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ABSTRACT

In constructing knowledge based systems which utilize 
perceptual expertise the major problem is that the knowledge 
acquisition techniques available are generally verbal and are 
inappropriate for communicating perceptual knowledge. This 
thesis tests a methodology for the acquisition of perceptual 
knowledge utilizing an interactive computer simulation. 
Issues for the construction of an appropriate simulation, the 
elicitation of knowledge with the use of the simulation and 
the construction of a knowledge base from the simulation data 
are discussed. The methods are presented in general and their 
implementation is demonstrated with the use of a simulation 
of the second hand of a clock. Results from 4 experts showed 
that the knowledge acquired by the interactive simulation and 
incorporated into an expert system produced judgments that 
were highly correlated with similar judgments made by each 
expert. The feasibility of utilizing interactive simulations 
to acquire perceptual knowledge from one or more experts and 
of translating that information into an effective and 
verifiable expert system is demonstrated.
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INTERACTIVE SIMULATIONS FOR KNOWLEDGE ACQUISITION



CHAPTER I
INTRODUCTION

Perceptual knowledge, is an essential part of most forms of 
expertise. It is primarily required of real world tasks where 
physical properties must often be observed in order to make 
some judgement. For example, in the field of medicine, 
perceptual knowledge is used in the diagnosis of movement 
disorders, in rehabilitation, in dermatology, and in most 
other specialties ranging from general practice ( listening 
to the heart beat) to radiology (analysis of medical images). 
In robotics, perceptual knowledge is needed for movement 
related decision making and planning as well as the 
recognition of objects. Finally, perceptual knowledge is 
needed for expert systems, and automated control systems, 
where decision making involves observing physical objects 
(such as engine repair, automated car driving etc.).

Although the importance of perceptual knowledge is clear, 
no widely accepted general technique exists for its 
acquisition and incorporation into expert systems. Knowledge 
acquisition is the process of acquiring knowledge from any 
source, including books, films, and observation of the task. 
The most commonly used sources, however, are experts in the
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field of interest. Acquiring knowledge from experts is thus 
a subset of knowledge acquisition, and is referred to as 
knowledge elicitation.

Methods for eliciting knowledge have been studied 
intensively for the past two decades. Early methods almost 
exclusively relied on verbal interviews with experts [1]. 
Verbalizing expertise, regardless of the domain of knowledge, 
requires conscious awareness of information and procedures 
used in decision making. Often, this awareness is not present 
[2]. Eliciting knowledge using verbal interview techniques 
requires experts to translate their knowledge from the 
internal representation, to a new verbal representation which 
could be expressed clearly in an interview [3]. Such a 
translation is difficult and slow, even for verbal knowledge 
representations, and it causes knowledge acquisition to become 
the bottleneck in the construction of knowledge based systems 
[1,2].

The difficulty of translating expertise into verbal 
representations is especially problematic for perceptual 
knowledge. Verbal representations would be principally 
required for visual, auditory and somatosensory knowledge. 
Translating other sensory information, such as olfaction, 
would be even more problematic.
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Current research in knowledge elicitation aims to speed 

up the transformation process by making it possible for 
experts to transfer their knowledge in a representation as 
close as possible to the internal representation they utilize 
in their expertise [3]. Research for automating the knowledge 
elicitation process by transferring some of the 
responsibilities and tasks of a knowledge engineer to a 
computer is also underway [4]. However, the majority of the 
knowledge domains explored have been related to the cognitive 
aspects of knowledge, with techniques which render them 
difficult and inconvenient for use in perceptual knowledge 
acquisition [1,3,5].

For the elicitation of perceptual knowledge, the use of 
interactive computer simulation provides a promising and 
straightforward technique with current technology. 
Interactive computer simulations are computer controlled 
sensory models of real life stimulus conditions. These can 
be modified by its user through the use of interactive 
controls. Until there are advances in computer controlled 
stimulators, however, graphical and auditory modalities are 
the easiest to simulate.

Interactive controls allow the user to provide digital 
or analog input to modify any or all of the features of a 
simulation. As the values associated with the interactive
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controls are modified, the corresponding features of the 
simulation change as well. In this way, the form or the 
behavior of the simulation can be systematically changed to 
match some standard form or behavior. The values associated 
with these adjustments can be stored. An expert can be asked 
to modify the features of a simulation until it matches an 
internal standard the expert uses in making judgments about 
a particular form or behavior of a stimulus. The values of 
the expert's adjustments are representative of the expert's 
judgement of what a particular form or behavior of an object 
should be.

The experiment described in this thesis tests the use of 
an interactive computer simulation for perceptual knowledge 
elicitation. The experiment also tests a procedure for 
constructing optimized rule bases from the simulation data and 
integrating expertise from multiple experts.

For the tested interactive simulation and knowledge base 
development methodology to be useful, it must produce a 
knowledge base capable of decisions or judgments similar to 
those of the expert whose knowledge was elicited. Thus, the 
verification of the knowledge base by showing a strong 
correspondence between its decisions and the expert's would 
indicate that interactive simulation methodology is a suitable 
knowledge acquisition method, for developing expert systems.
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Failure to verify the knowledge base and its decision behavior 
suggests that either the tested methodology or the particular 
application of the methodology is flawed.



CHAPTER II
METHODOLOGY

Several different approaches can be used in the 
development of computer simulations for knowledge acquisition. 
The method presented here consists of four stages (see fig. 
1) including :

A) Construction of the interactive simulation.
B) Knowledge elicitation.
C) Construction of a knowledge base from the data 

obtained by the simulations.
D) Verification of the resulting expert system.

The following four sections present these stages both
generally and in the specific context of a simple stimulus, 
the second hand of a clock and its associated tick sound.

A) The Simulation
The first step in the construction of the simulation is 

the identification of the domain of interest. This study uses 
the correct functioning of the second hand of a clock and its 
associated tick. There were several reasons for choosing this 
example. Expertise in second hand behavior was relatively 
available. In addition, it offered simple perceptual

7
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judgments which had both visual and auditory components. The 
example was complicated enough, however, to include most of 
the issues that would be encountered with more complicated 
domains, such as the use of multiple dimensions and 
modalities. Finally, the simple audio-graphical simulation 
could be programmed with available hardware.

The next step requires identification of the features of 
the selected stimulus which will be simulated. A simulation 
need not contain all the features of the physical phenomena 
being modelled. Indeed, a simulation model by definition 
abstracts physical events. The features which vary and 
influence the behavior of a simulation are, for this study, 
called dimensions. The selection of dimensions determines the 
aspects of the stimulus situation which will be altered or 
judged. The features which do not change are selected to give 
context to the chosen dimensions. The choice of static 
features is not crucial, however, and any features, as long 
as they place the dimensions chosen in context, are 
appropriate.

A physical stimulus may have more variability associated 
with its form or behavior than is perceived or used in 
judgments. This is because only a limited number of 
dimensions can be observed and evaluated by a person at any 
given time [6]. As a result, the dimensions to be used in the
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simulation may be a subset of all of the possible physical 
dimensions. Furthermore the choices must include the 
dimensions used in judgement behavior, although including 
additional dimensions would not impair the performance of the 
methodology.

The choice of dimensions also depends on the particular 
evaluation task. For example, the stimulus dimensions used 
to distinguish between birds as a function of flight patterns 
are obviously different from the dimensions used to 
differentiate birds as a function of song patterns.

For the clock example, in addition to wanting two 
perceptual modalities, a desire to limit the number of 
dimensions yielded four dimensions. They did not, however, 
cover the range of variability associated with a clock 
exhaustively. Instead, these dimensions were chosen to allow 
for the proper modification and control of the clock 
simulation, in the domain of interest.

Two of the four dimensions dealt exclusively with visual 
aspects of the movement of the second hand. One dimension 
used both visual and auditory aspects of the movement. The 
fourth dealt with the auditory modality exclusively.

The four dimensions used were :
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i) Arc Length
Arc length visually determined, in degrees, the extent 

of the rotation of the second hand associated with each one 
of its discrete movements, or ticks.

ii) Tick interval
Tick interval was the interval between each movement or 

tick sound of the second hand, measured in milliseconds.

iii) Starting Position
Starting location allowed for the visual adjustment of 

the position of the second hand, enabling the second hand to 
be aligned with the numeral markings.

iv) Tick Delay
Tick delay determined the delay between the auditory tick 

sound and the arm movement in milliseconds. The tick sound 
was allowed to sound before or after a movement of the second 
hand.

The time related dimensions tick_interval and tick_delay 
were generated using the internal clock of the microcomputers. 
The rotational movement of the second hand of the clock, 
associated with length and starting position, was generated 
with the use of algorithms adapted from Stevens [7].
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To allow expert adjustment of a simulation's 

characteristics the simulation can be made modifiable by 
associating an interactive control with each of its 
dimensions. Interactive controls allow experts to modify each 
dimension, and as a result, alter the overall form or behavior 
of the simulation. Expertise transfer occurs when the experts 
adjust the simulation dimensions to make them match their 
concept of a correctly working second hand and the values of 
the adjusted dimensions are recorded.

The interactive controls used in the clock example were 
designed to ensure a uniform modification interface for all 
dimensions. Each dimension was assigned a number. The 
dimension names and their corresponding numbers were displayed 
on a status line at the bottom of the screen (see fig 2) . 
Each dimension could be modified, once selected by pressing 
its corresponding number on the keyboard and by using the ' + ' 
and keys. Pressing the ' + ' key increased the value of the 
dimension at that moment by the value of the grain size. 
Pressing the key had the opposite effect. The dimensions 
could be modified in any order, and any number of times. When 
all dimensions were adjusted by the expert to match his/her 
internal standard, pressing 'q' would signify the end of the 
modification. The values for the parameters at that point 
were written out to a database. Instructions describing this



12
operation were read to each expert (see appendix D).
The resulting simulation constructed for this investigation 
consisted of a circular clock face displayed on the screen 
with the locations of the twelve numeral positions clearly 
marked (see fig 2). A second hand of a clock was drawn as a 
line extending from the center of the clock to its inner 
perimeter. The second hand moved clockwise around the clock 
face in discrete steps, with each step accompanied by a tick 
sound of 1 msec, duration. The sound was generated by the 
internal speaker of the computer under program control.

The smallest possible distinguishable change, or the 
grain size associated with each interactive control should be 
chosen so as to allow adequate knowledge transfer. This grain 
size is a function of the decision task at hand. For example, 
in judging the differences between the weights of two objects, 
differences of a few grams can be perceived if the two objects 
weigh in the order of a few grams. However, the perceivable 
difference can only be in the order of kilograms if the object 
weights are in the order of kilograms. Therefore, the 
simulation should include the capability to change the 
simulation characteristics in adequately sized steps to 
reflect an expert's knowledge.

Furthermore, the range of modification for each 
interactive control should also be identified. The range must
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capture the different forms or behavior of interest associated 
with the stimulus. As a result, a sufficiently large range 
should be provided which allows an expert to differentiate, 
with his/her expertise, all of the desirable forms or behavior 
associated with the stimulus. Thus, in the example of 
distinguishing bird song patterns, an auditory simulation must 
have sufficient adjustment range to allow experts to 
distinguish crows and hummingbirds from chickens.

Initially, for the clock example, the values for the 
modification range and the grain size were estimated. During 
the testing of the simulation, user feedback was used to 
change these initial values to make the modification of the 
simulation easier. In addition, the data obtained from these 
tests were also used to fine tune the grain size and 
modification range choices.

The audio-visual simulation was programmed in Turbo 
Pascal Version 5.0, on IBM-PC/AT class machines. A variety 
of graphic board/ video monitor combinations were used. These 
included a Hercules graphics card with monochrome display; EGA 
graphics card with multisynch achromatic display; and EGA 
graphics card with multisynch color display. The sound was 
generated using the 'sound* command built into Turbo Pascal.

As a final point in the construction of the simulation, 
it must be remembered that the performance of the expert
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system constructed from the simulation data is the final test 
of whether the simulation was constructed appropriately. 
Problems in any of these areas can undermine the performance 
of a resulting expert system so that it fails to perform as 
the expert would.

B) Knowledge Elicitation
In this methodology, knowledge elicitation takes place 

entirely through the use of the interactive simulation. The 
experts are asked to adjust the dimensions of a simulation to 
make them match their internal concept of a particular form 
or behavior. This is repeated a number of times, each time 
storing the final adjustment values. This process is then 
carried out for other forms or behavior of interest.

For the clock example, the experts were instructed on the 
use of the simulation, and all the controls were explained 
(See Appendix E). Next, the experts were asked to modify the 
clock simulation until, in his or her judgement it was a 
correct representation of a second hand of a correctly working 
clock. This was the only behavior of interest. The experts 
were asked to repeat this process 10 times. Built into the 
program were 10 different starting positions for the 
dimensions. They were chosen to be equally split between the
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two extreme ends of the ranges of individual dimensions so as 
to avoid any bias in the final results. The ten simulations 
were presented to the expert in sequence without intervention. 
The expert was given the option of rest between simulations. 
At the completion of each modification task, the final choice 
for each dimension was stored in a file. Thus a value base 
of ten data points for each dimension per expert was obtained.

A total of 10 experts were tested. The clock example was 
chosen to ensure that people would have needed no special 
education to become experts, making it simple to find experts 
for testing the methodology. As a result no special selection 
process was followed in selecting -experts. Of these ten 
experts four never completed the testing process. The data 
collected from two were lost due to disk failure. The results 
of the remaining four are presented in the results section.

C) Construction of the Knowledge Base
Having obtained the values bases, a method is needed to 

translate them into a knowledge base. If the knowledge base 
is to consist of rules, then the expert's values for the 
dimensions must be translated into rules. If the knowledge 
base is to consist of frames, the translation would be to
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frames (for a further discussion of what particular form of 
knowledge representation to use see appendices B and C). In 
this study, expert's settings on the four clock dimensions 
were translated into Prolog clauses, or rules.

Perceptual knowledge used in making judgments usually 
takes the form of pattern classifications. Each pattern being 
classified, or distinguished by the expert system, represents 
a possible outcome for the knowledge base. The process of 
converting an expert's dimension data into a knowledge base 
must provide both the appropriate decision paths as well as 
the necessary decision outcomes.

There are at least two basic ways to develop rules which 
provide the appropriate decision paths to the final decision 
outcomes needed. One follows the traditional knowledge 
engineering approach. This approach emulates the experts 
verbal description of how they would combine the various 
features, represented by dimension values, to derive the final 
classification behavior. This method is flawed. It expects 
an expert to use values derived from his simulation behavior 
to determine final classifications when, ordinarily, his 
expertise in determining classifications does not employ such 
values.

Another way to develop the rules relies on the knowledge
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engineer's appropriate choice of dimensions and the naturally 
resulting method for the combination of dimensional 
information. If, for example, an interactive simulation was 
designed to acquire data for an expert system distinguishing 
different birds' songs, an expert could be requested to adjust 
the simulation values for several dimensions to match the 
songs of different birds. The expert would be asked to adjust 
the simulation to match an albatross call, a canary song etc. 
Since data is collected for each dimensions, for each bird, 
a rule structure naturally follows with a rule for each 
dimension, of the form:

Dimension_Name(Value, Result)
Value <= upper_bound__for_Bird_l,
Value >= lower_bound for_Bird_l,
Result is birdl;
Value <= upper_bound_for_Bird_2,

• • •

Value >= upper_bound_for__Bird_N/
Value >= lower_bound__for_Bird_N,
Result is birdn.

Value is the value associated with each dimension of the 
simulation. All rules have the same structure.
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The combination of rules to make decisions can follow 

naturally as well. If it is assumed that the expert adjusts 
appropriate dimensions, then combining dimensions using the 
logical AND, so that :

Birdname(VI, V2, ... VN, Result) :-
Dimension_Namel(VI, Resultl),

• • •

Dimension_NameN(VN, ResultN),
Resultl = Result2,
Result2 = Result3,

• • •

ResultN-1 = ResultN.
Result is ResultN.

The use of one knowledge structure for all 
dimensions simplifies the construction of the knowledge base 
and aid work towards its automation (see Appendices B and C).

Each of the dimensional rules is used to classify a value 
associated with a particular dimension. As a result the rules 
serve as a form of pattern recognition method (see figure 3) . 
The decision ranges are used as the means of pattern 
classification.

Each decision range could conceivably be constructed from 
a single data point obtained from the simulation. This could
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be done by selecting the boundaries of the decision range to 
maximize the performance of the resulting knowledge base. 
Applying an arbitrary multiplicative constant could also 
provide a decision range from a single value. Use of a 
sufficient number of data points, however, ensures that the 
mean of these points will lie near the middle of the decision 
range. As a result, the boundary values are of nearly equal 
distance away from the mean in opposite direction. 
Furthermore, the standard deviation obtained from these data 
yields additional clues about the boundaries, simplifying the 
search for the appropriate decision range.

For the clock example, there was one behavior of 
interest, a correctly working clock. The decision range for 
a correctly working clock for each dimension was obtained by 
first calculating the mean of the ten data points associated 
with each dimension, and then calculating the standard 
deviation. Finally, the decision range was obtained using the 
calculations :

upperbound = mean + (2 * sd) 
lower__bound = mean - (2 * sd)

The choice of 2 * sd comes from the fact that if the
distribution is Gaussian, 2 * sd would include 95% of the 
correctly working clock judgement.
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One clause, or rule per dimension was constructed of the 

form :

correct_Dimension_Name( Value )
Value <= upper_bound_for_Dimension_Name, 
Value >= lower_bound_for_Dimension_Name.

where upper_bound and lower_bound were computed for each of 
the dimensions as described above. No 'result' argument was 
used to return the classification. Instead, the success of 
the rule signified the 'correctly working clock' decision for 
each dimension.

As a last step in the construction of the knowledge base, 
a knowledge structure (or structures) to combine the separate 
dimensional classification judgments to classify the overall 
stimulus must be constructed. For the clock example, the 
binary decisions of correctly working or not correctly 
working, for each dimension, were combined conjunctively to 
yield the final decision. This final decision was expressed 
with the rule :

correctly__working_second__hand ( VI, V2, V3, V4) 
correct__tick_delay (VI) , 
correct tick_interval(V2),
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correct_arc_length(V3), 
correct__starting_position (V4) •

where VI .. V4 the values associated with the dimensions.
The goal behind the construction of this knowledge base 

is to match the judgement behavior of the expert as closely 
as possible. One way to improve this match is by adjusting 
the appropriate decision ranges. Although the choice of + or 
- 2 * standard deviation for calculating the decision range 
boundaries would probably yield acceptable results, they are 
not necessarily the best. An optimization was done to 
maximize the average correlation of the knowledge base
decisions with those of the experts they were obtained from.
The optimization was carried out by comparing the average 
correlations of the knowledge bases constructed using :

upper_bound = mean + ( x * sd)
lower_bound = mean + ( x * sd)

where
0 < X =< 2.5

It should be noted however, that this is by no means the only 
way to approach optimization.

The knowledge elicitation time with experts is relatively 
short for this methodology. The combination of multiple
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experts to maximize system expertise is, thus, made possible 
by this method.

To test the use of multiple experts, all data points 
obtained from the experts were used in calculating the upper 
and lower boundaries for the same decision ranges. The 
performance of the combined expert system was compared to that 
of expert systems constructed from single experts. 
Furthermore, an optimal range, as described above, was found 
for the combined rule base.

D) Verification
The verification of the expert system constructed from 

the knowledge base obtained can be carried out by applying 
similar methods used for other expert systems. An expert, and 
the knowledge base constructed can be presented with a number 
of different stimuli. The correlation between the knowledge 
base judgments, and the expert's judgments must be high in 
order for the knowledge base to be considered valid.

Another way to approach verification would be to use the 
simulation as a means of supplying the test cases, rather than 
an actual physical stimulus. In order to be able to use the 
simulation in place of the object however, the simulation must 
be verified as a correct representation of the physical 
obj ect.
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The verification methodologies used for this study had 

a three fold purpose :
i) verifying judgments or decisions derived from 

each knowledge base as strongly related to that 
expert's own judgments.

ii) finding if the relationship between judgments 
derived from one expert's knowledge and other 
experts' judgments was significant.

iii) finding if knowledge bases developed by using 
multiple experts was more highly related to 
individual and group judgments than knowledge 
bases developed by any one expert.

For each point of interest, the verification was done by 
providing each expert used in knowledge elicitation with 20 
pre determined simulations of the second hand. The expert was 
instructed to study each one carefully to determine whether 
all features of the second hand of the clock were 
representative of a correctly working clock (See appendix F 
for instructions) . If so, they were instructed to respond 
'yes', signifying that the simulation represented a correctly 
working second hand of a clock. Otherwise, they were asked 
to respond 'no'. Then, the twenty sets of dimensional values 
presented to the experts with the simulations were fed into 
the rule bases under study. The response of these rule bases
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for each simulation were noted. Finally the phi correlation 
of the answers for the expert and the knowledge base judgments 
were computed.

The first of the above mentioned goals was obtained by 
computing the correlation between the judgement of an expert 
and that of the knowledge base constructed from his simulation 
results. For achieving the second goal, the correlation 
between each expert's judgments and the responses of knowledge 
bases, constructed from the other experts simulation results, 
were computed. Finally the phi correlations for each expert's 
answers and that of the combined rule base was calculated and 
compared with the correlations obtained for the first and 
second goals, as a means of obtaining the third goal.



CHAPTER III
RESULTS

For each expert the correlation between the judgments of 
the expert system based on his/her simulation data and his/her 
own judgments was calculated (Tables 2 and 3) . The average 
correlation for the 95% Gaussian decision range was 0.708 and 
ranged for individuals from 0.577 to 0.811. When the
decision range was optimized the average correlation increased 
to 0.821 and ranged for individuals from 0.655 to 1.000. In 
all cases, each expert's judgments of the second hand of a 
clock, and the judgments derived from the knowledge bases were 
highly and significantly correlated at or above the 95% 
confidence level. The validity of the interactive simulation 
methodology in eliciting individual expert's knowledge in an 
accurate and useful fashion is demonstrated by these 
consistently high correlations. Indeed, all experts' 
decision ranges for the arc length and starting position 
dimensions matched that of a real clock, and the decision 
range for the tick interval dimension included the true 1 
second interval.

The correlation of the expert system's decisions based 
on the simulation data of one expert, with the judgments of

25
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other experts were compared (Tables 3 and 4). For individual 
knowledge bases based on the 95% Gaussian decision range the 
average correlation between one knowledge base and the other 
experts* judgement ranged from 0.544 to 0.774. The average 
correlation between one expert's knowledge base judgments and 
other experts' judgments was 0.646. These correlations are 
somewhat lower than the correlations between an expert's 
judgments and the judgments of the knowledge base derived from 
that same expert. They are, however, still significant and 
show that the knowledge acquired is general knowledge usable 
by others, rather than idiosyncratic knowledge of little use 
to others.

A few of the correlations between one particular expert's 
knowledge base judgments and other experts' judgments were 
not significant. This does not however reflect on the quality 
of the knowledge acquisition methodology but suggests that the 
level of expertise for that expert was not the same level as 
the other experts.

Interactive simulation facilitates the knowledge 
acquisition process to the extent that it becomes quite 
possible to acquire knowledge from more than one expert with 
very little additional effort. This, in turn, makes possible 
the development of 'smarter' knowledge bases than would be 
generated by a single expert.
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When the knowledge in the knowledge bases of the 4 

experts were combined and correlated with the individual 
judgments of the 4 experts, the average correlation was 0.702. 
This is an increase from the 0.646 level obtained comparing 
the knowledge base decisions from one expert with other's 
behaviors. Thus it is possible, by combining knowledge base 
information, to improve performance of an expert system 
developed using interactive simulations.

Summarizing the results it can be seen that the knowledge 
base decisions correlated significantly with the experts' 
decisions they were acquired from. The correlations of these 
knowledge bases were slightly lower for other experts although 
they remained mostly significant. Using a combined knowledge 
base, on average, improved the predictive ability of the 
expert system for a range of experts in comparison to 
individual expert's knowledge bases. Finally, the high 
significance of the correlations, despite the small number of 
experts, trials and tests used suggests that the methodology 
is robust.



CHAPTER IV
DISCUSSION

A) Issues
In order for the simulation methodology presented in this 

paper to be useful for knowledge elicitation, a number of 
issues must be addressed. These issues will be discussed in 
the following two sections.

i) Issues Related to the Construction of Simulations
One issue is how to identify the dimensions of a stimulus 

to be used in the simulation. In the current study the 
rudimentary nature of the expertise assisted in making the 
choice of dimensions easier. For real world future 
applications such as diagnosis of movement disorders, the 
identification of dimensions would be a far more demanding 
task.

A variety of methods can be used for identifying the 
separate dimensions of a stimulus. For stimuli with a small 
number of state variables (varying features of a stimulus, 
which when combined describe the real world behavior of a 
stimulus completely and accurately) modeling tools can be used 
to identify the variables. This would involve constructing

28
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mathematical models of the stimulus and require considerable 
familiarity with its functionality. Due to the small number 
of state variables, modelling should be a relatively straight 
forward task, however. Furthermore, it is quite conceivable 
that since the number of state variables is small all of them 
would be used by an expert in decision making. As a result, 
the state variables can be used as the dimensions.

For stimuli which possess a large number of state 
variables, however, this methodology would present a problem. 
Since only a few of these state variables can be used by an 
expert, using all the state variables as dimensions would 
introduce considerable redundancy. In addition,
differentiating the state variables which are used to make 
expert judgments from those which are not can be quite 
difficult. For such stimulus situations, psychophysical 
scaling techniques may be appropriate. Of these techniques 
the application of multidimensional scaling, cluster analysis 
and Pathfinder networks to the elicitation of knowledge about 
levels of abstraction for a domain has been studied by Cooke 
and Mcdonald [8].

While modelling, psychophysical scaling, and other 
statistical techniques can be used to identify dimensions of 
a complex stimulus situation, even knowledgeable trial and 
error could be used successfully. Verification of the expert
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system would disclose if expert behavior was adequately 
predicted by the knowledge base decisions. If dimensions were 
omitted which contributed significantly to expert judgments, 
verification would show poor correlations between expert and 
knowledge base judgments. If dimensions were included in the 
simulation which were not used by the expert in adjusting the 
simulation then they would not contribute to the correlation 
between knowledge base and expert. In either case, dimensions 
which produce significant correlations between knowledge base 
judgments and expert judgments are empirically valid no matter 
how they were identified.

Another issue is the identification of the grain size 
associated with each dimension. The choice of dimensions with 
well known properties eased the process of choosing the 
appropriate grain size for the time related dimensions for the 
current study. Furthermore, the resolution of the graphics 
boards used dictated the grain size for the visual dimensions. 
For future applications, however, the properties of the 
dimensions chosen will not necessarily be obvious. As a 
result, other approaches must be considered.

Psychophysical thresholding techniques present a 
promising approach [9]. These techniques cover a variety of 
simple and complicated stimuli, and should easily be 
convertible for use with the stimulus of interest. Knowledge
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engineers may also choose to familiarize themselves with the 
stimulus and produce an estimate. One approach that might be 
considered, using the smallest possible step permitted by the 
simulation, may be appropriate when such a choice does not 
introduce considerable problems for designing a responsive and
accurate interactive controls.v

Yet another issue, identification of the range of 
modifiability for each dimension, is once again important. An 
improper choice can result with the inability of the expert 
to adjust the stimulus properly. For the clock example, the 
largest range permissible by the simulation implementation was 
used.

For future applications, unfortunately, no general use 
methods exist to aid with this task. As a result, the 
knowledge engineer may choose to familiarize himself/herself 
with the stimulus in order to make a reasonable estimate. 
However, in the absence of a reliable estimate, allowing as 
large a range as permitted by the computer simulation is a 
good idea. In any case, the correctness of the chosen ranges 
can be determined by the performance of the knowledge base 
constructed.
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ii) Issues Related to the Knowledge Base Construction

One issue is the determination of the decision range for 
use in each dimension's knowledge structure. As mentioned 
previously, the distribution of the judgments may not 
necessarily be Gaussian. As a result, determining this 
distribution would identify the appropriate range. However, 
if the distribution cannot be identified, the proper range 
could be constructed by the use of other methods which would 
provide clues as to what the distribution should be.The 
combinations of the dimensional decisions would be done using 
their certainty factors.

The presence of separate knowledge structures for a 
number of dimensions raises an important issue, how to combine 
them in decision making. The important point to consider is 
that the result of the method used in combining these 
dimensions must predict the behavior of an expert accurately. 
It is quite conceivable that for different situations and 
stimuli, different methods should be used. For example, for 
simple objects with relatively independent dimensions taking 
the conjunction of the decisions made independently on each 
separate dimension may be enough as it was done for this 
study. For more complicated objects Bayesian statistics [10] 
or multi-dimensional psychophysical techniques [11] can be 
used. Both of these methods would require information about
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the certainty of each dimension and would yield a certainty 
factor for the final decision as well.

Another issue relevant to the construction of knowledge 
bases, is whether the knowledge bases* reasoning can be 
explained. It should be emphasized that the need for 
explanations that can be used by people is entirely dependent 
on the application. Such explanations will be pointless if 
the experts are not aware of their own reasoning process. 
This lack of awareness may be especially true for large 
numbers of perceptual expertise as signified by the difficulty 
in using traditional knowledge acquisition methodologies for 
perceptual knowledge.

There are two important points to consider when looking 
at explanations. One is whether the knowledge base obtained 
can be explained at all. The second is whether these 
explanations match the reasoning used by human experts. Since 
a number of explanation schemes already exist for different 
types of expert system shells, they could easily be utilized 
in obtaining explanations. This solves the problem associated 
with the first point.

Coming up with an answer for the second point is a far 
more complicated task. In this case, choosing the dimensions 
and the combination method for the dimensions based on the 
final judgement performance is not enough. It requires the
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reasoning of the knowledge base to be meaningful to people. 
Since the reasoning process used by the knowledge base will 
be completely determined by the dimensions and the method for 
combining them, if explanations are necessary, extra emphasis 
must be placed in choosing the dimensions and the combination 
methodology. This would be needed to ensure the construction 
of a knowledge base whose reasoning can be understood by its 
users.

B) Disadvantages of the Methodology
One disadvantage of this methodology is the difficulty 

associated with the construction of a simulation, in 
particular for complex little studied stimulus. This problem 
would be overcome if the issues addressed above are resolved. 
Until then, however, the construction of a simulation will 
remain as the major cost behind this methodology.

Another disadvantage is related to the data type 
requirement the methodology places on the input. As mentioned 
previously, for verification of the expert system data may be 
fed into the expert system directly from the stimulus or from 
the simulation. For obtaining data directly from the 
stimulus, appropriate instruments must exist for quantifying 
the dimensions used in the simulation. On the other hand, if 
the simulation is to be for the input data it must be
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verified. For the simulation to be verified, once again, data 
corresponding to the dimensions of the simulation must be 
obtained directly from a stimulus. This data would be used 
to simulate that particular stimulus for comparison with the 
stimulus. So, as a result, dimensions used in the simulation 
must be quantifiable readily with the use of existing 
instrumentation.

C) Advantages of the Methodology
An interactive simulation methodology for knowledge 

elicitation, as described above, eliminates the need for any 
form of intervention from the knowledge engineer during 
knowledge elicitation. This, in turn can increase the 
efficiency and the reliability of the simulation technique 
relative to other methods.

Since verbalizations are reduced to a minimum, knowledge 
elicitation time is significantly reduced. Construction of 
simulations, especially for complex objects, however require 
considerable amount of time. The overall time for knowledge 
acquisition, therefore, depending on the object will improve 
relatively less. Since the time spent with the expert is the 
most costly portion of knowledge acquisition, however, the 
cost of knowledge acquisition should be reduced considerably. 
In addition, reduced knowledge elicitation time facilitates
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the elicitation of knowledge from multiple experts, enabling 
the incorporation of multiple expertise into a single 
knowledge base which in turn can improve the performance of 
the expert system constructed.

Finally, the knowledge base/simulation pair could be used 
as a training tool. If a link is formed for passing values 
from the simulation to the expert system any adjustments made 
by a trainee could be passed to the expert system for 
evaluation. A reverse link would enable training through the 
playback of appropriate simulations as determined by the 
expert system.



CHAPTER V
CONCLUSION

Interactive computer simulations provide an effective 
methodology for perceptual knowledge acquisition. Interactive 
computer simulations, with the use of proper human computer 
interaction methods provide a novel approach for knowledge 
elicitation allowing it to be a more appealing and an easier 
process for the experts than repeated verbal interrogation.

Even the simple clock example used, however, presented 
difficulties. Many of these difficulties relate to the 
construction of real time interactive simulations. 
Construction of real time simulations can be a demanding task, 
especially for complex objects. Furthermore, research efforts 
are needed to solve difficulties associated with the 
determination of the variable features for use in the 
simulation and the construction of a knowledge base from the 
simulation data. These would include, in addition to the 
issues mentioned in the previous chapter, determination of the 
ideal number of experts to use for elicitation, and the 
appropriate number of data points to obtain from them.

The results of this paper clearly establish that the use 
interactive simulations is certainly feasible and it works.

37
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Future use of computer simulations for complicated situations 
should provide solutions to many of the problems mentioned 
here.

The most desirable long term goal would be to develop 
formalisms and appropriate theories which could be used 
generally for all perceptual domains and stimuli. The result 
of this could be a general automated system with tools 
enabling the construction of a simulation of the object under 
study for use in knowledge elicitation, and constructing a 
knowledge base from the interactive simulations.



TABLES
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TABLE 1

DIMENSIONS FOR THE CLOCK SIMULATION

Dimension Range of Modifiability Grain Size

Tick Interval 
Tick Delay 
Starting Position 
Arc Length

400 - 2000 ms. 
-400 - 400 ms.

0.5 - 45 deg,

25 ms. 
5 ms. 

0.5 deg, 
0.5 deg,
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TABLE 2

CORRELATION OF KNOWLEDGE BASE JUDGMENTS CONSTRUCTED USING 2*SD 
AS BOUNDARIES AND EXPERT JUDGMENTS

Knowledge Bases Constructed from 
Judgement of Subjectl Subject2 Subject3 Subject4

Subjectl 0.811 1.000 0.638 0.704
Subject2 0.599 0.739 0.471 0.816
Subject3 0.734 0.503 0.577 0.302
Subject4 0.644 0.818 0.522 0.704
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TABLE 3
CORRELATION OF OPTIMIZED KNOWLEDGE BASE JUDGMENTS

AND EXPERT JUDGMENTS

Knowledge Base Constructed from
Judgement of Subjectl Subj ect2 Subject3 Subj ect4

Subjectl 1.000 0.818 0.724 0.707
Subject2 0.739 0.903 0.535 0.579
Subject3 0.503 0.302 0.655 0.000
Subject4 0.818 0.798 0.592 0.724
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TABLE 4
CORRELATION OF COMBINED KNOWLEDGE BASE JUDGMENTS 

AND EXPERT JUDGMENTS

Combined Knowledges Base with 
Boundaries

Judgement of 2 * sd Optimized

Subjectl 0.811 1.000
Subject2 0.599 0.739
Subject3 0.734 0.503
Subject4 0.664 0.818



FIGURES
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FIGURE1

FLOWCHART OF THE METHODOLOGY
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construct a knowledge base from 
the simulation data

identify the range of modifiability and the 
grain size for each dimension

can the simulation be modified to match all 
desired states of the stimulus?

adjust the simulation to one desirable state 
for a number of times and store each adjustment
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FIGURE 2 
THE CLOCK SIMULATION
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FIGURE 3 

DECISION RANGES
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APPENDIX A

A BRIEF OVERVIEW OF KNOWLEDGE ACQUISITION METHODS

Early methods for knowledge acquisition relied on verbal 
elicitation of knowledge from experts. This verbal 
elicitation took a variety of forms. The more popular ones 
included, verbal interviews where the knowledge engineer 
carries out a free flowing conversation with an expert [1], 
structured interviews [12] where the form and the flow of the 
interview questions are pre determined, and protocol analysis 
[12], where knowledge is collected and analyzed by having 
experts "think aloud" or introspect and verbalize.

The verbal methods, although fairly straight forward, 
were inefficient at extracting knowledge from experts. In 
particular, the lack of awareness of expertise, or its 
intuitive nature as well as the difficulty of verbalizing it 
caused knowledge acquisition to become the bottleneck in the 
construction of knowledge based systems [13].

In order to facilitate the transfer of intuitive, or 
subconscious knowledge from experts a variety of psychological 
methods have been utilized. Psychophysical scaling methods 
such as multidimensional scaling and cluster analysis [8], as 
well as Kelly's Personal Constructs theory [14] have been used
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in organizing knowledge, investigating its underlying 
structure.

These methods rely on identifying grids of descriptive 
knowledge primitives and their connection patterns used by 
experts. Although successful in eliciting fairly detailed 
information, and readily adaptable for interactive knowledge 
acquisition, they are time consuming, and can be difficult to 
use by the experts.

Another approach towards facilitating the transfer of 
intuitive knowledge involves designing the knowledge base 
system to facilitate knowledge acquisition [3]. This is 
accomplished by enabling the knowledge representation 
primitives to match as closely as possible the task level 
primitives employed by the experts. This approach can be 
fairly difficult to apply, however, since the task level 
representation primitives may not be readily obtainable.

Another approach towards overcoming the problems 
associated with verbal knowledge acquisition methods has been 
tailoring the knowledge acquisition strategies to a particular 
task [4]. This involves classifying the task at hand as one 
of the many application tasks which include design, diagnosis, 
control etc. and then applying the appropriate knowledge 
acquisition tools for that application task. This approach,
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however, assumes that well defined knowledge acquisition tools 
are available for application tasks which may not be the case. 
Furthermore, it assumes that a particular task may be 
classified as one or another form of application task whereas 
many tasks do not clearly fall within the boundaries of any 
one application task.

One recent knowledge acquisition strategy employs machine 
learning algorithms [15]. These algorithms include learning 
from examples[16, 17], model based learning [18] and inductive 
learning algorithms [19] amongst others. The learning 
algorithms are superior to other knowledge acquisition 
methodologies in that they facilitate the maintenance and 
upgrade of the knowledge based systems after they are 
constructed. However, they are very limited in scope, and can 
rarely be used as the only knowledge acquisition strategy (a 
notable exception to this may be Michie,s ID3 algorithm [16])

Knowledge acquisition is, currently, one of the most 
active research areas related to knowledge based systems. 
Most of the research, however, is done as a part of developing 
a knowledge based system for a particular task, and the 
knowledge acquisition tools developed for that task are later 
presented as alternatives to the existing tools. These tools 
reflect this approach in that they are usually restricted to
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a particular domain of knowledge and if they are applied to 
other domains, they are slow and inefficient. As a result, 
verbal knowledge elicitation methods, although inaccurate and 
slow, are still the predominant knowledge acquisition 
methodologies used.
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APPENDIX B 

AUTOMATED RULE BASE GENERATION

Although it is not particularly difficult to manually 
construct rules from the data obtained from this simulation, 
in general, automating this procedure is a cost reducing step. 
To achieve automation, a link has to be formed between the 
expert system and the simulation. The link would be used for 
passing the boundary values associated with each dimension 
from the simulation to the expert system. This link need be 
no more complicated than the 'escape' clause developed by 
Feyock [20].

The escape clause provides a means of calling a pascal 
procedure from prolog itself. The pascal procedure in fact 
would be the simulation. It must be noted at this point that 
the direction of call ( i.e. prolog to pascal or pascal to 
prolog) is not really important although the ability of pascal 
routines to call prolog to build the rule base would be more 
convenient.

Once the appropriate values are passed to the prolog 
procedure a combination of func, arg, univ, clause and assert 
statements could be used for constructing rules with these
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values. The names of the dimensions can be supplied by the 
simulation program or prompted for by prolog. It is important 
to note that the constructed rules must be prolog clauses if 
prolog itself is to act as the inference engine. This would 
complicate the construction of rules since not all prolog 
implementations allow the use of reverse meanings of such 
clauses as univ which would be necessary for building the 
rule.

The presence of an automated rule base construction is 
important for the future work related to the automation of the 
interactive simulation methodology. It eliminates the need 
for the knowledge engineer completely from the knowledge 
acquisition stage to knowledge base construction. For the 
interactive simulation methodology to be completely automated 
however, the construction of the simulation must be automated 
as well.
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APPENDIX C 
KNOWLEDGE STRUCTURE CHOICE

One of the important points to consider in using the 
interactive simulation methodology is what type of knowledge 
representation to use. Since no special inferencing 
techniques are required from the final knowledge base 
constructed, practically any knowledge representation scheme 
desired could be used. If the knowledge acquired using the 
interactive simulation method is to be combined with knowledge 
obtained from other sources the integration can be achieved 
with relative ease. This is true even if the knowledge bases 
obtained using other methodologies place certain requirements 
on the representation scheme used. Such flexibility can be 
achieved since the knowledge acquired using the interactive 
simulation methodology is highly portable, requiring no 
special knowledge representation schemes.

It is conceivable, however, that the knowledge obtained 
using the interactive simulation method is to be the primary, 
or even the only source of knowledge in an expert system. For 
such a system it may be worthwhile to consider 3 issues before 
choosing the final form of knowledge representation.
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First, the necessary inference engine for processing the 

knowledge structure of choice must be available.
Next, the reasoning format of the knowledge 

representation should be considered. This point is especially 
important for large knowledge bases. The closer the reasoning 
format of the knowledge representation is to that of humans, 
the easier it is for people to read and understand the 
knowledge base. For example, instead of the rule base that 
was used for the clock, an equivalent frame base could have 
been constructed :

Frame : Object 
ISA :

return True

Frame : Clock
ISA :
Dimensionl :

• •

DimensionN :

Frame : Dimension 
ISA :

prompt Dimension_Value 
return Test Correct(Dimension Value)

Object
Dimensionl_Name = True 

DimensionN Name = True
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Frame : Dimension_Name
ISA : Dimension
Upper_Bound : dimension_name_upper_bound 
Lower_Bound : dimension_name_lower_bound

TestCorrect(Dimension_Value) = True
if Dimensional_Value >= Lower_Bound 
& Dimensional_Value <= Upper_Bound

It should be observed, however, that for humans rules are 
a more natural way of expressing this knowledge. This, in 
turn, makes the reading and understanding of the rule base 
easier. This would be especially appreciated for larger 
knowledge bases.

As a final point, the suitability of the knowledge 
representation for automatic rule formation (as discussed in 
appendix B) may be considered. Again, using the frame 
example, it can be seen that a general frame structure can 
easily be constructed. Next, instances of this general frame 
can be used for constructing each dimension. As discussed in 
appendix B, however, construction of automated rule bases 
using prolog clauses can be considerably more complicated.
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The final choice of the knowledge structure, as a result, 

will depend on the particular situation. Number of issues 
will be considered ( such as how important is the automatic 
knowledge base construction and many others depending on the 
situation ) and the final decision will be reached after 
carefully weighing the pros and cons of each knowledge 
representation. The availability of prolog was the main 
reason behind choosing prolog clauses as the form of knowledge 
representation for this thesis.
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APPENDIX D 

INSTRUCTIONS FOR CLOCK SIMULATION

We are studying how people judge the accuracy of the 
second hand of a clock. On the screen you can see a simulated 
clock face with a second hand which ticks as it moves. There 
are several features of this "clock" which need to be adjusted 
to make the clock appear to operate correctly. You select 
which feature to adjust by entering the number that
corresponds to the feature identified under the clock.
Feature 1 is the distance the second hand travels With each 
tick. If you enter the number '1' you can increase the 
distance travelled by pressing the •+' key, and decrease the 
distance travelled by pressing the key.

DEMONSTRATE 1
Feature 2 is the time between ticks. To adjust the 

interval between ticks to equal one second, press the 2 key 
and use the 1+' key to increase the interval or the '-' key
to decrease the interval. Feel free to use the keys in any
order and any number of times.

DEMONSTRATE 2
Feature 3 controls the relationship between the "tick" 

sound and the movement of the second hand. Enter a 3 to
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adjust the feature. Press the ' + * key to move the sound 
forward , toward happening before the movement, and press the 
' -1 key to move the sound backward in relation to the 
movement.

DEMONSTRATE 3
Finally, feature 4 involves adjusting the location of the 

arm at the end of each second so that the second hand behaves 
as it would on a clock by pointing toward the numbers. 
Adjusting this feature does not affect any of the other 
features. Press the '+• key to move the location of the hand 
clockwise and the *-• key to move the location counter
clockwise.

DEMONSTRATE 4
Do you have any questions? We will do this procedure a 

total of 10 times. We want you to model a true second hand 
as closely as possible so take as much time as you need. We 
can take a break at any time you wish.
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APPENDIX E 

INSTRUCTIONS FOR CLOCK JUDGMENTS

We are going to show you 20 different simulations of a 
clock with a second hand. We want you to look at the distance 
travelled with each tick, the time each "second" takes, 
whether the "tick" sound corresponds correctly to the hand 
movement, and whether the second hand points accurately at the 
number locations to judge if, overall, each clock presented 
is correct or incorrect. If any of the features of the clock 
are not correct in your judgement, please judge the clock to 
be incorrect. If all the features of the clock are correct, 
please judge the clock as correct. Take as much time as you 
need, we are interested in accuracy, not speed. Do you have 
any questions? We can take a break any time you wish.



APPENDIX F 
PROLOG RULEBASE FOR THE CLOCK EXAMPLE

correcly_working_second_hand( VI, V2, V3, V4) :-
correct_tick_delay(VI), 
correct_tick_interval(V2), 
correct_arc_length(V3), 
correct_starting_position(V4). 

correct_tick_delay( Value)
Value <= upper_bound_for_tick_delay,
Value >= lower_bound_for_tick_delay. 

correct_tick_interval( Value ) :-
Value <= upper_bound_f or__tick_interval, 
Value >= lower_bound_for_tick_interval. 

correct_arc_length( Value )
Value <= upper_bound_for_arc_length,
Value >= lower_bound_for_arc_length. 

correct_starting_position( Value )
Value <= upper_bound_for_starting_position 
Value >= lower_bound_for_starting_position
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APPENDIX 6 

CODE FOR THE CLOCK SIMULATION

program Clock_simulation; 

uses
Crt, Dos, Graph, Printer, GraphSet;

< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

<......................... GLOBAL DATA STRUCTS......................... >
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

const
r = 150; 
r_1 = 110;
StartX = 320;
StartY = 175;
Min = 0;
Max = 719;
Sp_Max = 720;

Type
Pos_Array = array [Min..Max] of integer;

Var
CurPort ViewPortType;
Pos_X Pos_Array;
Pos_Y Pos_Array;
Pos_XT Pos_Array;
Pos_YT Pos_Array;
Sp_Grain integer;
Ps_Grain integer;
Sd_Grain integer;
Space_Step integer; t Arc Length in 0.5 degrees >
SoundDelay integer; { Tick delay >
PauseT i me integer; i Tick interval >
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Ps_Tm_Ar : array [0..4] of integer;
Sp_St_AR : array [0..4] of integer;
Sd_Dl_Ar : array [0..4] of integer;
FileName : string[12]; <. Output File >

C Starting Positions >

F
Toggle

: Text;
: boolean;

C INITIALIZE DATA STRUCTURES >
C’ >

Procedure Init_Structs;

Var
i : integer;
X, Y : real;

Procedure Rotate(deg : integer; var X, Y : real);

Var
XI, Y1 : real; 
angle : real;

Begin
angle := deg * radian;
X1 := x - StartX;
Y1 := y - StartY;
x := X1 * cos(angle) + y1 * sin(angle) + StartX;
y := y1 * cos(angle) - x1 * sin(angle) + StartY;

Const
radian = 0.00872664626; C radian equiv. of 0.5 deg >

End;

Begin 
Space_step := 1;
Pos_X[min] := StartX;
Pos_Y[min] := StartY - r_1 + 4;
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X := Pos_X[min];
Y := Pos_Y[min];
For i := min + 1 to max do C Calculate the inner >
begin C perimi ter of the clock >
Rotate(Space_Step, X, Y);
Pos_X[i] := StartX + round(<StartX - x) * 1.29);
Pos_Y[i] := round(Y); 
end;

Pos_XT[min] := StartX;
Pos_YT[min] := StartY - r_1 - 11;
X := Pos_XT[mi n];
Y := Pos_YT[mi n];
For i := min + 1 to max do i Calculate the outer >
begin < perimi ter >
Rotate(Space_Step, X, Y);
Pos_XT[i] := StartX + round((StartX - x) * 1.29);
Pos_YT[i] := round(Y); 

end;
Sp_grain := i;
Ps_Grain := 25,
Sd_Grain := 5;
Ps_Tm_Ar[1] : = 1500;
Sd_Dl_Ar[1] : = 100;
Sp_St_Ar[1] : = 20;
Ps_Tm_Ar[2] : = 1700;
Sd_Dl_Ar[2] : = -90;
Sp_St_Ar[2] : = 8;
Ps_Tm_Ar[3] : = 450;
Sd_Dl_Ar[3] : = -100;
Sp_St_Ar[3] : = 20;
Ps_Tm_Ar[4] := 1400;
Sd_Dl_Ar[4] : = 70;
Sp_St_Ar[4] : = 2;
Ps_Tm_Ar[0] : = 550;
Sd_Dl_Ar[0] : = 150;
Sp_St_Ar[0] : = 18;
Toggle := true,
FileName := 'Test.dat';
Assign(f, filename);
Rewrite(f);
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<..........................WELCOME SCREEN  >
< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - >

Procedure Initial_screen;

begin
RestoreCrtMode;
Wr teln;
Wr teln;
Wr teln;
Wr teln('
Wr teln;
Wr teln('
Wr teln('
Wr teln;
wr teln<'
Wr teln( 1

Wr teln;
Wr teln('
Wr teln('
Wr teln;
Wr teln;
Wr teln('
Wr teln('
Wr teln;
Wr telnC
Wr telnC
Wr teln;

end; ^initial

Welcome to ExperClock ');

Version 3.2 ');
24/02/89');

by •);
SoreI Bosan ');

Dept, of Computer Science'); 
College of William & Mary');

advisor ');
Dr. Richard Bloch');

Dept, of Research and MIS'); 
Eastern State Hospital');

< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }  

{ WRITE RESULTS...............................>



Procedure Results(Countf Yindex : integer);

Begin
RestoreCrtMode;
Writeln(f, 1 For experiment Count : 3, 1 the results are 
WriteIn;
writeln(f, ' Spacing ==> ', space_step / 2 : 3:3, 1 degrees');
writeln(f, 1 Timing ==> Pausetime / 1000 : 3:3, 1 seconds');
writeln(f, 1 Placement ==> ', Yindex mod (space_step div 2) : 5, 1 ticks off')
writeln(f, 1 Sound Sync ==> ', SoundDelay/1000 : 3:3, ' seconds');
writeln(f);
Writeln(f, ' WITH');
writeln(f);
writeln(f, ' Space Grain ==> ', Sp_Grain * 0.25 : 3:3, ' degrees');
writeln(f, ' Time Grain ==> ', Ps_Grain : 5, ' miliseconds');
writeln(f, ' Sound Grain ==> ', Sd_grain : 5, ' mi Iiseconds');
writeln(f); 
if toggle then 
begin
Write n(' For experiment , Count : 3, ' the results are :');
Write n;
write n(' Spacing ==> ', space_step / 2 : 3:3, ' degrees');
write n(' Timing ==> ', (pausetime) / 1000 : 3:3, ' seconds');
write n(' Placement ==> ',yindex mod (space_step div 2) : 5, ' ticks
write n(' Sound Sync ==> ', SoundDelay/1000 : 3:3, ' seconds');
write n;
Write n(' WITH' >;
write n;
write n(' Space Grain ==> ', Sp_Grain * 0.25 : 3:3, ' degrees');
write n(' Time Grain ==> ', Ps_Grain : 5, 1 miliseconds');
write n(' Sound Grain ==> ', Sd_grain : 5, ' miliseconds');
write n;
write n;

end;

C............................SET UP THE CLOCK.......................... >
< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >



Procedure Set_Up_Clock;

Var
i : integer;

begin
SetGraphMode(GraphMode);
ClearDevice;
FulIPort;

{ PaintScreen >
Ma inUi ndow( 1 CLOCK SIMULATION');
StatusLine(11.ARC_LENGTH 2.TICK_INTERVAL 3.TICK_DELAY 4.TICK_P0SITI0N. or Q.QUIT') 
GetVi ewSett i ngs(CurPort);

{ Initialise Clock >

SetColor(15);
Circle(StartX, StartY, r + 5); (. Draw Clock >
Circle(StartX, StartY, r - 5);
SetFillStyle(SolidFi11, 15);
FloodFiIKStartX, StartY + r_1 + 5 , 15);
SetColor(O); 
i := min;
repeat { Mark numeral positions >

setColor(O);
Line(Pos_X[i], Pos_Y[i], Pos_XT[i], Pos_YT[i3); 
i := i + 60; 

until i = Sp_Max;

end; CSet Up Clock>

< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

C...........................  SET UP MENU..............................>
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }
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Procedure Set_Up;
Var
Quit : boolean; 
ch : char; 
no : integer;

Begin 
Quit := false;
While not quit do 
begin 
clrscr;
GotoXY(30, 4);
writelnC'1. Adjust Arc Length Grain');
GotoXY(30f 6);
writeln('2. Adjust Tick Interval Grain1);
GotoXY(30, 8);
writeln('3. Adjust Sound Delay Grain');
GotoXY(30, 10);
writeln('4. Adjust Starting Tick Interval');
GotoXY(30, 12);
writeln('5. Adjust Starting Sound Delay ');
GotoXY(30, 14);
writeln('6. Adjust Starting Arc_length');
GotoXY(30, 16);
writeln('7. Change Output File Name');
GotoXY(30, 18);
Writeln('8. Result Display Toggle = "' , toggle, 
GotoXY(30, 20);
WritelnC'9. Reset Clock to Correct Values '); 
GotoXY(30, 22); 
writeln('Q. Quit');
GotoXY(0, 28);
write('Please Make A Choice ==> ');
readln(ch);
clrscr;
Case Ch of 

'1' : begin
writeln('Current Arc Length Grain is ', Sf 
write('Enter New Arc Length Grain ==> '); 
Readln(no);

"");

Grain :6);



69
Sp_Grain := no; 

end;
'2' : begin

writeln('Current Tick Interval Grain is Ps_Grain :6); 
writeCEnter New Tick Interval Grain ==> ');
Readln(no);
Ps_Grain := no; 

end;
'3' : begin

writeln('Current sound delay Grain is ', Sd_Grain :6); 
writeCEnter New Sound Delay Grain ==> ');
Readln(no);
Sd_Grain := no; 

end;
•4' : begin

writeCEnter Starting Tick Interval ==> ');
ReadIn(no);
PauseTime := no; 

end;
'5' : begin

writeCEnter Starting Sound Delay ==> ');
Readln(no);
SoundDelay := no; 

end;
'6 ' : begin

writeCEnter Starting Arc Length ==> ');
Readln(no);
Space_Step := no; 

end;
'7' : begin

close(f);
writeln('Current Data File Name is Filename, ""); 
writeCPlease Enter Data File Name ==> ');
ReadLn(FileName);
Assign(f, FileName);
Rewrite(f); 

end;
'8 ' : Toggle := not Toggle;
'9' : begin

PauseTime := 1000;
SoundDelay := 0;
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Space_Step := 12; 

end;
'Q', 'q1 : quit := True; 

else begin
writelnC Incorrect Choice'); 
UaitToGo; 

end; 
end; {case} 

end C while}
end;

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

C...................... ANIMATE USING LINE DRAWING...................... }
( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ; >

Procedure linedraw;
{ Demonstrate Line Animation }

var
Ch
key
Msg
XIndex 
X_Next 
Y i ndex 
Y_Next 
I
quit 
X, Y 
Finish 
Time
TrialCount
count

Begin

Char;
integer;
String [11];
integer;
integer;
integer;
integer;
integer;
boolean;
real;
boolean;
longint;
integer;
integer;

TrialCount := 1;
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Count := 0; 
finish := false; 
while not finish do 
begin

PauseTime
SoundDelay
Space_Step

= Ps_Tm_Ar[count]; 
= Sd_Dl_Ar[count]; 
= Sp_St_Ar[count];

count := (count +1) mod 5;

{ Set Starting Values >

TextBackground(O);
clrscr;
writeCWould You Like to Use the Set Up Menu ==> '); 
readln(ch);
if (ch = 'y') or (ch = 1Y1) then Set_up; 
Set_up_Clock;
XIndex := min;
Yindex := min;
Y_Next := min + Space_Step;
X_Next := min + Space_Step; 
setColor(15);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]); 
DeIay(pauseTi me); 
quit := false;
Time := PauseTime; 
key := 2;

C Move the arm around > 

repeat

If SoundDelay >= 0 then { Tick delay >
begin 
Sound(440);
Delay(1);
NoSound;
DeIay(SoundDeIay);
SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]); 
SetColor(15);



Line(StartX, StartY, Pos_X[X_Next], Pos_Y[Y_Next]); 
end

else
begin
SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]); 
SetColor(15);
Line(StartX, StartY, Pos_X[X_Next], Pos_Y[Y_Next]); 
Delay(Abs(SoundDelay>);
Sound(440);
Delay(1);
NoSound;

end;
Yindex := Y_Next;
Y_Next := (Yindex + Space_step) mod Sp_Max;
Xindex := X_Next;
X_Next := (Xindex + Space_step) mod Sp_Max;

Time := Time - 7 - ABS(SoundDelay); { Tick interval >

repeat
If KeyPressed Then 
begin
Ch := ReadKey; { Update response >
case ch of
•1' : key = i;
•2' : key = 2;
*3* : key = 3;
.4 . : key = 4;

: case key of
1 : if (space_Step + Sp_Grain) <= 180

then space_Step := space_Step + Sp_Grain;
2 : if (PauseTime + Ps_Grain) <= 2000

then PauseTime := PauseTime + Ps_Grain;
3 : if (SoundDelay + Sd_Grain) <= 200

then SoundDelay := SoundDelay + Sd_Grain;
4 : begin

SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]) 
yindex := (ylndex +1) mod Sp_Max;



xindex := (xindex +1) mod Sp_Max;
y_next := (y_next +1) mod Sp_Max;
x_next := (x_next +1) mod Sp_Max;
SetColor(15);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]) 

end;
end;

' - 1 : case key of
1 : if (space_Step - Sp_Grain) >= 1

then space_Step := space_Step - Sp_Grain;
2 : if (pauseTime - Ps_Grain) >= 400

then PauseTime := PauseTime - Ps_Grain;
3 : if (Sounctoelay - Sd_Grain) >= - 200

then SoundDelay := SoundDelay - Sd_Grain;
4 : begin

SetColor(O);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex])
yindex := (ylndex - 1) mod Sp_Max;
xindex := (xindex - 1) mod Sp_Max;
y_next := (y_next - 1) mod Sp_Max;
x_next := (x_next - 1) mod Sp_Max;
SetColor(15);
Line(StartX, StartY, Pos_X[Xindex], Pos_Y[Yindex]) 

end;
end;

•q1 : Quit := True; 
else ; 

end;
end; {if keypressed}

Delay(100);
Time := Time - 100; 

until Time < 100;

Delay(Time - 1);
Time := PauseTime;

until quit;
RestoreCrtMode;
Results(TrialCount, Yindex);
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Write('Would you like to quit (Y) ==> ');
Readln(ch);
if (ch = 'y') or (ch = 1Y1) then finish := true; 
TrialCount := TrialCount + 1; 

end;
close(f);
{Prepare For Exit} 

end; { PutlmagePlay }

{ program body }

begin
Initial_Screen;
Init_Structs;
Linedraw;

end.



APPENDIX H 
CODE FOR GRAPHICAL SETUP

Unit GraphSet;

Interface

uses
Crt, Dos, Graph;

{....................  GLOBAL CONSTANTS

const
{ The names of the various device drivers supported }
DriverNames : array[0..10] of string[8] =
('Detect', 'CGA', 'MCGA■, 'EGA', 'EGA64', 'EGAMono',
'RESERVED', 'HercMono', 'ATT400', 'VGA', 'PC3270');

{ The five fonts available >
Fonts : array[0..4] of string[13] =
('DefaultFont', 'TriplexFont', 'SmallFont', 'SansSerifFont', 'GothicFont');

{ The five predefined line styles supported >
LineStyles : array[0..4] of string[9] =
('SolidLn', 'DottedLn', 'CenterLn', 'DashedLn', 'UserBitLn');

C The twelve predefined fill styles supported >
FillStyles : array[0..11] of string[14] =
('EmptyFi11', 'SolidF ill', 'L ineF ill', 'LtSlashFi11', 'SlashFill', 
'BkSlashFi11', 'LtBkSlashFill', 'HatchFill', 'XHatchFi11',
'InterleaveFi11', 'WideDotFi11', 'CloseDotFi11');

{ The two text directions available >
TextDirect : array[0..1] of string[8] = ('HorizDir', 'VertDir');
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{ The Horizontal text justifications available >
HorizJust : array[0..2] of string[10] = ('LeftText', 'CenterText1, 'RightText'); 

{. The vertical text justifications available >
VertJust : array[0..2] of string[10] = ('BottomText', 'CenterText1, 'TopText');

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

{...................... GLOBAL VARIABLES...............................>
< ; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

Var
GraphDriver : integer; { The Graphics device driver >
GraphMode : integer; { The Graphics mode value >
MaxX, MaxY : word; i The maximum resolution of the screen >
ErrorCode : integer; C Reports any graphics errors >
MaxColor : word; C The maximum color value available >

< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

C..........................  PROCEDURES...............................>
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

procedure Initialize;

function Int2Str(L : Longlnt) : string;

procedure DefaultColors;

procedure DrawBorder;

procedure FullPort;

procedure MainWindow(Header : string); 

procedure StatusLine(Msg : string); 

procedure UaitToGo;

V >
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Implementation

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ; >

{.....................  INITIALIZATION PROCEDURE........................ >
< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

procedure In i t i a Iize;
i Initialize graphics and report any errors that may occur > 
begin
{ when using Crt and graphics, turn off Crt's memory-mapped writes > 
DirectVideo := False;
GraphDriver := Detect; { use autodetection >
InitGraph(GraphDriver, GraphMode, "); < activate graphics >
setGraphMode(GraphMode);
ErrorCode := GraphResult; C error? >
if ErrorCode <> grOk then
begin
Writeln('Graphics error: GraphErrorMsg(ErrorCode));
Halt(1);

end;
MaxColor := GetMaxColor; { Get the maximum allowable drawing color > 
MaxX := GetMaxX; { Get screen resolution values >
MaxY := GetMaxY; 

end; { Initialize >

< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

t...................  INT_to_STRING PROCEDURE........................... >
< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

function Int2Str(L : Longlnt) : string;
C Converts an integer to a string for use with OutText, OutTextXY > 
var
S : string; 

begin
Str(L, S);
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Int2Str := S; 

end; { Int2Str >

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

<......................  SET MAX DEFAULT COLOURS........................ >
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

procedure DefaultColors;
{ Select the maximum color in the Palette for the drawing color > 
begin
SetColor(MaxColor); 

end; { DefaultColors >

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^

{..................... DRAWBORDER PROCEDURE............................>
< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >  

procedure DrawBorder;
{ Draw a border around the current view port > 
var
ViewPort : ViewPortType; 

begin 
DefaultColors;
SetLineStyle(SolidLn, 0, NormWidth);
GetV i ewSett i ngs(Vi ewPort) ; 
with ViewPort do
Rectangle(0( 0, x2-x1, y2-y1); 

end; { DrawBorder >

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{....................... SET VIEWPORT to WHOLESCREEN...................>
< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

procedure FullPort;
{ Set the view port to the entire screen > 
begin
SetViewPort(Of 0, MaxX, MaxY, ClipOn); 

end; { FullPort >

I SETUP SCREEN
>
>
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procedure MainUindow(Header : string);
{ Make a default window and view port for demos > 
begin
DefaultColors; {. Reset the colors >
ClearDevice; { Clear the screen >
SetBkColor(O);
SetTextStyle(DefaultFont, HorizDir, 1); { Default text font >
SetTextJustify(CenterText, TopText); { Left justify text >
FullPort; { Full screen view port >
OutTextXY(MaxX div 2, 2, Header); { Draw the header >
{ Draw main window >
SetViewPort(Of TextHeight('M')+4, MaxX, MaxY-(TextHeight('M1)+4), ClipOn); 
DrawBorder; { Put a border around it >
{ Move the edges in 1 pixel on all sides so border isn't in the view port > 
SetViewPort(1, TextHeight(1M’)+5, MaxX-1, MaxY-(TextHeight(1M1)+5), ClipOn); 

end; { MainWindow >

< * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

<............................DISPLAY STATUS............................ >
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * >

procedure StatusLine(Msg : string);
{ Display a status line at the bottom of the screen > 
begin 
FuliPort;
DefaultColors;
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJust i fy(CenterText, TopText);
SetLineStyle(SolidLn, 0, NorrrtWidth);
SetFillStyle(EmptyFill, 0);
Bar(0, MaxY-(TextHeight(1M1)+4), MaxX, MaxY); { Erase old status line >
Rectangle(0, MaxY-(TextHeight(*M•)+4), MaxX, MaxY);
OutTextXY(MaxX div 2, MaxY-(TextHeight(1M')+2), Msg);
{. Go back to the main window >
SetViewPort(1, TextHeight(1M1)+5, MaxX-1, MaxY-(TextHeight(1M•)+5), ClipOn); 

end; <; StatusLine }

WAIT to ABORT
>
>
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{ ♦ ♦ a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ; *

procedure UaitToGo;
{ Wait for the user to abort the program or continue > 
const 
Esc = #27; 

var 
Ch : char; 

begin 
GotoXY(1, 25);
writeC Hit a key to Continue ==>'); 
repeat until KeyPressed;
Ch := ReadKey; 

end; { UaitToGo >

begin
Initialize;

end.
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Program optimise;

Const
Testsize = 18; 
DataSize = 4;

APPENDIX I 
THE OPTIMIZATION CODE

Type

Var

Range = Record
up_bound : real;
l_bound : real;

end;
Data = array[1..DataSize] of real;

R : array[1..DataSize] of Range;
Mean : Data;
Sd : Data;
Opt_A : Data;
Opt_B : Data;
Opt_C : Data;
Opt_D : Data;
A, B : Data;
C, D : Data;
Cor : Data;
Opt_Cor : Data;
Ans : array[1..Datasize, 1..TestSize]
Cor_Sum : reaI;
Max_Cor : real;
Opt_X : real;
Test : array[1..Testsize] of real;
i, i. x : integer;

Function PhiCa, b, c, d : real) : real;
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Begin
If (a+b=0) or (b+d =0) or (c+a = 0) or (d+c = 0) then phi := -2 
else Phi := (a*d - b*c)/sqrt((b«-a)*(d+c)*(b+d)*(a+c))

End;

Procedure Initialize_Data;

Begin
Ans[1, 1] = 'n';
Ans[1, 2] = 'V;
Ans[1, 3] = 'V;
Ans[1f 4] = 'n';
Ans[1, 5] = *n';
Ans[1, 6] = 'n';
Ans [1, 7] = ' y ' ;
Ans [1, 8] = ' y ' ;
Ans [1, 9] = 'n';
Ans[1, 10] = ' y ' ;
Ans[1, 11] = V ;
Ans [1, 12] = V ;
Ans[1, 13] = 'n';
Ans [1, 14] = V ;
Ans[1, 15] = ' y ' ;
Ans[1, 16] = 'n';
Ans[1, 17] = ' y ' ;
Ans[1, 18] = * y  ;
Test [1] : = 0.85;
Test [5] : = 1.7;
Test [9] : = 0.7;
Test[13] := 0.75;
Test [17] : = 1.0;
Mean[1] := 1.158;
Sd[1] : = 0.155;
Max_Cor := ■5;

End;

Ans[2, 1] = 'n';
Ans[2, 2] = 'y ' ;
Ans[2, 3] = 'y ' ;

Ans[2, 4] = 'n';
Ans[2, 5] = in';
Ans[2, 6] = 'n';
Ans[2, 7] = 'y ' ;
Ans[2, 8] = 'y ' ;
Ans[2, 9] = in';
Ans[2, 10] = 'n';
Ans[2, 11] = 'y ' ;

Ans[2, 12] = 'y ' ;
Ans[2, 13] = 'n';
Ans[2, 14] = 'n';
Ans[2, 15] = 'n\-
Ans[2, 16] = 'n';
Ans[2, 17] = ' y ' ;
Ans[2, 18] = ' y ' ;
Test[2] : = 1.0;
Test[6] : = 0.85;
Test[10] := 0.95;
Test[14] := 0.95;
Test[18] := 1.15;
Mean[2] : = 1.110;
Sd[2] : = 0.102;

Ans [3, 1] = 'y';
Ans [3, 2] = ■y;
Ans [3, 3] = •n';
Ans[3, 4] = •n';
Ans[3, 5] = •n';
Ans [3, 6] = ■y;
Ans[3, 7] = ■y ;
Ans[3, 8] = ■y;
Ans[3, 9] = •n';
Ans[3, 10] = •y ;
Ans[3, 11] = ■y;
Ans[3, 12] = 'n';
Ans[3, 13] = ■n';
Ans [3, 14] = ' y ' ;

Ans [3, 15] = •y;
Ans [3, 16] = 'n';
Ans [3, 17] = ■y';
Ans[3, 18] = ■n';
Test[3] : = 1.15;
Test[7] : = 1.1;
Test[11] := 1.0;
Test[15] := 1.125;

Mean[3] := 1.045; 
Sd[3] := 0.214;

Ans [4, 1] = 'n'
Ans [4, 2] = ■n'
Ans[4, 3] = •y
Ans[4, 4] = •n'
Ans[4, 5] = •n'
Ans[4, 6] = •n'
Ans[4, 7] = •y
Ans [4, 8] = ■y
Ans [4, 9] = in'
Ans[4, 10] = ■n'
Ans[4, 11] = •y
Ans [4, 12] = , y ,

Ans [4, 13] = ■n'
Ans[4, 14] = ■y
Ans[4, 15] = , y ,

Ans[4, 16] = •n'
Ans[4, 17] = •y
Ans [4, 18] = ■y
Test[4] : = 1 5;
Test[8] : = 1 2;
Test[12] := 1 05;
Test[16] := 2 0;

Mean[4] : = 1 263
Sd [4] : = 0 144



Procedure Initialize_Structs;
Begin
For i := 1 to DataSize do 
Begin
R[i].up_bound := Mean[i] + (x/10) * sd[i]; 
R[i].l_bound := Mean[i] - (x/10) * sd[i];
A[i] := 0
B Cl] := 0
C[i] := 0
D [i] := 2

End;
Cor_Sum := 0;

End;

Begin
Initialize_Data;
For X := 1 to 100 do 
begin

Initialize_Structs;
For j := 1 to TestSize do 
For i := 1 to DataSize do
If (TestCj] <= R[i].up_bound) AND (Test[j] >= R[ 
then If Ansti, j] = 'y1 then A[i] := A[i] + 1

else C[i] := C[i] + 1
else If Ansti, j] = 'y1 then B[i] := B[i] + 1

else D[i] := D[i] + 1
For i := 1 to DataSize do 
begin
Cor [i] := phi(A[i], B[i], C[i], D [i] >;
Cor_Sum := Cor_Sum + Corti] 

end;
If (X = 15) or (X = 20) then 
For i := 1 to DataSize do 
begin
writeln('Corrolation for subject 1, i:1, 1 is 
writelnCA for subject i:1, 1 is A[i] :1
writelnCB for subject i:1, 1 is B[i] :1

i].l_bound)

Corti] : 1 
:3);
:3);
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writeln(,C for subject i:1f 1 is C[i] :1:3);
writelnCD for subject i:1, 1 is D[i] :1:3);

end;
If Max_Cor < cor_sum then 
begin 
Max_Cor := Cor_Sum;
Opt_X := X/10;
For i := 1 to DataSize Do 
begin
Opt_A[i] := A[i];
Opt_B[i] := B[i];
Opt_C [i] := CCi] ;
Opt_D[i] := DCi];
Opt_Cor[i] := Cor[i]; 

end;
end;

End;
For i := 1 to DataSize do 
Begin
writelnCOpt corrolation for subject 1, i: 1, 1 is Opt_Cor[i] ; 1:3>; 
writelnCOpt A for subject i:1, 1 is Opt_A[i] :1:3);
writelnCOpt B for subject i:1, ' is 1, Opt_B[i] :1:3);
writelnCOpt C for subject i: 1, ' is Opt_C[i] :1:3);
writelnCOpt D for subject i: 1, 1 is Opt_D[i] :1:3);

End;
WritelnCThe X is : Opt_X :3:3);

End.
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