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ABSTRACT
Mercury is a ubiquitous environmental contaminant known to accumulate in and 
impact fish-eating bird species, and recently demonstrated to impact small 
songbirds to a comparable extent. It can bioaccumulate to concentrations of >1 
ug/g in tissues of prey organisms such as fish and insects. At high enough 
concentrations, exposure to mercury is lethal to birds. However, environmental 
exposures are usually far below the lethal concentrations established by dosing 
studies.
Chapter 1 The objective of this review is to better understand the effects of sub- 
lethal exposure to mercury in birds. We restricted our survey of the literature to 
studies with exposures < 5 ug/g. The majority of sub-lethal effects were subtle 
and some studies of similar endpoints reached different conclusions. In general, 
there was no evidence that mercury affects longevity, but several of the sub- 
lethal effects identified likely result in fitness reductions that could adversely 
impact populations. Strong support exists in the literature for the conclusion that 
mercury exposure reduces reproductive output, compromises immune function, 
and causes avoidance of high-energy behaviors. For other endpoints, notably 
some measures of reproductive success, endocrine function, and body condition, 
there is weak or contradictory evidence of adverse effects and further study is 
required.

Chapter 2: Because mercury binds strongly to the keratin of feathers, molt is an 
important avenue for mercury elimination from birds. This paper is the first 
investigation of the depuration of mercury from songbird tissues and we attempt 
to quantify the impact of molt on the speed with which mercury is eliminated from 
tissues. We exposed two passerine species (European starling [Sturnus vulgaris] 
and zebra finch [Taeniopygia guttata]) to environmentally relevant dietary 
mercury for extended periods of time, and then allowed them to depurate on a 
mercury-free diet for 20 weeks while either molting or not molting. Molting birds 
depurated mercury from their blood significantly more rapidly than non-molting 
birds. The effect of molt on mercury retention in organ tissues was harder to 
decipher, but followed the same pattern for one species (finches). A subset of 
birds allowed to depurate for an additional 20 weeks exhibited slower mercury 
depuration among those individuals exposed to mercury for their entire lifetime 
as opposed to birds exposed only as adults. Our results confirm that molting 
expedites depuration, and suggest that migration/dispersal behavior and molt 
timing must be taken into consideration during risk assessment.
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Chapter 1: Impacts of Environmentally Relevant Mercury Exposure on Birds

Introduction

Mercury (Hg) concentrations are predicted to continue to increase worldwide, while 

climate change is expected to exacerbate the impact of this ubiquitous environmental 

contaminant (Sunderland et al. 2009, Stem et al. 2012). The effects of Hg on wildlife 

have been studied extensively (Fig. la), but until recently a vast majority of bird species 

investigated have been either piscivorous or domesticated, such as the white leghom 

chicken. Current experiments and field studies have began to include passerines, as it has 

recently been discovered that Hg is not restricted to aquatic environments, but also 

impacts terrestrial species (Cristol et al. 2008). Additionally, many more experiments 

have used lower concentrations of Hg in an effort to understand the sub-lethal impacts 

that most exposed wildlife are experiencing (Fig. lb).

This review incorporates the majority of known literature discussing the effect of 

sub-lethal doses of Hg on birds of all taxa. Experimental groups of birds fed 40 ppm Hg 

experienced 30% mortality within as few as 6 days (Finley et al. 1979). Chronic exposure 

to 5 ppm dietary Hg resulted in 25% mortality within 10 weeks, making it a lethal dose 

(Scheuhammer 1988). However, Hg concentrations in wild prey items, both fish and 

terrestrial arthropods, rarely exceed 2 ppm (Cristol et al. 2008, Burgess & Meyer 2008, 

Henny et al. 2002, Merrill et al. 2005). Experimental studies were included in this review 

only if birds were exposed to 5 ppm Hg or less. The following review provides a 

summary of effects of environmentally-relevant Hg concentrations on birds.
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Reproduction

Overview: Depressed reproductive success is the most widely investigated and reported 

consequence of mercury exposure, but the endpoints measured vary widely between 

studies, from eggshell structure to timing of breeding to parenting behaviors. Dozens of 

different species have been studied, both in the field and in laboratories (all experimental 

dosing results are denoted as such throughout this paper). Despite the wide range of 

mercury concentrations and methodologies, mercury exposure clearly has some 

deleterious impacts on reproduction.

Fledglings'. Reduction in the number of nestlings or fledglings is the effect of mercury 

exposure with the most robust support, and includes reports of fewer common loon 

chicks (Evers et al. 2008, Burgess & Meyer 2008), a lower number of tree swallows 

fledging (Brasso & Cristol 2008, Hallinger & Cristol 2011), and reduced fledgling output 

by free-living bald eagles, and dosed American kestrels and zebra finches (DeSorbo & 

Evers 2005, Albers et al. 2007, Varian-Ramos et al. 2014) (see Appendix 1 for scientific 

names). There was a nonsignificant trend towards fewer fledglings among white ibis 

dosed in an aviary (Frederick & Jayasena 2010) and an uncertain relationship between 

fledgling numbers and mercury exposure in free-living American dippers (Henny et al.

2005). The only study not reporting reduced numbers of offspring was one on great skua 

fledglings exposed to mercury in their natural fish diets (Thompson et al. 1991), however 

a recent study of long-term data from Antarctic colonies of two species of skuas indicates 

an effect of tissue mercury concentration in one year on reproductive success the 

following year, of a severity that is predicted to lead to population declines (Goutte et al
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2013).

Hatchlings'. In a series of landmark dosing studies on female mallards, Heinz (1974, 

1976a, 1976b, 1979), reported a reduction in the number of ducklings, findings he 

recently replicated (Heinz et al. 2010b). Mercury exposure also resulted in fewer 

nestlings for free-living common loons (Meyer et al. 1998) and snowy egrets (Henny et 

al. 2002), and dosed black ducks (Finley & Stendell 1978), American kestrels (Albers et 

al. 2007), and white ibises (Frederick & Jayasena 2010). Anthony et al. (1999) reported 

fewer nestlings from free-living bald eagles, but Bowerman et al. (1994) and Weech et al. 

(2006) reported no correlations between environmental mercury exposure and number of 

bald eagle nestlings. Contamination from mercury mining did not correlate with number 

of black-crowned night-heron nestlings either (Henny et al. 2002), and Elbert & 

Anderson (1998) reported an unclear relationship for western grebes in the same 

situation.

Clutch Size: The number of eggs laid in a clutch also appears to be impacted by 

methylmercury in some species. Mercury contamination was associated with reduced 

numbers of eggs in black-legged kittiwakes (Tartu et al. 2013), as well as dosed white 

leghorn chickens (Lundholm 1995), American kestrels (Albers et al. 2007), and mallards 

(Heinz 1974). However, no differences were detected in the number of eggs laid by 

reference and environmentally exposed tree swallows (Brasso & Cristol 2008, Gerrard 

2000), or dosed black ducks (Finley & Stendell 1978) and zebra finches (Varian-Ramos 

et al. 2014).
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Other Measures o f Reproductive Output:

The literature suggests that mercury may impact a number of other reproductive 

endpoints, but there are fewer examples of each of these. Nestlings from contaminated 

sites were more sensitive to high ambient temperatures (Hallinger & Cristol 2011), and 

primary sex ratios of offspring on mercury-contaminated sites were female-biased in 

belted kingfishers, tree swallows, and eastern bluebirds, relative to reference sites 

(Bouland et al. 2012). There was a mercury-related decline in the proportion of eggs 

hatching in tree swallows (Hallinger & Cristol 2011), laughing gulls (Jenko et al. 2012), 

and dosed zebra finches (Varian-Ramos et al. 2014) and American kestrels (Albers et al. 

2007). In a set of experimental studies on mallards, hatching success declined in two 

studies (Hoffman & Moore 1979, Heinz et al. 2009) but improved in another (Heinz et al. 

2010a). This apparent case of hormesis, perhaps based on a mild antibiotic effect of 

mercury, was reproduced in an egg injection experiment (Heinz et al. 2012). Mercury- 

related changes in hatching rate were not observed for great skuas (Thompson et al.

1991), or dosed black ducks (Finley & Stendell 1978) or mallards (Heinz 1976a, Heinz et 

al. 2010b).

Other metrics of reproductive success have yielded equivocal results. A model for 

Carolina wrens developed from field results indicated reduced nest survival, due 

primarily to nest abandonment, with even small increases in maternal blood mercury 

concentration (Jackson et al. 2011). However, for bald eagles, nest success, as defined by 

the percent of breeding territories producing at least one fledgling (Bowerman et al.

1994) or reproductive success in terms of the number of nestlings per nest (Weech et al.
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2006), did not relate to mercury contamination.

Eggs and Embryos: Eggshell thinning is one of the most commonly observed effects of 

mercury contamination, seen in free-living snowy egrets (Olivero-Verbel et al. 2013) and 

domestic white leghorn chickens (Lundholm 1995). Bald eagle eggshells were found to 

be thinner by Wiemeyer et al. (1984), but no difference was detected by Anthony et al. 

for the same species (1999). Mallards maintained on a methylmercury-contaminated diet 

eggs did not show eggshell thinning (Heinz 1974, 1976A, 1976B) until the third 

generation (Heinz 1979). Lundholm (1995) also reported eggshell defects and shorter egg 

length in chickens, while Olivero-Verbel (2013) observed wider eggs with decreased 

weight in free-living egrets, and Heinz (1974) reported decreased egg weight in dosed 

mallards. Egg volume was lower for contaminated tree swallows in one study (Brasso & 

Cristol 2008), but did not differ in a larger study on the same population (Hallinger & 

Cristol 2011).

A small number of studies have found effects of Hg on embryos as well.

Applying mercury to the surface of mallard eggs caused teratogenicity including skeletal 

defects and incomplete ossification (Hoffman & Moore 1979). When injected into eggs, 

mercury caused teratogenicity to varying degrees in up to 22 of 25 different species 

(Heinz et al. 2011). Eggs of dosed mallards experienced increased embryo mortality 

(Heinz 1974), with fewer viable eggs produced (Heinz 1979). Forster’s tern eggs 

collected from the wild showed a positive relationship between number of malpositioned 

embryos and mercury concentration, but no relationship between embryo deformities and 

mercury. There was no relationship between mercury concentration and either
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malpositioned or deformed embryos for black-necked stilts and American avocets 

(Herring et al. 2010), or embryonic development in white-tailed sea eagle eggs (Helander 

et al. 1982).

Timing o f Breeding: Study of the effects of mercury on relative timing of reproductive 

events, such as egg laying and fledging dates, has yet to produce any consensus. The 

potential effect of mercury on laying date is especially uncertain, with two studies of 

dosed birds reporting an increased latency to renest (zebra finches, Varian-Ramos et al.

2014) or a delay in onset of egg laying (American kestrels, Albers et al. 2007), but 

another on free-living tree swallows reporting earlier onset of laying on contaminated 

sites (Hallinger & Cristol 2011). However, the onset of laying in the same population of 

tree swallows was reported to be unaffected on mercury-contaminated sites (Brasso & 

Cristol 2008). Neither great skuas (Thompson et al. 1991), black-legged kittiwakes (Tartu 

et al. 2013), nor dosed black ducks (Finley & Stendell 1978) exhibited a relationship 

between mercury concentration and onset of egg-laying. Blood mercury concentration 

was negatively related to date of hatching in Forster’s terns (Ackerman et al. 2008a), 

while a positive relationship between mercury and interval between laying and hatching 

was observed for dosed American kestrels (Albers et al. 2007).

Longevity

It appears that mercury does not directly decrease longevity at environmentally relevant 

concentrations. No differences were found in post-fledging survival probability of 

Forster’s terns (Ackerman et al. 2008a), re-sight probability of dosed and released white
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ibises or free-living common loons (Frederick et al 2011, Mitro et al. 2008), annual adult 

return rate of common loons or great skuas (Meyer et al. 1998, Thompson et al. 1991), or 

survival of great egrets (Sepulveda et al. 1999). Survival probability of American avocet 

and black-necked stilt chicks at more contaminated sites dropped 1.4% and 3.0%,, 

respectively, but mercury had low predictive power in the models used (Ackerman et al. 

2008b). Similarly, predicted tree swallow survival at mercury-contaminated sites dropped 

1-2% but mercury exposure had weak explanatory power (Hallinger et al. 2011). Mercury 

concentration in tissues was related to lower recapture probabilities for white-winged 

scoters, but not king eiders (Wayland et al. 2008). Further studies of a long-lived birds 

observed over many years of mercury exposure may yet reveal a significant effect on 

survivorship, but thus far there is no evidence to this effect.

Behavior

Parental Behaviors: Parental behavior may be altered in a variety of ways after exposure 

to mercury. White ibises dosed in captivity made fewer nesting attempts (Heath & 

Frederick 2005) and even exhibited same-sex pairing among males (Frederick &

Jayasena 2010). Both free-living common loons (Evers et al. 2008) and dosed American 

kestrels (Albers et al. 2007) spent less time incubating, while mercury was also related to 

decreased provisioning effort in loons (Merrill et al. 2005). Male American kestrels were 

observed cannibalizing their offspring in a dosing study (Fallacara et al. 201 lb).

Behavior o f Dependent Young Birds: A number of abnormal chick behaviors have also 

been reported. Common loon chicks with higher mercury exposure spent more time
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preening and less time back-riding, although they did not change their swimming or 

diving habits in response to mercury contamination (Nocera & Taylor 1998). Loon chicks 

were also less capable of righting themselves after dietary exposure, and experimental in 

ovo mercury exposure resulted in other behavioral changes in captivity, including 

crossing a platform faster, spending more time on platforms and in sunlight, and 

exhibiting decreased responses to parental wails and frightening stimuli (Kenow et al. 

2010). Dosed mallard ducklings did not alter their response to maternal calls (Heinz 

1975, 1976a, 1976b) until the third generation of exposed birds, when they exhibited a 

reduced response (Heinz 1979). Ducklings also ran further from frightening stimuli 

(Heinz 1975, 1976b, 1979), except in one experiment in which their response to a 

frightening stimulus did not change (Heinz 1976a). When mercury was injected into 

white leghorn chicken eggs, the resulting chicks did not differ in their response to 

frightening stimuli, but they did take longer to right themselves (Rutkiewicz et al. 2013). 

High-energy Behaviors: Mercury appears to impact behaviors requiring a large energy 

input. Carolina, house wrens, and song sparrows sang less complex, lower-frequency 

songs (Hallinger et al. 2010). Free-living common loons spent less time preening and 

swimming in the wild (Evers et al. 2008). In dosing studies that included both lethal 

concentrations and lowest doses of 5 ug/g, great egrets were less active (Bouton et al. 

1999) and exhibited ataxia (Spalding et al. 2000b), while zebra finches became lethargic 

and had difficulty balancing or landing on perches (Scheuhammer 1988). Domestic 

pigeons also exhibited ataxia, pecked at food less accurately and at a slower rate (Evans 

et al. 1982), and made fewer, slower responses in operant conditioning tests (Laties et al.



1980). Mercury also impacted American kestrel motor skills, but only at concentrations 

above 5 ug/g (Bennett et al. 2009).

The relationship between foraging behaviors and mercury concentration is more 

complicated. Common loons with higher mercury exposure spent less time foraging for 

themselves and their chicks (Evers et al. 2008) and exhibited an increased diving 

frequency (Olsen et al. 2000), which may indicate that they were having difficulty 

foraging. However, dosed white ibises foraged more efficiently (Adams et al. 2008) and 

great egrets performed as well as birds on control diets, although they had a reduced 

appetite (Bouton et al. 1999). Food consumption of common loons dosed in captivity was 

not related to mercury concentration (Kenow et al. 2003).

Neurological Function

Although fewer studies of neurotoxicity in avian models have been done in recent years, 

there exists a body of evidence indicating that Hg results in axonal degeneration and 

other neurological problems. In mallards dosed with mercury, adults developed 

degenerated axons (Pass et al. 1975), and chicks exhibited demyelination and neuronal 

shrinkage (Heinz & Locke 1976). Pigeons also exhibited demyelination, but instead had 

neuronal swelling (Evans et al. 1982). American kestrels developed brain lesions, but 

only when fed concentrations above 5 ug/g, and all groups showed axonal degeneration 

(Bennett et al. 2009). Double-crested cormorants had axonal degeneration and swollen 

myelin sheaths (Loerzel et al. 1999). Red-tailed hawks, however, did not show axonal 

degeneration unless they were fed very high concentrations of Hg (Fimreite & Karstad 

1971).
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Several researchers have examined neurotransmitter function. Decreased binding 

to NMDA receptors was related to mercury concentration in free-living bald eagles and 

common loons (Scheuhammer et al. 2008), and dosed white leghorn chickens 

(Rutkiewicz et al. 2011). However, no change in binding to NMDA receptors was 

observed for domestic quail or chickens in one experiment while increased binding to 

NMDA in chickens was observed in another (Rutkiewicz et al 2013). Glutamine 

synthasewas found to increase in dosed chickens (Rutkiewicz et al 2011), but only at the 

high concentration of 6.4 ug/g, and another study found no change in glutamine synthase 

(Rutkiewicz et al. 2013). Glutamic acid decarboxylase has been found to either increase, 

remain the same (Rutkiewicz et al. 2013), or decrease with administration of inorganic 

mercury (Rutkiewicz et al. 2011) in chickens. Gamma-aminobutyric acid either showed 

no change, for chickens or quail, increased in chickens fed 6.4 ppm mercury, or 

decreased in chickens exposed to methylmercury-cysteine (Rutkiewicz et al. 2013). 

Muscarinic cholinergic receptor activity was related to mercury in free-living bald eagles 

and common loons, but no differences were found for cholinesterase, or MAO 

(Scheuhammer et al 2008).

Endocrine Function

Overview: While there is no evidence that mercury is a classic endocrine disrupting 

chemical that mimics or competes with specific hormones, there is data suggesting that 

mercury exposure is associated with alterations in profiles of several hormones. Much 

more work is needed in this area because the results are equivocal and no studies have
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been replicated with the same mercury doses and species.

Corticosterone (CORT): Despite a considerable body of literature, the impact of mercury 

exposure on CORT is very unclear. The stress-induced increase in CORT was weaker for 

nestling tree swallows at contaminated sites (Wada et al. 2009) and dosed adult zebra 

finches (Moore et al. 2014), but did not relate to mercury level in free-living common 

eiders (Wayland et al. 2002), and was actually stronger in dosed white ibises (Jayasena 

2010). Baseline CORT was also elevated in tree swallow nestlings (Wada et al. 2009) as 

well as in dosed juvenile white ibises, although this latter response exhibited a nonlinear 

relationship with dose (Adams et al. 2009). However, in adult lesser scaup, baseline 

CORT was only related positively to mercury in individuals with larger body size, while 

the relationship was reversed in smaller individuals (Pollock & Machin 2009). For 

nestling and adult tree swallows, a nonsignificant positive relationship was reported 

between feather mercury concentration and CORT, but a negative relationship was found 

between baseline CORT and both egg and blood mercury in the same birds (Franceschini 

et al. 2009). Baseline CORT was also depressed in nestling Forster’s terns (Herring et al. 

2012) and dosed adult white ibises (Jayasena 2010). Finally, no significant relationship 

was found between mercury and baseline CORT in adult (Heath & Frederick 2005) or 

nestling dosed white ibises, dosed zebra finches (Moore et al 2014), or nestling great 

egrets (Herring et al. 2009).

Testosterone (T): No clear patterns have yet emerged about the relationship between 

mercury and baselineT levels. In dosed adult white ibises, Jayasena et al. (2011) found no 

change in breeding males, although males paired to other males had depressed levels
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during laying and elevated T levels during incubation, in contrast with males paired to 

females. Heath & Frederick (2005) found elevated T levels in males incubating nests in 

the wild. In adult black-legged kittiwakes, neither baseline T nor gonadotropin-releasing 

hormone (GnRH)-induced T were related to mercury level in breeding birds, but in birds 

that skipped breeding, baseline T was negatively related to mercury and GnRH-induced T 

was elevated (Tartu et al. 2013). In dosed juvenile white ibises, no effects of mercury on 

T were observed (Adams et al. 2009).

Other Hormones'. Few other hormones have been studied as extensively as CORT or T. 

Other hormones related to reproduction have been the most studied, but like CORT and 

T, they are highly dependent on an individual’s breeding stage and thus a relationship 

with mercury concentration is hard to detect. The emerging relationships between 

mercury exposure and hormone level are correspondingly complex. A significant 

relationship between mercury and luteinizing hormone (LH) was found in black-legged 

kittiwakes that skipped breeding, but not in birds that bred. Baseline LH levels were 

negatively associated with Hg in males but positively associated in females, while LH 

induced by GnRH increased with increasing mercury levels (Tartu et al. 2013). However, 

both baseline and GnRH-induced LH was suppressed in male and female snow petrels 

(Tartu et al. 2014). Prostaglandin synthesis declined after exposure to a high dose of 5 

ppm in a homogenate eggshell mucosa from chickens (Lundholm 1995). Dosed white 

ibises had a nonsignificant increase in progesterone during incubation (Heath &

Frederick 2005). Thyroid hormones, T3 and T4, were lower in nestling tree swallows 

exposed to mercury at contaminated sites (Wada et al. 2009), but T4 had no relationship

12



to mercury in lesser scaup (Pollock & Machin 2009).

More information is available regarding estradiol. In dosed female white ibises, 

estradiol levels decreased significantly with mercury during pre-breeding, 

nonsignificantly during the display stage (Heath & Frederick 2005), and in a dose- 

dependent manner during breeding. In male white ibises, estradiol levels were higher in 

dosed birds than controls during courtship but lower during other stages. Differences 

between dosed and control birds were amplified in males that paired, abnormally, with 

other males (Jayasena et al. 2011). Estradiol levels in juvenile white ibises increased in a 

dose-dependent manner with mercury dose (Adams et al. 2009).

Immunocompetence

Overview: The impact of mercury on immune function is relatively understudied. There 

has been little replication for many endpoints, and field investigations are often limited to 

non-specific measures of immune response, such as the swelling response 

phytohaemagglutinin (PHA) assay, which leave considerable room for interpretation. 

However, a general picture is forming that mercury is challenging to the immune systems 

of birds.

Blood Cells: The most widely reported white blood cell endpoints relate to heterophils 

and lymphocytes. The number of heterophils increased with mercury in dosed great 

egrets (Spalding et al. 2000a) and American kestrels (Fallacara et al. 201 la), while the 

percentage of heterophils increased with mercury in free-living western grebes (Elbert & 

Anderson 1998). Only one study reported a different trend, namely a nonsignificant
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decrease in the number of heterophils in great egrets. The number of lymphocytes also 

exhibited a nonsignificant decrease associated with mercury in that study (Sepulveda et 

al. 1999), but this result corroborates other results, including a significant decrease in the 

number of lymphocytes in dosed American kestrels (Fallacara et al. 201 la) and decreased 

B cell proliferation in dosed zebra finches (Lewis et al. 2013). Dosed great egrets, 

however, have also displayed an increase in number of lymphocytes (Spalding et al. 

2000a). In accordance with the majority of conclusions, the heterophil-to-lymphocyte 

ratio increased for dosed American kestrels (Fallacara et al. 201 la) and common loons 

(Kenow et al. 2007).

Fewer results have been published regarding other white blood cells. The number 

of eosinophils showed a nonsignificant decrease with mercury level in great egrets 

(Sepulveda et al. 1999), and a significant percentage decrease in environmentally 

exposed western grebes (Elbert & Anderson 1998). Macrophage activity decreased with 

mercury level in free-living black-footed albatross (Finkelstein 2003), and macrophage 

suppression was also observed in dosed American kestrels (Fallacara et al. 201 la). 

However, Holloway (2001) only observed a change in phagocytic activity when white 

blood cells from chickens were isolated and exposed to mercury in vitro, reporting no 

change when ringed doves or common loons were exposed to mercury in vivo. Number 

of monocytes increased with mercury in dosed great egrets (Spalding et al. 2000a), but 

did not change in dosed American kestrels (Fallacara et al. 201 la).

A small amount of information is available on how mercury impacts other aspects 

of blood. Hematocrit decreased in response to mercury in black-crowned night herons,
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snowy egrets (Henny et al. 2002) and dosed great egrets (Spalding et al. 2000a). 

Sepulveda et al. (1999) also observed a nonsignificant decrease in hematocrit with 

mercury exposure in great egrets during one year, but an increase in another year. Plasma 

proteins in general may decrease, as observed in dosed and environmentally exposed 

great egrets (Hoffman et al. 2005, Sepulveda et al. 1999, Spalding et al. 2000a).

However, the response is likely more complicated, as common loons displayed an 

increase in globulin and a decrease in albumin (Kenow et al. 2007).

Immune Responsiveness: A considerable body of literature shows that mercury decreases 

general immune response in birds, although there are variable results from different 

assays. PHA-induced swelling was lower for dosed great egrets (Spalding et al. 2000a), 

and American kestrels (Fallacara et al. 201 la  and b), and environmentally exposed tree 

swallows (Hawley et al. 2009). Antibody response to sheep red blood cells (SRBC) was 

lower in dosed American kestrels (Fallacara et al. 201 la) and common loons (Kenow et 

al. 2007). However, Kenow et al. (2007) also reported no change in PHA-induced 

swelling in common loons, and Fallacara et al. (201 la) and Hawley et al. (2009) found no 

significant differences in antibody response to SRBC. In common eiders, no relationship 

was found between mercury and PHA-induced swelling (Wayland et al. 2002).

Other evidence for a generally compromised immune response includes a greater 

rate of bacterial infections in common loons (Kenow et al. 2007). Great white herons 

found dying of disease had higher body burdens of mercury than birds dying of acute 

causes, e.g., injuries (Spalding et al. 1994).
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Other Physiological Endpoints

Oxidative Stress: A growing body of evidence indicates that mercury exposure induces 

oxidative stress. Although no changes in glutathione (GSH), glutathione disulfide 

(GSSG), or the ratio of oxidized GSSG to reduced GSH were found in dosed laughing 

gulls (Jenko et al. 2012), evidence of mercury-related oxidative stress has been observed 

in a number of other species. GSH was negatively related to mercury level in the livers of 

greater scaup, surf scoters, ruddy ducks (Hoffman et al. 1998), and Forster’s terns 

(Hoffman et al. 2011). GSSG increased in the liver, brain, and kidney of dosed common 

loons (Kenow et al. 2008), and was also positively related to mercury in the livers of surf 

scoters, ruddy ducks (Hoffman et al. 1998), and great egrets (Hoffman et al. 2005), and in 

the kidney of Forster’s terns, (although the opposite trend was found with mercury level 

in their brains; Hoffman et al. 2011). GSSGiGSH, which represents the ratio of available 

to unavailable antioxidant, decreased in kidneys of great egrets (Hoffman et al. 2005) and 

livers of common loon, but increased in their brains (Kenow et al. 2008), as well as in the 

livers of greater scaup (Hoffman et al. 1998), Forster’s tern (Hoffman et al. 2011), and 

double-crested cormorant. GSH peroxidase, which converts oxidized to reduced 

glutathione, declined in great egret livers, kidneys, plasma, and brains (Hoffman et al. 

2005), cormorant livers (Henny et al. 2002), and common loon brains, but increased in 

loon kidney and liver (Kenow et al. 2008), as well as in surf scoter liver (Hoffman et al. 

1998). In addition to these chemical changes, Hg exposure increased the expression of 

two cellular stress-related genes, glutathione peroxidase 3 and glutathione ^-transferase 

p3 in female double-crested cormorants (Gibson et al. 2014).
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Oxidative stress may be responsible for reports of damage to livers and other 

internal organs in birds with high mercury levels. European starlings dosed 

unintentionally in captivity showed extensive nephritic lesions (Nicholson & Osborn 

1984), and black-crowned night herons, snowy egrets, and double-crested cormorants 

experienced hepatotoxicity and nephrotoxicity with higher exposure to mercury (Henny 

et al. 2002). Henny et al. (2002) also found that young snowy egrets had enlarged livers 

and kidneys (and smaller brains), and double-crested cormorants had enlarged spleens, 

which may have been the result of organ damage rather than initial growth.

Metabolism: Very few studies have investigated changes in metabolism in response to 

environmentally relevant mercury contamination, and none of these have been replicated. 

In western grebes, blood potassium and phosphorus decreased with increasing tissue 

mercury concentration (Elbert & Anderson 1998), and plasma phosphate also decreased 

in great egrets (Hoffman et al. 2005), although plasma potassium did not change in 

Japanese quail fed methylmercury (Hill & Soares 1984). After dietary mercury exposure 

at the upper limit of our defined environmentally relevant concentrations (5 ppm), white 

leghorn chickens had decreased calcium content in their blood plasma (Lundholm 1995). 

No changes were observed in plasma triglyceride levels of northern waterthrushes 

(Seewagen 2013), or in blood glucose levels of lesser scaup (Pollock & Machin 2009). 

Growth and Condition: Mercury exposure does not appear to strongly impede overall 

growth, but may result in some potentially significant changes in size. No changes were 

observed in overall body mass of dosed American kestrels or common loons, tarsus 

length of American kestrels or tree swallows (Fallacara et al. 201 lb), tarsus or primary

17



feather length of tree swallows (Wada et al. 2009), or body length and asymptotic mass 

of common loons (Kenow et al. 2003). However, common loons from lakes with low pH, 

which may be more vulnerable to mercury, did have lower asymptotic mass (Kenow et al. 

2003). Meanwhile, dosed great egrets did reduce their food intake and had lower weight 

index scores (Spalding et al. 2000b). Similarly, young nestling tree swallows at sites with 

higher mercury also had a decreased linear growth rate, although wing and tail growth 

were not affected (Longcore et al. 2007).

A multitude of other indices have been used to assess body condition after 

mercury exposure, ranging from size-corrected body mass to feather growth rate. These 

wide-ranging definitions make categorizing the effect of mercury difficult. Body weight, 

as well as liver and heart weight, decreased in surf scoters, and the liver-to-body weight 

ratio increased in ruddy ducks (Hoffman et al. 1998). Male American kestrels dosed with 

mercury also had lower body weight, but only in one treatment group (Albers et al.

2007). Meanwhile, no change in body or organ weight was seen in greater scaup 

(Hoffman et al. 1998), in the body weight of bald eagles (Weech et al. 2006), or in terms 

of body mass, body size, or organ mass in common eiders (Wayland et al. 2002). Great 

white herons dying of chronic disease, and with elevated mercury in tissues, had less 

body fat, although this was dependent on age (Spalding et al. 1994).

Using more sophisticated measures of body condition presents a more ambiguous 

picture. California clapper rails had lower body condition as defined by a ratio of mass to 

structural size (Ackerman et al. 2012), but using the same metric, white ibises showed a 

nonsignificant trend of improved body condition with mercury level (Heath & Frederick
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2005). Using body mass-to-body length and body mass-to-keel length as a measure of 

body condition resulted in a positive relationship between body condition and mercury in 

common mergansers (Kalisinska et al. 2010), but the interpretation of this result may not 

be straightforward. In terms of feather growth, common loons had increased flight feather 

asymmetry, but only at environmental exposures resulting in 40 ug/g in feathers (Evers et 

al. 2008). Neither these loons, nor glossy ibises or double-crested cormorants, exhibited 

the same response at lower Hg levels (Clarkson et al. 2012). However, daily feather 

growth as a nutritional condition index, measured through ptilochronology, had a 

negative relationship with mercury exposure in glossy ibises.

Conclusion

Overall, Hg does indeed negatively impact nearly all aspects of avian physiology (Fig. la 

and b). Reproduction is by far the most well-studied category of endpoints because of its 

overt relation to fitness, and Hg exposure clearly reduces the number of offspring. 

Although the reproductive phenology does not appear strongly altered by Hg, the 

reduction in number of offspring may be a result of eggshell malformation, 

teratogenicity, or nestling or fledgling mortality. Meanwhile, parental and chick behavior 

can be abnormal.

While offspring survival appears to be affected, longevity after leaving the nest 

does not decline detectably due to Hg exposure. Rather, exposed individuals face 

behavioral shifts away from higher energy activities. Hunting and foraging efficiency 

may be relatively resistant to the negative effects of Hg, with little consensus among

19



published results, and similarly there is no clear pattern regarding growth and body 

condition. However, immune function has frequently been found to be compromised, in 

addition to a number of changes in white blood cell counts.

Among endpoints with a small but rapidly growing body of evidence that reveal 

the deleterious effects of Hg are oxidative stress and neurological function, including 

axonal degeneration. But many endpoints remain understudied. There is currently too 

little information to make conclusions regarding neurotransmitters, or general 

metabolism. Many researchers have investigated various hormones, especially CORT and 

T, but together the results have not posed a meaningful explanation for how Hg is 

impacting the endocrine system. For most other hormones, there has been little to no 

investigation.

The only truly definitive conclusion to be drawn is that to understand how Hg is 

affecting birds, more experiments are required that focus on many physiological 

endpoints. The mechanisms for many of the observed results remain nearly a complete 

mystery, and similarly, some important traits, such as molt and migration behavior, have 

received disproportionately little attention. To collect meaningful data on most of the 

endpoints that remain inconclusive, especially endocrine function, great care must be 

taken to design appropriate experiments. The resources invested will be well spent to 

improve our understanding of how Hg is impacting avian wildlife.
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Figure 1. Number of published papers reporting negative impacts of Hg exposure (red) 
and number of papers reporting no effects or positive effects (green) for (a) correlational 
studies and (b) experimental studies.
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Appendix 1. Common and scientific names of all species referenced, with citations.

Common Name Scientific Name Citation

American Avocet Recurvirostra americana Ackerman et al. 2008b
American Dipper Cinclus mexicanus Henny et al. 2005
American Kestrel Falco sparverius Albers et al. 2007 

Bennett et al. 2009 
Fallacara et al. 201 la 
Fallacara et al. 201 lb

Bald Eagle Haliaeetus leucocephalus Anthony et al. 1999 
Bowerman et al. 1994 
DeSorbo & Evers 2005 
Rutkiewicz et al. 2011 
Wiemeyer et al. 1984 
Scheuhammer et al. 2008 
Weech et al. 2006

Belted Kingfisher Megaceryle alcyon Bouland et al. 2012
Black-Crowned Night-Heron Nycticorax nycticorax Henny et al. 2002
American Black Duck Anas rubripes Finley & Stendell 1978
Black-Footed Albatross Phoebastria nigripes Finkelstein 2003
Black-Legged Kittiwake Rissa tridactyla Tartu et al. 2013
Black-Necked Stilt Himantopus mexicanus Ackerman et al. 2008b
California Clapper Rail Rallus longirostris obsoletus Ackerman et al. 2012
Carolina Wren Jackson et al. 2011 

Hallinger et al. 2010
Common Eider Somateria mollissima Way land et al. 2002
Common Loon Gavia immer Scheuhammer et al. 2008 

Burgess & Meyer 2008 
Evers et al. 2008 
Kenow et al. 2003 
Kenow et al. 2007 
Kenow et al. 2008 
Kenow et al. 2010 
Merrill et al. 2005 
Meyer et al. 1998 
Mitro et al. 2008 
Nocera & Taylor 1998 
Olsen et al. 2000 
Holloway 2001
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Common Merganser Mergus merganser Kalisinska et al. 2010
Double-crested Cormorant Phalacrocorax auritus Clarkson et al. 2012 

Gibson et al. 2014 
Henny et al. 2002

Eastern Bluebird Sialia sialis Bouland et al. 2012
European Starling Sturnus vulgaris Nicholson & Osborn 1984
Forster's Tern Ackerman et al. 2008a 

Herring et al. 2012 
Hoffman et al. 2011

Glossy Ibis Plegadis falcinellus Clarkson et al. 2012
Great Egret Ardea alba Bouton et al. 1999 

Hoffman et al. 2005 
Sepulveda et al. 1999 
Spalding et al. 2000a 
Spalding et al. 2000b

Greater Scaup Aythya marila Hoffman etal. 1998
Great Skua Stercorarius skua Thompson et al. 1991
Great White Heron Ardea herodias occidentalis Spalding et al. 1994
House Wren Troglodytes aedon Hallinger et al. 2010
Japanese Quail Coturnix japonica Hill & Soares 1984 

Rutkiewicz et al. 2013
King Eider Somateria spectabilis Wayland et al. 2008
Laughing Gull Leucophaeus atricilla Jenko et al. 2012
Lesser Scaup Aythya affinis Pollock & Machin 2009
Mallard Anas platyrhynchos Heinz 1974 

Heinz 1975 
Heinz 1976a 
Heinz 1976b 
Heinz 1979 
Heinz et al. 2010a 
Heinz et al. 2010b 
Heinz et al. 2011 
Heinz & Locke 1976 
Hoffman & Moore 1979 
Pass et al. 1975

Northern Waterthrush Parkesia noveboracensis Seewagen 2013
Pigeon Columba livia Evans et al. 1982 

Laties & Evans 1980
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Red-Tailed Hawk Buteo jamaicensis Fimreite & Karstad 1971
Ruddy Duck Oxyura jamaicensis Hoffman et al. 1998
Snow Petrel Pagodroma nivea Tartu et al. 2014
Snowy Egret Egretta thula Olivero-Verbel et al. 2013 

Henny et al. 2002
Song Sparrow Melospiza melodia Hallinger et al. 2010
Surf Scoter Melanitta perspicillata Hoffman et al. 1998
Western Grebe Aechmophorus occidentalis Elbert & Anderson 1998
Tree Swallow Tachycineta bicolor Brasso & Cristol 2008 

Franceschini et al. 2009 
Hallinger & Cristol 2011 
Hallinger et al. 2011 
Hawley et al. 2009 
Longcore et al. 2007 
Wada et al. 2009 
Gerrard 2000 
Bouland et al. 2012

White Ibis Eudocimus albus Adams & Frederick 2008 
Adams et al. 2008 
Frederick et al. 2011 
Frederick & Jayasena 2010 
Heath & Frederick 2005 
Herring et al. 2009 
Jayasena et al. 2011 
Jayasena 2010

White Leghorn Gallus gallus domesticus Lundholm 1995 
Holloway2001 
Rutkiewicz et al. 2013

White-Tailed Sea Eagle Haliaeetus albicilla Helander et al. 1982
White-Winged Scoter Melanitta deglandi Way land et al. 2008
Zebra Finch Taeniopygia guttata Lewis et al. 2013

Moore et al. 2014
Scheuhammer 1988 
Varian-Ramos et al. 2014
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Chapter 2: Rapid Feather Molt in Songbirds Leads to Effective Depuration of 

Mercury 

Introduction

As environmental mercury (Hg) availability continues to increase worldwide (Sunderland 

et al. 2009), an increasing number of studies have suggested that methylmercury (MeHg) 

exposure affects physiology, behavior, and reproductive success of birds (Varian-Ramos 

et al. 2014). A few studies have addressed the issue of Hg kinetics and feather molt, but 

these have been limited to a small subset of avian taxa (large, fish-eating species; 

Monteiro et al. 2001a, Bearhop et al. 2000, Fournier et al. 2002). However, Hg 

accumulates in and impacts terrestrial species as well, including the small songbirds that 

comprise most of avian biodiversity. Hg is a potential problem for all birds and not 

restricted to piscivorous food webs (Cristol et al. 2008).

In both terrestrial and aquatic species, Hg exposure can impair immune function, 

disrupt the endocrine system, and damage organs (Lewis et al. 2013, Moore et al. 2014, 

Snelgrove-Hobson et al. 1988, Spalding et al. 2000) within weeks or months of exposure. 

Whether or not these effects persist after Hg exposure has ceased and birds have excreted 

their bodily Hg load has not been examined, and is an especially relevant question when 

assessing the risk of harm to migratory or dispersive species exposed for only part of the 

annual cycle. Because Hg binds to the keratin in growing feathers, molt serves as an 

important route of Hg depuration for birds (Condon & Cristol 2009). Most songbirds 

molt their flight feathers rapidly, often once a year between breeding and
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migration/dispersal, whereas other species, including many seabirds, molt gradually 

throughout the annual cycle.

The elimination of Hg from adult aquatic birds appears to be best described by a 

2-compartment model incorporating a 1-d rapid phase and a slow phase of many months. 

The biological half-life of Hg in adult Cory’s shearwaters (Calonectris diomedia) that 

were not molting when dosed with Hg was 44-65 d for the slow phase (Montiero et al. 

2001a). Fournier et al. (2002) found the half-life of Hg in juvenile common loons (Gavia 

immer) that were no longer molting to be 116 d during the slow phase. Juvenile great 

skuas (Catharacta skua) dosed before and during their first adult molt exhibited a half- 

life of 31-63 d for the slow phase (Bearhop et al. 2000).

In general, younger chicks that were rapidly growing their lull plumage 

demonstrated considerably faster elimination of Hg, described by single-compartment 

models. For young shearwater chicks, the half-life of dosed mercury was 5.5-6.3 d 

(Montiero et al. 2001b), and for young loon chicks it was 3 d (Fournier et al. 2002).The 

shorter half-life relative to full-grown birds was attributed to the increased growth of 

body tissues and feathers. Feathers are well documented as Hg sinks (Furness et al.

1986), so a similar pattern emerges for adults that are molting compared to adults that are 

not. In adult Cory’s shearwaters, birds dosed immediately prior to molt depurated Hg 

with a half-life of 38^46 d, compared to birds dosed 3^4 mo before molting, which had a 

half-life of up to 65 d (Montiero et al. 2001a).

In songbirds, feather growth reduced the concentration of Hg in blood in rapidly 

molting juvenile eastern bluebirds (Siala sialis, Condon & Cristol 2009), with Hg
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concentrations rising to adult levels only after the completion of feather growth. To 

isolate the role of feather growth from other changes that occur during development, we 

measured the depuration of mercury from blood and organs in two species of songbirds, 

one that molts rapidly (European starling, Sturnus vulgaris) and one that molts gradually 

throughout the year (zebra finch Taenopygya guttata). For the starling we compared 

depuration rates during molt and when not molting, and in the finch we measured 

depuration during normal, gradual molt as well as during experimentally-induced rapid 

molt. Molting birds were expected to depurate more rapidly and to retain less Hg in organ 

tissues than non-molting birds.

Methods

European starlings

Rapid molt. We captured 54 young-of-the-year European starlings near the campus of the 

College of William & Mary (Williamsburg, VA, USA) in baited walk-in traps in May- 

July 2011 and maintained them in large outdoor aviaries on ad lib. poultry starter pellets 

(Bartlett Milling Company) and drinking/bathing water. They were divided into 3 groups 

and placed on a pelletized diet containing low (0.75 ppm) or high (1.5 ppm) 

concentrations of MeHg for 14 mo, during which time they underwent one complete molt 

of all adult feathers. Each batch of food was produced by mixing pellets thoroughly with 

aqueous MeHg-Cysteine and testing to ensure that it was within 10% of the nominal dose 

on a wet weight basis (see Varian-Ramos et al. 2014 for details of MeHg-Cysteine 

preparation). Because the diet contained 18% moisture when consumed, the equivalent 

concentration on a dry weight basis was 0.92 ppm or 1.83 ppm. Immediately prior to the
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second adult molt (May 2012), half of the birds in each treatment were sacrificed by rapid 

decapitation, and the rest were switched to the control diet for 20 weeks while they 

completed molt and depurated mercury. Blood samples were collected approximately 

monthly from all birds, and then weekly during depuration, to track Hg concentrations. 

Molt was quantified by examining all nine primary feathers weekly and scoring each 

feather’s state from 0-5: 0 indicating that the old feather was present and feather 

replacement had not begun and 5 indicating that the new feather was fully grown (Ginn 

& Melville 1983). Remaining birds were sacrificed at the end of 20 weeks. Upon 

sacrifice, samples of blood, brain, pectoral muscle, kidney, and liver were collected for 

immediate freeze-drying and total Hg analysis.

No-molt. European starlings (n=l 1) were maintained as described above but on a 

mercury-free diet. After completing molting, they were placed on a mercury diet as 

prepared above containing 1.5 ppm MeHg-Cysteine wet weight for 11 weeks (October -  

December 2013), at which point their blood Hg concentration had stabilized and they 

were switched to a mercury-free control diet to depurate Hg for 20 weeks in the absence 

of molt (December 2013-May 2014). Blood was sampled bimonthly prior to depuration, 

then weekly during depuration. All birds were sacrificed to collect organ tissues prior to 

the beginning of their annual molt, and tissues were freeze-dried and assayed for mercury 

as described above. This experimental group provided a comparison with the molting 

starlings for rate of depuration in the absence of feather molt, however, it should be noted 

that these starlings had been exposed to mercury for only 3 mo prior to depuration, as 

opposed to 14 mo for the molting treatment group.
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Zebra finches

Rapid molt. We maintained 15 zebra finches throughout adult life on pelletized diets 

containing 1.2 ppm MeHg-Cysteine wet weight. They were then placed on control diets 

and allowed to depurate for 20 weeks (October 2013-February 2014). Blood was 

sampled monthly prior to depuration, then weekly during depuration. Molt was scored 

weekly, as above. To simulate a rapid molt we plucked one primary or secondary feather 

each week from each wing until 9 primary feathers and 9 secondary feathers had been 

replaced. No more than 3 primary or secondary feathers and no more than 4 feathers 

total, per wing, were growing at a given time.

No molt. Zebra finches undergo a continuous molt that is so gradual that it approximates 

a non-molting condition. Captive-bred zebra finches (n=64) were maintained throughout 

adult life on ad lib. pelletized diets (ZuPreem, Shawnee, KS) prepared as above 

containing either 0.6ppm or 1.2ppm MeHg-Cysteine wet weight, along with water for 

drinking/bathing, vitamins and calcium supplements. (Food had moisture content of 

13.9% when consumed so dry weight equivalents were 0.7 ppm and 1.4 ppm, 

respectively). Half of these birds had begun mercury dosing upon reaching sexual 

maturity (approximately 150 d after hatching, hereafter “adult exposure”), whereas the 

others had been exposed in ovo through parental dosing and then throughout their lives 

(hereafter “lifetime exposure”). Finches ranged in age from 14-34 mo (22 ± 5.3 mo) at 

the start of depuration in July 2013, when one-third of the birds in each treatment group 

were sacrificed to sample organ tissues and the rest placed on mercury-free control diets.

All finches had their blood sampled monthly for mercury throughout their lives,
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and then weekly during depuration. After 20 weeks of depuration, an additional one-third 

of the finches were sacrificed for organ tissues, as with the second set of European 

starlings described above. Because we expected depuration to be slower in the gradually 

molting species, the final 28 finches were sacrificed after 40 weeks of depuration to 

sample organ tissues. Molt was scored weekly and tissues were prepared and analyzed for 

Hg as above.

Each week when finches were bled, all eggs in each cage were counted because 

egg-laying is a potential form of Hg depuration. Because eggs could not be attributed to 

specific female birds, the numbers were not used in any statistical tests but differences 

between groups of females were noted.

In order to avoid confusion, hereafter, rapid molt finches will be referred to as 

“molting” finches, and the 1.2 ppm and 1.5 ppm concentrations will both be classified as 

the “high” dose, while the 0.6 ppm and 0.75 ppm concentrations will be referred to as the 

“low” dose. Therefore, we had molting starlings on the low and high doses, non-molting 

starlings in the high dose, molting finches on the high dose, and non-molting finches on 

the low and high doses. There were lifetime exposure and adult exposure finches in both 

dose levels among the non-molting birds.

Data Analysis

Blood. Blood Hg concentrations were linearized using log 10 transformation. The slope 

for each bird was calculated using each week’s value until the week when the 

concentration had decreased by 98%, and this slope was considered the rate of depuration 

of Hg from the blood. Using ANOVA, these rates were compared between the two
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dosing levels and exposure groups for the non-molting finches. A t-test was used to 

compare the two dosing levels for the molting starlings, and molting to non-molting 

finches, after combining the non-molting finch rates into a single group with both types 

of exposure (lifetime and adult). Rates for molting and non-molting starlings were 

compared using ANOVA for all groups, and a t-test between the high-dose birds. The 

following equation was used to calculate the biological half-life of Hg in the blood for 

each bird:

In 2
Tl/2 = - b  x In 10

where b is the slope.

For each group, the curve for the concentration of Hg in the blood was visually 

inspected to determine fast and slow compartments, and the asymptotic phase was 

excluded. For each bird, the slope was found for these two subsets of weeks using the 

untransformed data. Using ANOVA, these rates were compared between the two dosing 

levels and exposure groups for the non-molting finches. A t-test was used to compare the 

two dosing levels for the molting starlings, molting to non-molting finches, and molting 

to non-molting starlings in the high-dose group.

Organs. Brain, liver, kidney, and pectoral muscle tissue Hg concentrations were 

transformed using the natural log and analyzed using MANOVA to compare Hg 

treatment effects, molting to non-molting finches from the high-dose groups, and molting 

starlings from the high-dose group to non-molting starlings. Tissue concentrations for 

finches depurated for 20 weeks were compared to those depurated for 40 weeks after 

natural log transformation using MANOVA.
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Pre-depuration blood Hg was unexpectedly elevated in the molting finches compared to 

non-molting finches (t = -2.8403, p = 0.011), so raw organ Hg concentrations were not 

comparable. Therefore, we compared the percentage Hg remaining in each tissue for the 

molting and non-molting finches. To obtain pre-depuration tissue concentrations for the 

molting finches, a group in which we did not sacrifice a portion of the birds at the start of 

depuration, samples were collected from finches with comparable blood Hg 

concentrations that had already been sacrificed for a previous experiment. The average 

Hg concentration for brain, liver, kidney, and muscle was calculated from the pre­

depuration samples for both groups. Percentages were then calculated using this number 

and the concentration of Hg in each individual post-depuration finch’s tissues. These 

percentages were natural log-transformed, and this number was used in the MANOVA. 

All statistical analyses and modeling were conducted using the R statistical language v. 

3.0.2 (R Development Core Team 2013).

All tissue samples were analyzed for total Hg using a Milestone DMA-80 

(Shelton, CT) at the College of William & Mary. Tissues were freeze-dried for 48 h prior 

to Hg analysis, except blood samples, which were thawed and analyzed on a wet weight 

basis. The instrument was calibrated every 1-2 months or as needed. The calculated 

minimum detectable concentration during the period including these analyses was 

between 0.0181 and 0.0275 ppm. Two samples each of two solid standard reference 

materials were run with every 20 samples (DORM-3 or DORM-4 and DOLT-4, National 

Institute of Standards, Canada), along with one duplicate, two blank sample containers 

and two blanks. Relative percent difference of duplicate starling blood was 3.66 ± 5.28%,
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and relative percent difference of duplicate finch blood was 3.88 ± 5.29%. Standard 

recovery was 99.89 ± 3.51% for DORM-3, 100.01 ± 7.92% for DORM-4 and 99.68 ± 

3.72% for DOLT-4. When we spiked 10 samples of blood with standard reference 

material our recovery was 96 ± 0.79%.

Results 

Half life of blood Hg

European starling. In molting starlings, the Hg cleared rapidly from the blood, reaching 

50% of the starting concentration in 1.1 (±0.12) -1.21 (± 0.12) weeks (Fig. 2). At 11 

weeks, blood Hg stabilized at baseline level, where it remained until the birds were 

sacrificed 20 weeks after being taken off of mercury. In non-molting starlings Hg 

depurated from the blood more slowly than in molting starlings, reaching 50% of the 

starting concentration in 1.99 ± 0.26 weeks (Fig. 2). At 20 weeks, when the birds were 

sacrificed, blood Hg concentrations remained elevated above baseline.

Zebra finch. Molting finches reached 50% of their starting Hg concentration in 2.43 ± 

0.34 weeks (Fig. 3). This was faster than for non-molting finches, in which blood Hg 

reached 50% of the starting concentration in 3.17 ± 0.59 weeks (Fig. 3). After 11 weeks, 

when molting starlings (see above) had reached baseline, the molting finches’ blood was 

still at 10% of starting level. At 20 weeks, when the second group was sacrificed, blood 

Hg concentrations remained elevated from baseline, and continued to decrease until 40 

weeks when the final group was sacrificed.

33



Rate of depuration of blood Hg

European starling. The average rate of depuration from the blood, using log 10 

transformed values by week, was -0.28 ± 0.03 for the high-dose molting starlings, -0.25 ± 

0.02 for the low-dose molting starlings, and -0.15 ± 0.02 for the non-molting starlings. 

The rate did not differ significantly between the high-dose molting birds and those fed the 

low dose (t=2.1072, p=0.054), and therefore the two groups were pooled for comparison 

with the non-molting starlings. This average rate for molting starlings, -0.26 ± 0.03, was 

significantly faster than the rate for the non-molting starlings (F= 124.62, p<0.001), but a 

significant effect of dosing level also emerged (F=20.98, p<0.001), and so the 

comparison was repeated using only the molting starlings from the high-dose group. The 

molting high-dose starlings depurated significantly faster than non-molting starlings on 

the same dose (t= 10.5617, p<0.001).

For the first compartment, the rates differed significantly for molting birds in the 

high- and low-dose groups (t=4.6311, p=0.002, Table la). The average first-compartment 

rate for the molting starlings was significantly faster than the non-molting starlings 

(t=2.9669, p=0.01). For the second compartment, the rates also differed significantly for 

molting birds in the high- and low-dose group (t=3.1201, p=0.01, Table la). The average 

second-compartment rate for the molting starlings was not significantly different from the 

non-molting starlings (t= l.226, p=0.238) (Fig. 4).

Zebra finch. The average rate of depuration from the blood for non-molting finches, 

using loglO transformed values by week, was -0.10 ± 0.02 for low-dose adult exposure 

birds, -0.09 ± 0.02 for low-dose lifetime exposure birds, -0.09 ± 0.02 for high-dose adult
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exposure birds, and -0.11 ± 0.02 for high-dose lifetime exposure birds. These rates did 

not differ significantly, and therefore all non-molting finches were pooled for comparison 

with molting finches. The average rate for all non-molting finches, -0.10 0.02, differed 

significantly from the average rate for molting finches, -0.13 (t=5.0635, p<0.001).

For non-molting finches, the rate was significantly faster for high-dose birds than 

for low-dose (F= 31.138, p<0.001), and for lifetime exposure over adult exposure birds 

(F=4.701, p=0.0358, Table la). The average first-compartment rate for the molting 

finches was significantly faster than the high-dose non-molting finches, -2.54 ppm 

Hg/week (t=3.1708, p=0.005, Table lb). For the second compartment, the rate was 

significantly higher for high-dose finches (F= 12.448, p<0.001). The average second- 

compartment rate for the molting finches was not significantly different from the non­

molting finches, -0.77 ppm Hg/week (t=0.5673, p=0.575, Table lb) (Fig. 5).

Organ mercury

European starlings. After depuration, non-molting starlings had significantly lower 

concentrations of Hg in their brain, muscle, and liver compared to the molting starlings 

(Fig 6). Kidney Hg concentration did not differ (Pillai’s Trace = 0.71, F = 7.24, df=  15, p 

< 0.05) (Table 2).

Zebra Finches. Post-depuration Hg concentrations in the brain, liver, and muscle were 

significantly lower in molting than non-molting finches (Fig 7). Kidney Hg concentration 

did not differ between molting and non-molting finches (Pillai’s Trace = 0.39, F = 3.68, 

df= 19, p < 0.05) (Table 3, Table 4).
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Despite the MANOVA showing a significant effect of dose when all tissues were 

combined (Pillai’s Trace = 0.72, F = 5.68, df= 12, p < 0.05), no differences were found 

between the lifetime and adult-exposed finches or between the non-molting high-dose 

group and the low-dose group in the brain, liver, kidney, or muscle tissue for the birds 

sacrificed at 20 weeks in the univariate analysis (Fig. 8a). For the finches sacrificed at 40 

weeks, the high-dose group retained more Hg than the low-dose group in their brain, 

muscle, and liver (Pillai’s Trace = 0.65, F = 9.65, df=  24, p < 0.01) (Table 5a), and the 

lifetime exposure group retained more Hg than the adult exposure group in their liver 

(Pillai’s Trace = 0.44, F = 4.15, df=  24, p < 0.05) (Table 5b, Fig. 8b).

Finches sacrificed at 40 weeks retained a significantly lower percentage of their 

starting Hg concentrations in their brain, muscle, kidney, and liver compared to those 

sacrificed at 20 weeks (Pillai’s Trace = 0.75, F = 25.17, df=  36, p < 0.001) (Table 6a). 

For muscle and liver, percentages dropped less over time for birds in the high-dose 

groups than for birds in the low-dose groups between 20 and 40 weeks (Pillai’s Trace = 

0.28, F = 3.14, df=  36, p < 0.05) (Table 6b). Combining the data for birds at 20 and 40 

weeks, birds in the high-dose groups retained a higher percentage of their starting 

concentration in their brain and liver than those in the low-dose groups (Pillai’s Trace = 

0.53, F = 9.36, df=  36, p < 0.001) (Table 6c), and lifetime exposure birds retained a 

higher percentage of their starting Hg concentrations in their brain, muscle, and liver than 

the adult exposure birds (Pillai’s Trace = 0.39, F = 5.29, df=  36, p < 0.01) (Table 6d).

36



Discussion

The rates of depuration of Hg from the blood that we calculated are markedly 

faster than those reported in previous literature. The biological half-life for the non­

molting zebra finches was 3.17 weeks (22 d); about half as long as the shortest reported 

half-life in the literature (44 days for non-molting adult Cory’s shearwaters, Monteiro et 

al. 2001a). Molting zebra finches exhibited a blood Hg half-life of 2.43 weeks (17 d), 

also roughly half of the shortest reported half-life (31 days for juvenile great skuas, 

Bearhop et al. 2000). The molting and non-molting starlings depurated faster still 

(molting half-life: 1.1-1.21 weeks or 7-8.5 d; non-molting half-life: 1.99 weeks or 14 d). 

The faster half-lives of the birds we studied may be due in part to the considerable size 

difference between the large fish-eating birds and the small songbirds we studied. There 

are also methodological and analytic differences between each of the studies. In 

particular, our rates are based on percent decline of previously incorporated mercury as 

opposed to disappearance of a known mercury dose.

Similarly, the half-life for Hg in other tissues was shorter for our songbirds than 

for adult mallards (Stickel et al. 1977). Dosed mallards (presumed non-molting) had a 

half-life for tissue mercury of about 8 weeks for kidneys and 10 weeks for livers. Based 

on the reduction observed after 20 weeks of depuration, even the non-molting finches 

exceeded that rate.

The finches followed the expected pattern of non-molting birds retaining a higher 

concentration of Hg in organ tissues than molting birds did, but the starlings deviated 

starkly from it. We hypothesize that this was due to the much shorter duration of dosing
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for the non-molting starlings, 11 weeks compared to 14 months for the molting starlings. 

Although blood Hg concentrations had reached an asymptote, the tissues may not yet 

have been saturated. Therefore, we likely did not perform valid comparison of molting 

and non-molting starlings because of different organ starting mercury concentrations.

In support of this interpretation, the half-life in livers, muscle, and kidney in 

pheasants, chickens, and commercial ducks was about 1-2 weeks (Gardiner 1972), which 

is comparable to or faster than the half-lives for the zebra finches and starlings. This may 

be in part because the larger commercial birds were dosed with Hg for only 5 weeks, 

compared to a minimum of 11 weeks for the songbirds, but the mallards mentioned above 

were fed Hg for only 2 weeks (Stickel et al. 1977). Therefore, the difference in exposure 

period is an incomplete explanation at best, both when comparing our data to the 

literature and explaining why the non-molting starlings had lower post-depuration tissue 

Hg concentrations. The non-molting starlings depurated during winter and early spring, 

and the higher metabolic demands compared to summer, when the molting starlings 

depurated, was another difference between treatments.

However, our results are consistent with previous studies in terms of the 

appreciably increased depuration rate in molting as opposed to non-molting birds.

Molting starlings nearly doubled their blood depuration rate. The difference was less 

pronounced for the finches, but this could be explained by the fact that “non-molting” 

finches were actually replacing a relatively small number of feathers, and “molting” 

finches did not replace their primary feathers as quickly as the starlings and were not 

replacing their contour feathers in significant numbers. The molting starlings replaced all
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of their feathers while the non-molting starlings replaced virtually no feathers.

Lifetime versus adult exposure had no effect on the overall rate of depuration 

from the blood or the rates of elimination of the second compartment. There was a 

significant effect on the rate for the first compartment, and the more rapid rate of 

depuration in the high lifetime exposure group is immediately apparent. However, this 

may have been the result of increased excretion of Hg into eggs compared to the other 

groups. The high lifetime exposure group laid approximately 100 more eggs than either 

adult exposure group or the low lifetime exposure birds during the first 20 weeks. No 

such extreme difference in the number of eggs was observed in the final 20 weeks.

However, no differences were found between the adult and lifetime exposure 

groups in their tissues after 20 weeks of depuration, whereas after 40 weeks lifetime 

exposure birds retained significantly more Hg in their livers. Furthermore, when all birds 

were analyzed together, the lifetime exposure birds retained significantly higher Hg in 

their livers, brains, and muscle tissue. This might suggest that the excessive egg-laying 

obscured differences in the group sacrificed at 20 weeks. The number of eggs was not 

used as a covariate in any analyses because it was unknown which birds in the cage laid 

the eggs.

As expected, molt significantly accelerated the rate of depuration of Hg from 

blood and tissues. Migratory birds may be relatively insulted from the impact of Hg 

compared to birds residing in contaminated areas year-round. Breeding in a contaminated 

site puts developing young at risk, but molting shortly before or after departing the site 

would allow individuals to reduce their body burdens more rapidly than migrants
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wintering in contaminated sites. Migrants leaving contaminated wintering areas to breed 

may not have the benefit of molt accelerating the depuration of Hg from their bodies, and 

may deposit higher levels of Hg into eggs.

Birds exposed in ovo retained more Hg in their organs than birds dosed as adults, 

but we did not investigate whether there was a difference for birds exposed in ovo versus 

those exposed as nestlings. Although Hg exposure during early development is 

potentially more problematic than Hg exposure throughout later development, birds 

exposed throughout later development likely deposit more Hg into their organs. These 

birds would therefore be more likely to retain higher concentrations in body tissues 

compared to birds exposed only during early development.

While a typical explosive molt is beneficial for migrants leaving a contaminated 

site, continuously molting might be more useful for resident birds. An explosive molt 

would temporarily reduce their body burden, but molting continuously could prevent a 

large accumulation of Hg or maintain a generally lower body burden. Regardless of molt 

schedule or whether migrants are wintering on or breeding in a contaminated site, 

migrants clearly have an advantage over resident species for mitigating the deleterious 

effects of Hg contamination.

The fact that Hg is impacting terrestrial communities is a relatively new discovery 

(Cristol et al. 2008), and songbirds are clearly suffering negative impacts. However, 

songbirds are potentially more capable of mitigating Hg contamination because they 

depurate comparatively rapidly. Depending on how resilient other terrestrial organisms
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are, songbirds may not be the most effective bioindicators for assessing Hg risk in these 

environments.
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Figure 2. Blood Hg concentrations of molting (black) and non-molting (gray) starlings 
during depuration, transformed with log base 10. Circles represent high doses, squares 
represent low doses. Error bars represent standard error.
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Figure 3. Blood Hg concentrations of molting and non-molting finches during 
depuration, transformed with log base 10. The low, high, adult exposure, and lifetime 
exposure groups of non-molting finches have been grouped. Error bars represent standard 
error.
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Figure 4. Starling blood Hg concentration during depuration for (a) molting and (b) non­
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second compartment.
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brain, liver, and kidney for molting (black) and non-molting (gray) starlings from the 
high-dose groups. Error bars represent standard error.
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