
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1983

HILDA: The Flexible Design and Implementation of a Database HILDA: The Flexible Design and Implementation of a Database

Machine Executive Machine Executive

Paul Anthony Fishwick
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fishwick, Paul Anthony, "HILDA: The Flexible Design and Implementation of a Database Machine
Executive" (1983). Dissertations, Theses, and Masters Projects. Paper 1539626818.
https://dx.doi.org/doi:10.21220/s2-bere-xf88

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-bere-xf88
mailto:scholarworks@wm.edu

HILDA : THE FLEXIBLE DESIGN AND
IMPLEMENTATION OF A DATABASE MACHINE EXECUTIVE

A Thesis
Presented to

The Faculty of the Department of Mathematics and Computer Science
The College of William and Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Master of Science

by
Paul A. Fishwick

1983

APPROVAL SHEET

This thesis is submitted in p artia l fu lfillm e n t of
the requirements for the degree of

Master of Science

Author

Approved, July 1983

Stefan Feyocl<

Robert Noonan

Samms

TABLE OF CONTENTS

Page
ACKNOWL EDGEMENT S
LIST OF FIGURES
LIST OF APPENDICES
ABSTRACT
INTRODUCTION.. 2
PART I. A BASIS FOR THE THESIS RESEARCH

CHAPTER I. DATA BASE MANAGEMENT SYSTEMS...................... 3
CHAPTER II. DATABASE MACHINES.................................. 10
CHAPTER III. THE INTEL DATA BASE PROCESSOR.....................13
CHAPTER IV. THE DEVELOPMENT OF H I L D A 24
PART II. THE DESIGN AND IMPLEMENTATION OF HILDA
CHAPTER V. LAYER 1: THE DATA COMMUNICATIONS PROTOCOL. . . .28
CHAPTER VI. LAYER 2: A SEMANTICS SPECIFICATION PACKAGE . . .43
CHAPTER VII. LAYER 3: A VIEW-ORIENTED QUERY LANGUAGE........... 51
CHAPTER VIII.CONCLUDING REMARKS............................... 67
GLOSSARY OF ACRONYMS... .73
APPENDIX A. SPP SOURCE
APPENDIX B. A SAMPLE TRANSMISSION TRACE
APPENDIX C. DBPSSP SOURCE
APPENDIX D. DBPSSP EXAMPLES
APPENDIX E. DBPQL CONCEPTUAL PROCEDURES
APPENDIX F. DBPQL GRAMMAR FILE
APPENDIX G. A SAMPLE DBPQL USER DIALOG
FIGURES
REFERENCES

ACKNOWLEDGEMENTS

The author would like to acknowledge the help of the
thesis review committee for providing suggestions and
constructive criticisms concerning the earlier drafts of the
thesis. The comments and questions of Stefan Feyock, Bob
Noonan, and Kathy Samms during the thesis defense were very
helpful. In particular, the advice and numerous suggestions
of my thesis advisor(Stefan Feyock) are much appreciated.
His advice and numerous suggestions have made this thesis a
more comprehensible one. The author would also like to
thank the IPAD office at NASA Langley Research Center for
providing a work order so that the thesis research could be
successfully completed. Specifically, discussions with
Floyd Shipman, Timothy Rau, and Bob Fulton are appreciated.

Finally the author acknowledges the support of his
wife, Martha during the long hours. Her continuous support
has helped to make this thesis possible.

LIST OF FIGURES

Figure 1 - The Physical DBP Environment

Figure 2 - Relational Commands for Manipulating Views

Figure 3 - HILDA : A general flow chart

Figure 4 - HILDA : A sample query

Figure 5 - Layers within HILDA and SPP

Figure 6 - General form for Host-DBP interaction

Figure 7 - VAX Asynchronous Communications Parameters

Figure 8 - Threaded Data Structure of SPP

Figure 9 - Request Module Form

Figure 10 - A sample assembly for "REMARK"

LIST OF APPENDICES

APPENDIX A - SPP SOURCE

APPENDIX B - A SAMPLE TRANSMISSION TRACE

APPENDIX C - DBPSSP SOURCE

APPENDIX D - DBPSSP EXAMPLES

APPENDIX E - DBPQL GRAMMAR FILE

APPENDIX F - A SAMPLE DBPQL USER DIALOG

APPENDIX G - DBPQL CONCEPTUAL PROCEDURES

ABSTRACT

The design and implementation of a three-layer
executive is described for the Intel Data Base Processor.
The executive is termed "HILDA" which stands for High Level
Data Abstraction System. The layered components of the
executive include an asynchronous error-correcting protocol,
a semantics specification package, and a high-level
interactive query language. Relevant source listings and
interactive results are included in the appendices.

HILDA : THE FLEXIBLE DESIGN AND
IMPLEMENTATION OF A DATABASE MACHINE EXECUTIVE

INTRODUCTION

The management of large quantities of scientific data
presents special problems. There is a great need for the
engineering analyst to be able to easily and efficiently
access vast amounts of data associated with engineering
computer programs. A project called IPAD(Integrated
Programs for Aerospace Vehicle Design) [1,2,3] was created
at NASA Langley Research Center so that research could be
initiated to address the problem of engineering data base
management.

Due to a joint IPAD/ICASE(Institute for Computer
Applications in Engineering) effort, an Intel Data Base
Processor(DBP) was obtained to aid in the research
associated with scientific and engineering data management.
This thesis describes the design and development of a
flexible set of tools which allow the scientific user to
efficiently use the DBP.

2

PART I

BASIS FOR THE THESIS RESEARCH

CHAPTER I

DATA BASE MANAGEMENT SYSTEMS

The Engineering Data Handling Problem

With the vast amounts of scientific analysis data being
manipulated in the engineering work environment, a need
exists for adequately managing the data. In addition to the
problems associated with managing large quantities of data,
there also exist integration problems when engineers are
required to move information from one computer program to
another in a reliable manner. Over the course of a project
several different application programs will have been used
since it is rare to find one program which will satisfy the
needs of every engineer. The data from these programs must
be efficiently integrated and managed to insure the success
of the project.

3

4
There are currently many programs oriented towards

engineering applications which attempt to solve this data
management problem by directly using sequential or random
files. This primitive type of data management is not
sufficient when large quantities of data are accessed, since
standard disk files do not represent a flexible method of
accessing data. There also exists an efficiency problem
with respect to data access times when using sequential or
random access files. In the IPAD project, it was seen that
a new type of data management for scientific data was
necessary so that the engineer could have a flexible and
easy-to-use mechanism for working with design and analysis
data.

Current Data Base Management Systems

Currently available data base management technology was
surveyed to obtain an initial solution to the data
management problem. The three major data models were
carefully reviewed to determine the most appropriate given
the engineering work environment. It is assumed at this
point that the reader has a basic understanding of certain
database principles as presented in references 4 and 5. The
three data models are briefly described :

5
1. Hierarchical - Involves storing a group of data

records in a hierarchical(or tree-like) fashion.
\

Data sets formed using this data model can be
referred to as "owner" or "member" sets since the
data is organized into trees.

2. Network - This data model revolves around the network
data structure. Any item may be linked with any

a , ,other item m a database using explicit links(or
pointers). A major difference between the network
data model and the hierarchical data model is that a
member record may have more than one owner in the
network model.

3. Relational - This data model is represented by a
collection of two-dimensional tables called
relations. Each relation is composed of a set of
named columns(attributes) and rows(tuples). Each
item is declared to be of a certain data type such as
integer, floating point, or ASCII.

The relational model was chosen as the most appropriate
in the scientific/engineering environment for the following
reasons:

1. Most scientists and engineers are familiar with data
that is presented in tabular form. Mathematics and
engineering texts often contain appendices which
include tabular data.

2. The relational model does not burden the user with the
task of having to keep track of explicit links which
connect the sets of data. With large amounts of
engineering data, the number of pointers in a
hierarchical or network data base can be staggering.
The relational data model promotes a pointer-free
method of manipulating data. Relationships among the
data items may be easily formed using relational
algebra upon the tables. Examples of this algebra
will be included throughout the thesis.

3. The algebra that is used to initiate queries for a
relational data base is very user-oriented. In many
cases, the written query syntax resembles an English
language command as it would be verbalized. This
English command syntax promotes a short "learning
curve" when the engineer needs to access data areas.

A relational data base system called RIM(Relational
Information Manager)[6] was created within the IPAD project
to address the data management problem. RIM permits the
engineer to easily manipulate data with English-like
commands.

RIM is specifically oriented towards the engineering
environment. In addition to containing the usual primitive
data types such as integer and ASCII, RIM contains double
precision, vector and matrix data types which are more
common in the engineering environment. Tolerances, which
are fairly common in the scientific world(and not so much in

7
the business world), are also handled in RIM. One may
specify retrieval of data items based, not on an exact
floating point value, but on a reasonable approximation
based on tolerance.

It was decided that there were many more issues to be
investigated concerning scientific data management that go
beyond the RIM development. Specifically, when large
quantities of data are stored in a RIM database, a
performance problem arises. Selecting and retrieving
certain data becomes cumbersome due to a time lag brought on
by the overhead of RIM on the host VAX 11/780 computer. For
example, a typical query performed on a relation with five
thousand tuples may cause a thirty second wait depending on
the system load. Also, there are certain facets of RIM
which needed improving :

1. RIM does not contain views("views" are described in
chapter 3). When a new relation is formed through
relational algebra, this relation does not contain
any logical connection to the underlying relation
from which it was formed. This means, for instance,
that when data is stored into the new relation, this
change is not reflected in the underlying relation.

2. RIM has a FORTRAN interface so that data manipulation
may be controlled from within a user's application
program. The interface operates differently from the
easy-to-use interactive command language. One uses

8
the program interface by calling a set of subroutines
that contain many different arguments (which refer to
relation and attribute names, attribute values,
etc.)* The interactive command language, on the
other hand, requires a more English-like command
specification. It would be beneficial if the program
interface mode operated more similarly to the
interactive mode in terms of command syntax.
Specifically, it would be nice if the program
interface supported a single subroutine whose single
argument would contain the command text that would
normally be entered interactively to produce a given
result.

3. RIM does not contain the mechanism that allows the
sophisticated user to build network and hierarchical
data structures based on the relations. It is
possible to have a relational system which contains
performance-oriented pointers and hash tables that
are present in the schema yet transparent to the
casual user who wishes only to see the pointer-free
tabular output. RIM does not contain many of these
performance capabilities and therefore performance
problems arise when large amounts of engineering data
are involved.

It was decided that since performance was such a
fr'critical issue in scientific data management, the use of

database hardware(i.e . data base machines) would provide an

9
interesting avenue of research. Data base machines will be
discussed in the next chapter.

CHAPTER II

DATA BASE MACHINES

Data Base Machines are hardware devices that perform
data base functions normally associated with software data
base management systems. Typically the data base machine is
physically connected to other computer systems in a network
fashion or as a back-end data base engine to a host
computer.

In a recent survey paper, Maryanski[7] points out some
of the benefits derived from data base machines :

1. Performance - The data base machine improves the
throughput of a loaded host computer since the data
base management functionality is removed from the
host and delegated to the data base machine. The
data base machine operates concurrently with the host
computer to achieve optimal performance.

10

11
2. Cost - The attachment of a data base machine to an

existing host computer is often cheaper than the
purchase of a larger host computer(such as a
mainframe system) for handling data base chores. As
data base machines proliferate, the cost of the
machines will gradually fall.

3. Security - Since the data base hardware is physically
separate from the host computer, the programmer is
forced to perform all data access through the channel
connecting the host and data base machine. This
channeling supports a structured, secure means of
doing data base management. When the data base
functionality is all on the host computer, it is
often possible to bypass the normal conventions in
accessing data base files (either inadvertently or
intentionally).

Over the past nine years, a number of data base machine
prototypes have been built. The first prototype, named
XDMS, was constructed at Bell Laboratories by Canaday et
al.[8] in 1974. The purpose of the XDMS research was to
demonstrate the feasibility of the back-end data base
machine concept. The term "back-end" refers to the fact
that the data base machine is acting as back-end to the
front-end host computer which gives all the orders. The
back-end data base machine simply receives orders and
responds to them. It does not initiate orders.

12
Presently, there are very few commercially available

data base machines. The most notable are the Britton-Lee
IDM(Intelligent Database Machine) and the Intel DBP(Data
Base Processor). Both machines are similarly priced and
perform in a similar manner. Britton-Lee includes a query
language and communications protocol to allow the user to
talk to the IDM. Intel is planning on supplying a query
capability and communications software in the near future.
Both the IDM and DBP operate by being passed a sequence of
low-level data base management operations from the host
computer.

In an agreement involving Intel Corporation,
ICASE(Institute for Computer Applications in Science and
Engineering) and NASA Langley Research Center, an Intel DBP
was donated so that the effect of the data base machine in
the engineering work environment could be adequately
studied.

CHAPTER III

THE INTEL DATA BASE PROCESSOR

This chapter presents an overview of the Intel Data
Base Processor(DBP). To appreciate the remainder of this
thesis, it is important that the reader gain an
understanding of the purpose and capabilities of the DBP.

The Intel DBP acts as an "intelligent mass storage
controller" whose primary purpose is to relieve the host
computer of time-consuming data base chores. On the
majority of current computer systems the mass storage
controller that controls the disk units contains little
logic or functionality. Most disk controllers, for
instance, contain only the capability to read/write tracks
and sectors. An "intelligent" mass storage controller, on
the other hand, provides a wide range of functionality to
users and programs which access it, such as the capability
to manage databases and manipulate entities within the
databases. The entity types that the DBP handles is the

13

14
subject of a subsequent section.

The DBP may be used in a variety of environments. It
can be used as a back-end device connected to a host
computer which drives it or as a server acting as the data
base manager node in a local area network. For purposes of
the work described in this thesis, the DBP was used as a
back-end data base machine which was directly connected to a
VAX 11/780 minicomputer. This arrangement is portrayed in
figure 1.

In the back-end environment, the DBP is connected to a
host computer which gives orders to the DBP. Each order is
in the form of a contiguous set of commands called a
"request module". A program on the host sends a request
module to the DBP and the DBP sends back one or more
"response modules". There are many different types of
commands that one may include within a request module to be
delivered to the DBP. Some of these types are identified
below. Note that some of the key terms used within the
command overviews, such as the database entities "session",
"file", and "view" will be described in the following
sections.

1. Administration Commands : Allow the user to create,
delete, and make modifications to databases, files,
and views. Typical commands include the capability
to define file schemas (the organization of the
file), integrity constraints (keeping tabs on the
consistency of the data), and views(windows created

from existing files). These commands do not
manipulate the data contained within the files, but
rather the status and structure associated with files
and other major DBP entities.

Resource Control Commands : Provide access to the
DBP entities. For instance, views may be either
attached or detached (freed) from the users current
application session. Locks may be placed at
different levels on certain entities. The creation
of these locks and the keys with which to open the
locks are part of the resource control mechanism.

Performance Enhancement Commands: Allow the analyst
to enhance the performance of the DBP using certain
techniques such as pointers, hash tables for a given
item, and indexes.

Data Manipulation Commands : Perform manipulation of
the data stored within a given database file.
Manipulation may involve fetching, storing, or
modifying data.

Flow Control Commands : Allows control structures to
be included within the command block. Conditional
execution of certain DBP requests are facilitated
with "IF...ELSE...ENDIF". Iterative execution is
accomplished by setting up "LOOPS".

16
The DBP executes request modules using "sessions". A

session is defined to be a set of host-resident application
programs which are functionally related. Programs which
involve the manipulation of an engineering drawing might be
considered to be a session. A set of programs which keep
track of the inventory for the drawings would be in another
session. There are two types of sessions: control and
application. Control sessions are used for DBP
administrative purposes such as creating one or more
application sessions. Application sessions are used for the
majority of DBP commands including commands which define and
manipulate data base entities.

When one thinks of the primary entities which are
stored on the disks attached to the DBP, one thinks of three
particular entities : databases, files, and views. A
database is a collection of files. In a scientific
environment, a database might contain all of the data
relevant to a real model(such as a structural model of an
airplane wing).

In the DBP, one may have two types of files:
unstructured and structured. Structured files are relations
which look like two-dimensional tables and are composed of a
set of tuples and items(rows and columns). Unstructured
files are simply byte streams(that is, there is no
structured tabular format). All disk files on current
computer systems may be considered to be unstructured since
there is no underlying structure to the file: the operating
system looks at the file as a sequential string of bytes.

17
In the following pages, it will be shown that the DBP
permits the two different types of files, unstructured and
structured, to be manipulated together using the special
operations SUBSTRING and CONNECT. This thesis is most
concerned with discussing structured files rather than
unstructured files since structured files represent
relations, which are familiar entities. Each item within a
structured file may be of a certain data type such as
signed/unsigned integer, ASCII, stringpointer, or
recordpointer.

Views are pieces of the data within files which are
sectioned out so that the user can "see" the data which is
relevant at any particular time. Files can be quite large,
and it is often necessary to look at only a portion of the
files. A view is therefore a "window" into one or more
files. Views are formed using relational algebra[9] on
other previously created views. Note that when a view is
"created", it is created only in a virtual sense. That is,
views are typically created by implementing a hidden table
full of pointers which directly point to the file rows and
columns that the user has chosen using relational algebra.
Therefore, when data is stored into a view, it is actually
stored into the underlying file from which the view was
"created". Retrieving data from a view is similar. Data is
retrieved via the view directly from the underlying file.
Examples of using relational algebra and creating views will
subsequently be shown. First, a description of each type of
view is presented along with accompanying figures 2a-2g:

JOIN - A join view is created from two existing
source views. The two existing views are "joined"(or
concatenated) together based on common values within
a single item in each source view. The concatenation
may be seen as a "column-wise" transformation, since
the new view will contain the total number of columns
from both source views.

SELECT - A select view is created by applying a
constraint(or constraints) to the total number of
rows in a source view. After the constraint has been
applied, the newly formed select view will contain a
subset of the rows in the original source view.

PROJECT - A project view is similar to a select view
except that a constraint is applied to the columns in
the source view. That is, the project view is formed
by specifying a subset of the original number of
columns found in the source view.

ORDER - An order view is created by sorting on
certain items within a source view using either a
ascending or descending order.

UNION - A union view is similar to a join view in
that two source views are concatenated together to
form a new view. The difference is that the
concatenation is performed row-wise so that the new
view contains the total number of rows from the
original source views added together. It is required
that the two source views have the same number of

19
items of identical data types.

6. SUBSTRING - A substring view is created using an
unstructured file and a pattern-matching sequence.
An example of the use of SUBSTRING may be seen when
looking at a word processing application. If a
pattern containing CRLF(carriage return, line feed)
were specified, then one could form a structured
SUBSTRING view delineating the sentences within any
given piece of text.

7. CONNECT - A connect view is similar the previously
defined join view except that two views are connected
using an item with the specific "stringpointer" data
type. This pointer is automatically updated when
items are loaded into the view.

Since views are so important to understanding the
function of the DBP, some examples relating to the
scientific/engineering environment are presented. The
example files represent typical entities which would be
found in a "finite element modeling" database. A finite
element model is a geometric model of a real structure which
is composed of connected two, three, and four -noded
elements. A "node" is a point which is used to join
together several finite elements. In finite element
modeling, two-noded elements are called either "beams" or
"rods", while thrjee-noded elements are denoted "triangular
elements" and four-noded elements are denoted "quadrilateral
elements". Real structures such as bridges, airplane wings,

20
and electrical transmission towers may be analyzed by
breaking the structure into a finite number of elements. In
the finite element modeling database we may define four
sample files called, "BEAMS","TRIANGLES", "QUADS", and
"NODES". The files BEAMS, TRIANGLES, and QUADS contain
finite element data whereas NODES contains the 3D model
coordinate data. Using this finite element modeling
example, the formation of certain views are presented. For
these examples, two files "BEAMS" and "NODES" will be used:

+-------------.— +
1T FILE : BEAMS IT+--------------- +

GROUP ELEMENT NODE1 NODE2 EL-TYPE NOM-SIZE MATERIAL

1 1 1 2 WFL 8x8 ALUMINUM
1 2 3 4 I 3x2 TITANIUM
2 3 5 6 WFL 3x2 GRAPHITE

+ +
IT FILE : NODES IT

NODE X Y Z

1 5.3 6.22 0.0
2 6.7 10.20 0.0
3 1.0 1.05 0.0
4 2.3 5.39 0.0

, 5 5.4 8.21 2.0

21

6 8.4 21.00 2.0

When these two files are initially created they
automatically contain "identity" views which represent the
base views upon which we may create other views. For
instance, we can create a new view of the beam element
connectivities by executing the following conceptual DBP
command:

create project view CONNECTIVITIES from beams
including N0DE1 NODE2 EL-TYPE

If we then wanted to work just with the connectivities
of wide-flange(WFL) beams, we could define another view on
top of the view "CONNECTIVITIES":

create select view WFL-CONNECT from CONNECTIVITIES
where EL-TYPE = WFL

yielding :

H------------ — ---------+
1T VIEW: WFL-CONNECT 1T + . +

N0DE1 N0DE2 EL-TYPE

1 2 WFL
5 6 WFL

22

Now, supposing we wanted to work with the Z-values
associated with the element connectivities. This new view
will require that we use both "BEAMS" and "NODES". Starting
from scratch, we might do the following:

create join view J1 from BEAMS N0DE1 NODES NODE

create project view PI from J1 including ELEMENT N0DE1 Z N0DE2

create join view J1 from PI N0DE2 NODES NODE

create project view Z-VALUES from J1 excluding NODE X Y

yielding:

+--------------------- +
IT VIEW : Z-VALUES IT +-------------------- +

ELEMENT N0DE1 Z N0DE2 Z

1 1 0.0 2 0.0
2 3 0.0 4 0.0
3 5 2.0 6 2.0

23
It is important to note that views are virtual database

entities as opposed to relations which are real entities.
When a view is created using relational algebra it should be
referenced as a channel into one or more database relations.
Views which have been created and are no longer needed may
easily be deleted from the user's session. Note that we
could store data into view "Z-VALUES" and this change would
be reflected back in the original identity views upon which
Z-VALUES was created, namely "BEAMS" and "NODES".

The DBP supports all three major data models:
Relational, Hierarchical, and Network. When one is setting
up a schema for files within a database, "pointer" items may
be created. These pointers permit underlying hierarchical
and network data structures to be defined. Items in one
file are linked with items in other files using the
"recordpointer" data type. Therefore, many-to-one and
one-to-many pointer relationships may be defined inside the
database files. After having defined the schemas, the user
is free to access the data relationally using views. Hence,
the DBP may be thought of as a "relational data base
machine" since relational algebra is the primary mechanism
during data accesses. However, as just mentioned, the other
two data models can be accommodated by careful modification
of the underlying file structure with pointers.

CHAPTER IV

THE DEVELOPMENT OF HILDA

The existing host-resident interfaces to the currently
available data base machines were found to be inflexible
with respect to the modification of syntax and semantics
associated with query processing and command encoding. The
purpose of this thesis is to present an extensible and
flexible means of specifying the syntax and semantics for a
data base machine.

This thesis represents an initial investigation into a
flexible and high-level method of communicating with a data
base machine. A system called HILDA, which stands for High
Level Data Abstraction System, has been designed and
implemented by the author in an attempt to bridge the gap
between the somewhat rigid data base machine and the user.
In this sense, HILDA is an executive (or operating system),
since it represents a collection of tools which allow for a
high-level interface mechanism to the data base machine
resource. The general structure of HILDA may be seen in
figures 3 and 4. Figure 3 displays the method by which one

24

25
may flexibly modify the syntax and semantics for the data
base machine. Figure 4 shows the anatomy of a sample query
made to the data base machine.

The specific data base machine used during the research
was the Intel Data Base Processor(or DBP). It should be
noted, however, that HILDA has been designed so that it may
easily be integrated into other research efforts utilizing
different vendors' data base machines. The DBP is connected
to a VAX 11/780 host computer via a serial link. To use the
DBP, one must send a set of encoded commands to the DBP and
then receive a set of encoded responses. Most of the source
code within HILDA is transportable to other host machines.
The machine-dependent text is identified as such to aid in
the transportation problem.

HILDA is functionally structured into three layers.
The bottom layer is the closest to the actual data base
machine. This layer is represented by the SPP program, an
asynchronous error-correcting protocol. The middle layer
represents a semantic specification for the data base
machine. Using a small set of rigorously specified semantic
procedures a developer may easily form DBP request blocks
which are, in effect, pieces of machine code that the DBP
understands. The highest layer of HILDA is represented by
the query language DBPQL. DBPQL permits both casual and
sophisticated users to reap the benefits of the data base
machine via a ^simple-to-use view mechanism. The unusual
aspect of DBPQL lies in its flexible mechanisms for syntax
and semantics modification. Each of these layers will be

26
discussed in-depth throughout the remainder of the thesis.

Some of the points that will be addressed in the thesis
along with certain data base machine issues are highlighted
below:

1. As previously mentioned, HILDA has been divided into
three distinct layers. The layered approach seemed
to be the best method for adequately testing the
various software component modules.

2. The data base machine takes a load off the host
computer by performing the time-consuming chores
associated with data management. The performance of
both the data base machine and the host during
communications should be measured. The tools
necessary for this measurement are included in this
thesis.

3. The data base machine speaks a particular low-level
language, much like any given microprocessor. Both
require some type of semantic specification which is
used during communications. In the case of the
microprocessor, the semantics language might be the
assembler. The semantics specification language for
the DBP is slightly different. This specification is
discussed.

4. The most important design element discussed within
this thesis is the flexibility associated with the
creation of the syntax and semantics in HILDA. The

27
flexible features found within HILDA will be
identified in each chapter.

At the end of each chapter, the results of the
particular research performed will be discussed. Problems
encountered and things learned from the work will be
emphasized in the results section. After all the chapters,
there is a concluding remarks section which summarizes the
overall results of the research. A brief description of
each chapter associated with the design and development of
HILDA is shown below:

1. Chapter V - A description of the asynchronous
protocol design and implementation. The protocol
includes cyclic error recovery and allows a host
computer to communicate with the DBP. Some useful
low-level utilities will also be outlined.

2. Chapter VI - A semantics specification package for
the DBP. This package is composed of a small set of
procedures which permit an efficient construction of
request modules to be sent to the DBP.

3. Chapter VII - A user-oriented interactive query
language. The query language is based on relational
algebra which operates on objects called "views".
Many of the essential but arcane DBP functions are
hidden from the user.

PART II

THE DESIGN AND IMPLEMENTATION OF HILDA

CHAPTER V

LAYER 1 : THE DATA COMMUNICATIONS PROTOCOL

The design and implementation of a data communications
protocol for the Intel Data Base Processor (DBP) is defined
in this chapter. SPP is an asynchronous data communications
protocol that has been designed and implemented for use with
the Intel Data Base Processor. The protocol is termed SPP
(Service Port Protocol) since it enables data transfer
between the host computer and the DBP service port. The
service port may be connected either to a host computer or
to an interactive terminal which is used as a console
monitor. The service port is currently the sole means of
communicating with the DBP. The data rate using the service
port is limited to 9600 baud. Therefore, it should be noted
that even though the complete functionality of the DBP may
be studied, the performance of the DBP will be slow.
Efforts to implement a high-speed channel link(Ethernet) are
currently underway at Intel.

* 28

29
The protocol implementation is extensible in that it is

explicitly layered and the protocol functionality is
hierarchically organized. Extensive trace and performance
capabilities have been supplied with the protocol software
to permit optional efficient monitoring of the data transfer
between the host and the Intel data base processor. The
design of SPP is fairly typical of communications protocols
which use cyclic error recovery.

Machine independence was considered to be an important
attribute during the design and implementation of SPP. Most
of the protocol is therefore written in FORTRAN so that it
may be portable among different machines. The protocol
source code is fully commented and is included in Appendix A
of this report. All source text which contains machine
dependent constructs is marked to aid the analyst operating
in another data base machine research project.

AN OVERVIEW OF SPP

SPP is the supporting first layer within HILDA. The
other two layers, DBPSSP and DBPQL, rely completely on the
correct operation of the protocol during data transmissions.
The protocol permits complete usage of the DBP
functionality. The physical environment in which the DBP
operates consists of the host DEC VAX 11/780 minicomputer
with VMS level 3 operating system, the Intel Data Base
Processor, and an RS-232 connection. At its most abstract
interpretation, SPP is composed of the two procedures "Send

*

30
Request" and "Receive Response". The SPP user may send a
request (composed of a contiguous set of encoded commands)
and receive a set of responses which may be in the form of
ASCII text or a more general binary form. "Send Request"
and "Receive Response" activate a hierarchy of hand-shaking
primitives which include error detection and correction
capabilities using cyclic redundancy checking on both the
host and DBP sides.

SPP may be viewed as a three-layer protocol. The
"layer" within the protocol should not, however, be confused
with the layers within HILDA (see figure 5). The SPP layers
may therefore be construed to be sub-layers of the HILDA
data communications layer. The three sub-layers of SPP are
outlined below and described more completely on the
succeeding pages.

1. Application/Session:

The sub-layer representing the highest level
interface between the application software on the
host computer and the DBP.

2. Data Link:

A middle protocol sub-layer representing structured
data transmission handshaking implemented with error
detection and correction.

31
3. Physical Link:

The sub-layer closest to the DBP, representing a
primitive block I/O capability.

It is important to note that all procedures within the
layers of the SPP protocol operate strictly on the host
computer. The Intel DBP has its own embedded set of
protocol layers in firmware. Each of the SPP protocol
layers will be separately discussed.

The Application/Session Sub-Layer

This is the protocol layer closest to the actual
DBMS(Data Base Management System) application software
accessing the data base machine. The application/session
sub-layer is composed primarily of two procedures,
"SEND_REQUEST" and "RECV_RESPONSE" which perform as
demonstrated below (note that "PCB" stands for Parameter
Control Block which is described in the section on data
structures):

Function Arguments Description

SEND REQUEST MODULE Byte array to be sent
NBYTES__SENT Number of bytes in 'MODULE'
PCBTYPE Control or application PCB flag
APPLICATION_ID A host-assigned id #
REQUEST ID Id # of the session making the

request
32

RECV__RESPONSE MODULE Byte array received from DBP
NB YTES__RECV Number of bytes received
PCBTYPE Control or application PCB flag
MORE_TO__COME Boolean flag representing whether

all DBP data has been received

The "APPLICATION_IDH argument (in SEND_REQUEST) is a
host-assigned number identifying the application program
which will be sending the request to the DBP. "REQUEST_ID"
(or session id) refers to the DBP-assigned number
identifying the application program. A program that is
sending a request to the control session must use a
REQUEST__ID of zero, whereas programs sending application
session requests may use the REQUEST_ID numbers 1 to 4 which
are assigned by the DBP when the host creates application
sessions. The request module contains "NBYTES_SENT" bytes
of DBP machine code. It should be noted that the response
module returned may be null (that is, NBYTES__RECV is zero)
since many DBP operations do not yield a response. An
example of the use of the above procedures may be shown in
the form of the DBP conceptual command "REMARK <HOST>
<HELLO>" which is performed after having started up the DBP
with "DBPSTART":

33
C
C VMS(VAX OPERATING SYSTEM) FORTRAN EXAMPLE
C

BYTE MODULE(512)
PARAMETER APPLICATION = 1
DATA MODULE

X /'3A'X,'Ol'X,'Ol'X,'05'X,
X '48'X,'45'X,'4C'X,'4C'X,'4F'X,'FF'X,*00'X/
CALL SEND_REQUEST(MODULE,11,APPLICATION,1,1)
CALL RECV_RESPONSE(MODULE,NBYTES_RECV,APPLICATION,MORE_TO_COME

Figure 6 graphically depicts the general form of the
Host-DBP interaction occurring during the SEND__REQUEST and
RECV_RESPONSE procedures. Note that each DBP request module
is prefixed by the "APPLICATION_ID" and "REQUEST_ID". This
four-byte prefix is inserted by the SEND_REQUEST procedure.
The prefix need not be placed within the request module
itself. A list of the valid machine codes and formats for
request and response modules may be found in the DBP
Reference ManualClO].

The Data Link Sub-Layer

The data link sub-layer is composed of the two
operations "READ__BLOCK" and "WRITE_BLOCK". Data "blocks"
may be viewed as the error-free transfer medium used during
I/O with the DBP. A Cyclic Redundancy Check (using the

CRC16 polynomial[113) has been implemented so that the data
within the block is re-transmitted if an error is detected
during transmission. The format of the two data link
procedures is shown below :

34

Function Arguments Description

READ BLOCK BLOCK
NBYTES
NBYTES RECV

BASE
OFFSET

Block of data to read from DBP
Number of bytes to read
Number of actual bytes read
(including header, data, and
trailing bytes)

Base address for I/O
Offset from BASE

WRITE BLOCK BLOCK
NBYTES
BASE
OFFSET

Block of data to write to DBP
Number of bytes to write
Base address for I/O
Offset from BASE

The BASE and OFFSET arguments are added together(by
first multiplying the BASE times 16) to form the complete
address for I/O purposes. The data link layer routines are
activated several times within each of the
application/session layer routines: this is due to the PCB,
PCB vector and request/response data area accesses which
need to take place within the application/session layer.

The Physical Link Sub-Layer
35

The physical link layer is the protocol layer closest
to the DBP. It represents the actual serial I/O on the
channel. At this level, there is no error correction. For
correct operation it is imperative that the TTY port and
channel be configured correctly, otherwise ambiguities are
sure to occur. Figure 7 displays the appropriate
communications parameters which need to be set for the VAX.
The physical link layer is represented by two procedures
"Q_INPUT" and "Q_OUTPUT" (The VMS operating system assigns
queues to each port[12]). The following table summarizes
the format for the "Q_INPUT" and "Q OUTPUT" operations:

Function Arguments Description

Q INPUT BYTES Byte array received from DBP
NBYTES RECV Number of received bytes

Q OUTPUT BYTES Byte array to be sent to the DB
NBYTES Number of bytes to be sent

THE SPP THREADED DATA STRUCTURE

36
The DBP Service Port Protocol uses a simple memory

mapped I/O scheme to handle the DBMS control and application
functions. The host and DBP communicate by addressing the
same section of DBP memory. The core of this scheme is
represented as the PCB (Parameter Control Block) Vector.
This vector contains pointers to the control and application
address blocks. Depending on the type of DBMS function to
be performed (control or application) the DBP commands are
sent using the appropriate I/O addresses. All addresses are
specified in a base:offset (4 bytes) format. Access to the
data areas, whether the data is request or response data, is
obtained by 'threading' through the PCB Vector and specific
PCB (see figure 8).

OPERATION OF SPP

This section defines the actual operation of SPP in the
implementation. The protocol should be used at the
application/session layer level, that is, using the two
session procedures "SEND_REQUEST" and "RECVJRESPONSE". The
procedure for successfully communicating with the DBP is
shown below :

Program Procedures Activated Description

DBPSTART INIT__COMM Initialize communications
CREATE CONTROL Create control session

communicate...

DBPSTOP

CREATE__AP PL ICAT ION

INIT_COMM
SEND_REQUEST
RECV_RESPONSE

INIT__COMM
DELETE__AP PL ICAT I ON
DELETE CONTROL

37
Create application session

Initialize communications
Send request module
Receive response module

Initialize communications
Delete application session
Delete control session

SPP UTILITIES

SPP contains two primary utilities which are useful in
conjunction with the protocol operation. The two available
utilities are tracing and performance monitoring. "Tracing"
refers to a map containing detailed data transmission
information including snapshots of the PCB Vector and
Control/Application PCBs. The entire handshaking sequence
within SPP may be studied with the aid of the trace utility.
"Performance Monitoring" refers to the collection of certain
execution statistics during host-DBP transmissions. By
monitoring the DBP, the software analyst may study both the
effect of SPP on VMS and the elapsed time during host-DBP
requests and responses.

38
Both utilities may be used within any of the three SPP

layers. The depth of trace and performance information may
therefore be set by the analyst if only a subset of the SPP
operations require monitoring.

The Trace Utility

A trace facility has been designed into SPP so that all
Host-DBP communications may optionally be monitored. The
trace output may be re-directed to any logical output unit
including the terminal, if desired. Tracing may be
accomplished by using the following two routines :

1. TRACE_JSTART(UNIT) where UNIT = logical output file
unit

2. TRACERS TOP

Snapshots of the PCB Vector and PCB are displayed on
the trace output to aid the analyst. Appendix B displays
all communications that transpire during the
" C REAT E__C ONT ROL11 and " C RE AT E_AP PL I CAT I ON " procedures
(activated when DBP_START is called). For further
information on interpreting the trace see the DBP Operations
Manual[13].

The Performance Monitoring Utility

39
The analyst may wish to invoke the performance

monitoring facility when using the other routines. The
statistics that are currently monitored are listed below :

1. Elapsed Clock time

2. Elapsed VAX CPU time

3. Number of VMS buffered I/O requests

4. Number of VMS direct I/O requests

5. Number of VMS page faults

The following two routines may be used to obtain the
above statistics :

1. PERFORM_START

2. PERFORM_STOP(CLOCK,CPU,BIO,DIO,PAGE) - where each
argument directly corresponds to each item listed
above.

One of the purposes of the data base machine is to
enhance the performance of the host machine by allowing a
back-end data base machine to exercise many
time-consuming data base management chores normally
assumed by the host. The addition of the performance
monitoring Utility is thought to be essential(along with
the trace utility) in maintaining a flexible front-end to
the data base machine.

L IM IT A T IO N S OF SPP

40

SPP is currently fully operational using a 9600 baud
physical link to the DBP service port. SPP is limited in
that only one host may be used at any one time. It should
be realized, however, that several host application sessions
may be instantiated permitting multiple host simulation
studies if desired.

In the future, Intel is planning on supporting the
Ethernet link between multiple hosts and the DBP. Ethernet
is a hardware communications package composed of a co-axial
cable (connecting two or more hardware devices together) and
an interface for each device. The Ethernet environment
forms a local area network. Since the Ethernet hardware is
attached to the high-speed buses in the computers, a very
high-speed access rate to the DBP will be possible. The
extensive host link protocol[14] (corresponding to the
recent ISO protocol standard) will be used with Ethernet.
The Ethernet implementation will permit fast DBP access
which will be essential for multiple-user and embedded DBMS
applications.

RESULTS

SPP has been implemented so that it may be separated
from the HILDA system for use in other research efforts.
The construction of a machine-independent protocol was
Considered important since the data base machine may be

41
connected to a wide variety of hosts. The essential machine
dependencies in SPP are clearly marked to aid the
implementor in a non-DEC computer environment.

The functional, layered design of SPP supports the
concept of extensibility so that an individual may easily
make modifications and enhancements to the existing
implementation.

Finding bugs in the protocol software during
development was often quite difficult, and necessitated the
creation of an extensive tracing mechanism. The trace
output including I/O sequences and PCB snapshots proved to
be indispensible in spotting design errors in the protocol
software.

The performance evaluation tool is very useful: one
should note, however, that the statistics gathered reflect
different aspects of VMS overhead, and not DBP overhead.
That is, there are no commands that may be sent to the DBP
which request statistical information that the DBP has
compiled during internal processing. Intel does include an
event log capability; however, this should be treated as an
accounting function and not a performance function. In the
future, Intel may want to consider including a set of
performance commands in their command repertoire. It is
inevitable that the data base machine users will want this
type of capability.

42
The author has gained a much greater appreciation for

communications protocols after having written one. The
various aspects of host-slave synchronization and error
correction go unnoticed to all except the implementor. This
is as it should be.

CHAPTER VI

LAYER 2 : A SEMANTICS SPECIFICATION PACKAGE

A DBP Semantics Specification Package for the Intel
Data Base Processor(DBP) is defined within this chapter.
DBPSSP serves as a collection of cross-assembly tools that
allow the analyst to assemble request blocks on the host
computer for passage to the DBP. The assembly tools may be
effectively used in conjunction with a DBP-compatible data
communications protocol to form a query processor,
precompiler or file management system for the data base
processor. The SPP protocol, as defined in the previous
chapter, is used within HILDA. It is important to note that
even though DBPSSP may be used with SPP, the assembly
primitives and procedures within DBPSSP are independent of
SPP. That is, another data communications protocol may be
effectively used with DBPSSP if necessary. The source
modules representing the components of DBPSSP are fully
commented and included as Appendix C.

AN OVERVIEW OF DBPSSP
44

DBPSSP is a package containing procedures which are
used on the host computer to construct request modules that
are to be sent to the Intel DBP. DBPSSP functions as a
cross assembler in that Intel DBP "machine code" is
assembled on the host computer and then directed to the data
base machine for execution. Each request module sent to the
DBP is of the form shown in figure 9. Every module contains
an arbitrary number of commands. A command is always
composed of exactly three primary sections:

1. Opcode Byte - the operation to perform on the DBP
(fetch, store, define database, etc.)

2. Parameters/Data - parameters and data which relate to
the operation being performed.

3. Terminator Bytes - two bytes which represent the end
of the current operation which is to be performed by
the DBP.

The following sections outline the capabilities and
suggested usage for the DBPSSP component modules. DBPSSP
should be thought of as a collection of procedures(or
subroutines) that permit the software developer to easily
construct data base requests to the Intel DBP. In this
manner, the analyst is free to develop a flexible front-end
interpreter or compiler to the data base machine. Some
h'ighlights of DBPSSP are as follows:

Relative and Absolute Offsets - When assembling machine
code for the DBP, it is necessary to "place" the code at
the proper offset within the request module. In many
cases, one may build the request module sequentially
from start to finish. This sequential mode of
assembling is termed "relative" offsetting, since the
current assembled code is simply "tacked on" to the
previously assembled code. One may choose, however, to
assemble code at a specific offset within the command
block. This random mode of assembling is termed
"absolute" offsetting. The mode used by the software
developer depends on the overlying front-end driver
accessing the assembly tools. A particular parsing
method(for a query language, for instance) used for
constructing a driver may dictate the use of one offset
method over another.

Primitive and High-Order Procedures - DBPSSP is composed
of a set of general primitive procedures and a set of
high-order procedures which are based on the primitives.
The high-order procedures are similar in appearance to
assembler mnemonics for a given microprocessor: they
have short names and contain few operands.

Macro Capability - Since DBPSSP is a set of procedures,
it is straightforward and useful to develop
parameterized procedures which access the fundamental
DBPSSP procedures. This feature plays a role similar to
the "macro" capability found in many assemblers.

THE COMPONENTS OF DBPSSP
46

DBPSSP is composed of a minimal set of general
primitives and a set of high-order procedures. Each set is
divided into "Control" modules and "Assembly" modules. The
control modules effect the data communications options,
while the assembly modules are pure assembly directives
pertaining specifically to the construction of the command
blocks. The control modules are discussed in the previous
chapter. Modules that are dependent on the specific data
communications protocol used are denoted "(D)" next to the
respective module name. Each module set is depicted below:

PRIMITIVES

INIT_COMM(D) - initialize DBP communications
DBP_SEND(D) - send a request module to the DBP
DBP__RECV(D) - receive a response module from the DBP
TRACE__START(D) - start tracing
TRACE_STOP(D) - stop tracing
PERFORM__START - start performance monitoring
PERFORM_STOP - stop performance monitoring(gather
statistics)
DBP_BEGIN - start to assemble a command block
DBP_BITS_BEGIN - start bit masking operations
DBP_BITS - perform logical 'or'ing of bits
DBP_BITS__END - end bit masking operations
DBP BYTES - assemble"an ASCII string

DBP INTEGER - assemble a 1,2, or 4 byte integer
47

HIGH-ORDER PROCEDURES

INIT(D) - Initialize DBP communications
SEND(D) - send the built request module to the DBP
RECV(D) - receive a response module from the DBP
TRON(D) - start trace
TROFF(D) - stop trace
PRON - start performance monitoring
PROFF - stop performance monitoring(gather statistics)
START - Start encoding a command block
TERMINATE - Add the two terminator bytes to the command
block being constructed.
BITSB - begin bit masking(relative offset)
BITS - logical 'or' on command block(relative offset)
BITSE - end bit masking(relative offset)
BITSB__A - same as 'BITSB' (absolute offset)
ASC - assemble an ascii string(relative offset)
ASC_A - same as 'ASC'(absolute offset)
INTI - assemble a 1-byte integer(relative offset)
INT1__A - same as ' INTI' (absolute offset)
INT2 - assemble a 2-byte integer(relative offset)
INT2_A - same as 'INT2'(absolute offset)
INT4 - assemble a 4-byte integer(relative offset)
INT4 A - same as 'INT4'(absolute offset)

Details on using the above procedures may be found in
the source which is included as Appendix C.

THE ASSEMBLY PROCESS

Figure 10 displays the assembly process occurring for a
"REMARK <HOST> <HELLO>" DBP command. It is assumed in
figure 10 that the user has developed a parsing method which
will activate the semantic assembly primitives within DBPSSP
(START,INTI,ASC, and SEND) when the REMARK command is
encountered. A more substantial program is presented in
Appendix D that performs the conceptual DBP operations
listed below (variable arguments are bracketed for
identification):

1. SUBMIT KEYS <ADMIN>
Submit the ADMIN key to the session keyring.

2. DEFINE DATABASE <TESTING>
Define a new database called TESTING.

3. KEEP DATABASE <TESTING>
Make the database TESTING a permanent database.

4. DEFINE FILE <FILE1> <DBPSYS>
Define a new file called FILE1 on the system
disk(DBPSYS).

49
5. DEFINE SCHEMA <INT1> INT*4 <INT2> INT*4 <INT3> INT*4

<FILE1>
Define a schema containing exactly three 4-byte
integers(INTI, INT2, and INT3) for the previously
defined file FILE1.

6. KEEP FILE <FILE1> <TESTING>
Make the file FILE1 a permanent file.

7. LIST DATABASE <TESTING>
Show the schema descripton for files within database
TESTING

For further information on the command syntax see the
DBP Reference Manual[10]. The program containing the above
commands is presented in two languages, FORTRAN 77 and
Pascal(in Appendix D). The FORTRAN program is coded using
the primitives, while the Pascal program uses the high-order
procedures. In general, the software designer will want to
use the high-order procedures since the high-order
procedures are more functionally precise with fewer
parameters. Note the relative compactness of the Pascal
program. The assembled modules and received DBP responses
obtained after having sent the completed requests to the DBP
are shown at the end of Appendix D.

RESULTS

50
The procedures within DBPSSP provide the developer with

all of the necessary tools to construct an interactive query
processor, compiler, or file management system for the Intel
DBP. It was useful to create the semantics procedures in a
strictly hierarchical fashion. Therefore, there are very
few low-level primitives and all of the high-order
procedures activate one or more of the primitives. This
designed hierarchical construct turned out to be extremely
powerful in forming new pieces of DBP "object code".

The merits of absolute vs. relative offsetting is
unclear. It was necessary to use only the relative
offsetting during the development of the query language
DBPQL(to be described in the next chapter). Relative
offsetting was simpler since it was not necessary to keep
constant track of the offset pointer. Also, since the
command line tokens and default arguments were all stored in
symbol tables, it was usually convenient to construct the
final request module all at once after having collected the
required module data. Absolute offsetting may be valuable
in a situation where the construction of symbol tables is
seen as being difficult or detrimental.

DBPSSP permits the definition of a complete semantics
specification associated with any given command or language
syntax that the developer may choose. For example, the
third layer of HILDA in conjuction with PARGEN specifies the
syntax for an intepretive language "DBPQL" and the
associated semantics defined using DBPSSP. DBPQL will be
discussed in the next chapter.

CHAPTER VII

LAYER 3 : A VIEW-ORIENTED QUERY LANGUAGE

A query language interpreter named "DBPQL"(Data Base
Processor Query Language) has been designed to allow the
user to effectively and easily communicate with the data
base machine. DBPQL was built using PARGEN[15] and other
tools available within the MYSTRO system. The PARGEN
program stands for "PARser GENerator" and will be discussed
in the next section. DBPQL is designed to be utilized by
both casual data management users and experienced users.

The DBPQL / DBP Conceptual Command Dichotomy

The DBP Reference Manual contains an in-depth
description of the format for the request and response
modules. The manual also includes a BNF-type "conceptual"
command scheme which relates to the DBMS functions using a
one-to-one mapping. That is, each internal DBP command may
be conceptually defined by an external user-oriented BNF
syntax production. The conceptual command is similar to a
machine instruction on a conventional machine in that it

51

52
represents the lowest, indivisible level of DBP
functionality.

DBPQL was designed with the idea that the vast majority
of data base machine users are not interested in exploring
the functionality at the level described in the reference
manual. This implies that there is a definite one-to-many
mapping of DBPQL query commands to Intel DBP conceptual
commands. The semantics afforded by each conceptual DBP
command are encapsulated within the file "DBPCMD.DAT" which
is included as Appendix E. This file includes a set of
procedures which are called by the semantics within the
DBPQL grammar file. Each procedure represents a single
conceptual DBP command with the arguments necessary to build
the request block portion relating to that command.

A strong attempt was made to shield the casual user of
the data base machine from abstruse and often confusing
functions such as the following:

1. FREE - free a currently attached view from the
session.

2. ATTACH - attach a view to the user's session.

3. KEEP - make an entity (database,file,view) permanent.

4. SUBMIT KEYS - submit keys to the session's keyring.

53
5. DEFINE FILE - define a file within a given database.

These functions may be quite useful to the
sophisticated user, but they should be transparent to a user
who simply wishes to easily and quickly manipulate data.
Most of the functions such as those listed above are
required during data base management queries. In order to
make them transparent, their functionality is woven into the
semantic definitions of the relevant queries.

The data within the user's database is manipulated
through relational algebra which is performed on views[16].
Views in DBPQL are defined to be windows which map onto the
general set of data, therefore allowing the user to see only
the relevant data sections within the database. Views may
easily created from other views via relational commands such
as the following:

create project view CONNECTIVITIES from QUADS
including N0DE1 N0DE2 N0DE3 N0DE4

In this example, the user wishes to see only the
connectivity information present within the relation
"QUADS". This information is extracted from items, "N0DE1",

ir

"N0DE2", "N0DE3", and "N0DE4" and a new view named
"CONNECTIVITIES" is created in the process.

54
The advanced user of the data base machine is

accommodated through the use of "options". Options permit
the experienced user to be specific about certain database
and relation creation parameters, such as internal page
size, variable item area size within files, and allocation
sizes. The inexperienced user can simply assume the
defaults in most cases and not be unduly affected.

In the following sections within this chapter, the
method which is used to develop DBPQL will be shown. This
same method may be applied in other research efforts to
develop an entirely different high-level user interface.
The first section describes PARGEN, a programming tool used
to develop the syntax and semantics of DBPQL.

PARGEN

PARGEN stands for PARser GENerator and is a program
contained within the MYSTR0[15] system developed at the
College of William and Mary. As its name implies, PARGEN is
used to develop(or generate) compilers and query processors
which contain parsers. PARGEN expects two inputs before it
can execute:

1. Grammar File - contains the syntax and semantics for
the language to be generated. The syntax is
specified in terms of BNF(Backus-Naur Form)
productions. The semantics are written in Pascal

55
directly following the syntax production to which
they are related.

2. Skeleton Compiler or Query Processor - contains a
minimal language compiler/query processor which has
embedded tags to aid PARGEN in the correct insertion
of certain variables and the synthesize case
statement. The case statement is used during the
parsing phase to activate the semantics associated
with a specific rule being fired.

As output, PARGEN produces the new compiler/query
processor which contains everything necessary to correctly
parse the user's particular source program. PARGEN also
produces the parse tables which are used by the
compiler/query processor during the parsing phase.

It should be noted that PARGEN can handle certain
grammar ambiguities such as shift-reduce and reduce-reduce
conflicts which occur regularly when designing new
languages. In addition, productions may contain semantic
conditions which must be true for the production to be
applied. These semantic conditions may be used to resolve a
given reduce-reduce conflict in the user's grammar. The
class of grammars that can be handled by PARGEN is the
NQLALR(1) type[17].

56
The execution of PARGEN may best be portrayed with an

example. An arithmetic expression grammar is shown as an
example of the grammar input file to PARGEN:

?ALL
7CRUSHER
?ERC
<GOAL> ::= <EXPR> <EOLN>
WRITELN('THE ANSWER IS = ',SSTACK[MP].IVAL);

<EXPR> ::= <EXPR> + <FULL_TERM>
SSTACK[MP].IVAL := SSTACK[MP].IVAL + SSTACK[SP].IVAL;

<EXPR> ::= <EXPR> - <FULL_TERM>
SSTACK[MP].IVAL := SSTACK[MP].IVAL - SSTACK[SP].IVAL;

<EXPR> ::= <FULL_TERM>
<FULLJTERM> ::= <TERM>

i

<FULL_TERM> ::= + <TERM>
7

<FULL_TERM> ::= - <TERM>
SSTACK[MP].IVAL := -SSTACK[SP].IVAL;
<TERM> ::= <TERM> * <FACTOR>
SSTACK[MP].IVAL := SSTACK[MP].IVAL * SSTACK[SP].IVAL;
<TERM> ::= <FACTOR>

7<TERM> ::= <TERM> / <FACTOR>
SSTACK[MP].IVAL := SSTACK[MP].IVAL DIV SSTACK[SP].IVAL;
<FACTOR> ::= <PRIMARY> ** <PRIMARY>

t

<FACTOR> ::= <PRIMARY>
SSTACK[MP].IVAL := SSTACK[SP].IVAL;
<PRIMARY> ::= <N0>

•
§<PRIMARY> ::= (<EXPR>)
SSTACK[MP] := SSTACK[MP+1];

The semantic text is able to "pick off" the .appropriate
command/source line tokens by accessing the semantics stack
which is maintained in the compiler. The semantics stack
variable "SSTACK" may be referenced as follows:

Suppose that the user types in the expression: 2*34

57
One production that would fire during the parsing of this
expression would be:

<TERM> ::= <TERM> * <FACTOR>
SSTACK[MP],IVAL := SSTACK[MP].IVAL * SSTACK[SP].IVAL;

Note the semantics for this production rule. Three items
are expected on the top of the stack:

Stack
<FACTOR> = 34 -IT
* 1f--- is reduced to — > <TERM> = 68
<TERM> = 2 - 1 1

Through the semantics, the three stack items are
replaced by the result of the multiplication. The variable
"MP" refers to the left-hand side production symbol(LHS),
and the variable "SP" refers to the last token in the
right-hand side(RHS):

<FACTOR> SSTACK[SP] or SSTACK[MP+2]
* SSTACK[SPrl] or SSTACK[MP+1]
<TERM> SSTACK[SP-^2] or SSTACK[MP]

The above expression grammar, when run through PARGEN,
will produce an expression evaluator program. The evaluator
will ask the user for a given arithmetic expression, and
then produce the result. Note that this rather compact
grammar can handle quite sophisticated input such as the

58
following :

-> 2*(3 +4)/(3**(3*(4+1)) + 1)

The order of operator precedence is contained within
the proper "parsing order" inherent within the syntax
productions.

For further in depth information on PARGEN reference
the PARGEN User's Manual[15]. In the reference manual there
are several other options which have not been mentioned
here.

AN OVERVIEW OF DBPQL

DBPQL(Data Base Processor Query Language) has been
designed and developed with the aid of PARGEN. The primary
purpose of DBPQL is to allow the user a simple and flexible
access tool in communicating with the Intel Data Base
Machine. Since DBPQL is intimately related to PARGEN, a
system developer maintains the flexibility to easily create
an entirely new query grammar or modify the existing one.
As the needs of the data base machine users change, the
developer may change and adapt the query processing language
accordingly.

DBPQL is entirely "view-oriented", as the chapter
heading suggests. This means that all data to be placed
into or retrieved from the database is done via a view. The

59
entire procedure necessary to work with DBPQL may be best
described using a sequence of steps:

1. Create a database - The database will hold the data
which is to be defined and transformed later.

2. Create a relation - A relation is similar to a table
with a set of rows(tuples) and
columns(attributes,items). The relation identifies
an underlying table which represents the "structure"
within the database. There may be many relations
within a single database. When one creates a
relation, an "identity" view is immediately assigned
for that relation. When one is "looking" at the
identity view, one is viewing the entire relation as
originally defined.

r
3. Create a view - A user will inevitably wish to look

at the relation(s) in a different way than they were
originally defined. Relational algebra is used(the
syntax of which will be defined later) to aid in
viewing the data differently. Through the use of
relational algebra the user may create views upon
other previously defined views. The identity view is
considered to be the base view upon which all other
views are constructed. Data may be henceforth
retrieved and stored by directly accessing an

in

appropriate view.

60
4. Display a view - Display a given view in tabular

form.

5. Load a view - Load data into a given view. It should
be noted that data may be loaded not only into the
identity view, but also into a view that was created
from other views.

6. List information - Provide a list of information
about views and databases.

7. Trace - Trace the encoding and decoding of blocks
to/from the DBP.

8. Performance Monitoring - Measure the performance of
given DBP operations.

9. Delete a view - Delete a view that is no longer
needed.

10. Delete a relation - Delete a relation that is no
longer needed.

11. Delete a database - Delete a database that is no
longer needed.

A view may seen to be analogous to a window(either in
the real world or as in computer graphics). One is actually
sectioning off a particular part of the world of data(or
database) and using this modular new section for further
communications.

THE DBPQL GRAMMAR
61

DBPQL is a context-free query language which is
represented in the BNF form specified by PARGEN. The
complete grammar file is included in this thesis as Appendix
F, however, a more concise form is listed below(without
semantics):

1. <CREATE_DATABASE> : CREATE DATABASE <DBNAME>

2. < C REAT E_RELATION> ::= CREATE RELATION < RELNAME > IN
<DBNAME> USING SCHEMA <SCHEMA> <OPTIONS>

3. <CREATE_CONNECT_VIEW> ::= CREATE CONNECT VIEW
<NEW_VIEW> FROM <SOURCE_VIEWl> <STRING_PTR>
<S0URCE_VIEW2>

4. <CREATE_JOIN_VIEW> ::= CREATE JOIN VIEW <NEW_VIEW>
FROM <SOURCE_VIEWl> <ITEM1> <SOURCE_VIEW2> <ITEM2>

5. <CREATE__ORDER_VIEW> : := CREATE ORDER VIEW <NEW_VIEW>
FROM <SOURCE_VIEW> <ITEMS...> <DIRECTION>

6. <CREATE__PROJECT_VIEW> : := CREATE PROJECT VIEW
<NEW__VIEW> FROM <SOURCE_VIEW> [INCLUDING IT EXCLUDING
] <ITEMS...>

7. <CREATE_SELECT_VIEW> : CREATE SELECT VIEW
<NEW VIEW> WHERE <WHERE CLAUSE> <OPTIONS>

8. <DELETE_VIEW> s:= DELETE VIEW <VIEW>

9. < DELETE__RELAT I ON > : DELETE RELATION <RELATION>

10. < DELETE__DATABAS E > : := DELETE DATABASE < DAT ABAS E>

11. <DISPLAY> : DISPLAY <VIEW>

12. <HELP> ::= HELP [<DBPQL_COMMAND>]

13. <INPUT> ::= INPUT

14. <LISTDB> ::= LISTDB <DATABASE> H ALL

15. <LISTDBS> ::= LISTDBS

16. <LIST_VIEW> ::= LISTVIEW <VIEW>

17. <LIST_VIEWS> ::= LISTVIEWS

18. <LOAD> : LOAD <VIEW> <ITEMS_TO_LOAD>

19. <PERFORMANCECOMMAND> : := PERFON IT PERFOFF

20. <TRACE_COMMAND> ::= TRACEON H TRACEOFF

Once a view has been created, the user may either
display the view(using DISPLAY) or load data into it(using
LOAD). The structure of the database and views may be shown
using the LISTVIEW and LISTVIEWS commands. Appendix G
contains an actual DBPQL/user dialog during the creation of
a finite-element model database. Also shown in Appendix G
is the function of the (TRACEON,TRACEOFF) commands which

63
permit an optional display of the request and response
modules that are being transmitted between the host and the
data base machine. The trace commands enable the developer
to easily verify the command encodings and the proper
interpretation of the DBP responses.

The general form of a DBPQL query statement

When referencing the DBPQL grammar file in Appendix F,
one will notice a consistent structure in the formation of
the syntax productions. This general structure is shown
below:

<QUERY> ::= <KEYWQRD> <QUERY_REST> <OPTIONS>

1. Start the encoding of the request module
2. Remove the command line tokens from the

symbol tables and call the appropriate
conceptual command procedures.

3. Send the request module to the DBP.
4. Process the response module

<KEYWORD> ::= XXXXXX

1. Initialize counter variables.
2. Set all defaults now.

<QUERY REST> ::= <QUERY DEPENDENT ARGUMENTS>

64

1. Take the tokens from the semantics stack
and store them in the appropriate symbol tables.

<OPTIONS> ::= <OPTIONAL_CLAUSES>

1. Usually involves setting flag variables
which override the default settings.

The inclusion of the "<OPTIONS>" production allows the
sophisticated user to tailor a specific database environment
to his needs. On the other hand, the casual user is not
forced to supply the system with complicated details, since
the details are optional.

RESULTS

The syntax of DBPQL is not unusual. There are many
examples of query languages whose syntax closely resembles
the DBPQL syntax. The unusual aspect of the DBPQL
development resides with the use of two concepts which will
be discussed in the following paragraphs.

The first concept is the parser generator. The parser
generator, PARGEN, used in forming DBPQL is considered to be
an integral, embedded part of the DBPQL system. PARGEN is
not to be used solely by the developer of the initial query

65
language. PARGEN is designed to accompany DBPQL(or another
language) if DBPQL is distributed, so that the end-users
have a choice in modifying or enhancing the grammar to suit
their local needs. Many of the data base management
packages currently available are quite inflexible with
regard to changes in syntax and semantics. Most of the
packages have "built-in" parsers. With the DBPQL research,
it is hoped that the utility of having the parser generator
and the query language together as a packaged system has
been shown.

The second concept is that of a rigorous semantics
specification. At first, the DBPSSP semantic procedures
were used directly in the grammar file. Then, after
designing several syntax productions, it became evident that
there was a cleaner method of accomplishing the task of
coding the semantics. The meaning(or semantics) of each DBP
conceptual command is captured in a one-to-one relationship
with a "conceptual procedure". The conceptual procedures
contain DBPSSP semantic procedures, while the grammar file
contains calls to the conceptual procedures. Implementing
the conceptual procedures seemed to make the task of
preparing a grammar file a simple one. Also, since many
different queries will contain the same semantics(such as to
attach and free session views), the grammar file is more
compact and comprehensible.

66
In developing the grammar file for DBPQL, it was

annoying to constantly have to invent new variables which
act as symbol tables during parsing. This meant that it was
necessary to modify the skeleton query processor to insert
the variable declarations. Perhaps the symbol tables ought
to reside on the DBP side inside a symbol table relation.
This would mean slower data access to the DBP-resident
symbol tables, but the independence of the grammar file and
skeleton query processor would be facilitated. In other
words, one would not have to modify the skeleton processor
to include the variable definitions for symbol table storage
and manipulation.

CHAPTER VIII

CONCLUDING REMARKS

First, some conclusions obtained from the current state
of the HILDA development will be discussed, then a few
future enhancements and research efforts stemming from the
current work will be outlined.

The portability of the HILDA components was seen as
being an important facet of the research. As more data base
machines become commercially available, the aspect of
portability of host software will become an important one.
To a greater extent, the very idea of a "database machine"
promotes the notion of machine independence of data base
software, since the data base machine serves as a separate
module which "plugs in" to any particular host. The machine
dependence of the database management functionality resides
in the modular data base machine, as opposed to a piece of
host-resident software.

The layered design of HILDA proved to be useful. By
dividing the entire functionality into separate(but
communicating) layers, the software design cycle time was
minimized. It was easy to concentrate on single modules
rather than having to constantly work with one huge program

67

68
unit. It should be noted that it was important to
completely test each layer individually before going to
implement the next higher one. It took a long time to
locate errors when they were due to a supposedly correct
lower layer.

When implementing the third layer, DBPQL, it was
amazing to notice how quickly the syntax and semantics for
various query commands could be generated. This speed in
design is derived from the flexiblility associated with the
semantics specification language and the integral parser
generator program. During the DBPQL development, it was
decided that instead of the multitude of currently available
programming languages, it would be nice if there existed a
single multi-purpose language skeleton driven by the syntax
and semantics data which could be stored in a manipulable
database file. The run-time symbol tables and synthesize
procedures could also be stored in the database. Some very
interesting initial work(albeit done with database software
) has been developed with respect to storing and
manipulating program text[18]. This data-driven language
could be the basis for interesting development as data base
machines become more prevalent.

The primary aim of the research was to develop a very
flexible syntax/semantics interface to the data base
machine. It is the author's belief that HILDA is an example
of one such interface. It was important to design DBPQL
such that the casual user would be able to excercise the
data base machine and control his own databases. Too often,

69
with database administrators and complicated sub-schemas,
many computing environments shut out the user from the data
management process. The point is clear - a user should be
able to easily manage his own data. At the same time, there
should be an inherent functionality in a high-level
interface which supports the sophisticated user. If data is
shared among many users, the addition of integrity
constraints should be a made a simple task. The DBPQL
interpreter is successful as a user-friendly interactive
language and directly addresses these issues. Many of the
required low-level DBP conceptual functions are hidden - it
was really annoying to have to manually attach and free
session views, for example.

With regards to future enhancements and modifications
to HILDA, there are several points to be made:

1. There is an interesting question that arises when
implementing some of the DBP conceptual commands:
"How should the tasks which may be assumed by either
the host or the DBP be distributed?". For instance,
there is a "LOOP WHILE" DBP conceptual command which,
when sent to the DBP, causes a conditional iterative
evaluation of the commands in the loop body. Is it
more efficient to let the DBP do this, or should the
iteration use the host CPU? Also, some of the symbol
table manipulation could be done on the DBP. Even
though this would be more inefficient than having the
symbol table in memory, the data abstraction features
of the DBP make it an attractive device for all kinds

of data manipulation. These are questions that are
unanswered and pose intriguing research problems.

Much work needs to be done in the user interface
area. For example, the help facility with DBPQL is
typical of many facilities currently resident within
other interactive data base management systems. What
happens if the user types in, "CREATE
<carriage-return>". Normally this query would
generate a syntax error in the parsing process. It
might be interesting to assign certain "help
procedures" which would fire when a particular state
has been reached within the automaton generated from
the grammar[19]. Then, the system might be able to
respond with "What should I create ?".

Intel is planning on shrinking the size of the DBP so
that it may be inserted into a given microcomputer as
a single-board disk controller. This idea of an
"intelligent" disk controller is very powerful:

1. Microcomputers incorporating this type of
intelligent mass storage control would be able
to perform reasonably complex data management
tasks. This small-scale data management
capability will have far-reaching effects
especially when considering a local area
network environment using Ethernet.

Current file i/o mechanisms in programming
languages reflect the underlying disk
controller architecture. That is, one may
read and write sequentially or randomly. With
the new content-addressable disk controller,
programming languages will change to reflect
the new capabilities. Many new forms of data
abstraction, such as "relation","tuple", and
"view" will appear within the new languages as
standard data types. Instead of using the
simple i/o to which we are presently
accustomed, we may be routinely performing
relational commands on variables previously
declared as type "view". The onset of the
intelligent disk controller will lend credence
to the higher level abstractions in language
designs. Most languages do not presently have
these abstractions as embedded features
because of the performance overhead associated
with the mappings of the high-level functions
to the currently available controllers.

We currently think of the topics, "File
Management" and "Data Base Management" as
disparate. In reviewing the Intel DBP's
capability, one may see that these two topics
are one and the same. "Files" may be either
structured or unstructured, allowing for all
kinds of powerful relational operations.

72
"Databases" are simply collections of
"files"(or relations). Unstructured files are
very similar to files as we presently use
them. The reason behind labelling HILDA as a
data abstraction system rather than a data
base management system lies with this idea of
file/database homogeneity. As users of
database hardware, we should be able to think
of data abstractions in our programs, instead
of "databases", "views", "directories", and
"files". How will the introduction of the
data base machine effect the file management
functions within an operating system ? What
types of new functions should be present to
assist the user in managing data ? These
topics have yet to be explored.

4. The problems of data integrity and distributed data
will continue to be as much of a problem with data
base machines as they have been with data base
software. Data base machines seem to be begging for
a distributed environment, especially as the data
base machine prices decrease.

Much more work needs to be done in the area of data
base machines. It is hoped that the development of HILDA
and the notes within this thesis have served a useful
contribution to the search for new methods of data
management and abstraction using data base machines.

GLOSSARY OF ACRONYMS

1. BNF - Backus Naur Form. A formal method of specifying
the syntax for a given language.

2. CRC - Cyclic Redundancy Check. CRC byte(s) are built
from a packet of data which is transmitted from one
computer to another. These byte(s) are also built on
the computer receiving the data packet. The two CRC
byte groups are checked for equality. If the bytes
are not equal then the original data packet is
re-transmitted from the originating computer. CRC16
is a special case of cyclic redundancy checking which
uses a 16-bit word(two bytes).

3. DBMS - Data Base Management System. A system used for
storing, retrieving, and manipulating data.

4. DBP - Data Base Processor. Intel's data base
machine(processor).

5. DBPQL - Data Base Processor Query Language. Top layer
within HILDA. An interactive view-oriented query
language for the Intel DBP.

6. DBPSSP - Data Base Processor Semantics Specification
Package. Middle layer within HILDA. This package is
a group of procedures which enable users to easily
form DBP request blocks.

7. HILDA - High Level Data Abstraction System. A system
composed of three layers(SSP, DBPSSP, and DBPQL)
which allows a user to use the functionality of the
Intel DBP. The main emphasis of HILDA is the flexible
formulation of syntax and semantics associated with a
given high-level language.

8. ICASE - Institute for Computer Applications in Science
and Engineering.

9. IPAD - Integrated Programs for Aerospace Vehicle
Design.

73

74
10. MYSTRO - A collection of tools for language

development conceived at the College of William and
Mary.

11. PARGEN - Parser Generator. A program permitting the
user to create a compiler or query processor by
specifying a skeleton compiler/processor and a grammar
file.

12. PCB - Parameter Control Block. A block of DBP memory
which includes pointers to data buffers and specific
protocol information. Used within the SPP protocol
software.

13. RIM - Relational Information Manager. A relational
database management system built within the IPAD
project.

14. SPP - Service Port Protocol. The bottom layer within
HILDA which allows the host computer(VAX 11/780) and
DBP to communicate with each other.

15. VAX - Digital Equipment Corporation's VAX
minicomputer. A VAX 11/780 was used to develop HILDA.

16. VMS - Virtual memory management operating system used
on the VAX minicomputer.

APPENDICES

APPENDIX A - SPP Source

SPP has been implemented using VAX VMS FORTRAN 77.
The 'SPP' program module specifies implementation notes
which refer to certain computer dependencies of SPP.
Subroutines which contain at least one source of VAX/VMS
machine dependence are flagged with '*** MACHINE DEPENDENT
***' at the head of the routine.

o
u

u
u

u
u

u
u

u
o

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u

$ @typeq
PROGRAM SPP

PURPOSE :
'SPP' IS A SERVICE PORT PROTOCOL TO BE USED IN
ACCESSING THE INTEL DBP

ARGUMENTS :
NONE

DIAGNOSTIC TRACE OPTION FOR PROTOCOL :
USE TRACEJSTART AND TRACE_STOP
PERFORMANCE MONITORING OPTION :
USE PERFORM START AND PERFORM STOP

SPP FUNCTIONAL COMPONENTS :
PROGRAMS

DBP START - USED TO START I/O WITH THE DBP.
SPP - THIS PROGRAM IS JUST A SAMPLE PROGRAM

WRITTEN TO SHOW THE CORRECT FORM
FOR SPP OPERATION.

DBP_STOP - USED TO END I/O WITH THE DBP.
PROTOCOL SUBROUTINES :

INITJOOMM
END_COMM
CREATE_CONTROL
DELETEjOONTROL
CREATE_APPLICATION-
DELETE_APPLICATION-
RECV_RESPONSE
SENDjREQUEST
READ_BLOCK
WRITE_BLOCK
Q_INPUT
Q_OUTPUT
LOW16
LCJW32
HIGH16
HIGH32
GLUE

UTILITY SUBROUTINES s
TRACK

INITIALIZE COMMUNICATIONS WITH DBP
END COMMUNICATIONS WITH DBP
CREATE A DBP CONTROL SESSION
DELETE THE DBP CONTROL SESSION
CREATE A DBP APPLICATION SESSION
DELETE THE DBP APPLICATION SESSION
RECEIVE A DBP RESPONSE
SEND A REQUEST TO THE DBP
READ A DATA BLOCK FROM THE DBP
WRITE A DATA BLOCK TO THE DBP
RECEIVE A BYTE BUFFER FROM THE DBP
SEND A BYTE BUFFER TO THE DBP
RETURN LOW ORDER BYTE FROM 16-BIT WORD
RETURN LOW ORDER BYTE FROM 32-BIT WORD
RETURN HIGH ORDER BYTE FROM 16-BIT WORD
RETURN HIGH ORDER BYTE FROM LOWER-HALF
OF 32-BIT WORD
RETURN A 16-BIT WORD FORMED FROM 2 BYTES

- IF TRACE MODE HAS BEEN ENABLED, DISPIAY THE
TWO DATA STRUCTURE FORMATS (FCB &

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

PCB VECTOR)
TRACEJSTART - ENABLE TRACE MODE
TRACE_STOP - DISABLE TRACE MODE
PERFORMJSTART - ENABLE PERFORMANCE TRACING
PERFORM STOP - DISABLE PERFORMANCE TRACING

MACHINE DEPENDENCIES :
THIS SOURCE TEXT REPRESENTS A TESTED VAX/VMS
VERSION OF SPP.
SPP HAS BEEN IMPLEMENTED SO THAT THE MACHINE
DEPENDENCIES INHERENT WITHIN THE SOURCE TEXT
ARE CLEARLY MARKED TO AID THE IMPLEMENTOR IN
A NON-DEC COMPUTER ENVIRONMENT.
THE FOLLOWING IS A LIST OF THINGS TO WATCH OUT FOR
IF A NON-DEC MACHINE IS BEING USED :
1.) THE FOLLOWING ROUTINES CONTAIN VMS MACRO CALLS

WHICH ARE USED MAINLY FOR TTY I/O PURPOSES :

ROUTINE DEPENDENCIES
INITJOOMM LIB$CRCJTABLE, SYS$ASSIGN
Q_INPUT SYS$QICW
QJOUTPUT SY5$QI0W
READ_BLOCK LIB$CRC
WRITE_BLOCK LIB$CRC
ENDJOOMM SYS$DASSGN
WHERE:

LIB$CRO_TABLE - Initialize a table for further CRC16
calculations

LIB$CRC - Calculate CRC16 for a given ASCII string
SYS$ASSIGN - Assign an I/O channel
SYS$DASSGN - De-assign an I/O channel
SYS$QIOW - Block I/O routine for serial I/O

THE TYPES OF FUNCTIONS PRESENT WITHIN THESE
ROUTINES IS USUALLY FOUND WITHIN MOST OPERATING
SYSTEM SERVICE MANUALS.

2.) HEXADECIMAL VALUES FOR THE VAX ARE SPECIFIED AS
FOLLOWS :
1 DE'X 'FF'X etc.
THIS REPRESENTATION MAY DIFFER ON ANOTHER COMPUTER.

3.) DATA TYPE 'BYTE' - ON THE VAX, THE MOST NATURAL WAY
TO REPRESENT PURE BYTE STREAMS IS USING THE DATA TYPE
'BYTE'. ON OTHER MACHINES, ONE MAY USE 'LOGICAL* 1' OR
'CHARACTER*!'. KEEP IN MIND, HOWEVER, THAT CHARACTER
DATA IS GENERALLY STORE DIFFERENTLY(VMS CALLS THIS

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

o

u
u

u
u

u
u

u
u

u

u
u

A DESCRIPTOR TYPE).

4.) IDENTIFIER LENGTHS - THE FORTRAN VARIABLE NAME LENGTHS ARE
LONGER THAN MAY BE SUPPORTED WITH SOME FORTRAN COMPILERS.
THEY ARE LONG TO AID IN THE READING AND COMPREHENSION OF
THE SOURCE.

5.) 'INCLUDE' STATEMENT - MOST FORTRANS SUPPORT A METHOD FOR
INCLUDING/INSERTING A DISK FILE WITHIN THE SOURCE PRIOR
TO COMPILATION.

DATE:
APRIL 12, 1983

AUTHOR:
PAUL A. FISHWICK
KENTRDN TECHNICAL CENTER
3221 NORTH ARMISTEAD RD.
HAMPTON, VA. 23666
(804)-865-3195

INTEGER*4 BIO,DIO,PAGEF
INCLUDE 'SPPCOM.TXT'

NOTE: THIS IS AN EXAMPLE USE OF 'SPP'. THE USER MUST
HAVE STARTED COMMUNICATIONS BY ACTIVATING THE PROGRAM
'DBPSTART' PRIOR TO THIS. THE FOLLOWING SET OF BYTES
REPRESENTS THE CONCEPTUAL 'DEFINE DATABASE <TESTING>'
DBP COMMAND. THE DIAGNOSTIC AND PERFORMANCE TRACING
OPTIONS HAVE BEEN UTILIZED.

CALL TRACE_START(9)
CALL INITJCOMM
MODULE(l) = ' 60'X
MODULE(2) = '07'X
MODULE(3) = ' 54'X
M0DULE(4) = '45'X
MODULE(5) = '53'X
MODULE(6) = '54'X
MODULE(7) = '49'X
MODULE(8) = '4E'X
MODULE(9) = '47'X
MODULE(10)= 'FF'X
MODULE(11)= 'OO'X
CALL PERFORM_START
CALL SEND__REQUEST(MODULE, 11,1,1,1)
CALL RECV_RESPONSE (MODULE, NBYTES_RBCV, 1, MOREJTOJCOME)
CALL PERFORM_STOP(CLOCK,CPU, BIO, DIO, PAGEF)
CALL TRACEJSTOP
CALL EXIT
END

COMMON FOR SPP(SERVICE PORT PROTOCOL)
BYTE BYTES(1024), BLOCK(1024) ,M0DULE(1024)
BYTE M0DULE2 (1024)

INTEGER*2 RASE,OFFSET, IOSB(4),NBYTES,NBYTES_RECV
INTEGER* 2 TIYJGHANNEL
INTEGER*4 STATUS f CRC_TABLE(16), CRC
CHARACTER STRING*512
COMMON/CRCCOM/ CRC, CRC_TARLE
COMMON/COMM/ TTY CHANNEL

C “
LOGICAL*4 MOREJTOJOOME

C
C SYSTEM SERVICE PARAMETERS
C
C READ PARAMETERS

PARAMETER IO$M NOECHO = '00000040'X
PARAMETER IO$M_PURGE = ' 00000800'X
PARAMETER IO$M_TIMED = ' 00000080'X
PARAMETER IO$JTTYREADALL = '0000003A'X

C STATUS INDICATORS
PARAMETER SS$_NORMAL = ' 00000001'X

C WRITE PARAMETERS
PARAMETER IO$_WRITEVBLK = ' 00000030'X

C
C DEBUG (TRACE) VARIABLES
C

INTEGER* 4 UNIT
LOGICAL*4 DEBUG
COMMON/TRACECOM/ DEBUG, UNIT
EATA DEBUG/.FALSE./
PROGRAM DBPJSTART

C-.........^ --— ' ----------
C
C PURPOSE :
C
C START OPERATIONS FOR THE DBP
C THIS INCLUDES ALLOCATING THE CHANNEL TO
C BE USED FOR HOST <-> DBP COMMUNICATIONS
C
C
C
C ARGUMENTS :
C
C NONE
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C
Q = = = - : = i ■ - - ■ =-■ ------------------------

INCLUDE 'SPPCOM.TXT'
C
C SET UP COMMUNICATIONS
C

PRINT *, '** START DBP COMMUNICATIONS **'

CALL TRACE_STAKT(9)
CALL INIT_CCMM

C
C CREATE CONTROL,APPLICATION SESSIONS
C

PRINT *, '** CREATING CONTROL SESSION **'
CALL CREATE_CONTROL
PRINT *, '** CREATING APPLICATION SESSION **'
CALL CREATE_APPLICATIQN

C
CALL TRACEJSTOP
CALL EXIT
END
PROGRAM DBP_STOP

C ■=---- ' ■ ' ' ■ ------
c
C PURPOSE :
C
C STOP OPERATIONS FOR THE DBP
C
C
C ARGUMENTS :
C
C NONE
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C0=-- ==■:■■■■■ ̂ :::,====:= ■ ===■===

INCLUDE ' SPPCOM.TXT'
C
C SET UP COMMUNICATIONS
C

PRINT *,'** START DBP COMMUNICATIONS **'
CALL TRACE__START(9)
CALL INITJCOMM

C
C DELETE THE APPLICATION SESSION
C AND CONTROL SESSION
C (TERMINATE DBP)
C

PRINT *, '** DELETING THE APPLICATION SESSION **'
CALL DELETE_APPLICATION

C
PRINT * , • * * DELETING THE CONTROL SESSION **'
CALL DELETE_CONTRDL

C
CALL TRACEJSTOP
CALL EXIT
END
SUBROUTINE INIT COMM

Q= ----= — ■ ■— - 1—
c
C *** MACHINE DEPENDENT ***
C
C PURPOSE :
C
C INITIALIZE COMMUNICATIONS PARAMETERS PRIOR TO ACTUALLY
C TRANSMITTING DATA BACK AND FORTH
C
C ARGUMENTS :
C
C NONE
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C&==■= = s= = = -■ : *■!--— i------- ■ .■ .■ ■■= . '.I =
C

INCLUDE 1 SPFCGM.TXT'
INTE3ER*4 SYS$ASSIGN

C
IF(DEBUG) WRITE(UNIT,5)

5 FORMAT(' ** Initialize iDBP Ccnmmications **')
C
C INITIALIZE A CRC-16 TABLE FOR ERROR DETECTION
C (THE VAX 'CRC' MACHINE INSTRUCTION IS USED)
C

CALL LIB$CRCTAELE(' 120001'0,CRC_TABLE)
C
C ASSIGN AN I/O CHANNEL USING A TTY PORT
C

STATUS = SYS$ASSIGN('REMOTE',TTY_CHANNEL,,)
IF(STATUS.NE.SS$_NORMAL) THEN
WRITE(UNIT,300) STATUS

300 FORMAT(' Error,unable to assign the DBP I/O Channel'/,
X ' Status is ',z8,/,' See : IN3TCCMM')
END IF

C
C SEND A GONTROL-C TO FLUSH THE TYPE-AHEAD BUFFER
C AND INITIALIZE DBP COMMUNICATIONS
C

BYTES(l) = *03'X
CALL Q OUTPUT(BYTES, 1)
NBYTES_REEV = 16
CALL Q_INPUT(BYTES,NBYTES_RECV)
RETURN
END
SUBROUTINE ENDJOOMM

C= =='■— .'■== === - ',=
c
C *** MACHINE DEPENDENT ***

c
C PURPOSE :
C
C END COMMUNICATIONS TO THE DBP. DEASSIGN CHANNEL.
C
C ARGUMENTS :
CC NCNE
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C
C= - = =™ =-------- : ■ '■= - ■= ' ■■■ ■ ■ : ■ ■*=.== ̂ t = r B ------- ^
C

INCLUDE 'SPPCOM.TXT'
INTEGER*4 SYS$DASSGN

C
C DEASSIGN THE PREVIOUSLY ASSIGNED CHANNEL
C

STATUS = SYS$DASSGN(TTYJGHANNEL)
IF(STATUS.NE. SS$_NORMAL) THEN
WRITE(UNIT,100) STATUS

100 FORMAT(' Error,unable to de-assign the DBP Channel'/,
X ' Status is ',z8,/' See: END_CCMM')
E2SIDIF
REIURN
END
SUBROUTINE CREATEJOONTROL O'- =:■•■= .-.=•= t-= ,■ ==:: :■ n-■ =

C
C PURPOSE :
C
C CREATE A CONTROL SESSION
C NOTE : THIS IS THE FIRST FUNCTION TO BE PERFORMED
C TO ACCESS THE DBP. THE 'MONITOR' BUTTON MUST
C BE PUSHED PRIOR TO CALLING THIS ROUTINE.
C
C
C ARGUMENTS :
C
C NONE
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :

c
C APRIL 12,1983
CC ■■■"■ ---- ==■■== -........ ...

INCLUDE ' SPPCCM.TXT'
INTEGER*2 BASE CTRL,OFFSETCTRL

C
IF(DEBUG) WRITE(UNIT, 5)

5 FORMAT(’ ** Create Control Session **')
C
C READ THE PCB ADDRESS VECTOR
C

BASE = 1 EEOC'X
OFFSET = 0
CALL READ_BLOCK(BLOCK, 10,NBYTES REGV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,0 T
CALL GUJE(BLOCK(3), BLOCK(4),OFFSET_CTRL)
CALL GLUE(BLOCK(5),BLOCK(6),BASE_CTRL)

C
C READ THE CONTROL SESSION PCB
C

CALL READJBLOCK(BLOCK,43,NBYTES RECV,BASE_CTRL,OFFSET_CTRL)
IF(DEBUG) CALL TRACK(BLOCK,1 T
IF(BLOCK(15).EQ.4) THEN

C HOST TO SEND 'ENABLE SERVICE PORT'
ELOCK(16) = 'll'X
CALL WRITE BLOCK (BLOCK ,43, BASE_CTRL, OFFSET_CTRL)
IF(DEBUG T CALL TRACK(BLOCK, 1)

ELSE
WRITE(UNIT,100) BL0CK(15)

100 FORMAT(' Error, DBP' 's Wait on Enable is not set.'/,
X ' DBP Status is ',z2'h')
ENDIF

C
C RETURN CONTROL TO THE DBMS
C

BYTES(l) = '47'X
BYTES(2) = 'OD'X
CALL Q_OUTPUT(BYTES, 2)
NBYTES_REGV = 29
CALL Q_INPUT(BYTES,NBYTES_RECV)
RETURN
END
SUBROUTINE CREATE_APPLICATION

C ' ' ' saas : r. =■= = r . : =
c
C PURPOSE :
C
C CREATE AN APPLICATION SESSION
C
C
C ARGUMENTS :
C
C NONE
C
C
C PROTOCOL :
C
C SERVICE PORT
C

C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C
C ----- -

INCLUDE ' SPFCOM.TXT'
C

IF(DEBUG) WRITE(UNIT, 5)
5 FORMAT (' ** Create Application Session **')
C
C PERFORM 'CREATE APPLICATION SESSION'
C

MODULE(1)='E4'X
MODULE (2)='01'X
MODULE (3)=' FE' X
MODULE (4)='FF'X
MODULE (5)='00'X

C
CALL SEND_RBOUEST(MODULE,5,0,1,0)

C
C RECEIVE THE APPLICATION #
C

CALL RECV_RESPONSE(MODULE, NBYTES_RECV, 0, MORE_TO_CCME)
IF(DEBUG) THEN
WRITE(UNIT, 200) (MODULE(I) ,I=1,NBYTES_RECV)

200 FORMAT(' ** Create Application Response **'//#
X 16(1X,Z2.2))
ENDIF

C
C RETURN CONTROL TO THE DBMS
C

BYTES(l) = '47'X
BYTES(2) = ' OD'X
CALL Q_OUTPUT(BYTES,2)
NBYTES_RECV = 29
CALL Q__INPUT(BYTES,NBYTES_RECV)

C
RETURN
END
SUBROUTINE DELETEjOONTRDL

= -- = == •• - - ■ ' ' ■■ ■■
c
C PURPOSE :
C
C DELETE A CONTROL SESSION
C NOTE : THIS IS THE LAST FUNCTION TO BE PERFORMED
C WHEN THE DBP IS TO BE STOPPED
C
C
C ARGUMENTS :
C
C NONE
C
C PROTOCOL :
C
C SERVICE PORT

U
U
U
U
U
U
U
U
U
O

U
inuuu

u
uuu

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
o

LAYER :
APPLICATION

DATE :
APRIL 12,1983

INCLUDE 'SPPCQM.TXT'
IF (DEBUG) WRITE(UNIT, 5)
FORMAT(' ** Delete Control Session **')

PERFORM 'TERMINATE IBP'
MODULE (1)= 'ED'X
MODULE (2)='FF'X
MODULE(3)='00' X
CALL SEND_REQUEST(MODULE,3,0,1,0)

RECEIVE THE 'TERMINATE DBP' RESPONSE
CALL RECV_RESPONSE(MODULE,NBYTES_RECV, 0,MORE_TO_CCME)
REIURN
END
SUBROUTINE DELETE_APPLICATION

PURPOSE :
DELETE AN APPLICATION SESSION

ARGUMENTS :
NONE

PROTOCOL :
SERVICE PORT

LAYER :
APPLICATION

DATE :
APRIL 12,1983

INCLUDE 'SPFCOM.TXT'
INTEGER*2 BASE_APP,OFFSET_APP

C
IF(DEBUG) WRITE(UNIT,5)

5 FORMAT(' ** Delete Application Session **')
C
C READ THE PCB ADDRESS VECTOR

EASE = 1 EBOC'X
OFFSET = 0
CALL READ_BLOCK(BLOCK, 10, NBYTES_RECV, BASE, OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,0)
CALL GLUE(BLOCK(7) ,BLOCK(8) ,OFFSET_APP)
CALL GLUE(BLOCK(9) ,BL0CK(10) ,BASE__APP)

C
C CHECK THE INDEX FIELD FOR POSSIBLE ERRORS
C

IF((BLOCK(l).GE.'AO'X).AND.
X (ELOCK(l).LE. 'EF'X)) THEN

WRITE(UNIT, 100) BLOCK(l)
100 FORMAT(' Error, Couldn' 't Delete Application Session'/

X ' Index Field (lew) is ',z2,'h')
RETURN

ENDIF
C
C READ THE APPLICATION SESSION PCB
C

CALL READ_BLOCK(BLOCK,43,NBYTES RECV,BASE_APP,OFFSET_APP)
IF(DEBUG) CALL TRACK(BLOCK, 1 T
IF(BL0CK(15).EQ.7) THEN

C HOST TO SEND 'OK FIN'
ELOCK(16) = '05'X
CALL WRITE_BLOCK(BLOCK,43,BASE_APP,OFFSET_APP)
IF(DEBUG) CALL TRACK(BLOCK,1)

ELSE
WRITE(UNIT, 200) EL0CK(15)

200 FORMAT(' Error, Application Session cannot be deleted.'/
X ' DBP Status is ',z2'h')
ENDIF

C
C RETURN CONTROL TO THE DBMS
C

BYTES(l) = '47'X
BYTES(2) = 'OD'X
CALL Q_OUTPUT(BYTES, 2)
NBYTES_RECV = 29
CALL Q_INPUT(BYTES, NBYTES_RECV)
RETURN
END
SUBROUTINE RECV_RESPONSE(MODULE,TOTAL_BYTES,FCBTYPE,

X MORE TO COME)
C
c
C PURPOSE :
C
C RECEIVE
C
C ARGUMENTS
C
C MODULE
C NBYTES
C FCBTYPE
C
C
C
C
C MORE TO

RESPONSE MODULE FROM THE DBP

- RECEIVED RESPONSE MODULE
- # OF BYTES IN RESPONSE MODULE RECEIVED
- TYPE OF PCB TO RECEIVE RESPONSE MODULE
= 0 — > CONTROL PCB
= 1 — > APPLICATION PCB

COME - TRUE, IF THERE IS MORE DATA TO BE RECEIVED

C AFTER THIS ROUTINE
C
C - FALSE, IF ALL DATA
C THE DBP
C
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C
C ■ - - - . —

C
INCLUDE 1 SPFCOM.TXT'
INTEGER* 2 NSEEMENTS, BUFFER1_LENGTH, BUFFER2_LENGTH, PCBTYPE
INTEGER*2 BUFFER1_BASE, BUFFER2_BASE, BUFFERl_OFFSET
INTEGER* 2 BUFFER2_OFFSET, TOTAL_BYTES

C
C
C GET PCB ADDRESS VECTOR
C

IF(DEBUG) WRITE(UNIT, 5)
5 FORMAT(' ** Receive Response **')
50 TOTAL_BYTES = 0
60 BASE = 1EEOC'X

OFFSET = 0
CALL READ_BLOCK(BLOCK, 10,NBYTES RECV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,0 T

C
C LOOK AT THE INDEX FIELD
C

IF((BLOCK(l).GE.’A0’X).AND.
X (BLOCK(l).LE.'EF'X)) THEN

WRITE(UNIT, 100) BLOCK(l)
100 FORMAT (' Error in RECV_RESPONSE, Index (low) is ',z2,'h')

RETURN
ELSE IF ((BLOCK(l).EQ.'FF'X).AND.

X (BL0CK(2).EQ.'EF'X)) THEN
IF(DEBUG) WRITE(UNIT, 125)

125 FORMAT(' Error, iDBP is suspended. Index is FFFFh')
GO TO 9999

ENDIF
C
C RECEIVE RESPONSE USING CONTROL OR APPLICATION PCB ?
C

IF(PCBTYPE.EQ.O) THEN
CALL GLUE(BL0CK(3) ,BL0CK(4),OFFSET)
CALL GLUE(BL0CK(5) ,BL0CK(6) ,BASE)

ELSE
CALL GLUE(BL0CK(7) ,BL0CK(8),OFFSET)
CALL GLUE(BL0CK(9) ,BL0CK(10) ,BASE)

ENDIF
CALL READ BLOCK(BLOCK,43,NBYTES RECV,BASE,OFFSET)

HAS BEEN CALLED
HAS BEEN RECEIVED FROM

3F(DEBUG) CALL TRACK(BLOCK,1)
C
C TEST THE DBP STATUS FIELD, FIRST
C

IF(BLOCK(15).EQ.7) THEN
C
C UPDATE THE PCB
C

BLOCK(16) = 1
CALL WRITE BLOCK(BLOCK,43,BASE,OFFSET)
IF(DEBUG T CALL TRACK(BLOCK,1)

C
C RETURN CONTROL TO DBMS
C

BYTES(l) = 147'X
BYTES(2) = ' OD'X
CALL Q_a7TPUT(BYTES, 2)
NBYTES_RECV = 29
CALL Q_INPUT (BYTES, NBYTES_RECV)
TOTALJBYTES = 0
MOREJCOCOME = .FALSE.
GO TO 9999

ENDIF
C
C READY TO RECEIVE SEGMENT(S)
C

NSEGMENTS = BLOCK (31)
C RECEIVE THE FIRST BUFFER(SEGMENT)

CALL GLUE(BLOCK(32),BLOCK(33),BUFFERl_OFFSET)
CALL GLUE(BLOCK(34),BLOCK(35),BUFFER1_BASE)
CALL GLUE(BLOCK(36),BLOCK(37),BUFFER1_LENGTH)
TOTAL_BYTES = TOTAL_BYTES + BUFFER1_LENGIH
CALL READ_BLOCK(MODULE (1), BUFFER1 _LENGTH,NBYTES_RECV,

X BUFFER1_BASE,BUFFERl_OFFSET)
C RECEIVE THE SECOND BUFFER(SEGMENT), IF ANY

IF(NSEGMENTS.NE.2) GO TO 200
CALL GLUE(BLOCK(38), BLOCK(39), BUFFER2_0FFSET)
CALL GLUE(BLOCK(40),BLOCK(41),BUFFER2_BASE)
CALL GLUE(BLOCK (42), BLOCK (43) ,BUFFER2__LENGTH)
IF (BUFFER2_LENGTH. GT. 0) CALL READ_BLOCK(MODULE (TOTALJBYTES+1),

X BUFFER2_LENGTH, NBYTES_RECV, BUFFER2_BASE, BUFFER2_OFFSET)
TOTALJBYTES = TOTAL BYTES + BUFFER2 LENGTH

C
C UPDATE THE PCB
C
200 ELOCK(16) = 1

CALL WRITE BLOCK(BLOCK,43,BASE,OFFSET)
IF(DEBUG T CALL TRACK(BLOCK,1)

C
C RETURN CONTROL TO DBMS SOFTWARE
C

BYTES(1) = '47'X
BYTES(2) = 'OD'X
CALL Q_OUTPUT(BYTES, 2)
NBYTES_RECV = 29
CALL Q_INPUT(BYTES, NBYTES_RECV)

C
C ARE ALL MODULES READ FROM THE DBP ?
C IF NOT, FLAG THE CALLER
C

IF(BL0CK(15).EQ.6) THEN
MORE_TO_CCME = .FALSE.
IF(DEBUG) WRITE(UNIT, 300)

300 FORMAT(' ** All data has been received **')
ELSE
MOREJTC)_COME = .TRUE.
IF(DEBUG) WRITE(UNIT,400)

400 FORMAT(' ** There is more data to come **')
ENDIF

C
C DONE READING ALL RESPONSES
C
C ADJUST THE MODULE ARRAY (RETURNED RESPONSE)
C TO GET RID CF THE HEADER BYTES
C

DO 500 I = 1, TOTALJBYTES
500 MODULE (I) = MODULE (1+4)

TOTAL_BYTES = TOTAL_BYTES - 4
C
9999 REIURN

END
SUBROUTINE SEND_REQUEST(MODULE,NBYTESJSENT,PCBTYPE,

X APPLICAT ION_ID, RBQUEST_ID)
C ̂ ■' ■■■ :: ■: ■' = " ^ ■' ■..... = = = = = ■ : = ■ ■ ■ „ ■■ ■ s s ^ i a a, ..

c
C PURPOSE :
C
C SEND REQUEST MODULE TO THE DBP
C
C ARGUMENTS :
C
C MODULE - REQUEST MODULE
C NBYTES - # OF BYTES IN REQUEST MODULE TO SEND
C PCBTYPE - TYPE OF PCB TO RECEIVE RESPONSE MODULE
C
C = 0 — > CONTROL PCB
C = 1 — > APPLICATION PCB
C
C
C APPLICATION_ID - ARBITRARILY ASSIGNED HOST APPLICATION ID
C
C REQUESTED - THIS IS THE ID # OF THE SESSION MAKING
C THE REQUEST. WHEN AN APPLICATION IS FIRST
C CREATED, THE CONTROL SESSION(= 0) ID IS
C THE 'REQUESTED'. AFTER THAT, THE APPLICATION
C ID ISSUING THE REQUEST IS THE *REQUESTED'.
C
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C APPLICATION
C
C DATE :
C
C APRIL 12,1983
C

------------- ■ ■ ■=■■=.= .■■■ t ..- ..:..-.TB :..a .= .a .S :r:S 'J .S =

C
INCLUDE ' SPFCCM.TXT'
BYTE BUFFER1 (512),BUFFER2(512),TEMP_BYTE
INTEGER* 2 PCETYPE , NSEGMENTS, BUFFER1_LENGTH , BUFFER2_LEN3TH
INTEGER* 2 EUFFER1_BASE, BUFFERljOFFSET
INTEGER*2 BUFFER2_RASE, BUFFER2_0FFSET
INTEGER* 2 TOTAL_SENT, NBYTES_SENT
INTEGER*4 APPLICATIQN_ID,RE)QUEST_ID

C
C STICK IN HOST APPLICATION ID & SESSION ID
C
50 NBYTES = NBYTES_SENT

LEFTOVER_BYTES = .FALSE.
DO 2 I = NBYTES ,1,-1

2 MODULE (1+4) = MODULE(I)
CALL LCW32(APPLICATION_ID,TEMP_BYTE)
MODULE(l) = TEMP_BYTE
MODULE(2) = 'OO'X
CALL IOW32(REQUESTED,TEMP_BYTE)
MODULE(3) = TEMP_BYTE
MODULE(4) = 'OO'X
NBYTES = NBYTES + 4

C
C GET PCB ADDRESS VECTOR
C
70 IF(DEBUG) WRITE(UNIT, 80)
80 FORMAT(1 ** Send Request **')

BASE = 1EEOC'X
OFFSET = 0
CALL READ_BLOCK(BLOCK, 10,NBYTES RECV, BASE,OFFSET,MORE_TO_COME)
IF (DEBUG) CALL TRACK(BLOCK, 0 7

C
C LOCK AT THE INDEX FIELD
C

IF((BLOCK(l).GE.'A0'X).AND.
X (BLOCK(l).LE. 'DF'X)) THEN

WRITE(UNIT, 100) BLOCK(l)
100 FORMAT (' Error in SEND_REQUEST, Index (lew) is ',z2,'h')

RETURN
ELSE IF ((BLOCK(l).EQ.'FF'X).AND.
X (BLOCK(2).E3Q.'FF'X)) THEN

BYTES(l) = '03 'X
CALL Q_OUTPUT(BYTES, 1)
NBYTES_RECV = 16
CALL Q INPUT (BYTES, NBYTES_RBCV)
GO TO 50

END IF
C
C SEND REQUEST USING CONTROL OR APPLICATICK PCB ?
C

IF(FCBTYPE.EQ.0) THEN
CALL GLUE(BLOCK(3) ,BL0CK(4),OFFSET)
CALL GLUE(BL0CK(5) ,BL0CK(6) ,BASE)

ELSE
CALL GLUE(BL0CK(7),BLOCK(8),OFFSET)
CALL GLUE(*BL0CK(9),BL0CK(10),BASE)

END IF
CALL READ_BLOQK(BLOCK,43,NBYTES_RECV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK, 1)

c
C TEST THE DBP STATUS FIELD, FIRST
C

IF((BLOCK(15).EQ.5).OR. (BL0CK(15).EQ.6)) THEN
140 IF(DEBUG) WRITE(UNIT, 150) BL0CK(15)
150 F0FMAT(' ** Warning **'/,

X ' ** Had to receive a response during ',
X 'this SENDJREQUEST'/,
X ' iDBP Status is ',z2,'h')

CALL RBCV_RESPONSE(MODULE2, NBYTES_RBCV, PCBTYPE, MOREJTOJ3CME)
IF(MORE_TO_COME) GO TO 140

ENDIF
C
C CAN SEND THE MODULE
C

NSEGMENTS = BLOCK (31)
C
C GO AHEAD AND TAKE CARE OF THE FIRST BUFFER
C

CALL GLUE(BLOCK(32), BLOCK(33), BUFFERljOFFSET)
CALL GLUE(BL0CK(34) ,EL0CK(35),BUFFER1_BASE)
CALL GLUE(BL0CK(36) ,BL0CK(37) ,BUFFER1_LENGTH)
IF(NBYTES. LT. BUFFER1_LENGTH) THEN
LENGTH = NBYTES

ELSE
LENGTH = BUFFER1JLENGTH

ENDIF
LEFTOVER = NBYTES - LENGTH
DO 200 I = 1, LENGTH

200 BUFFER1(I) = MODULE (I)
C WRITE THE FIRST BUFFER

CALL WRITE_BLOCK(BUFFER1,LENGTH, BUFFER1_BASE,
X BUFFERljOFFSET)
TOTALJSENT = LENGTH

C
C IF TWO SEGMENTS ARE REQUESTED, SEND THE OTHER BUFFER
C

IF(NSEGMENTS. EQ. 2) THEN
CALL GLUE(BLOCK(38),BLOCK(39), BUFFER2J0FFSET)
CALL GLUE(BLOCK(40),BLOCK(41),BUFFER2JBASE)
CALL GLUE(BL0CK(42), BL0CK(43), BUFEER2__LENGTH)
DO 300 I = 1,LEFTOVER

300 BUFFER2(I) = MODULE(I + LENGTH)
C WRITE THE SECOND BUFFER

CALL WRITEJBLOCK (BUFFER2, LEFTOVER, BUFFER2JBASE,
X BUFFER2J0FFSET)

TOTALJSENT = TOTALJSENT + LEFTOVER
LEFTOVER = 0

ENDIF
C
C UPDATE THE PCB &
C SET 'REQUEST LENGTH' FIELD
C

IF(LEFTOVER.GT.0) THEN
C
C SEND REQUEST
C BUFFER THIS REQUEST UNTIL THE REST OF THE
C REQUEST DATA CAN BE SENT
C

BLOCK(16) = 1

ELSE
C
C SEND REQUEST WITH BOM
C I.E. THE COMPLETED REQUEST IS SENT
C

BLOCK (16) = 3
ENDIF
CALL LCW16(TOTALJSENT, BLOCK(29))
CALL HIGH16(TOTALJSENT, BLOCK(30))
CALL WRITE BLOCK(BLOCK,43,BASE,OFFSET)
IF(DEBUG T CALL TRACK(BLOCK,1)

C
C RETURN CONTROL TO DBMS SOFTWARE
C

BYTES(1) = '47'X
BYTES(2) = 'OD'X
CALL QJ0UTPUT(BYTES, 2)
NBYTES_RBCV = 29
CALL Q_INPUT(BYTES,NBYTES_RBCV)

C
C CHECK IF THE HOST NEEDS TO SEND ANY
C LEFTOVER BYTES
C

IF(LEFTOVER.GT.O) THEN
IF(DEBUG) WRITE(UNIT, 600) NBYTES-LENGTH

600 FORMAT(/' ** Process ',13,' leftoverbyt.es **'/)
DO 750 I = LENGTH+1, NBYTES

750 MODULE (I-LENGTH) = MODULE (I)
NBYTES = NBYTES - LENGTH
GO TO 70

ENDIF
C

RETURN
END
SUBROUTINE READ_ELOCK(BLOCK,NBYTES,NBYTES_RECV, BASE,OFFSET)

Q==- - ■■■> = :-------- ■ ■ = = r a . : z = : « ; . - ar.-=
C
C *** MACHINE DEPENDENT ***
C
C PURPOSE :
C
C READS DATA FROM THE DBP
C
C ARGUMENTS :
C
C BLOCK - DATA READ FROM DBP
C NBYTES - # CF BYTES READ FROM THE DBP
C BASE - BASE PART OF I/O ADDRESS
C OFFSET - OFFSET PART OF I/O ADDRESS
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C DATA LINK
C
C DATE :
C

C APRIL 12,1983
C
C ■ ' ' --- ---■■■!.• - ' : ■■■: ■: ' '■ ■■■ =
c

INCLUDE *SPPCOM.TXT'
INTEGER* 2 COUNT
BYTE LOWBYTE, HIGHBYTE
BYTE INIT(3)
DATA INIT/ '55'X, '52'X, 'OD'X /

C
C INITIATE READ
C
50 IF(DEBUG) WRITE(UNIT, 55)
55 FORMAT(' ** Initiate a READJBLOCK **')

DO 75 I = 1,3
75 BYTES (I) = INIT(I)
C
C SEND COUNT,OFFSET,AND BASE
C

CALL LCW16(NBYTES,BYTES(4))
CALL HIGH16(NBYTES,BYTES(5))
CALL LCW16(OFFSET,BYTES(6))
CALL HIGH16(OFFSET, BYTES(7))
CALL L0W16(BASE,BYTES(8))
CALL HIGHL6(BASE,BYTES(9))
WRITE(STRING,110) (BYTES(I), 1=4,9)

110 FORMAT (6A1)
CRC = LIB$CRC (CRC_TABLE, 0, STRING (1:6))
CALL L0W32(CRC,BYTES(10))
CALL HIGH32(CRC,BYTES(11))

C
C SEND THE BYTES
C

CALL Q_OUTPUT(BYTES, 11)
C
C RECEIVE RESPONSE
C

NBYTES_RECV = NBYTES + 15
CALL Q_INPUT(BYTES, NBYTES_RECV)
IF((BYTES(l) .NE. ' 55'X) .OR.

X (BYTES(2).NE.'52'X).OR.
X (BYTES(3).NE. 'OD'X).OR.
X (BYTES(4).NE. 'QA'X)) THEN

IF (DEBUG) WRITE (UNIT,125) (BYTES(I),I=1,4)
125 FORMAT(' Error, Expected to find 55h,52h,0Dh,0Ah.

X ' Instead found ' ,z2,'h',3(',' ,z2,'h'))
GO TO 50

ENDIF
C
C CHECK THE REMAINDER OF THE DATA BYTES
C

WRITE(STRING,150) (BYTES(I), 1=5,10)
150 FORMAT(6A1)

CRC = LIB$CRC(CRC_TABLE, 0, STRING(1:6))
C
C CHECK CRC-1
C

CALL L0W32(CRC, LOWBYTE)
CALL HIGH32(CRC, HIGHBYTE)
IF((BYTES(11).NE.L0WBYTE).0R.

X (BYTES(12).NE.HIGHBYTE)) THEN
C CRC1S DO NOT MATCH

IF(DEBUG) WRITE(UNIT, 200) HIGHBYTE,LCWBYTE,
X BYTES(12) ,BYTES(11)

200 FORMAT(' Error, CRC16
X ' Host CRC(High,Lew) : ' ,z2,lx,z2,/,
X ' DBP CRC(High,Lew) : ',z2,lx,z2/)

GO TO 50
ENDIF

C
C PROCESS REST OF DATA
C

CALL GLUE(BYTES(5), BYTES(6),NBYTES_RECV)
DO 400 I = l,NBYTES_RBCV+3

400 ELOCK(I) = BYTES (1+12)
WRITE(STRING, 410) (ELOCK(I), I=1,NBYTES_RECV)

410 FORMAT (<NBYTES_RECV> A1)
CRC = LIB$CRC (CRC_TABLE, 0, STRING (1: NBYTES_RBOV))

C
C CHECK CRC—2
C

CALL LOW32(CRC,LOWBYTE)
CALL HIGH32(CRC,HIGHBYTE)
IF((BLOCK (NBYTES_RECV+1) .NE. LOWBYTE).OR.

X (BL0CK(NBYTESJRECV+2).NE.HIGHBYTE)) THEN
IF(DEBUG) WRITE(UNIT, 500) HIGHBYTE,LOWBYTE,

X BLOCK (NBYTES_RECV+2), BLOCK (NBYTES_RECV+1)
500 FORMAT(‘ Error, CRC16 :*,/,

X ' Host CRC(High,Lcw) : ' ,z2,lx,z2,/,
X ' DBP CRC(High,Lew) : ',z2,lx,z2/)

GO TO 50
ENDIF

C
C SUCCESSFUL READ_ELOCK OPERATION
C

RETURN
END
SUBROUTINE WRITE_BLOCK(BLOCK,NBYTES, BASE,OFFSET)

C-.-: ■' : ■■■ — = =-•■■■ === -■ ■ ■■ : ■= = .= '■ =« t ■: ■■, ■ ' ■ ====,=
c
c *** MACHINE DEPENDENT ***
C
C PURPOSE :
C
C WRITES DATA FROM THE HOST TO THE DBP
C
C ARGUMENTS :
C
C BLOCK - DATA TO BE WRITTEN TO THE DBP
C NBYTES - # OF BYTES IN ’BLOCK* TO BE SENT
C BASE - BASE PART OF I/O ADDRESS
C OFFSET - OFFSET PART OF I/O ADDRESS
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C DATA LINK

c
C DATE :
C
C APRIL 12,1983
C
C ---------- —"='~- - ■..... ' ,'■=:='== r.= ...-= =— 1— 1-1^=

INCLUDE 'SPPCOM.TXT'
INTEGER* 2 COUNT
BYTE INIT(3)
DATA INIT/ '55'X,’57’X,’OD'X /

C
C INITIATE WRITE
C
50 IF(DEBUG) WRITE(UNIT,60)
60 FORMAT(’ ** Initiate a WRITE_BLOCK **')

DO 75 I = 1,3
75 BYTES (I) = INIT(I)
C
C SEND COUNT,OFFSET, AND BASE
C

CALL LOW16(NBYTES,BYTES(4))
CALL HIGH16(NBYTES,BYTES(5))
CALL L0W16(OFFSET,BYTES(6))
CALL HIGH16(OFFSET,BYTES(7))
CALL L0W16(BASE,BYTES(8))
CALL HIGH16(BASE,BYTES(9))
WRITE(STRING, 100) (BYTES(I), 1=4,9)

100 FORMAT (6A1)
CRC = LIB$CRC(CRC_TABLE, 0, STRING (1:6))
CALL L0W32(CRC,BYTES(10))
CALL HIGH32(CRC,BYTES(11))

C
C SEND THE BYTES
C

CALL Q_OUTPUT(BYTES, 11)
C
C RECEIVE ACKNOWLEDGMENT
C

NBYTES_RECV = NBYTES + 15
CALL Q_INPUT(BYTES, NBYTES_RECV)
IF((BYTES(l).EQ.’55'X).AND.

X (BYTES(2).E3Q. '57'X).AND.
X (BYTES(3).EQ.'0D'X).AND.
X (BYTES(4).EQ. ’QA'X)) THEN

IF(BYTES(5).NE. '06'X) THEN
IF (DEBUG) WRITE (UNIT, 200) BYTES (5)

200 FORMAT(' Error, WRITE_RLOCK 1st Receive Ack.'/,
X ' Expecting to find 06h, instead found ',z2,'h')

GO TO 50
ENDIF

ELSE
IF (DEBUG) WRITE (UNIT, 300) (BYTES(I),I=1,4)

300 FORMAT(' Error, WRITE_BLOCK 1st Receive Ack. ’/,
X ' Elxpecting to find 55h, 57h,0Eh,0Ah.' /,
X ' Instead found ',z2,'h',3(',',z2,'h'))
GO TO 50
ENDIF

C
C SEND DATA
C

CRC = 0
IF(NBYTES.BQ.O) GO TO 650

C
C BUFFER THE CRC
C

WRITE(STRING,625) (BL0CK(I) ,1=1,NBYTES)
625 FORMAT (< NBYTES >A1)

CRC = LIB$CRC(CRC_TABLE,0,STRING(1 :NBYTES))
650 CALL L0W32(CRC, BLOCK (NBYTES+1))

CALL HIGH32(CRC,BLOCK (NBYTES+2))
CALL Q_OUTPUT(BLOCK,NBYTES+2)

C
C RECEIVE ACKNOWLEDGEMENT
C

NBYTES_RECV = 2
CALL Q_INPUT(BYTES,NBYTES_RECV)
IF(BYTES(1).NE. '06'X) THEN
IF (DEBUG) WRITE (UNIT, 700) BYTES(l)

700 FORMAT(' Error, in WRITE_BLOCK 2nd Receive Ack. '/
X ' Expecting 06h, instead found ,,z2,,h')

GO TO 50
ENDIF

C
C SUCCESSFUL WRITE_BLOCK OPERATION
C

RETURN
END
SUBROUTINE Q_INPUT(BYTES, NBYTESJRECV)

0=l==li=:= — .7a : : = = r==B=r8aaz , = .«=---=a= r : - ---
c
C *** MACHINE DEPENDENT ***
C
C PURPOSE :
C
C QUEUE A SEQUENCE OF BYTES TO THE INPUT CHANNEL
C ' Q_INPUr' WAITS UNTIL DATA APPEARS ON THE CHANNEL
C
C ARGUMENTS :
C
C BYTES - THE ARRAY (SEQUENCE) OF BYTES RECEIVED
C NBYTES_RECV - THE NUMBER OF BYTES TO RECEIVE &
C THE NUMBER OF ACTUAL BYTES RECEIVED
C
C
C NOTE :
C
C Q_INPUT WAITS FOR THE DBP TO SEND 'NBYTESJRECV' BYTES
C IF ' NBYTES_RECV' BYTES HAVE NOT BEEN SENT BY THE TIME
C THAT THE TIME-OUT VALUE (CURRENTLY 5 SECONDS) HAS
C OCCURRED, THE ROUTINE EXITS WITH THE DATA THAT WAS
C RECEIVED.
C
C
C
C PROTOCOL :
C
C SERVICE PORT *
C
C LAYER :
C

C PHYSICAL
C
C DATE :
C
C APRIL 12,1983
C
Q — - -
C

INCLUDE 'SPPCOM.TXT'
INTEGER*4 SYS$QIOW, TERMINATOR(2), TIMEjOUT
BYTE PRBYTES(1024), MASK(6)

C
TIMEJOUT = 1

C
C SET UP THE TERMINATOR BYTES
C

TERMINATOR (1) = 0
TERMINATOR (2) = 0

C
C INITIATE THE INPUT OPERATION
C (WAIT FOR THE DBP TO SPEAK)
C
5 IOSB(2) = 0

STATUS = SYS$QIOW(, %VAL(TTYJCHANNEL),
X %VAL(IO$JTTYREADALL+IO$M__NOECHO+IO$MjriMED),
X IOSB,,,BYTES(1), %VAL(NBYTES_RECV), %VAL(5),TERMINATOR,
3F(STATUS.NE.SS$ NORMAL) THEN
WRITE(UNIT, 10 T STATUS

10 FORMAT(' Error, Q_INPUT failure.'//
X ' Return Status is ',z8)
ENDIF
NBYTESjRECV = IOSB (2)
IF(NBYTESjRECV.EQ.O) THEN

IF(TIMEJOUT.EQ. 10) THEN
IF(DEBUG) WRITE(UNIT, 18)

18 FORMAT(' Max Time Out' 's Encountered ')
RETURN

ELSE
C
C RETURN TO GET INPUT ONCE MORE
C

IF(DEBUG) WRITE(UNIT,20) TIMEJOUT
20 FORMAT(' Time Out # ',12,'----------- ')

TIMEJOUT = TIMEJOUT + 1
GO TO 5

ENDIF
ENDIF
IF(DEBUG) THEN

C
C SET UP ASCII BYTES
C NOTE: NCN-PRINTAELE CHARACTERS ARE DENOTED
C WITH A PERIOD(*2E'X)
C
C

DO 50 I = 1, NBYTESJRECV
IF((BYTES(I) .LT.' 20'X) .OR.

X (BYTES(I) .GT.' 7E'X)) THEN
PRBYTES(I) = '2E'X

ELSE
PRBYTES(I) = BYTES(I)

ENDIF
50 CONTINUE

WRITE(UNIT, 100) NBYTES RECV
100 FORMAT(' = Q_INPUT =='/7* # of bytes is ',15,

X /,' Byte Stream :'/)
MULTIPLE16 = (NBYTES_RB0V/16)*16
LEFTOVER = NBYTES_RECV - MULTIPLE16
IF(MULTIPLE16.GT.0) THEN
DO 200 I = 1,MULTIPLE16,16
WRITE(UNIT,150) (BYTES(II),11=1,1+15),(PRBYTES(12),12=1,1+15)

150 F0RMAT(16(1X,Z2.2),2X,16A1)
200 CONTINUE

ENDIF
IF(LEFTOVER.GT.O) THEN
WRITE(UNIT, 250) (BYTES(II), I1=MULTIPLE16+1,

X MULTIPLE16+LEFTOVER), (PRBYTES(12), I2=MULTIPLE16+1,
X MULTIPLE16+LEFTOVER)

250 FORMAT (<LEFTOVER> (IX, Z2.2), <16-LEFTOVER> (3X), 2X,
X <LEFT0VER>A1)
ENDIF
WRITE(UNIT,400)

400 FORMAT (/)
ENDIF
RETURN
END
SUBROUTINE Q_OUTPUT(BYTES,NBYTES)

C r u = — = ; =.■=;■ 1 : saa„: ,s , = '.s : ■; : 7 t :: t j 1 . s ' i a r s g

c
c *** MACHINE DEPENDENT ***
C
C PURPOSE :
C
C QUEUE A SEQUENCE OF BYTES TO THE OUTPUT TTY CHANNEL
C
C ARGUMENTS :
C
C BYTES - THE ARRAY (SEQUENCE) OF BYTES TO BE TRANSFERRED
C NBYTES - # OF BYTES TO BE TRANSFERRED IN ARRAY 'BYTES'
C
C PROTOCOL :
C
C SERVICE PORT
CC LAYER :
C
C DATA LINK
C
C DATE :
C
C APRIL 12,1983
C
O'— ■ ' ' - ■■ ■ == ■= == '=== ■ ̂ ■■■ .= = = =.
c

INCLUDE ' SPFCOM.TXT'
INTEGER*4 SYS$QIOW
BYTE PRBYTES(1024)

C
C INITIATE THE OUTPUT OPERATION
C (TALK TO THE DBP)
C

IF(DEBUG) THEN
C
C SETT UP ASCII BYTES
C

DO 50 I = 1, NBYTES
IF((BYTES(I).LT.'20'X).OR.

X (BYTES(I) .GT. ' 7E'X)) THENPRBYTES(I) = 12E'X
ELSE

PRBYTES(I) = BYTES(I)
ENDIF

50 CONTINUE
WRITE(UNIT, 90) NBYTES

90 FORMAT(' = QjOUTPUT ='/• # of bytes is ',15,
X /,' Byte Stream :'/)
MULTIPLE16 = (NBYTES/16)*16
LEFTOVER = NBYTES - MULTIPLE16
IF(MULTIPLE16.GT.0) THEN
DO 200 I = 1,MULTIPLE!6,16
WRITE(UNIT,150) (BYTES(I1), 11=1,1+15), (PRBYTES(I2), 12=1,1+15)

150 P0RMAT(16(1X,Z2.2),2X,16A1)
200 CONTINUE

ENDIF
IF(LEFTOVER. GT. 0) THEN
WRITE(UNIT, 250) (BYTES(II), I1=MULTIPLE16+1,

X MULTIPLE!6+LEFTOVER), (PRBYTES(12),12=MULTIPLE16+1,
X MULTIPLE! 6+LEFTOVER)

250 FORMAT (<LEFTOVER> (IX, Z2.2), <16-LEETOVER> (3X), 2X,
X <LEFT0VER>A1)
ENDIF
WRITE(UNIT,300)

300 PORMAT(/)
C

ENDIF
STATUS = SYS$QIOW(, %VAL(TTY_CHANNEL),

X %VAL(IO$_WRITEVBLK), IOSB,,,
X BYTES(1),%VAL(NBYTES), ,%VAL(0),,)
IF(STATUS.NE.SS$__NORMAL) THEN
WRITE(UNIT,400) STATUS

400 FORMAT(' Error, QjOUTPUT failure.',/,
X ' Return Status is ',z8)
ENDIF
EElURN
END

n
o

n
o

o
o

o
o

o
o

n
n

o
o

o
o

o
o

o
n

o
o

o
o

Q

$ @typeq
SUBROUTINE L0W16(WORD16,LOWBYTE)

PURPOSE :
RETURN LOW ORDER BYTE FROM 16 BIT WORD

ARGUMENTS :
WORD16 - 16 BIT WORD
LOWBYTE - LOW ORDER 8 BITS

PROTOCOL :
SERVICE PORT

LAYER :
DATA LINK

DATE :
APRIL 12,1983

BYTE LOWBYTE,W0RD16(2)
LOWBYTE = W0RD16(1)
RETURN
END
SUBROUTINE LOW32(W0RD32,LCWBYTE)

C = =:=̂ = : = =:=■= == t-tt--------- —
C
C PURPOSE :
C
C RETURN LOW ORDER BYTE FROM 32 BIT WORD
C
C ARGUMENTS :
C
C WORD32 - 32 BIT WORD
C LOWBYTE - LOW ORDER 8 BITS
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C DATA LINK
C
C EATE :
C
C APRIL 12,1983
CC- ■■
C

BYTE LOWBYTE,W0RD32(4)
LOWBYTE = W0RD32(1)

o
u

u
o

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
o

u

o
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

o
u

RETURN
END
SUBROUTINE HIGH16(WORD16, HIGHBYTE)

PURPOSE :
RETURN HIGH ORDER BYTE FROM 16 BIT WORD

ARGUMENTS :
WORD16 - 16 BIT WORD
HIGHBYTE - HIGH ORDER 8 BITS

PROTOCOL :
SERVICE PORT

LAYER :
DATA LINK

DATE :
APRIL 12,1983

BYTE HIGHBYTE,WORD16(2)
HIGHBYTE = WORD16(2)
RETURN
END
SUBROUTINE HIGH32(W0RD32,HIGHBYTE)

PURPOSE :
RETURN HIGH ORDER BYTE FROM LOWER HALF OF A
32-BIT WORD

ARGUMENTS :
WORD32 - 32 BIT WORD
HIGHBYTE - HIGH ORDER 8 BITS

PROTOCOL :
SERVICE PORT

LAYER :
DATA LINK

DATE :
APRIL 12,1983

BYTE HIGHBYTE,WDRD32(4)

.o
go

oo
oo

oo
oo

oo
nn

oo
no

oo
on

o

HIGHBYTE = WDRD32(2)
REIURN
END
SUBROUTINE GLUE(LOWBYTE, HIGHBYTE, GLUED)

C ==̂ r - ----.
c
C PURPOSE :
C
C GLUE TWO BYTES TOGETHER TO FORM A 16-BIT WORD
C
C ARGUMENTS :
C
C LOWBYTE - LOW ORDER 8 BITS
C HIGHBYTE - HIGH ORDER 8 BITS
C GLUED - 16-BIT WORD
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C ALL
C
C DATE :
C
C APRIL 12,1983
C
C ■■ = ^ = = . = z .= J = .= -z z = =

BYTE LOWBYTE, HIGHBYTE, GLUED(2)
GLUED(l) = LOWBYTE
GLUED(2) = HIGHBYTE
RETURN
END
SUBROUTINE TRACE START (TRACE UNIT)

PURPOSE :
INITIALIZE A FILE FOR DIAGNOSTIC TRACE OUTPUT

ARGUMENTS :
TRACEJUNIT - LOGICAL OUTPUT UNIT FOR TRACE INFORMATION

PROTOCOL :
SERVICE PORT

LAYER :
ALL : TRACE UTILITY

DATE :
APRIL 12,1983

INCLUDE ' SPPCOM.TXT'

U
U

U
U

U

O
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

O
U

U

U
O

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
'

O

OPEN A DEBUG FILE, IF WE ARE NOT TALKING
TO THE TERMINAL

IF (UNIT.NE. 6) OPEN(UNIT=TRACE_UNIT,FILE=1 TRACE. DBP',
X STATUS^'NEW')
UNIT = TRACEJUNIT
DEBUG = .TRUE.
REIURN
END
SUBROUTINE TRACE STOP

PURPOSE :
STOP THE TRACE OUTPUT

ARGUMENTS :
NONE

PROTOCOL :
SERVICE PORT

LAYER :
ALL : TRACE UTILITY

DATE :
APRIL 12,1983

INCLUDE 'SPPCOM.TXT'
DEBUG = .FALSE.
RETURN
END
SUBROUTINE PERFORM START

*** MACHINE DEPENDENT ***
PURPOSE :
START TRACKING THE FOLLOWING PERFORMANCE STATISTICS :
1. VAX CPU TIME ELAPSED
2. VAX CLOCK TIME ELAPSED
3. VAX BUFFERED I/O
4. VAX DIRECT I/O
5. VAX PAGE FAULT COUNT

ARGUMENTS :

C NONE
C
C PROTOCOL :
C
C SERVICE PORT
C
C LAYER :
C
C ALL : PERFORMANCE UTILITY
C
C DATE :
C
C APRIL 12,1983
C
C- Jat-i-t. " ' = ■: =̂-- ■ ■ -----
c

INTEGER*4 BUFIO,CPUnME,DIO,PAGEF
INTEGER*4 BUFIO_ADR,CPUTIME_ADR,DIO_ADR,PAGEF_ADR
INTEGER*4 ZEROl, ZER02, ZER03, ZER04, ZEROS
INTEGER*4 SY5$GETJPI, STATUS

C
INTEGER*2 LENGTH1,LENGTH2,LENGTH3,LENGTH4
INTEGER*2 BUFIOJCODE,CPUTIME_CODE,DIOJCODE, PAGEF_CODE

C
OOMMDN/STATCOM/ CLOCK_TIME, BUF10, CPUTIME, DIO, PAGEF
COMMON/JPICQM/ LENGTH1, BUFIOJCODE, BUFIO_ADR, ZERQ1,
X LENGTH2, CPUTIME_CODE,CPUriME_ADR, ZER02,
X LENGTH3, DIO_CODE, DIO_ADR, ZER03,
X LENGTH4, PAGEFjCODE, PAGEF_ADR, ZER04, ZER05
DATA BUFIOJCODE/ 1036 /
DATA CPUTIMEJCODE/ 1031 /
DATA DIOJCODE/ 1035 /
DATA PAGEFJCODE/ 1034 /
DATA LENGTHI,LENGTH2,LENGTH3,LENGTH4/4,4,4,4/C

C INITIALIZE THE STATISTIC VARIABLES
C

CLOCKJTIME = SECNDS(0.0)
BUFIO_ADR = %L0C(BUFIO)
CPUTIME_ADR= %L0C(CPUTIME)
DIO_ADR = %LOC(DIO)
PAGEF_ADR = %L0C(PAGEF)

C
C GET THE PROCESS INFORMATION
C

STATUS = SYS$GETJPI(,,,LENGTH!,,,)
IF(STATUS.NE.l) WRITE(6,100) STATUS

100 FORMATC Error with SYS$GETJPI, status is ',Z8,'h')
C

RETURN
END
SUBROUTINE PERPORM_STOP(NEWjCLOCK, NEWJCPU, NEW_BUFF,

X NEW DIRECT, NEW PAGE)C -......~ : r=
C
C *** MACHINE DEPENDENT ***
C
C PURPOSE :
C
C STOP THE TRACKING OF THE PERQRMANCE STATISTICS

no
n

C AND REIURN THE VALUES
C
C
C ARGUMENTS :
C
c CLOCK VAX CLOCK TIME ELAPSED
c CPU VAX CPU TIME ELAPSED
c BUFFERED - VAX BUFFERED I/O
c DIRECT VAX DIRECT I/O
c PAGE VAX PAGE FAULT COUNT
c
c
c PROTOCOL :
c
c SERVICE PORT
c
c LAYER :
C
C ALL : PERFORMANCE UTILITY
C
C DATE :
C
C APRIL 12,1983
C
(>===='= =— '-==--== •=-• -■■■ ■= .■■==

INTEGER*4 BUFIO,CPUTIME,DIO,PAGEF
INTBSER*4 BUFFERED,CPU_INT, DIRECT, PAGE
INTEGER* 4 NEWJBUFF, NEW_DIRECT, NEWJPAGE
REAL NEWJELOCK,NEWJEPU
INTEGER*4 BUFIO__ADR, CPUTIME_ADR, DIO_ADR, PAGEF_ADR
INTEGER*4 ZEROl, ZER02, ZER03, ZER04, ZER05
INTEGER*4 SYS$GETJPI, STATUS

C
INTEGER*2 LENGTH1,LENGTH2,LENGTH3,LENGTH4,LENGTH5
INTEGER*2 BUFIO_CODE,CPUTIME_CODE,DIO_CODE, PAGEFjCODE

C
GOMMON/STATCOM/ CLOCK_TIME, BUFIO, CPUTIME, DIO, PAGEF
COMMON/JPICOM/ LENGTH)., BUFIOJCODE, BUFIO_ADR, ZEROl,
X LENGTH2, CPUTIMEJEODE, CPUTIME_ADR, ZER02,
X LENGTH3, DIOJCODE, DIO_ADR, ZER03,
X LENGTH4, PAGEFjEODE, PAGEF_ADR, ZER04, ZER05
DATA BUFIOJCODE/ 1036 /
DATA CPUTIMEJEODE/ 1031 /
DATA DIOJEODE/ 1035 /
DATA PAGEFJEODE/ 1034 /
DATA LENGTHL,LENGTH2,LENG7TH3,LENGTH4/4,4,4,4/

DETERMINE THE STATISTICS
BUFIO_ADR = %L0C(BUFFERED)
CPUTIME_ADR= %L0C(CPU_INT)
DIO_ADR =%L0C(DIRBET)
PAGEF_ADR = %L0C(PAGE)

C
STATUS = SYS$GETJPI(,, ,LENGTHL,,,)
IF(STATUS.NE.l) WRITE(6,100) STATUS

100 FORMAT(' Error, SYS$GETJPI, status is ' ,z8, 'h')
C
C RETURN THE APPROPRIATE STATISTICS

OQ
oo

oo
no

oo
oo

oo
oo

oo
oo

oo
on

oo
oo

oo
oo

oo
o

NEW_CLOCK = SBCNDS(CLOCK TIME)
NEW_CPU = (CPUJENT - CPUTIME)/100.0
NEW_DIRECT= DIRECT - DIO
NEWJPAGE = PAGE - PAGEF
NEWJBUFF = BUFFERED - BUFIO
RETURN
END
SUBROUTINE TRACK(BLOCK, DATA TYPE)

PURPOSE :
DISPLAY THE FORMAT OF THE REQUESTED DATA STRUCTURE
TWO DATA STRUCTURES ARE DISPLAYED -

1.) PCB VECTOR
2.) PCB

ARGUMENTS :
BLOCK - THE ARRAY CONTAINING THE DATA
DATA_TYPE - THE DATA STRUCTURE TYPE

= 0 IF PCB VECTOR
= 1 IF PCB

PROTOCOL :
SERVICE PORT

LAYER :
ALL

DATE :
APRIL 12,1983

INCLUDE ' SPPCQM.TXT'
INTEGER*2 REQUESTLENGTH
INTEGER* 2 BUFFER1_LENGTH, BUFFER2_LENGTH
INTEGER*4 mP__STA1US(4),HOST_STATUS(6) , DATA_TYPE
CHARACTER*40 DBP_MESSAGE(4),HOST_MESSAGE(6),DBP,HOST
DATA DBPJSTATUS
X /4,5,6,7/ .
DATA HOSTJSTATUS
X /0,1,2,3,5,17/
LATA DBP_MESSAGE
X /'WAIT ON ENABLE',
X 'READ RESPONSE’,
X 'READ RESPONSE WITH EDM',
X 'WRITE REQUEST' /
DATA HOST MESSAGE

X /' SUSPEND SESSION',
X 'READ/WRITE OK',
X 'ERROR ENCOUNTERED1,
X 'WRITE OK WITH BOM',
X 'QK FIN',
X 'ENABLE SERVICE PORT' /

C
C DETERMINE THE NECESSARY DECIMAL VALUES
C

CALL GLUE(BLOCK(29), BLOCK(30), REQUEST_LENGTH)
CALL GLUE(BL0CK(36) ,BL0CK(37) # BUFFER1_LENGTH)
CALL GLUE(BLOCK(42),BLOCK(43), BUFFER2_LENGTH)

C
C OUTPUT THE PCB VECTOR OR PCB
C

IF(DATA_TYPE. EQ. 1) THEN
C
C PROCESS A PCB DATA STRUCTURE
C

DO 50 I = 1,4
50 IF(BLOCK(15).EQ.DBPJ3TATUS(I)) GO TO 75

DBP = 'UNKNOWN DBP STATUS'
GO TO 80

75 DBP = DBP_MESSAGE(I)
80 DO 100 I = 1,6
100 IF(BLOCK(16).EQ.HOST_STATUS(I)) GO TO 125

HOST = 'UNKNOWN HOST STATUS'
GO TO 130

125 HOST = HOST_MESSAGE(I)
130 WRITE(UNIT,200) (BL0CK(I1),I1=1,14),BL0CK(15),DBP,

X EL0CK(16) ,HOST, (BLOCK(12), 12=17,28), RBQUEST_LENGTH,
X ELOCK(31), (BL0CK(13), 13=35,32,-1),
X BUFFER1 LENGTH, (BLOCK(14), 14=41,38,-1),
X BUFFER2_LENGTH

200 FORMAT(' H------------------- 1
X ’ 1T PCB 1T'/,
X ' H------------------- 1-'//,
X ' RESERVED',T25,14(Z2.2,IX),/,
X ' iDBP STATUS' ,T25,Z2.2,1X,A,/,
X ' HOST STATUS' ,T25,Z2.2,1X,A,/,
X ' RESERVED',T25,12(Z2.2,IX),/,
X ' REQUEST LENGTH',T25,14,/,
X ' NUMBER OF SEGMENTS',T25,II,/,
X ' BUFFER 1 PTR',T25,4(Z2.2)/,
X ' BUFFER 1 LENGTH',T25,14,/,
X ' BUFFER 2 PTR',T25,4(Z2.2)/,
X ' BUFFER 2 LENGTH',T25,14,//)
ELSE

C
C PROCESS A PCB VECTOR DATA STRUCTURE
C

WRITE(UNIT,300) (BLOCK(II), 11=2,1,-1),
X (BL0CK(I2),12=6,3,-1), (BL0CK(I3),13=10,7,-1)

300 FORMAT(' H------------------- h'/,
X ' 1T PCB VECTOR 11'/,
X • +---------------- h'//,
X ' INDEX ',T30,2Z2.2,/,
X ' CONTROL PCB ADDRESS',T30,4Z2.2,/,
X ' APPLICATION PCB ADDRESS', T30, 4Z2.2, // j
ENDIF

REIURN
END

$ I$ I THIS IS THE COMMAND FILE USED TO RUN PROGRAM 'SPP'
$ i THE VMS TTY PORT 1TTBO:' IS USED FOR COMMUNICATIONS
$ i$ DBPTERM := JTTBO:
$ i ALLOCATE THE PORT FOR ACCESS
$ ALLOCATE 'DBPTERM' '
$ SET PROTECTION(W: RW)/DEVICE 'DBPTERM'
$!$ i SET TERMINAL CHARACTERISTICS FOR TTBO:
$! SEE FIGURE 2 OF THIS REPORT
$ 1$ SET TERMINAL ' DBPTERM' /N0WRAP/WIDrB=80/SPEED=9600/PASSALL/EIOTr_BIT/PERM
$ ASSIGN/USER 'DBPTERM' REMOTE
$ ASSIGN/USER TT: SYS $ INPUT
$ RUN [INTEL. SPP]SPP
$ 1 DEALLOCATE TTBO:
$ DEALLOCATE 'DBPTERM'
$

APPENDIX B

sample transmission trace

$ type trace.dbp
** Initialize iDBP Communications **
— Q_OUTPUT ==
if of bytes is 1
Byte Stream :
03

== Q_INPUT ==
if of bytes is 16
Byte Stream :
0D 0A 2A 43 6F 6E 74 72 6F 6C 20 43 2A 0D 0A 2E ..*Control C*...

** Create Control Session **
** Initiate a READ_BLOCK **
== Q_OUTPUT ==
if of bytes is 11
Byte Stream :
55 52 0D 0A 00 00 00 0C EE 85 E6 UR

== Q_INPUT ==
if of bytes is 25
Byte Stream :
55 52 0D 0A 0A 00 00 00 OC EE 85 E6 00 00 00 00 UR

M.

0000
984D0000
00000000

** Initiate a READ_BLOCK **
== QJDUTPUT ==
if of bytes is 11
Byte Stream :
55 52 OD 2B 00 00 00 4D 98 32 El UR.+...M.2.

« Q_INPUT «
if of bytes is 58
Byte Stream :
55 52 OD OA 2B 00 00 00 4D 98 32 El 00 00 00 00 UR..+..
00 00 00 00 00 00 00 00 00 00 04 00 00 02 00 00
00 00 00 00 00 04 00 00 00 00 01 BD IF 03 00 80
00 FF FF FF 00 00 00 B3 51 2E ,.Q.

4D 98 00 00 00 00 2E 01 2E

| PCB VECTOR |

INDEX
CONTROL PCB ADDRESS
APPLICATION PCB ADDRESS

RESERVED
iDBP STATUS
HOST STATUS
RESERVED
REQUEST LENGTH
NUMBER OF SEGMENTS
BUFFER 1 PTR
BUFFER 1 LENGTH
BUFFER 2 PTR
BUFFER 2 LENGTH

00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 WAIT ON ENABLE
00 SUSPEND SESSION
00 02 00 00 00 00 00 00 00 04 00 00

0
1
00031FBD
128

OOFFFFFF
0

** Initiate a WRITE_BLOCK **
— QjOUTPUT ==
of bytes is 11
Byte Stream :
55 57 OD 2B 00 00 00 4D 98 32 El UW.+...M.2.

== Q_INPUT ==
of bytes is 5
Byte Stream :
55 57 OD OA 06 UW...

— Q_0UTPUT ==
of bytes is 45
Byte Stream :
00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 11
00 02 00 00 00 00 00 00 00 04 00 00 00 00 01 BD
IF 03 00 80 00 FF FF FF 00 00 00 9E 51 Q

== Q__INPUT ==
of bytes is 2
Byte Stream :
06 2E

PCB
-+

I

RESERVED
iDBP STATUS
HOST STATUS
RESERVED
REQUEST LENGTH
NUMBER OF SEGMENTS
BUFFER 1 PTR
BUFFER 1 LENGTH

00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 WAIT ON ENABLE
11 ENABLE SERVICE PORT
00 02 00 00 00 00 00 00 00 04 00 00

0
1
00031FBD
128

BUFFER 2 PTR
BUFFER 2 LENGTH

OOFFFFFF
0

== Q_OUTPUT ==
// of bytes is 2
Byte Stream :
47 OD G.

— Q_INPUT ==
of bytes is 29
Byte Stream :
47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G....*BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

** Create Application Session **
** Send Request **
** Initiate a READ_BLOCK **
== Q_OUTPUT ==
of bytes is 11
Byte Stream :
55 52 OD OA 00 00 00 OC EE 85 E6 UR

== Q_INPUT ==
of bytes is 25
Byte Stream :
55 52 OD OA OA 00 00 00 OC EE 85 E6 00 00 00 00 UR
4D 98 00 00 00 00 2E 01 2E M.

PCB VECTOR

INDEX 0000
CONTROL PCB ADDRESS 984D0000
APPLICATION PCB ADDRESS 00000000

** Initiate a READ_BLOCK **
== Q_OUTPUT ==
of bytes is 11
Byte Stream :
55 52 OD 2B 00 00 00 4D 98 32 El UR.+...M.2.

== Q_INPUT ==
// of bytes is 58
Byte Stream :
55 52 OD OA 2B 00 00 00 4D 98 32 El 00 00 00 00 UR..+...M.2
00 00 00 00 00 00 00 00 00 00 07 00 00 02 00 00

00 00 00 00 00 04 00 00 00 00 01 B9 IF 00 30 84 0.
00 FF FF 00 F0 00 00 97 46 2E F.

PCB

RESERVED 00 00 00 00 00 00 i
iDBP STATUS 07 WRITE REQUEST
HOST STATUS 00 SUSPEND SESSION
RESERVED 00 02 00 00 00 00 i
REQUEST LENGTH 0
NUMBER OF SEGMENTS 1
BUFFER 1 PTR 30001FB9
BUFFER 1 LENGTH 132
BUFFER 2 PTR F000FFFF
BUFFER 2 LENGTH 0

** Initiate a WRITE BLOCK **
== Q_OUTPUT ==
of bytes is 11
Byte Stream :
55 57 0D 09 00 B9 IF 00 30 14 17

« Q_INPUT —
of bytes is 5
Byte Stream :
55 57 0D 0A 06

— Q_OUTPUT ==
of bytes is 11
Byte Stream :
01 00 00 00 E4 01 FE FF 00 5C 7A

UW.

UW...

\z

== Q_INPUT ==
of bytes is
Byte Stream :
06 2E

** Initiate a WRITE__BL0CK **
== QJ3UTPUT ==
of bytes is 11
Byte Stream :
55 57 OD 2B 00 00 00 4D 98 32 El UW.+. • .M.2*

== Q_INPUT «
of bytes is 5
Byte Stream :

55 57 OD OA 06 UW...

== Q_0UTPUT ==
of bytes is 45
Byte Stream :
00 00 00 00 00 00 00 00 00 00 00 00 00 00 07 03
00 02 00 00 00 00 00 00 00 04 00 00 09 00 01 B9
IF 00 30 84 00 FF FF 00 FO 00 00 58 80 •X!••••
== Q__INPUT ==
of bytes is 2
Byte Stream :
06 2E

H------------------
| PCB 1

RESERVED 00 00 00
iDBP STATUS 07 WRITE
HOST STATUS 03 WRITE
RESERVED 00 02 00
REQUEST LENGTH 9
NUMBER OF SEGMENTS 1
BUFFER 1 PTR 30001FB9
BUFFER 1 LENGTH 132
BUFFER 2 PTR F000FFFF
BUFFER 2 LENGTH 0

== Q_OUTPUT ==
of bytes is 2
Byte Stream :
47 OD G.

== Q_INPUT ==
// of bytes is 29
Byte Stream :
47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G *BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

** Receive Response **
** Initiate a READ_BLOCK **
— Q_OUTPUT —
of bytes is 11
Byte Stream :
55 52 0D OA 00 00 00 OC EE 85 E6 UR

== Q_INPUT ==
of bytes is 25
Byte Stream :
55 52 OD OA OA 00 00 00 OC EE 85 E6 00 00 00 00 UR.....
4D 98 00 00 C5 68 7C BF 2E M---h|..

PCB VECTOR

INDEX 0000
CONTROL PCB ADDRESS 984D0000
APPLICATION PCB ADDRESS 68C50000

** Initiate a READ_BLOCK **
== Q_OUTPUT ==
of bytes is 11
Byte Stream :
55 52 OD 2B 00 00 00 4D 98 32 El UR.+...M.2.

== QJLNPUT ==
of bytes is
Byte Stream :
55 52 OD OA 2B
00 00 00 00 00
00 00 00 00 00
00 FF FF 00 FO

58

00 00 00 4D 98 32
00 00 00 00 00 06
04 00 00 09 00 01
00 00 D6 61 2E

El 00 00 00 00
00 00 02 00 00
B9 IF 00 30 OB

UR..+. ..M.2
 0.
3. *

+---------------- ---h
| PCB 1H---------------- ---h
RESERVED 00 00 00 00 00 00 00 00 00
iDBP STATUS 06 READ RESPONSE WITH EOM
HOST STATUS 00 SUSPEND SESSION
RESERVED 00 02 00 00 00 00 00 00 00
REQUEST LENGTH 9
NUMBER OF SEGMENTS 1
BUFFER 1 PTR 30001FB9
BUFFER 1 LENGTH 11
BUFFER 2 PTR F000FFFF
BUFFER 2 LENGTH 0

** Initiate a READ_BLOCK **
== QjOUTPUT ==
// of bytes is 11
Byte Stream :
55 52 OD OB 00 B9 IF 00 30 15 F5 UR.....0

== Q_INPUT ==

if of bytes is 26
Byte Stream :
55 52 OD OA OB 00 B9 IF 00 30 15 F5 01 00 00 00 UR......0
FC 03 E4 01 00 FF 00 08 DA 2E

** Initiate a WRITE__BLOCK **
— Q_OUTPUT ==
if of bytes is 11
Byte Stream :
55 57 0D 2B 00 00 00 4D 98 32 El UW.+...M.2.

== Q_INPUT ==
if of bytes is 5
Byte Stream :
55 57 0D 0A 06 UW...

== QjOUTPUT ==
if of bytes is 45
Byte Stream :
00 00 00 00 00 00 00 00 00 00 00 00 00 00 06 01 ...
00 02 00 00 00 00 00 00 00 04 00 00 09 00 01 B9 ...
IF 00 30 0B 00 FF FF 00 F0 00 00 D5 El ..0

== Q_INPUT ==
if of bytes is 2
Byte Stream :
06 2E

PCB

RESERVED
iDBP STATUS
HOST STATUS
RESERVED
REQUEST LENGTH
NUMBER OF SEGMENTS
BUFFER 1 PTR
BUFFER 1 LENGTH
BUFFER 2 PTR
BUFFER 2 LENGTH

00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 READ RESPONSE WITH EOM
01 READ/WRITE OK
00 02 00 00 00 00 00 00 00 04 00 00

9
1
30001FB9

11
F000FFFF

0

== Q_OUTPUT ==
if of bytes is 2
Byte Stream :
47 OD G.

== q_INPUT «
if of bytes is 29
Byte Stream :
47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G....*BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

** All data has been received **
** Create Application Response **
FC 03 E4 01 00 FF 00
== Q_OUTPUT ==
of bytes is 2
Byte Stream :
47 OD G.

== Q_INPUT ==
of bytes is 29
Byte Stream :
47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G *BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

$

APPENDIX C - DBPSSP Source

DBPSSP has been implemented using VAX VMS FORTRAN 77
The file "DBPSSP.FOR" contains all of the high-orde
procedures which will be used most often.

oo
oo

n
o
o
n
n

no
on

no

n
n
o
o
n

$ @typeq
Css=================s=s=======s=======ss!==!==!!=====s==!====s==ss==
C
C CONTENTS :
C
C THIS FILE CONTAINS A SET OF ASSEMBLY TOOLS NECESSARY
C TO EFFICIENTLY CONSTRUCT REQUEST MODULES FOR THE
C DBP. EACH PROCEDURE ACTIVATES ONE OR MORE PRIMITIVE
C ASSEMBLY PROCEDURES.
C
C DATE :
C
C APRIL 20,1983
C
0= =
c

SUBROUTINE INIT
INITIALIZE DBP COMMUNICATIONS VIA
SPP(SERVICE PORT PROTOCOL)

CALL INIT_COMM
RETURN
END
SUBROUTINE START

START ENCODING A REQUEST MODULE
CALL DBP_BEGIN
RETURN
END
SUBROUTINE BITSB

PREPARE FOR INSERTING AN 'OR'ED VALUE WITHIN
THE REQUEST MODULE

CALL DBP_BITS__BEGIN(-1)
RETURN
END
SUBROUTINE BITSB_A(OFFSET)

*** ABSOLUTE OFFSET ***
PREPARE FOR INSERTING AN 'OR'ED VALUE WITHIN
THE REQUEST MODULE

CALL DBP_BITS__BEGIN(OFFSET)
RETURN
END
SUBROUTINE BITS(BYTE_VALUE)

PERFORM AN 'OR' OPERATION OF 'BYTE__VALUE' ON THE
CURRENT BYTE WITHIN THE REQUEST MODULE.

BYTE BYTE__VALUE
CALL DBP_BITS(BYTE_VALUE)
RETURN
END
SUBROUTINE BITSE

C~

C STOP THE 'OR'ING PROCESS FOR THE CURRENT BYTE BEING
C FORMED WITHIN THE REQUEST MODULE
C

CALL DBP_BITS_END
RETURN
END
SUBROUTINE ASC(STRING,LENGTH)

C
C INSERT AN ASCII STRING OF LENGTH 'LENGTH' WITHIN
C THE REQUEST MODULE.
C ALSO PLACE THE 'LENGTH' DIRECTLY IN FRONT OF THE
C ASCII BYTES
C

CHARACTER*(*) STRING
INTEGER*4 LENGTH

C
CALL DBP__INTEGER(-1,LENGTH, 1)
CALL DBP__BYTES(-1,STRING,LENGTH)
RETURN
END
SUBROUTINE ASCX(STRING,LENGTH)

C
C INSERT AN ASCII STRING OF LENGTH 'LENGTH' WITHIN
C THE REQUEST MODULE.
C DO NOT PLACE THE 'LENGTH' WITHIN THE REQUEST MODULE
C BEING BUILT
C

CHARACTER*(*) STRING
INTEGER*4 LENGTH

C
CALL DBP__BYTES(-1,STRING,LENGTH)
RETURN
END
SUBROUTINE ASC_A(OFFSET,STRING,LENGTH)

C
C *** ABSOLUTE OFFSET ***
C
C INSERT AN ASCII STRING OF LENGTH 'LENGTH' WITHIN
C THE REQUEST MODULE.
C

CHARACTER*(*) STRING
INTEGER*4 LENGTH,OFFSET

C
CALL DBP_INTEGER(OFFSET,LENGTH,1)
CALL DBP_BYTES(OFFSET+1,STRING,LENGTH)
RETURN
END
SUBROUTINE ASCX_A(OFFSET,STRING,LENGTH)

C
C *** ABSOLUTE OFFSET ***
C
C INSERT AN ASCII STRING OF LENGTH 'LENGTH' WITHIN
C THE REQUEST MODULE.
C

CHARACTER*(*) STRING
INTEGER*4 LENGTH,OFFSET

C
CALL DBP_BYTES(OFFSET+1,STRING,LENGTH)
RETURN
END

SUBROUTINE INTI(VALUE)
C
C INSERT A ONE-BYTE INTEGER
C

INTEGER*4 VALUE
CALL DBP_INTEGER(-1,VALUE,1)
RETURN
END
SUBROUTINE INT1_A(OFFSET,VALUE)

C
C *** ABSOLUTE OFFSET ***
C
C INSERT A ONE-BYTE INTEGER
C

INTEGER*4 OFFSET,VALUE
CALL DBP__INTEGER(OFFSET,VALUE, 1)
RETURN
END
SUBROUTINE INT2(VALUE)

C
C INSERT A TWO-BYTE INTEGER
C

INTEGER*4 VALUE
CALL DBP_INTEGER(-1,VALUE,2) .
RETURN
END
SUBROUTINE INT2__A(OFFSET,VALUE)

C
C *** ABSOLUTE OFFSET ***
C
C INSERT A TWO-BYTE INTEGER
C

INTEGER*4 OFFSET,VALUE
CALL DBP_INTEGER(OFFSET,VALUE,2)
RETURN
END
SUBROUTINE INT4(VALUE)

C
C INSERT A FOUR-BYTE INTEGER
C

INTEGER*4 VALUE
CALL DBP__INTEGER(-1,VALUE,4)
RETURN
END
SUBROUTINE INT4_A(OFFSET,VALUE)

C
C *** ABSOLUTE OFFSET ***
C
C INSERT A FOUR-BYTE INTEGER
C

INTEGER*4 OFFSET,VALUE
CALL DBP_INTEGER(OFFSET,VALUE,4)
RETURN
END
SUBROUTINE TRON

CC START THE DIAGNOSTIC TRACE UTILITY
C USE UNIT #9
C

CALL TRACE START(9)

RETURN
END
SUBROUTINE TROFF

C
C STOP THE TRACE UTILITY
C

CALL TRACE_J3TOP
RETURN
END
SUBROUTINE PRON

C
C START THE PERFORMANCE MONITORING UTILITY
C

CALL PERFORM_START
RETURN
END
SUBROUTINE PROFF(CLOCK,CPU,BIO,DIO,PAGE)

C
C STOP THE PERFORMANCE MONITORING UTILITY AND
C RETRIEVE THE EXECUTION STATISTICS SINCE THE
C LAST ACTIVATION OF 'PRON'
C

INTEGER*4 BIO,DIO,PAGE
CALL PERFORM_STOP(CLOCK,CPU,BIO,DIO,PAGE)
RETURN
END
SUBROUTINE TERMINATE

C
C INSERT THE TERMINATOR BYTES INTO THE REQUEST STREAM
C

CALL DBP__INTEGER(-1,'FF'X,1)
CALL DBP_INTEGER(-1,'00'X,1)
RETURN
END
SUBROUTINE SEND

C
C SEND THE BUILT REQUEST MODULE TO THE DBP
C

CALL DBP_SEND
RETURN
END
SUBROUTINE RECV(RESPONSE,NBYTES_RECV,MORE)

C
C RECEIVE THE MESSAGE FROM THE DBP. IF 'MORE' IS
C TRUE THEN WE SHOULD RE-ACTIVATE 'SEND'
C

LOGICAL MORE
BYTE RESPONSE(1024)
INTEGER*4 NBYTES_RECV

C
CALL DBP_RECV(RESPONSE,NBYTES_RECV,MORE)
RETURN
END
SUBROUTINE PERFON

C
C TURN ON THE PERFORMANCE MONITORING
C

LOGICAL PERF_JDEBUG
COMMON/ PERFMODE/ PERFJDEBUG

c’

no
n

n
o
n
o
o
o
n
n
o
n
n
o
n
n
n
o
o

o
no

on

o
no

on

o
no

n

PERF__DEBUG = .TRUE.
RETURN
END
SUBROUTINE PERFOFF

TURN OFF THE PERFORMANCE MONITORING
LOGICAL PERF_DEBUG
COMMON/ PERFMODE/ PERF_DEBUG
PERF_DEBUG = .FALSE.
RETURN
END
SUBROUTINE TRACEON

TURN ON THE TRACE TO DISPLAY THE ENCODED SEND
AND REQUEST MODULES BEING TRANSFERRED

LOGICAL DEBUG
COMMON/DEBUGMODE/ DEBUG
DEBUG = .TRUE.
RETURN
END
SUBROUTINE TRACEOFF

TURN OFF THE TRACE TO DISPLAY ENCODED SEND
AND REQUEST MODULES BEING TRANSFERRED

LOGICAL DEBUG
COMMON/DEBUGMODE/ DEBUG
DEBUG = .FALSE.
RETURN
END
SUBROUTINE DBP BEGIN

PURPOSE :
START THE ENCODING PROCESS NECESSARY TO BUILD
A COMMAND BLOCK FOR PASSAGE TO THE DBP

ARGUMENTS :
NONE

DATE :
APRIL 2,1983

BYTE BUILT_MODULE(1024)
INTEGER*4 CURRENT_OFFSET
COMMON/OFFSETCOM/ BUILT_MODULE,CURRENT_OFFSET

St-

reset THE CURRENT OFFSET COUNTER
CURRENT OFFSET = 0

n
o
n
o
o
o
o
o
o

o
o
o
*—

o
o
n
n

RETURN
END
SUBROUTINE DBP_INTEGER(OFFSET,VALUE,LENGTH)

C
C PURPOSE :
C
C TO INSERT A 1,2, OR 4 BYTE INTEGER INTO THE COMMAND BLOCK
C BEING CONSTRUCTED.
C
C ARGUMENTS
C
C OFFSET
C
C
C VALUE
C
C LENGTH
C
C
C DATE :
C
C APRIL 2,1983
C0= =

BYTE BYTE_ARRAY(4)
BYTE BUILT_MODULE(1024)
INTEGER*4 OFFS ET,VALUE,VALUE2,LENGTH,CURRENT_OFFSET
INTEGER*4 POSITION
EQUIVALENCE(VALUE2,BYTE_ARRAY(1))
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_OFFSET

C
VALUE2 = VALUE

UPDATE THE CURRENT POSITION WITHIN
THE COMMAND BLOCK

IF(OFFSET.EQ.-l) THEN
POSITION = CURRENT__OFF SET

ELSE
POSITION = OFFSET

END IF
DO 100 I = 1,LENGTH

10 BUILT_MODULE(POSITION+I) - BYTE__ARRAY(I)
UPDATE THE OFFSET COUNTER

CURRENT__OFFS ET = POSITION + LENGTH
RETURN
END
SUBROUTINE DBP_BYTES(OFFSET,STRING,LENGTH)

PURPOSE :
TO INSERT A CHARACTER STRING OF LENGTH 'LENGTH' INTO
THE COMMAND BLOCK BEING CONSTRUCTED

ARGUMENTS

- OFFSET FROM START OF THE COMMAND BLOCK
BEING BUILT. STARTS AT ZERO.

- VALUE TO BE INSERTED INTO THE COMMAND BLOCK
- NUMBER OF BYTES IN INTEGER 'VALUE'
= 1,2, OR 4

o
o
n
o
o
o
o
o
o
n
o
o
o
n
n
n
o
n
o
o

o
o
o
h
-

o
n
n

o
n
o
o

C OFFSET
C
C
C STRING
C
C
C LENGTH
C
C DATE :
C
C APRIL 2,1983
C
C====================!===========S====!==!====:===SS====M===

BYTE BUILT_MODULE(1024)
INTEGER*4 OFFS ET,LENGTH,CURRENT_OFFSET
INTEGER*4 POSITION
CHARACTER*(*) STRING
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_OFFSET

UPDATE THE CURRENT POSITION WITHIN
THE COMMAND BLOCK

IF(OFFSET.EQ.-l) THEN
POSITION = CURRENT_OFFSET

ELSE
POSITION = OFFSET

END IF
INSERT THE STRING INTO THE MODULE BEING BUILT

READ(STRING,100) (BUILT_MODULE(I),I=POSITION+l,
X POSITION+LENGTH)

10 FORMAT(<LENGTH>A1)
UPDATE THE OFFSET COUNTER

CURRENT_OFFSET = POSITION + LENGTH
RETURN
END
SUBROUTINE DBPJBITS(BYTE__VALUE)

PURPOSE :
TO 'OR' THE GIVEN BYTE VALUE WITH THE BYTE
VALUE ALREADY PRESENT

NOTE:
THE CURRENT_OFFSET COUNTER IS NOT INCREMENTED
THIS PERMITS MULTIPLE OR'S. WHEN LOGICAL 'OR'ING
IS DONE, USE ROUTINE 'DBP_BITS_END'

ARGUMENTS

BYTE__VALUE - BYTE VALUE TO 'OR'
DATE :

- OFFSET FROM START OF THE COMMAND BLOCK
BEING BUILT. STARTS AT ZERO.

- CHARACTER STRING TO BE INSERTED INTO THE
COMMAND BLOCK

- NUMBER OF BYTES IN CHARACTER STRING.

c
C APRIL 2,1983
C
C==

BYTE BUILT_MODULE(1024)
INTEGER*4 CURRENT_OFFSET
BYTE BYTE_VALUE
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_0FFSET

C
C OR THE GIVEN BYTE WITH THE BYTE ALREADY THERE
C

BUILT_MODULE(CURRENT_OFFSET+l) = BUILT_MODULE(CURRENT__OFFSET+1).OR.
X BYTE_VALUE
RETURN
END
SUBROUTINE DBP_BITS_BEGIN(OFFSET)

C==
c
C PURPOSE :
C
C TO INITIALIZE THE GIVEN BYTE WITHIN 'BUILT_MODULE'•
C FUTURE 'OR'ING IS EXPECTED ON THE CURRENT BYTE,
C SO THE CURRENT OFFSET COUNTER IS NOT
C INCREMENTED.
C
C ARGUMENTS
C
C OFFSET - OFFSET FROM START OF THE COMMAND BLOCK
C BEING BUILT. STARTS AT ZERO.
C
C DATE :
C
C APRIL 2,1983
CC==

BYTE BUILT_MODULE(1024)
INTEGER* 4 OFFS ET, CURRENT__OFFS ET
INTEGER*4 POSITION
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_OFFSET

C
C UPDATE THE CURRENT POSITION WITHIN
C THE COMMAND BLOCK
C

IF(OFFSET.EQ.-l) THEN
POSITION = CURRENTJDFFS ET

ELSE
POSITION = OFFSET

END IF
C

BUILT_MODULE(POSITION+1) - 0
RETURN
END
SUBROUTINE DBP_BITS_END

C=======M======SS==================================!=S=!==
C
C PURPOSE :
C
C SIGNIFIES THAT THE 'OR'ING PROCESS ON THE CURRENT
C MODULE BYTE IS DONE. TIME TO CONTINUE CONSTRUCTION
C OF THE REST OF THE MODULE. INCREMENT THE CURRENT

C OFFSET COUNTER.
C
C ARGUMENTS
C
C NONE
C
C DATE :
C
C APRIL 2,1983
CC========= = ==«======================================:

BYTE BUILT__MODULE (1024)
INTEGER*4 OFFSET,CURRENT_OFFSET
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_OFFSET

C
CURRENT_OFF SET = CURRENT_OFF SET + 1
RETURN
END
SUBROUTINE DBP__SEND

c=====================================s====s======!=s==aB=;
C
C PURPOSE :
C
C SEND THE COMMAND BLOCK TO THE DBP.
C
C NOTE :
C
C THIS ROUTINE CALLS THE 'SPP' PACKAGE
C (SERVICE PORT PROTOCOL)
C TO PERMIT HOST-DBP COMMUNICATION
C
C ARGUMENTS
C
C NONE
C
C DATE :
C
C APRIL 2,1983
Cc==s==!;

BYTE BUILT_MODULE(1024),PRBYTES(1024)
INTEGER*4 CURRENT_OFFSET, TOTAL__BYTES ,UNIT
LOGICAL*4 MORE_TO_COME, DEBUG, PERF_DEBUG
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_OFFSET
COMMON/ DEBUGMODE/ DEBUG
COMMON/ PERFMODE/ PERF_DEBUG
DATA PERF_DEBUG/.FALSE./,DEBUG/.FALSE./,UNIT/6/

C
C 1. SEND THE BUILT COMMAND BLOCK TO THE DBP
C 2. LOOP TO RECEIVE ALL DBP RESPONSES
C
C
C OUTPUT THE REQUEST BLOCK IF IN DEBUG MODE
C

IF(DEBUG) THEN
C
C SET UP ASCII BYTES
C

DO 50 I = l,CURRENT_OFFSET+l
IF((BUILT_MODULE(I).LT.'20'X).OR.

X (BUILT_M0DULE(I).GT.'7E'X)) THEN
PRBYTES(I) - '2E'X

ELSE
PRBYTES(I) = BU ILT__MODULE (I)

ENDIF
50 CONTINUE

WRITE(UNIT,100) CURRENT_OFFSET
100 FORMAT(' == DBP REQUEST =='/' // of bytes is ',15,

X /,' Byte Stream :'/)
MULTIPLE16 - (CURRENT_OFFSET/16)*16
LEFTOVER = CURRENT_OFFSET - MULTIPLE16
IF(MULTIPLE16.GT.0) THEN
DO 200 I = 1,MULTIPLE16,16
WRITE(UNIT,150) (BUILT_MODULE(II),11=1,1+15),

X (PRBYTES(I2),12=1,1+15)
150 F0RMAT(16(1X,Z2.2),2X,16A1)
200 CONTINUE

ENDIF
IF(LEFTOVER.GT.O) THEN
WRITE(UNIT,210) (BUILT_M0DULE(I1),I1=MULTIPLE16+1,

X MULTIPLE16+LEFT0VER),(PRBYTES(I2),I2=MULTIPLE16+1,
X MULTIP LE16+LEFT0VER)

210 FORMAT(<LEFT0VER>(IX,Z 2.2),<16-LEFTOVER>(3X),2X,
X <LEFT0VER>A1)
ENDIF
WRITE(UNIT,250)

250 FORMAT (/)
ENDIF
IF(PERF__DEBUG) CALL PRON
CALL SEND__REQUEST(BUILT_MODULE,CURRENT__OFFSET, 1,1,1)

C
C FINISHED WITH THIS COMMAND
C
9999 RETURN

END
SUBROUTINE DBP_RECV(RESPONSE,TOTAL_BYTES,MORE) C==========M==========================;=====!!=S====!M!!!===

C
C PURPOSE :
C
C RECEIVE THE RESPONSE FROM THE DBP
C
C NOTE :
C
C THIS ROUTINE CALLS THE 'SPP' PACKAGE
C (SERVICE PORT PROTOCOL)
C TO PERMIT HOST-DBP COMMUNICATION
C
C ARGUMENTS
C
C RESPONSE - THE BYTE RESPONSE FROM THE DBP
C MORE - = .TRUE. IF THERE IS MORE TO COME
C FROM THE DBP
C
C - = .FALSE. IF ALL THE DATA FROM THE
C DBP HAS BEEN RECEIVED
C
C
C DATE :
C

C APRIL 20,1983
CC=!=============M===M=======================!=!==S===!=!=S!S=

BYTE RESPONSE(1024),PRBYTES(1024)
INTEGER*4 DIO,BIO,PAGE
INTEGER*4 CURRENT_OFFSET,TOTALJBYTES,UNIT
LOGICAL*4 MORE,DEBUG,PERF_DEBUG
COMMON/DEBUGMODE/ DEBUG
COMMON/PERFMODE/ PERF_JDEBUG
DATA PERFJDEBUG/. FALSE. /, DEBUG/. FALSE. /, UNIT/ 6 /

C
CALL RECVJtESPONSE(RESPONSE,TOTAL_BYTES,1,MORE)
IF(PERFJDEBUG) THEN
CALL PROFF(CLOCK,CPU,BIO,DIO,PAGE)
WRITE(6,10) CLOCK,CPU,BIO,D10,PAGE

10 FORMAT(/' Clock ',F12.5/,' CPU ',F12.5/,
X ' Buffered I/O count ',16/,' Direct I/O count ',16,
X ' Page Fault count ',16 ,//)
ENDIF
IF(TOTALJBYTES.GT. 1024) THEN
WRITE(6,25) TOTAL_BYTES

25 FORMAT(' Error, DBP says that it has ',
X 17,' bytes to send back.',
X /' This exceeds the limit of 1024.')
GO TO 9999
ENDIF

C
C OUTPUT THE RESPONSE IF IN DEBUG MODE
C

IF(DEBUG) THEN
C
C SET UP ASCII BYTES
C

DO 500 I = 1,TOTALJBYTES
IF((RESPONSE(I).LT.'20'X).OR.
X (RESPONSE(I).GT.'7E'X)) THEN

PRBYTES(I) = '2E'X
ELSE

PRBYTES(I) = RESPONSE(I)
ENDIF

500 CONTINUE
WRITE(UNIT,600) TOTAL_BYTES

600 FORMAT(' == DBP RESPONSE =='/' // of bytes is ',15,
X /,' Byte Stream :'/)
MULTIPLE 16 = (TOTALJJYTES /16) * 16
LEFTOVER = TOTAL_BYTES - MULTIPLE16
IF(MULTIPLE16.GT.0) THEN
DO 700 I = 1,TOTALJBYTES,16
WRITE(UNIT,650) (RESPONSE(II),11=1,1+15),

X (PRBYTES(I2),12=1,1+15)
650 FORMAT(16(IX,Z2.2),2X,16A1)
700 CONTINUE

ENDIF
IF(LEFTOVER.GT.O) THEN
WRITE(UNIT,675) (RESP0NSE(I1),I1=MULTIPLE16+1,

X MULTIPLE16+LEFT0VER),(PRBYTES(I2),I2=MULTIPLE16+1,
X MULTIPLE16+LfcFTOVER)

675 FORMAT(<LEFTOVER>(1X,Z2.2),<16-LEFTOVER>(3X),2 X,
X <LEFT0VER>A1)
ENDIF

WRITE(UNIT,750)
750 FORMAT(/)

ENDIF
C
C FINISHED WITH THIS COMMAND
C
9999 RETURN

END
$

APPENDIX D - DBPSSP Examples

A FORTRAN and Pascal example are given to aid the
reader in evaluating the utility of DBPSSP. A brief trace
of the requests and responses is also included.

$ type testfor.for
PROGRAM TESTFOR

C
C A FORTRAN EXAMPLE USING THE DBPSSP PRIMITIVE
C ROUTINES
C

BYTE RESPONSE(1024)
INTEGER*4 BYTES__RECV
LOGICAL MORE

C
CALL TRACE_START(9)
CALL TRACEON
CALL INIT_COMM

C
C SUBMIT KEYS 'ADMIN'
C

CALL DBP__BEGIN
CALL DBP_INTEGER(-1,'07'X,1)
CALL DBP_INTEGER(-1,5,1)
CALL DBP_BYTES(-1,'ADMIN',5)
CALL DBP__INTEGER(-1,'FF'X,1)
CALL DBP_INTEGER(-1,'00'X,1)
CALL DBP__SEND
CALL DBP__RECV(RESPONSE,BYTES__RECV,MORE)

C
C DEFINE DATABASE CALLED 'TESTING'
C

CALL DBP_BEGIN
CALL DBP_INTEGER(-1,'60'X,1)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1,'TESTING',7)
CALL DBP_INTEGER(-1,'FF'X,1)
CALL DBP_INTEGER(-1,'00'X,1)
CALL DBP_SEND
CALL DBP__RECV(RESPONSE,BYTES_RECV,MORE)

C
C KEEP DATABASE 'TESTING'
C

CALL DBP_BEGIN
CALL DBP__INTEGER(-1,'64'X,1)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1,'TESTING',7)
CALL DBP_INTEGER(-1,7,1)
CALL DBP__BYTES (-1,'TESTING', 7)
CALL DBP_INTEGER(-1,'FF'X,1)
CALL DBP__INTEGER(-1,'00'X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_RECV,MORE)

C
C DEFINE FILE CALLED 'FILE1'
C

CALL DBP_BEGIN
CALL DBP_INTEGER(-1,'40'X,1)
CALL DBP__INTEGER(-1,5,1)
CALL DBP__BYTES(-1,'FILE1',5)
CALL DBP_INTEGER(-1,1,1)
CALL DBP__BITS__BEGIN(-1)
CALL DBP__BITS('1000'X)
CALL DBP BITS END

CALL DBP_INTEGER(-1,6,1)
CALL DBP_BYTES(-1,'DBPSYS',6)
CALL DBP__INTEGER(-1,2,1)
CALL DBP_INTEGER(-1,10,2)
CALL DBP_INTEGER(-1,2,1)
CALL DBP_INTEGER(-1,0,2)
CALL DBP__INTEGER(-1,'FF'X,1)
CALL DBP_INTEGER(-1,'00'X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_RECV,MORE)

DEFINE SCHEMA ON PERMANENT FILE 'FILE1'
CALL DBP__BEGIN
CALL DBP_INTEGER(-1,'49'X,1)
CALL DBP_INTEGER(-1,5,1)
CALL DBP_BYTES(-1,'FILE1',5)
CALL DBP_INTEGER(-1,1,1)
CALL DBP_BITS_BEGIN(-1)
CALL DBP_BITS('0000'X)
CALL DBP_BITS('0000'X)
CALL DBP_BITS_END

SCHEMA SPECIFICATION - SET UP AS
INTI INTEGER*4
INT2 INTEGER*4
INT3 INTEGER*4

CALL DBP_INTEGER(-1,0,1
CALL DBP_INTEGER(-1,2,1
CALL DBP_INTEGER(-1,20,2
CALL DBP_INTEGER(-1,2,1
CALL DBP__INTEGER(-1,20,2
CALL DBP_
CALL DBP"
CALL DBP*
CALL DBP]
CALL DBP]
CALL DBP*
CALL DBP*
CALL DBP]
CALL DBP_
CALL DBP*
CALL DBP"
CALL DBP]
CALL DBP]
CALL DBP*
CALL DBP*
CALL DBP"

INTEGER(-1,4,1
BYTES(-1,'INTl'
‘INTEGER(-1,1,1
"BITS_BEGIN(-1)
BITS('0001'X)
"bits_end
‘integer(-1,1,1
"INTEGER(-1,4,1
INTEGER(-1,4,1
BYTES (-1/INT2'
"INTEGER(-1,1,1
~BITS_BEGIN(-1)
BITS('0001'X)
~BITS_END
INTEGER(-1,1,1
‘INTEGER(-1,4,1

4)

4)

CALL DBP__INTEGER(-1,4,1
CALL DBP_BYTES(-1/INT3'
CALL DBP_INTEGER(-1,1,1
CALL DBP_BITS__BEGIN(-1)
CALL DBP_BITS('0001'X)
CALL DBPJBITSJEND
CALL DBP__INTEGER (-1,1,1)

4)

CALL DBP_INTEGER(-1,4,1)
C DONE

CALL DBP_INTEGER(-1,'FF'X,1)
CALL DBP_INTEGER(-1,'00'X,1)
CALL DBP_SEND
CALL DBP__RECV(RESPONSE,BYTES_RECV,MORE)

C
C KEEP FILE
C

CALL DBP_BEGIN
CALL DBP_INTEGER(-1,'41'X,1)
CALL DBP__INTEGER(-1,5,1)
CALL DBP_BYTES(-1,'FILE1',5)
CALL DBP_INTEGER(-1,5,1)
CALL DBP__BYTES(-1,'FILE1',5)
CALL DBP__INTEGER(-1,7,1)
CALL DBP_BYTES(-1,'TESTING',7)
CALL DBP__INTEGER(-1,'FF'X,1)
CALL DBP_INTEGER(-1,'00'X,1)
CALL DBP_SEND
CALL DBP__RECV(RESPONSE,BYTES__RECV,MORE)

C
C LIST DATABASE 'TESTING'
C

CALL DBP_BEGIN
CALL DBP_INTEGER(-1,'90'X,1)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1,'TESTING',7)
CALL DBP_INTEGER(-1,1,1)
CALL DBP__INTEGER(-1,'F0'X,1)
CALL DBP_INTEGER(-1,'FF'X,1)
CALL DBP__INTEGER(-1,'00'X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_RECV,MORE)

C
CALL TRACE_STOP
CALL TRACEOFF
CALL EXIT
END

$

$ type testpas.pas
PROGRAM TESTPAS(INPUT,OUTPUT);
(* TEST OF DBPSSP *)
TYPE LIMIT = ARRAY[1..1024] OF CHAR;
VAR RESPONSE: LIMIT;

TOTALJBYTES: INTEGER;
MORE: BOOLEAN;
I : INTEGER;

(* DBPSSP SUPPORT PROCEDURES - EXTERNAL *)
PROCEDURE INIT; FORTRAN;
PROCEDURE START; FORTRAN;
PROCEDURE TRON; FORTRAN;
PROCEDURE TROFF; FORTRAN;
PROCEDURE BITSB; FORTRAN;
PROCEDURE BITS(BYTEVALUE:INTEGER); FORTRAN;
PROCEDURE BITSE; FORTRAN;
PROCEDURE ASC(%STDESCR STRING:PACKED ARRAY[INTEGER]

OF CHAR; LENGTH:INTEGER); FORTRAN ;
PROCEDURE INTI(INTEGER_VALUE: INTEGER); FORTRAN;
PROCEDURE INT2(INTEGER_VALUE:INTEGER); FORTRAN;
PROCEDURE INT4(INTEGER_VALUE:INTEGER); FORTRAN;
PROCEDURE TERMINATE; FORTRAN;
PROCEDURE SEND; FORTRAN;
PROCEDURE RECV(VAR RESPONSE:LIMIT;

VAR TOTAL_BYTES:INTEGER;
VAR MORE:BOOLEAN); FORTRAN;

PROCEDURE TRACEON; FORTRAN;
PROCEDURE TRACEOFF; FORTRAN;

BEGIN
TRACEON;
TRON;
INIT;

(* SUBMIT KEYS 'ADMIN' *)
START;
INTI(7);
ASC('ADMIN',5);
TERMINATE;
SEND;
RECV(RESPONSE,TOTALJBYTES,MORE);

(* DEFINE DATABASE CALLED 'TESTING' *)
START;
INTI(96);
ASC (' TESTING ', 7) ;*'
TERMINATE;

. SEND;
' RECV(RESPONSE,TOTALJBYTES,MORE);

(* KEEP DATABASE 'TESTING' *)
START;
INTI(100);
ASC('TESTING',7);
ASC('TESTING',7);
TERMINATE;
SEND;
RECV(RESPONSE,TOTAL_BYTES,MORE);

(* DEFINE FILE CALLED 'FILE1' *)
START;
INT1(64);
ASC('FILE1',5);
INTI(1);
BITSB; BITS(8); BITSE;
ASC('DBPSYS',6);
INTI(2);
INT2(10);
INTI(2);
INT2(0);
TERMINATE;
SEND;
RECV(RESPONSE,TOTAL__BYTES ,MORE);

(* DEFINE SCHEMA ON PERMANENT FILE 'FILE' *)
START;
INTI(73);
ASC('FILE1',5);
INT1(1);
BITSB; BITS(O); BITSE;

(* SCHEMA SPECIFICATION - SET UP AS
INTI INTEGER*4
INT2 INTEGER*4
INT3 INTEGER*4

INTI(0);
INTI(2);
INT2(20);
INTI(2);
INT2(20);
ASC('INT1',4);
INTI(1);
BITSB; BITS(l); BITSE;
INT1(1);
INTI(4);
ASC('INT2',4);
INTI(1);
BITSB; BITS(l); BITSE;
INTI(1);
INTI(4);

ASC('INT3',4);
INTI(1);
BITSB; BITS(l); BITSE;
INTI(1);
INTI(4);
TERMINATE;
SEND;
RECV(RESPONSE,TOTALJBYTES,MORE)

(* KEEP FILE *)
START;
INTI(65);
ASC('FILE1',5);
ASC('FILE1',5);
ASC('TESTING',7);
TERMINATE;
SEND;
RECV(RESPONSE,TOTAL_BYTES,MORE)

(* LIST DATABASE 'TESTING' *)
START;
INTI(144);
ASC('TESTING',7);
INTI(1);
INTI(240);
TERMINATE;
SEND;
RECV(RESPONSE,TOTAL_BYTES,MORE)
TROFF

END.

$ @testfor
_TTBO: allocated

== DBP REQUEST ==
of bytes is 9
Byte Stream :
07 05 41 44 4D 49 4E FF 00 ..ADMIN..

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 11
Byte Stream :
60 07 54 45 53 54 49 4E 47 FF 00 '.TESTING..

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 19
Byte Stream :
64 07 54 45 53 54 49 4E 47 07 54 45 53 54 49 4E d.TESTING.TESTIN
47 FF 00 G..

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 24

. Byte Stream :
40 05 46 49 4C 45 31 01 00 06 44 42 50 53 59 53 0.FILE1...DBPSYS
02 0A 00 02 00 00 FF 00

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
// of bytes is 45
Byte Stream :

49 05 46 49 4C 45 31 01 00 00 02 14 00 02 14 00 I.FILE1.......
04 49 4E 54 31 01 01 01 04 04 49 4E 54 32 01 01 .INTI INT2..
01 04 04 49 4E 54 33 01 01 01 04 FF 00 ...INT3.....

— DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 23
Byte Stream :
41 05 46 49 4C 45 31 05 46 49 4C 45 31 07 54 45 A.FILE1.FILE1.TE
53 54 49 4E 47 FF 00 STING..

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 13
Byte Stream :
90 07 54 45 53 54 49 4E 47 01 F0 FF 00 ..TESTING---

== DBP RESPONSE ==
of bytes is 55
Byte Stream :
F8 02 90 F0 01 00 01 01 06
54 45 53 54 49 4E 47 01 03
05 46 49 4C 45 31 01 00 06
46 49 4C 45 31 FF 00 15 2D
46 49 4C 45 31 FF 00

02 03 00 00 00 00 07
06 02 03 03 00 05 00 TESTING
02 03 03 00 05 00 05 .FILE1•
2E 00 15 2D 2E 00 00 FILE1.•

FILE1.•

$

APPENDIX E - DBPQL conceptual procedures

$ type [intel.dbpql]dbpcmd.dat
(* SUPPORT PROCEDURES FOR DBPQL - EXTERNAL *)
PROCEDURE INIT; FORTRAN;
PROCEDURE START; FORTRAN;
PROCEDURE TRON; FORTRAN;
PROCEDURE TROFF; FORTRAN;
PROCEDURE BITSB; FORTRAN;
PROCEDURE BITS(BYTEVALUE:INTEGER); FORTRAN;
PROCEDURE BITSE; FORTRAN;
PROCEDURE ASC(%STDESCR STRING:PACKED ARRAY[INTEGER]

OF CHAR; LENGTH:INTEGER); FORTRAN ;
PROCEDURE ASCX(%STDESCR STRING:PACKED ARRAY[INTEGER]

OF CHAR; LENGTH:INTEGER); FORTRAN;
PROCEDURE INTI(INTEGER_VALUE:INTEGER); FORTRAN;
PROCEDURE INT2(INTEGER_VALUE:INTEGER); FORTRAN;
PROCEDURE INT4(INTEGER_VALUE:INTEGER); FORTRAN;
PROCEDURE TERMINATE; FORTRAN;
PROCEDURE SEND; FORTRAN;
PROCEDURE RECV(VAR RESPONSE:LIMIT.;

VAR TOTAL__BYTES: INTEGER;
VAR MORE:BOOLEAN); FORTRAN;

PROCEDURE PERFON; FORTRAN;
PROCEDURE PERFOFF; FORTRAN;
PROCEDURE TRACEON; FORTRAN;
PROCEDURE TRACEOFF; FORTRAN;
(* UTILITY PROCEDURES *)
PROCEDURE NUM_TO_ASCII(NUMBER:INTEGER;VAR ASCII_NUMBER:IDENT_STRING

VAR ASCII__NUMBERL: INTEGER);
(* CONVERT AN INTEGER TO ASCII *)
VAR COUNT : INTEGER;

COUNT2 : INTEGER;
DIGIT : INTEGER;
WORKING_NUMBER: INTEGER;
STRING : IDENT_STRING;

BEGIN
WORKING_NUMBER := NUMBER;
COUNT := 0;
REPEAT
COUNT := COUNT + 1;
DIGIT := WORKING__NUMBER - (WORKING_NUMBER DIV 10)*10;
WORKING_NUMBER := WORKING__NUMBER DIV 10;
STRING[COUNT] := CHR(DIGIT + 48);

UNTIL WORKING__NUMBER = 0;
(* REVERSE THE DIGITS *)
FOR COUNT2 := 1 TO COUNT DO

ASCII_NUMBER[COUNT2] := STRING[COUNT - COUNT2 + 1];
ASCII_NUMBERL := COUNT

END;

(* RECEIVE 'DESCRIBE VIEW' RESPONSE *)
PROCEDURE DV_RESPONSE(VAR VIEW:IDENT_STRING;VAR VIEWL:INTEGER;

VAR VIEW2:IDENT_STRING;VAR VIEW2L:INTEGER;
VAR NUMJLTEMS:INTEGER;
VAR ITEM__NAME:IDTYPE;VAR ITEM_NAMEL:NUMTYPE;
VAR ITEMJTYPE: NUMTYPE; VAR ITEM_LENGTH:NUMTYPE);

VAR COUNT :INTEGER;
COUNT2:INTEGER;
OFFSET:INTEGER;

BEGIN
OFFSET := 16;
VIEWL := ORD(RESPONSE[OFFSET]);
VIEW := BLANK_IDENT;
FOR COUNT := 1 TO VIEWL DO

VIEW[COUNT] := RESPONSE[OFFSET+COUNT];
(* POINT OFFSET TO 'VIEW-OWNER' *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
VIEW2L := ORD(RESPONSE[OFFSET]);
VIEW2 := BLANK_IDENT;
FOR COUNT := 1 TO VIEW2L DO

VIEW2[COUNT] := RESPONSE[OFFSET+COUNT];
(* POINT OFFSET TO 'READ-LOCK' *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
(* POINT OFFSET TO 'WRITE-LOCK' *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
(* POINT OFFSET TO 'READ-WRITE' *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
(* POINT OFFSET TO 'FILE-COUNT' *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
NUM_ITEMS := ORD(RESPONSE[OFFSET+3]);
OFFSET := OFFSET + 5;
FOR COUNT := 1 TO NUM_ITEMS DO
BEGIN

ITEM_TYPE[COUNT] := ORD(RESPONSE[OFFSET+2]);
ITEM_LENGTH[COUNT] := ORD(RESPONSE[OFFSET+3]);
ITEM_NAMEL[COUNT] := ORD(RESPONSE[OFFSET+4]);
ITEM_NAME[COUNT] := BLANK_IDENT;
FOR COUNT2 := 1 TO ITEM_NAMEL[COUNT] DO

ITEM_NAME[COUNT,COUNT2] := RESPONSE[OFFSET+COUNT2+4]
(* UPDATE OFFSET TO THE NEXT ITEM *)
OFFSET := OFFSET + ITEM_NAMEL[COUNT] + 5;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET])+l;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET])+l

END
END;

(* QUERY *)
PROCEDURE QUERY;

TYPE HEXTYPE = ARRAY[1..2] OF CHAR;

VAR NUM_ITEMS: INTEGER;
COUNT : INTEGER;
COUNT2 : INTEGER;
COUNTER : INTEGER;
COUNTER2 : INTEGER;
OFFSET : INTEGER;
ITEM_COUNT : INTEGER;
DBCOUNT : INTEGER;
VIEWCOUNT : INTEGER;
FILECOUNT : INTEGER;
SPACEJFILL : INTEGER;
HEXSTRING : HEXTYPE;

PROCEDURE TOHEX(BYTE__VALUE:CHAR; VAR HEXDIGITS:HEXTYPE);
FUNCTION HEXDIGIT(NUMBER:INTEGER):CHAR;
BEGIN

CASE NUMBER OF
0,1,2,3,4,5,6,7,8,9: HEXDIGIT := CHR(NUMBER+48);
10 HEXDIGIT = 'A'
11 HEXDIGIT = 'B'
12 HEXDIGIT = 'C '
13 HEXDIGIT = 'D'
14 HEXDIGIT = 'E'
15 HEXDIGIT = 'F'
END

END;

BEGIN
HEXDIGITS[1] := HEXDIGIT(ORD(BYTE_VALUE) DIV 16);
HEXDIGITS[2] := HEXDIGIT(ORD(BYTE_VALUE) MOD 16)

END;

BEGIN
SEND;
RECV(RESPONSE,TOTAL_BYTES,MORE);
IF TOTALJBYTES = 0 THEN

WRITELN('Ok')
ELSE
BEGIN

CASE ORD(RESPONSE[1]) OF
(* FETCH RESPONSE *)
(* FI *) 241: BEGIN

OFFSET := 1;
REPEAT
ITEM_COUNT := 0;
OFFSET := OFFSET + 3;
REPEAT

ITEM__COUNT :<= ITEM_COUNT +1;
FOR COUNT2 := 1 TO ORD(RESPONSE[OFFSET]) DO

WRITE(RESPONSE[OFFSET+COUNT2]);
COUNTER := ITEMS1L[ITEM_COUNT]-ORD(RESPONSE[OFFSET]);
IF COUNTER > 0 THEN

FOR COUNTER2 := 1 TO COUNTER DO
WRITE(' ');

WRITE(' ');
OFFSET : = OFFSET + ORD(RESPONSE[OFFSET]) + 1;

UNTIL ORD(RESPONSE[OFFSET]) = 255;
WRITELN;
OFFSET := OFFSET + 2;
UNTIL ORD(RESPONSE[OFFSET]) = 246;

END;
(* COMPLETION CODE RESPONSE *)
(* F6 *) 246: BEGIN

WRITE('Completion Code is ');
TOHEX(RESPONSE[6],HEXSTRING);
FOR COUNT := 1 TO 2 DO WRITE(HEXSTRING[COUNT]);
WRITE(' ');
TOHEX(RESPONSE[5],HEXSTRING);
FOR COUNT := 1 TO 2 DO WRITE(HEXSTRING[COUNT]);
WRITELN;
WRITELN('— > Refer to the iDBP reference manual.');
WRITELN;WRITELN;

END;
(* LIST RESPONSE *)
(* F8 *) 248: BEGIN

IF ORD(RESPONSE[7]) <> 255 THEN
BEGIN
WRITELN;WRITELN;
CASE ORD(RESPONSE[3]) OF
144 : BEGIN

OFFSET := 7;
DBCOUNT := 0;
REPEAT
CASE ORD(RESPONSE[OFFSET+1]) OF
0: BEGIN

VIEWCOUNT := VIEWCOUNT + 1;
WRITE (' view if ', VIEWCOUNT: 2, ' ')

END;
1: BEGIN

FILECOUNT := 0;
DBCOUNT := DBCOUNT + 1;
WRITE ('database if ', DBCOUNT: 2, ' ')

END;
3: BEGIN

VIEWCOUNT := 0;
FILECOUNT := FILECOUNT + 1;
WRITE(' file if ',FILECOUNT:2,' ')

END;
END;
OFFSET := OFFSET + 9;
FOR COUNT := 1 TO ORD(RESPONSE[OFFSET]) DO

WRITE(RESPONSE[OFFSET+COUNT]);
WRITELN;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1
UNTIL ORD(RESPONSE[OFFSET])=255;
WRITELN

END;
146 : BEGIN

WRITELN('List of Views :');WRITELN;
OFFSET := 7;
REPEAT

OFFSET := OFFSET + 9;
FOR COUNT := 1 TO ORD(RESPONSE[OFFSET]) DO

WRITE(RESPONSE[OFFSET+COUNT]);
WRITELN;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET])+l

UNTIL ORD(RESPONSE[OFFSET])=255;
WRITELN

END;
END
END
ELSE
WRITELN('I have never heard of that database.')

END;
(* DESCRIBE VIEW RESPONSE *)
(* F9 *) 249: BEGIN

IF ORD(RESPONSE[7]) <> 255 THEN
BEGIN
DV_RESPONSE(ITEM1,ITEM1L,ITEM2,ITEM2L,NUM_ITEMS,

ITEMS1,ITEMS1L,VALS1,VALS2);
WRITELN;
WRITE('View : ');
FOR COUNT := 1 TO ITEM1L DO

WRITE(ITEM1[COUNT]);
WRITELN;
WRITE('Underlying Relation : ');
FOR COUNT := 1 TO ITEM2L DO

WRITE(ITEM2[COUNT]);
WRITELN;
WRITELN('// of items = ' , NUM__ITEMS: 3) ;
WRITELN;
FOR COUNT := 1 TO NUM_ITEMS DO
BEGIN

FOR COUNT2 := 1 TO ITEMS1L[COUNT] DO
WRITE(ITEMS1[COUNT,COUNT2]);

SPACE_FILL := 20 - ITEMS1L[COUNT];
FOR COUNT2 := 1 TO SPACE_FILL DO

WRITE(' ');
CASE VALS1[COUNT] OF
0 : WRITE('Unsigned Integer ');
1 : WRITE('Signed Integer ');
2 : WRITE('Uninterpreted ');
3 : WRITE('ASCII Alphanumeric ');
7 : WRITE('Record Pointer ');
9 : WRITE('String Pointer ');
64: WRITE('Zero Integer ');

END;
WRITELN(VALS2[COUNT])

END
END
ELSE

WRITELN('I have never heard of that view.')
END;

(* REMARK RESPONSE *)
(* FC *) 252: BEGIN

WRITE('Echo : ');
FOR COUNTER : = 1 TO ORD(RESPONSE[4])-l DO

WRITE(RESPONSE[COUNTER+6]);
WRITELN;WRITELN

END;
OTHERWISE
END

END
END;

(* *)
(* ATTACH *)
PROCEDURE ATTACH(ITEM:IDTYPE;ITEML:NUMTYPE;NUMBER_OF_ITEMS,

OWN_USE,OTHERS_USE,WAIT_FLAG,ABORT_FLAG:INTEGER);
VAR COUNT : INTEGER;

BEGIN
INTI(0);
INTI(1);
BITSB;
BITS(WAIT_FLAG*128);
BITS(ABORT_FLAG*64);
BITSE;
FOR COUNT := 1 TO NUMBER_OF_ITEMS DO
BEGIN

ASC(ITEME COUNT],ITEML[COUNT]);
INT1(1);
BITSB;
BITS(OWN_USE*16);
BITS(OTHERS__USE);
BITSE

END;
TERMINATE

END;

(* DEFINE DATABASE *)
PROCEDURE DEFINE_JDATABASE(DBNAME:IDENT_STRING;

DBNAMEL:INTEGER);
BEGIN

INTI(96);
ASC(DBNAME,DBNAMEL);
TERMINATE

END;

(* DEFINE FILE *)
PROCEDURE DEFINE__FILE(FILENAME:IDENTJ3TRING;FILENAMEL:INTEGER;

PAGESIZE:INTEGER;VOLUMEID:IDENT_STRING;VOLUMEIDL:INTEGER
INITALLOC,MAXALLOC:INTEGER);

BEGIN
INTI(64);
ASC(FILENAME,FILENAMEL);
INTI(1);
INTI(PAGESIZE*128);
ASC(VOLUMEID,VOLUMEIDL);
INTI(2);
INT2(INITALLOC);
INTI(2);
INT2(MAXALLOC);
TERMINATE

END;

(* DEFINE SCHEMA *)
PROCEDURE DEFINE_SCHEMA(FILENAME:IDENT_STRING;FILENAMEL:INTEGER;

DSTYPE,REUSE,EXPAREA,SUBSTRLEN:INTEGER;
VARITEM:INTEGER;VIEW:IDENT_STRING;VIEWL:INTEGER;
NUM_ITEMS:INTEGER;
DS__ID: IDTYPE; DS_IDL: NUMTYPE;
FIXEDVAR:FIXEDVARJTYPE;ITEMTYPE:ITEMJTYPE;
ITEML: ITEML__TYPE);

VAR COUNT: INTEGER;
BEGIN

INTI(73);
ASC(FILENAME,FILENAMEL);
INTI(1);
BITSB;BITS(DSTYPE*16);BITS(REUSE*8);BITSE;
IF VIEWL <> 0 THEN
(* A VIEW HAS BEEN SPECIFIED FOR THE SCHEMA *)

ASC(VIEW,VIEWL)
ELSE
(* A SCHEMA HAS BEEN EXPLICITLY DEFINED *)
BEGIN

INTI(0);
INTI(2);
IF EXPAREA = 0 THEN

INT2(SUBSTRLEN)
ELSE

INT2(EXPAREA);
IF DSTYPE <> 0̂ THEN

INTI(0)
ELSE
BEGIN

INTI(2);
INT2(VARITEM)

END;
FOR COUNT := 1 TO NUM_ITEMS DO
BEGIN

ASC(DS_ID[COUNT],DS_IDL[COUNT]);
INT1(1);
BITSB;BITS(FIXEDVAR[COUNT]*128);
BITS(ITEMTYPE[COUNT]);BITSE;
IF DSTYPE <> 0 THEN

INTI(0)
ELSE
BEGIN

INTI(1);
INTI(ITEML[COUNT])

END
END

END;
TERMINATE

END;

(* DEFINE VIEW - CONNECT *)
PROCEDURE DEFINE__VIEW__CONNECT (NEWVIEW:IDENT_STRING;NEWVIEWL: INTEGER

SOURCE1:IDENT_STRING;SOURCE1L:INTEGER;
STRINGPTR:IDENT__STRING;STRINGPTRL:INTEGER;
SOURCE2:IDENTJ3TRING;SOURCE2L:INTEGER);

BEGIN
INTI(80);
ASC(NEWVIEW,NEWVIEWL);
INTI(1);
INTI(32);
ASC(SOURCE1,SOURCE1L);
INT1(255);
INTI(5);
ASC(STRINGPTR,STRINGPTRL);
ASC(SOURCE2,SOURCE2L);
TERMINATE

END;
(* DEFINE VIEW - JOIN *)
PROCEDURE DEFINE_VIEW_JOIN(NEWVIEW:IDENT_STRING;NEWVIEWL:INTEGER;

SOURCE1:IDENT_STRING;SOURCE1L:INTEGER;
ITEM1:IDENT_STRING;ITEM1L:INTEGER;
SOURCE2:IDENT_STRING;SOURCE2L:INTEGER;
ITEM2:IDENT_STRING;ITEM2L:INTEGER);

BEGIN
INTI(80);
ASC(NEWVIEW,NEWVIEWL);
INT1(1);
INTI(16);
ASC(SOURCE1,SOURCE1L);
INTI(255);
INTI(5);
ASC(ITEM1,ITEM1L);
ASC(SOURCE2,SOURCE2L);

INTI(255);
INTI(5);
ASC(ITEM2,ITEM2L);
TERMINATE

END;

(* DEFINE VIEW - ORDER *)
PROCEDURE DEFINE__VIEW__ORDER(NEWVIEW: IDENT_STRING; NEWVIEWL: INTEGER;

SOURCE:IDENT_STRING;SOURCEL:INTEGER;
ORDER_NUM:INTEGER;ITEMS1:IDTYPE;ITEMS1L:NUMTYPE;
ASC OR DESC:INTEGER);

VAR COUNT: INTEGER;
BEGIN

INTI(80);
ASC(NEWVIEW,NEWVIEWL);
INTI(1);
INTI(64);
ASC(SOURCE,SOURCEL);
FOR COUNT := 1 TO ORDER_NUM DO
BEGIN

INTI(255);
INTI(5);
ASC(ITEMS1[COUNT],ITEMS1L[COUNT]);
INT1(1);
INTI(ASC_OR_DESC*128)

END;
TERMINATE

END;

(* DEFINE VIEW - PROJECT *)
PROCEDURE DEFINE__VIEW__PROJECT(NEWVIEW:IDENT_STRING;NEWVIEWL:INTEGER

INC_EXC:INTEGER;SOURCE:IDENT_STRING;SOURCEL:INTEGER;
ALL_IND ICATOR: BOOLEAN; PROJECT__NUM: INTEGER;
ITEM:IDTYPE;ITEML:NUMTYPE);

VAR COUNT: INTEGER;
BEGIN

INTI(80);
ASC(NEWVIEW,NEWVIEWL);
INTI(1);
IF INC_EXC = 0 THEN
INTI(96)

ELSE
INTI(112);

ASC(SOURCE,SOURCEL);
IF ALL_INDICATOR THEN
BEGIN

INTI(255);
INTI(6)

END
ELSE

BEGIN
FOR COUNT := 1 TO PROJECT_NUM DO
BEGIN

INTI(255);
INTI(5);
ASC(ITEM[COUNT],ITEML[COUNT])

END
END;
TERMINATE

END;
(* DEFINE VIEW - SELECT *)
PROCEDURE DEFINE_VIEW_SELECT(NEWVIEW:IDENT_STRING;NEWVIEWL:INTEGER

SOURCE:IDENT_STRING;SOURCEL:INTEGER;
COMPARATOR:NUMTYPE;REC_SEARCH:INTEGER;
COMPARE_NUM:INTEGER;ITEMS1:IDTYPE;ITEMS1L:NUMTYPE;
ITEMS2:IDTYPE;ITEMS2L:NUMTYPE);

VAR COUNT: INTEGER;
BEGIN

INTI(80);
ASC(NEWVIEW,NEWVIEWL);
INTI(1);
INTI(48);
ASC(SOURCE,SOURCEL);
(* CREATE A BLOCK FOR EACH COMPARATOR W/OPERANDS *)
FOR COUNT := 1 TO COMPARE_NUM DO
BEGIN

IF COMPARATOR[COUNT] IN [1,11] THEN
BEGIN

INTI(2);
INTI(COMPARATOR[COUNT]);
INTI (REC_SEARCH*128);
INTI(255);
INTI(5);
ASC(ITEMS1[COUNT],ITEMS1L[COUNT])

END
ELSE
BEGIN

INTI(2);
INTI(COMPARATOR[COUNT]);
INTI(REC_SEARCH*128);
INTI(255);
INTI(5);
ASC(ITEMS1[COUNT],ITEMS1L[COUNT]);
ASC(ITEMS2[COUNT],ITEMS2L[COUNT])

END;
IF COUNT < COMPARE_NUM THEN
(* INSERT AN 'AND' OPERATION *)
BEGIN

INTI(2);
INTI(250);
INTI(0)

END
END;
TERMINATE

END;
(* DELETE DATABASE *)
PROCEDURE DELETE_DATABASE(DBNAME:IDENT_STRING;DBNAMEL:INTEGER);
BEGIN

INTI(97);
ASC(DBNAME,DBNAMEL);
TERMINATE

END;
(* DELETE FILE *)
PROCEDURE DELETE_FILE(FILENAME:IDENT_STRING;FILENAMEL:INTEGER);
BEGIN

INTI(66);
ASC (FILENAME,FILENAMEL) ;
TERMINATE

END;

(* DELETE VIEW *)
PROCEDURE DELETE_VIEW(VIEW:IDENT_STRING;VIEWL:INTEGER);
BEGIN

INTI(82);
ASC(VIEW,VIEWL);
TERMINATE

END;

(* DESCRIBE VIEW *)
PROCEDURE DESCRIBE__VIEW(VIEW:IDENT_STRING;VIEWL:INTEGER;

ALL__INDICATOR: BOOLEAN);
BEGIN

INTI(154);
IF ALLJLNDICATOR THEN
BEGIN

INTI(255);
INTI(6)

END
ELSE

ASC(VIEW,VIEWL);
TERMINATE

END;

(* DETACH *)
PROCEDURE DETACH(VIEW:IDENT_STRING;VIEWL:INTEGER;ALL_INDICATOR:BOOLEAN);

BEGIN
INTI(1);
IF ALL_IND ICATOR THEN
BEGIN

INTI(255);
INTI(6)

END
ELSE

ASC(VIEW,VIEWL);
TERMINATE

END;
(* END CURSOR *)
PROCEDURE END_CURSOR(CURSOR_NUM:INTEGER;ALL_INDICATOR:BOOLEAN)
BEGIN

INTI(3);
IF ALL_INDICATOR THEN
BEGIN

INTI(255);
INTI(6)

END
ELSE
BEGIN

INTI(1);
INTI(CURSOR_NUM)

END;
TERMINATE

END;

(* FETCH *)
PROCEDURE FETCH(CURSOR_NUM:INTEGER;COUNT:INTEGER);
BEGIN

INTI(16);
INTI(1);
INTI (CURSOR__NUM);
IF COUNT « 0 THEN
(* FETCH ALL *)
BEGIN

INTI(255);
INTI(6)

END
ELSE
(* FETCH A SPECIFIC NUMBER OF RECORDS *)
BEGIN

INT1(2);
INT2(COUNT)

END;
TERMINATE

END;

(* FREE *)

PROCEDURE FREE(VIEW:IDENT_STRING;VIEWL:INTEGER;ALL_INDICATOR:BOOLEAN)
BEGIN

INTI(1);
IF ALL_INDICATOR THEN
(* FREE ALL VIEWS *)
BEGIN

INTI(255);
INTI(6)

END
ELSE
(* FREE A SPECIFIC VIEW *)

ASC(VIEW,VIEWL);
TERMINATE

END;

(* KEEP DATABASE *)
PROCEDURE KEEP_DATABASE(OLDDB:IDENT_STRING;OLDDBL:INTEGER;

NEWDB:IDENT__STRING;NEWDBL:INTEGER);
BEGIN

INTI(100);
ASC(OLDDB,OLDDBL);
ASC(NEWDB,NEWDBL);
TERMINATE

END;

(* KEEP FILE *)
PROCEDURE KEEP_FILE(OLDFILE:IDENT_STRING;OLDFILEL:INTEGER;

NEWFILE:IDENT_STRING;NEWFILEL:INTEGER;
DATABASE:IDENT_STRING;DATABASEL:INTEGER);

BEGIN
INTI(65);
ASC(OLDFILE,OLDFILEL);
ASC(NEWFILE,NEWFILEL);
IF DATABASEL - 0 THEN

INTI(0)
ELSE

ASC(DATABASE,DATABASEL);
TERMINATE

END;

(* KEEP VIEW *)
PROCEDURE KEEP_VIEW(OLDVIEW:IDENT_STRING;OLDVIEWL:INTEGER;

NEWVIEW:IDENT__STRING;NEWVIEWL: INTEGER) ;
BEGIN

INTI(81);
ASC(OLDVIEW,OLDVIEWL);
ASC(NEWVIEW,NEWVIEWL);
TERMINATE

EttD;

(* LIST DATABASE *)

PROCEDURE LIST__DATABASE(DBNAME:IDENT_STRING;DBNAMEL:INTEGER;
ALL_ENTITIES,ALL_DATABASES: BOOLEAN);

BEGIN
INTI(144);
IF ALL_DATABASES THEN
BEGIN

INTI(255);
INTI(6)

END
ELSE

ASC(DBNAME,DBNAMEL);
INTI(1);
IF NOT ALL_ENTITIES THEN

INTI(0)
ELSE

INTI(160);
TERMINATE

END;

(* LIST FILE *)
PROCEDURE LIST_FILE(FILENAME:IDENT_STRING;FILENAMEL:INTEGER;

ALL_INDICATOR:BOOLEAN);
BEGIN

INTI(145);
IF ALL_INDICATOR THEN
BEGIN

INTI(255);
INTI(6)

END
ELSE

ASC(FILENAME,FILENAMEL);
INTI(1);
INTI(255);
TERMINATE

END;

(* LIST VIEWS *)
PROCEDURE LIST__VIEWS;
BEGIN

INTI(146);
INTI(255);
INTI(6);
TERMINATE

END;
(* REMARK *)
PROCEDURE REMARK(AJWORD:IDENT_STRING; AJWORDL:INTEGER;DESTINATION:INTEGER)
BEGIN

INTI(58);
INT1(1);
INTI(DESTINATION);
ASC (AJWORD,AJWORDL);
TERMINATE

END;

(* SUBMIT KEYS *)
PROCEDURE SUBMIT__KEYS(KEY:IDENT_STRING;KEYL:INTEGER);
BEGIN

INT1(7);
ASC(KEY,KEYL);
TERMINATE

END;
(* START CURSOR *)
PROCEDURE STARTJCURSOR(CURSOR_NUM:INTEGER; VIEW:IDENT_STRING;

VIEWL:INTEGER;MODE:INTEGER;DIRECTION:INTEGER;
RETEST:INTEGER);

BEGIN
INTI(2);
INTI(1);
INTI (CURSOR__NUM);
ASC(VIEW,VIEWL);
INTI(1);
BITSB;
BITS(MODE*128);
BITS(DIRECTION*64);
BITS(RETEST*32);
BITSE;
TERMINATE

END;
PROCEDURE STORE(CURSOR_NUM:INTEGER;INTEGRITY:BOOLEAN;

ITEM_NUM:INTEGER;ITEMS1:IDTYPE;ITEMS1L:NUMTYPE);
VAR COUNT:INTEGER;
BEGIN

INTI(18);
INTI(1);
INTI (CURSOR__NUM);
inti(l);
IF INTEGRITY THEN

INTI(0)
ELSE

INT1(128);
FOR COUNT := 1 TO ITEM_NUM DO
BEGIN

ASC(ITEMS1[COUNT],ITEMS1L[COUNT])
END;
TERMINATE

END;
$'

APPENDIX F - DBPQL Grammar File

$ type [intel*dbpql]dbpql.grm
<GOAL> ::= <QUERY> <EOLN>
»*============================;

* QUERY
*

TYPES
<QUERY>

•

<QUERY>
i ! —

<ATTACH>
<QUERY> : : = <CREATE_DATABASE>
5<QUERY> : : = <CREATE_RELATION>

<QUERY> : : = <CREATE_VIEWC>
5<QUERY> : : = <CREATE_VIEWJ>
5<QUERY> : : = < C REAT E_VIEWO >

<QUERY> : : = <CREATE_VIEWP>
<QUERY> : : = <CREAT E_VI EWS >
<QUERY> : : = <DELETE_DATABASE>
<QUERY> : : = <DELETE_RELATION>

9<QUERY> : : = <DELETE_VIEW>
9

<QUERY> : : = <DETACH>
9

<QUERY> : : = <DISPLAY>
9<QUERY> : : = <ECHO>
9

<QUERY> : : = <HELP>
<QUERY> : : = <INPUT>
<QUERY> : : = <LIST_DBS>

»<QUERY> : : = <LIST_DB>
<QUERY> : : = <LIST_VIEWS>

»
<QUERY> • • as <LIST__VIEW>

»
<QUERY> : : = <LOAD>
<QUERY> : : = <PERFORM__COMMAND>

»<QUERY> : : = <TRACE__COMMAND>
»*===================================

* ATTACH
*===================================
<ATTACH> ::= <ATTACHK> <VIEWS> <PERMISSION>
‘begin

START;
FREE(BLANK_IDENT,1,TRUE);
ATTACH(ITEMS3,ITEMS3L,IDC0UNT,PERMISSION,0,0,0);
QUERY

END;
<ATTACHK> ATTACH
IDCOUNT := 0;
<VIEWS> ::= <ATTACH_VIEW>
<VIEWS> ::= <VIEWS> <ATTACH_VIEW>
<ATTACH_VIEW> : := <ID>
BEGIN

IDCOUNT := IDCOUNT + 1;
ITEMS3[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS3L[IDCOUNT] := SSTACK[SP].IDLEN

END;
<PERMISSION> READ
PERMISSION := 1;
<PERMISSION> ::= WRITE
PERMISSION := 2;
<PERMISSION> RW
PERMISSION := 3;
<PERMISSION> ::= ADMIN
PERMISSION := 4;

* = = = = = = : = = = = ^ : = = : = = = = = r = = = = = = : = = = = = = = = : = = = =

* CREATE DATABASE
<CREATE_DATABASE> ::= <CREATE_DATABASEK> <CD_DBNAME>
BEGIN

START;
DEFINE___DATABASE(DBNAME,DBNAMEL) ;
KEEP_DATABASE (DBNAME, DBNAMEL, DBNAME, DBNAMEL) ;
QUERY

END;
<CREATE__DATABASEK> : := CREATE DATABASE

9
<CD__DBNAME> ::= <ID>
BEGIN

DBNAME := SSTACKfSP].IDNAME;
DBNAMEL:= SSTACK[SP].IDLEN

END;
= = = = = = = = =

* CREATE RELATION
<CREATE_RELATION> ::= <CREATE_RELATIONK> <DF__REST>
BEGIN

START;
DEFINE_FILE(DF_FILENAME,DF_FILENAMEL,DF_PAGESIZE,

DF_VOLUMEID,DF_VOLUMEIDL,
DF_INITALLOC ,DF__MAXALLOC);

DEFINE_SCHEMA(DF_FILENAME,DF_FILENAMEL,DS_TYPE,DS_REUSE,
DS_EXPAREA, D S_SUB S TRL EN ,DS_VARITEM , D S_VIEW, D S_VIEWL,
IDCOUNT, D S_ID, D S_IDL, D S_FIXEDVAR,
DS__ITEMTYPE,DS_ITEML);

KEEP_FILE (DF_F I LENAME, DF_F ILENAMEL, DF_FILENAME, DF_FILENAMEL,
DBNAME,DBNAMEL);

WRITELN('Ok, View ',DF_FILENAME:DF__FILENAMEL,' has been created.');

QUERY
END;
<CREATE_RELAT IONK> ::= CREATE RELATION
BEGIN

(* DEFAULTS *)
(* DEFINE FILE DEFAULTS *)
DF__FILENAME := 'FILE1 ';
DF_FILENAMEL := 5;
DF_PAGESIZE := 0;
DF_VOLUMEID := 'DBPSYS ';
DF__VOLUMEIDL := 6;
DF_INITALLOC := 20;
DF_MAXALLOC := 0;
(* DEFINE SCHEMA DEFAULTS *)
DS__TYPE := 0;
DS_REUSE := 0;
DS_VIEWL := 0;
DS_EXPAREA := 20;
DS__SUBSTRLEN := 80;
DS_VARITEM := 20;
IDCOUNT := 0;

END;
<DF_REST> ::= <ID> IN <ID> <DF_REST2>
BEGIN

DF_F I LENAME := S STACK [MP] .IDNAME;
DF_FILENAMEL:= S STACK[MP].IDLEN;
DBNAME := SSTACK[MP+2].IDNAME;
DBNAMEL:= SSTACK[MP+2].IDLEN

END;
<DF_REST2> ::= USING SCHEMA <SCHEMA> <OPTIONS>
<DF_REST2> USING VIEW <ID>
BEGIN

DS_VIEW := SSTACK[SP].IDNAME;
DS_VIEWL:= SSTACK[SP].IDLEN;

END;
<SCHEMA> ::= <ITEM>

»<SCHEMA> <SCHEMA> <ITEM>.
S<ITEM> ::= <ITEM_ID> <DATA_TYPE> <FIXED_VAR> <ITEM_LENGTH>
><ITEM_ID> <ID>
BEGIN

IDCOUNT := IDCOUNT + 1;
DS__ID [IDCOUNT] := S STACK [MP] .IDNAME;
DS_IDL[IDCOUNT] := SSTACK[MP].IDLEN

END;
<FIXED_VAR> ::= FIXED
DS_FIXEDVAR[IDCOUNT] := 0;
<FIXED__VAR> ::= VAR
DS_FIXEDVAR[IDCOUNT] := 1;
<ITEM LENGTH> ::= <NO>

DS ITEML[IDCOUNT] ;= SSTACK[SP].IVAL;
<DATA__TYPE>
DS_ITEMTYPE
<DATA__TYPE>
DS_ITEMTYPE
<DATA__TYPE>
DS_ITEMTYPE
<DATA_TYPE>
DS__ITEMTYPE
<DATA_TYPE>
DS__ITEMTYPE
<DATA_TYPE>
DS_ITEMTYPE
<DATA TYPE>

:= UNSIGNED__INT
IDCOUNT] := 0
:= SIGNED_INT
IDCOUNT] := 1
:= INTEGER
IDCOUNT] := 1
:= UNINTERPRET
IDCOUNT] := 2
:= ASCII
IDCOUNT] := 3
:= RECORD_PTR
IDCOUNT] := 7
:= STRING PTR

DS_ITEMTYPE[IDCOUNT] : =
<OPTIONS> ::=
<OPTIONS> <OPTIONS> <OPTION>
<OPTION> SMALLPAGE
DF_PAGESIZE := 0;
<OPTION> LARGEPAGE
DF_PAGESIZE := 1;
<OPTION> VOLUME <ID>
BEGIN

DF_VOLUMEID := SSTACK[SP].IDNAME;
DF_VOLUMEIDL:= SSTACK[SP].IDLEN;

END;
<OPTION> ::= INITALLOC <NO>
DF_INITALLOC := SSTACK[SP].IVAL;
<OPTION> ::= EXPANDFILE
DF_MAXALLOC := 0;
<OPTION> MAXALLOC <NO>
DF_MAXALLOC := SSTACK[SP].IVAL;
<OPTION> STRUCTURED
DSJTYPE := 0;
<OPTION> ::= UN_CLEAR
DS_TYPE := 1;
<OPTION> ::= UN_COMPLEX
DS__TYPE := 2;
<OPTION> ::= UN_UNINTERP
DS_TYPE := 3;
<OPTION> UN_BACKUP
DS_TYPE := 4;
<OPTION> ::= UN_ROLLF
DS_TYPE := 5;
<OPTION> ::= REFUSE
DS_REUSE := 0;
<OPTION> ::= NORE_USE
DS__REUSE := 1;
<OPTION> EXP_AREA <NO>
DS__EXPAREA := SSTACK [SP] .IVAL;
<OPTION> SUBSTR__LEN <NO>
D S__SUB STRL EN := SSTACK [SP] .IVAL;
<OPTION> VARITEM <NO>
DS_VARITEM := SSTACK[SP].IVAL;

* CREATE VIEW - CONNECT
c'CREATE VIEWC> <CREATE_VIEWCK> <CVC_REST>

BEGIN
START;
(* ATTACH THE SOURCE VIEWS *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCE1;
ITEMS3L[1]:= SOURCE1L;
ITEMS3[2] := SOURCE2;
ITEMS3L[2] :» SOURCE2L;
ATTACH(ITEMS3,ITEMS3L,2,3,0,0,0);
DEFINE_VIEW_CONNECT(NEWVIEW,NEWVIEWL,SOURCE1,S0URCE1L,

STRPTR,STRPTRL,SOURCE2,SOURCE2L);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY

END;
<CREATE__VIEWCK> CREATE CONNECT VIEW
><CVC_REST> <NEWVIEW> FROM <S0URCE1> <STRPTR> <SOURCE2>
BEGIN

NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;
SOURCE1 := SSTACK[MP+2].IDNAME;
SOURCE1L:= SSTACK[MP+2].IDLEN;
STRPTR := SSTACK[MP+3].IDNAME;
STRPTRL:= S STACK[MP+3].IDLEN;
SOURCE2 := SSTACK[SP].IDNAME;
SOURCE2L := SSTACK[SP].IDLEN

END;
<SOURCE1> <ID>
<SOURCE2> ::= <ID>
<NEWVIEW> ::= <ID>

9<STRPTR> ::= <ID>
»

* CREATE VIEW - JOIN
<CREATE_VIEWJ> <CREATE__VIEWJK> <CVJ_REST>
BEGIN

START;
(* ATTACH THE SOURCE VIEWS *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCE1;
ITEMS3L[1]:= SOURCE1L;
ITEMS3[2] := SOURCE2;
ITEMS3L[2] SOURCE2L;
ATTACH(ITEMS3,ITEMS3L,2,3,0,0,0);
DEFINE_VIEW_JOIN(NEWVIEW,NEWVIEWL,SOURCE1,S0URCE1L,

ITEM1,ITEM1L,SOURCE2,SOURCE2L,
ITEM2,ITEM2L);

KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY

END;
<CREATE_VIEWJK> ::= CREATE JOIN VIEW
<CVJ__REST> ::= <NEWVIEW> FROM <S0URCE1> <ID> <SOURCE2> <ID>
BEGIN

NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;

SOURCE1 := SSTACK[MP+2].IDNAME;
SOURCE1L:= SSTACK[MP+2].IDLEN;
ITEM1 := SSTACK[MP+3].IDNAME;
ITEM1L:= SSTACK[MP+3].IDLEN;
SOURCE2 := SSTACK[MP+4].IDNAME;
SOURCE2L := SSTACK[MP+4].IDLEN;
ITEM2 := SSTACK[SP].IDNAME;
ITEM2L:= S STACK[SP].IDLEN

END;
A s

* CREATE VIEW - ORDER
<CREATE_VIEWO> : := <CREATE_VIEWOK> <CVO_REST>
BEGIN

START;
(* ATTACH THE SOURCE VIEW *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCE1;
ITEMS3L[1]:= SOURCE1L;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
DEFINE_VIEW_ORDER(NEWVIEW,NEWVIEWL,SOURCE1,SOURCE1L,

IDCOUNT, ITEMS 1, ITEMS 1L, ASC__OR__DESC) ;
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY

END;
<CREATE_VIEWOK> ::= CREATE ORDER VIEW
BEGIN

IDCOUNT := 0;
ASC__OR__DESC := 0

END;
<CVO__REST> ::= <NEWVIEW> FROM <S0URCE1> <ORDER_ITEMS> <ASC_OR_DESC>
BEGIN

NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;
SOURCE1 := SSTACK[MP+2].IDNAME;
SOURCE1L:= S STACK[MP+2].IDLEN

END;
<ORDER_ITEMS> ::= <ORDER_ITEM>
»<ORDER_ITEMS> ::= <ORDER_ITEMS> <ORDER_ITEM>
><ORDER_ITEM> ::= <ID>
BEGIN

IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS1L[IDCOUNT] := SSTACK[SP].IDLEN

END;
<ASC_OR_DE SC > =
»

<ASC_OR__DESC> ASCENDING
ASC_OR_DESC := 0;
<ASC__OR_DESC> DESCENDING
ASC__OR_JDESC := 1;
* CREATE VIEW - PROJECT
<CREATE__VIEWP> ::= <CREATE_VIEWPK> <CVP_REST>
BEGIN

START;
(* ATTACH THE SOURCE VIEW *)

FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCE1;
ITEMS3L[1]:= SOURCE1L;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
DEFINE__VIEW_PROJECT(NEWVIEW,NEWVIEWL,INC_EXC,SOURCE1,SOURCE1L,

ALL_INDICATOR,IDCOUNT,ITEMS1,ITEMS1L);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY

END;
<CREATE_VIEWPK> ::= CREATE PROJECT VIEW
BEGIN

IDCOUNT := 0;
ALL_INDICATOR := FALSE;
INC_EXC := 0

END;
<CVP_REST> = <NEWVIEW> FROM <S0URCE1> <INC_EXC> <PROJECT_IDS>
BEGIN

NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:* SSTACK[MP].IDLEN;
SOURCE1 := SSTACK[MP+2].IDNAME;
SOURCE1L:= S STACK[MP+2].IDLEN

END;
<PROJECT_IDS> ::= ALL-ITEMS
ALL_INDICATOR := TRUE;
<PROJECT__IDS> ::= <PROJECT_ID>
<PROJECT_IDS> <PROJECT_IDS> <PROJECT_ID>
5<PROJECT_ID> ::= <ID>
BEGIN

IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS1L[IDCOUNT] := SSTACK[SP].IDLEN

END;
<INC_EXC> ::=
<INC__EXC> INCLUDING
INC_EXC := 0;
<INC_EXC> EXCLUDING
INC__EXC := 1;
* CREATE VIEW - SELECT
<CREATE_VIEWS> : <CREATE_VIEWSK> <CVS_REST>
BEGIN

START;
(* ATTACH THE SOURCE VIEW *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCE1;
ITEMS3L[1]:« SOURCE1L;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
DEFINE__VIEW__SELECT(NEWVIEW,NEWVIEWL,SOURCE 1,SOURCE 1L,COMPARATOR,

REC_SEARCH,IDCOUNT,ITEMS1,ITEMS1L,ITEMS2,ITEMS2L);
KEEP__VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY

END;
<CREATE__VIEWSK> CREATE SELECT VIEW
BEGIN

REC_SEARCH :« 0;
IDCOUNT := 0

END;
<CVS_REST> <NEWVIEW> FROM <SOURCEl> WHERE <WHERE_CLAUSE> <SELECT_OPTIONS>
BEGIN

NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;
SOURCE1 := SSTACK[MP+2].IDNAME;
S0URCE1L:= SSTACK[MP+2].IDLEN

END;
<WHERE_CLAUSE> :: = <SINGLE_CLAUSE>
<WHERE__CLAUSE> ::= <WHERE__CLAUSE> AND <SINGLE_CLAUSE>
S<SINGLE__CLAUSE> : := <FIRST> <BINARY> <SECOND>
»<FIRST> ::= <ID>
BEGIN

IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS1L[IDCOUNT] : = SSTACK[SP].IDLEN

END;
<SECOND> <ID>
BEGIN

ITEMS2[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS2L[IDCOUNT] := SSTACK[SP].IDLEN

END;
<SECOND> ::= <NO>
BEGIN

NUM__TO_ASCI1(SSTACK[SP].IVAL,ITEM1,ITEM1L);
ITEMS2[IDCOUNT] : = ITEM1 ;
ITEMS2L[IDCOUNT] := ITEM1L

END;
<SINGLE CLAUSE> = <FIRST> <UNARY>
<BINARY> ::= =
COMPARATOR[IDCOUNT] : = 20
<BINARY> <>
COMPARATOR[IDCOUNT] : = 30
<BINARY> ::= <
COMPARATOR[IDCOUNT] : = 40
<BINARY> <=
COMPARATOR[IDCOUNT] : = 60
<BINARY> ::= >=
COMPARATOR[IDCOUNT] : = 50
<BINARY> ::= >
COMPARATOR[IDCOUNT] : = 70
<UNARY> ::= IS VALUED
COMPARATOR[IDCOUNT] : = 1;<UNARY> ::= IS NULL
COMPARATOR[IDCOUNT] : = 11
<SELECT__OPTIONS> : := PERFORM
REC_SEARCH := 0;
<SELECT_OPTIONS> ::= NOPERFORM
REC_SEARCH := 1;
<SELECT_OPTIONS> ::=
>

* DELETE DATABASE
<DELETE__DATABASE> : <DELETE_DATABASEK> <ID>
BEGIN

START;
DELETE_DATABASE(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN);
QUERY

END;
<DELETE DATABASEK> ::= DELETE DATABASE

* DELETE RELATION
<DELETE_RELATION> ::= <DELETE_RELATIONK> <ID>
BEGIN

START;
(* ATTACH THE IDENTITY VIEW *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SSTACK[SP].IDNAME;
ITEMS3L[1] := SSTACK[SP].IDLEN;
ATTACH(ITEMS3,ITEMS3L,1,4,0,0,0);
DELETE_FILE(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN);
QUERY

END;
<DELETE RELATIONK> ::= DELETE RELATION

* DELETE VIEW
< D E L E T E _ V I E W > : s - < D E L E T E _ V I E W K > < I D >

B E G I N

(* F I R S T F I N D T H E U N D E R L Y I N G F I L E - I D E N T I T Y V I E W N A M E *)

(* T H I S I D E N T I T Y V I E W M U S T B E A T T A C H E D W I T H ' A D M I N ' *)

S T A R T ;

D E S C R I B E _ V I E W (S S T A C K [S P] . I D N A M E , S S T A C K [S P] . I D L E N , F A L S E)

S E N D ;

R E C V (R E S P O N S E , T O T A L _ B Y T E S , M O R E) ;

D V _ R E S P O N S E (I T E M 1 , I T E M 1 L , I T E M 2 , I T E M 2 L , N U M _ I T E M S ,

I T E M S 1 , I T E M S 1 L , V A L S 1 , V A L S 2) ;

S T A R T ;

F R E E (B L A N K _ I D E N T , 1 , T R U E) ;

I T E M S 3 [1] : = I T E M 2 ;

I T E M S 3 L [1] : = I T E M 2 L ;

A T T A C H (I T E M S 3 , I T E M S 3 L , 1 , 4 , 0 , 0 , 0) ;
D E L E T E _ _ V I E W (S S T A C K [S P] . I D N A M E , S S T A C K [S P] . I D L E N) ;

Q U E R Y

E N D ;

< D E L E T E V I E W K > : : = D E L E T E V I E W

* DETACH
<DETACH> ::= <DETACHK> <DETACH_WHAT>
BEGIN

START;
DETACH(ITEM1 ,ITEM1L,ALL__INDICAT0R);
QUERY

END;
<DETACHK> ::= DETACH
ALL_INDICATOR := FAlSE;
<DETACH_WHAT> ::= <ID>
BEGIN

ITEM1 := SSTACK[SP].IDNAME;

I T E M 1 L : = S S T A C K [S P] . I D L E N

E N D ;

< D E T A C H _ W H A T > = A L L

A L L _ _ I N D I C A T O R : = T R U E ;

* =
* D I S P L A Y

< D I S P L A Y > : : = D I S P L A Y < I D >

B E G I N

S T A R T ;

D E S C R I B E _ _ V I E W (S S T A C K [S P] . I D N A M E , S S T A C K [S P] . I D L E N , F A L S E)

S E N D ;

R E C V (R E S P O N S E , T O T A L _ B Y T E S , M O R E) ;

D V _ R E S P O N S E (I T E M 1 , I T E M 1 L , I T E M 2 , I T E M 2 l i , N U M _ _ I T E M S ,

I T E M S 1 , I T E M S 1 L , V A L S 1 , V A L S 2) ;

(* P R O V I D E A H E A D E R F O R T H E V I E W D I S P L A Y *)

W R I T E L N ;

W R I T E L N ;

F O R C O U N T : = 1 T O N U M _ I T E M S D O

B E G I N

F O R C O U N T 2 : = 1 T O I T E M S 1 L [C O U N T] D O

W R I T E (I T E M S 1 [C O U N T , C O U N T 2]) ;

C O U N T E R : = V A L S 2 [C O U N T] - I T E M S 1 L [C O U N T] ;

I F C O U N T E R > 0 T H E N

B E G I N

F O R C O U N T E R 2 : = 1 T O C O U N T E R D O

W R I T E (' ')

E N D ;

W R I T E (' ')

E N D ;

W R I T E L N ;

(* D R A W T H E U N D E R L I N I N G *)

F O R C O U N T : = 1 T O N U M _ I T E M S D O

B E G I N

F O R C O U N T 2 : = 1 T O I T E M S 1 L [C O U N T] D O

W R I T E

C O U N T E R : = V A L S 2 [C O U N T] - I T E M S 1 L [C O U N T] ;

I F C O U N T E R > 0 T H E N

B E G I N

F O R C O U N T E R 2 : = 1 T O C O U N T E R D O

W R I T E (' ')

E N D ;

W R I T E (' ')

E N D ;

W R I T E L N ;

W R I T E L N ;

S T A R T ;

(* A T T A C H T H E S O U R C E V I E W *)

F R E E (B L A N K _ _ I D E N T , 1 , T R U E) ;

I T E M S 3 [1] : = S S T A C K [S P] . I D N A M E ;

I T E M S 3 L [1] : = S S T A C K [S P] . I D L E N ;

A T T A C H (I T E M S 3 , I T E M S 3 L , 1 , 3 , 0 , 0 , 0) ;

S T A R T _ _ C U R S O R (1 , S S T A C K [S P] . I D N A M E , S S T A C K [S P] . I D L E N ,

0 ,0,1);
F E T C H (1 , 0) ;

E N D _ _ _ C U R S O R (1 , T R U E) ;

Q U E R Y

E N D ;

* E C H O

< E C H O > : : = < E C H O K > < I D >

B E G I N

S T A R T ;

R E M A R K (S S T A C K [S P] . I D N A M E , S S T A C K [S P] . I D L E N , 1) ;

Q U E R Y

E N D ;

< E C H O K > E C H O

* H E L P

<HELP> : := <HELPK> <HELP__COMMAND>
<HELPK> ::= HELP

J<HELP__COMMAND> : : =
BEGIN
WRITELN;WRITELN;
WRITELN('The following commands are available :');
WRITELN;
WRITELN('CREATE DELETE DISPLAY ECHO INPUT LIST');
WRITELN('LOAD PERFON PERFOFF TRACEON');
WRITELN('TRACEOFF');
WRITELN;
WRITELN('General Notes :');WRITELN;
WRITELN('l. To continue lines of input use a dash(-) at the end')
WRITELN(' of each line to be continued.');
WRITELN('2. To exit DBPQL, just enter X at the prompt.');
WRITELN;
WRITELN('For a specific help, type HELP <command>')

END;
<HELP_COMMAND> ::= CREATE
BEGIN

WRITELN;WRITELN;
WRITELN('You can create several different entities :');WRITELN;
WRITELN('CREATE DATABASE');
WRITELN('CREATE RELATION');
WRITELN('CREATE CONNECT VIEW');
WRITELN('CREATE JOIN VIEW');
WRITELN('CREATE PROJECT VIEW');
WRITELN('CREATE SELECT VIEW');
WRITELN('CREATE ORDER VIEW');WRITELN;
WRITELN('To get more help on any one of these,');
WRITELN('type HELP <one of the above lines>')

END;
<HELP_COMMAND> : CREATE DATABASE
BEGIN

WRITELN;WRITELN;
WRITELN('CREATE DATABASE <DBNAME>');
WRITELN('where <DBNAME> is the name of the database to be created.

END;
<HELP_COMMAND> CREATE RELATION
BEGIN

WRITELN;WRITELN;
WRITELN('You can define a new schema for a relation as follows:');
WRITELN('CREATE RELATION <RELNAME> IN <DBNAME> USING SCHEMA');
WRITELN(' < <ITEMNAME> <TYPE1> <TYPE2> <LENGTH> >');
WRITELN(' where : <TYPE1> - SIGNED_INT or INTEGER');

WRITELN(' UNSIGNED_INT');
WRITELN(' UNINTERPRET');
WRITELN(' ASCII');
WRITELN(' RECORD_PTR');
WRITELN(' STRING_PTR');
WRITELN(' <TYPE2> = FIXED');
WRITELN(' VAR');
WRITELN(' <LENGTH>= of item in bytes');
WRITELN;
WRITELN('You can also create a new relation which uses the');
WRITELN('already defined schema of any given view :');
WRITELN;
WRITELN('CREATE RELATION <RELNAME> USING VIEW <OLD_VIEW>')

END;
<HELP__COMMAND> ::= CREATE CONNECT VIEW
BEGIN

WRITELN;WRITELN;
WRITELN('CREATE CONNECT VIEW <NEW_VIEW> <REST>');
WRITELN('<REST> = FROM <S0URCE_VIEW1> <STRING_PTR> <S0URCE_VIEW2>')

END;
<HELP_COMMAND> ::= CREATE JOIN VIEW
BEGIN

WRITELN;WRITELN;
WRITELN('CREATE JOIN VIEW <NEW_VIEW> <REST>');
WRITELN('<REST> = FROM <SOURCE_VIEWl> <ITEM1> <SOURCE_VIEW2> <ITEM2>')

END;
<HELP_COMMAND> ::= CREATE PROJECT VIEW
BEGIN

WRITELN;WRITELN;
WRITELN('CREATE PROJECT VIEW <NEW_VIEW> <REST>');
WRITELN('<REST> = FROM <SOURCE_VIEW> CINCJEXO <PROJECT_ITEMS>');
WRITELN('where <INC_EXC>= INCLUDING(default) or EXCLUDING');
WRITELN('and <PROJECT_ITEMS> = sequence of items to project')

END;
<HELP_COMMAND> ::= CREATE SELECT VIEW
BEGIN

WRITELN;WRITELN;
WRITELN('CREATE SELECT VIEW <NEW_VIEW> <REST>');
WRITELN('<REST> = FROM <SOURCE_VIEW> WHERE <WHERE_CLAUSE> <OPTIONS>');
WRITELN;
WRITELN('<WHERE__CLAUSE> = sequence of <BINARY> or <UNARY> clause(s),');
WRITELN('separated by AND');WRITELN;
WRITELN('where <BINARY> = <ITEM> <BINARY_OP> <VALUE>');
WRITELN('<BINARY_OP> = = , < > , < » > , < = , > = ');WRITELN;
WRITELN('and <UNARY> = <ITEM> <UNARY_OP>');
WRITELN('<UNARY_OP> = IS VALUED or IS NULL')

END;
<HELP_COMMAND> ::= CREATE ORDER VIEW
BEGIN

WRITELN;WRITELN;
WRITELN('CREATE ORDER VIEW <NEW_VIEW> <REST>');
WRITELN('where <REST> = FROM <SOURCE_VIEW> <ORDER_ITEMS> <ASC_OR_DESC>');
WRITELN;
WRITELN('<ORDER__ITEMS> = sequence of items to sort');
WRITELN('<ASC_OR_DESC> = ASCENDING(default) or DESCENDING')

END;
<HELP_COMMAND> ::= DELETE
BEGIN

WRITELN;WRITELN;
WRITELN('You may delete a DATABASE, RELATION, or VIEW by');

WRITELN('saying DELETE <which-type> cidentifier of thing to delete>')
END;
<HELP_COMMAND> : := DISPLAY
BEGIN

WRITELN;WRITELN;
WRITELN('This command allows you to see a view on your terminal.');
WRITELN('Just say, DISPLAY Cview name>')

END;
<HELP_COMMAND> : ECHO
BEGIN

WRITELN;WRITELN;
WRITELN('This command serves as a single test to see if the DBP');
WRITELN('is up and running. Say ECHO <any-word> and you should');
WRITELN('receive an echo of the word you received. If you do not');
WRITELN('then the communications from the VAX to the DBP has not');
WRITELN('been initialized correctly.')

END;
<HELP_COMMAND> ::= INPUT
BEGIN

WRITELN;WRITELN;
WRITELN('Take all further command input from the file referenced');
WRITELN('using logical name DBPIN. Assign the logical name prior');
WRITELN('to invoking DBPQL. As an example :');WRITELN;
WRITELN('$ ASSIGN DBP.DAT DBPIN');
WRITELN('will assign the file DBP.DAT to the logical name DBPIN.');

END;<HELP_COMMAND> ::= LIST
BEGIN

WRITELN;WRITELN;
WRITELN('Type help <one-of-the-following> for further help on list:');
WRITELN('LISTVIEW');
WRITELN('LISTVIEWS');
WRITELN('LISTDB');
WRITELN('LISTDBS');

END;
<HELP_COMMAND> ::= LISTVIEWS
BEGIN

WRITELN;WRITELN;
WRITELN('LISTVIEWS gives a list of all available views.')

END;
<HELP_COMMAND> ::= LISTDB
BEGIN

WRITELN;WRITELN;
WRITELN('Two forms: LISTDB <DBNAME> and LISTDB ALL');
WRITELN('The database entities : file and view are listed for');
WRITELN('the given database(s).');WRITELN;
WRITELN('See HELP LISTDBS for a brief form which lists only database names.')

END;
<HELP_COMMAND> ::= LISTDBS
BEGIN

WRITELN;WRITELN;
WRITELN('LISTDBS lists all currently available iDBP databases.');
WRITELN('For a list containing file and view names, see HELP LISTDB.')

END;
<HELP_COMMAND> :: = LISTVIEW
BEGIN

WRITELN;WRITELN;
WRITELN('LISTVIEW Cview pame> gives the structure of the specified view.');
WRITELN('The item names, data types, and item lengths are printed.')

END;

<HELP_COMMAND> : := LOAD
BEGIN

WRITELN;WRITELN;
WRITELN('LOAD <view name> <tuples>');WRITELN;
WRITELN('where <tuples> is a sequence of tuples and each tuple');
WRITELN('is in the form : [value1 value2 value3 ...]');
WRITELN;WRITELN('Note the brackets must be included.')

END;
<HELP_COMMAND> ::= PERFON
BEGIN

WRITELN;WRITELN;
WRITELN('Turns on the Performance Tracing.');
WRITELN('The following statistics are measured :');WRITELN;
WRITELN('l. Elapsed Clock Time');WRITELN('2. Elapsed CPU Time');
WRITELN('3. Buffered I/O Count');WRITELN('4. Direct I/O Count');
WRITELN('5. Page Fault Count')

END;
<HELP_COMMAND> ::= PERFOFF
BEGIN

WRITELN;WRITELN;
WRITELN('Turns the performance tracing off — > see HELP PERFON')

END;
<HELP_COMMAND> ::= TRACEON
BEGIN

WRITELN;WRITELN;
WRITELN('Turns the byte tracing mechanism on. This mechanism allows')
WRITELN('the system developer to view the exact form of the');
WRITELN('request and response blocks sent/received over the');
WRITELN('communications line between the VAX and the DBP.')

END;
<HELP_COMMAND> ::= TRACEOFF
BEGIN

WRITELN;WRITELN;
WRITELN('Turns the byte tracing mechanism off — > see HELP TRACEON')

END;
* INPUT FROM DEVICE
<INPUT> ::= INPUT
BEGIN

INPUT_FIRST := TRUE;
INPUT_FILE := TRUE

END;
* LIST DATABASES
<LIST_DBS> LISTDBS
BEGIN

START;
LIST_DATABASE(BLANK__IDENT, 1,FALSE,TRUE) ;
QUERY

END;
* = = = = = = = 5= =
* LIST DATABASE
*-=^=====================~-==-==---
<LIST__DB> <LISTDBK> <LISTDB_REST>
QUERY;
<LISTDBK> : := LISTDB
START;
<LISTDB REST> <ID>

LIST_DATABASE(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN,TRUE,FALSE)
<LISTDB_REST> ::= ALL
LIST__DATABASE (BLANKJLDENT, 1,TRUE,TRUE) ;
* LIST VIEWS
<LIST_VIEWS> ::= <LIST_VIEWSK>
BEGIN

START;
LIST__VIEWS;
QUERY

END;
<LIST_VIEWSK> LISTVIEWS

9

* LIST VIEW
<LIST_VIEW> <LIST__VIEWK> <WHICH_VIEW>
BEGIN

START;
DESCRIBE__VIEW(ITEMl ,ITEM1L,FALSE);
QUERY

END;
<LIST_VIEWK> ::= LISTVIEW
<WHICH_VIEW> <ID>
BEGIN

ITEMl := SSTACK[SP].IDNAME;
ITEM1L:= SSTACK[SP].IDLEN

END;
* LOAD
<LOAD> <LOADK> <LV_REST>
BEGIN

END__CURSOR (1, TRUE) ;
QUERY

END;
<LOADK> ::= LOAD <ID>
BEGIN

START;
SC_MODE := 1; (* RANDOM *)
SC__DIRECTION := 0; (* FORWARD-ONLY *)
SC_RETEST := 0;
(* START A CURSOR FOR LOADING THIS VIEW *)
(* ATTACH THE SOURCE VIEW, FIRST *)
FREE (BLANKJLDENT, 1 ,TRUE) ;
ITEMS3[1] := SSTACK[SP].IDNAME;
ITEMS3L[1]:= SSTACK[SP].IDLEN;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
START__CURSOR(1,SSTACK[MP+1].IDNAME,SSTACK[MP+1].IDLEN,

SC_MODE, SC__DIRECTION, SC_RETEST)
END;
<LV_REST> ::= <TUPLES>
<TUPLES> ::= <TUPLE>
»<TUPLES> ::=* <TUPLES> <TUPLE>

<TUPLE> ::= <START_TUPLE> <LV_ITEMS> <END_TUPLE>
STORE(1,INTEGRITY,IDCOUNT,ITEMS1,ITEMS1L);
<START_TUPLE> ::= [
IDCOUNT := 0;
<END_TUPLE> ::=]

5<LV_ITEMS> ::= <LV_ITEM>
<LV_ITEMS> ::= <LV_ITEMS> <LV__ITEM>

5<LV_ITEM> ::= <ID>
BEGIN

IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] : = SSTACK[SP].IDNAME;
ITEMS1L[IDCOUNT] : = SSTACK[SP].IDLEN

END;
<LV_ITEM> ::= <NO>
BEGIN

IDCOUNT := IDCOUNT + 1;
NUM_TO__ASC 11 (SSTACK [SP] .IVAL, ITEMl, ITEM1L);
ITEMS1[IDCOUNT] := ITEMl;
ITEMS1L[IDCOUNT] := ITEM1L

END;
* PERFORMANCE ON
<PERFORM_COMMAND> : PERFON
BEGIN

WRITELN;
WRITELN('Performance Monitoring is turned on.');
PERFON

END;
* PERFORMANCE OFF
<PERFORM_COMMAND> ::= PERFOFF
BEGIN

WRITELN;
WRITELN('Performance Monitoring is turned off.');
PERFOFF

END;
* TRACE ON
<TRACE__COMMAND> : := TRACEON
BEGIN

WRITELN;
WRITELN('Trace is turned on.');
TRACEON

END;
* TRACE OFF
<TRACE_COMMAND> ::= TRACEOFF
BEGIN

WRITELN;
WRITELN('Trace is turned off.');
TRACEOFF

APPENDIX G - A sample DBPQL user dialog

$$ ql
_TTBO: allocated

DBPQL : DBP Query Language Version 1.0
Ok
QL> help
The following commands are available :
CREATE DELETE DISPLAY ECHO INPUT LIST
LOAD PERFON PERFOFF TRACEON
TRACEOFF
General Notes :
1. To continue lines of input use a dash(-) at the end

of each line to be continued.
2. To exit DBPQL, just enter X at the prompt.
For a specific help, type HELP <command>
QL> help create
You can create several different entities :
CREATE DATABASE
CREATE RELATION
CREATE CONNECT VIEW
CREATE JOIN VIEW
CREATE PROJECT VIEW
CREATE SELECT VIEW
CREATE ORDER VIEW
To get more help on any one of these,
type HELP <one of the above lines>
QL> create database fem
Ok
QL> help create relation
You can define a new schema for a relation as follows:
CREATE RELATION <RELNAME> IN <DBNAME> USING SCHEMA
{ <ITEMNAME> <TYPE1> <TYPE2> <LENGTH> >
where : <TYPE1> « SIGNED_INT or INTEGER

UNSIGNED_INT
UNINTERPRET
ASCII
RECORD_PTR
STRING_PTR

<TYPE2> = FIXED
VAR

<LENGTH>= of item in bytes
You can also create a new relation which uses the
already defined schema of any given view :
CREATE RELATION <RELNAME> USING VIEW <0LD_VIEW>

QL> create relation beams in fem using schema
QL> group integer fixed 4 -
QL> element integer fixed 4 -
QL> nodel integer fixed 4 -
QL> node2 integer fixed 4 -
QL> el-type ascii fixed 4 -
QL> nom-size ascii fixed 4 -
QL> material ascii fixed 8
Ok, View BEAMS has been created.
Ok
QL> listview beams
View : BEAMS
Underlying Relation : BEAMS
of items = 7
GROUP Signed Integer 4
ELEMENT Signed Integer 4
N0DE1 Signed Integer 4
N0DE2 Signed Integer 4
EL-TYPE ASCII Alphanumeric 4
NOM-SIZE ASCII Alphanumeric 4
MATERIAL ASCII Alphanumeric 8
QL>
QL>
QL> create relation nodes in fem using schema -
QL> node integer fixed 4 -
QL> xcoord integer fixed 4 -
QL> ycoord integer fixed 4 -
QL> zcoord integer fixed 4
Ok, View NODES has been created.
Ok
QL> listviews
List of Views :
BEAMS
FI LEI
NODES
PEOPLE

QL> perfon
Performance Monitoring is turned on.
QL> load beams -
QL> [1 1 1 2 wfl w8x8 aluminum] -
QL> [1 2 3 4 i i3x2 titanium] -
QL> [2 3 5 6 wfl w8x8 graphite]
Clock 27.44922
CPU 0.15000
Buffered I/O count 40
Direct I/O count 0
Page Fault count 0
Ok

QL>
QL> perfoff
Performance Monitoring is turned off.
QL> load nodes -
QL> [1 53 62 0] -
QL> [2 67 10 0] -
QL> [3 10 11 0] -
QL> [4 23 53 0] -
QL> [5 54 82 2] -
QL> [6 84 21 2]
Ok
QL> display beams
GROUP ELEMENT N0DE1 NODE2 EL-TYPE NOM-SIZE MATERIAL

1 1 1 2 WFL W8X8 ALUMINUM
1 2 3 4 I 13X2 TITANIUM
2 3 5 6 WFL W8X8 GRAPHITE
QL> display nodes
NODE XCOORD YCOORD ZCOORD

1 53 62 0
2 67 10 0
3 10 11 0
4 23 53 0
5 54 82 2
6 84 21 2
QL> traceon
Trace is turned on.
QL> display nodes
« DBP REQUEST «
of bytes is 9
Byte Stream :
9A 05 4E 4F 44 45 53 FF 00 ..NODES..

== DBP RESPONSE ==
of bytes is 112
Byte Stream :
F9 02 9A 00 01 00 01 00 06 04 03 07 00 05 00 05
4E 4F 44 45 53 05 4E 4F 44 45 53 00 00 00 01 01 NODES.NODES....
02 04 00 03 00 01 04 04 4E 4F 44 45 00 05 4E 4F
44 45 53 03 01 01 04 06 58 43 4F 4F 52 44 00 05 DES.....XCOORD..
4E 4F 44 45 53 03 02 01 04 06 59 43 4F 4F 52 44 NODES....YCOORD
00 05 4E 4F 44 45 53 03 03 01 04 06 5A 43 4F 4F ..NODES....ZCOO
52 44 00 05 4E 4F 44 45 53 FF 0A 00 00 00 FF 00 RD..NODES.....

NODE XCOORD YCOORD ZCOORD

— DBP REQUEST ==
// of bytes is 43
Byte Stream :
01 FF 06 FF 00 00 01 00 05 4E 4F 44 45 53 01 30 ..
FF 00 02 01 01 05 4E 4F 44 45 53 01 20 FF 00 10 ..
01 01 FF 06 FF 00 03 FF 06 FF 00

— DBP RESPONSE ==
of bytes is 106
Byte Stream :
FI 01 01 01 31 02 35 33 02 36 32 01 30 FF 00 FI • • • • 1.53.62.0. •

01 01 01 32 02 36 37 02 31 30 01 30 FF 00 FI 01 •••2.67.10.0.. •

01 01 33 02 31 30 02 31 31 01 30 FF 00 FI 01 01 ..3.10.11.0... •

01 34 02 32 33 02 35 33 01 30 FF 00 FI 01 01 01 .4.23.53.0.... •

35 02 35 34 02 38 32 01 32 FF 00 FI 01 01 01 36 5.54.82.2.... 6
02 38 34 02 32 31 01 32 FF 00 F6 08 10 00 00 64 •84.21.2...... d
00 00 IF 00 02 00 00 00 FF 00 0A 11 2E D9 0A 11
00 00 IF 00 02 00 00 00 FF 00

1 53 62 0
2 67 10 0
3 10 11 0
4 23 53 0
5 54 82 2
6 84 21 2
QL> traceoff
Trace is turned off.
QL> create join view jl from beams nodel nodes node
Ok v.-

1istview Jl
View. ♦ Jl
Underlying Relation J FEM
of items = 11
GROUP Signed Integer
ELEMENT Signed Integer
M O D E 3 Signed Integer
N0DE2 Signed Integer
EL-TYPE ASCII Alphanumeric
NOM-SIZE ASCII Alphanumeric
MATERIAL ASCII Alphanumeric
NODE Signed Integer
X Signed Integer
y Signed Integer
2 Signed Integer

crea.te select view sell from beams where el-twpe® wfl
Ok f«

QL> .display sell

GROUP ELEMENT N0DE1 N0DE2 EL-TYPE NOM-SIZE MATERIAL
\ V "*• — — — — — — — — — — — — — ~ ~ — — — — — — — — — — — — — — —

1 1 1 2 WFL W8X8 ALUMINUM
2 3 5 6 WFL W8X8 GRAPHITE

QL>
DBPQL - G o o d b y e »
$

FIGURES

VAX I I/780

INTEL

Bt tonne
OtSK

HOST COMPUTER

PROTOCOL SOFTWARE
DATA BASE
PROCESSOR

MASS STORAGE

Figure 1 - The Physical DBP Environment

SOURCE VIEWS
SOURCE 1

c
A
R

SOURCE 2

JOIN VIEW
(FROM SOURCE 1)

*
1------ reiA

R

(FROM SOURCE 2)

Figure 2a - The JOIN Command

SOURCE VIEW SELECT VIEW

Figure 2b - The SELECT Command

SOURCE VIEW PROJECT VIEW

The PROJECT Command

SOURCE VIEW ORDER VIEW

Figure 2d - The ORDER Command

SOURCE VIEWS
SOURCE 1

UNION VIEW

SOURCE 2

(FROM SOURCE 1)

(FROM SOURCE 2)

Figure 2e - The UNION Command

SOURCE VIEW
(UNSTRUCTURED)
. XX. . .xx —
. . XX...............
.XX XX. .
■••■XX...........

*
SUBSTRING VIEW

.. .XX TXT
2 3

]
— TTSO

XX 1

Figure 2f - The SUBSTRING Command

SOURCE VIEWS
SOURCE 1 (STRUCTURED)

CONNECT VIEW
(FROM SOURCE 1)

I

*
(FROM SOURCE 2)

I
SOURCE 2 (UNSTRUCTURED)

Figure 2g - The CONNECT Command

OBPQL

QUERYLANGUAGESKELETON
PARGENPARSERGENERATOR LAYER 3

DBPQL

A USER

OOP
OPPSSP COOE REQUESTSEMANTICS GEN. unni r INTEL

LAYER E
DBP8SP

LAYER /
3PP

Figure 3 — HILDA : A general flow chart

- H O S T D B P

LAYER 3: DBPQL LAYER 2 : DBPSSP
i

LAYER 1: SPP !
OATA BASE PROCESSOR QUERY LANGUAGE

DATA BASEPROCESSORSEMANTICSSPECIFICATIONPACKAGE

SERVICE 'PORTPROTOCOL iiiiii_------------------ j------------ -------

"CREATE OATABASE TEST "

START 1*60'X J:Lfc* ASCI *TEST\ 41 : - SEND:

.............................. — - ■■■ -i..4.....-■■■ . ,11
SEND REQUEST j
60 !
54
45 proliocol53 i54 J
FF00 jii

DBPRESPONSE --
RECVIRESPONSE. NBYTES MOREI:-IF MORE THEN RECEIVE MORE OATA FROM THE DBP

1iiiI
RECEIVE RESPONSE J

protjoco 1
I«1I1i
'

Figure 4 - HILDA : A sample query

HILDA SPP

DP LAYER

DTTOM LAYEFW SPP

QUERYPROCESSING

ASSEMBLYTOOLS

PHYSICALLINK

DATALINK

APPLICATION/SESSIONLINK

Figure 5 - Layers within HILDA and SPP

If the host sends the following request module to iDBP:

IIDIDI •Command-l- ■Command-2- ! -Oonroand~3-1
Then the host and iDBP will transmit the following segments:
(values are for example only)

HOST

1.

+ -H—
I ID | ID | 4-byte
i— - - 1 header

2.

iDBP

Number of Segments * 1,
Buffer 1 Length = 4

Number of Segments *= 1,
Buffer 1 Length = 512

3.

4*

Command-l-a I 512 -
4- bytes

■+
I Conmand-l-b Command-2-a 1 512 -

 -- b/teS
4.

Number of Segments * 1,
Buffer 1 Length « 512

Nunber of Segments * 2,
Buffer 1 Length * 4,
Buffer 2 Length = 512

4-byte I ID | ID |
header

+■
512 I

bytes +-
Response-A

Figure 6 - General Form for Host-DBP Interaction

Terminal: -TTBO: Device-T«peJ VT52 Owner* No Owner
I n p u t ♦
O u t p u t :

9600
9600

LFfillt
CRfili:

Width:
Pasle ♦

80
24

Parity* None

Terminal Characteristics ♦
P a s s a l 1 Echo Type-ahead No Escape
No Hostsync TTsync Lowercase No Tab
No Wrap Scope No Remote No Holdscreen
Eishtbit Broadcast No Readsync No Form
Fulldup No Hodem No Local-echo No Autobaud
No HanSup No Brdcstmbx No DMA No Altypeahd
Set-speed No ANSI-CRT No Resis No Block_mode
No Advanced-video No Edit-mode No DEC-CRT

Figure 7 - VAX Asynchronous Communications Parameters

CONTROL PCB
RESERVED
I OOP STATUS
HOST STATUS
RESERVED

REQUEST LENGTH
• OF SEGMENTS

PCB ADORESS VECTOR BUFFER I POINTER
BUFFER I LENGTH
BUFFER 2 POINTERROOT :^ ADDRESS EEOC:0000 BUFFER 2 LENGTH

APPLICATION PCB
DATA

DATA

DATA

DATA

APP. SESSION PCB ADDRESS

CONTROL SESSION PCB ADORESS

INDEX

ASABOVEFORMAT

Figure 8 - Threaded Data Structure of SPP

R*qu«*t Motful*

COMMAND I
Sing I• CommandCOMMAND 2

OPCODE BYTE
COMMAND 3

PARAMETERS/DATA

TERMINATOR BYTE I
TERMINATOR BYTE 2COMMAND N

Figure 9 - Request Module Form

REMARK HOST "HELLO"
START159):INTI11) :INTI III: ASCl’HELLO’,5) SEND: ^

05
4-9
45

4C

FT
00

Figure 10 - A sample assembly for "REMARK"

REFERENCES

Fulton, R. E.: "IPAD Project Overview," NASA
Conference Publication 2143, Sept. 17-19, 1980.

Blackburn, C. L.; Storaasli, O. O.? and Fulton, R.
E.: "The Role and Application of Data Base Management
in Integrated Computer-Aided Design," Proceedings of
the AIAA/ASME/ASCE/AHS 23rd Structures,Structural
Dynamics, and Materials Conference, New Orleans, LA,
May 10-12, 1982.

Fishwick, P. A.; and Blackburn, C. L.:"Managing
Engineering Data Bases: The Relational Approach,"
(CIME) Computers in Mechanical Engineering, Vol. 1,
No. 3, Jan. 1983.

Martin, J. : Computer Data Base Organization, 2nd
Ed., Englewood Cliffs, N.J., Prentice-Hall, 1977.

Date, C. J. : An Introduction to Data Base Systems,
2nd Ed., New York, NY., Addison-Wesley, 1977.

RIM Users Guide, Academic Computer Center, University
of Washington, W33, Jan. 1980.

Maryanski, Fred J.:"Backend Database Systems,"
Computing Surveys, Vol. 12, No.l, March 1980.

9.

10 .

11.

12.

13.

14.

15.

16.

Canaday, R. E.;Harrison, R. D.;Ivie, E. L. ; Ryder,
J. L.; and Wehr, L. A.: "A Back-End Computer for
Data Base Management," Communications of the ACM, Vol.
10, pp. 575-582, Oct. 1974.

Codd, E. F.: "Relational Data Base: A Practical
Foundation for Productivity," Communications of the
ACM, Vol. 25, No. 2, Feb. 1982.

DBP DBMS Reference Manual. Intel Corporation, Austin,
TX, Revision 001, Order No. 222100-001, August 1982.

Davenport, William P. : Modern Data Communication -
Concepts , Language, and Media. Hayden Book Company,
1971.

VAX/VMS I/O User's Guide(Volume 1). Digital
Equipment Corporation, Maynard , MA., Software Version
3.0, May 1982.

DBP Operations Manual. Intel Corporation, Austin, TX,
Revision 001, Order No. 222101-001, August 1982.

DBP Host Link Reference Manual. Intel Corporation,
Austin, TX, Revision 001, Order No. 222102-001,
August 1982.

Noonan, Robert E.; and Collins, Robert: "The Mystro
Parser Generator PARGEN User's Manual: Version 6.2,"
Aug. 1982.

Adiba, M.:"Derived Relations: A Unified Mechanism for
Views, Snapshots, and Distributed Data," Proceedings

of the Seventh International Conference on Very
Data Bases, Cannes, France, Sept. 1981.

Large

17. DeRemer, Frank; and Pennello, Thomas J.: "Efficient
Computation of LALR(l) Look-ahead Sets," Proceedings
of SIGPLAN Symposium on Compiler Construction, pp.
176-187, Aug. 1979.

18. Powell, M. L. and Linton, M. A.: "Database Support
for Programming Environments," Proceedings of the
Annual Database Week Meeting, Engineering Design
Applications, San Jose, May 23-26, 1983.

19. Feyock, Stefan:"Transition diagram-based CAI/HELP
systems", International Journal of Man-Machine
Studies, Vol. 9, pp. 399-413, 1977.

VITA

Paul Anthony Fishwick

Born in Bebington, Cheshire, England, July 18, 1955.
Graduated from Downingtown High School, Pennsylvania, B.S.
Mathematics, Pennsylvania State University. M.S.
candidate, College of William and Mary, 1981-1983, with a
concentration in Computer Science. The course
requirements for this degree have been completed, but not
the thesis: HILDA: The Flexible Design of a Data Base
Machine Executive.

The author has had work experience at Newport News
Shipbuilding and Dry Dock Co., Virginia working as a
software analyst in the in-house computer aided ship
design project. The author is now employed by Kentron
Technical Center, Virginia where he is currently
performing integrated computer-aided design and data base
machine research at NASA Langley Research Center.

	HILDA: The Flexible Design and Implementation of a Database Machine Executive
	Recommended Citation

	tmp.1539892610.pdf.01LDc

