
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1989

Interactive Simulations for Knowledge Acquisition Interactive Simulations for Knowledge Acquisition

Sorel Bosan
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bosan, Sorel, "Interactive Simulations for Knowledge Acquisition" (1989). Dissertations, Theses, and
Masters Projects. Paper 1539626819.
https://dx.doi.org/doi:10.21220/s2-qkfy-fw43

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235410843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-qkfy-fw43
mailto:scholarworks@wm.edu

INTERACTIVE SIMULATIONS FOR KNOWLEDGE ACQUISITION

A Thesis
Presented To

The Faculty of the Department of Computer Science
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Master of Science

by
Sorel Bosan
1989

APPROVAL SHEET

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Science

Author

Approved, June 19 89

R. H. /Prosl, Chairman

R. M. Bloch

S. Feyock

K. W. Miller

ii

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iv
LIST OF TABLES V
LIST OF FIGURES vi
ABSTRACT .. vii
CHAPTER 1 INTRODUCTION.............................. 2
CHAPTER 2 METHODOLOGY 7
CHAPTER 3 RESULTS 25
CHAPTER 4 DISCUSSION 28
CHAPTER 5 CONCLUSION 37
APPENDIX A 48
APPENDIX B .. 52
APPENDIX C .. 54
APPENDIX D .. 58
APPENDIX E .. 60
APPENDIX F .. 61
APPENDIX G .. 62
APPENDIX H 75
APPENDIX I .. 81
BIBLIOGRAPHY 85

iii

ACKNOWLEDGEMENTS

First of all, I would like to extend my thanks to my
advisor Dr. Richard Bloch. His advise, support, and patience
has provided me with motivation throughout my thesis and will
continue to do so for many more research projects to come.
And for that I am forever grateful.

I would also like to thank Dr. Feyock, Dr. Miller, Dr.
Park, and Dr. Prosl for their invaluable advice throughout the
project. In addition, I thank my friend Audrey for providing
me with enthusiasm, even through the hardest of times. Last
but not least, I would like to thank my parents whose tireless
support has been my inspiration for this thesis, as it also
was for my entire education.

LIST OF TABLES

Table Page
1. Dimensions for the Clock Simulation.......... 40
3. Correlation of Knowledge Base Judgements

Constructed Using 2 * SD as Boundaries
and Expert Judgments................... 41

4. Correlation of Optimized Knowledge Base
Judgments and Expert Judgments........ 42

5. Corrolation of Combined Knowledge Base
Judgments and Expert Judgments.......... 43

v

LIST OF FIGURES

Table Page
1. Flowchart of the Methodology................. 45
2. The Clock Simulation........................ 46
3. Decision Ranges........................... 47

vi

ABSTRACT

In constructing knowledge based systems which utilize
perceptual expertise the major problem is that the knowledge
acquisition techniques available are generally verbal and are
inappropriate for communicating perceptual knowledge. This
thesis tests a methodology for the acquisition of perceptual
knowledge utilizing an interactive computer simulation.
Issues for the construction of an appropriate simulation, the
elicitation of knowledge with the use of the simulation and
the construction of a knowledge base from the simulation data
are discussed. The methods are presented in general and their
implementation is demonstrated with the use of a simulation
of the second hand of a clock. Results from 4 experts showed
that the knowledge acquired by the interactive simulation and
incorporated into an expert system produced judgments that
were highly correlated with similar judgments made by each
expert. The feasibility of utilizing interactive simulations
to acquire perceptual knowledge from one or more experts and
of translating that information into an effective and
verifiable expert system is demonstrated.

vii

INTERACTIVE SIMULATIONS FOR KNOWLEDGE ACQUISITION

CHAPTER I
INTRODUCTION

Perceptual knowledge, is an essential part of most forms of
expertise. It is primarily required of real world tasks where
physical properties must often be observed in order to make
some judgement. For example, in the field of medicine,
perceptual knowledge is used in the diagnosis of movement
disorders, in rehabilitation, in dermatology, and in most
other specialties ranging from general practice (listening
to the heart beat) to radiology (analysis of medical images).
In robotics, perceptual knowledge is needed for movement
related decision making and planning as well as the
recognition of objects. Finally, perceptual knowledge is
needed for expert systems, and automated control systems,
where decision making involves observing physical objects
(such as engine repair, automated car driving etc.).

Although the importance of perceptual knowledge is clear,
no widely accepted general technique exists for its
acquisition and incorporation into expert systems. Knowledge
acquisition is the process of acquiring knowledge from any
source, including books, films, and observation of the task.
The most commonly used sources, however, are experts in the

2

3
field of interest. Acquiring knowledge from experts is thus
a subset of knowledge acquisition, and is referred to as
knowledge elicitation.

Methods for eliciting knowledge have been studied
intensively for the past two decades. Early methods almost
exclusively relied on verbal interviews with experts [1].
Verbalizing expertise, regardless of the domain of knowledge,
requires conscious awareness of information and procedures
used in decision making. Often, this awareness is not present
[2]. Eliciting knowledge using verbal interview techniques
requires experts to translate their knowledge from the
internal representation, to a new verbal representation which
could be expressed clearly in an interview [3]. Such a
translation is difficult and slow, even for verbal knowledge
representations, and it causes knowledge acquisition to become
the bottleneck in the construction of knowledge based systems
[1,2].

The difficulty of translating expertise into verbal
representations is especially problematic for perceptual
knowledge. Verbal representations would be principally
required for visual, auditory and somatosensory knowledge.
Translating other sensory information, such as olfaction,
would be even more problematic.

4
Current research in knowledge elicitation aims to speed

up the transformation process by making it possible for
experts to transfer their knowledge in a representation as
close as possible to the internal representation they utilize
in their expertise [3]. Research for automating the knowledge
elicitation process by transferring some of the
responsibilities and tasks of a knowledge engineer to a
computer is also underway [4]. However, the majority of the
knowledge domains explored have been related to the cognitive
aspects of knowledge, with techniques which render them
difficult and inconvenient for use in perceptual knowledge
acquisition [1,3,5].

For the elicitation of perceptual knowledge, the use of
interactive computer simulation provides a promising and
straightforward technique with current technology.
Interactive computer simulations are computer controlled
sensory models of real life stimulus conditions. These can
be modified by its user through the use of interactive
controls. Until there are advances in computer controlled
stimulators, however, graphical and auditory modalities are
the easiest to simulate.

Interactive controls allow the user to provide digital
or analog input to modify any or all of the features of a
simulation. As the values associated with the interactive

5
controls are modified, the corresponding features of the
simulation change as well. In this way, the form or the
behavior of the simulation can be systematically changed to
match some standard form or behavior. The values associated
with these adjustments can be stored. An expert can be asked
to modify the features of a simulation until it matches an
internal standard the expert uses in making judgments about
a particular form or behavior of a stimulus. The values of
the expert's adjustments are representative of the expert's
judgement of what a particular form or behavior of an object
should be.

The experiment described in this thesis tests the use of
an interactive computer simulation for perceptual knowledge
elicitation. The experiment also tests a procedure for
constructing optimized rule bases from the simulation data and
integrating expertise from multiple experts.

For the tested interactive simulation and knowledge base
development methodology to be useful, it must produce a
knowledge base capable of decisions or judgments similar to
those of the expert whose knowledge was elicited. Thus, the
verification of the knowledge base by showing a strong
correspondence between its decisions and the expert's would
indicate that interactive simulation methodology is a suitable
knowledge acquisition method, for developing expert systems.

6
Failure to verify the knowledge base and its decision behavior
suggests that either the tested methodology or the particular
application of the methodology is flawed.

CHAPTER II
METHODOLOGY

Several different approaches can be used in the
development of computer simulations for knowledge acquisition.
The method presented here consists of four stages (see fig.
1) including :

A) Construction of the interactive simulation.
B) Knowledge elicitation.
C) Construction of a knowledge base from the data

obtained by the simulations.
D) Verification of the resulting expert system.

The following four sections present these stages both
generally and in the specific context of a simple stimulus,
the second hand of a clock and its associated tick sound.

A) The Simulation
The first step in the construction of the simulation is

the identification of the domain of interest. This study uses
the correct functioning of the second hand of a clock and its
associated tick. There were several reasons for choosing this
example. Expertise in second hand behavior was relatively
available. In addition, it offered simple perceptual

7

8
judgments which had both visual and auditory components. The
example was complicated enough, however, to include most of
the issues that would be encountered with more complicated
domains, such as the use of multiple dimensions and
modalities. Finally, the simple audio-graphical simulation
could be programmed with available hardware.

The next step requires identification of the features of
the selected stimulus which will be simulated. A simulation
need not contain all the features of the physical phenomena
being modelled. Indeed, a simulation model by definition
abstracts physical events. The features which vary and
influence the behavior of a simulation are, for this study,
called dimensions. The selection of dimensions determines the
aspects of the stimulus situation which will be altered or
judged. The features which do not change are selected to give
context to the chosen dimensions. The choice of static
features is not crucial, however, and any features, as long
as they place the dimensions chosen in context, are
appropriate.

A physical stimulus may have more variability associated
with its form or behavior than is perceived or used in
judgments. This is because only a limited number of
dimensions can be observed and evaluated by a person at any
given time [6]. As a result, the dimensions to be used in the

9
simulation may be a subset of all of the possible physical
dimensions. Furthermore the choices must include the
dimensions used in judgement behavior, although including
additional dimensions would not impair the performance of the
methodology.

The choice of dimensions also depends on the particular
evaluation task. For example, the stimulus dimensions used
to distinguish between birds as a function of flight patterns
are obviously different from the dimensions used to
differentiate birds as a function of song patterns.

For the clock example, in addition to wanting two
perceptual modalities, a desire to limit the number of
dimensions yielded four dimensions. They did not, however,
cover the range of variability associated with a clock
exhaustively. Instead, these dimensions were chosen to allow
for the proper modification and control of the clock
simulation, in the domain of interest.

Two of the four dimensions dealt exclusively with visual
aspects of the movement of the second hand. One dimension
used both visual and auditory aspects of the movement. The
fourth dealt with the auditory modality exclusively.

The four dimensions used were :

10
i) Arc Length
Arc length visually determined, in degrees, the extent

of the rotation of the second hand associated with each one
of its discrete movements, or ticks.

ii) Tick interval
Tick interval was the interval between each movement or

tick sound of the second hand, measured in milliseconds.

iii) Starting Position
Starting location allowed for the visual adjustment of

the position of the second hand, enabling the second hand to
be aligned with the numeral markings.

iv) Tick Delay
Tick delay determined the delay between the auditory tick

sound and the arm movement in milliseconds. The tick sound
was allowed to sound before or after a movement of the second
hand.

The time related dimensions tick_interval and tick_delay
were generated using the internal clock of the microcomputers.
The rotational movement of the second hand of the clock,
associated with length and starting position, was generated
with the use of algorithms adapted from Stevens [7].

11
To allow expert adjustment of a simulation's

characteristics the simulation can be made modifiable by
associating an interactive control with each of its
dimensions. Interactive controls allow experts to modify each
dimension, and as a result, alter the overall form or behavior
of the simulation. Expertise transfer occurs when the experts
adjust the simulation dimensions to make them match their
concept of a correctly working second hand and the values of
the adjusted dimensions are recorded.

The interactive controls used in the clock example were
designed to ensure a uniform modification interface for all
dimensions. Each dimension was assigned a number. The
dimension names and their corresponding numbers were displayed
on a status line at the bottom of the screen (see fig 2) .
Each dimension could be modified, once selected by pressing
its corresponding number on the keyboard and by using the ' + '
and keys. Pressing the ' + ' key increased the value of the
dimension at that moment by the value of the grain size.
Pressing the key had the opposite effect. The dimensions
could be modified in any order, and any number of times. When
all dimensions were adjusted by the expert to match his/her
internal standard, pressing 'q' would signify the end of the
modification. The values for the parameters at that point
were written out to a database. Instructions describing this

12
operation were read to each expert (see appendix D).
The resulting simulation constructed for this investigation
consisted of a circular clock face displayed on the screen
with the locations of the twelve numeral positions clearly
marked (see fig 2). A second hand of a clock was drawn as a
line extending from the center of the clock to its inner
perimeter. The second hand moved clockwise around the clock
face in discrete steps, with each step accompanied by a tick
sound of 1 msec, duration. The sound was generated by the
internal speaker of the computer under program control.

The smallest possible distinguishable change, or the
grain size associated with each interactive control should be
chosen so as to allow adequate knowledge transfer. This grain
size is a function of the decision task at hand. For example,
in judging the differences between the weights of two objects,
differences of a few grams can be perceived if the two objects
weigh in the order of a few grams. However, the perceivable
difference can only be in the order of kilograms if the object
weights are in the order of kilograms. Therefore, the
simulation should include the capability to change the
simulation characteristics in adequately sized steps to
reflect an expert's knowledge.

Furthermore, the range of modification for each
interactive control should also be identified. The range must

13
capture the different forms or behavior of interest associated
with the stimulus. As a result, a sufficiently large range
should be provided which allows an expert to differentiate,
with his/her expertise, all of the desirable forms or behavior
associated with the stimulus. Thus, in the example of
distinguishing bird song patterns, an auditory simulation must
have sufficient adjustment range to allow experts to
distinguish crows and hummingbirds from chickens.

Initially, for the clock example, the values for the
modification range and the grain size were estimated. During
the testing of the simulation, user feedback was used to
change these initial values to make the modification of the
simulation easier. In addition, the data obtained from these
tests were also used to fine tune the grain size and
modification range choices.

The audio-visual simulation was programmed in Turbo
Pascal Version 5.0, on IBM-PC/AT class machines. A variety
of graphic board/ video monitor combinations were used. These
included a Hercules graphics card with monochrome display; EGA
graphics card with multisynch achromatic display; and EGA
graphics card with multisynch color display. The sound was
generated using the 'sound* command built into Turbo Pascal.

As a final point in the construction of the simulation,
it must be remembered that the performance of the expert

14
system constructed from the simulation data is the final test
of whether the simulation was constructed appropriately.
Problems in any of these areas can undermine the performance
of a resulting expert system so that it fails to perform as
the expert would.

B) Knowledge Elicitation
In this methodology, knowledge elicitation takes place

entirely through the use of the interactive simulation. The
experts are asked to adjust the dimensions of a simulation to
make them match their internal concept of a particular form
or behavior. This is repeated a number of times, each time
storing the final adjustment values. This process is then
carried out for other forms or behavior of interest.

For the clock example, the experts were instructed on the
use of the simulation, and all the controls were explained
(See Appendix E). Next, the experts were asked to modify the
clock simulation until, in his or her judgement it was a
correct representation of a second hand of a correctly working
clock. This was the only behavior of interest. The experts
were asked to repeat this process 10 times. Built into the
program were 10 different starting positions for the
dimensions. They were chosen to be equally split between the

15
two extreme ends of the ranges of individual dimensions so as
to avoid any bias in the final results. The ten simulations
were presented to the expert in sequence without intervention.
The expert was given the option of rest between simulations.
At the completion of each modification task, the final choice
for each dimension was stored in a file. Thus a value base
of ten data points for each dimension per expert was obtained.

A total of 10 experts were tested. The clock example was
chosen to ensure that people would have needed no special
education to become experts, making it simple to find experts
for testing the methodology. As a result no special selection
process was followed in selecting -experts. Of these ten
experts four never completed the testing process. The data
collected from two were lost due to disk failure. The results
of the remaining four are presented in the results section.

C) Construction of the Knowledge Base
Having obtained the values bases, a method is needed to

translate them into a knowledge base. If the knowledge base
is to consist of rules, then the expert's values for the
dimensions must be translated into rules. If the knowledge
base is to consist of frames, the translation would be to

16
frames (for a further discussion of what particular form of
knowledge representation to use see appendices B and C). In
this study, expert's settings on the four clock dimensions
were translated into Prolog clauses, or rules.

Perceptual knowledge used in making judgments usually
takes the form of pattern classifications. Each pattern being
classified, or distinguished by the expert system, represents
a possible outcome for the knowledge base. The process of
converting an expert's dimension data into a knowledge base
must provide both the appropriate decision paths as well as
the necessary decision outcomes.

There are at least two basic ways to develop rules which
provide the appropriate decision paths to the final decision
outcomes needed. One follows the traditional knowledge
engineering approach. This approach emulates the experts
verbal description of how they would combine the various
features, represented by dimension values, to derive the final
classification behavior. This method is flawed. It expects
an expert to use values derived from his simulation behavior
to determine final classifications when, ordinarily, his
expertise in determining classifications does not employ such
values.

Another way to develop the rules relies on the knowledge

17
engineer's appropriate choice of dimensions and the naturally
resulting method for the combination of dimensional
information. If, for example, an interactive simulation was
designed to acquire data for an expert system distinguishing
different birds' songs, an expert could be requested to adjust
the simulation values for several dimensions to match the
songs of different birds. The expert would be asked to adjust
the simulation to match an albatross call, a canary song etc.
Since data is collected for each dimensions, for each bird,
a rule structure naturally follows with a rule for each
dimension, of the form:

Dimension_Name(Value, Result)
Value <= upper_bound__for_Bird_l,
Value >= lower_bound for_Bird_l,
Result is birdl;
Value <= upper_bound_for_Bird_2,

• • •

Value >= upper_bound_for__Bird_N/
Value >= lower_bound__for_Bird_N,
Result is birdn.

Value is the value associated with each dimension of the
simulation. All rules have the same structure.

18
The combination of rules to make decisions can follow

naturally as well. If it is assumed that the expert adjusts
appropriate dimensions, then combining dimensions using the
logical AND, so that :

Birdname(VI, V2, ... VN, Result) :-
Dimension_Namel(VI, Resultl),

• • •

Dimension_NameN(VN, ResultN),
Resultl = Result2,
Result2 = Result3,

• • •

ResultN-1 = ResultN.
Result is ResultN.

The use of one knowledge structure for all
dimensions simplifies the construction of the knowledge base
and aid work towards its automation (see Appendices B and C).

Each of the dimensional rules is used to classify a value
associated with a particular dimension. As a result the rules
serve as a form of pattern recognition method (see figure 3) .
The decision ranges are used as the means of pattern
classification.

Each decision range could conceivably be constructed from
a single data point obtained from the simulation. This could

19
be done by selecting the boundaries of the decision range to
maximize the performance of the resulting knowledge base.
Applying an arbitrary multiplicative constant could also
provide a decision range from a single value. Use of a
sufficient number of data points, however, ensures that the
mean of these points will lie near the middle of the decision
range. As a result, the boundary values are of nearly equal
distance away from the mean in opposite direction.
Furthermore, the standard deviation obtained from these data
yields additional clues about the boundaries, simplifying the
search for the appropriate decision range.

For the clock example, there was one behavior of
interest, a correctly working clock. The decision range for
a correctly working clock for each dimension was obtained by
first calculating the mean of the ten data points associated
with each dimension, and then calculating the standard
deviation. Finally, the decision range was obtained using the
calculations :

upperbound = mean + (2 * sd)
lower__bound = mean - (2 * sd)

The choice of 2 * sd comes from the fact that if the
distribution is Gaussian, 2 * sd would include 95% of the
correctly working clock judgement.

20
One clause, or rule per dimension was constructed of the

form :

correct_Dimension_Name(Value)
Value <= upper_bound_for_Dimension_Name,
Value >= lower_bound_for_Dimension_Name.

where upper_bound and lower_bound were computed for each of
the dimensions as described above. No 'result' argument was
used to return the classification. Instead, the success of
the rule signified the 'correctly working clock' decision for
each dimension.

As a last step in the construction of the knowledge base,
a knowledge structure (or structures) to combine the separate
dimensional classification judgments to classify the overall
stimulus must be constructed. For the clock example, the
binary decisions of correctly working or not correctly
working, for each dimension, were combined conjunctively to
yield the final decision. This final decision was expressed
with the rule :

correctly__working_second__hand (VI, V2, V3, V4)
correct__tick_delay (VI) ,
correct tick_interval(V2),

21
correct_arc_length(V3),
correct__starting_position (V4) •

where VI .. V4 the values associated with the dimensions.
The goal behind the construction of this knowledge base

is to match the judgement behavior of the expert as closely
as possible. One way to improve this match is by adjusting
the appropriate decision ranges. Although the choice of + or
- 2 * standard deviation for calculating the decision range
boundaries would probably yield acceptable results, they are
not necessarily the best. An optimization was done to
maximize the average correlation of the knowledge base
decisions with those of the experts they were obtained from.
The optimization was carried out by comparing the average
correlations of the knowledge bases constructed using :

upper_bound = mean + (x * sd)
lower_bound = mean + (x * sd)

where
0 < X =< 2.5

It should be noted however, that this is by no means the only
way to approach optimization.

The knowledge elicitation time with experts is relatively
short for this methodology. The combination of multiple

22
experts to maximize system expertise is, thus, made possible
by this method.

To test the use of multiple experts, all data points
obtained from the experts were used in calculating the upper
and lower boundaries for the same decision ranges. The
performance of the combined expert system was compared to that
of expert systems constructed from single experts.
Furthermore, an optimal range, as described above, was found
for the combined rule base.

D) Verification
The verification of the expert system constructed from

the knowledge base obtained can be carried out by applying
similar methods used for other expert systems. An expert, and
the knowledge base constructed can be presented with a number
of different stimuli. The correlation between the knowledge
base judgments, and the expert's judgments must be high in
order for the knowledge base to be considered valid.

Another way to approach verification would be to use the
simulation as a means of supplying the test cases, rather than
an actual physical stimulus. In order to be able to use the
simulation in place of the object however, the simulation must
be verified as a correct representation of the physical
obj ect.

23
The verification methodologies used for this study had

a three fold purpose :
i) verifying judgments or decisions derived from

each knowledge base as strongly related to that
expert's own judgments.

ii) finding if the relationship between judgments
derived from one expert's knowledge and other
experts' judgments was significant.

iii) finding if knowledge bases developed by using
multiple experts was more highly related to
individual and group judgments than knowledge
bases developed by any one expert.

For each point of interest, the verification was done by
providing each expert used in knowledge elicitation with 20
pre determined simulations of the second hand. The expert was
instructed to study each one carefully to determine whether
all features of the second hand of the clock were
representative of a correctly working clock (See appendix F
for instructions) . If so, they were instructed to respond
'yes', signifying that the simulation represented a correctly
working second hand of a clock. Otherwise, they were asked
to respond 'no'. Then, the twenty sets of dimensional values
presented to the experts with the simulations were fed into
the rule bases under study. The response of these rule bases

24
for each simulation were noted. Finally the phi correlation
of the answers for the expert and the knowledge base judgments
were computed.

The first of the above mentioned goals was obtained by
computing the correlation between the judgement of an expert
and that of the knowledge base constructed from his simulation
results. For achieving the second goal, the correlation
between each expert's judgments and the responses of knowledge
bases, constructed from the other experts simulation results,
were computed. Finally the phi correlations for each expert's
answers and that of the combined rule base was calculated and
compared with the correlations obtained for the first and
second goals, as a means of obtaining the third goal.

CHAPTER III
RESULTS

For each expert the correlation between the judgments of
the expert system based on his/her simulation data and his/her
own judgments was calculated (Tables 2 and 3) . The average
correlation for the 95% Gaussian decision range was 0.708 and
ranged for individuals from 0.577 to 0.811. When the
decision range was optimized the average correlation increased
to 0.821 and ranged for individuals from 0.655 to 1.000. In
all cases, each expert's judgments of the second hand of a
clock, and the judgments derived from the knowledge bases were
highly and significantly correlated at or above the 95%
confidence level. The validity of the interactive simulation
methodology in eliciting individual expert's knowledge in an
accurate and useful fashion is demonstrated by these
consistently high correlations. Indeed, all experts'
decision ranges for the arc length and starting position
dimensions matched that of a real clock, and the decision
range for the tick interval dimension included the true 1
second interval.

The correlation of the expert system's decisions based
on the simulation data of one expert, with the judgments of

25

26
other experts were compared (Tables 3 and 4). For individual
knowledge bases based on the 95% Gaussian decision range the
average correlation between one knowledge base and the other
experts* judgement ranged from 0.544 to 0.774. The average
correlation between one expert's knowledge base judgments and
other experts' judgments was 0.646. These correlations are
somewhat lower than the correlations between an expert's
judgments and the judgments of the knowledge base derived from
that same expert. They are, however, still significant and
show that the knowledge acquired is general knowledge usable
by others, rather than idiosyncratic knowledge of little use
to others.

A few of the correlations between one particular expert's
knowledge base judgments and other experts' judgments were
not significant. This does not however reflect on the quality
of the knowledge acquisition methodology but suggests that the
level of expertise for that expert was not the same level as
the other experts.

Interactive simulation facilitates the knowledge
acquisition process to the extent that it becomes quite
possible to acquire knowledge from more than one expert with
very little additional effort. This, in turn, makes possible
the development of 'smarter' knowledge bases than would be
generated by a single expert.

27
When the knowledge in the knowledge bases of the 4

experts were combined and correlated with the individual
judgments of the 4 experts, the average correlation was 0.702.
This is an increase from the 0.646 level obtained comparing
the knowledge base decisions from one expert with other's
behaviors. Thus it is possible, by combining knowledge base
information, to improve performance of an expert system
developed using interactive simulations.

Summarizing the results it can be seen that the knowledge
base decisions correlated significantly with the experts'
decisions they were acquired from. The correlations of these
knowledge bases were slightly lower for other experts although
they remained mostly significant. Using a combined knowledge
base, on average, improved the predictive ability of the
expert system for a range of experts in comparison to
individual expert's knowledge bases. Finally, the high
significance of the correlations, despite the small number of
experts, trials and tests used suggests that the methodology
is robust.

CHAPTER IV
DISCUSSION

A) Issues
In order for the simulation methodology presented in this

paper to be useful for knowledge elicitation, a number of
issues must be addressed. These issues will be discussed in
the following two sections.

i) Issues Related to the Construction of Simulations
One issue is how to identify the dimensions of a stimulus

to be used in the simulation. In the current study the
rudimentary nature of the expertise assisted in making the
choice of dimensions easier. For real world future
applications such as diagnosis of movement disorders, the
identification of dimensions would be a far more demanding
task.

A variety of methods can be used for identifying the
separate dimensions of a stimulus. For stimuli with a small
number of state variables (varying features of a stimulus,
which when combined describe the real world behavior of a
stimulus completely and accurately) modeling tools can be used
to identify the variables. This would involve constructing

28

29
mathematical models of the stimulus and require considerable
familiarity with its functionality. Due to the small number
of state variables, modelling should be a relatively straight
forward task, however. Furthermore, it is quite conceivable
that since the number of state variables is small all of them
would be used by an expert in decision making. As a result,
the state variables can be used as the dimensions.

For stimuli which possess a large number of state
variables, however, this methodology would present a problem.
Since only a few of these state variables can be used by an
expert, using all the state variables as dimensions would
introduce considerable redundancy. In addition,
differentiating the state variables which are used to make
expert judgments from those which are not can be quite
difficult. For such stimulus situations, psychophysical
scaling techniques may be appropriate. Of these techniques
the application of multidimensional scaling, cluster analysis
and Pathfinder networks to the elicitation of knowledge about
levels of abstraction for a domain has been studied by Cooke
and Mcdonald [8].

While modelling, psychophysical scaling, and other
statistical techniques can be used to identify dimensions of
a complex stimulus situation, even knowledgeable trial and
error could be used successfully. Verification of the expert

30
system would disclose if expert behavior was adequately
predicted by the knowledge base decisions. If dimensions were
omitted which contributed significantly to expert judgments,
verification would show poor correlations between expert and
knowledge base judgments. If dimensions were included in the
simulation which were not used by the expert in adjusting the
simulation then they would not contribute to the correlation
between knowledge base and expert. In either case, dimensions
which produce significant correlations between knowledge base
judgments and expert judgments are empirically valid no matter
how they were identified.

Another issue is the identification of the grain size
associated with each dimension. The choice of dimensions with
well known properties eased the process of choosing the
appropriate grain size for the time related dimensions for the
current study. Furthermore, the resolution of the graphics
boards used dictated the grain size for the visual dimensions.
For future applications, however, the properties of the
dimensions chosen will not necessarily be obvious. As a
result, other approaches must be considered.

Psychophysical thresholding techniques present a
promising approach [9]. These techniques cover a variety of
simple and complicated stimuli, and should easily be
convertible for use with the stimulus of interest. Knowledge

31
engineers may also choose to familiarize themselves with the
stimulus and produce an estimate. One approach that might be
considered, using the smallest possible step permitted by the
simulation, may be appropriate when such a choice does not
introduce considerable problems for designing a responsive and
accurate interactive controls.v

Yet another issue, identification of the range of
modifiability for each dimension, is once again important. An
improper choice can result with the inability of the expert
to adjust the stimulus properly. For the clock example, the
largest range permissible by the simulation implementation was
used.

For future applications, unfortunately, no general use
methods exist to aid with this task. As a result, the
knowledge engineer may choose to familiarize himself/herself
with the stimulus in order to make a reasonable estimate.
However, in the absence of a reliable estimate, allowing as
large a range as permitted by the computer simulation is a
good idea. In any case, the correctness of the chosen ranges
can be determined by the performance of the knowledge base
constructed.

32
ii) Issues Related to the Knowledge Base Construction

One issue is the determination of the decision range for
use in each dimension's knowledge structure. As mentioned
previously, the distribution of the judgments may not
necessarily be Gaussian. As a result, determining this
distribution would identify the appropriate range. However,
if the distribution cannot be identified, the proper range
could be constructed by the use of other methods which would
provide clues as to what the distribution should be.The
combinations of the dimensional decisions would be done using
their certainty factors.

The presence of separate knowledge structures for a
number of dimensions raises an important issue, how to combine
them in decision making. The important point to consider is
that the result of the method used in combining these
dimensions must predict the behavior of an expert accurately.
It is quite conceivable that for different situations and
stimuli, different methods should be used. For example, for
simple objects with relatively independent dimensions taking
the conjunction of the decisions made independently on each
separate dimension may be enough as it was done for this
study. For more complicated objects Bayesian statistics [10]
or multi-dimensional psychophysical techniques [11] can be
used. Both of these methods would require information about

33
the certainty of each dimension and would yield a certainty
factor for the final decision as well.

Another issue relevant to the construction of knowledge
bases, is whether the knowledge bases* reasoning can be
explained. It should be emphasized that the need for
explanations that can be used by people is entirely dependent
on the application. Such explanations will be pointless if
the experts are not aware of their own reasoning process.
This lack of awareness may be especially true for large
numbers of perceptual expertise as signified by the difficulty
in using traditional knowledge acquisition methodologies for
perceptual knowledge.

There are two important points to consider when looking
at explanations. One is whether the knowledge base obtained
can be explained at all. The second is whether these
explanations match the reasoning used by human experts. Since
a number of explanation schemes already exist for different
types of expert system shells, they could easily be utilized
in obtaining explanations. This solves the problem associated
with the first point.

Coming up with an answer for the second point is a far
more complicated task. In this case, choosing the dimensions
and the combination method for the dimensions based on the
final judgement performance is not enough. It requires the

34
reasoning of the knowledge base to be meaningful to people.
Since the reasoning process used by the knowledge base will
be completely determined by the dimensions and the method for
combining them, if explanations are necessary, extra emphasis
must be placed in choosing the dimensions and the combination
methodology. This would be needed to ensure the construction
of a knowledge base whose reasoning can be understood by its
users.

B) Disadvantages of the Methodology
One disadvantage of this methodology is the difficulty

associated with the construction of a simulation, in
particular for complex little studied stimulus. This problem
would be overcome if the issues addressed above are resolved.
Until then, however, the construction of a simulation will
remain as the major cost behind this methodology.

Another disadvantage is related to the data type
requirement the methodology places on the input. As mentioned
previously, for verification of the expert system data may be
fed into the expert system directly from the stimulus or from
the simulation. For obtaining data directly from the
stimulus, appropriate instruments must exist for quantifying
the dimensions used in the simulation. On the other hand, if
the simulation is to be for the input data it must be

35
verified. For the simulation to be verified, once again, data
corresponding to the dimensions of the simulation must be
obtained directly from a stimulus. This data would be used
to simulate that particular stimulus for comparison with the
stimulus. So, as a result, dimensions used in the simulation
must be quantifiable readily with the use of existing
instrumentation.

C) Advantages of the Methodology
An interactive simulation methodology for knowledge

elicitation, as described above, eliminates the need for any
form of intervention from the knowledge engineer during
knowledge elicitation. This, in turn can increase the
efficiency and the reliability of the simulation technique
relative to other methods.

Since verbalizations are reduced to a minimum, knowledge
elicitation time is significantly reduced. Construction of
simulations, especially for complex objects, however require
considerable amount of time. The overall time for knowledge
acquisition, therefore, depending on the object will improve
relatively less. Since the time spent with the expert is the
most costly portion of knowledge acquisition, however, the
cost of knowledge acquisition should be reduced considerably.
In addition, reduced knowledge elicitation time facilitates

36
the elicitation of knowledge from multiple experts, enabling
the incorporation of multiple expertise into a single
knowledge base which in turn can improve the performance of
the expert system constructed.

Finally, the knowledge base/simulation pair could be used
as a training tool. If a link is formed for passing values
from the simulation to the expert system any adjustments made
by a trainee could be passed to the expert system for
evaluation. A reverse link would enable training through the
playback of appropriate simulations as determined by the
expert system.

CHAPTER V
CONCLUSION

Interactive computer simulations provide an effective
methodology for perceptual knowledge acquisition. Interactive
computer simulations, with the use of proper human computer
interaction methods provide a novel approach for knowledge
elicitation allowing it to be a more appealing and an easier
process for the experts than repeated verbal interrogation.

Even the simple clock example used, however, presented
difficulties. Many of these difficulties relate to the
construction of real time interactive simulations.
Construction of real time simulations can be a demanding task,
especially for complex objects. Furthermore, research efforts
are needed to solve difficulties associated with the
determination of the variable features for use in the
simulation and the construction of a knowledge base from the
simulation data. These would include, in addition to the
issues mentioned in the previous chapter, determination of the
ideal number of experts to use for elicitation, and the
appropriate number of data points to obtain from them.

The results of this paper clearly establish that the use
interactive simulations is certainly feasible and it works.

37

38
Future use of computer simulations for complicated situations
should provide solutions to many of the problems mentioned
here.

The most desirable long term goal would be to develop
formalisms and appropriate theories which could be used
generally for all perceptual domains and stimuli. The result
of this could be a general automated system with tools
enabling the construction of a simulation of the object under
study for use in knowledge elicitation, and constructing a
knowledge base from the interactive simulations.

TABLES

40
TABLE 1

DIMENSIONS FOR THE CLOCK SIMULATION

Dimension Range of Modifiability Grain Size

Tick Interval
Tick Delay
Starting Position
Arc Length

400 - 2000 ms.
-400 - 400 ms.

0.5 - 45 deg,

25 ms.
5 ms.

0.5 deg,
0.5 deg,

41
TABLE 2

CORRELATION OF KNOWLEDGE BASE JUDGMENTS CONSTRUCTED USING 2*SD
AS BOUNDARIES AND EXPERT JUDGMENTS

Knowledge Bases Constructed from
Judgement of Subjectl Subject2 Subject3 Subject4

Subjectl 0.811 1.000 0.638 0.704
Subject2 0.599 0.739 0.471 0.816
Subject3 0.734 0.503 0.577 0.302
Subject4 0.644 0.818 0.522 0.704

42

TABLE 3
CORRELATION OF OPTIMIZED KNOWLEDGE BASE JUDGMENTS

AND EXPERT JUDGMENTS

Knowledge Base Constructed from
Judgement of Subjectl Subj ect2 Subject3 Subj ect4

Subjectl 1.000 0.818 0.724 0.707
Subject2 0.739 0.903 0.535 0.579
Subject3 0.503 0.302 0.655 0.000
Subject4 0.818 0.798 0.592 0.724

43

TABLE 4
CORRELATION OF COMBINED KNOWLEDGE BASE JUDGMENTS

AND EXPERT JUDGMENTS

Combined Knowledges Base with
Boundaries

Judgement of 2 * sd Optimized

Subjectl 0.811 1.000
Subject2 0.599 0.739
Subject3 0.734 0.503
Subject4 0.664 0.818

FIGURES

45
FIGURE1

FLOWCHART OF THE METHODOLOGY

NO
YES

YESNO
done

Start

construct the simulation

does the knowledge base emulate the expert?

identify the variable features or dimensions

repeat above step for all forms of interest

construct a knowledge base from
the simulation data

identify the range of modifiability and the
grain size for each dimension

can the simulation be modified to match all
desired states of the stimulus?

adjust the simulation to one desirable state
for a number of times and store each adjustment

46

FIGURE 2
THE CLOCK SIMULATION

CLOCK SIHULftTiQH

"'■pil-* ;‘-?3'̂ V'T-V̂ '’̂

! >' J ■’ «.f t'AfT.?J'
1 ^ I 1 k T 1 fTfs»"‘i » " r ' V J 1 I * 1 * 0
ij^vr ’ ^sL ifc i-

l-f * •'V i •??.»'Kiik^w

j.hv m~

47
FIGURE 3

DECISION RANGES

DIMENSIONS MODIFICATION RANGE

X
A B C D

-< >+< >+< >+<-------

D A
+ < >+< >-

B
h<------

A
- < > -

C, D
-< H

 : Numerical range of modifiability for a dimension
L

-|-<---- >-|- : Numerical decision range for behavior or form L

48
APPENDIX A

A BRIEF OVERVIEW OF KNOWLEDGE ACQUISITION METHODS

Early methods for knowledge acquisition relied on verbal
elicitation of knowledge from experts. This verbal
elicitation took a variety of forms. The more popular ones
included, verbal interviews where the knowledge engineer
carries out a free flowing conversation with an expert [1],
structured interviews [12] where the form and the flow of the
interview questions are pre determined, and protocol analysis
[12], where knowledge is collected and analyzed by having
experts "think aloud" or introspect and verbalize.

The verbal methods, although fairly straight forward,
were inefficient at extracting knowledge from experts. In
particular, the lack of awareness of expertise, or its
intuitive nature as well as the difficulty of verbalizing it
caused knowledge acquisition to become the bottleneck in the
construction of knowledge based systems [13].

In order to facilitate the transfer of intuitive, or
subconscious knowledge from experts a variety of psychological
methods have been utilized. Psychophysical scaling methods
such as multidimensional scaling and cluster analysis [8], as
well as Kelly's Personal Constructs theory [14] have been used

49
in organizing knowledge, investigating its underlying
structure.

These methods rely on identifying grids of descriptive
knowledge primitives and their connection patterns used by
experts. Although successful in eliciting fairly detailed
information, and readily adaptable for interactive knowledge
acquisition, they are time consuming, and can be difficult to
use by the experts.

Another approach towards facilitating the transfer of
intuitive knowledge involves designing the knowledge base
system to facilitate knowledge acquisition [3]. This is
accomplished by enabling the knowledge representation
primitives to match as closely as possible the task level
primitives employed by the experts. This approach can be
fairly difficult to apply, however, since the task level
representation primitives may not be readily obtainable.

Another approach towards overcoming the problems
associated with verbal knowledge acquisition methods has been
tailoring the knowledge acquisition strategies to a particular
task [4]. This involves classifying the task at hand as one
of the many application tasks which include design, diagnosis,
control etc. and then applying the appropriate knowledge
acquisition tools for that application task. This approach,

50
however, assumes that well defined knowledge acquisition tools
are available for application tasks which may not be the case.
Furthermore, it assumes that a particular task may be
classified as one or another form of application task whereas
many tasks do not clearly fall within the boundaries of any
one application task.

One recent knowledge acquisition strategy employs machine
learning algorithms [15]. These algorithms include learning
from examples[16, 17], model based learning [18] and inductive
learning algorithms [19] amongst others. The learning
algorithms are superior to other knowledge acquisition
methodologies in that they facilitate the maintenance and
upgrade of the knowledge based systems after they are
constructed. However, they are very limited in scope, and can
rarely be used as the only knowledge acquisition strategy (a
notable exception to this may be Michie,s ID3 algorithm [16])

Knowledge acquisition is, currently, one of the most
active research areas related to knowledge based systems.
Most of the research, however, is done as a part of developing
a knowledge based system for a particular task, and the
knowledge acquisition tools developed for that task are later
presented as alternatives to the existing tools. These tools
reflect this approach in that they are usually restricted to

51
a particular domain of knowledge and if they are applied to
other domains, they are slow and inefficient. As a result,
verbal knowledge elicitation methods, although inaccurate and
slow, are still the predominant knowledge acquisition
methodologies used.

52
APPENDIX B

AUTOMATED RULE BASE GENERATION

Although it is not particularly difficult to manually
construct rules from the data obtained from this simulation,
in general, automating this procedure is a cost reducing step.
To achieve automation, a link has to be formed between the
expert system and the simulation. The link would be used for
passing the boundary values associated with each dimension
from the simulation to the expert system. This link need be
no more complicated than the 'escape' clause developed by
Feyock [20].

The escape clause provides a means of calling a pascal
procedure from prolog itself. The pascal procedure in fact
would be the simulation. It must be noted at this point that
the direction of call (i.e. prolog to pascal or pascal to
prolog) is not really important although the ability of pascal
routines to call prolog to build the rule base would be more
convenient.

Once the appropriate values are passed to the prolog
procedure a combination of func, arg, univ, clause and assert
statements could be used for constructing rules with these

53
values. The names of the dimensions can be supplied by the
simulation program or prompted for by prolog. It is important
to note that the constructed rules must be prolog clauses if
prolog itself is to act as the inference engine. This would
complicate the construction of rules since not all prolog
implementations allow the use of reverse meanings of such
clauses as univ which would be necessary for building the
rule.

The presence of an automated rule base construction is
important for the future work related to the automation of the
interactive simulation methodology. It eliminates the need
for the knowledge engineer completely from the knowledge
acquisition stage to knowledge base construction. For the
interactive simulation methodology to be completely automated
however, the construction of the simulation must be automated
as well.

54

APPENDIX C
KNOWLEDGE STRUCTURE CHOICE

One of the important points to consider in using the
interactive simulation methodology is what type of knowledge
representation to use. Since no special inferencing
techniques are required from the final knowledge base
constructed, practically any knowledge representation scheme
desired could be used. If the knowledge acquired using the
interactive simulation method is to be combined with knowledge
obtained from other sources the integration can be achieved
with relative ease. This is true even if the knowledge bases
obtained using other methodologies place certain requirements
on the representation scheme used. Such flexibility can be
achieved since the knowledge acquired using the interactive
simulation methodology is highly portable, requiring no
special knowledge representation schemes.

It is conceivable, however, that the knowledge obtained
using the interactive simulation method is to be the primary,
or even the only source of knowledge in an expert system. For
such a system it may be worthwhile to consider 3 issues before
choosing the final form of knowledge representation.

55
First, the necessary inference engine for processing the

knowledge structure of choice must be available.
Next, the reasoning format of the knowledge

representation should be considered. This point is especially
important for large knowledge bases. The closer the reasoning
format of the knowledge representation is to that of humans,
the easier it is for people to read and understand the
knowledge base. For example, instead of the rule base that
was used for the clock, an equivalent frame base could have
been constructed :

Frame : Object
ISA :

return True

Frame : Clock
ISA :
Dimensionl :

• •

DimensionN :

Frame : Dimension
ISA :

prompt Dimension_Value
return Test Correct(Dimension Value)

Object
Dimensionl_Name = True

DimensionN Name = True

56

Frame : Dimension_Name
ISA : Dimension
Upper_Bound : dimension_name_upper_bound
Lower_Bound : dimension_name_lower_bound

TestCorrect(Dimension_Value) = True
if Dimensional_Value >= Lower_Bound
& Dimensional_Value <= Upper_Bound

It should be observed, however, that for humans rules are
a more natural way of expressing this knowledge. This, in
turn, makes the reading and understanding of the rule base
easier. This would be especially appreciated for larger
knowledge bases.

As a final point, the suitability of the knowledge
representation for automatic rule formation (as discussed in
appendix B) may be considered. Again, using the frame
example, it can be seen that a general frame structure can
easily be constructed. Next, instances of this general frame
can be used for constructing each dimension. As discussed in
appendix B, however, construction of automated rule bases
using prolog clauses can be considerably more complicated.

57
The final choice of the knowledge structure, as a result,

will depend on the particular situation. Number of issues
will be considered (such as how important is the automatic
knowledge base construction and many others depending on the
situation) and the final decision will be reached after
carefully weighing the pros and cons of each knowledge
representation. The availability of prolog was the main
reason behind choosing prolog clauses as the form of knowledge
representation for this thesis.

58
APPENDIX D

INSTRUCTIONS FOR CLOCK SIMULATION

We are studying how people judge the accuracy of the
second hand of a clock. On the screen you can see a simulated
clock face with a second hand which ticks as it moves. There
are several features of this "clock" which need to be adjusted
to make the clock appear to operate correctly. You select
which feature to adjust by entering the number that
corresponds to the feature identified under the clock.
Feature 1 is the distance the second hand travels With each
tick. If you enter the number '1' you can increase the
distance travelled by pressing the •+' key, and decrease the
distance travelled by pressing the key.

DEMONSTRATE 1
Feature 2 is the time between ticks. To adjust the

interval between ticks to equal one second, press the 2 key
and use the 1+' key to increase the interval or the '-' key
to decrease the interval. Feel free to use the keys in any
order and any number of times.

DEMONSTRATE 2
Feature 3 controls the relationship between the "tick"

sound and the movement of the second hand. Enter a 3 to

59
adjust the feature. Press the ' + * key to move the sound
forward , toward happening before the movement, and press the
' -1 key to move the sound backward in relation to the
movement.

DEMONSTRATE 3
Finally, feature 4 involves adjusting the location of the

arm at the end of each second so that the second hand behaves
as it would on a clock by pointing toward the numbers.
Adjusting this feature does not affect any of the other
features. Press the '+• key to move the location of the hand
clockwise and the *-• key to move the location counter
clockwise.

DEMONSTRATE 4
Do you have any questions? We will do this procedure a

total of 10 times. We want you to model a true second hand
as closely as possible so take as much time as you need. We
can take a break at any time you wish.

60
APPENDIX E

INSTRUCTIONS FOR CLOCK JUDGMENTS

We are going to show you 20 different simulations of a
clock with a second hand. We want you to look at the distance
travelled with each tick, the time each "second" takes,
whether the "tick" sound corresponds correctly to the hand
movement, and whether the second hand points accurately at the
number locations to judge if, overall, each clock presented
is correct or incorrect. If any of the features of the clock
are not correct in your judgement, please judge the clock to
be incorrect. If all the features of the clock are correct,
please judge the clock as correct. Take as much time as you
need, we are interested in accuracy, not speed. Do you have
any questions? We can take a break any time you wish.

APPENDIX F
PROLOG RULEBASE FOR THE CLOCK EXAMPLE

correcly_working_second_hand(VI, V2, V3, V4) :-
correct_tick_delay(VI),
correct_tick_interval(V2),
correct_arc_length(V3),
correct_starting_position(V4).

correct_tick_delay(Value)
Value <= upper_bound_for_tick_delay,
Value >= lower_bound_for_tick_delay.

correct_tick_interval(Value) :-
Value <= upper_bound_f or__tick_interval,
Value >= lower_bound_for_tick_interval.

correct_arc_length(Value)
Value <= upper_bound_for_arc_length,
Value >= lower_bound_for_arc_length.

correct_starting_position(Value)
Value <= upper_bound_for_starting_position
Value >= lower_bound_for_starting_position

62
APPENDIX 6

CODE FOR THE CLOCK SIMULATION

program Clock_simulation;

uses
Crt, Dos, Graph, Printer, GraphSet;

< * >

<......................... GLOBAL DATA STRUCTS......................... >
{ * }

const
r = 150;
r_1 = 110;
StartX = 320;
StartY = 175;
Min = 0;
Max = 719;
Sp_Max = 720;

Type
Pos_Array = array [Min..Max] of integer;

Var
CurPort ViewPortType;
Pos_X Pos_Array;
Pos_Y Pos_Array;
Pos_XT Pos_Array;
Pos_YT Pos_Array;
Sp_Grain integer;
Ps_Grain integer;
Sd_Grain integer;
Space_Step integer; t Arc Length in 0.5 degrees >
SoundDelay integer; { Tick delay >
PauseT i me integer; i Tick interval >

63
Ps_Tm_Ar : array [0..4] of integer;
Sp_St_AR : array [0..4] of integer;
Sd_Dl_Ar : array [0..4] of integer;
FileName : string[12]; <. Output File >

C Starting Positions >

F
Toggle

: Text;
: boolean;

C INITIALIZE DATA STRUCTURES >
C’ >

Procedure Init_Structs;

Var
i : integer;
X, Y : real;

Procedure Rotate(deg : integer; var X, Y : real);

Var
XI, Y1 : real;
angle : real;

Begin
angle := deg * radian;
X1 := x - StartX;
Y1 := y - StartY;
x := X1 * cos(angle) + y1 * sin(angle) + StartX;
y := y1 * cos(angle) - x1 * sin(angle) + StartY;

Const
radian = 0.00872664626; C radian equiv. of 0.5 deg >

End;

Begin
Space_step := 1;
Pos_X[min] := StartX;
Pos_Y[min] := StartY - r_1 + 4;

64
X := Pos_X[min];
Y := Pos_Y[min];
For i := min + 1 to max do C Calculate the inner >
begin C perimi ter of the clock >
Rotate(Space_Step, X, Y);
Pos_X[i] := StartX + round(<StartX - x) * 1.29);
Pos_Y[i] := round(Y);
end;

Pos_XT[min] := StartX;
Pos_YT[min] := StartY - r_1 - 11;
X := Pos_XT[mi n];
Y := Pos_YT[mi n];
For i := min + 1 to max do i Calculate the outer >
begin < perimi ter >
Rotate(Space_Step, X, Y);
Pos_XT[i] := StartX + round((StartX - x) * 1.29);
Pos_YT[i] := round(Y);

end;
Sp_grain := i;
Ps_Grain := 25,
Sd_Grain := 5;
Ps_Tm_Ar[1] : = 1500;
Sd_Dl_Ar[1] : = 100;
Sp_St_Ar[1] : = 20;
Ps_Tm_Ar[2] : = 1700;
Sd_Dl_Ar[2] : = -90;
Sp_St_Ar[2] : = 8;
Ps_Tm_Ar[3] : = 450;
Sd_Dl_Ar[3] : = -100;
Sp_St_Ar[3] : = 20;
Ps_Tm_Ar[4] := 1400;
Sd_Dl_Ar[4] : = 70;
Sp_St_Ar[4] : = 2;
Ps_Tm_Ar[0] : = 550;
Sd_Dl_Ar[0] : = 150;
Sp_St_Ar[0] : = 18;
Toggle := true,
FileName := 'Test.dat';
Assign(f, filename);
Rewrite(f);

65

<..........................WELCOME SCREEN >
< * - >

Procedure Initial_screen;

begin
RestoreCrtMode;
Wr teln;
Wr teln;
Wr teln;
Wr teln('
Wr teln;
Wr teln('
Wr teln('
Wr teln;
wr teln<'
Wr teln(1

Wr teln;
Wr teln('
Wr teln('
Wr teln;
Wr teln;
Wr teln('
Wr teln('
Wr teln;
Wr telnC
Wr telnC
Wr teln;

end; ^initial

Welcome to ExperClock ');

Version 3.2 ');
24/02/89');

by •);
SoreI Bosan ');

Dept, of Computer Science');
College of William & Mary');

advisor ');
Dr. Richard Bloch');

Dept, of Research and MIS');
Eastern State Hospital');

< * }

{ WRITE RESULTS...............................>

Procedure Results(Countf Yindex : integer);

Begin
RestoreCrtMode;
Writeln(f, 1 For experiment Count : 3, 1 the results are
WriteIn;
writeln(f, ' Spacing ==> ', space_step / 2 : 3:3, 1 degrees');
writeln(f, 1 Timing ==> Pausetime / 1000 : 3:3, 1 seconds');
writeln(f, 1 Placement ==> ', Yindex mod (space_step div 2) : 5, 1 ticks off')
writeln(f, 1 Sound Sync ==> ', SoundDelay/1000 : 3:3, ' seconds');
writeln(f);
Writeln(f, ' WITH');
writeln(f);
writeln(f, ' Space Grain ==> ', Sp_Grain * 0.25 : 3:3, ' degrees');
writeln(f, ' Time Grain ==> ', Ps_Grain : 5, ' miliseconds');
writeln(f, ' Sound Grain ==> ', Sd_grain : 5, ' mi Iiseconds');
writeln(f);
if toggle then
begin
Write n(' For experiment , Count : 3, ' the results are :');
Write n;
write n(' Spacing ==> ', space_step / 2 : 3:3, ' degrees');
write n(' Timing ==> ', (pausetime) / 1000 : 3:3, ' seconds');
write n(' Placement ==> ',yindex mod (space_step div 2) : 5, ' ticks
write n(' Sound Sync ==> ', SoundDelay/1000 : 3:3, ' seconds');
write n;
Write n(' WITH' >;
write n;
write n(' Space Grain ==> ', Sp_Grain * 0.25 : 3:3, ' degrees');
write n(' Time Grain ==> ', Ps_Grain : 5, 1 miliseconds');
write n(' Sound Grain ==> ', Sd_grain : 5, ' miliseconds');
write n;
write n;

end;

C............................SET UP THE CLOCK.......................... >
< * >

Procedure Set_Up_Clock;

Var
i : integer;

begin
SetGraphMode(GraphMode);
ClearDevice;
FulIPort;

{ PaintScreen >
Ma inUi ndow(1 CLOCK SIMULATION');
StatusLine(11.ARC_LENGTH 2.TICK_INTERVAL 3.TICK_DELAY 4.TICK_P0SITI0N. or Q.QUIT')
GetVi ewSett i ngs(CurPort);

{ Initialise Clock >

SetColor(15);
Circle(StartX, StartY, r + 5); (. Draw Clock >
Circle(StartX, StartY, r - 5);
SetFillStyle(SolidFi11, 15);
FloodFiIKStartX, StartY + r_1 + 5 , 15);
SetColor(O);
i := min;
repeat { Mark numeral positions >

setColor(O);
Line(Pos_X[i], Pos_Y[i], Pos_XT[i], Pos_YT[i3);
i := i + 60;

until i = Sp_Max;

end; CSet Up Clock>

< * >

C........................... SET UP MENU..............................>
{ * }

68

Procedure Set_Up;
Var
Quit : boolean;
ch : char;
no : integer;

Begin
Quit := false;
While not quit do
begin
clrscr;
GotoXY(30, 4);
writelnC'1. Adjust Arc Length Grain');
GotoXY(30f 6);
writeln('2. Adjust Tick Interval Grain1);
GotoXY(30, 8);
writeln('3. Adjust Sound Delay Grain');
GotoXY(30, 10);
writeln('4. Adjust Starting Tick Interval');
GotoXY(30, 12);
writeln('5. Adjust Starting Sound Delay ');
GotoXY(30, 14);
writeln('6. Adjust Starting Arc_length');
GotoXY(30, 16);
writeln('7. Change Output File Name');
GotoXY(30, 18);
Writeln('8. Result Display Toggle = "' , toggle,
GotoXY(30, 20);
WritelnC'9. Reset Clock to Correct Values ');
GotoXY(30, 22);
writeln('Q. Quit');
GotoXY(0, 28);
write('Please Make A Choice ==> ');
readln(ch);
clrscr;
Case Ch of

'1' : begin
writeln('Current Arc Length Grain is ', Sf
write('Enter New Arc Length Grain ==> ');
Readln(no);

"");

Grain :6);

69
Sp_Grain := no;

end;
'2' : begin

writeln('Current Tick Interval Grain is Ps_Grain :6);
writeCEnter New Tick Interval Grain ==> ');
Readln(no);
Ps_Grain := no;

end;
'3' : begin

writeln('Current sound delay Grain is ', Sd_Grain :6);
writeCEnter New Sound Delay Grain ==> ');
Readln(no);
Sd_Grain := no;

end;
•4' : begin

writeCEnter Starting Tick Interval ==> ');
ReadIn(no);
PauseTime := no;

end;
'5' : begin

writeCEnter Starting Sound Delay ==> ');
Readln(no);
SoundDelay := no;

end;
'6 ' : begin

writeCEnter Starting Arc Length ==> ');
Readln(no);
Space_Step := no;

end;
'7' : begin

close(f);
writeln('Current Data File Name is Filename, "");
writeCPlease Enter Data File Name ==> ');
ReadLn(FileName);
Assign(f, FileName);
Rewrite(f);

end;
'8 ' : Toggle := not Toggle;
'9' : begin

PauseTime := 1000;
SoundDelay := 0;

70
Space_Step := 12;

end;
'Q', 'q1 : quit := True;

else begin
writelnC Incorrect Choice');
UaitToGo;

end;
end; {case}

end C while}
end;

{ * }

C...................... ANIMATE USING LINE DRAWING...................... }
(* ; >

Procedure linedraw;
{ Demonstrate Line Animation }

var
Ch
key
Msg
XIndex
X_Next
Y i ndex
Y_Next
I
quit
X, Y
Finish
Time
TrialCount
count

Begin

Char;
integer;
String [11];
integer;
integer;
integer;
integer;
integer;
boolean;
real;
boolean;
longint;
integer;
integer;

TrialCount := 1;

71
Count := 0;
finish := false;
while not finish do
begin

PauseTime
SoundDelay
Space_Step

= Ps_Tm_Ar[count];
= Sd_Dl_Ar[count];
= Sp_St_Ar[count];

count := (count +1) mod 5;

{ Set Starting Values >

TextBackground(O);
clrscr;
writeCWould You Like to Use the Set Up Menu ==> ');
readln(ch);
if (ch = 'y') or (ch = 1Y1) then Set_up;
Set_up_Clock;
XIndex := min;
Yindex := min;
Y_Next := min + Space_Step;
X_Next := min + Space_Step;
setColor(15);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]);
DeIay(pauseTi me);
quit := false;
Time := PauseTime;
key := 2;

C Move the arm around >

repeat

If SoundDelay >= 0 then { Tick delay >
begin
Sound(440);
Delay(1);
NoSound;
DeIay(SoundDeIay);
SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]);
SetColor(15);

Line(StartX, StartY, Pos_X[X_Next], Pos_Y[Y_Next]);
end

else
begin
SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]);
SetColor(15);
Line(StartX, StartY, Pos_X[X_Next], Pos_Y[Y_Next]);
Delay(Abs(SoundDelay>);
Sound(440);
Delay(1);
NoSound;

end;
Yindex := Y_Next;
Y_Next := (Yindex + Space_step) mod Sp_Max;
Xindex := X_Next;
X_Next := (Xindex + Space_step) mod Sp_Max;

Time := Time - 7 - ABS(SoundDelay); { Tick interval >

repeat
If KeyPressed Then
begin
Ch := ReadKey; { Update response >
case ch of
•1' : key = i;
•2' : key = 2;
3 : key = 3;
.4 . : key = 4;

: case key of
1 : if (space_Step + Sp_Grain) <= 180

then space_Step := space_Step + Sp_Grain;
2 : if (PauseTime + Ps_Grain) <= 2000

then PauseTime := PauseTime + Ps_Grain;
3 : if (SoundDelay + Sd_Grain) <= 200

then SoundDelay := SoundDelay + Sd_Grain;
4 : begin

SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex])
yindex := (ylndex +1) mod Sp_Max;

xindex := (xindex +1) mod Sp_Max;
y_next := (y_next +1) mod Sp_Max;
x_next := (x_next +1) mod Sp_Max;
SetColor(15);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex])

end;
end;

' - 1 : case key of
1 : if (space_Step - Sp_Grain) >= 1

then space_Step := space_Step - Sp_Grain;
2 : if (pauseTime - Ps_Grain) >= 400

then PauseTime := PauseTime - Ps_Grain;
3 : if (Sounctoelay - Sd_Grain) >= - 200

then SoundDelay := SoundDelay - Sd_Grain;
4 : begin

SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex])
yindex := (ylndex - 1) mod Sp_Max;
xindex := (xindex - 1) mod Sp_Max;
y_next := (y_next - 1) mod Sp_Max;
x_next := (x_next - 1) mod Sp_Max;
SetColor(15);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex])

end;
end;

•q1 : Quit := True;
else ;

end;
end; {if keypressed}

Delay(100);
Time := Time - 100;

until Time < 100;

Delay(Time - 1);
Time := PauseTime;

until quit;
RestoreCrtMode;
Results(TrialCount, Yindex);

74
Write('Would you like to quit (Y) ==> ');
Readln(ch);
if (ch = 'y') or (ch = 1Y1) then finish := true;
TrialCount := TrialCount + 1;

end;
close(f);
{Prepare For Exit}

end; { PutlmagePlay }

{ program body }

begin
Initial_Screen;
Init_Structs;
Linedraw;

end.

APPENDIX H
CODE FOR GRAPHICAL SETUP

Unit GraphSet;

Interface

uses
Crt, Dos, Graph;

{.................... GLOBAL CONSTANTS

const
{ The names of the various device drivers supported }
DriverNames : array[0..10] of string[8] =
('Detect', 'CGA', 'MCGA■, 'EGA', 'EGA64', 'EGAMono',
'RESERVED', 'HercMono', 'ATT400', 'VGA', 'PC3270');

{ The five fonts available >
Fonts : array[0..4] of string[13] =
('DefaultFont', 'TriplexFont', 'SmallFont', 'SansSerifFont', 'GothicFont');

{ The five predefined line styles supported >
LineStyles : array[0..4] of string[9] =
('SolidLn', 'DottedLn', 'CenterLn', 'DashedLn', 'UserBitLn');

C The twelve predefined fill styles supported >
FillStyles : array[0..11] of string[14] =
('EmptyFi11', 'SolidF ill', 'L ineF ill', 'LtSlashFi11', 'SlashFill',
'BkSlashFi11', 'LtBkSlashFill', 'HatchFill', 'XHatchFi11',
'InterleaveFi11', 'WideDotFi11', 'CloseDotFi11');

{ The two text directions available >
TextDirect : array[0..1] of string[8] = ('HorizDir', 'VertDir');

76

{ The Horizontal text justifications available >
HorizJust : array[0..2] of string[10] = ('LeftText', 'CenterText1, 'RightText');

{. The vertical text justifications available >
VertJust : array[0..2] of string[10] = ('BottomText', 'CenterText1, 'TopText');

I *)

{...................... GLOBAL VARIABLES...............................>
< ; * >

Var
GraphDriver : integer; { The Graphics device driver >
GraphMode : integer; { The Graphics mode value >
MaxX, MaxY : word; i The maximum resolution of the screen >
ErrorCode : integer; C Reports any graphics errors >
MaxColor : word; C The maximum color value available >

< * >

C.......................... PROCEDURES...............................>
{ * }

procedure Initialize;

function Int2Str(L : Longlnt) : string;

procedure DefaultColors;

procedure DrawBorder;

procedure FullPort;

procedure MainWindow(Header : string);

procedure StatusLine(Msg : string);

procedure UaitToGo;

V >

77

Implementation

{ * ; >

{..................... INITIALIZATION PROCEDURE........................ >
< * >

procedure In i t i a Iize;
i Initialize graphics and report any errors that may occur >
begin
{ when using Crt and graphics, turn off Crt's memory-mapped writes >
DirectVideo := False;
GraphDriver := Detect; { use autodetection >
InitGraph(GraphDriver, GraphMode, "); < activate graphics >
setGraphMode(GraphMode);
ErrorCode := GraphResult; C error? >
if ErrorCode <> grOk then
begin
Writeln('Graphics error: GraphErrorMsg(ErrorCode));
Halt(1);

end;
MaxColor := GetMaxColor; { Get the maximum allowable drawing color >
MaxX := GetMaxX; { Get screen resolution values >
MaxY := GetMaxY;

end; { Initialize >

< * >

t................... INT_to_STRING PROCEDURE........................... >
< * >

function Int2Str(L : Longlnt) : string;
C Converts an integer to a string for use with OutText, OutTextXY >
var
S : string;

begin
Str(L, S);

78
Int2Str := S;

end; { Int2Str >

{ * >

<...................... SET MAX DEFAULT COLOURS........................ >
{ * }

procedure DefaultColors;
{ Select the maximum color in the Palette for the drawing color >
begin
SetColor(MaxColor);

end; { DefaultColors >

^ * ^

{..................... DRAWBORDER PROCEDURE............................>
< * >

procedure DrawBorder;
{ Draw a border around the current view port >
var
ViewPort : ViewPortType;

begin
DefaultColors;
SetLineStyle(SolidLn, 0, NormWidth);
GetV i ewSett i ngs(Vi ewPort) ;
with ViewPort do
Rectangle(0(0, x2-x1, y2-y1);

end; { DrawBorder >

{ * }

{....................... SET VIEWPORT to WHOLESCREEN...................>
< * >

procedure FullPort;
{ Set the view port to the entire screen >
begin
SetViewPort(Of 0, MaxX, MaxY, ClipOn);

end; { FullPort >

I SETUP SCREEN
>
>

79

procedure MainUindow(Header : string);
{ Make a default window and view port for demos >
begin
DefaultColors; {. Reset the colors >
ClearDevice; { Clear the screen >
SetBkColor(O);
SetTextStyle(DefaultFont, HorizDir, 1); { Default text font >
SetTextJustify(CenterText, TopText); { Left justify text >
FullPort; { Full screen view port >
OutTextXY(MaxX div 2, 2, Header); { Draw the header >
{ Draw main window >
SetViewPort(Of TextHeight('M')+4, MaxX, MaxY-(TextHeight('M1)+4), ClipOn);
DrawBorder; { Put a border around it >
{ Move the edges in 1 pixel on all sides so border isn't in the view port >
SetViewPort(1, TextHeight(1M’)+5, MaxX-1, MaxY-(TextHeight(1M1)+5), ClipOn);

end; { MainWindow >

< * }

<............................DISPLAY STATUS............................ >
{ * >

procedure StatusLine(Msg : string);
{ Display a status line at the bottom of the screen >
begin
FuliPort;
DefaultColors;
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJust i fy(CenterText, TopText);
SetLineStyle(SolidLn, 0, NorrrtWidth);
SetFillStyle(EmptyFill, 0);
Bar(0, MaxY-(TextHeight(1M1)+4), MaxX, MaxY); { Erase old status line >
Rectangle(0, MaxY-(TextHeight(*M•)+4), MaxX, MaxY);
OutTextXY(MaxX div 2, MaxY-(TextHeight(1M')+2), Msg);
{. Go back to the main window >
SetViewPort(1, TextHeight(1M1)+5, MaxX-1, MaxY-(TextHeight(1M•)+5), ClipOn);

end; <; StatusLine }

WAIT to ABORT
>
>

80
{ ♦ ♦ a * ; *

procedure UaitToGo;
{ Wait for the user to abort the program or continue >
const
Esc = #27;

var
Ch : char;

begin
GotoXY(1, 25);
writeC Hit a key to Continue ==>');
repeat until KeyPressed;
Ch := ReadKey;

end; { UaitToGo >

begin
Initialize;

end.

81

Program optimise;

Const
Testsize = 18;
DataSize = 4;

APPENDIX I
THE OPTIMIZATION CODE

Type

Var

Range = Record
up_bound : real;
l_bound : real;

end;
Data = array[1..DataSize] of real;

R : array[1..DataSize] of Range;
Mean : Data;
Sd : Data;
Opt_A : Data;
Opt_B : Data;
Opt_C : Data;
Opt_D : Data;
A, B : Data;
C, D : Data;
Cor : Data;
Opt_Cor : Data;
Ans : array[1..Datasize, 1..TestSize]
Cor_Sum : reaI;
Max_Cor : real;
Opt_X : real;
Test : array[1..Testsize] of real;
i, i. x : integer;

Function PhiCa, b, c, d : real) : real;

82

Begin
If (a+b=0) or (b+d =0) or (c+a = 0) or (d+c = 0) then phi := -2
else Phi := (a*d - b*c)/sqrt((b«-a)*(d+c)*(b+d)*(a+c))

End;

Procedure Initialize_Data;

Begin
Ans[1, 1] = 'n';
Ans[1, 2] = 'V;
Ans[1, 3] = 'V;
Ans[1f 4] = 'n';
Ans[1, 5] = *n';
Ans[1, 6] = 'n';
Ans [1, 7] = ' y ' ;
Ans [1, 8] = ' y ' ;
Ans [1, 9] = 'n';
Ans[1, 10] = ' y ' ;
Ans[1, 11] = V ;
Ans [1, 12] = V ;
Ans[1, 13] = 'n';
Ans [1, 14] = V ;
Ans[1, 15] = ' y ' ;
Ans[1, 16] = 'n';
Ans[1, 17] = ' y ' ;
Ans[1, 18] = * y ;
Test [1] : = 0.85;
Test [5] : = 1.7;
Test [9] : = 0.7;
Test[13] := 0.75;
Test [17] : = 1.0;
Mean[1] := 1.158;
Sd[1] : = 0.155;
Max_Cor := ■5;

End;

Ans[2, 1] = 'n';
Ans[2, 2] = 'y ' ;
Ans[2, 3] = 'y ' ;

Ans[2, 4] = 'n';
Ans[2, 5] = in';
Ans[2, 6] = 'n';
Ans[2, 7] = 'y ' ;
Ans[2, 8] = 'y ' ;
Ans[2, 9] = in';
Ans[2, 10] = 'n';
Ans[2, 11] = 'y ' ;

Ans[2, 12] = 'y ' ;
Ans[2, 13] = 'n';
Ans[2, 14] = 'n';
Ans[2, 15] = 'n\-
Ans[2, 16] = 'n';
Ans[2, 17] = ' y ' ;
Ans[2, 18] = ' y ' ;
Test[2] : = 1.0;
Test[6] : = 0.85;
Test[10] := 0.95;
Test[14] := 0.95;
Test[18] := 1.15;
Mean[2] : = 1.110;
Sd[2] : = 0.102;

Ans [3, 1] = 'y';
Ans [3, 2] = ■y;
Ans [3, 3] = •n';
Ans[3, 4] = •n';
Ans[3, 5] = •n';
Ans [3, 6] = ■y;
Ans[3, 7] = ■y ;
Ans[3, 8] = ■y;
Ans[3, 9] = •n';
Ans[3, 10] = •y ;
Ans[3, 11] = ■y;
Ans[3, 12] = 'n';
Ans[3, 13] = ■n';
Ans [3, 14] = ' y ' ;

Ans [3, 15] = •y;
Ans [3, 16] = 'n';
Ans [3, 17] = ■y';
Ans[3, 18] = ■n';
Test[3] : = 1.15;
Test[7] : = 1.1;
Test[11] := 1.0;
Test[15] := 1.125;

Mean[3] := 1.045;
Sd[3] := 0.214;

Ans [4, 1] = 'n'
Ans [4, 2] = ■n'
Ans[4, 3] = •y
Ans[4, 4] = •n'
Ans[4, 5] = •n'
Ans[4, 6] = •n'
Ans[4, 7] = •y
Ans [4, 8] = ■y
Ans [4, 9] = in'
Ans[4, 10] = ■n'
Ans[4, 11] = •y
Ans [4, 12] = , y ,

Ans [4, 13] = ■n'
Ans[4, 14] = ■y
Ans[4, 15] = , y ,

Ans[4, 16] = •n'
Ans[4, 17] = •y
Ans [4, 18] = ■y
Test[4] : = 1 5;
Test[8] : = 1 2;
Test[12] := 1 05;
Test[16] := 2 0;

Mean[4] : = 1 263
Sd [4] : = 0 144

Procedure Initialize_Structs;
Begin
For i := 1 to DataSize do
Begin
R[i].up_bound := Mean[i] + (x/10) * sd[i];
R[i].l_bound := Mean[i] - (x/10) * sd[i];
A[i] := 0
B Cl] := 0
C[i] := 0
D [i] := 2

End;
Cor_Sum := 0;

End;

Begin
Initialize_Data;
For X := 1 to 100 do
begin

Initialize_Structs;
For j := 1 to TestSize do
For i := 1 to DataSize do
If (TestCj] <= R[i].up_bound) AND (Test[j] >= R[
then If Ansti, j] = 'y1 then A[i] := A[i] + 1

else C[i] := C[i] + 1
else If Ansti, j] = 'y1 then B[i] := B[i] + 1

else D[i] := D[i] + 1
For i := 1 to DataSize do
begin
Cor [i] := phi(A[i], B[i], C[i], D [i] >;
Cor_Sum := Cor_Sum + Corti]

end;
If (X = 15) or (X = 20) then
For i := 1 to DataSize do
begin
writeln('Corrolation for subject 1, i:1, 1 is
writelnCA for subject i:1, 1 is A[i] :1
writelnCB for subject i:1, 1 is B[i] :1

i].l_bound)

Corti] : 1
:3);
:3);

84
writeln(,C for subject i:1f 1 is C[i] :1:3);
writelnCD for subject i:1, 1 is D[i] :1:3);

end;
If Max_Cor < cor_sum then
begin
Max_Cor := Cor_Sum;
Opt_X := X/10;
For i := 1 to DataSize Do
begin
Opt_A[i] := A[i];
Opt_B[i] := B[i];
Opt_C [i] := CCi] ;
Opt_D[i] := DCi];
Opt_Cor[i] := Cor[i];

end;
end;

End;
For i := 1 to DataSize do
Begin
writelnCOpt corrolation for subject 1, i: 1, 1 is Opt_Cor[i] ; 1:3>;
writelnCOpt A for subject i:1, 1 is Opt_A[i] :1:3);
writelnCOpt B for subject i:1, ' is 1, Opt_B[i] :1:3);
writelnCOpt C for subject i: 1, ' is Opt_C[i] :1:3);
writelnCOpt D for subject i: 1, 1 is Opt_D[i] :1:3);

End;
WritelnCThe X is : Opt_X :3:3);

End.

85
BIBLIOGRAPHY

1. Hayes-Roth, F., Waterman, A. D. , Lenat, D. B. (1983).
Building Expert Systems. Addison Wesley, Massachusetts,
p. 127-167.

2. Dixon, N. (1981). Preconscious Processing. Wiley,
Chichester.

3. Gruber, T. R. , Cohen, P. R. (1987). "Design for
acquisition: principles of knowledge-system design to
facilitate knowledge acquisition". Int. J. Man-Machine
Studies, 26:143-159.

4. Kitto, C. M. , Boose, J. H. (1987). "Choosing Knowledge
Acquisition Strategies For Application Tasks". IEEE Proc.
8:96-103.

5. Garg-Janaradan, C. , Salvendy, G. (1987). "A conceptual
framework for knowledge elicitation". Int. J. Man-Machine
Studies, 26:521-531.

6. Gregor, J. A., (1972). Experimental Psychology. John Wiley,
New York.

7. Stevens T. R. (1989). Graphics Programming in C. M&T
publishing, California.

8. Cooke, N. M., McDonald, J. E. (1978). "The application of
psychological scaling tecniques to knowledge elicitation
for knowledge based systems". Int. J. Man-Machine
Studies, 26:533-550.

9. Woodworth, R. S., Schlosberg, H. (1961). Experimental
Psychology. Holt Rinehart & Winston, New York.

10.Sheridan, T. B. , Ferrel, W. F. (1974). Man-Machine systems:
information, control, and decision models of human
performance. The MIT Press, Massachussetts.

ll.Falmagne, J. (1985). Elements of psychophysical theory.
Oxford University Press, New York. p. 258-281.

86

12.Hoffman, R., (1989). "A brief survey of methods for
extracting the knowledge of experts". SIGART Newsletter,
108:19-27.

13.Waldron, V. R. , (1989). "Investigating the communication
problems encountered in knowledge acquisition". SIGART
Newsletter, 108:143-144.

14.Kelley, G. A., (1955). The Psychology of personal
constructs. Norton, New York.

15.Lavrac, N. , (1989). "Methods for knowledge acquyisition and
refinement in second generation expert systems". SIGART
Newsletter, 108:63-69.

16.Michie, D. (1986). "Machine learning and knowledge
acquisition". In: Expert Systems: Automating knowledge
acquisition. Addison-Wesley, New York.

17.Bareiss, E. R. , Porter, B. W. , Wier, C. C. , (1988).
"Protos: an exemplar-based learning apprentice". Int. J.
Man-Machine Studies, 29:549-561.

18.Morik, K. , (1987). "Knowledge acquisition and machine
learning - the issue of modelling". IEE. Colloquium on
1 Knowledge acquisition for Knowledge based systems',
London, p. 4/1-4

19.Messier Jr., W. F., Hansen, J. V., (1988). "Inducing rules
for expert system development: an example using default
and bankruptcy data". Mangement Science 34:1403-1415.

87
VITA

Sorel Bosan

Born in Larnaca, Cyprus, the author came to the U.S.A.
in Aug 1983 as a CASP (Cyprus America Scholarship Program)
Scholar to study Computer Engineering at Case Western Reserve
University. He received his B.Sc. in Engineering, with
honors, in May 1987.

He entered the College of William and Mary, Department
of Computer Science in Aug 1987. During the course of his
studies there, he served as a research assistant at the
Eastern State Hospital of Virginia.

	Interactive Simulations for Knowledge Acquisition
	Recommended Citation

	tmp.1539892610.pdf.Cb2Bi

