Surface Turbulent Fluxes (GSSTF-2), 

Artificial Neural Network (ANN) estimated turbulent fluxes, and TRMM Microwave 

Imager (TMI) estimated Turbulent Fluxes in this study (hereinafter called TMITF). They 

all use Special Sensor Microwave/Imager (SSM/I) measurements and daily or weekly 

mean of surface temperature except TMITF which uses TMI measurements and its 

retrieval of temperature and wind speed. The two model reanalyses are the National 

Center for Environmental Prediction (NCEP) reanalysis and the European Centre for 

Medium-Range Weather Forecasts (ECMWF) reanalysis.

The HOAPS uses data collected from SSM/I and AVHRR to estimate moisture 

fluxes. The sea surface temperature used was daily mean products from NOAA/NASA 

Ocean pathfinder. This data set covers global oceans with three different spatial 

resolutions (0.5°, 1.0°, and 2.5°) and three different time resolutions (day, pentad, and 

month) from 1987 to 1997. The J-OFURO data set (Kubota et al., 2002) calculates 

turbulent heat fluxes from 1991 to 1995 for the whole globe using data from SSM/I. 

Their temporal and spatial resolutions are monthly and 1° by 1° grids, respectively. J- 

OFURO uses the climatologic monthly means of pressure and air density, weekly gridded 

means of sea surface temperature provided by NCEP, wind speed from Wentz (1997), 

and the Qa algorithm from Schluessel et al. (1995) to calculate latent and sensible heat 

fluxes. The GSSTF-2 data set also uses Wentz algorithm for wind speed, but the 

temperatures at sea surface and 2-meter height and surface pressure are daily mean values 

from NCEP, and the Qa algorithm is from Schulz et al. (1993). This product consists of 

1° by 1° gridded daily means and covers global oceans from July 1987 to December 2000 

(Chou et al., 1998; 2003). The ANN turbulent heat flux product from the Institute for 

Computational Earth System Science (ICESS) at University of California Santa Barbara 

(Jones et al., 1999) is derived from a combination of sea surface temperature from NCEP 

reanalysis, total precipitable water and surface wind speeds from SSM/I, and surface 

specific humidity and air temperature from an artificial intelligence approach. This 

product is currently available over the tropical Pacific basin (110°E-290°E; 30° S- 30° N)
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for the years 1998 through 2000. The main characteristics are daily, pentads, and 

monthly temporal resolutions in 0.25° by 0.25° spatial grids.

Significant differences are found among these global scale data sets (Kubota et al., 

2002; Chou et al., 2003) and between reanalysis and in-situ measurements (Josey, 2001; 

Moore et al., 2002). The NCEP and ECMWF reanalysis data sets overestimate latent heat 

flux when compared to ship measurements at Northeast Atlantic (Kubota et al., 2002; 

Josey 2001). NCEP under-estimates the surface air temperature (Smith et al., 2001; 

Wang and McPhaden, 2001; Chou 2003), which causes GSSTF-2 to over-estimate 

sensible heat by 7W/m2. Studying the HOAPS data set, Schluessel al et. (1995) and 

Schulz et al. (1997) found that the HOAPS estimates usually have ~30W/m2 uncertainty 

when compared with instantaneous in-situ measurements. Chou et al. (2003) also 

suggested that HOAPS under-estimates latent heat flux by 20-50W/m in the Tropics. 

The cause is due to an under-estimation of wind speed and the specific humidity 

difference between sea skin and 10-m air. The sea surface turbulent flux (SEAFLUX) 

project has been established to conduct inter-comparison studies among different flux 

algorithms, available turbulent flux data sets, and input parameters (Curry et al., 2003).

Daily mean is the smallest temporal resolution for the above global data sets. The 

unique feature of the TMITF is its use of concurrent wind speed, humidity, and 

temperature to calculate turbulent fluxes and to allow the study of diumal variations and 

local events. The advantages of simultaneously retrieving the major components of sea 

surface fluxes using TRMM data include better spatial and temporal collocation and thus 

more accurate net surface flux estimates. TMITF covers tropical oceans (180°E-180° W, 

30° S-30° N) from January to August 1998 and from June to August 1999, and it will be 

extended to cover from January 1998 to December 2001 in the near future. The basic 

temporal and spatial resolutions are hourly and 1° by 1° grids, respectively. They can be 

averaged into daily, monthly, and seasonal averages by users. Along with TMITF 

turbulent fluxes, SW and LW fluxes at TOA and surface were calculated from CERES 

and VIRS measurements from January to August 1998. Currently only TRMM provides 

the opportunity to calculate both radiation and moisture fluxes over oceans using



instruments onboard the same satellite. Although TRMM is designed primarily for 

precipitation research, this study uses it’s measurements to retrieve net surface fluxes and 

provides hourly, daily, and monthly gridded and zonal means for the major components 

of the surface heat fluxes over tropical oceans. Chapter 2 describes the instruments and 

data sets used. Chapter 3 explains the retrieval algorithms and sensitivity test. Chapter 4 

compares the results with ship measurements and satellite derived GSSTF-2 data set. 

Chapter 5 discusses the results of net surface flux budget including all the major heat 

components. Their geographical distributions and diumal variations are addressed. 

Finally, the conclusions are given in chapter 6. For reference, some basic information 

about TRMM and its instruments are given in appendix A.
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CHAPTER 2 

INSTRUMENTS and DATA SETS

TRMM is a joint project between the US National Aeronautics and Space 

Administration (NASA) and the National Space Development Agency of Japan to 

measure the tropical rainfall distribution (Kummerow et al. 1998). The TRMM satellite 

was launched from Tanegashima Island on November 27, 1997, and has been flying in a 

precessing orbit with a 35° inclination at approximately 350km altitude. The precessing 

orbit allows the satellite to observe the entire diumal cycle in 46 days at each position 

over the Tropics, which provides a unique opportunity to examine the diumal variations 

of radiative fields and air-sea interactions. The TRMM satellite is equipped with five 

sensors: Visible and Infrared Scanner (VIRS), Clouds and Earth’s Radiant Energy System 

(CERES), TRMM Microwave Imager (TMI), Precipitation Radar (PR), and Lighting 

Imaging Sensor (LIS). TMI and VIRS instruments have been working well since TRMM 

launched in November 1997. The CERES instmment on TRMM was turned off after 

August 1998 and was turned back on in March 2000 to overlap with the CERES 

instruments onboard the Terra satellite. This study uses the data collected from the VIRS, 

CERES, and TMI instruments to estimate radiation (SW and LW) and turbulent (latent 

and sensible) fluxes for the first eight months of 1998. The spectral characteristics for 

these three instruments are listed in Table 1.

2.1 VIRS

VIRS is a five-channel (0.63, 1.6, 3.75, 10.8, and 12.0pm) narrowband imaging 

spectral radiometer with a 2km nadir field-of-view (FOV) and a swath width of ~720km. 

It senses radiation coming up from the Earth at the five wavelengths. The shortwave 

channels at 0.63, 1.61, and 3.75pm wavelength measure Earth-reflected solar with some 

Earth-emitted radiation. The two infrared channels at 10.8 and 12.0pm wavelength 

measure Earth-emitted thermal radiation. With the correction for atmosphere gas
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absorption, the temperature measurements correspond primarily to the emission of the 

earth surface for clear skies, and tend to be the cloud top temperatures under cloudy 

conditions.

Since cloud properties have a significant effect on radiative fluxes, the CERES 

project uses the VIRS data to derive cloud mask (clear or cloudy), cloud temperature, 

height, thickness, pressure, layering, optical depth, emissivity, particle phase (water or 

ice) and effective size, and liquid/ice water path (Minnis et al., 1995, 1997, 1998). 

Different techniques are applied to day and night time measurements separately. The 

visible infrared solar-infrared split-window technique (VISST) is used during day time, 

and the solar-infrared infrared split-window technique (SIST) is used during night time 

(Minnis et al., 2002). Ancillary data, skin temperature and temperature and humidity 

profiles, from ECMWF reanalyses are used in the derivation process. These cloud 

parameters are collocated and convolved over the CERES FOV (10-20 km) using CERES 

point spread function (Smith, 1994).

2.2 CERES

The CERES instrument is a three-channel broadband radiometer with SW channel of 

0.3-5 pm, window channel of 8-12pm, and total channel of 0.3-200pm (Lee et al.1996). 

It measures the radiation from ultraviolet through far-infrared spectral regions and 

provides estimates of global radiation energy budget at TOA. The SW detector measures 

Earth-reflected solar and Earth-emitted infrared radiation, while the total channel detects 

both solar and terrestrial radiation. The LW measurements are obtained from the 

differences between the total and SW channels. The first CERES instrument was 

launched onboard the TRMM spacecraft in November 1997. After that, four more 

CERES instruments were launched into polar orbits: two on board the Earth Observing 

System (EOS) Terra satellite launched on December 18, 1999, and the other two on board 

EOS Aqua satellite launched on May 4, 2002. The CERES instrument has a 10km nadir 

FOV for TRMM, and 20 km FOV for Terra and Aqua. Follow-up CERES satellite 

missions are planned to create a continuous 15-year history of highly accurate radiation
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energy budget and cloud data for enhanced climate analyses.

Using information from the VIRS measurements on the TRMM spacecraft and the 

Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and 

Aqua spacecraft, the CERES project determines various cloud properties. MODIS, with 

36 spectral channels, is an expanded version for VIRS. These properties and external 

ancillary temperature and moisture profiles from ECMWF are critical for calculating the 

surface radiation fluxes. Besides direct measurements of reflected SW, emitted LW, and 

thermal window radiances, estimates of SW and LW fluxes at TOA and surface, and 

observational geometries, the Single Scanner Footprint (SSF) data products of the 

CERES project also contain temporally and spatially coincident VIRS or MODIS imager- 

based radiances and their derived cloud properties. The flux parameters at the surface 

include upward, downward, and net SW and LW radiative fluxes. Each SSF file contains 

information for a single hour and a single CERES instrument mounted on one satellite. 

The combined multiple instrument/satellite data are available in the monthly average 

products: Synoptic Radiative fluxes and Clouds (SYN), and Regional, Zonal, and Global 

Averages (AVG/ZAVG). CERES data products range from a single CERES FOV at 

-10km  to 1 degree gridded data over the globe. Time scales range from instantaneous 

radiative fluxes, 3 hourly averages, to daily and monthly averages. For more information, 

visit the CERES web site at http://asd-www.larc.nasa.gov/ceres.

2.3 TMI

Surface temperature, air humidity, and wind speed are required parameters for use of 

the bulk formula to estimate turbulent latent and sensible heat fluxes. Although infrared 

measurements can be used to estimate surface temperature for clear skies, they cannot 

provide these values under cloudy conditions. Further more, wind speed and air humidity 

are usually estimated through microwave sensors. Three kinds of microwave sensors 

(scatterometer, altimeter, and radiometer) are frequently used to measure wind speeds

http://asd-www.larc.nasa.gov/ceres
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over oceans. TMI is a nine-channel passive microwave radiometer with vertically and 

horizontally polarized channels at frequencies 10.65, 19.35, 37, and 85.5GHz, and one 

vertically polarized channel at 21.3GHz. The spatial resolutions range from 7.2km by 

4.4km to 63.2km by 38.2km, depending on wavelengths (see table 1). The conical scan 

at -53° incident angle of TMI results a swath width of approximately 760 km. Brightness 

temperature (BT) measurements are provided at 104 scan positions for the low frequency 

channels and at 208 scan positions for the highest frequency (85.5GHz) channels. The 

BT values measured by these nine channels are used to retrieve sea surface temperature 

(Ts), near-surface air humidity (Qa), and wind speed (WS) in this study. These 

parameters are then used to calculate the turbulent latent heat and sensible heat fluxes. 

The TMI data are stored and distributed at the Goddard Distributed Active Archive 

Center (DAAC). The data used in this study are level 1, orbital BT measurements.

Table 1. Spectral characteristics and size of nadir field-of-view for VIRS, CERES, and 
TMI

VIRS Wave
length

0.63 pm 1.6 pm 3.75 pm 10.8 pm 12.0 pm

Nadir FOV 2 km 2 km 2 km 2 km 2 km
CERES Wave

length
0.3-5 pm 8-12 pm 0.3-50 pm

Nadir FOV 10 km 10 km 10 km
TMI Wave 10.65 19.35 21.30 37.00 85.5

length GHz GHz GHz GHz GHz
Nadir FOV 63.2 km x 

38.2 km
30.4 km

X

18.4 km

27.2 km x 
16.5 km

16.0 km
X

9.7 km

7.2 km
X

4.4 km

2.4 Rainfall Data Set

Latent heat released by the phase changes from water vapor to liquid water or ice is 

the most important contribution to the heating of atmosphere. Rainfall is related to the 

latent heat transported from the surface to the atmosphere. Rainfall amounts directly 

measure the heating of the atmosphere. This heating is an energy source of the global
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atmospheric circulation. Scarcity of quantitative precipitation information has been a 

bottleneck for atmospheric science. The primary rainfall instruments on TRMM are TMI, 

PR, and VIRS. The combination of satellite passive (TMI and VIRS) and active (PR) 

sensors provides critical information regarding the three-dimensional distributions of 

precipitation and heating in the Tropics. The frequency dependence of electromagnetic 

properties of cloud and precipitation particles allows the passive microwave radiometers 

to sound the different depths in a precipitation cloud, but the height assignment of cloud 

properties is not very specific. On the other hand, active microwave sensors provide 

specific height information based upon the time delay of the backscattered radar 

radiation. VIRS retrieves cloud-top temperatures and structures to complement the other 

two sensors. By using these three instruments, TRMM obtains the first detailed and 

comprehensive rainfall data sets. The data used in this study are the level 2 TMI Profiling 

data. They have vertical hydrometer profiles and surface rain rates on a pixel by pixel 

basis. These precipitation data are used in estimations of rain-induced sensible heat 

fluxes. This data product was also ordered from Goddard DAAC.

2.5 Ancillary Data Set

Since satellites cannot provide all the parameters needed to calculate the heat fluxes, 

gridded analysis and reanalysis data produced by the ECMWF are used as the ancillary 

data. ECMWF is an international organization supported by 24 European countries. 

Their goal is to deliver medium-range weather forecasts. Among many estimated 

meteorological parameters, the temperature and humidity profiles of ECMWF are used 

for the retrievals of cloud properties and for the calculating of surface SW and LW radia

tion. The skin and air temperature differences are used to obtain near surface air 

temperature in the estimations of turbulent sensible heat fluxes.
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CHAPTER 3 

FLUX RETRIEVAL ALGORITHM

The net surface flux (NSF) into the ocean is given as:

NSF = Hsw + H lw  - H lat - H se n  - H rain  ( 1 )

where H s w , H Lw , H La t , H s e n , and H rain  are net SW, net LW, turbulent latent heat, 

turbulent sensible heat, and rain-induced sensible heat fluxes, respectively. Note that net 

Hsw and net Hlw are defined as (downward -  upward) radiation in the CERES project. A 

positive value means a heat gain for oceans. Therefore, net Hlw usually has negative 

values. Net H Lw , H La t , H Se n , and H rain  are generally a heat loss for sea surface. An 

overall positive NSF indicates that the ocean gains heat fluxes, and a negative value 

implies that the ocean loses heat fluxes. The calculations of each component are 

explained in the following sections.

3.1 Radiation Fluxes

The CERES project is designed to monitor the TOA radiation budget, define the 

physical properties of clouds, estimate the surface radiation budget, and determine the 

divergence of energy within the atmosphere. CERES retrieves TOA radiative fluxes from 

the measured radiances using Angular Distribution Models (ADM) for SW, LW, and 

window channels (Loeb et al. 2001, 2003). The surface radiative fluxes are estimated 

based on several models. The first surface SW algorithm was based on an empirical 

relationship between the TOA fluxes and the measured surface radiation budget 

components from the Baseline Surface Radiation Network (BSRN) and the Atmospheric 

Radiation Measurement (ARM) programs. The first surface LW algorithms started with 

the window channel where longwave is unimpeded. These algorithms have been 

extended to include factors such as water vapor, solar zenith angle, cloud properties
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(cloud optical depth, particle size, and cloud top temperature derived from VIRS), and 

meteorological data (surface temperature and humidity from ECMWF) because the 

surface fluxes are affected by both TO A fluxes and atmospheric conditions. To preserve 

historical continuity, some parts of the CERES data reduction use algorithms identical to 

those used in ERBE. At the same time, many of the algorithms on CERES are new. The 

current models for clear-sky only condition (model A) are from Li et al. (1993) for SW, 

and from Inamdar and Ramanathan (1997) for LW. The models for all-sky condition 

(model B) are from Darnell et al. (1983) and Gupta et al. (2001) for SW, and from Gupta 

(1989) and Gupta et al. (1992) for LW. These models are named Langley Parameterized 

Shortwave/Longwave Algorithms (LPSA/ LPLA). Detailed descriptions of these 

algorithms can be found in NASA Technical Publication 2001-211272 and the Algorithm 

Theoretical Basis Documents of the CERES project (http://asd-www.larc.nasa.gov/ 

ATBD.html ). The results from these models are inter-compared among themselves and 

with in-situ measurements over more than thirty sites. The detail results can be found 

under CERES home page (http://asd-www.larc.nasa.gov/ceres/ASDceres.html). This 

study uses the flux results from model B because it is for all-sky condition. The overall 

bias (rms) are -3.7 (20.6)W/m2 for LW and 12.3 (64.6)W/m2 for SW, respectively 

(Gupta, et al., 2003). The LW and SW net fluxes estimated by the CERES project are

expected to provide an accuracy of ~2 and ~3W/m at the top of atmosphere and ~8 and
2

~15W/m at sea surfaces, respectively (Charlock et al. 2000).

3.2 Turbulent Fluxes - Latent and Sensible Heat

Because remote sensing cannot directly measure turbulent fluxes, an indirect 

approach through wind speed, humidity, and temperature difference between the sea skin 

and air at 10 m level is necessary. The retrieval accuracy for each of these parameters is 

critical for archiving accurate turbulent fluxes. Otherwise, the error propagates through 

the bulk formula and leads to large errors in the derived turbulent heat fluxes. The

http://asd-www.larc.nasa.gov/
http://asd-www.larc.nasa.gov/ceres/ASDceres.html
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turbulent fluxes estimated in this study use the bulk algorithm based on the stability- 

dependent aerodynamic model of Tropical Ocean Global Atmosphere (TOGA) Coupled 

Ocean-Atmosphere Response Experiment (COARE) (Fairall et al., 1996), which was 

developed using simultaneous flux and bulk meteorological variable measurements 

combined with the drag transport coefficients from laboratory and theoretical studies of 

air-sea transfer processes. The TOGA COARE was an observation and modeling 

program. One of its goals aimed specifically at the determination and interpretation of 

heat, moisture, and momentum fluxes at the air-sea interface over the west Pacific warm 

pool region (Coppin 1991, Webster 1992). To reach that goal, an observational network 

covering a region from 4°S to 2°N and 150°E to 160°E with an intensive observation 

period (IOP) from November 1992 through March 1993 was set up to collect various flux 

data. During the three cruise legs made, 1622 fifty-minute averages of heat fluxes and 

bulk meteorological variables (sea surface and air temperatures, wind speed, wind 

direction, and water vapor mixing ratio of surface and air) in the wind speed ranging from 

0.5 to lOm/s were collected. Various physical processes relating near-surface 

atmospheric and oceanographic bulk variables and their relationships with the surface 

fluxes were investigated. Based on the observations and theoretical studies, a bulk 

parameterization of turbulent fluxes was derived and has been widely validated and used 

by the SEAFLUX science community. Newly published updates to this COARE bulk 

algorithm have an accuracy of 5% for wind speeds under lOm/s and 10% for wind speeds 

between 10 and 20m/s (Fairall, et al., 2003). The later version includes 4439 new values 

from field experiments by Environmental Technology Laboratory between 1997 and 

1999. These new observations have significant cases with wind speed higher than lOm/s. 

The standard bulk formulae for latent and sensible heat fluxes are:

H lat = pL CL(Ua-Us)(Qs - Qa) 

H SEn =  pCPCs(Ua-Us)(Ts- Ta)

(2a)

(2b)

where p, L, Cl and Cs are air density, latent heat of vaporization, drag transport 

coefficients of moisture and sensible heat, respectively. Air density is calculated based
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on air temperature and a fixed pressure of 1013.25mb. The error caused by fixing the 

pressure is generally negligible. Cp is the specific heat of air (1004J/kgK). Ua is the 

near-sea surface (10 m above surface) wind speed. Us is ocean surface current speed, 

which is much smaller than Ua and is assumed to be 0. Qa and Qs are specific humidity 

at 10 meters and sea skin, respectively. Ta and Ts are potential temperatures at 10 m 

above and sea skin levels, respectively. Ts can be estimated by either thermal IR or 

passive microwave methods, but thermal IR can be obscured by clouds. The advantage of 

microwave measurements is that they work well for both clear and cloudy skies. The 

remotely sensed skin temperature is usually colder than the bulk sea surface temperature 

by 0.2K (Schluessel et al. 1987, 1990). Microwave brightness temperature is relatively 

insensitive to the atmosphere, but sensitive to surface roughness. Thus it can only be 

used to retrieve parameters over ocean under no rain condition. The sea surface temper

ature is estimated empirically by regressing with the BT of non-precipitating 

measurements in this study. The equation used is:

Ts = -223.49 + 2.1094(Tbl0V) - 0.4187(Tbl0H) - 1.0339(Tbl9V) + 0.5966(Tb21V) (3)

where TblOV and TblOH are 10.65GHz vertically and horizontally polarized channels, 

and Tbl9V  and Tb21V are 19.35GHz vertical and 21.30GHz vertical channels. Air 

temperature (Ta) is obtained by adding the difference between the sea skin and air (2m) 

temperatures of ECMWF to the observed sea skin temperature. That is Ta = Ts + 

ECMWF(Ta - Ts). The air-sea temperature difference is generally very small (< 2K) over 

the open ocean, except for mid-latitudes in the winter hemisphere.

Microwave radiation emitted by the sea surface is strongly dependant on the wind- 

driven surface roughness offering the possibility to sound the near surface wind speed 

from a satellite. Using SSM/I data, Goodberlet et al. (1989) and Schluessel and Luthardt 

(1991) showed that surface wind speed derived from microwave instruments with simple 

linear retrieval technique has an rms error of 2m/s and 1.4m/s with no bias under weak 

wind conditions, respectively. This study uses channels of 10.65, 19.35, and 37.0GHz to
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calculate the wind speed, and the equation used is:

WS = 146.36 + 0.5752(Tbl0H) - 0.08165(Tbl9H) - 1.3397(Tb37V) + 0.67(Tb37H) (4)

The most difficult part for microwave remote sensing is the determination of the sea 

surface air specific humidity (Qa), which is due to the fact that microwave radiation 

mainly emerges from entire thick planetary boundary layer. Schulz et al. (1993) found 

that Qa can be estimated with an accuracy of 1.2g/kg from the integrated water vapor 

content (w) of the lowest 500m of the atmosphere using passive microwave (SSM/I) BT 

measurements. The integrated water vapor value is highly correlated (r > 0.9) and 

linearly related to the specific humidity (Qa) near the sea surface. Later, Schluessel 

(1996) combined this two-step approach into a one-step optimized approach and 

corrected the biases in polar ocean basins. It has an accuracy of l.lg /kg. This study 

transfers the brightness temperature values between the TMI and SSM/I instruments 

based on brightness temperature simulations of a microwave radiative transfer model (Lin 

et al. 1998). Thus, the one-step algorithm is adapted to retrieve surface air specific 

humidity using TMI observed brightness temperature values. The one-step equation used 

in this study is:

Qa = -80.23 + 0.6295(Tbl9V) - 0.1655(Tbl9H) + 0.1495(Tb22V) - 0.1553(Tb37V) -  

0.06696(Tb37H) (5)

The saturation specific humidity (Qs) at sea surface is essentially a function of the sea 

surface temperature with a correction factor 0.98 to account for the reduction in the 

saturated vapor pressure for a 34 parts per thousand salinity (Fairall et al., 1996).

3.3 Rain-induced Sensible Heat Flux

Rainfall is the condensation of water vapor into water or ice. The latent heat 

released from rainfall is very important for tropical climate because two thirds of the 

world’s rainfall in the Tropics. It is one of the primary heat sources driving atmospheric
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circulation. Rainfall is related to the amount of fresh water transport from the surface to 

the atmosphere. In energy cycle, the latent heat fluxes from sea surface evaporation are 

released through the condensation of vapor to water or ice within the upper troposphere. 

The majority of these evaporation and condensation processes occur in the Tropics in 

response to the solar heating. Thus, the Tropics play a key role in the global hydrology 

and energy cycle.

A raindrop is usually close to thermal equilibrium with its surroundings, with a 

temperature corresponding to the wet-bulb temperature of the atmosphere at its height. 

Between cloud base and the near-surface levels, equilibrium occurs for the small droplets, 

but not the larger droplets. Because rain droplets cannot respond fast enough to the 

thermodynamic gradients between the near surface air (10m) and the sea skin levels, rain 

water generally has a different temperature than the sea surface. The rain-induced 

sensible heat flux is estimated from the rainfall rate and the temperature difference 

between rain water and surface water. The magnitude of the cooling of the ocean surface 

and the reduction of the ocean buoyancy depend on both the rain rate and the temperature 

of the rain droplets when they enter the oceans. Gosnell et al. (1995) and Flament and 

Sawyer (1995) considered it reasonable to assume that the raindrop temperature is equal 

to the web-bulb temperature of near sea surface air. Thus, this study assumes that the rain 

droplets have the wet-bulb temperature of the atmosphere 10 m above the surface as it 

hits the ocean surface. Since the web-bulb temperature is usually lower than the ocean 

surface temperature, the rain water generally cools the ocean surface. Because rain rate is 

a mass flux, the rain-induced sensible heat flux is related to the heat capacity and the 

temperature difference between rain water and sea surface water. The equation to 

account for the rain induced sensible heat is:

H rain  -  Cw R (Ts - Tr) (6)

where Cw is the specific heat of water (4186J/kgK), R is the rain rate in kg/m2 per 

second, Ts is the bulk sea surface temperature, and Tr is the rain droplet temperature
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when it reaches the surface, which is very close to the web-bulb temperature at 10m 

above the surface (Ta). A positive H rain  i s  a heat gain for the atmosphere or a heat loss 

for the ocean. The sensible heat fluxes during intensive convective events have the same 

order of magnitudes as latent heat fluxes (in hundred Watts per meter square). It is 

important to determine the degree of cooling associated with rain-induced sensible heat 

(Gosnell et al., 1995) because of its significance. Figures 1 and 2 show the rain induced 

sensible heat for August 1998. Figure 1 shows the rain induced sensible heat fluxes for 

each TMI pixel. Many of the values are more than lOOW/m . The negative values are 

caused by air temperature being higher than surface temperature estimated by ECMWF, 

which may be caused by hot humid air from warm regions being blown to cooler ocean 

areas. Figure 2 is a map of the gridded averages of all sky conditions and reveals that 

there are significant rainfall amounts along the Inter-Tropical Convergence Zone (ITCZ) 

and South Pacific Convergence Zone (SPCZ), and less rainfall at the subsidence area. 

Although the rain induced sensible heat is large instantaneously (Fig. 1), it is about two 

orders of magnitudes smaller than turbulent latent heat and one order of magnitude 

smaller than turbulent sensible heat (see later sections) when averaged over large spatial 

and temporal domains.
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Figure 1. Instantaneous rain-induced sensible heat for August 1998 from TRMM.



Figure 2. Gridded averages of rain-induced sensible heat for August 1998 from TRMM.

3.4 Sensitivity Test

Sensitivity studies test the bias and random errors caused by uncertainties in each of 

the input parameters. During each sensitivity test, all parameters are kept at the baseline 

values except the parameter in test. Other sources of errors, such as those from bulk 

formula are not considered. The accuracy of bulk algorithms can be found in the original 

studies by Fairall et al. (1996, 2003). There are three parameters each for latent heat and 

sensible heat flux algorithms (see equations 2a and 2b). Parameters wind speed (WS), sea 

surface temperature (Ts), and surface air temperature (Ta) are for sensible heat fluxes, 

and WS, surface specific humidity (Qs), and air specific humidity (Qa) are for latent heat 

fluxes. Qs is calculated from Ts using the Clausius-Clapeyron equation. The selected 

baseline values are 6.5m/s, 299K, 298K, and 17g/kg for WS, Ts, Ta, and Qa. The bias 

(std) of errors associated with these variables are conservatively assumed to be 0.1 m/s 

(1.25m/s), 0.5K (1.5K), 0.1K (1.5K), and 0.32g/kg (1.5g/kg), respectively. They are used 

to calculate the error bars, bias, and std in Figure 3. The WS and Ts (or Qs) effects on 

both sensible and latent heat fluxes are evaluated. Figures 3a and 3b show that sensible 

heat and latent heat fluxes increase with WS when Ts, Ta, and Qa stay constant. Since 

Qs varies with Ts, Figures 3c and 3d show that sensible heat and latent heat increase with 

Ts (or Qs) when WS, Ta, and Qa are kept as baseline values. By varying air temperature 

(Ta), Figure 3e shows that sensible heat fluxes decrease with increasing Ta (i.e. smaller 

Ts-Ta difference). Figure 3f reveals that latent heat fluxes decrease with higher Qa (i.e. 

smaller Qs-Qa) when other parameters are held at baseline values. From these bias and
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std, it is concluded that bulk parameterization are more sensitive to temperature and 

humidity than WS. Based on normalized WS, Qs-Qa difference, and latent heat flux of 

June-August gridded data, the regression coefficients are 0.75 and 0.52 for WS and Qs- 

Qa. Applying the same normalization process to WS, Ts-Ta, and sensible heat, the 

regression coefficients are 0.81 and 0.15 for WS and Ts-Ta. . This means WS is more 

important factor for latent heat and sensible heat in the Tropics.

Figures 4, 5, and 6 show the occurrence (in percentage) of latent heat with different 

WS, Qs-Qa difference, and air specific humidity (Qa) based on satellite retrieval of June- 

August 1998 data. The solid black curves represent the mean latent heat values for the 

corresponding WS, Qs-Qa difference, and Qa. Latent heat increases with WS (Fig. 4). 

The most frequent occurrence of wind speed is between 4 and 9m/s in the Tropics, which 

is the dominant factor for latent heat fluxes in the Tropics. The latent heat also increases 

with Qs-Qa difference (Fig. 5) with the most occurrence of Qs-Qa difference between 4 

and 6g/kg. Figure 6 shows latent heat decreases with Qa. Most tropical surface air is 

very humid with Qa between 18 to 24 g/kg. Some air with low humidity around 9g/kg is 

the result of subsidence over relative cooler subtropical regions.
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Figure 3. Sensitivity tests of sensible and latent heat fluxes by varying wind speed 
(m/s), surface temperature (K), and air temperature (K).
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Figure 4. Distribution of latent heat (W/m2) versus wind speed (m/s) for June -  August
1998.
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Figure 5. Distribution of latent heat (W/m2) versus surface and air specific humidity 
(Qs-Qa) difference (g/kg) for June -  August 1998.
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Figure 6. Distribution of latent heat (W/m2) versus air specific humidity for June-August
1998.
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CHAPTER 4

VALIDATION AND COMPARISON OF TURBULENT FLUXES

Since the CERES project has extensive studies and validation activities for the 

derived TOA, surface and within atmosphere SW and LW radiative fluxes, this study 

concentrates on the validations of sea surface turbulent fluxes and their related satellite 

retrieved geophysical variables.

4.1 Ship Validation

Comparison of satellite retrievals with ship or buoy ground-truth measurements is 

required to establish the credibility of the satellite remote sensing. Ship experiments have 

the advantage of measuring a more comprehensive set of parameters than satellites, but 

the ship measurements are sparse. There were 5 field experiments conducted by the 

NOAA Environmental Technology Laboratory (ETL) research ship, R/V Ronald H. 

Brown, in various legs of its 1999 cruise around the world. They were the Joint Air-Sea 

Monsoon Interaction Experiment (JASMINE), the Nauru 99 (NAURU99), the Kwajalein 

Experiment (KWAJEX), the Pan-American Climate Study (PACSF99), and the buoy 

service in the North Pacific (MOORINGS) which is the only one sailed into middle 

latitudes (49°N). The other four legs were all within 12°S to 13°N. Each experiment 

lasted approximately one month. The ETL cruise measured radiation and turbulent 

fluxes, and bulk meteorological variables. There are three values produced from ship 

measurements for latent and sensible heat fluxes The first two are calculated using direct 

covariance (COV) and the inertial-dissipation (ID) methods. The third one is calculated 

using ship measured meteorological variables and the COARE bulk algorithm. 

NAURU99 conducted during June 15 to July 18, 1999, is used for comparison in this 

study.

Because of temporal and spatial differences between ship and TMI measurements, it 

is possible to have multiple TMI pixels for a single ship measurement. The TMI pixels
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were collocated with each of the NAURU99 ten-minute measurements to be within 10 

minutes and 20 km. Although there are 4764 NAURU99 measurements available, only 

66 measurements were found to have matched TMI pixels. These matched TMI pixels 

were run through the COARE algorithm (Fariall et al. 1996) using satellite estimated 

temperatures, humidities, and wind speeds. The satellite estimated fluxes for each pixel 

were averaged into the 66 NAURU99 measurements, and compared to the ship results 

from COV, ID, and COARE bulk algorithms. Figures 7a and 7b show that the bias and 

rms errors between satellite estimation and ship measurements are -0.06m/s and 1.05m/s 

for wind speed, and -0.44K and 1.46K for surface temperature, respectively. The wind 

speed rms error (1.05m/s in Fig. 7a) is smaller than those from SSM/I (~2m/s by 

Goodberlet et al. and ~1.4m/s by Schluessel et al.). Figures 7c and 7d show that the bias 

and rms are 0.32g/kg and 1.44g/kg for air specific humidity, and -0.07K and 1.46K for air 

temperature. The bias and rms are 1.91 W/m2 and 40.88W/m2 for latent heat (Fig. 7e), 

and -1.64W/m2 and 6.30W/m2 for sensible heat (Fig. I f ) .  The comparison of GSSTF-2 

input variables with tropical field experiments based on daily means has a bias (rms) of 

0.36 (1.43)m/s, -0.47 (0.94) K, and 0.67 (1.40)g/kg for wind speed, surface temperature, 

and air specific humidity. They have a bias (rms) of 0.8 (35.7)W/m2 and 6.4 (12.0)W/m2 

for latent heat and sensible heat, respectively, (Chou 2003). Kano and Kubota (2000) 

compared J-OFURO with in-situ data and estimated the rms to be 40 and 20W/m2 for 

three-day and monthly means, respectively. Comparisons with in-situ measurements 

show that the algorithm used in this study provides results with similar or less uncertainty 

than those from SSM/I and other remote sensing microwave measurements.

Table 2 shows the results of latent heat from satellite retrieval and from three ship- 

based estimates (COV, ID, and bulk algorithms). The diagonal displays mean values 

(99.57, 101.48, 108.01, 113.94W/m2). The upper right part of the table shows the 

correlations between these algorithms, and the lower left part shows the bias and rms (in 

parenthesis) errors. It can be seen that the latent heat of TMITF only have an 

instantaneous bias and rms errors of -1.91 W/m2 and 40.88W/m2, when compared to ship 

COV measurements. The negative sign means TMITF underestimate. The main sources



of uncertainty are the Qa and wind speed estimation in satellite retrieval and the ship 

motion, flow distortion, and the contaminating effects of the marine environment in the 

ship measurements. The limited sample size and, spatial and temporal mismatch in 

collocated data also contribute to bias and rms errors. Note that compared with the COV 

estimate, the latent heat fluxes retrieved directly from ship measurements of WS, Ts-Ta, 

and Qs-Qa by COARE bulk formula have larger bias errors than the satellite estimate (-
9 912.46 W/nT vs -1.91W/m“ in tables 2), indicating the gridded mean values of the satellite 

data may have significantly smaller errors than the instantaneous data. The validation of 

sensible heat in the Tropics gets less attention, partly because of its small value and also 

because of the inadequate accuracy of air temperature derived from satellite data. 

However, sensible heat loss is not negligible, especially at higher latitudes. Table 3 

shows the results of sensible heat from satellite estimation and ship measurements. The 

TMITF underestimates sensible heat by 1.64W/m2 when compared to ship COV 

estimates.

Table 2. Latent heat statistics from satellite bulk estimation and ship (COV, ID, and bulk) 
measurements. Means in diagonal, correlation coefficients in upper right corner, and bias 
and rms (in parenthesis) in the lower left comer.

Satellite
Bulk

Ship
Covariance

Ship inertial- 
dissipation

Ship
bulk

Satellite bulk 99.57 W/m2 0.142 0.333 0.506
Ship Covariance -1.91 (40.88) 101.48 W/m2 0.542 0.604
Ship inertial-dissipation -8.47 (49.45) -6.53 (43.04) 108.01 W/m2 0.665
Ship bulk -14.37 (30.79) -12.46 (29.39) -5.93 (38.38) 113.94 W/m2

Table 3. Sensible heat statistics from satellite bulk estimation and ship (COV, ID, and 
bulk) measurements. Means in diagonal, correlation coefficients in upper right comer, 
and bias and rms (in parenthesis) in the lower left comer.

Satellite
Bulk

Ship
Covariance

Ship inertial- 
dissipation

Ship
bulk

Satellite bulk 3.08 W/m2 0.106 0.050 0.372
Ship Covariance -1.64 (6.31 ) 4.72 W/m2 0.450 0.584
Ship inertial-dissipation -2.57 (8.58) -0.93 (7.55) 5.65 W/m2 0.243
Ship bulk -1.02 (3.98) 0.62 (4.30) 1.55 (7.55) 4.10 W/m2
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4.2 Satellite Comparison

The TMITF turbulent fluxes are compared to the GSSTF-2 products produced by 

the surface turbulent fluxes research group at NASA Goddard, led by Dr. Shu-Hsien 

Chou. This data set covers from July 1987 through December 2000, and is retrieved from 

the data collected by Special Sensor Microwave Imager (SSM/I) onboard Defense 

Meteorological Satellite Program (DMSP) satellites F-8, F-10, F - l l ,  F-13, and F-14. 

These DMSP satellites fly in sun-synchronous orbits. The SSM/I instruments measure 

brightness temperature at four frequencies 19.35, 22.235, 37.0, and 85.5GHz. The key 

differences between TMI and SSM/I are the additional pair of horizontally and vertically 

polarized 10.65GHz channels and a frequency change of the water vapor channel from 

22.235 to 21.3GHz in TMI. The change off the center of the water vapor line in TMI was 

made to avoid the absorption saturation of water vapor for the TRMM tropical orbit. The 

polarized 10.65GHz channels are used in the retrievals of wind speed and sea surface 

temperature. The resolutions of GSSTF-2 are daily and monthly means for global oceans 

in 1° by 1° grid boxes. Therefore, TMITF measurements were averaged into monthly 

gridded values for comparison.

Both TMITF and GSSTF-2 use bulk algorithms to estimate air-sea interface 

turbulent fluxes with the same input parameters: sea surface temperature (Ts), air 

temperature (Ta), surface specific humidity (Qs), air specific humidity (Qa), and wind 

speed (WS). The reference height of Ta, Qa, and WS is set to 10 m for TMITF, while 

GSSTF-2 use 10 m for WS and Qa and 2m for Ta. GSSTF-2 uses daily mean values of 

these input parameters to calculate the daily fluxes. The daily mean wind speeds and 

water vapor amounts are from Wentz (1997), while surface and air temperatures and 

surface pressure are from NCEP reanalysis. Qs is calculated based on daily means of 

surface temperature and pressure. TMITF calculates wind speeds, air specific humidity, 

and surface temperatures using TMI BT measurements as explained in previous sections, 

and estimates air temperatures by applying the temperature difference between surface
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and air temperatures of ECMWF to the estimated surface temperatures. TMITF uses 

instantaneous values of these parameters to calculate the fluxes and then averages them 

into hourly, daily, and monthly means.

To estimate the air specific humidity (Qa), GSSTF-2 uses the two-step method of 

Schulz et al. (1993), which estimates the water content of the lowest 500 meter layer 

(W500) from total column water vapor, and then relates Qa to W50o. TMITF uses the 

optimized one-step method of Schluessel et al. (1995), which directly retrieves Qa from 

the measured brightness temperatures. The accuracies for these two methods are 

comparable, approximately 1.2g/kg and l.lg /kg  for two-step and one-step methods, 

respectively (Schluessel 1997). The saturated specific humidity at the surface (Qs) of 

GSSTF-2 is determined from the daily mean sea surface temperature and sea-level 

pressure of NCEP reanalysis. The Qs values of TMITF, on the other hand, are calculated 

with concurrent sea surface temperature and a fixed surface pressure of 1013.25mb. Both 

consider a 2% reduction in the saturated vapor pressure for saline water as compared to 

pure water.

Although there are many differences in the source and retrieval methods of input 

parameters between TMITF and GSSTF-2, the monthly zonal and gridded results are 

generally in good agreement between these two data sets. Figures 8 and 9 show the zonal 

and gridded averages of latent heat fluxes of TMITF and GSSTF-2. The values range 

from approximately 50 to 200W/m2 for zonal mean and 0 to 300W/m2 for gridded mean. 

They are correlated well between 20°N and 20°S, although the TMI values are lower than 

those from SSM/I by 3 to 15W/m2. At latitudes higher than 20°, TMI flux values are 

higher than those from SSM/I by 6 to 17W/m2 because of higher wind speed estimations 

in TMITF. The monthly averaged latent heat differences for entire tropical oceans are 

-6.6, -3.2, -2.9, -2.0,-7.2, 1.1, 2.9, and -2.4W/m2 for the first eight months of 1998. 

Figures 10 and 11 show the zonal and gridded averages for sensible heat. Zonal means 

range from 0 to 15W/nrT for TMITF, which are lower than those from SSM/I across all 

compared latitudes by 6-7W/m2. Chou et al. (2003) found that GSSTF-2 has a positive 

bias of 7W/m~ due to underestimates of air temperature in NCEP. Both TMITF and
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GSSTF-2 maps show that the winter hemisphere has higher latent heat and sensible heat 

fluxes than the summer hemisphere due to the shifts of the trade winds with the season.
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Figure 8. Zonal averages of latent heat flux for TMI (solid line) and SSM/I
(dashed line).



33

L a te n t  H eat fr o m  TMI 
9801

L a ten t H eat fr o m  SSMI

9802
«“> JgA

9803

«***»■ Tlfcil

9804

'■’a*
Jl m* -t

9805
saass iTSJi' :*

9806
*, ^SL -sP*' . m

9807
', i ■ “̂fl3*!l!i

.'i *y: , €̂I ‘ '
-*N

iA*i '■' 3
9808

sA ’ “_ *  "JSU *,■ ,!!«•'
WSTJjS

0 30 60 90 120 150 180 210 240 270 300

Figure 9. Gridded averages of latent heat flux for TMI and SSM/I. 
(The black stripes along the equator for SSM/I is due to the lack of data)
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CHAPTER 5 

NET SURFACE FLUXES

This chapter starts with discussions of the major parameters that influence the heat 

fluxes and their geographical distribution and diurnal variation, and ends with the 

estimated net surface fluxes. Radiative SW and LW fluxes from TRMM CERES are 

available for the first eight months of 1998, therefore the net surface fluxes (NSF) gained 

by oceans in 1° by 1 0 grids and latitudinal zones for these eight months are calculated for 

hourly, monthly, and seasonal means. The pictures to be discussed hereafter use color 

bars with positive and negative values to represent heat gain and loss by oceans, 

respectively.

5.1 Shortwave Radiation

Figure 12 shows the net SW fluxes for three seasons (winter, spring, and summer
9

for northern hemisphere). The gridded net surface SW varies from 50 to 350W/m“ and is 

highest along 20° latitudinal zones in the summer hemisphere because of more insolation 

and less clouds. The lower net SW values are at higher latitudes in the winter 

hemisphere. Since SW radiation comes from the solar insolation, the strongest shortwave 

fluxes occur during noontime, and there is no SW flux during nighttime. The colorful 

boxes in Figure 13 show the occurrence (in percentage) of net surface SW fluxes for each
9

hour based on June-August 1998 data. It reveals that SW fluxes are at least 200W/m“ and 

can reach 900W/m during noon hours. The solid black curve shows the hourly means of 

net surface SW radiation over the tropical oceans (30°S-30°N).

5.2 Longwave Radiation

Net surface LW fluxes vary from -100 to OW/m2 (Fig. 14). The least amount of LW 

loss occurs at the equator where heavy clouds and humid boundary layer absorb
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upwelling LW radiation and re-emit most of it back to the surface. The cold tongue off 

the west coast of South America is evident by its low net LW values, especially in the 

southern hemisphere winter time.

98Q5Q1 - 9 8 0 5 3 1

-980831

50 SO 110 140 170 2 0 0  2 3 0  26D 2 9 0  3 2 0  3 5 0 W/rrKZ

Figure 12. Estimation of net surface shortwave fluxes from TRMM.
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Figure 13. Occurrence (%) and diurnal variation of net surface shortwave 
fluxes (W/m2) from TRMM for June-August 1998.
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Both net SW and LW fluxes have lower values along the ITCZ and SPCZ because there 

are more convective clouds, which reflect incoming SW and block outgoing LW 

radiation. The occurrences (in percentage) of net surface LW fluxes for each hour based 

on June-August 1998 data are plotted in Figure 15 for entire tropical oceans (30°S-30°N). 

Most LW flux loss ranges between 20 and 60W/m2, although some can lose as much as 

lOOW/irT. The black solid curve is the hourly means. The diurnal variation is not 

significant in this picture because of small LW diurnal variability, but it is clearly shown 

in Figure 16. The net LW heat loss is higher in the afternoon than in the early morning by 

about 5W/m", because the surface temperature is higher after absorbing the SW from the 

Sun during daytime hours.

980301-980531

‘" ty  -v %
980601-980831

«

- 1 0 0  - 9 0  - 8 0  - 7 0  - 6 0  - 5 0  - 4 0  - 3 0  - 2 0  - 1 0  0

Figure 14. Estimation of net surface longwave fluxes from TRMM.

W/rrr2



-1 2 0
Hour 5 10 15 20

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.20 0.225 0.25

Figure 15. Occurrence (%) and diurnal variation of net surface LW fluxes (W/m2)
from TRMM for June-August 1998.
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2  r*Figure 16. Diurnal variation of net surface longwave fluxes (W/mf) from

TRMM for June-August 1998.

5.3 Wind Speed

Winds in the tropical region usually blow from east to west. Mesoscale wind fields 

can be extremely intense with circular vortices called tropical cyclones. Most of these 

storms develop during the summer season over eastern and western Pacific, western 

Atlantic, and Indian oceans. They are the strongest surface winds observed in the earth’s 

atmosphere. Besides tropical cyclones, winds are usually higher at the trade wind zones 

and extra-tropical storm tracks. They are lower at the ITCZ, SPCZ, and tropical Indian 

ocean. The gridded seasonal averages are shown in Figure 17. During June-August, 

equatorial western and eastern Pacific areas have the lowest wind speeds. The winter
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hemisphere usually has higher winds. Based on June-August 1998 data, wind speeds are 

lower in the afternoon hours than those in the morning hours (red curve in Fig. 24).

980501 -980531

980601-980831

m / s0 1.2 2.4 3.6 4. a 6.0 7.2 8.4 9.6 10.8 12

Figure 17. Wind speed (m/s) distribution from TRMM satellite.

5.4 Humidity

Figures 18 and 19 display the surface and air specific humidity (Qs and Qa) 

distributions. Higher Qs values are along the equator and western Pacific and Atlantic 

oceans, while lower Qs values are located in the winter hemisphere. This distribution is a 

reflection of sea surface temperature (Fig. 25). Qa has similar distribution as Qs, but with 

smaller values. The difference between these two humidities is shown in Figure 20. The 

least humidity difference is along the equator and eastern Pacific oceans. Winter 

hemisphere has larger humidity differences than summer hemisphere, because of slower 

decrease of Ts than Ta and strong influence of the nonlinear relationship between 

saturation humidity and temperature decided by Clausius-Clapeyon equation. Figure 21 

shows the diurnal variations of Qs, Qa , and Qs-Qa. Afternoon



41

980601-980831

12 15 18 21 24 2 7 30 33 3 6 gAg

Figure 18. Surface specific humidity (Qs) distribution from TRMM.
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Figure 19. Air specific humidity (Qa) distribution from TRMM.
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hours (noon to 8PM) have higher Qs-Qa differences than morning or night time hours. 

980101 -980228

980301-980531

980601-980831
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Figure 20. Surface and air specific humidity difference (Qs- Qa) from TRMM.

12 16 20 249
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Figure 21. Diurnal variation of surface and air humidity (g/kg) from TRMM
for June-August 1998.



43

5.5 Latent Heat Fluxes

Figure 22 shows that latent heat (LH) fluxes, varying from -300 to OW/m2, generally 

have small absolute values at the equator and along the ITCZ and SPCZ due to low wind 

speeds (Fig. 17) and high boundary layer humidity (Fig. 19) (i.e. small Qs-Qa differences 

in Fig. 20). The convective zones have upwelling-induced cold sea surface temperature 

and weak winds. The smallest LH losses (<30W/m2, red color in Fig. 22) correspond to 

the lowest Qs-Qa area (green in Fig. 20). The other smaller LH fluxes are observed in the 

western and eastern Pacific ocean where warm humid air is dominant and leads to 

minimal moisture transport from ocean to the atmosphere. LH loss is generally higher in 

the winter hemisphere, especially between 15° and 20° latitudes due to higher wind 

speeds and lower air humidity (i.e. higher humidity difference). The LH distribution in 

Fig. 22 clearly shows the effects of wind speeds. It indicates that wind speed may play a 

dominant role in the Tropics, while the humidity difference may be the dominant factor in 

extra-tropical regions. Figures 23 shows that most LH losses are between 50 to 150 

W/m“. For diurnal variation, there are two peaks shown in Figure 24, one in the early

9 8 0 1 0 1  - 9 S 0 2 2 S «
SClNfl.-.

9 8 0 6 0 1 -9 8 0 8 3 1

- 3 0 0  - 2 7 0  - 2 4 0  - 2 1 0  - 1 S 0  - 1 5 0  - 1 2 0  - 9 0  - 6 0  - 3 0  0

Figure 22. Estimation of latent heat fluxes from TRMM.

W /  rrr2
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morning hours and the other in the late afternoon. The peak at 7p.m. has the highest LH 

loss. A minimal LH loss coincides with the lowest wind speed at 1p.m.. The least LH 

loss occurs at ~5 a.m., which can be related to the maximum wind convergent period over 

tropical oceans. Following the double peaks of tropical oceanic convection, the boundary 

layer is generally drier than before the convection (or moist static energy is lower), which 

causes the LH peaks in the diurnal variations.
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Figure 23. Occurrence (%) and diurnal distribution of latent heat fluxes (W/m“) from

TRMM for June-August 1998.
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Figure 24. Diurnal variations of latent heat fluxes (W/m2), wind speed (m/s), and 

Qs-Qa (g/kg) from TRMM for June-August 1998.
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5.6 Sensible Heat Fluxes

The sea surface temperature (Ts) estimated from TRMM and surface-air temperature 

differences from ECMWF are plotted in Figures 25 and 26. Ts is higher along the ITCZ 

and SPCZ, and over Indian and tropical western Pacific oceans. The Ts-Ta differences 

vary mostly between -0.5K  and 1.5K except for the area higher than 20° in the winter 

hemisphere, where it can be more than 3K and have higher heat losses. The calculated 

sensible heat fluxes range from -8 to 32W/m2, therefore the color bars are from -32  to 

8W /nr to indicate the heat losses from surface to the atmosphere in Fig. 27. From figures 

17, 26, and 27, it can be seen that both WS and Ts-Ta difference are important factors for 

the sensible heat fluxes. Figure 28 shows the diurnal variations of sensible heat fluxes. 

Generally, the variations of sensible heat fluxes follow the changes of WS with 

significant modifications from the surface-air temperature differences.

98Q 5Q 1—9 8 0 5 3 1

980601-980831

290 293 296 299 302 305

Figure 25. Estimation of sea surface temperature from TRMM.
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Figure 26. Surface and air (Ts-Ta) temperature differences from ECMWF.
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Figure 27. Estimation of sensible heat fluxes from TRMM.
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Figure 28. Diurnal variation of sensible heat fluxes (W/m ) and wind speed (m/s) 
from TRMM, and Ts-Ta from ECMWF for June-August 1998.

5.7 Net Surface Fluxes

Previous sections have shown that the global distributions of estimated heat 

components are strongly related to the atmospheric general circulation. The seasonal and 

diurnal variations of the fluxes are mainly the results of changes in the solar insolation, 

temperature, dynamics, and convection. All of the components are added together and 

Figure 29 shows the net surface fluxes (NSF) for the three seasons available in gridded 

means. The values vary between -250 and 250W/m2. The oceans gain heat from the 

atmosphere (or actually from the Sun) during the summer months, and lose heat to the 

atmosphere during wintertime. The highest heat gain is along the equator year round 

because of high gains in SW and low losses in LW fluxes. Generally, the NSF has the 

same pattern as net SW fluxes with modifications from latent heat fluxes (Figures 12, 22, 

29), especially for the convergence, subsidence, and storm track regions. This indicates 

that LH and SW fluxes are not only important for the surface energy budget but also are 

the dominant factors in driving the atmosphere general circulation. Figure 30 shows the
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diurnal variations of net surface fluxes. There are net heat losses during night hours 

(6p.m. to 6a.m.) and net heat gain during daytime hours with the highest heat gain at noon 

time over the Tropics. The black curve is similar to the net surface SW curve in Fig. 13
'j

except ~200W/nT lower. The zonal means for each heat flux component and the net 

surface flux are plotted in Fig. 31. The solid black, red, green, and blue curves represent 

net SW, net LW, turbulent latent, and turbulent sensible heat fluxes, respectively. The 

rain-induced sensible heat is very small in zonal averages. If plotted in this figure, it 

would be very close to the blue line due to the big scale used here and is therefore omitted 

from this picture. Finally, the broad dashed curve shows the NSF amounts. It is obvious 

that, the summer hemisphere gains more SW fluxes and the winter hemisphere losses 

more LW and latent heat fluxes. The NSF stays at 50-100W/m2 in summer hemisphere 

and drops from approximate 100W/m2 at equator to approximate -100W/m2 at 30° in the 

winter hemisphere. The net NSF is negative at regions higher than 15° in the winter 

hemisphere. This transition of heat gain and loss for oceans is highly related to the 

insolation or the seasonal variation of the Earth’s climate. Total NSF over the tropical 

regions is positive because of maximum solar radiation. The positive tropical total NSF 

is generally balanced by the loss of fluxes at higher latitudes. Table 4 summarizes the 

seasonal flux means for the entire tropical ocean (30°S - 30°N).
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Figure 29. Estimation of net surface fluxes from TRMM.
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Figure 30. Occurrence (%) and diurnal distribution of net surface heat fluxes (W/m2)
from TRMM for June-August 1998.



50

350“
250-

980101-980228

150-

5 0 -

- 5 0 -

-3 0 -1 5 0 3015

350“
250-

980301-980531

150-

5 0 -

- 5 0 -

-1 5 0
-2 5 0

-3 0 -1 5 0 3015

3 50“
250-

980601-980831

150-

5 0 -

- 5 0 -

-1 5 0
-2 5 0

-3 0 -1 5 0 15 30
L atitude

(Net SW Net LW ! ciejv. : ieoi Sensible Heat }

Figure 31. Zonal mean estimation of surface net fluxes (dashed line) from
TRMM.

Table 4. Seasonal mean for shortwave, longwave, latent, sensible, and net surface heat
fluxes for tropical ocean (30°S -  30°N).

shortwave longwave latent sensible net
980101-980218 239.6 -49.5 -137.0 -5.0 53.3
980301-980531 234.9 -49.1 -131.4 -4.7 54.7
980601-980831 213.2 -47.2 -139.89 -5.2 26.2
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CHAPTER 6 

SUMMARY AND CONCLUSION

The importance of air-sea interaction in the atmosphere-ocean coupled system is 

widely appreciated. The role of the tropical oceans for climate variation in inter-annual 

and longer time scales cannot be overstated. The existing global scale flux data sets are 

limited to certain components of surface fluxes. There have been no comprehensive net 

surface flux data sets which consider all major heat components for the tropical oceans or 

for large spatial scale distributions. Good estimates of the major heat components with 

global coverage are useful for the validation of ocean and coupled atmosphere-ocean 

models. TRMM is the first satellite providing the opportunity to estimate radiation, latent 

and sensible heat, and rain-induced sensible heat fluxes simultaneously, using instruments 

onboard the same satellite and covering the entire Tropics. An integrated approach to 

determine these heat flux components and net surface heat fluxes over the tropical oceans 

is studied in this paper.

The radiative heat fluxes are strongly affected by cloud properties. The turbulent 

heat fluxes are mainly correlated with atmospheric dynamics and thermodynamics, 

especially wind speed and humidity and temperature differences at sea surface and near

sea surface levels. These properties have strong variations on small temporal and spatial 

scales. Only satellite-based observations can provide a comprehensive estimate of these 

parameters. The accuracy of satellite sensed latent and sensible heat is limited by the 

accuracy of air temperature, humidity, and wind speed estimates and the bulk algorithms. 

The current microwave technique may be less accurate under high wind situations than in 

normal conditions and cannot retrieve wind speed and air humidity under precipitating 

clouds.

Besides the input parameters, the drag transport coefficients in the bulk formula are 

important factors for achieving high accuracy. The COARE bulk algorithm, used by 

many turbulent flux data sets, has been fine-tuned to the tropical warm pool region, which 

generally has low winds (<10 m/s). The lack of ground measurements by ship or buoy at
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high latitudes and under strong wind conditions makes it difficult to validate the turbulent 

flux results at those regions. Therefore, the new version CO ARE algorithm (version 3.0, 

2003) needs further investigation over high latitude areas. Based on this study, the 

turbulent sensible heat is an order of magnitude smaller than the latent heat over the 

tropical oceans. The rain-induced sensible heat is about two orders of magnitude smaller 

than the latent heat, but rainfall’s instantaneous cooling of the ocean surface and the 

increase of the buoyancy flux at sea surface water is not negligible. Although it is beyond 

the scope of this study, it is important to investigate the rain-induced sensible heat over 

the oceans during intensive convective events.

Since the TRMM satellite has a precessing orbit, different days may have different 

observational (or overpass) times for each region. With its swath of -760 km and 90 

minutes per orbit, TRMM cannot cover the whole Tropics in an hour. This means that 

for a specific hour, only small portion of the Tropics has the data. It takes 46 days for 

TRMM to come back to the same local time of equator crossing. It is only suitable to use 

the averages of at least 46-day cycle to study the spatial or temporal variations. TMITF is 

the only flux data set available for the study of episodic events and diurnal cycle 

variations. Based on June-August gridded data, surface-air humidity and temperature 

differences, net LW, and latent heat losses are higher in the afternoon. The sensible heat 

loss is higher in the evening because of higher WS. CERES provides an unprecedented 

accuracy for radiation fluxes at TOA and surface. TMITF provides the estimates of 

turbulent fluxes based on state of the art techniques of retrieving wind speed, humidity, 

and surface temperature. Combining both products, the temporal resolution of net surface 

fluxes covers from hourly to daily, monthly, and seasonal averages are drawn in this 

study. The analysis of these values for the first eight months of 1998, in general, is 

consistent with the current understanding of monthly and seasonal surface heat flux 

variations. Although TRMM is designed for precipitation sciences, this study expands it 

to an entirely new research area. This study also can be easily applied to Aqua satellite 

that basically has all the VIRS, CERES, and TMI channels used in this study.
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Appendix A

Facts about TRMM Mission and Its Instruments 

The content of this appendix is extracted from the TRMM web site: 

http://trmm.gsfc.nasa.gov/

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and 

the National Space Development Agency (NASDA) of Japan designed to monitor and 

study tropical rainfall. The accurate measurement of the spatial and temporal variation of 

tropical rainfall around the globe remains one of the critical unsolved problems of 

meteorology. TRMM, sampling footprint between 35°N and 35°S, will provide the first 

detailed and comprehensive dataset on the four dimensional distribution of rainfall and 

latent heating over vastly under-sampled oceanic and tropical continental regimes. 

Combined with concurrent measurement of the atmosphere's radiation budget, estimates 

of the total diabatic heating will be realized for the first time ever on a global scale. The 

primary instruments for measuring precipitation are the Precipitation Radar (PR), the 

TRMM Microwave Imager (TMI), and the Visible and Infrared Scanner (VIRS). 

Additionally, TRMM carries the Lightning Imaging Sensor (LIS) and the Clouds and the 

Earth's Radiant Energy System (CERES) instrument. These instruments can all function 

individually or in combination with one another.

1. Visible and Infrared Scanner

VIRS is one of the three instruments in the rain-measuring package and serves as a very 

indirect indicator of rainfall. It also ties in TRMM measurements with other 

measurements that are made routinely using the meteorological Polar Orbiting 

Environmental Satellites (POES) and those that are made using the Geostationary 

Operational Environmental Satellites (GOES) operated by the United States. VIRS uses a 

rotating mirror to scan across the track of the TRMM observatory, thus sweeping out a 

region 720 kilometers wide as the observatory proceeds along its orbit. Looking straight

http://trmm.gsfc.nasa.gov/
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down (nadir), VIRS can pick out individual cloud features as small as two kilometers.

VIRS, as its name implies, senses radiation coming up from the Earth in five spectral 

regions, ranging from visible to infrared, or 0.63 to 12 micrometers. VIRS is included in 

the primary instrument package for two reasons. First is its ability to delineate rainfall. 

The second, and even more important reason is to serve as a transfer standard to other 

measurements that are made routinely using POES and GOES satellites. The intensity of 

the radiation in the various spectral regions (or bands) can be used to determine the 

brightness (visible and near infrared) or temperature (infrared) of the source. The 

strength of the IR observations lies in the ability to monitor the clouds continuously from 

geostationary altitude. By comparing the visible and infrared observations on the 

Tropical Rainfall Measuring Mission with the rainfall estimates of the TRMM 

Microwave Imager and Precipitation Radar, it is hoped that much more can be learned 

about the relationship of the cloud tops as seen from geostationary orbit.

2. Clouds and the Earth's Radiant Energy System

The Clouds and the Earth’s Radiant Energy System (CERES) is used to study the energy 

exchanged between the Sun; the Earth’s atmosphere, surface and clouds; and space. The 

Earth’s daily weather and climate are controlled by the balance between the amount of 

solar energy received by the Earth (both by its surface, and its atmosphere and clouds) 

and the amount of energy emitted by the Earth into space. Scientists have been working 

for decades to understand this critical energy balance - to understand the budget of 

incoming and outgoing energy, called the Earth’s radiation budget.

A major portion of the energy received from the Sun is at short wavelengths while the 

majority of energy emitted by the surface of the Earth and by clouds is at long 

wavelengths. Increases in the amounts of greenhouse gases (gases in the atmosphere that 

absorb the long wavelength energy emitted by the Earth) can lead to a warming of the
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Earth’s surface. Such changes may, in turn, cause changes in the Earth’s weather and 

climate. Some of the shortwave radiation from the Sun is also reflected back into space 

by clouds and small particles in the atmosphere called aerosols. Major sources of 

aerosols include windblown dust, emissions from the burning of fossil fuels such as 

gasoline, and the burning of forests and agricultural fields biomass burning).

Water Vapor Effects

The CERES instrument is based on NASA Langley’s highly successful Earth Radiation 

Budget Experiment, which used three satellites to provide global energy budget 

measurements from 1984 to 1993. CERES measures the energy at the top of the 

atmosphere, as well as estimate energy levels within the atmosphere and at the Earth’s 

surface. Using information from very high resolution cloud imaging instruments on the 

same spacecraft, CERES also determine cloud properties, including cloud-amount, 

altitude, thickness, and the size of the cloud particles. All of these measurements are 

critical for advancing our understanding of the Earth’s total climate system and further 

improving climate prediction models. Five CERES instruments have been flown on 

multiple satellites starting with TRMM, followed by a launch on the Earth Observing 

System (EOS)-AM satellite in 1998 and the EOS-PM satellite in 2000. Follow-up 

CERES satellite missions are planned to create a continuous 15-year history of highly 

accurate energy budget and cloud data for enhanced climate analyses.

3. Microwave Imager

TRMM Microwave Imager (TMI) is a passive microwave sensor designed to provide 

quantitative rainfall information over a wide swath under the TRMM satellite. By 

carefully measuring the minute amounts of microwave energy emitted by the Earth and its 

atmosphere, TMI is able to quantify the water vapor, the cloud water, and the rainfall 

intensity in the atmosphere. It is a relatively small instrument that consumes little power. 

Combined with the wide swath and the good quantitative information regarding rainfall
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make TMI the "workhorse" of the rain-measuring package on Tropical Rainfall 

Measuring Mission.

The TMI measures the intensity of radiation at five separate frequencies: 10.7, 19.4, 21.3, 

37, 85.5 GHz. These frequencies are similar to those of the SSM/I, except that TMI has 

the additional 10.7 GHz channel designed to provide a more-linear response for the high 

rainfall rates common in tropical rainfall. TMI has a 487 miles (780-kilometer) wide 

swath on the surface. The higher resolution of TMI on TRMM, as well as the additional

10.7 GHz frequency, makes TMI a better instrument than its predecessors. Measuring 

Rainfall with Microwaves

4. Precipitation Radar

The Precipitation Radar is the first space borne instrument designed to provide three- 

dimensional maps of storm structure. The measurements should yield invaluable 

information on the intensity and distribution of the rain, on the rain type, on the storm 

depth and on the height at which the snow melts into rain. The estimates of the heat 

released into the atmosphere at different heights based on these measurements can be 

used to improve models of the global atmospheric circulation.

The Precipitation Radar has a horizontal resolution at the ground of about 2.5 miles (four 

kilometers) and a swath width of 137 miles (220 kilometers). One of its most important 

features is its ability to provide vertical profiles of the rain and snow from the surface up 

to a height of about 12 miles (20 kilometers). The Precipitation Radar is able to detect 

fairly light rain rates down to about .027 inches (0.7 millimeters) per hour. At intense 

rain rates, where the attenuation effects can be strong, new methods of data processing 

have been developed that help correct for this effect. The Precipitation Radar is able to 

separate out rain echoes for vertical sample sizes of about 820 feet (250 meters) when 

looking straight down. It will carry out all these measurements while using only 224
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watts of electric power-the power of just a few household light bulbs. The Precipitation 

Radar was built by the National Space Development Agency (NASDA) of Japan as part 

of its contribution to the joint US/Japan Tropical Rainfall Measuring Mission (TRMM)

5. Lightning Imaging Sensor

The Lightning Imaging Sensor is a small, highly sophisticated instrument that detects and 

locates lightning over the tropical region of the globe. Looking down from a vantage 

point aboard the Tropical Rainfall Measuring Mission (TRMM) observatory, 218 miles 

(350 kilometers) above the Earth, the sensor will provide information that could lead to 

future advanced lightning sensors capable of significantly improving weather 

"nowcasting."

The lightning detector is a compact combination of optical and electronic elements 

including a staring imager capable of locating and detecting lightning within individual 

storms. The imager's field of view allows the sensor to observe a point on the Earth or a 

cloud for 80 seconds, a sufficient time to estimate the flashing rate, which tells 

researchers whether a storm is growing or decaying. The sensor was developed by the 

Global Hydrology Center at NASA's Marshall Space Flight Center in Huntsville, Ala., in 

conjunction with Lockheed Martin, Palo Alto, Calif., and Kaiser Electro Optics, 

Carlsbad, Calif. The Lightning Imaging Sensor is approximately eight inches in diameter 

and 14 inches high, while the supporting electronics package is about the size of a 

standard typewriter. Together, the two modules weigh approximately 46 pounds and use 

about 25 watts of power.
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