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Abstract

The thyroid hormone receptor a  (TRa) is a transcription factor, which can 
activate or repress gene expression in response to thyroid hormone. In addition, some of 
its actions, including DNA binding and transcriptional activation, are thought to be 
regulated by phosphorylation. Results presented here, using Xenopus oocyte 
micro injection assays, demonstrate that a phosphorylated form of TRa is present in the 
oocyte nucleus, whereas unphosphorylated TRa remains cytoplasmic. Changes in the 
phosphorylation state of TRa occur rapidly in Xenopus oocytes and point to the 
possibility that phosphorylation occurs in the nucleus. Furthermore, increasing the 
overall phosphorylation state of the oocyte leads to enhanced nuclear retention of TRa, 
suggesting that phosphorylation may have an important role in regulating nuclear 
localization of TRa. However, serine 12, a well-characterized casein kinase II 
phosphorylation site, is not necessary for this enhanced nuclear retention, nor is this site 
necessary for nuclear import. Taken together, these data provide evidence that 
phosphorylation of one or more sites other than serine 1 2 , while not directly involved in 
nuclear import, play an important role in regulating nuclear retention of TRa. These 
findings provide a foundation for future studies on the role of phosphorylation in the 
regulation of TRa.
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Introduction

The thyroid hormone receptor (TR), like other members of the nuclear receptor 

superfamily, is a transcription factor that activates or inhibits the expression of target 

genes in response to ligand. These transcription factors play a vital role in the normal 

development and maintenance of homeostasis in many organisms. Mutant alleles of 

members of this family have also been linked to a variety of diseases including various 

forms of cancer and resistance to thyroid hormone. In recent years, phosphorylation of 

transcription factors such as TR has been shown to be an important regulatory factor in 

many systems. Along with tremendous advances in our understanding of TR 

phosphorylation, there has also been a great deal of confusion in the literature, as well as 

a host of new questions to be answered. This thesis will address the importance of 

phosphorylation in the nuclear localization of TR. The following introduction will 

review what is currently known about the thyroid hormone and how TR mediates its 

functions. What is known about the structure of TR, its subcellular trafficking, and how it 

acts on target genes will be addressed.

Thyroid hormone production and regulation

Two of the most important hormones in the body are triiodothyronine (T3 ) and 

tetraiodothyronine (T4 ), collectively known as the thyroid hormones. T3 is the 

physiologically active form; T4  is converted to T3 at the target tissue. A tight endocrine 

pathway regulates thyroid hormone release (Fig. 1). Regulation begins in the brain,
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specifically the hypothalamus. The hypothalamus releases thyrotropin releasing hormone 

(TRH) which travels through the blood of the hypothalamo-hypophysial portal system. 

This hormone then acts on the pituitary gland, specifically the adenohypophysis. The 

adenohypophysis secretes thyroid stimulating hormone (TSH) into the bloodstream, 

which travels through the blood and acts on the thyroid gland. The binding of TSH to its 

cell surface receptor on the thyroid gland begins a cellular cascade which ultimately leads 

to the production and release of the thyroid hormones (Wilson, 1998). The thyroid 

hormones then travel through the blood as a complex with specific binding proteins to 

their target organs or tissues. These specific binding proteins are thyroxine-binding 

globulin (TBG) and transthyretin (TTR) (Wilson, 1998). Once T3 reaches its target cell, 

it is believed to enter the cell by a carrier-mediated, energy-dependent process, though 

some hormone may diffuse passively through the plasma membrane due to its lipophilic 

constitution (Ichikawa et al., 2000; Wilson, 1998). It then enters the nucleus, possibly in 

association with cytoplasmic thyroid hormone-binding protein (CTBP). Once in the 

nucleus, T3 is released from CTBP and binds TR (Ichikawa et al., 2000; Nagasawa et al., 

1995).

There are multiple iso forms of TR, which may compete for the limited numbers 

of thyroid hormone response elements available (Leitman et al., 1996). Two genes code 

for TRa and TRp respectively. The TRa locus is located on chromosome 17 in humans. 

Alternative splicing creates two iso forms, TRal and TRa2. TRa2 is incapable of binding 

T3 and it is believed that it may act as a repressor of T3 -dependent gene transcription 

(Tsai and O'Malley, 1994; Wilson, 1998). The TRp locus is found on human 

chromosome 3.
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Figure 1. Secretory pathway of the thyroid hormones. Regulation begins 
in the hypothalamus with the release of TRH. TRH stimulates the 
adenohypophysis to secrete TSH. TSH then binds to cell surface receptors on 
the thyroid gland, which leads to the release of the thyroid hormones. The 
thyroid hormone then enters the cell and enters the nucleus, binds to TR and, 
in most cases, enhances transcription.



5

Alternative splicing and separate promoters create the iso forms TR(31 and TRp2 

(Gauthier et al., 1999; www.thyroidmanager.org/Chapterl6/16d-text.htm). In the absence 

of ligand, TR is usually loosely bound to target gene sequences. However, upon 

hormone binding, a conformational change is induced in TR, which strengthens the 

receptor’s association with DNA. Furthermore, hormone binding promotes receptor 

dimerization (Tsai and O'Malley, 1994), which will be discussed in a later section.

Role o f thyroid hormone in the body

T3 has been shown to have an important role in reproduction, differentiation of 

certain cell types, development of various tissues, and maintenance of homeostasis in 

adults. These functions of T3 are mediated by the TRs (Lin et al., 1992; Wilson, 1998). 

Some specific functions of T3 include control of amphibian metamorphosis, and, in 

mammals, cardiac output, ventilation, mobilization o f food stores, and body temperature 

control via thermogenesis and sweating mechanisms (Eliceiri and Brown, 1994; Sachs et 

al., 2000; Wilson, 1998). Many of these studies concerning the effects of T3 involve the 

use of knockout mice, who lack either the TRa gene, the TRp gene, or both. For 

example Riisch et al. (1998) demonstrated that TRp deficient mice have abnormal 

hearing development. They further pointed out that these mice have problems with 

potassium conductance, which occurs at the inner ear hair cells. Studies of TRp deficient 

mice have also shown that this iso form is the main regulator for TSH release and, in its 

absence, extremely high levels of T3 and T4  can be found in the blood. TRa can stimulate 

TSH release, but at a much less efficient level than TRp (Forrest and Vennstrom, 2000; 

Gauthier et al., 1999).

http://www.thyroidmanager.org/Chapterl6/16d-text.htm
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TRa deficient mice have also been produced. These mice die within five weeks 

due to growth arrest, and have major defects in bone and small intestine development 

(Fraichard et a l, 1997; Gauthier et a l, 1999). Further studies suggest that TRal may be 

involved in both control of heart rate and body temperature. TRa knockout-mice had an 

average heart rate 20% lower than the wild type and also showed a 0.5°C lower body 

temperature (Wikstrom et al., 1998). Mice lacking TRal and TRa2 also have a 

deficiency in T and B lymphocyte development. B lymphocytes were most profoundly 

affected, showing a considerable lack of B cell progenitor proliferation. However, what 

remains unclear is how TRa is controlling the B cell population, whether by direct 

interaction or by creating an environment that promotes B cell differentiation (Arpin et 

al., 2 0 0 0 ).

As stated earlier, T3 is very important for development and adult homeostasis. 

Deficiency or overproduction of T3 or T4 , or genetic defects in TR can lead to a disease 

state. In humans, both hyper- and hypothyroidism have been documented (Wilson,

1998). There are two main forms of hyperthyroidism. One form is caused by mutant 

TSH receptors that are activated in the absence of hormone and stimulate the thyroid 

gland to produce an excess of T3 . The second form is Graves’ disease which is caused by 

autoantibodies produced against an individual’s own TSH receptors. These 

autoantibodies activate the same pathway as a normal TSH receptor bound by hormone. 

Individuals with hyperthyroidism have dramatic weight loss due to a large increase in 

metabolic rate, excessive sweating due to increased heat production, weakness associated 

with muscle loss, and presence of goiter (an enlarged thyroid gland) (Wilson, 1998). A 

major cause of hypothyroidism is a deficiency of iodine, a component of both T3 and T4 .
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Hypothyroidism leads to cretinism which is diagnosed by especially short stature, 

obesity, malformed legs, and mental retardation (Wilson, 1998). Resistance to thyroid 

hormone is the major heritable disease associated with mutations in TRp. Mutations are 

primarily located in the T3 -binding domain and the adjacent hinge region. Inheritance of 

this disease is autosomal dominant but resistance is never complete. Individuals with this 

disease experience a wide range of symptoms including goiter, abnormally high T3 levels, 

and varying degrees of slowed development (www.thyroidmanager.org/Chapterl6/16d- 

text.htm).

Characteristics o f  TR and other members o f the nuclear receptor superfamily

TR is a member of the large steroid/thyroid superfamily of nuclear receptors, 

which includes the receptors for steroid hormones, vitamin D receptor, retinoic acid 

receptor (RAR), and the retinoid X receptor (RXR), as well as orphan receptors whose 

ligand and/or function are currently unknown. These receptors act as transcription 

factors which can either repress or enhance transcription of target genes (Weigel, 1996). 

TRs bind to DNA at specific sites called thyroid hormone response elements (TREs) as 

monomers, homodimers, and as heterodimers with RXR (Leitman et al., 1996; Tsai and 

O'Malley, 1994). These TREs can be inverted, direct, or even everted repeats, with each 

half site having a similar homology to the estrogen response element (Tsai and O'Malley, 

1994).

All members of this family share functional amino acid domains named A 

through F (Fig. 2). The A/B regions of the N-terminus are weakly conserved, are 

variable in length and contain an autonomous transcriptional activation function

http://www.thyroidmanager.org/Chapterl6/16d-
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DBD Hinge LBD C terminus

B
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Figure 2. A. Domains of the nuclear receptor superfamily. The A/B
domains are weakly conserved. The C domain contains the DNA binding 
domain (DBD). The D domain contains the variable hinge region. The E 
domain contains the highly conserved ligand binding domain (LBD). The F 
domain is weakly conserved, is absent in some members such as the thyroid 
hormone receptor and has no known function. B. Domains of the thyroid 
hormone receptor. The A/B region contains the phosphorylation site at serine 
12. The D domain contains the NLS.



(Robyr et al., 2000). The C region includes the highly conserved DNA binding region, 

which is comprised of two Zn2+containing motifs called “zinc fingers” (Robyr et al., 

2000; Weigel, 1996). The D domain is a variable hinge region. Domain E is also highly 

conserved and contains the ligand binding domain, a second transactivation function, a 

dimerization domain, and a region involved in nuclear localization. This second 

transactivation function is an amphipathic a-helix that is highly conserved and is critical 

for transcriptional activation (Robyr et al., 2000). The final region F has no known 

function and is highly variable across the superfamily, including complete absence of the 

region in TR, the progesterone receptor (PR), RAR, and RXR (Robyr et al., 2000).

TR binding to DNA

TRs, like their counterparts in the superfamily, can bind DNA in multiple forms. 

First, as mentioned above, TR can bind to TREs as a monomer, homodimer, or 

heterodimer. These various protein-protein interactions regulate transcriptional activity 

(Weigel, 1996). For example, TR preferentially forms heterodimers with RXR. There 

are three RXR isoforms, a , p, and y. Thus, the regulatory outcome of binding o f TR to 

its target sequence will depend upon to which RXR variant it is bound (Weigel, 1996). 

Also, as stated earlier, there are multiple isoforms of TR which may compete for the 

limited numbers of TREs available. Furthermore, the distribution of these iso forms is 

different. TRa is found mainly in the brain, gut, and lung (Macchia et al., 2000). TRp 

shows a wider distribution and appears to be more important at the adult stage (Forrest 

and Vennstrom, 2000). Thus, several mechanisms exist which can alter the effect of T3.
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The effect not only depends on how TR binds to DNA, but also which iso form has bound 

the hormone.

Nuclear import

Since all proteins are synthesized in the cytoplasm, nuclear proteins must have a 

mechanism to enter the nucleus in order to perform their activity. As transcription factors, 

members of the steroid/thyroid superfamily fall into this category. Traffic from the 

cytoplasm to the nucleus and vice versa is regulated through the nuclear pore complex. 

The nuclear pore is a protein complex embedded in the nuclear membrane. It is 

composed of 50-100 subunits which form a three-dimensional structure that has an 

eightfold rotational symmetry. Both faces have rings that are connected via central 

spokes creating a central channel for proteins to pass through. The cytoplasmic face has 

eight filaments, which project away from the nucleus into the cytoplasm. The nuclear 

face of this structure has a basket-like structure, which points inward (Corbett and Silver, 

1997; Newmeyer, 1993).

Proteins entering, exiting, or even shuttling between the cytoplasm and the 

nucleus generally have a signal, which allows them to be properly targeted. Shuttling is 

the phenomenon where a protein seems to be localized to a specific subcellular 

compartment; however, in reality, individual proteins are being both imported and 

exported, with one of the rates substantially slower than the other leading to a more 

localized state. Both nuclear localization signals (NLS) and nuclear export signals (NES) 

have been identified. Two signals which have been well characterized are the simian 

virus 40 large T-antigen (also known as the classical NLS) and the nucleoplasmin 

bipartite NLS. The classical NLS is a stretch of basic amino acids, while the bipartite
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NLS is made up of two basic amino acid stretches separated by a 10 residue spacer 

region.

For larger proteins, both import and export are usually energy-dependent 

processes, although export may not specifically require GTP hydrolysis. Passive diffusion 

does occur in some cases with proteins that are less than 40-60 kD, though many of these 

smaller proteins are actively imported since this pathway is more efficient (Corbett and 

Silver, 1997; Guichon-Mantel et al., 1996; Kaffman and O'Shea, 1999; Okamoto et al., 

1999). Results of a series of experiments by Bunn et al. (2001) strongly suggest that, in 

Xenopus oocytes, TR undergoes passive diffusion for its entry into the nucleus. The 

authors showed that TR import in Xenopus oocytes is temperature and energy- 

independent. Furthermore, they demonstrated that inhibitors of signal-mediated import, 

wheat germ agglutinin and Ran Q69L, do not inhibit the nuclear import of TR. 

Interestingly, TR can also enter the oocyte nucleus by a signal-mediated pathway. This 

latter pathway will be discussed in more detail later.

The mechanism for the import of many proteins with a classical NLS begins with 

the cargo protein binding directly to the importin a  subunit of the importin a- importin p 

heterodimer complex (Fig. 3). Following binding, this complex is targeted to the 

cytoplasmic filaments of the nuclear pore complex by the importin p subunit. At the 

nuclear pore, in the presence of Ran-GDP, the importin-cargo protein complex 

is translocated into the nucleus through the central channel of the nuclear pore complex. 

In a separate pathway, Ran-GDP also enters the nucleus and is converted to Ran-GTP by 

the Prp20p and RCC1 exchange factors. Within the nucleus Ran-GTP binds to the 

importin-cargo complex, which causes the dissociation of the importin complex from the
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Figure 3. Nuclear import of proteins with a classical NLS. The
cargo protein bearing a classical NLS binds the importin a/p complex 
and is translocated to the nucleus. Ran GTP binds to this complex 
causing the release of the cargo protein. The Ran/importin complex is 
exported to the cytoplasm for another round of import.
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cargo protein. After dissociation, the importin subunits are recycled back to the 

cytoplasm in a process that requires GTP hydrolysis by Ran. The cargo protein is then 

able to perform its biological function within the nucleus (Corbett and Silver, 1997; 

Kaffman and O'Shea, 1999; Nigg, 1997).

Nucleocytoplasmic Shuttling

Nuclear receptors, including the glucocorticoid receptor (GR), estrogen receptor 

(ER), PR, and recently TR have been shown to undergo rapid nucleocytoplasmic 

shuttling (Bunn et al., 2001; Newmeyer, 1993). These receptors localize to different parts 

of the cell at steady state. In the absence of hormone, GR, the mineralocorticoid receptor 

(MR) and possibly the androgen receptor (AR) are localized to the cytoplasm of the cell. 

In the presence of hormone, these receptors enter the nucleus and enhance transcription. 

On the other hand, the progesterone, estrogen, and thyroid hormone receptors are 

primarily localized to the nucleus in the absence of ligand and in the presence of ligand 

activate transcription. Interestingly, ER and PR are not associated with DNA in the 

absence of ligand while TR is bound to DNA. ER and PR only bind their target 

sequences in the presence of ligand (Hache et al., 1999; Tsai and O'Malley, 1994). These 

localizations are not absolute, however, and depend on the cell type. For example, in 

Xenopus oocytes, TR can be found in both the cytoplasm and the nucleus at steady state 

(Bunn et al., 2001).

All these receptors apparently contain NLSs allowing them to enter the nucleus 

and, once there, they interact with the DNA to turn on the appropriate genes based on the 

hormonal signal (Hache et al., 1999; Tsai and O'Malley, 1994). Interestingly, GR and PR
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contain multiple NLSs (Guichon-Mantel et al., 1996; Hache et al., 1999). In the presence 

of ligand, GR acts as a shuttling protein that continuously travels between the cytoplasm 

and the nucleus. The first NLS, NL1 is located in the C-terminal end of the DNA binding 

domain of GR and is the main signaling motif. However, a second ligand-dependent 

NLS, NL2, has been found in the ligand-binding domain of GR (Hache et al., 1999). As 

mentioned earlier, PR also has multiple NLS sequences. The first, a hormone- 

independent sequence, is found in the hinge region and is very similar to the classic NLS. 

A second NLS is located in the second zinc finger of the DNA binding domain. This 

signal is regulated by the mechanisms that control the activity of DNA binding. A third 

weaker ligand-dependent signal is present in the steroid-binding domain. In contrast, 

human AR has had only one NLS identified, a region of twenty amino acids. It is located 

in the hinge region of the receptor and has the same properties as the bipartite signal 

previously mentioned. Similarly, human ER contains a forty-eight amino acid sequence 

located in the hinge region between the DNA and hormone-binding domains (Guichon- 

Mantel et al., 1996).

Research has suggested that TR can follow a receptor-mediated pathway for 

import into the nucleus, although in Xenopus oocytes a co-existing passive pathway has 

been demonstrated (Bunn et al., 2001). Despite indirect evidence for a NLS in TR, it has 

proved difficult to define a NLS as both necessary and sufficient for nuclear localization. 

A basic sequence in the D domain, which is conserved in all TR iso forms, has been 

shown to target cytoplasmic proteins to the nucleus, albeit weakly, in that nuclear 

localization and retention were not complete (Dang and Lee, 1989). Other experiments, 

using various methods, have shown that this region is indeed important for import;
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however, by itself, it is not efficient at promoting nuclear import (Boucher et al., 1988; 

Lee and Mahdavi, 1993; Zhu et a l, 1998). Therefore, other factors not yet discovered 

must be involved in regulating TR subcellular movement (Bunn et al., 2001).

Phosphorylation o f transcription factors and viral proteins

The phosphorylation of transcription factors and viral proteins has been shown to 

be an important regulatory factor in many systems. For example, Kann et al. (1999) 

showed, using digitoniri permeabilized cell in vitro nuclear import assays, that only 

phosphorylated hepatitis B virus core particles were targeted to the nucleus. Nuclear 

uptake of the virus core particle was shown to involve a NLS-mediated pathway. They 

also demonstrated that the phosphorylated core particle interacts directly with nuclear 

pore complex proteins via a nuclear pore binding signal, and can inhibit nuclear import of 

other nuclear proteins by competing for these binding sites. In conclusion, the authors 

suggest that phosphorylation of the core subunit causes a conformational change that 

exposes the COOH-terminal NLS so that the phosphorylated residues are no longer 

accessible to phosphatases, allowing entry of the viral particle into the nucleus (Kann et 

al., 1999).

Similarly, it has been shown that nuclear import of Dorsal, a member of the Rel 

family of proteins in Drosophila, is regulated by phosphorylation (Drier et al., 1999). 

Dorsal is of prime importance in Drosophila development. This protein is involved in 

the formation of the ventral-to-dorsal nuclear gradient. Dorsal is normally found in the 

cytoplasm bound to the I-KB-related protein Cactus. In response to a ventral signal, 

signal-dependent phosphorylation of both Cactus and Dorsal leads to the degradation of
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Cactus and nuclear targeting of Dorsal. This phosphorylation event is necessary for 

nuclear import and thus is vital to the development of the adult fly (Drier et al., 1999).

Phosphorylation has also been implicated as playing a role in regulating the 

nuclear import of NF-kB, another member of the Rel family of proteins. NF-kB is a 

transcription factor found in B cells, which are involved in the human inflammatory 

immune response. In this system, phosphorylation has been shown to be important as a 

method of masking and unmasking nuclear localization sequences (NLSs) (Moroianu,

1999). In the inactive state NF-kB is found in the cytoplasm, bound to the inhibitor I-kB, 

thus masking the NLS of NF-kB. Activation begins by binding of a bacterial 

lipopolysaccharide to a cell surface receptor. This binding initiates a signaling cascade, 

which eventually leads to the activation of IKKa, a serine-specific kinase. This kinase 

then phosphorylates two serine residues on I-kB, causing I-kB to dissociate from NF-kB. 

This dissociation unmasks the NLS, exposing it to the nuclear import machinery and thus 

allowing import of NF-kB into the nucleus (Moroianu, 1999).

Kaffman et al. (1998) demonstrated that the phosphorylated form of the 

transcription factor Pho4 could not bind to Psel, which is a member of the importin p 

family, and thus could not be imported into the nucleus. Pho4 is a yeast transcription 

factor required for phosphate starvation-specific gene expression. This protein is 

regulated by changes in the extracellular concentration of inorganic phosphate. Under 

conditions of high phosphate, Pho4 resides in the cytoplasm and is phosphorylated, thus 

resulting in repression of genes active under low phosphate conditions. However, under 

phosphate-starved conditions, Pho4 becomes dephosphorylated by inhibition of the



17

kinase responsible for the normal levels of phosphorylation. This unphosphorylated form 

is then able to bind to Psel and this complex is then transported into the nucleus.

Another study has shown that dephosphorylated NLS tagged-albumin conjugates 

were unable to undergo nuclear transport in digitonin-permeabilized cells (Mishra and 

Pamaik, 1995). This model is very effective because albumin does not have a NLS, 

allowing direct study of phosphorylation of specific sequences of the various NLSs. 

Dephosphorylation also prevented the conjugates from binding to the nuclear pore 

complex, an essential step in signal-mediated nuclear transport. Interestingly when the 

cells were treated with protein kinase C or A (PKC and PKA), the conjugates were 

phosphorylated and nuclear transport was restored.

Steroid receptor phosphorylation

Members of the steroid/thyroid hormone receptor superfamily are 

phosphoproteins. Many of their phosphorylation sites are serine and threonine residues; 

however, some members of the family can be phosphorylated at tyrosine residues 

(Weigel, 1996). Evidence for phosphorylation has been provided by experiments using 

several techniques, including altered mobility on a SDS-polyacrylamide gel, detection of 

phosphotyrosine using a phosphotyrosine specific antibody, and [3 2 P] labeling studies 

(Tsai and O'Malley, 1994). These studies have shown that phosphorylation may have a 

role in hormone binding, DNA binding, transcriptional activation, and nuclear import 

(specifically nucleocytoplasmic shuttling of GR) (Tsai and O'Malley, 1994), as described 

below.
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Role o f phosphorylation in hormone binding

Studies have shown that phosphorylation may play a role in hormone binding by 

nuclear receptors. For example, using in vitro analysis, Auricchio’s research group has 

shown that phosphorylation is involved in hormone binding of ER (Tsai and O’Malley, 

1994). They showed that treatment with nuclear phosphatase results in the loss of 

hormone binding. Furthermore, they demonstrated that treatment of ER with Ca2+ 

calmodulin kinase phosphorylates tyrosine residues, and restores the hormone binding 

activity of ER (Castoria et al., 1993). While these earlier studies suggested a role for 

phosphorylation in hormone binding, more recent work has suggested an altematative 

interpretation. The current belief is that members of the superfamily are typically basally 

phosphorylated. This phosphorylation level is then increased with ligand binding 

(Weigel, 1996). However, this new idea does not completely invalidate earlier work and 

a great deal of research continues on the subject.

Role o f phosphorylation in DNA binding

Phosphorylation has also been shown to have a role in DNA binding of nuclear 

receptors. Many of these studies have focused on ER and PR. For example, it has been 

shown that, upon treatment with estradiol, ER becomes phosphorylated in MCF-7 breast 

adenocarcinoma cells (Denton et al., 1992). They then treated these cells with a potato 

acid phosphatase. The result was a decrease in phosphorylation of ER as measured by 

decreasing 32P levels. They further demonstrated that the dephosphorylated receptor had 

a lower affinity for specific DNA binding sites. Other groups have reported similar 

results. Phosphorylating human ER on tyrosine 537 led to its dimerization with other
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ERs in human MCF-7 cells. Further, in agreement with Denton et al. (1992), 

dephosphorylation caused a decrease in binding of ER to its specific response element as 

shown by electrophoretic gel mobility shift assays (EMSA) (Arnold et a l, 1995).

Studies with PR have yielded conflicting results. Using zinc finger mutants, 

Takimoto et al., (1992) demonstrated that hormone-induced phosphorylation of human 

PR includes DNA-independent and DNA-dependent stages. They proposed a three-stage 

cascade of phosphorylation. First, there is basal phosphorylation where low levels of 

phosphates are incorporated into the receptors. The second stage begins when hormone 

binding causes a conformational change exposing additional residues to phosphorylation. 

The third stage occurs when the receptor binds to DNA. Once again, this binding is 

proposed to cause a conformational change that exposes new residues for 

phosphorylation.

In support of DNA-dependent phosphorylation, Bagchi et al. (1992) reported that 

binding of PR to its specific response element occurs prior to phosphorylation. However, 

the authors reported that they saw no ligand-induced phosphorylation, suggesting that 

liganded receptor is not a prerequisite for DNA binding. They propose a model in which 

the receptor is synthesized and then complexed with heat shock protein 90 (hsp90) in the 

cytoplasm. Hormone binding causes a release of this complex, and PR forms a dimer and 

binds to its response element in the nucleus. Binding to DNA then induces 

phosphorylation of the receptor (Bagchi et al., 1992). Beck et al. (1992) provides 

additional evidence suggesting that phosphorylation is not necessary for DNA binding.

In this study, T47D breast cancer cells were treated with 8 -bromo-cAMP, an activator of 

cAMP-dependent protein kinases and okadaic acid which is a known inhibitor of proteins
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phosphatases 1 and 2 A. Neither compound modified the DNA binding activity of the 

receptor, as assayed by EMSA of whole cell extracts from treated and untreated cells.

Role o f phosphorylation in transcriptional activation

While the role of phosphorylation in hormone and DNA binding remains 

undecided, its role in nuclear receptor activation is becoming more firmly established. A 

number of steroid receptors have been utilized in these studies. While Beck et al. (1992) 

showed that phosphorylation did not alter the DNA binding affinity of PR, their results 

suggested that indeed phosphorylation enhanced transcription of target genes. In their 

study, both 8-bromo-cAMP and okadaic acid enhanced PR-mediated transcription 3 to 4 

fold in the presence of progestin. Furthermore, H8, a cyclic nucleotide-dependent protein 

kinase inhibitor, blocked gene expression in the presence of the hormone. Taken 

together, these results suggest a role for phosphorylation in activation of progestin- 

dependent gene expression by PR. Researchers working with ER have reported similar 

results. Mutagen studies have shown that serine 118 is important in transcriptional 

activation of human ER. Mutation of this residue to an alanine residue led to a reduction 

in ER-mediated gene transcription (Joel et al., 1998). In their study, the authors 

demonstrate that pp90rskl, a ribosomal kinase, phosphorylates human ER at serine 167. 

This phosphorylation was also shown to enhance transcription o f target genes (Joel et al., 

1998). Similarly, the human vitamin D receptor (VDR) has been shown to have 

enhanced transcriptional activity in the presence of casein kinase II (CK-II) (Jurutka et 

al., 1996). Thus, phosphorylation of members of the nuclear receptor superfamily seems 

to play a role in their ability to activate transcription.
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Role o f phosphorylation in nucleocytoplasmic shuttling

As previously mentioned phosphorylation seems to play an important role in the 

nuclear transport of many proteins. Since the steroid receptors are phosphoproteins and 

undergo nucleocytoplasmic shuttling, research on the role of phosphorylation in this 

phenomenon is receiving a great deal of attention. For example, numerous studies have 

suggested that phosphorylation regulates GR shuttling. GR distribution seems to be 

regulated by protein phosphatases 1 and 2 A and tyrosine kinases in rat fibroblasts 

(DeFranco et al., 1991). The authors showed that a high dose of okadaic acid leads to 

poor nuclear retention. Since okadaic acid is known to inhibit these two phosphatases, 

these findings suggest that phosphorylated GRs are not capable of recycling and remain 

cytoplasmic (DeFranco et al., 1991). Another paper demonstrating the importance of GR 

phosphorylation state on subcellular localization used digitonin-permeabilized cell 

nuclear export assays. In this study, tyrosine kinase inhibitors prevented GRs from being 

phosphorylated, leading to an inhibition of nuclear export (DeFranco, 1997).

TR Phosphorylation

TR, like its counterparts in the steroid receptor superfamily, is a phosphoprotein. 

Both rat and chicken TRa have a well-characterized casein kinase II phosphorylation site 

at serine 12 in the N-terminal region (Glineur et al., 1989; Goldberg et al., 1988). In 

addition, v-ErbA, a viral oncogenic homolog of chicken TRa, has a cAMP-dependent 

protein kinase A site at serines 28/29 (Glineur et al., 1990). Researchers have 

demonstrated that the oncoprotein must be phosphorylated for full biological activity as a 

transcriptional repressor, as kinase inhibitors reduce the function of v- ErbA (Glineur et
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al., 1990). In contrast, Katz et al. (1995) reported that phosphorylation of the TRa2 

variant in rats reduces its ability to bind to DNA. When TRa2 was dephosphorylated an 

increase in repressor activity was observed. Another report suggests that phosphorylation 

may be involved in regulating the levels o f TRpl in different cell types. Okadaic acid 

was used to enhance phosphorylation by inhibiting phosphatase activity. This increase in 

phosphorylation led to increased levels of TRpl, which the authors attributed to greater 

stability of phosphorylated TRpl in the various cell types (Ting et al., 1997).

Lin et al. (1992) showed that in addition to promoting receptor stability, 

phosphorylation led to an increase in the binding of TR to the TREs. The authors 

proposed a model in which phosphorylation allows TR to bind with nuclear accessory 

proteins by inducing a conformational change. Several other groups have suggested that 

phosphorylation may be involved in DNA binding of TR. However, Sugawara et al. 

(1994) and Bhat et al. (1994) reported conflicting results. Sugawara et al. (1994) 

reported no change in DNA binding of RXR/TRpl heterodimers after the 

phosphorylation of human TRpl(hTRpl). In contrast, Bhat et al. (1994) reported an 

increase in DNA-binding by heterodimers after phosphorylation of hTRp 1. Sugawara et 

al. (1994) did report an increase in homodimer binding of the phosphorylated receptor, 

while unphosphorylated TRpl bound DNA as a monomer. Adding confusion to the DNA 

binding issue, is a report that suggests phosphorylation does not alter the affinity of 

receptor dimers for DNA. However, this report also suggested that phosphorylation 

greatly inhibited the ability o f TR monomers to bind to DNA (Tzagarakis-Foster and 

Privalsky, 1998).
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Jones et al. (1994) used okadaic acid to increase phosphorylation of TR, and 

isoquinoline sulfonamide (H7), which inhibits phosphorylation by acting against a wide 

range of kinases, to test the effect of phosphorylation of TR on transcriptional activation. 

Okadaic acid, by inhibiting phosphatase activity augmented the transcriptional activity of 

a TRE-mediated reporter luciferase gene in the presence of T3 , in monkey kidney CV-1 

cells. Conversely, H7 lowered transcriptional activity as it inhibited kinase activity. 

Another report showed that T3 binding leads to a three-fold increase in phosphorylation 

of TRpl. Based on protease studies the authors suggested that phosphorylated TR 

undergoes a conformational change, which may play a role in transcriptional activation 

(Ting and Cheng, 1997). Thus, phosphorylation of TR is involved in regulating 

transcription. However, currently the mechanism is not yet understood. It is not clear 

whether phosphorylation is directly or indirectly affecting regulation through the receptor 

or the other proteins involved.

Use ofXenopus oocytes as a model system

Xenopus oocytes were first used for microinjection experiments in the 1970s. 

Since that time, this system has been used to study a number of mechanisms and 

important pathways, including characterization of protein kinases and their inhibitors as 

well as studies of the meiotic machinery (Lacal, 1999). Oocytes have been used to 

determine gene function, which has greatly enhanced our understanding of various 

secretory products, as well as aiding in the identification of many membrane receptors. 

Examples include characterization of the Na+ and K+ channels and the GAB A 

transporters. In addition, the Ras and Mos oncogenic pathways were first studied in
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Xenopus oocytes (Lacal, 1999). These studies were possible because the oocytes 

demonstrate a unique ability to transcribe and translate most injected foreign DNA and 

RNA. Their large size also makes them ideal for the recovery of proteins of interest 

(Lacal, 1999).

Oocyte microinjection assays are especially suited for TR research. Researchers 

have already used these types of assays to study the regulation of transcription by TR 

(Lacal, 1999; Nagl et al., 1995), and the ability to inject into both the cytoplasm and the 

nucleus makes this system ideal for studying nuclear import and export (Bunn et al., 

2001). Numerous examples can be found in the literature citing the use of oocyte 

microinjection to study nuclear import, including studies of RNA transport, as well as the 

transport of heat shock proteins (Lacal, 1999; Murdoch and Allison, 1996). Furthermore, 

since in oocytes TR is not entirely localized to the nucleus, factors that enhance nuclear 

retention can be studied.

Questions addressed in this thesis

As the preceding review has shown, phosphorylation has been implicated in many 

regulatory roles, not only in the function of nuclear receptors but for other proteins as 

well. Although there is a large body of literature available on the nuclear receptors, only 

a small amount is dedicated to TR. Much of the TR literature has focused on the effects 

of gene knockouts on murine development. This research has provided great insight into 

the many functions of TR; however, this type of research does not shed light on the 

various molecular interactions of TR, at the level of protein-protein and DNA-protein 

interactions. The eukaryotic cell has developed into a complex structure of many
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compartments. The trafficking of regulatory factors that occurs between compartments is 

vital to the development of an organism; thus understanding the nuclear import 

mechanisms of these factors is essential. Ultimately, to answer the fundamental question 

of how TRs regulate such a range of diverse functions in so many tissue types, additional 

molecular and cellular biology techniques will have to be applied. With these combined 

approaches many of the developmental questions will then be able to be answered. In 

this thesis research, three main questions were addressed.

1) Is nuclear TR phosphorylated in Xenopus oocytes?

2) Does phosphorylation of TR occur in the cytoplasm or the nucleus?

3) Is phosphorylation of TR an important mechanism for regulating its nuclear 

import and retention?



Materials and Methods

Gene constructs

pT3-rTRa, an expression vector containing rat TRal under the control of the T3 

RNA polymerase promoter, was a gift from M. Lazar (University of Pennsylvania School 

of Medicine, Philadelphia, PA). This plasmid was purified from host DH5a cells using 

Qiagen MidiPreps (Qiagen Inc., Valencia, CA) according to the manufacturer’s 

instructions.

35In vitro transcription/translation o f S-TRa

3 5 S-labeled TRa was synthesized using the TNT Rabbit Reticulocyte Lysate 

System (Promega, Madison, WI). The following reaction mixture was prepared: 25 pi 

TNT Rabbit Reticulocyte Lysate; 2 pi TNT Reaction Buffer; 1 pi TNT T3 RNA 

Polymerase; 1 mM Amino Acid Mixture, Minus Methionine; 40 U RNasin Ribonuclease 

Inhibitor; 1 pg ofpT3-rTRa DNA template; and 20 pCi L-[3 5 S]methionine (1000 

Ci/mmol, in vivo cell labeling grade; Amersham Life Science, Arlington Heights, IL), 

for a final reaction volume of 50 pi.

The reaction was incubated at 30°C for 90 minutes. 12% SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and fluorography confirmed the presence of S-TRa.

26



27

Xenopus oocyte microinjection

Microinjection needles were made from 1 mm glass capillaries using a Narshige 

PC-10 needle puller. After making the needle, the tip was broken to 20 pm diameter, 

confirmed using a stage micrometer. Microinjections were performed using a Pico-Pump 

(Medical Systems Corp., Greenvale, NY) with a pressure of 20 psi and a pulse time of 60 

msec, thus injecting a volume of 20 nl (-100 pg of S-TRa).

Surgeries were performed to remove ovarian lobes from adult Xenopus laevis. 

Procedures were approved by the Institutional Research on Animal Subjects Committee. 

Oocytes were processed as previously described (Allison et al., 1991; Allison et al.,

1993). The oocytes were transferred to small culture dishes with mesh along the bottom 

containing 0-R2 medium (82.5 mM NaCl, 2.5 mM KC1, 1.0 mM CaCh, 1.0 mM MgCh, 

1.0 mM Na2HP0 4 , 5.0 mM Hepes, 3.8 mM NaOH). Healthy stage V-VI oocytes 

(approximately 1 mm in diameter) were selected for microinjection. Oocytes have a 

pigmented animal pole and a lightly colored vegetal pole (Lacal, 1999). For nuclear 

injections the animal pole was turned upwards and the 2 0  nl sample was injected into the 

pole (Figure 4A). Placing the animal pole upwards provides an approximate location for 

the nucleus; this type of injection is a “blind” injection. A successful injection yields a 

red nucleus after dissection due to the presence of hemoglobin in the rabbit reticulocyte 

lysate. For cytoplasmic injections the vegetal pole was turned upward and the sample 

was injected into the pole (Figure 4B).

After injection, oocytes were incubated in 0-R2 solution containing 100 jxg/ml 

cycloheximide (Sigma Chemical Co., St. Louis, MO), which prevents de novo protein 

synthesis and thus prevents incorporation of excess 3 5 S-methionine into endogenous



Figure 4. Microinjection of Xenopus oocytes. A. Nuclear 
microinjection. B. Cytoplasmic microinjection.
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proteins. Cycloheximide does not interfere with nuclear import of proteins in Xenopus 

oocytes (Murdoch and Allison, 1996). The oocytes were left on ice for 15-20 minutes to 

promote wound healing, and were subsequently incubated at 20°C for various durations.

Dephosphorylation assay

3 5 S-TRa was microinjected into the cytoplasm of Xenopus oocytes, followed by 

incubation for 6  hours at 20°C. Subsequently, the oocytes were manually dissected in 

Nuclear Isolation Medium (NIM) (83 mM KC1; 17 mM NaCl; 10 mM Tris, pH 7.2; 1 

mM phenylmethylsulfonyl fluoride [PMSF]). Nuclei were separated from the cytoplasm 

by making a small tear in the animal pole. Nuclei were then gently removed from the 

cytoplasm. Six nuclei and six cytoplasms were pooled per sample. The cytoplasms were 

homogenized in Homogenization Buffer (1% Triton X-100; 100 mM NaCl; 20 mM Tris- 

HC1, pH 7.6; 1 mM PMSF). The cytoplasms were centrifuged at 9,000 x g for 5 minutes 

to pellet the yolk and pigment. The supernatant was added to 5 vol acetone and allowed 

to precipitate overnight at -80 °C.

The nuclei were brought to a final volume of 12 pi with NIM. The 

dephosphorylation reaction was prepared as follows for a final volume of 40 pi: 12 pi 

nuclear extract; 20 U Calf Intestinal Alkaline Phosphatase (Promega); IX 

Dephosphorylation Buffer (Promega). A mock reaction was prepared with nuclear 

extract and IX Dephosphorylation Buffer. Both the dephosphorylation and mock 

reactions were incubated at 37°C for 1 hour. Samples were then precipitated overnight in 

5 vol acetone. Both fractions were centrifuged and the acetone was removed. The 

sample pellets were allowed to air dry, and then resuspended in 20 pi of IX SDS-PAGE 

Sample Buffer (125 mM Tris, pH 6 .8 ; 1% SDS; 5% glycerol; 0.005% bromophenol blue;
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10 mM DTT), and boiled for 3 minutes. Samples were separated by 12% SDS-PAGE. 

The gel was then fixed for at least 30 minutes in isopropanol: H2 O: acetic acid (25:

65:10). After fixing, the gel was transferred to Amplify (Amersham) and was agitated for 

30 minutes. Amplify increases the detection efficiency of 35S by converting the beta 

emissions to light when exposed to X-ray film. The gel was then dried for one hour at 

80°C under vacuum using a BioRad Gel Dryer (Hercules, CA). The film was exposed to 

Kodak X-OMAT film and stored at -80°C for 2 weeks. The film was then developed 

using a Konica X-ray film processor.

Treatment o f oocytes with Okadaic Acid (OA), and Isobutyl-methyl-xanthine (IBMX) 

3 5 S-TRa was microinjected into the cytoplasm o f Xenopus oocytes. After 

injection the oocytes were incubated in 0-R2, cycloheximide, and dimethylsulfoxide 

(DMSO) as the control. DMSO is the solvent vehicle for the various compounds and as 

such the same percentage of DMSO was added to the control as was added to the various 

treatments. Other oocytes were incubated for 3 hours at 20°C in either OA (100 pM) or 

IBMX (125 pM). H7, an inhibitor of various kinases, and forskolin, a PKA activator 

were used; however, both compounds proved to be toxic to the oocytes and the 

experiments were discontinued. After incubation, oocytes were dissected in ice cold 1 % 

trichloroacetic acid (TCA) or, in later experiments, ice cold Nucleus Isolation Buffer 

(NIB) (25 mM Tris, pH 8.0; 10% glycerol; 5 mM MgCh; 2 mM DTT). Six nuclei and 

six cytoplasms were pooled separately and homogenized in Homogenization Buffer. The 

cytoplasms were centrifuged at 9000 x g and the supernatant was added to 5 vol acetone. 

The nuclei and cytoplasms were processed in the manner previously described. The X-
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ray films were scanned, and the bands quantified using Scion Image Analysis software 

(Scion Corporation, Frederick, MD). Replicate experiments were performed and 

treatments were then compared using the Student’s t test to determine significance of the 

differences between the control and experimental data sets (with n representing the 

number of samples of six pooled cytoplasms or nuclei).

Compartment studies

3 5 S-TRa was microinjected into the cytoplasm or the nucleus of Xenopus oocytes. 

The oocytes were then either immediately dissected in NIB or were allowed to incubate 

at 20°C for 3 hours prior to dissection. A successful cytoplasmic injection was indicated 

by the absence of a red nucleus, while a successful nuclear injection presented a red 

nucleus. All samples were processed as described above.

SDS-PAGE

Before preparing the separating gel, the gel plates, spacers, and combs of the 

BioRad Mini Protean ii apparatus (Hercules, CA) were cleaned with 95% ethanol. The 

gel box was then set up according to the manufacturer’s instructions. The gel solution 

(10-12% acrylamide mix [29:1 acrylamide: bisacrylamide; BioRad Laboratories], 375 

mM Tris, pH 8 .8 , 0.1% SDS, 0.1% ammonium persulfate [APS], and 0.04% TEMED) 

was poured between the gel plates. Water-saturated butanol was added to the top of the 

gel to prevent oxygen from interfering with polymerization. The separating gel was 

allowed to polymerize for 30 minutes.
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After the separating gel polymerized, the butanol was removed by rinsing with 

water. The stacking gel was then prepared by mixing 5.1% acrylamide mix, 0.13 M Tris, 

pH 6 .8 , 0.1% SDS, 0.1% APS, and 0.1% TEMED. This solution was poured on top of 

the separating gel and the comb was inserted. The stacking gel was allowed to 

polymerize for 30 minutes. Following polymerization, the comb was removed and the 

gels were assembled in the gel apparatus. SDS-PAGE Running Buffer (192 mM glycine; 

25 mM Tris, pH 8.2; 3 mM SDS) was poured into inner and outer sections of the gel 

apparatus.

Protein pellets were resuspended in 20 pi o f IX SDS-Page Sample Buffer. All 

gels contained one lane of BioRad Kaleidoscope Pre-stained Standards, so that the size of 

the proteins could be compared with the known sizes of the proteins in the standard. All 

samples were incubated in a boiling water bath for 3 minutes, and then loaded into the 

lanes of the gel using BioRad Gel Loading Tips. Samples were electrophoresed at 150 V 

until the bromophenol blue dye reached the end of the gel plates.

In vitro phosphorylation o f TRa

TRa was phosphorylated under the following reaction conditions in a total 

volume of 25 pi: 2 pi Casein Kinase II Buffer (New England Bio Labs, Beverly, MA) (20 

mM Tris-HCl; 50 mM KC1; 10 mM MgCk); 1.25 pi of 1 pM ATP; 500 U Casein Kinase 

II (New England BioLabs); 10 pCi Easytides y 3 2P-ATP (Perkin Elmer Life Sciences 

(NEN); 3000 Ci/mmol) or 10 pCi Redivue y 3 2P-ATP (Amersham; 3000 Ci/mmol); and 5 

pi 3 5 S-labeled TRa in TNT rabbit reticulocyte lysate. The appropriate mock reaction was 

also prepared using 5 pi of rabbit reticulocyte lysate in place of the 3 5 S-labeled TRa.



33

The reaction mixture was incubated for 30 minutes at 30°C, followed by the 

addition of 25 pi o f 2X SDS-PAGE Sample Buffer to the reaction. Samples were 

analyzed by 12% SDS-PAGE and fluorography. Two X-ray films were placed over the 

dried gel for about 3 hours. The use of two films provides a method to visualize not only 

phosphorylated TRa but also the 3 5 S-labeled TRa. The 32P that is incorporated into the 

phosphorylated TR exposes both films, however, the 3 5 S-labeled TR only exposes the 

film closest to the dried gel. This method takes advantage of the fact that 32P is a stronger 

beta emitter and thus penetrates both films.

Microinjection o f phosphorylated TRa

Phosphorylated 3 5 S-labeled TRa was injected into the cytoplasm o f Xenopus 

oocytes. The oocytes were then either immediately dissected or allowed to incubate at 

20°C for 3 hours and were then manually dissected and analyzed for nucleocytoplasmic 

distribution as previously described.

Mutagenesis

To introduce mutations into TRa, the Transformer Site-Directed Mutagenesis Kit 

(Clontech Laboratories, Inc.) was used. The goal of this procedure was to introduce three 

separate mutations into TRa at position 12, which is normally a serine residue that is 

phosphorylated by casein kinase II. Unfortunately, despite numerous attempts this 

procedure was unsuccessful at introducing the mutations, and, consequently, this strategy 

was abandoned.
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A PCR based strategy was then used to introduce the three mutations at position 

12 as well as a deletion of positions 1-12. PCR was a viable option since the position of 

interest was close to the N terminus. Five primers were designed in order to introduce the 

mutations and to create restriction sites for subcloning. The right primer introduced a 

BamHI restriction site while the four different left primers introduced a SacI restriction 

site; bold letters indicate the introduced mutations. The right primer was as follows: 5’- 

GGT GGA TCC TTA GAC TTC CTG ATC C. The serine to alanine primer used was as 

follows: 5’- C CGA GCT CGA ATG GAA CAG AAG CCA AGC AAG GTG GAG 

TGT GGG GCC GAC CCA. The serine to threonine primer used was as follows: 5’- C 

CGA GCT CGA ATG GAA CAG AAG CCA AGC AAG GTG GAG TGT GGG ACC 

GAC CCA. The serine to glutamic acid primer used was as follows: 5’- C CGA GCT 

CGA ATG GAA CAG AAG CCA AGC AAG GTG GAG TGT GGG GAG GAC CCA. 

The deletion mutant primer used was as follows: 5’- C CGA GCT CGA ATG GAC CCA 

GAG GAG AAC.

The following PCR reaction was set up in a total volume 50 pi: 1.25 pi o f 20 pM 

left primer (Gene Link Inc., Foster City, CA); 1.25 pi o f 20 pM right primer (Gene Link 

Inc.); 5.0 pi 10X Pfu Buffer (Stratagene, LaJolla, CA); 1.0 pi of 10 mM PCR nucleotide 

mix (Stratagene); 2.5 U of Turbo Pfu DNA polymerase (Stratagene); 10 ng pT3-rTRa. 

PCR was then performed in the Gene Amp PCR system 2400 (Perkin Elmer, Foster City, 

CA) under the following parameters, beginning with 95°C for 5 minutes. The next cycle 

was performed 30 times: 95 °C for 30 seconds, 65 °C for 1 minute (55 °C for the glutamic 

acid mutant), and 72 °C for 1.5 minutes. The following cycle was performed one time: 95
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°C for 30 seconds, 65 °C for 1 minute (55 °C for the glutamic acid mutant), and 72 °C for 

7 minutes.

Following PCR, agarose gel electrophoresis was used to confirm the presence of 

PCR products. The PCR products were then purified using the Qiagen PCR Purification 

Kit according to the manufacturer’s instructions. Sequential restriction digests were then 

performed on the purified PCR product and the pGEM 4Z vector (Promega). The first 

restriction digests were conducted in a final volume of 40 pi with either 4 pg pGEM 4Z 

vector or 30 pi purified PCR product, and 40 U SacI (New England BioLabs), 4 pi 1 OX 

NeBuffer I, and 4 pi 1 OX BSA (New England BioLabs). The reactions were then 

incubated for 3 h at 37°C. These reactions were then purified using the Qiagen PCR 

Purification Kit according to the manufacturer’s instructions. Following the purification 

a second restriction digest was performed: 30 pi purified DNA from first digest, 40 U 

BamHI (New England BioLabs), 4 pi 1 OX BamHI buffer, 4 pi 1 OX BSA (New England 

BioLabs). This reaction was then incubated overnight at 37°C.

After incubation overnight, 4 pi of 1 OX-glycerol dye (0.2 M EDTA, 50% 

glycerol, 0.25% Bromophenol Blue, 0.25% Xylene cyanol) were added to each digest and 

samples were electrophoresed on a 1% agarose gel. The gel was stained with 

0.1 pg/ml EtBr and the bands were visualized on a UV transilluminator and excised. The 

excised bands containing the DNA were purified using the Qiagen Gel Purification Kit 

according to the manufacturer’s instructions. The digested pGEM 4Z vector and the 

digested PCR product were ligated (3:1 vector: insert ratio) together in the following 

reaction in a total o f 10 pi: 100 ng digested pGEM 4Z, 133 ng digested PCR product, 3 U
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T4 DNA ligase (Promega), and 1 jul 10X ligase buffer. The reaction was then incubated 

overnight at 16°C.

Following the overnight ligation, XL 10-Gold ultracompetent cells (Stratagene) 

were transformed with 5 pi of the ligation reaction according to the manufacturer’s 

instructions. The transformed cells were then plated and grown overnight at 37 °C on LB 

plates containing ampicillin and X-gal. White colonies, containing the insert, were 

selected and cultured overnight. DNA was extracted and purified from these cultures 

using the Qiagen Mini Prep kit according to the manufacturer’s instruction. A 0.7% 

agarose gel was used to screen for the presence of the insert by comparing the size of 

nonrecombinant pGEM4Z with recombinant pGEM4Z containing the mutant TRa insert. 

The successfully ligated products ran at a slower rate on the gel than the faster band 

representing the nonrecombinant vector. SacI/BamHI digests were then performed to 

confirm the correct orientation of the insert in the recombinant plasmids.

DNA Sequencing

To confirm the success of the PCR-based mutagenesis of TRa, manual dideoxy 

sequencing was performed using the Sequenase Version 2.0 DNA sequencing kit (USB, 

Cleveland, OH). Figure 5 shows the results of the sequencing reactions for the threonine 

and alanine mutants, which clearly contain the appropriately altered sequence at the 

codon for amino acid 12. Due to the guanosine-rich-sequence in the region of interest of 

the glutamic acid mutant, the sequence was ambiguous; however, the mutation was 

presumed correct due to the absence of the wild type sequence (data not shown). Before 

preparing the gel and reactions, the plates were cleaned with Alconox, 70% ethanol, and
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acetone. After cleaning the plates, one side of each plate was coated with Sigmacote 

(Sigma). The base and side spacers were then cleaned with 70% ethanol. The spacers 

were arranged between the gel plates to prevent leaks and then the plates and spacers 

were clamped together.

When the plates were ready, the gel solution was prepared. The gel was made as 

followed: 42 g urea, 10 ml 1 OX TBE, 15 ml of 40% Acrylamide Stock (19:1 acrylamide : 

bisacrylamide, BioRad), and brought to a final volume of 100 ml with d d ^O . The 

solution was then heated in a 37°C water bath for 10 minutes, filtered with a 0.22 micron 

filter, and brought to a final volume of 100 ml. The solution was then left on ice for 5 

minutes. Immediately prior to pouring the gel, 800 pi 10% APS and 50 pi TEMED were 

added to the solution.

While the gel polymerized the pGEM4Z-TRa mutant constructs were prepared 

for sequencing. The DNA was denatured in the following reaction: 1 pg of DNA and 1 

pi of 2N NaOH. The reaction was briefly centrifuged and allowed to incubate at room 

temperature for 5 minutes. To the above reaction, 5 pi of 4 M NEfiAc, pH 7.0, and 50 pi 

of 100 % ethanol were added. After mixing, the DNA was allowed to precipitate for 1 h 

at -20°C. The reaction was then centrifuged at 12,000 rpm for 25 minutes at 4°C in a 

5417R centrifuge (Eppendorf, Westbury, NY). The supernatant was discarded and the 

pellet washed with 25 pi of 70% ethanol. The DNA was then centrifuged for 5 minutes 

at 4°C , the supernatant removed, and the pellet air dried briefly.

The annealing reaction was then prepared as follows: 5 pi TE, pH 8.0, 2 pi 5X 

Sequenase buffer, and 30 ng of the SP6  promoter primer (Promega). The reaction 

mixture was resuspended 40X on ice, and placed in water heated to 65°C. The samples



were then allowed to cool to room temperature in the water, usually for about 20-30 

minutes. The sequencing reaction was prepared as follows while the annealing reaction 

mixture cooled: 1 pi DTT, 0.4 pi 5X labeling mixture, 1.6 pi H2 O, 0.5 pi 3 5 S-adATP (10 

pCi/pl, 1000 Ci/mmol, Amersham), and 0.25 pi Sequenase. To each tube of annealed 

DNA, 3.75 pi of the sequencing reaction was added and allowed to incubate for 7 

minutes at room temperature. During this time 2.75 pi o f dideoxynucleotides were added 

to the wells of microtiter plates (U-shaped wells, Nunc). Following the incubation, 3.25 

pi of the sequencing reaction were added to each well containing the dideoxynucleotides. 

The samples were then incubated in a 37°C water bath for 5 minutes. Subsequently, the 

microtiter plates were placed on ice and 4 pi o f stop buffer were added to each well.

Prior to loading the samples, the sequencing apparatus (BioRad) was run for 1 h 

at 62W to pre-warm the gel. Samples were then heated for 1.5 minutes at 80°C, and 4 pi 

of each sample were electrophoresed for 90 minutes at 62 W. After completion of the 

run, the plates were removed from the sequencing apparatus and separated. Whatman 

paper was placed over the gel to remove it from the plate. The gel was then covered with 

Saran Wrap and dried under vacuum at 80°C for 2 h on a BioRad Gel Dryer. The dried 

gel was allowed to cool under vacuum, and was then exposed to X-ray film overnight at 

room temperature. The next day the film was developed using a Konica X-ray film 

processor and the results were analyzed. Having confirmed the mutant sequence, the 

mutant TRa expression vectors that were generated by PCR-based mutagenesis were 

named as follows: pGEM4Z-rTRa (ala), pGEM4Z-rTRa (thr), pGEM4Z-rTRa (glu), for 

the substitution of alanine, threonine, or glutamic acid at position 1 2 , respectively; and 

pGEM4Z-rTRa A12, for the mutant with a deletion of the first 12 amino acids.
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Microinjection o f TRa mutants
•7 r

S-labeled mutant TRs were generated by in vitro transcription/translation as 

described earlier, using pGEM4Z-rTRa (ala), pGEM4Z-rTRa (thr), pGEM4Z-rTRa 

(glu), and pGEM4Z-rTRa A12 expression vectors as templates. The 3 5 S-labeled mutant 

TRs were injected into the cytoplasm o f Xenopus oocytes. The oocytes were allowed to 

incubate at 20°C for 3 h and were then manually dissected and analyzed for 

nucleocytoplasmic distribution as previously described.
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Figure 5. Manual sequencing of TRa and mutants. A. Wild type 
serine (TCA) B. Threonine mutant (ACC) C. Alanine mutant (GCC). 
Blue arrows indicate the codon for the amino acid at position 12.



Results

A phosphorylatedform o f TRa is present in the nucleus ofXenopus oocytes

Prior Xenopus oocyte microinjection studies on nuclear import characteristics of 

TRa showed the very interesting finding that TRa recovered from nuclear fractions has a 

slightly altered mobility on denaturing SDS polyacrylamide gels when compared to TRa 

recovered from the cytoplasm (Fig 6 A). The nuclear TR band has an upward shift 

indicating slower movement through the gel matrix. Such an upward mobility shift often 

represents the phosphorylated form of a protein (Ronchini and Capobianco, 2000; 

Savouret et al., 1994; Tsai and O'Malley, 1994). Thus, it was of interest to determine 

whether the altered mobility of TRa was due to phosphorylation of nuclear TRa.

In order to assess the phosphorylation state of nuclear TR, 3 5 S-TRa was microinjected 

into the cytoplasm of Xenopus oocytes, and the oocytes were incubated 3 h to allow 

sufficient time for nuclear import of TRa. A time of 3 h was chosen based on other 

injection studies, which varied the incubation time. These experiments showed that 

nuclear import reached steady-state after 3 h (data not shown). The ability to dissect 

oocytes and separate the nucleus from the cytoplasm makes it possible to manipulate both 

fractions. Thus, nuclear samples were treated with alkaline phosphatase or with a mock 

treatment consisting of buffer alone, while cytoplasmic fractions remained untreated. 

Alkaline phosphatase dephosphorylates proteins (DeFranco et al., 1991; Sugawara et al.,

1994). Figure 6 B shows that TRa recovered from nuclear samples treated with alkaline

41



42

N C C N

A

1 2  3 4

C M A C  C M A C

1 2 3 4 5 6 7 8

Figure 6(A). Nucleocytoplasmic distribution of TRa in 
Xenopus oocytes. Xenopus oocytes were cytoplasmically 
injected with 35S-TRa. After 3 h incubation at 20°C, the oocytes 
were manually dissected into cytoplasmic (C) and nuclear (N) 
fractions. Proteins were separated by 12% SDS-PAGE, followed 
by fluorography. (B) A phosphorylated form of TRa is present 
in the nucleus of Xenopus oocytes. Xenopus oocytes were 
cytoplasmically microinjected with 35S-TRa. After 3 h 
incubation at 20°C, oocytes were manually dissected and proteins 
extracted from 6 cytoplasmic (C) or nuclear fractions. Nuclear 
fractions were treated with alkaline phosphatase (A) (lanes 3 and
7) and incubated for 1 h at 37°C or were mock-treated with buffer 
alone (M) (lanes 2 and 6). Cytoplasmic fractions (lanes 1,4,5 and
8) were left untreated. Proteins were separated by 12% SDS- 
PAGE, followed by fluorography.
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phosphatase had the same mobility as TRa recovered from untreated cytoplasmic 

samples (compare lanes 3 and 7 with lanes 1, 4, 5 and 8 ). The mock-treated samples 

(lanes 2 and 6 ) maintained the same mobility as untreated nuclear samples (Fig 6 A, lanes 

1 and 4), and show altered mobility of nuclear TRa compared with cytoplasmic TRa. 

These data suggest that a phosphorylated form of TRa is present in the nucleus of 

Xenopus oocytes.

The phosphorylation state o f  Xenopus oocytes modulates the nuclear distribution o f TRa 

The above results suggest that TRa recovered from the nucleus of Xenopus 

oocytes is phosphorylated. In order to assess the importance of phosphorylation in the 

nuclear localization of TRa, the phosphorylation state of the

oocyte was manipulated. 3 5 S-TRa was microinjected into the oocyte cytoplasm and three 

treatments were administered during the 3 h incubation period. One group was treated 

with IBMX, while another group was treated with okadaic acid. The third group was the 

control, which was incubated in an equivalent amount of the solvent DMSO. Both IBMX 

and okadaic acid are known to enhance the general phosphorylation state of cells (Bhat et 

al., 1994; Jones et al., 1994); IBMX acts as a phosphodiesterase inhibitor and protein 

kinase A activator, while okadaic acid prevents the activity of both phosphatase 1 and 2 A 

(Ting et al., 1997).

Figure 7 A shows the results of these experiments. In the presence of IBMX, 

nuclear localization of TRa was enhanced when compared with the nucleocytoplasmic 

distribution of TRa in untreated oocytes (compare lanes 2 and 4). In the absence of 

IBMX, on average, 33% of cytoplasmically injected 3 5 S-TRa was localized to the oocyte
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Figure 7(A). The phosphorylation state of Xenopus oocytes 
modulates the nuclear distribution of TRa. Oocytes were 
cytoplasmically injected with 35S-TR and incubated for 3 h at 
20°C without (lanes 1 and 2) or with IBMX (125|uM) (lanes 3 
and 4). The oocytes were manually dissected into cytoplasmic 
(C) and nuclear (N) fractions, and analyzed as described in Fig 6. 
Representative results are shown. (B) Summary of nuclear 
distribution of TRa in IBMX-treated Xenopus oocytes. Films 
were scanned and the percent of nuclear TR was quantified by 
densitometry, using Scion imaging software. A student t-test was 
performed. Untreated, n=13; IBMX-treated, n=17 (where “n” 
represents the number of six pooled cytoplasms or nuclei).
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nucleus. After treatment with IBMX, on average, the amount of 3 5 S-TRa localized to the 

nucleus after cytoplasmic injection increased significantly to 43% (P < 0.02) (Fig 7B). A 

similar trend was observed when nuclear import assays were carried out in the presence 

of okadaic acid (data not shown). However, okadaic acid increased oocyte mortality. 

Thus, insufficient replicates were obtained for statistical analysis. In summary, taken 

together, these data suggest that phosphorylation plays a role in the nuclear import and/or 

nuclear retention of TRa.

Phosphorylation/dephosphorylation o f TRa in Xenopus oocytes is a rapid process

Having shown that the nucleocytoplasmic distribution of TRa can be manipulated 

by altering the phosphorylation state of the oocyte, it was of interest to determine the 

length of time necessary not only for phosphorylation but for transport into the nucleus. 

Once again, the Xenopus oocyte system was utilized. One group of oocytes was 

cytoplasmically microinjected with 3 5 S-TRa, a second was microinjected into the 

nucleus. A successful nuclear injection was determined by the presence of a red nucleus 

after manual dissection. The presence of a red nucleus indicated that the needle 

penetrated the nucleus and successfully injected the red lysate containing the 

3 5 S-TRa. Within each of these treatments two incubation times were employed. Some 

oocytes were manually dissected immediately after microinjection. The remainder were 

incubated for 3 h at 20°C prior to dissection. The oocytes were then processed as 

previously described.

Figure 8  presents the results of this experiment. After immediate dissection, 

cytoplasmically microinjected TRa remained primarily in the cytoplasm, and showed the
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faster mobility by SDS-PAGE indicative of unphosphorylated TRa (Fig 8 A, lanes 1 and

2). In a few samples a very small fraction of TRa localized to the nucleus and showed 

the slower mobility by SDS-PAGE indicative of phosphorylated TRa (data not shown). 

This result suggests that the changes in phosphorylation state of TRa can occur quite 

rapidly. After 3 h, 36% of TRa localized to the nucleus, and, as expected, showed an 

altered mobility compared with cytoplasmic TRa (lanes 3 and 4). Nuclear 

microinjections yielded varying results. After immediate dissection, TRa remained 

largely nuclear in all samples and showed the slower mobility indicative of 

phosphorylated TRa (lanes 5 and 6 ). However, in some samples a small fraction of TRa 

either leaked into the cytoplasm from the injection site or was rapidly exported from the 

nucleus. This cytoplasmic TRa showed the faster mobility indicative of 

unphosphorylated TRa.

Interestingly, in one set of nuclear samples, TRa did not show an altered 

mobility; however, this result was not seen in any of the replicate experiments. This 

observation could be the result of variability in metabolic activity seen between batches 

of oocytes from different frogs, as well as the variability in the length of time taken for 

the “immediate” dissection. While the dissections occurred within an average of ten 

minutes, they certainly did not all occur at the same instant since the dissections were 

done manually. Since the changes in phosphorylation state appear to occur very rapidly, 

the window to observe the shift in mobility could certainly be missed in individual 

oocytes. This point seems to be supported by observations of oocytes that were allowed 

to incubate for 3 h after microinjection of TRa into the nucleus. Microinjected TRa 

remained primarily nuclear, with a small percentage of TRa localized in the cytoplasm
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NuclearCytoplasmic

Figure 8. (A) Phosphorylation/dephosphorylation of TRa in Xenopus 
oocytes occurs rapidly. Oocytes were cytoplasmically injected with 35S-TRa 
and were dissected immediately (lanes 1 and 2), or were incubated for 3 h at 
20°C and then manually dissected (lanes 3 and 4). Alternatively, oocytes were 
injected into the nucleus and were dissected immediately (lanes 5 and 6), or 
were incubated for 3 h at 20°C and then manually dissected (lanes 7 and 8) 
into cytoplasmic (C) and nuclear (N) fractions, and analyzed as described in 
Fig 6. Representative results are shown (n=34). (B) 35S-TRa added to oocyte 
extracts changes phosphorylation state. Uninjected oocytes were manually 
dissected into cytoplasmic (C) and nuclear fractions (N). Following 
dissection, S-TRa was added to both cytoplasmic and nuclear extracts. 
Proteins were acetone-precipitated and analyzed by SDS-PAGE and 
fluorography.
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(lanes 7 and 8 ). All the samples of nuclear TRa showed an altered mobility by SDS- 

PAGE, compared with the samples of TRa that had been exported to the cytoplasm. In 

summary, taken together, these studies suggest that phosphorylation/dephosphorylation 

of TRa is a rapid process and is complete after 3 h.

Further support for rapid changes in the phosphorylation state of TRa can be seen 

in Fig. 8 B. Cytoplasmic and nuclear extracts were prepared from uninjected Xenopus 

oocytes (lanes 1 and 2). Subsequently, 3 5 S-TRa was added to both extracts. Proteins 

were then precipitated overnight in acetone. The extracted proteins were separated by 

SDS-PAGE and analyzed by fluorography. Interestingly, 3 5 S-TRa added to the nuclear 

extract showed an altered mobility when compared to the 3 5 S-TRa added to the 

cytoplasmic extract. There are at least two possible interpretations of this data. First, the 

rabbit reticulocyte lysate used for in vitro translation of 3 5 S-TRa, is known to have some 

kinase activity and could be phosphorylating TRa (Ohno et al., 2000; Promega, 2000).

In this scenario, the cytoplasmic extract must contain phosphatases, which rapidly 

dephosphorylate TRa and alter the mobility of TRa in the cytoplasmic extract when 

compared to TRa in the nuclear extract where phosphatases are absent or in low 

amounts. A second possibility is that the rabbit reticulocyte lysate does not 

phosphorylate TRa. This scenario would suggest the presence of kinases in the nuclear 

extract, which rapidly phosphorylate TRa and thus cause the mobility shift. 

Distinguishing between these two possibilities will require further experimentation. It 

should also be noted that these scenarios may not be mutually exclusive. Eukaryotic cells 

are compartmentalized and contain different sets of proteins in each compartment to 

perform different functions. Thus, the cytoplasm may contain an overall phosphatase
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activity while the nucleus may contain an overall kinase activity. The data presented here 

do not rule out this possibility. Regardless of which scenario is correct, these findings 

demonstrate the important point that changes in the phosphorylation state of TRa in 

Xenopus oocytes occur rapidly, within minutes.

Microinjection o f in vitro-phosphorylated TRa

The results of the nuclear import assays suggested that the general 

phosphorylation state of the oocyte is important for the nuclear localization of TRa, and 

that changes in the phosphorylation state of TRa in oocytes occur rapidly. Thus, it was 

of interest to attempt to manipulate the phosphorylation state of TRa itself in vitro, and 

then to determine the effect of microinjecting in v/Zro-phosphorylated TRa on nuclear 

import and nuclear retention. As stated in the Introduction, the nuclear receptors are 

phosphoproteins. These receptors have been extensively studied and many of the 

phosphorylation sites have been identified. Rat TRa has a well-characterized 

phosphorylation site found at serine 12, which is phosphorylated by casein kinase II 

(Glineur et al., 1989; Goldberg et al., 1988). Interestingly, TRs isolated from chicken 

have more than one well-characterized phosphorylation site and these additional residues 

(serine 28,29) are phosphorylated by protein kinase A (Glineur et al., 1989; Tzagarakis- 

Foster and Privalsky, 1998). To ensure that serine 12 was the residue phosphorylated, 

two in vitro reactions were performed using both casein kinase II and protein kinase A to 

test the ability of each kinase to phosphorylate rat TRa in vitro. The results from these 

control experiments showed that only casein kinase II phosphorylated TRa (data not 

shown), suggesting that indeed serine 1 2  was being correctly targeted since this residue
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has been shown to be phosphorylated by casein kinase II. Thus, for subsequent 

experiments, 3 5 S-TRa was incubated with casein kinase II and y32P ATP for 30 minutes. 

This phosphorylation reaction allowed for the incorporation of the second label to the 

protein at serine 12. The 3 5 S3 2 P-TRa was micro injected into the cytoplasm of Xenopus 

oocytes. After a 1 h or 3 h incubation, the oocytes (n=36) were manually dissected and 

proteins extracted from the nuclear and cytoplasmic fractions. The proteins were then 

separated by SDS-PAGE, and dried gels were exposed to two X-ray films. Using two 

films provides a method to visualize both the phosphorylated and unphosphorylated 

forms, as the 32P will expose both films while the 35S will only expose the film closest to 

the dried gel (Murdoch and Allison, 1996).

39Unfortunately, this method proved to be ineffective in that P-TRa was 

undetectable in the proteins recovered from the oocytes, although the 3 5 S-TRa was 

detectable. This result was surprising since 3 2 P-TRa bands could be detected after the 

phosphorylation reaction (data not shown). However, the rabbit reticulocyte lysate used

i f

in the transcription/translation reaction to produce S-TRa contains a number of 

abundant proteins that can be phosphorylated (Promega, 2000). Multiple bands were seen 

on both films after the phosphorylation reaction, suggesting that a large percentage of the 

32P label was incorporated into these other proteins. Furthermore, since only a small 

amount of TRa is translated using this in vitro system, and only a small amount of 

protein was injected into the oocytes, it is possible that, in combination with inefficient

  39
labeling of TRa, the amount of P-TRa recovered from each fraction was below the 

sensitivity limits of the X-ray film. The possibility also remains that after injection TRa 

was dephosphorylated and then re-phosphorylated with non-radioactive phosphorus
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within the oocytes, making it impossible to visualize phosphorylated TR by this method. 

This method of in vitro phosphorylation may prove useful once a substantial amount of 

purified TRa can be produced by over-expression in bacteria, after construction of an 

appropriate expression vector.

Phosphorylation o f TRa at serine 12 is not required for nuclear import or nuclear 

retention

Having shown that nuclear TRa is phosphorylated and that IBMX significantly 

enhances the nuclear localization of TRa by altering the phosphorylation state of the 

oocyte, it was of interest to determine which phosphorylation site in TRa is important for 

nuclear import and nuclear retention of TRa. As stated earlier, serine 12 is a well- 

characterized phosphorylation site and thus was chosen as the site to analyze (Glineur et 

al., 1989; Goldberg et al., 1988). Four mutant expression vectors for TRa were 

constructed; a deletion mutant which had the sequence coding for the first 1 2  amino acids 

deleted and three mutants with nucleotide substitutions converting the codon for serine to 

codons for alanine, threonine, or glutamic acid, respectively. These latter three mutations 

were chosen for the following reasons: 1 ) alanine residues cannot be phosphorylated and 

thus test the importance of phosphorylation at this site, 2 ) threonine residues can be 

phosphorylated and thus test whether it is a requirement for a serine at this position, and, 

3) glutamic acid residues cannot be phosphorylated but mimic the negative charge 

associated with phosphorylation. In vzYro-translated TRa mutants or wild type TRa were 

then micro injected into the cytoplasm of Xenopus oocytes and incubated for 3 h at 20°C 

to allow the nucleocytoplasmic distribution o f TRa to reach a steady-state.
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All the mutants showed a similar nucleocytoplasmic distribution when compared 

to the wild type (Fig. 9A). In this set of experiments, 39% (n=18) of wild type TRa 

localized to the nucleus. Similarly, 40% (n=10) of the glutamic acid mutant, 40% (n=14) 

of the alanine mutant, 42% (n=12) of the threonine mutant, and 39% (n=8 ) of the A12 

deletion mutant localized to the nucleus after cytoplasmic injection. Statistical analysis 

confirmed that the distribution patterns of mutant and wild type TRas were not 

significantly different (student’s t-test, P>0.15). It should be noted that the percentage of 

wild type TRa localized to the nucleus is higher than seen in the experiments 

summarized in Fig. 7B. This result could simply be due to the differences seen between 

different batches of oocytes. However, in the experiments shown in Fig. 7, control 

oocytes were incubated in medium containing DMSO and it is possible that DMSO 

slightly inhibits nuclear import in an unknown fashion.

Surprisingly, the alanine, glutamic acid, and A12 deletion mutants, which cannot 

be phosphorylated at position 12, all showed an altered mobility on SDS-polyacrylamide 

gels similar to the altered mobility of wild type TRa previously described (Fig. 6 A). To 

determine if the altered mobility of these mutants was due to phosphorylation, alkaline 

phosphatase assays were performed on the alanine and deletion mutants as well as the 

wild type TRa. Figure 9B shows the results for the wild type and the A12 deletion 

mutant. Alkaline phosphatase treated nuclear samples had the same mobility as untreated 

cytoplasmic samples (compare lanes 1 and 3 and lanes 4 and 6 ). The mock-treated 

nuclear samples maintained their altered shift when compared to the untreated 

cytoplasmic samples or the alkaline phosphatase-treated samples (compare lane 2  with 

lanes 1 and 3, and lane 5 with lanes 4 and 6 ). Likewise, alanine mutant TRa recovered
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Figure 9(A). Phosphorylation of TRa at serine 12 is not 
required for nuclear import or nuclear retention. S-
labeled position 12 mutants were injected into the 
cytoplasm of Xenopus oocytes. The oocytes were incubated 
for 3 h and divided into cytoplasmic (C) and nuclear (N) 
fractions and analyzed as described in Fig. 6. Lanes 1 and 2 
represent wild type TRa (serine at position 12); 3 and 4, 
the glutamic acid mutant; 5 and 6, the alanine mutant; 7 
and 8, the threonine mutant; and 9 and 10, the Al2 deletion 
mutant. (B) TRa has other phosphorylation sites. 
Xenopus oocytes were cytoplasmically micro injected with 
35S-TRa (lanes 1-3) and the A12 deletion mutant (lanes 4- 
6). After 3 h incubation at 20°C, oocytes were manually 
dissected and proteins extracted from 6 cytoplasmic (C) or 
nuclear fractions. Nuclear fractions were treated with 
alkaline phosphatase (A) and incubated for 1 h at 37°C or 
were mock-treated with buffer alone (M). Cytoplasmic 
fractions were left untreated. Proteins were separated by 
12% SDS-PAGE, followed by fluorography.
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from alkaline phosphatase treated nuclear fractions did not show an altered mobility after 

SDS-PAGE; instead the mutants had the same mobility as mutant TRa recovered from 

untreated cytoplasmic samples (data not shown). Thus, the mobility shift demonstrated 

by the mutants appears to be due to phosphorylation, suggesting that there are other 

important, but cryptic phosphorylation sites within TRa.



Discussion

Phosphorylation has been shown to be important in regulating a number of 

cellular and molecular events, including nuclear import and retention of transcription 

factors. In the present study, Xenopus oocyte micro injection assays have shown that 

phosphorylation of a well-characterized casein kinase II site at serine 12 is not necessary 

for the nuclear import and retention of TRa. However, a phosphorylated form of TRa is 

present in the oocyte nucleus and increasing the phosphorylation state of the oocyte 

enhances nuclear retention of TRa. Furthermore, changes in the phosphorylation state of 

TRa occur rapidly and are compartment-specific. Taken together, these data provide 

evidence that, phosphorylation of a site(s) other than serine 1 2  has an important role in 

regulating the nuclear activity of TRa.

Phosphorylation o f serine 12 is not necessary for the nuclear import and retention o f 

TRa

Since TRa is a phosphoprotein, there is the potential that some of its functions are 

regulated by phosphorylation. These functions could include DNA binding, hormone 

binding, transcriptional activation, dimer formation, and nuclear import and retention. 

TRa has recently been shown to be a shuttling protein and, thus, phosphorylation could 

play a role in regulating its intracellular movement (Bunn et al., 2001). Serine 12 is the 

most well-characterized phosphorylation site, making this residue a good candidate for

55
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mutagenesis (Glineur et al, 1989; Goldberg et al., 1988). Furthermore, this residue is 

conserved in all members of the TR family suggesting an important biological role. 

Results from this research suggest, however, that serine 12 is not necessary for the 

nuclear import and retention of rat TRa. The individual mutants generated in this study 

not only removed the ability of this residue to be phosphorylated (alanine mutant and A12 

deletion mutant), but also mimicked the negative charge found on a phosphorylated 

residue (glutamic acid mutant) (Glineur et al., 1990). All the mutant proteins were 

imported into the nucleus and showed a similar nucleocytoplasmic distribution when 

compared to the wild type. Most strikingly, none of the first twelve amino acids, which 

include another predicted phosphorylation site, a serine at position 6  (Fig. 10), were 

shown to be necessary for nuclear import. The A12 deletion mutant also entered the 

nucleus and showed the same nucleocytoplasmic distribution as full length TR. This 

mutant also showed an altered mobility on denaturing SDS polyacrylamide gels, 

providing further evidence that there are other phosphorylation site(s). These 

observations are in agreement with an earlier report showing that the phosphorylation site 

at position 12 in chicken TRa was not essential for nuclear localization in cultured 

mammalian cells (Andersson and Vennstrom, 1997). Interestingly, chicken TRa has a 

well-characterized protein kinase A phosphorylation site at serines 28 and 29; however, 

this site is not conserved in rat TRa (Jones et al., 1994; Sugawara et al., 1994). This is of 

interest since this site has been shown to be important for the biological activity of the 

oncogenic homo log of TRa v-erbA (Glineur et al., 1989).

The results reported here showing that phosphorylation of serine 12 is not 

necessary for nuclear import of TRa do not rule out the possibility that phosphorylation
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Figure 10. Predicted phosphorylation sites in TRa. Results showing 
putative phosphorylation sites using the NetPhos 2.0 search engine. Threshold 
is the likelihood that a particular site will be phosphorylated. This value is set 
at 50, any site below this number or close to it is not likely to be a 
phosphorylation site, while higher values are more likely to be a true 
phosphorylation site.
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of one or more other sites is necessary for nuclear import. All the mutants retained their 

ability to be phosphorylated, suggesting that there is indeed at least one other 

phosphorylation site that has yet to be characterized. Phosphorylation of these additional 

individual site(s) may be necessary for nuclear import, or these sites may work in consort 

to contribute to the phosphorylation state of TRa, allowing nuclear import. Thus, these 

sites would be able to maintain the necessary phosphorylation state for import, even in 

the event of the loss of one of the other sites.

Phosphorylation has been shown to have a role in the nuclear import of a number 

of proteins including Dorsal, Pho4, and the hepatitis B core particle (Drier et al., 1999; 

Kaffman et al., 1998; Kann et al., 1999). Of particular interest is the regulation of the 

transcription factor Pho4, since it has been shown that its nuclear activity is regulated by 

its phosphorylation state. When Pho4 is unphosphorylated by the actions of a kinase 

inhibitor, transcription occurs; however, when Pho4 is phosphorylated, it is exported to 

the cytoplasm. Furthermore, this transcription factor has multiple phosphorylation sites 

with different functions including import, export, and binding to other transcription 

factors (Komeili and O'Shea, 1999). The phosphorylation of these different sites 

provides tight regulation of the activity of Pho4. These results could provide a model for 

TRa, since it is clear from the results of the present study that there are multiple 

phosphorylation sites present within TRa. The phosphorylation or dephosphorylation of 

these sites could regulate the specific activities of TRa.

TRa has been shown to shuttle rapidly between the nucleus and cytoplasm in 

mammalian cells (Bunn et al., 2001). Phosphorylation could play a role in this shuttling, 

since it has been shown that the glucocorticoid receptor (GR) shuttling is regulated by
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phosphorylation (Dean et al., 2001; DeFranco et al., 1991). In this case, researchers 

reported that protein phosphatase types 1 and 2 A regulated the shuttling of GR.

Inhibiting the phosphatases led to a loss of nuclear retention, which caused GR to remain 

in the cytoplasm (DeFranco et al., 1991). Further evidence for the role of 

phosphorylation in the shuttling of GR is provided by Dean et al. (2001). They report 

that protein phosphatase 5 (PP5) is involved in the regulation of GR shuttling.

Suppression of PP5 results in the nuclear accumulation of phosphorylated GR and leads 

to an increase in transcriptional activity (Dean et al., 2001). The mechanisms suggested 

for GR shuttling may provide a model for TR shuttling.

It is clear that phosphorylation plays a role in the activity of a host of transcription 

factors, thus finding and characterizing the cryptic sites in TRa provides an important 

area of research. These uncharacterized sites may explain some of the conflicting results 

found in the literature regarding the importance of phosphorylation for hormone binding 

and DNA binding, as well as the importance of various phosphorylation sites for other 

activities of TRa. It is certainly possible that differing experimental conditions could 

trigger these cryptic sites in different ways, thus creating the confusion seen in the 

literature. For example, many of the DNA binding studies (see Introduction, ‘TR 

phosphorylation”) used different cell lines, which have varying phosphatase and kinase 

concentrations. It is conceivable that in these different backgrounds some 

phosphorylation sites of TRa would be more active than others, thus yielding different 

results. This possibility is not without precedence; for example, the relative importance of 

phosphorylation of Dorsal in Drosophila (see Introduction, “Phosphorylation o f 

transcription factors and viral proteins”) varies in different backgrounds. In a wild-type



60

signaling background there was only a weak loss of function in phosphorylation mutants 

of Dorsal (Drier et a l, 1999). However, when these same mutants were placed in a 

Cactus mutant background the Dorsal phosphorylation mutants were completely 

destabilized. These results demonstrate that the design of the experiment is critical and 

must be considered when analyzing the data.

Phosphorylation enhances nuclear retention o f  TRa

There are many examples in the literature demonstrating the importance of 

phosphorylation in the activity of transcription factors (DeFranco et al., 1991; Komeili 

and O’Shea, 1999; Moroianu, 1999). Of particular interest, several reports have shown 

that phosphorylation of nuclear receptors can alter DNA binding affinity. In some cases, 

DNA binding of ER and PR, as well as TR, has been shown to be enhanced in the 

presence of compounds known to increase phosphorylation (Arnold et al., 1995; Bagchi 

et al., 1992; Bhat et al., 1994; Denton et al., 1992; Lin et al., 1992). However, there are 

other reports which demonstrate that phosphorylation is not necessary for DNA binding. 

Despite these conflicting reports, increased nuclear retention of phosphorylated TRa 

because of enhanced DNA binding remains an intriguing possibility, since it has also 

been shown that phosphorylation of TRa can increase transcriptional activation of T 3 -  

responsive genes (Jones et al., 1994; Ting et al., 1997). Despite serine 12 not being 

necessary for nuclear import of TRa, it is clear from the results of this thesis and 

previous studies that phosphorylation plays a role in the nuclear events of TRa. In 

Xenopus oocytes, TRa is not localized exclusively to the nucleus. This lack of 

localization allowed the manipulation of the phosphorylation state of the oocytes and in
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turn changed the localization pattern of TRa. Increasing the overall phosphorylation state 

of Xenopus oocytes by treatment with IBMX, a known inhibitor of phosphodiesterase and 

a protein kinase A activator, led to a significant increase in the nuclear localization of 

TRa. This result is consistent with studies mentioned above which showed that 

phosphorylation can enhance DNA binding in vitro and increase dimerization with RXR, 

both of which would promote nuclear localization (Bhat et al., 1994; Tzagarakis-Foster 

and Privalsky, 1998). Further evidence that phosphorylation enhances nuclear 

localization of TRa is provided by the current finding that phosphorylated TRa injected 

into the nucleus of Xenopus oocytes remains predominantly nuclear even after 3 hours. 

Taken together, these results lead to several interesting questions. Does the 

phosphorylated form of TRa bind DNA with greater affinity in vivo, thus promoting 

nuclear retention? Does phosphorylation increase the rate of nuclear import or slow 

down the rate of nuclear export of TRa?

Phosphorylation, by enhancing DNA binding could allow more TRa to remain in 

the nucleus, which would in turn lead to an increase in transcription in the presence of T3 , 

and to an increase in gene repression in the absence of T3 . Mammalian cells show a 

different distribution of TRa compared with Xenopus oocytes, as TRa is primarily 

nuclear but individual receptors undergo rapid nucleocytoplasmic shuttling (Bunn et al., 

2001). As discussed earlier, GR also undergoes shuttling and this shuttling is regulated 

by phosphorylation/dephosphorylation signals (Dean et al., 2001; DeFranco et al., 1991). 

A similar model could be applied to TRa shuttling in mammalian cells, in which 

phosphorylation could effect the rate of import or export. Nuclear TRa could be largely 

phosphorylated. However, at any given time, an individual receptor could be
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dephosphorylated and exported, and then quickly reimported. Nuclear retention of TRa 

could thus be the result of the export machinery being unable to bind a phosphorylated 

receptor. There is evidence that phosphorylation/dephosphorylation can directly alter the 

binding affinity of a protein for its import/export machinery. One example is in yeast 

where Gln3p, a transcription factor for the nitrogen catabolite repressible gene, has its 

nucleocytoplasmic distribution determined by its phosphorylation state. When 

phosphorylated this protein is unable to bind to its import receptor and thus remains 

cytoplasmic (Carvalho et al., 2001). This inability to bind TR could also be the result of 

the phosphorylated receptor’s increased association with DNA, as previously discussed, 

or of the receptor binding to the nuclear matrix. The nuclear matrix is an insoluble array 

of filaments which provides the structure and compartmentalization of the nucleus 

(DeFranco, 1997). There is evidence that unliganded GR can either bind to the nuclear 

matrix after release from chromatin or undergo nuclear export (DeFranco, 1997; Yang et 

al., 1997). TR has also been shown to associate with the nuclear matrix (C. Bunn, N. 

Hollingshead, P. Garcia, L. Allison, unpublished results). Thus, a model could be 

proposed in which this binding would prevent access to the export machinery and slow 

down the rate of export. Clearly, more work needs to be done in both mammalian cells 

and Xenopus oocytes to test this model and complete our understanding.

Changes in phosphorylation state occur rapidly in Xenopus oocytes

To be effective as a molecular and signaling mechanism, a signal must be rapid. 

This present study demonstrates that dephosphorylation/phosphorylation of TRa in
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Xenopus oocytes occurs, within minutes or less. These results are in agreement with work 

done with PHAX, a nuclear export protein (Ohno et al, 2000). In this study, PHAX was 

in vitro translated in rabbit reticulocyte lysate and microinjected into either the nucleus 

and cytoplasm o f Xenopus oocytes. The authors report that PHAX is subject to rapid 

dephosphorylation in the cytoplasm, while PHAX injected into the nucleus remains 

phosphorylated (Ohno et al., 2000). Furthermore, unphosphorylated PHAX, when 

injected into the nucleus underwent phosphorylation (Ohno et al., 2000). A similar 

distribution is reported here: TRa injected into the nucleus remained primarily nuclear 

after 3 h and showed the slower mobility on SDS-PAGE associated with 

phosphorylation, while TRa found in the cytoplasm was unphosphorylated and had a 

slower mobility. Furthermore, TRa injected into the cytoplasm remained primarily in the 

cytoplasm after immediate dissection and showed the same mobility as cytoplasmic 

fractions after 3 h demonstrating the dephosphorylated form of TRa.

Ohno et al. (2000) showed that rabbit reticulocyte lysate has kinase activity and is 

capable of phosphorylating PHAX. Interestingly the authors also demonstrated that 

PHAX can be phosphorylated by casein kinase II in vitro. This activity was confirmed 

by adding rabbit reticulocyte lysate to PHAX translated in bacteria, which is 

unphosphorylated. In the presence of the lysate PHAX was phosphorylated and showed 

an altered mobility on SDS-PAGE. This kinase activity is of particular interest since it 

has been shown that TRa can also be phosphorylated by casein kinase II at serine 12 and 

several of the putative sites, specifically serine 45 and serine 203, show casein kinase II 

consensus sites (Fig. 10). Unfortunately, a bacterial expression vector, that would generate 

an unphosphorylated TRa, since eukaryotic proteins do not undergo post-translational
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modification in bacteria, is not currently available. Thus, direct confirmation of 

phosphorylation occurring in the nucleus cannot be performed yet. However, taken 

together the results presented here suggest that, similarly to PHAX, phosphorylation 

occurs rapidly and probably occurs in the nucleus. More experiments will need to be 

performed in order to demonstrate that phosphorylation occurs in the nucleus of Xenopus 

oocytes. If this is indeed the case, this would suggest that phosphorylation of TRa does 

not directly effect nuclear import but, instead, enhances nuclear retention and inhibits 

export.

Future directions

Research on TR function and its regulation has expanded greatly over the last 

decade; however, more research is needed. First, as Fig. 10 shows, there are a number of 

potential phosphorylation sites. One or several of these sites could be important in the 

cellular and molecular events described in this study, such as nuclear retention and 

nuclear import and export. Clearly, more work needs to be done to confirm the presence 

of these sites, including carrying out site-directed mutagenesis to learn how these regions 

effect receptor behavior. In addition, more research needs to be done on manipulating the 

phosphorylation state of the cell system being studied. There are a host of inhibitors and 

activators of kinases and phosphatases available that could be used, including protein 

phosphatase 1 and 2A, PKA, H7, or forskolin, as well as phosphate depletion assays. 

Antibodies against specific kinases found in the cell system being used could provide a 

great deal of information. To complete the story of phosphorylation, this work needs to 

be complemented with mammalian cell line studies, including phosphate depletion



65

assays, and nucleocytoplasmic shuttling assays in heterokaryons, as well as in vitro 

nuclear import assays. These assays will help complete the picture and allow for the 

development of a model for nuclear retention and localization. Finally, the development 

of a bacterial expression vector for TRa would greatly enhance the study of 

phosphorylation. The ability to purify mg quantities of protein would make it easier to 

study the localization and movement of this receptor. A greater quantity of protein would 

make it possible to phosphorylate TRa in vitro, and, as mentioned earlier, TRa generated 

from bacteria would not be phosphorylated and thus could be used to provide direct 

evidence for the role of phosphorylation in nuclear retention and for the specific sites of 

phosphorylation.

Conclusion

With regard to TRa the role of phosphorylation in cellular and molecular events 

remains enigmatic. Results presented here show that phosphorylation increases nuclear 

retention of TRa in Xenopus oocytes. The mechanism remains unclear, however, and 

this uncertainty generates exciting new directions for research. Furthermore, this 

research shows that the first 12 amino acids are not necessary for nuclear import. 

Similarly, the phosphorylation state of serine 12 is not necessary for either nuclear import 

or retention. However, given that nuclear TRa is phosphorylated, it remains to be 

determined whether the phosphorylation state of TRa is directly involved in its nuclear 

import or whether phosphorylation occurs in the nucleus and plays a direct role in 

promoting nuclear retention.
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Phosphorylation plays a major role in human health. Over 700 protein kinases and 

phosphatases are encoded by the human genome (Cohen, 2001). A host of human 

diseases are the result of mutations or malfunctions in the phosphorylation machinery, 

including some forms of leukemia, Non-Hodgkins lymphoma, and diabetes (Cohen, 

2001). Furthermore, many pathogens produce virulence factors that target the 

phosphorylation machinery, most notably the bacteria Yersinia which causes bubonic 

plague (Cohen, 2001). Malfunctions in TR function such as mutations in TR(3 lead to the 

disease resistance to thyroid hormone. The resulting disease has various symptoms 

including goiter and slow development. Thus, understanding the mechanisms regulated 

by phosphorylation, and the proteins which carry out these functions, is of great 

importance.
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